1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 //    of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 //    widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 //    of vectorization. It decides on the optimal vector width, which
27 //    can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // The interleaved access vectorization is based on the paper:
38 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
39 //  Data for SIMD
40 //
41 // Other ideas/concepts are from:
42 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43 //
44 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
45 //  Vectorizing Compilers.
46 //
47 //===----------------------------------------------------------------------===//
48 
49 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/Hashing.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/SCCIterator.h"
55 #include "llvm/ADT/SetVector.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/SmallSet.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/Analysis/CodeMetrics.h"
62 #include "llvm/Analysis/GlobalsModRef.h"
63 #include "llvm/Analysis/LoopInfo.h"
64 #include "llvm/Analysis/LoopIterator.h"
65 #include "llvm/Analysis/LoopPass.h"
66 #include "llvm/Analysis/ScalarEvolutionExpander.h"
67 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
68 #include "llvm/Analysis/ValueTracking.h"
69 #include "llvm/Analysis/VectorUtils.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugInfo.h"
73 #include "llvm/IR/DerivedTypes.h"
74 #include "llvm/IR/DiagnosticInfo.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/Function.h"
77 #include "llvm/IR/IRBuilder.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/IR/ValueHandle.h"
87 #include "llvm/IR/Verifier.h"
88 #include "llvm/Pass.h"
89 #include "llvm/Support/BranchProbability.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/raw_ostream.h"
93 #include "llvm/Transforms/Scalar.h"
94 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
95 #include "llvm/Transforms/Utils/Local.h"
96 #include "llvm/Transforms/Utils/LoopSimplify.h"
97 #include "llvm/Transforms/Utils/LoopUtils.h"
98 #include "llvm/Transforms/Utils/LoopVersioning.h"
99 #include "llvm/Transforms/Vectorize.h"
100 #include <algorithm>
101 #include <map>
102 #include <tuple>
103 
104 using namespace llvm;
105 using namespace llvm::PatternMatch;
106 
107 #define LV_NAME "loop-vectorize"
108 #define DEBUG_TYPE LV_NAME
109 
110 STATISTIC(LoopsVectorized, "Number of loops vectorized");
111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
112 
113 static cl::opt<bool>
114     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
115                        cl::desc("Enable if-conversion during vectorization."));
116 
117 /// We don't vectorize loops with a known constant trip count below this number.
118 static cl::opt<unsigned> TinyTripCountVectorThreshold(
119     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
120     cl::desc("Don't vectorize loops with a constant "
121              "trip count that is smaller than this "
122              "value."));
123 
124 static cl::opt<bool> MaximizeBandwidth(
125     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
126     cl::desc("Maximize bandwidth when selecting vectorization factor which "
127              "will be determined by the smallest type in loop."));
128 
129 static cl::opt<bool> EnableInterleavedMemAccesses(
130     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
131     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
132 
133 /// Maximum factor for an interleaved memory access.
134 static cl::opt<unsigned> MaxInterleaveGroupFactor(
135     "max-interleave-group-factor", cl::Hidden,
136     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
137     cl::init(8));
138 
139 /// We don't interleave loops with a known constant trip count below this
140 /// number.
141 static const unsigned TinyTripCountInterleaveThreshold = 128;
142 
143 static cl::opt<unsigned> ForceTargetNumScalarRegs(
144     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
145     cl::desc("A flag that overrides the target's number of scalar registers."));
146 
147 static cl::opt<unsigned> ForceTargetNumVectorRegs(
148     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
149     cl::desc("A flag that overrides the target's number of vector registers."));
150 
151 /// Maximum vectorization interleave count.
152 static const unsigned MaxInterleaveFactor = 16;
153 
154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
155     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
156     cl::desc("A flag that overrides the target's max interleave factor for "
157              "scalar loops."));
158 
159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
160     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
161     cl::desc("A flag that overrides the target's max interleave factor for "
162              "vectorized loops."));
163 
164 static cl::opt<unsigned> ForceTargetInstructionCost(
165     "force-target-instruction-cost", cl::init(0), cl::Hidden,
166     cl::desc("A flag that overrides the target's expected cost for "
167              "an instruction to a single constant value. Mostly "
168              "useful for getting consistent testing."));
169 
170 static cl::opt<unsigned> SmallLoopCost(
171     "small-loop-cost", cl::init(20), cl::Hidden,
172     cl::desc(
173         "The cost of a loop that is considered 'small' by the interleaver."));
174 
175 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
176     "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
177     cl::desc("Enable the use of the block frequency analysis to access PGO "
178              "heuristics minimizing code growth in cold regions and being more "
179              "aggressive in hot regions."));
180 
181 // Runtime interleave loops for load/store throughput.
182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
183     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
184     cl::desc(
185         "Enable runtime interleaving until load/store ports are saturated"));
186 
187 /// The number of stores in a loop that are allowed to need predication.
188 static cl::opt<unsigned> NumberOfStoresToPredicate(
189     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
190     cl::desc("Max number of stores to be predicated behind an if."));
191 
192 static cl::opt<bool> EnableIndVarRegisterHeur(
193     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
194     cl::desc("Count the induction variable only once when interleaving"));
195 
196 static cl::opt<bool> EnableCondStoresVectorization(
197     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
198     cl::desc("Enable if predication of stores during vectorization."));
199 
200 static cl::opt<unsigned> MaxNestedScalarReductionIC(
201     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
202     cl::desc("The maximum interleave count to use when interleaving a scalar "
203              "reduction in a nested loop."));
204 
205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
206     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
207     cl::desc("The maximum allowed number of runtime memory checks with a "
208              "vectorize(enable) pragma."));
209 
210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
211     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
212     cl::desc("The maximum number of SCEV checks allowed."));
213 
214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
215     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
216     cl::desc("The maximum number of SCEV checks allowed with a "
217              "vectorize(enable) pragma"));
218 
219 /// Create an analysis remark that explains why vectorization failed
220 ///
221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
222 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
223 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
224 /// the location of the remark.  \return the remark object that can be
225 /// streamed to.
226 static OptimizationRemarkAnalysis
227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
228                      Instruction *I = nullptr) {
229   Value *CodeRegion = TheLoop->getHeader();
230   DebugLoc DL = TheLoop->getStartLoc();
231 
232   if (I) {
233     CodeRegion = I->getParent();
234     // If there is no debug location attached to the instruction, revert back to
235     // using the loop's.
236     if (I->getDebugLoc())
237       DL = I->getDebugLoc();
238   }
239 
240   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
241   R << "loop not vectorized: ";
242   return R;
243 }
244 
245 namespace {
246 
247 // Forward declarations.
248 class LoopVectorizeHints;
249 class LoopVectorizationLegality;
250 class LoopVectorizationCostModel;
251 class LoopVectorizationRequirements;
252 
253 /// Returns true if the given loop body has a cycle, excluding the loop
254 /// itself.
255 static bool hasCyclesInLoopBody(const Loop &L) {
256   if (!L.empty())
257     return true;
258 
259   for (const auto &SCC :
260        make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L),
261                   scc_iterator<Loop, LoopBodyTraits>::end(L))) {
262     if (SCC.size() > 1) {
263       DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n");
264       DEBUG(L.dump());
265       return true;
266     }
267   }
268   return false;
269 }
270 
271 /// A helper function for converting Scalar types to vector types.
272 /// If the incoming type is void, we return void. If the VF is 1, we return
273 /// the scalar type.
274 static Type *ToVectorTy(Type *Scalar, unsigned VF) {
275   if (Scalar->isVoidTy() || VF == 1)
276     return Scalar;
277   return VectorType::get(Scalar, VF);
278 }
279 
280 // FIXME: The following helper functions have multiple implementations
281 // in the project. They can be effectively organized in a common Load/Store
282 // utilities unit.
283 
284 /// A helper function that returns the pointer operand of a load or store
285 /// instruction.
286 static Value *getPointerOperand(Value *I) {
287   if (auto *LI = dyn_cast<LoadInst>(I))
288     return LI->getPointerOperand();
289   if (auto *SI = dyn_cast<StoreInst>(I))
290     return SI->getPointerOperand();
291   return nullptr;
292 }
293 
294 /// A helper function that returns the type of loaded or stored value.
295 static Type *getMemInstValueType(Value *I) {
296   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
297          "Expected Load or Store instruction");
298   if (auto *LI = dyn_cast<LoadInst>(I))
299     return LI->getType();
300   return cast<StoreInst>(I)->getValueOperand()->getType();
301 }
302 
303 /// A helper function that returns the alignment of load or store instruction.
304 static unsigned getMemInstAlignment(Value *I) {
305   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
306          "Expected Load or Store instruction");
307   if (auto *LI = dyn_cast<LoadInst>(I))
308     return LI->getAlignment();
309   return cast<StoreInst>(I)->getAlignment();
310 }
311 
312 /// A helper function that returns the address space of the pointer operand of
313 /// load or store instruction.
314 static unsigned getMemInstAddressSpace(Value *I) {
315   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
316          "Expected Load or Store instruction");
317   if (auto *LI = dyn_cast<LoadInst>(I))
318     return LI->getPointerAddressSpace();
319   return cast<StoreInst>(I)->getPointerAddressSpace();
320 }
321 
322 /// A helper function that returns true if the given type is irregular. The
323 /// type is irregular if its allocated size doesn't equal the store size of an
324 /// element of the corresponding vector type at the given vectorization factor.
325 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
326 
327   // Determine if an array of VF elements of type Ty is "bitcast compatible"
328   // with a <VF x Ty> vector.
329   if (VF > 1) {
330     auto *VectorTy = VectorType::get(Ty, VF);
331     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
332   }
333 
334   // If the vectorization factor is one, we just check if an array of type Ty
335   // requires padding between elements.
336   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
337 }
338 
339 /// A helper function that returns the reciprocal of the block probability of
340 /// predicated blocks. If we return X, we are assuming the predicated block
341 /// will execute once for for every X iterations of the loop header.
342 ///
343 /// TODO: We should use actual block probability here, if available. Currently,
344 ///       we always assume predicated blocks have a 50% chance of executing.
345 static unsigned getReciprocalPredBlockProb() { return 2; }
346 
347 /// A helper function that adds a 'fast' flag to floating-point operations.
348 static Value *addFastMathFlag(Value *V) {
349   if (isa<FPMathOperator>(V)) {
350     FastMathFlags Flags;
351     Flags.setUnsafeAlgebra();
352     cast<Instruction>(V)->setFastMathFlags(Flags);
353   }
354   return V;
355 }
356 
357 /// A helper function that returns an integer or floating-point constant with
358 /// value C.
359 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
360   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
361                            : ConstantFP::get(Ty, C);
362 }
363 
364 /// InnerLoopVectorizer vectorizes loops which contain only one basic
365 /// block to a specified vectorization factor (VF).
366 /// This class performs the widening of scalars into vectors, or multiple
367 /// scalars. This class also implements the following features:
368 /// * It inserts an epilogue loop for handling loops that don't have iteration
369 ///   counts that are known to be a multiple of the vectorization factor.
370 /// * It handles the code generation for reduction variables.
371 /// * Scalarization (implementation using scalars) of un-vectorizable
372 ///   instructions.
373 /// InnerLoopVectorizer does not perform any vectorization-legality
374 /// checks, and relies on the caller to check for the different legality
375 /// aspects. The InnerLoopVectorizer relies on the
376 /// LoopVectorizationLegality class to provide information about the induction
377 /// and reduction variables that were found to a given vectorization factor.
378 class InnerLoopVectorizer {
379 public:
380   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
381                       LoopInfo *LI, DominatorTree *DT,
382                       const TargetLibraryInfo *TLI,
383                       const TargetTransformInfo *TTI, AssumptionCache *AC,
384                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
385                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
386                       LoopVectorizationCostModel *CM)
387       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
388         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
389         Builder(PSE.getSE()->getContext()), Induction(nullptr),
390         OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth),
391         TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM),
392         AddedSafetyChecks(false) {}
393 
394   /// Create a new empty loop. Unlink the old loop and connect the new one.
395   void createVectorizedLoopSkeleton();
396 
397   /// Vectorize a single instruction within the innermost loop.
398   void vectorizeInstruction(Instruction &I);
399 
400   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
401   void fixVectorizedLoop();
402 
403   // Return true if any runtime check is added.
404   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
405 
406   virtual ~InnerLoopVectorizer() {}
407 
408 protected:
409   /// A small list of PHINodes.
410   typedef SmallVector<PHINode *, 4> PhiVector;
411 
412   /// A type for vectorized values in the new loop. Each value from the
413   /// original loop, when vectorized, is represented by UF vector values in the
414   /// new unrolled loop, where UF is the unroll factor.
415   typedef SmallVector<Value *, 2> VectorParts;
416 
417   /// A type for scalarized values in the new loop. Each value from the
418   /// original loop, when scalarized, is represented by UF x VF scalar values
419   /// in the new unrolled loop, where UF is the unroll factor and VF is the
420   /// vectorization factor.
421   typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts;
422 
423   // When we if-convert we need to create edge masks. We have to cache values
424   // so that we don't end up with exponential recursion/IR.
425   typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts>
426       EdgeMaskCacheTy;
427   typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy;
428 
429   /// Set up the values of the IVs correctly when exiting the vector loop.
430   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
431                     Value *CountRoundDown, Value *EndValue,
432                     BasicBlock *MiddleBlock);
433 
434   /// Create a new induction variable inside L.
435   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
436                                    Value *Step, Instruction *DL);
437 
438   /// Handle all cross-iteration phis in the header.
439   void fixCrossIterationPHIs();
440 
441   /// Fix a first-order recurrence. This is the second phase of vectorizing
442   /// this phi node.
443   void fixFirstOrderRecurrence(PHINode *Phi);
444 
445   /// Fix a reduction cross-iteration phi. This is the second phase of
446   /// vectorizing this phi node.
447   void fixReduction(PHINode *Phi);
448 
449   /// \brief The Loop exit block may have single value PHI nodes where the
450   /// incoming value is 'Undef'. While vectorizing we only handled real values
451   /// that were defined inside the loop. Here we fix the 'undef case'.
452   /// See PR14725.
453   void fixLCSSAPHIs();
454 
455   /// Iteratively sink the scalarized operands of a predicated instruction into
456   /// the block that was created for it.
457   void sinkScalarOperands(Instruction *PredInst);
458 
459   /// Predicate conditional instructions that require predication on their
460   /// respective conditions.
461   void predicateInstructions();
462 
463   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
464   /// represented as.
465   void truncateToMinimalBitwidths();
466 
467   /// A helper function that computes the predicate of the block BB, assuming
468   /// that the header block of the loop is set to True. It returns the *entry*
469   /// mask for the block BB.
470   VectorParts createBlockInMask(BasicBlock *BB);
471   /// A helper function that computes the predicate of the edge between SRC
472   /// and DST.
473   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
474 
475   /// Vectorize a single PHINode in a block. This method handles the induction
476   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
477   /// arbitrary length vectors.
478   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
479 
480   /// Insert the new loop to the loop hierarchy and pass manager
481   /// and update the analysis passes.
482   void updateAnalysis();
483 
484   /// This instruction is un-vectorizable. Implement it as a sequence
485   /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each
486   /// scalarized instruction behind an if block predicated on the control
487   /// dependence of the instruction.
488   virtual void scalarizeInstruction(Instruction *Instr,
489                                     bool IfPredicateInstr = false);
490 
491   /// Vectorize Load and Store instructions,
492   virtual void vectorizeMemoryInstruction(Instruction *Instr);
493 
494   /// Create a broadcast instruction. This method generates a broadcast
495   /// instruction (shuffle) for loop invariant values and for the induction
496   /// value. If this is the induction variable then we extend it to N, N+1, ...
497   /// this is needed because each iteration in the loop corresponds to a SIMD
498   /// element.
499   virtual Value *getBroadcastInstrs(Value *V);
500 
501   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
502   /// to each vector element of Val. The sequence starts at StartIndex.
503   /// \p Opcode is relevant for FP induction variable.
504   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
505                                Instruction::BinaryOps Opcode =
506                                Instruction::BinaryOpsEnd);
507 
508   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
509   /// variable on which to base the steps, \p Step is the size of the step, and
510   /// \p EntryVal is the value from the original loop that maps to the steps.
511   /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it
512   /// can be a truncate instruction).
513   void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal,
514                         const InductionDescriptor &ID);
515 
516   /// Create a vector induction phi node based on an existing scalar one. \p
517   /// EntryVal is the value from the original loop that maps to the vector phi
518   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
519   /// truncate instruction, instead of widening the original IV, we widen a
520   /// version of the IV truncated to \p EntryVal's type.
521   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
522                                        Value *Step, Instruction *EntryVal);
523 
524   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
525   /// is provided, the integer induction variable will first be truncated to
526   /// the corresponding type.
527   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
528 
529   /// Returns true if an instruction \p I should be scalarized instead of
530   /// vectorized for the chosen vectorization factor.
531   bool shouldScalarizeInstruction(Instruction *I) const;
532 
533   /// Returns true if we should generate a scalar version of \p IV.
534   bool needsScalarInduction(Instruction *IV) const;
535 
536   /// Return a constant reference to the VectorParts corresponding to \p V from
537   /// the original loop. If the value has already been vectorized, the
538   /// corresponding vector entry in VectorLoopValueMap is returned. If,
539   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
540   /// new vector values on-demand by inserting the scalar values into vectors
541   /// with an insertelement sequence. If the value has been neither vectorized
542   /// nor scalarized, it must be loop invariant, so we simply broadcast the
543   /// value into vectors.
544   const VectorParts &getVectorValue(Value *V);
545 
546   /// Return a value in the new loop corresponding to \p V from the original
547   /// loop at unroll index \p Part and vector index \p Lane. If the value has
548   /// been vectorized but not scalarized, the necessary extractelement
549   /// instruction will be generated.
550   Value *getScalarValue(Value *V, unsigned Part, unsigned Lane);
551 
552   /// Try to vectorize the interleaved access group that \p Instr belongs to.
553   void vectorizeInterleaveGroup(Instruction *Instr);
554 
555   /// Generate a shuffle sequence that will reverse the vector Vec.
556   virtual Value *reverseVector(Value *Vec);
557 
558   /// Returns (and creates if needed) the original loop trip count.
559   Value *getOrCreateTripCount(Loop *NewLoop);
560 
561   /// Returns (and creates if needed) the trip count of the widened loop.
562   Value *getOrCreateVectorTripCount(Loop *NewLoop);
563 
564   /// Emit a bypass check to see if the trip count would overflow, or we
565   /// wouldn't have enough iterations to execute one vector loop.
566   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
567   /// Emit a bypass check to see if the vector trip count is nonzero.
568   void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
569   /// Emit a bypass check to see if all of the SCEV assumptions we've
570   /// had to make are correct.
571   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
572   /// Emit bypass checks to check any memory assumptions we may have made.
573   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
574 
575   /// Add additional metadata to \p To that was not present on \p Orig.
576   ///
577   /// Currently this is used to add the noalias annotations based on the
578   /// inserted memchecks.  Use this for instructions that are *cloned* into the
579   /// vector loop.
580   void addNewMetadata(Instruction *To, const Instruction *Orig);
581 
582   /// Add metadata from one instruction to another.
583   ///
584   /// This includes both the original MDs from \p From and additional ones (\see
585   /// addNewMetadata).  Use this for *newly created* instructions in the vector
586   /// loop.
587   void addMetadata(Instruction *To, Instruction *From);
588 
589   /// \brief Similar to the previous function but it adds the metadata to a
590   /// vector of instructions.
591   void addMetadata(ArrayRef<Value *> To, Instruction *From);
592 
593   /// \brief Set the debug location in the builder using the debug location in
594   /// the instruction.
595   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
596 
597   /// This is a helper class for maintaining vectorization state. It's used for
598   /// mapping values from the original loop to their corresponding values in
599   /// the new loop. Two mappings are maintained: one for vectorized values and
600   /// one for scalarized values. Vectorized values are represented with UF
601   /// vector values in the new loop, and scalarized values are represented with
602   /// UF x VF scalar values in the new loop. UF and VF are the unroll and
603   /// vectorization factors, respectively.
604   ///
605   /// Entries can be added to either map with initVector and initScalar, which
606   /// initialize and return a constant reference to the new entry. If a
607   /// non-constant reference to a vector entry is required, getVector can be
608   /// used to retrieve a mutable entry. We currently directly modify the mapped
609   /// values during "fix-up" operations that occur once the first phase of
610   /// widening is complete. These operations include type truncation and the
611   /// second phase of recurrence widening.
612   ///
613   /// Otherwise, entries from either map should be accessed using the
614   /// getVectorValue or getScalarValue functions from InnerLoopVectorizer.
615   /// getVectorValue and getScalarValue coordinate to generate a vector or
616   /// scalar value on-demand if one is not yet available. When vectorizing a
617   /// loop, we visit the definition of an instruction before its uses. When
618   /// visiting the definition, we either vectorize or scalarize the
619   /// instruction, creating an entry for it in the corresponding map. (In some
620   /// cases, such as induction variables, we will create both vector and scalar
621   /// entries.) Then, as we encounter uses of the definition, we derive values
622   /// for each scalar or vector use unless such a value is already available.
623   /// For example, if we scalarize a definition and one of its uses is vector,
624   /// we build the required vector on-demand with an insertelement sequence
625   /// when visiting the use. Otherwise, if the use is scalar, we can use the
626   /// existing scalar definition.
627   struct ValueMap {
628 
629     /// Construct an empty map with the given unroll and vectorization factors.
630     ValueMap(unsigned UnrollFactor, unsigned VecWidth)
631         : UF(UnrollFactor), VF(VecWidth) {
632       // The unroll and vectorization factors are only used in asserts builds
633       // to verify map entries are sized appropriately.
634       (void)UF;
635       (void)VF;
636     }
637 
638     /// \return True if the map has a vector entry for \p Key.
639     bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); }
640 
641     /// \return True if the map has a scalar entry for \p Key.
642     bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); }
643 
644     /// \brief Map \p Key to the given VectorParts \p Entry, and return a
645     /// constant reference to the new vector map entry. The given key should
646     /// not already be in the map, and the given VectorParts should be
647     /// correctly sized for the current unroll factor.
648     const VectorParts &initVector(Value *Key, const VectorParts &Entry) {
649       assert(!hasVector(Key) && "Vector entry already initialized");
650       assert(Entry.size() == UF && "VectorParts has wrong dimensions");
651       VectorMapStorage[Key] = Entry;
652       return VectorMapStorage[Key];
653     }
654 
655     /// \brief Map \p Key to the given ScalarParts \p Entry, and return a
656     /// constant reference to the new scalar map entry. The given key should
657     /// not already be in the map, and the given ScalarParts should be
658     /// correctly sized for the current unroll and vectorization factors.
659     const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) {
660       assert(!hasScalar(Key) && "Scalar entry already initialized");
661       assert(Entry.size() == UF &&
662              all_of(make_range(Entry.begin(), Entry.end()),
663                     [&](const SmallVectorImpl<Value *> &Values) -> bool {
664                       return Values.size() == VF;
665                     }) &&
666              "ScalarParts has wrong dimensions");
667       ScalarMapStorage[Key] = Entry;
668       return ScalarMapStorage[Key];
669     }
670 
671     /// \return A reference to the vector map entry corresponding to \p Key.
672     /// The key should already be in the map. This function should only be used
673     /// when it's necessary to update values that have already been vectorized.
674     /// This is the case for "fix-up" operations including type truncation and
675     /// the second phase of recurrence vectorization. If a non-const reference
676     /// isn't required, getVectorValue should be used instead.
677     VectorParts &getVector(Value *Key) {
678       assert(hasVector(Key) && "Vector entry not initialized");
679       return VectorMapStorage.find(Key)->second;
680     }
681 
682     /// Retrieve an entry from the vector or scalar maps. The preferred way to
683     /// access an existing mapped entry is with getVectorValue or
684     /// getScalarValue from InnerLoopVectorizer. Until those functions can be
685     /// moved inside ValueMap, we have to declare them as friends.
686     friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V);
687     friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part,
688                                                       unsigned Lane);
689 
690   private:
691     /// The unroll factor. Each entry in the vector map contains UF vector
692     /// values.
693     unsigned UF;
694 
695     /// The vectorization factor. Each entry in the scalar map contains UF x VF
696     /// scalar values.
697     unsigned VF;
698 
699     /// The vector and scalar map storage. We use std::map and not DenseMap
700     /// because insertions to DenseMap invalidate its iterators.
701     std::map<Value *, VectorParts> VectorMapStorage;
702     std::map<Value *, ScalarParts> ScalarMapStorage;
703   };
704 
705   /// The original loop.
706   Loop *OrigLoop;
707   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
708   /// dynamic knowledge to simplify SCEV expressions and converts them to a
709   /// more usable form.
710   PredicatedScalarEvolution &PSE;
711   /// Loop Info.
712   LoopInfo *LI;
713   /// Dominator Tree.
714   DominatorTree *DT;
715   /// Alias Analysis.
716   AliasAnalysis *AA;
717   /// Target Library Info.
718   const TargetLibraryInfo *TLI;
719   /// Target Transform Info.
720   const TargetTransformInfo *TTI;
721   /// Assumption Cache.
722   AssumptionCache *AC;
723   /// Interface to emit optimization remarks.
724   OptimizationRemarkEmitter *ORE;
725 
726   /// \brief LoopVersioning.  It's only set up (non-null) if memchecks were
727   /// used.
728   ///
729   /// This is currently only used to add no-alias metadata based on the
730   /// memchecks.  The actually versioning is performed manually.
731   std::unique_ptr<LoopVersioning> LVer;
732 
733   /// The vectorization SIMD factor to use. Each vector will have this many
734   /// vector elements.
735   unsigned VF;
736 
737 protected:
738   /// The vectorization unroll factor to use. Each scalar is vectorized to this
739   /// many different vector instructions.
740   unsigned UF;
741 
742   /// The builder that we use
743   IRBuilder<> Builder;
744 
745   // --- Vectorization state ---
746 
747   /// The vector-loop preheader.
748   BasicBlock *LoopVectorPreHeader;
749   /// The scalar-loop preheader.
750   BasicBlock *LoopScalarPreHeader;
751   /// Middle Block between the vector and the scalar.
752   BasicBlock *LoopMiddleBlock;
753   /// The ExitBlock of the scalar loop.
754   BasicBlock *LoopExitBlock;
755   /// The vector loop body.
756   BasicBlock *LoopVectorBody;
757   /// The scalar loop body.
758   BasicBlock *LoopScalarBody;
759   /// A list of all bypass blocks. The first block is the entry of the loop.
760   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
761 
762   /// The new Induction variable which was added to the new block.
763   PHINode *Induction;
764   /// The induction variable of the old basic block.
765   PHINode *OldInduction;
766 
767   /// Maps values from the original loop to their corresponding values in the
768   /// vectorized loop. A key value can map to either vector values, scalar
769   /// values or both kinds of values, depending on whether the key was
770   /// vectorized and scalarized.
771   ValueMap VectorLoopValueMap;
772 
773   /// Store instructions that should be predicated, as a pair
774   ///   <StoreInst, Predicate>
775   SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions;
776   EdgeMaskCacheTy EdgeMaskCache;
777   BlockMaskCacheTy BlockMaskCache;
778   /// Trip count of the original loop.
779   Value *TripCount;
780   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
781   Value *VectorTripCount;
782 
783   /// The legality analysis.
784   LoopVectorizationLegality *Legal;
785 
786   /// The profitablity analysis.
787   LoopVectorizationCostModel *Cost;
788 
789   // Record whether runtime checks are added.
790   bool AddedSafetyChecks;
791 
792   // Holds the end values for each induction variable. We save the end values
793   // so we can later fix-up the external users of the induction variables.
794   DenseMap<PHINode *, Value *> IVEndValues;
795 };
796 
797 class InnerLoopUnroller : public InnerLoopVectorizer {
798 public:
799   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
800                     LoopInfo *LI, DominatorTree *DT,
801                     const TargetLibraryInfo *TLI,
802                     const TargetTransformInfo *TTI, AssumptionCache *AC,
803                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
804                     LoopVectorizationLegality *LVL,
805                     LoopVectorizationCostModel *CM)
806       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
807                             UnrollFactor, LVL, CM) {}
808 
809 private:
810   void vectorizeMemoryInstruction(Instruction *Instr) override;
811   Value *getBroadcastInstrs(Value *V) override;
812   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
813                        Instruction::BinaryOps Opcode =
814                        Instruction::BinaryOpsEnd) override;
815   Value *reverseVector(Value *Vec) override;
816 };
817 
818 /// \brief Look for a meaningful debug location on the instruction or it's
819 /// operands.
820 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
821   if (!I)
822     return I;
823 
824   DebugLoc Empty;
825   if (I->getDebugLoc() != Empty)
826     return I;
827 
828   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
829     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
830       if (OpInst->getDebugLoc() != Empty)
831         return OpInst;
832   }
833 
834   return I;
835 }
836 
837 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
838   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
839     const DILocation *DIL = Inst->getDebugLoc();
840     if (DIL && Inst->getFunction()->isDebugInfoForProfiling())
841       B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF));
842     else
843       B.SetCurrentDebugLocation(DIL);
844   } else
845     B.SetCurrentDebugLocation(DebugLoc());
846 }
847 
848 #ifndef NDEBUG
849 /// \return string containing a file name and a line # for the given loop.
850 static std::string getDebugLocString(const Loop *L) {
851   std::string Result;
852   if (L) {
853     raw_string_ostream OS(Result);
854     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
855       LoopDbgLoc.print(OS);
856     else
857       // Just print the module name.
858       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
859     OS.flush();
860   }
861   return Result;
862 }
863 #endif
864 
865 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
866                                          const Instruction *Orig) {
867   // If the loop was versioned with memchecks, add the corresponding no-alias
868   // metadata.
869   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
870     LVer->annotateInstWithNoAlias(To, Orig);
871 }
872 
873 void InnerLoopVectorizer::addMetadata(Instruction *To,
874                                       Instruction *From) {
875   propagateMetadata(To, From);
876   addNewMetadata(To, From);
877 }
878 
879 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
880                                       Instruction *From) {
881   for (Value *V : To) {
882     if (Instruction *I = dyn_cast<Instruction>(V))
883       addMetadata(I, From);
884   }
885 }
886 
887 /// \brief The group of interleaved loads/stores sharing the same stride and
888 /// close to each other.
889 ///
890 /// Each member in this group has an index starting from 0, and the largest
891 /// index should be less than interleaved factor, which is equal to the absolute
892 /// value of the access's stride.
893 ///
894 /// E.g. An interleaved load group of factor 4:
895 ///        for (unsigned i = 0; i < 1024; i+=4) {
896 ///          a = A[i];                           // Member of index 0
897 ///          b = A[i+1];                         // Member of index 1
898 ///          d = A[i+3];                         // Member of index 3
899 ///          ...
900 ///        }
901 ///
902 ///      An interleaved store group of factor 4:
903 ///        for (unsigned i = 0; i < 1024; i+=4) {
904 ///          ...
905 ///          A[i]   = a;                         // Member of index 0
906 ///          A[i+1] = b;                         // Member of index 1
907 ///          A[i+2] = c;                         // Member of index 2
908 ///          A[i+3] = d;                         // Member of index 3
909 ///        }
910 ///
911 /// Note: the interleaved load group could have gaps (missing members), but
912 /// the interleaved store group doesn't allow gaps.
913 class InterleaveGroup {
914 public:
915   InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
916       : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
917     assert(Align && "The alignment should be non-zero");
918 
919     Factor = std::abs(Stride);
920     assert(Factor > 1 && "Invalid interleave factor");
921 
922     Reverse = Stride < 0;
923     Members[0] = Instr;
924   }
925 
926   bool isReverse() const { return Reverse; }
927   unsigned getFactor() const { return Factor; }
928   unsigned getAlignment() const { return Align; }
929   unsigned getNumMembers() const { return Members.size(); }
930 
931   /// \brief Try to insert a new member \p Instr with index \p Index and
932   /// alignment \p NewAlign. The index is related to the leader and it could be
933   /// negative if it is the new leader.
934   ///
935   /// \returns false if the instruction doesn't belong to the group.
936   bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
937     assert(NewAlign && "The new member's alignment should be non-zero");
938 
939     int Key = Index + SmallestKey;
940 
941     // Skip if there is already a member with the same index.
942     if (Members.count(Key))
943       return false;
944 
945     if (Key > LargestKey) {
946       // The largest index is always less than the interleave factor.
947       if (Index >= static_cast<int>(Factor))
948         return false;
949 
950       LargestKey = Key;
951     } else if (Key < SmallestKey) {
952       // The largest index is always less than the interleave factor.
953       if (LargestKey - Key >= static_cast<int>(Factor))
954         return false;
955 
956       SmallestKey = Key;
957     }
958 
959     // It's always safe to select the minimum alignment.
960     Align = std::min(Align, NewAlign);
961     Members[Key] = Instr;
962     return true;
963   }
964 
965   /// \brief Get the member with the given index \p Index
966   ///
967   /// \returns nullptr if contains no such member.
968   Instruction *getMember(unsigned Index) const {
969     int Key = SmallestKey + Index;
970     if (!Members.count(Key))
971       return nullptr;
972 
973     return Members.find(Key)->second;
974   }
975 
976   /// \brief Get the index for the given member. Unlike the key in the member
977   /// map, the index starts from 0.
978   unsigned getIndex(Instruction *Instr) const {
979     for (auto I : Members)
980       if (I.second == Instr)
981         return I.first - SmallestKey;
982 
983     llvm_unreachable("InterleaveGroup contains no such member");
984   }
985 
986   Instruction *getInsertPos() const { return InsertPos; }
987   void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
988 
989 private:
990   unsigned Factor; // Interleave Factor.
991   bool Reverse;
992   unsigned Align;
993   DenseMap<int, Instruction *> Members;
994   int SmallestKey;
995   int LargestKey;
996 
997   // To avoid breaking dependences, vectorized instructions of an interleave
998   // group should be inserted at either the first load or the last store in
999   // program order.
1000   //
1001   // E.g. %even = load i32             // Insert Position
1002   //      %add = add i32 %even         // Use of %even
1003   //      %odd = load i32
1004   //
1005   //      store i32 %even
1006   //      %odd = add i32               // Def of %odd
1007   //      store i32 %odd               // Insert Position
1008   Instruction *InsertPos;
1009 };
1010 
1011 /// \brief Drive the analysis of interleaved memory accesses in the loop.
1012 ///
1013 /// Use this class to analyze interleaved accesses only when we can vectorize
1014 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
1015 /// on interleaved accesses is unsafe.
1016 ///
1017 /// The analysis collects interleave groups and records the relationships
1018 /// between the member and the group in a map.
1019 class InterleavedAccessInfo {
1020 public:
1021   InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
1022                         DominatorTree *DT, LoopInfo *LI)
1023       : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr),
1024         RequiresScalarEpilogue(false) {}
1025 
1026   ~InterleavedAccessInfo() {
1027     SmallSet<InterleaveGroup *, 4> DelSet;
1028     // Avoid releasing a pointer twice.
1029     for (auto &I : InterleaveGroupMap)
1030       DelSet.insert(I.second);
1031     for (auto *Ptr : DelSet)
1032       delete Ptr;
1033   }
1034 
1035   /// \brief Analyze the interleaved accesses and collect them in interleave
1036   /// groups. Substitute symbolic strides using \p Strides.
1037   void analyzeInterleaving(const ValueToValueMap &Strides);
1038 
1039   /// \brief Check if \p Instr belongs to any interleave group.
1040   bool isInterleaved(Instruction *Instr) const {
1041     return InterleaveGroupMap.count(Instr);
1042   }
1043 
1044   /// \brief Return the maximum interleave factor of all interleaved groups.
1045   unsigned getMaxInterleaveFactor() const {
1046     unsigned MaxFactor = 1;
1047     for (auto &Entry : InterleaveGroupMap)
1048       MaxFactor = std::max(MaxFactor, Entry.second->getFactor());
1049     return MaxFactor;
1050   }
1051 
1052   /// \brief Get the interleave group that \p Instr belongs to.
1053   ///
1054   /// \returns nullptr if doesn't have such group.
1055   InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
1056     if (InterleaveGroupMap.count(Instr))
1057       return InterleaveGroupMap.find(Instr)->second;
1058     return nullptr;
1059   }
1060 
1061   /// \brief Returns true if an interleaved group that may access memory
1062   /// out-of-bounds requires a scalar epilogue iteration for correctness.
1063   bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
1064 
1065   /// \brief Initialize the LoopAccessInfo used for dependence checking.
1066   void setLAI(const LoopAccessInfo *Info) { LAI = Info; }
1067 
1068 private:
1069   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
1070   /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
1071   /// The interleaved access analysis can also add new predicates (for example
1072   /// by versioning strides of pointers).
1073   PredicatedScalarEvolution &PSE;
1074   Loop *TheLoop;
1075   DominatorTree *DT;
1076   LoopInfo *LI;
1077   const LoopAccessInfo *LAI;
1078 
1079   /// True if the loop may contain non-reversed interleaved groups with
1080   /// out-of-bounds accesses. We ensure we don't speculatively access memory
1081   /// out-of-bounds by executing at least one scalar epilogue iteration.
1082   bool RequiresScalarEpilogue;
1083 
1084   /// Holds the relationships between the members and the interleave group.
1085   DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
1086 
1087   /// Holds dependences among the memory accesses in the loop. It maps a source
1088   /// access to a set of dependent sink accesses.
1089   DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
1090 
1091   /// \brief The descriptor for a strided memory access.
1092   struct StrideDescriptor {
1093     StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
1094                      unsigned Align)
1095         : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
1096 
1097     StrideDescriptor() = default;
1098 
1099     // The access's stride. It is negative for a reverse access.
1100     int64_t Stride = 0;
1101     const SCEV *Scev = nullptr; // The scalar expression of this access
1102     uint64_t Size = 0;          // The size of the memory object.
1103     unsigned Align = 0;         // The alignment of this access.
1104   };
1105 
1106   /// \brief A type for holding instructions and their stride descriptors.
1107   typedef std::pair<Instruction *, StrideDescriptor> StrideEntry;
1108 
1109   /// \brief Create a new interleave group with the given instruction \p Instr,
1110   /// stride \p Stride and alignment \p Align.
1111   ///
1112   /// \returns the newly created interleave group.
1113   InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
1114                                          unsigned Align) {
1115     assert(!InterleaveGroupMap.count(Instr) &&
1116            "Already in an interleaved access group");
1117     InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
1118     return InterleaveGroupMap[Instr];
1119   }
1120 
1121   /// \brief Release the group and remove all the relationships.
1122   void releaseGroup(InterleaveGroup *Group) {
1123     for (unsigned i = 0; i < Group->getFactor(); i++)
1124       if (Instruction *Member = Group->getMember(i))
1125         InterleaveGroupMap.erase(Member);
1126 
1127     delete Group;
1128   }
1129 
1130   /// \brief Collect all the accesses with a constant stride in program order.
1131   void collectConstStrideAccesses(
1132       MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1133       const ValueToValueMap &Strides);
1134 
1135   /// \brief Returns true if \p Stride is allowed in an interleaved group.
1136   static bool isStrided(int Stride) {
1137     unsigned Factor = std::abs(Stride);
1138     return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1139   }
1140 
1141   /// \brief Returns true if \p BB is a predicated block.
1142   bool isPredicated(BasicBlock *BB) const {
1143     return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1144   }
1145 
1146   /// \brief Returns true if LoopAccessInfo can be used for dependence queries.
1147   bool areDependencesValid() const {
1148     return LAI && LAI->getDepChecker().getDependences();
1149   }
1150 
1151   /// \brief Returns true if memory accesses \p A and \p B can be reordered, if
1152   /// necessary, when constructing interleaved groups.
1153   ///
1154   /// \p A must precede \p B in program order. We return false if reordering is
1155   /// not necessary or is prevented because \p A and \p B may be dependent.
1156   bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
1157                                                  StrideEntry *B) const {
1158 
1159     // Code motion for interleaved accesses can potentially hoist strided loads
1160     // and sink strided stores. The code below checks the legality of the
1161     // following two conditions:
1162     //
1163     // 1. Potentially moving a strided load (B) before any store (A) that
1164     //    precedes B, or
1165     //
1166     // 2. Potentially moving a strided store (A) after any load or store (B)
1167     //    that A precedes.
1168     //
1169     // It's legal to reorder A and B if we know there isn't a dependence from A
1170     // to B. Note that this determination is conservative since some
1171     // dependences could potentially be reordered safely.
1172 
1173     // A is potentially the source of a dependence.
1174     auto *Src = A->first;
1175     auto SrcDes = A->second;
1176 
1177     // B is potentially the sink of a dependence.
1178     auto *Sink = B->first;
1179     auto SinkDes = B->second;
1180 
1181     // Code motion for interleaved accesses can't violate WAR dependences.
1182     // Thus, reordering is legal if the source isn't a write.
1183     if (!Src->mayWriteToMemory())
1184       return true;
1185 
1186     // At least one of the accesses must be strided.
1187     if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
1188       return true;
1189 
1190     // If dependence information is not available from LoopAccessInfo,
1191     // conservatively assume the instructions can't be reordered.
1192     if (!areDependencesValid())
1193       return false;
1194 
1195     // If we know there is a dependence from source to sink, assume the
1196     // instructions can't be reordered. Otherwise, reordering is legal.
1197     return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
1198   }
1199 
1200   /// \brief Collect the dependences from LoopAccessInfo.
1201   ///
1202   /// We process the dependences once during the interleaved access analysis to
1203   /// enable constant-time dependence queries.
1204   void collectDependences() {
1205     if (!areDependencesValid())
1206       return;
1207     auto *Deps = LAI->getDepChecker().getDependences();
1208     for (auto Dep : *Deps)
1209       Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
1210   }
1211 };
1212 
1213 /// Utility class for getting and setting loop vectorizer hints in the form
1214 /// of loop metadata.
1215 /// This class keeps a number of loop annotations locally (as member variables)
1216 /// and can, upon request, write them back as metadata on the loop. It will
1217 /// initially scan the loop for existing metadata, and will update the local
1218 /// values based on information in the loop.
1219 /// We cannot write all values to metadata, as the mere presence of some info,
1220 /// for example 'force', means a decision has been made. So, we need to be
1221 /// careful NOT to add them if the user hasn't specifically asked so.
1222 class LoopVectorizeHints {
1223   enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE };
1224 
1225   /// Hint - associates name and validation with the hint value.
1226   struct Hint {
1227     const char *Name;
1228     unsigned Value; // This may have to change for non-numeric values.
1229     HintKind Kind;
1230 
1231     Hint(const char *Name, unsigned Value, HintKind Kind)
1232         : Name(Name), Value(Value), Kind(Kind) {}
1233 
1234     bool validate(unsigned Val) {
1235       switch (Kind) {
1236       case HK_WIDTH:
1237         return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
1238       case HK_UNROLL:
1239         return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1240       case HK_FORCE:
1241         return (Val <= 1);
1242       }
1243       return false;
1244     }
1245   };
1246 
1247   /// Vectorization width.
1248   Hint Width;
1249   /// Vectorization interleave factor.
1250   Hint Interleave;
1251   /// Vectorization forced
1252   Hint Force;
1253 
1254   /// Return the loop metadata prefix.
1255   static StringRef Prefix() { return "llvm.loop."; }
1256 
1257   /// True if there is any unsafe math in the loop.
1258   bool PotentiallyUnsafe;
1259 
1260 public:
1261   enum ForceKind {
1262     FK_Undefined = -1, ///< Not selected.
1263     FK_Disabled = 0,   ///< Forcing disabled.
1264     FK_Enabled = 1,    ///< Forcing enabled.
1265   };
1266 
1267   LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
1268                      OptimizationRemarkEmitter &ORE)
1269       : Width("vectorize.width", VectorizerParams::VectorizationFactor,
1270               HK_WIDTH),
1271         Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1272         Force("vectorize.enable", FK_Undefined, HK_FORCE),
1273         PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) {
1274     // Populate values with existing loop metadata.
1275     getHintsFromMetadata();
1276 
1277     // force-vector-interleave overrides DisableInterleaving.
1278     if (VectorizerParams::isInterleaveForced())
1279       Interleave.Value = VectorizerParams::VectorizationInterleave;
1280 
1281     DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1282           << "LV: Interleaving disabled by the pass manager\n");
1283   }
1284 
1285   /// Mark the loop L as already vectorized by setting the width to 1.
1286   void setAlreadyVectorized() {
1287     Width.Value = Interleave.Value = 1;
1288     Hint Hints[] = {Width, Interleave};
1289     writeHintsToMetadata(Hints);
1290   }
1291 
1292   bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
1293     if (getForce() == LoopVectorizeHints::FK_Disabled) {
1294       DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1295       emitRemarkWithHints();
1296       return false;
1297     }
1298 
1299     if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
1300       DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1301       emitRemarkWithHints();
1302       return false;
1303     }
1304 
1305     if (getWidth() == 1 && getInterleave() == 1) {
1306       // FIXME: Add a separate metadata to indicate when the loop has already
1307       // been vectorized instead of setting width and count to 1.
1308       DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1309       // FIXME: Add interleave.disable metadata. This will allow
1310       // vectorize.disable to be used without disabling the pass and errors
1311       // to differentiate between disabled vectorization and a width of 1.
1312       ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
1313                                           "AllDisabled", L->getStartLoc(),
1314                                           L->getHeader())
1315                << "loop not vectorized: vectorization and interleaving are "
1316                   "explicitly disabled, or vectorize width and interleave "
1317                   "count are both set to 1");
1318       return false;
1319     }
1320 
1321     return true;
1322   }
1323 
1324   /// Dumps all the hint information.
1325   void emitRemarkWithHints() const {
1326     using namespace ore;
1327     if (Force.Value == LoopVectorizeHints::FK_Disabled)
1328       ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
1329                                         TheLoop->getStartLoc(),
1330                                         TheLoop->getHeader())
1331                << "loop not vectorized: vectorization is explicitly disabled");
1332     else {
1333       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
1334                                  TheLoop->getStartLoc(), TheLoop->getHeader());
1335       R << "loop not vectorized";
1336       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1337         R << " (Force=" << NV("Force", true);
1338         if (Width.Value != 0)
1339           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
1340         if (Interleave.Value != 0)
1341           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
1342         R << ")";
1343       }
1344       ORE.emit(R);
1345     }
1346   }
1347 
1348   unsigned getWidth() const { return Width.Value; }
1349   unsigned getInterleave() const { return Interleave.Value; }
1350   enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1351 
1352   /// \brief If hints are provided that force vectorization, use the AlwaysPrint
1353   /// pass name to force the frontend to print the diagnostic.
1354   const char *vectorizeAnalysisPassName() const {
1355     if (getWidth() == 1)
1356       return LV_NAME;
1357     if (getForce() == LoopVectorizeHints::FK_Disabled)
1358       return LV_NAME;
1359     if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1360       return LV_NAME;
1361     return OptimizationRemarkAnalysis::AlwaysPrint;
1362   }
1363 
1364   bool allowReordering() const {
1365     // When enabling loop hints are provided we allow the vectorizer to change
1366     // the order of operations that is given by the scalar loop. This is not
1367     // enabled by default because can be unsafe or inefficient. For example,
1368     // reordering floating-point operations will change the way round-off
1369     // error accumulates in the loop.
1370     return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1371   }
1372 
1373   bool isPotentiallyUnsafe() const {
1374     // Avoid FP vectorization if the target is unsure about proper support.
1375     // This may be related to the SIMD unit in the target not handling
1376     // IEEE 754 FP ops properly, or bad single-to-double promotions.
1377     // Otherwise, a sequence of vectorized loops, even without reduction,
1378     // could lead to different end results on the destination vectors.
1379     return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
1380   }
1381 
1382   void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
1383 
1384 private:
1385   /// Find hints specified in the loop metadata and update local values.
1386   void getHintsFromMetadata() {
1387     MDNode *LoopID = TheLoop->getLoopID();
1388     if (!LoopID)
1389       return;
1390 
1391     // First operand should refer to the loop id itself.
1392     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1393     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1394 
1395     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1396       const MDString *S = nullptr;
1397       SmallVector<Metadata *, 4> Args;
1398 
1399       // The expected hint is either a MDString or a MDNode with the first
1400       // operand a MDString.
1401       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1402         if (!MD || MD->getNumOperands() == 0)
1403           continue;
1404         S = dyn_cast<MDString>(MD->getOperand(0));
1405         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1406           Args.push_back(MD->getOperand(i));
1407       } else {
1408         S = dyn_cast<MDString>(LoopID->getOperand(i));
1409         assert(Args.size() == 0 && "too many arguments for MDString");
1410       }
1411 
1412       if (!S)
1413         continue;
1414 
1415       // Check if the hint starts with the loop metadata prefix.
1416       StringRef Name = S->getString();
1417       if (Args.size() == 1)
1418         setHint(Name, Args[0]);
1419     }
1420   }
1421 
1422   /// Checks string hint with one operand and set value if valid.
1423   void setHint(StringRef Name, Metadata *Arg) {
1424     if (!Name.startswith(Prefix()))
1425       return;
1426     Name = Name.substr(Prefix().size(), StringRef::npos);
1427 
1428     const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1429     if (!C)
1430       return;
1431     unsigned Val = C->getZExtValue();
1432 
1433     Hint *Hints[] = {&Width, &Interleave, &Force};
1434     for (auto H : Hints) {
1435       if (Name == H->Name) {
1436         if (H->validate(Val))
1437           H->Value = Val;
1438         else
1439           DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1440         break;
1441       }
1442     }
1443   }
1444 
1445   /// Create a new hint from name / value pair.
1446   MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1447     LLVMContext &Context = TheLoop->getHeader()->getContext();
1448     Metadata *MDs[] = {MDString::get(Context, Name),
1449                        ConstantAsMetadata::get(
1450                            ConstantInt::get(Type::getInt32Ty(Context), V))};
1451     return MDNode::get(Context, MDs);
1452   }
1453 
1454   /// Matches metadata with hint name.
1455   bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1456     MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
1457     if (!Name)
1458       return false;
1459 
1460     for (auto H : HintTypes)
1461       if (Name->getString().endswith(H.Name))
1462         return true;
1463     return false;
1464   }
1465 
1466   /// Sets current hints into loop metadata, keeping other values intact.
1467   void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1468     if (HintTypes.size() == 0)
1469       return;
1470 
1471     // Reserve the first element to LoopID (see below).
1472     SmallVector<Metadata *, 4> MDs(1);
1473     // If the loop already has metadata, then ignore the existing operands.
1474     MDNode *LoopID = TheLoop->getLoopID();
1475     if (LoopID) {
1476       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1477         MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1478         // If node in update list, ignore old value.
1479         if (!matchesHintMetadataName(Node, HintTypes))
1480           MDs.push_back(Node);
1481       }
1482     }
1483 
1484     // Now, add the missing hints.
1485     for (auto H : HintTypes)
1486       MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1487 
1488     // Replace current metadata node with new one.
1489     LLVMContext &Context = TheLoop->getHeader()->getContext();
1490     MDNode *NewLoopID = MDNode::get(Context, MDs);
1491     // Set operand 0 to refer to the loop id itself.
1492     NewLoopID->replaceOperandWith(0, NewLoopID);
1493 
1494     TheLoop->setLoopID(NewLoopID);
1495   }
1496 
1497   /// The loop these hints belong to.
1498   const Loop *TheLoop;
1499 
1500   /// Interface to emit optimization remarks.
1501   OptimizationRemarkEmitter &ORE;
1502 };
1503 
1504 static void emitMissedWarning(Function *F, Loop *L,
1505                               const LoopVectorizeHints &LH,
1506                               OptimizationRemarkEmitter *ORE) {
1507   LH.emitRemarkWithHints();
1508 
1509   if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1510     if (LH.getWidth() != 1)
1511       ORE->emit(DiagnosticInfoOptimizationFailure(
1512                     DEBUG_TYPE, "FailedRequestedVectorization",
1513                     L->getStartLoc(), L->getHeader())
1514                 << "loop not vectorized: "
1515                 << "failed explicitly specified loop vectorization");
1516     else if (LH.getInterleave() != 1)
1517       ORE->emit(DiagnosticInfoOptimizationFailure(
1518                     DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(),
1519                     L->getHeader())
1520                 << "loop not interleaved: "
1521                 << "failed explicitly specified loop interleaving");
1522   }
1523 }
1524 
1525 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1526 /// to what vectorization factor.
1527 /// This class does not look at the profitability of vectorization, only the
1528 /// legality. This class has two main kinds of checks:
1529 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
1530 ///   will change the order of memory accesses in a way that will change the
1531 ///   correctness of the program.
1532 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1533 /// checks for a number of different conditions, such as the availability of a
1534 /// single induction variable, that all types are supported and vectorize-able,
1535 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
1536 /// This class is also used by InnerLoopVectorizer for identifying
1537 /// induction variable and the different reduction variables.
1538 class LoopVectorizationLegality {
1539 public:
1540   LoopVectorizationLegality(
1541       Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
1542       TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
1543       const TargetTransformInfo *TTI,
1544       std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
1545       OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
1546       LoopVectorizeHints *H)
1547       : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT),
1548         GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI),
1549         PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false),
1550         Requirements(R), Hints(H) {}
1551 
1552   /// ReductionList contains the reduction descriptors for all
1553   /// of the reductions that were found in the loop.
1554   typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
1555 
1556   /// InductionList saves induction variables and maps them to the
1557   /// induction descriptor.
1558   typedef MapVector<PHINode *, InductionDescriptor> InductionList;
1559 
1560   /// RecurrenceSet contains the phi nodes that are recurrences other than
1561   /// inductions and reductions.
1562   typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet;
1563 
1564   /// Returns true if it is legal to vectorize this loop.
1565   /// This does not mean that it is profitable to vectorize this
1566   /// loop, only that it is legal to do so.
1567   bool canVectorize();
1568 
1569   /// Returns the primary induction variable.
1570   PHINode *getPrimaryInduction() { return PrimaryInduction; }
1571 
1572   /// Returns the reduction variables found in the loop.
1573   ReductionList *getReductionVars() { return &Reductions; }
1574 
1575   /// Returns the induction variables found in the loop.
1576   InductionList *getInductionVars() { return &Inductions; }
1577 
1578   /// Return the first-order recurrences found in the loop.
1579   RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
1580 
1581   /// Returns the widest induction type.
1582   Type *getWidestInductionType() { return WidestIndTy; }
1583 
1584   /// Returns True if V is an induction variable in this loop.
1585   bool isInductionVariable(const Value *V);
1586 
1587   /// Returns True if PN is a reduction variable in this loop.
1588   bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1589 
1590   /// Returns True if Phi is a first-order recurrence in this loop.
1591   bool isFirstOrderRecurrence(const PHINode *Phi);
1592 
1593   /// Return true if the block BB needs to be predicated in order for the loop
1594   /// to be vectorized.
1595   bool blockNeedsPredication(BasicBlock *BB);
1596 
1597   /// Check if this pointer is consecutive when vectorizing. This happens
1598   /// when the last index of the GEP is the induction variable, or that the
1599   /// pointer itself is an induction variable.
1600   /// This check allows us to vectorize A[idx] into a wide load/store.
1601   /// Returns:
1602   /// 0 - Stride is unknown or non-consecutive.
1603   /// 1 - Address is consecutive.
1604   /// -1 - Address is consecutive, and decreasing.
1605   int isConsecutivePtr(Value *Ptr);
1606 
1607   /// Returns true if the value V is uniform within the loop.
1608   bool isUniform(Value *V);
1609 
1610   /// Returns the information that we collected about runtime memory check.
1611   const RuntimePointerChecking *getRuntimePointerChecking() const {
1612     return LAI->getRuntimePointerChecking();
1613   }
1614 
1615   const LoopAccessInfo *getLAI() const { return LAI; }
1616 
1617   /// \brief Check if \p Instr belongs to any interleaved access group.
1618   bool isAccessInterleaved(Instruction *Instr) {
1619     return InterleaveInfo.isInterleaved(Instr);
1620   }
1621 
1622   /// \brief Return the maximum interleave factor of all interleaved groups.
1623   unsigned getMaxInterleaveFactor() const {
1624     return InterleaveInfo.getMaxInterleaveFactor();
1625   }
1626 
1627   /// \brief Get the interleaved access group that \p Instr belongs to.
1628   const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1629     return InterleaveInfo.getInterleaveGroup(Instr);
1630   }
1631 
1632   /// \brief Returns true if an interleaved group requires a scalar iteration
1633   /// to handle accesses with gaps.
1634   bool requiresScalarEpilogue() const {
1635     return InterleaveInfo.requiresScalarEpilogue();
1636   }
1637 
1638   unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1639 
1640   bool hasStride(Value *V) { return LAI->hasStride(V); }
1641 
1642   /// Returns true if the target machine supports masked store operation
1643   /// for the given \p DataType and kind of access to \p Ptr.
1644   bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1645     return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
1646   }
1647   /// Returns true if the target machine supports masked load operation
1648   /// for the given \p DataType and kind of access to \p Ptr.
1649   bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1650     return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
1651   }
1652   /// Returns true if the target machine supports masked scatter operation
1653   /// for the given \p DataType.
1654   bool isLegalMaskedScatter(Type *DataType) {
1655     return TTI->isLegalMaskedScatter(DataType);
1656   }
1657   /// Returns true if the target machine supports masked gather operation
1658   /// for the given \p DataType.
1659   bool isLegalMaskedGather(Type *DataType) {
1660     return TTI->isLegalMaskedGather(DataType);
1661   }
1662   /// Returns true if the target machine can represent \p V as a masked gather
1663   /// or scatter operation.
1664   bool isLegalGatherOrScatter(Value *V) {
1665     auto *LI = dyn_cast<LoadInst>(V);
1666     auto *SI = dyn_cast<StoreInst>(V);
1667     if (!LI && !SI)
1668       return false;
1669     auto *Ptr = getPointerOperand(V);
1670     auto *Ty = cast<PointerType>(Ptr->getType())->getElementType();
1671     return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
1672   }
1673 
1674   /// Returns true if vector representation of the instruction \p I
1675   /// requires mask.
1676   bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
1677   unsigned getNumStores() const { return LAI->getNumStores(); }
1678   unsigned getNumLoads() const { return LAI->getNumLoads(); }
1679   unsigned getNumPredStores() const { return NumPredStores; }
1680 
1681   /// Returns true if \p I is an instruction that will be scalarized with
1682   /// predication. Such instructions include conditional stores and
1683   /// instructions that may divide by zero.
1684   bool isScalarWithPredication(Instruction *I);
1685 
1686   /// Returns true if \p I is a memory instruction with consecutive memory
1687   /// access that can be widened.
1688   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1689 
1690   // Returns true if the NoNaN attribute is set on the function.
1691   bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; }
1692 
1693 private:
1694   /// Check if a single basic block loop is vectorizable.
1695   /// At this point we know that this is a loop with a constant trip count
1696   /// and we only need to check individual instructions.
1697   bool canVectorizeInstrs();
1698 
1699   /// When we vectorize loops we may change the order in which
1700   /// we read and write from memory. This method checks if it is
1701   /// legal to vectorize the code, considering only memory constrains.
1702   /// Returns true if the loop is vectorizable
1703   bool canVectorizeMemory();
1704 
1705   /// Return true if we can vectorize this loop using the IF-conversion
1706   /// transformation.
1707   bool canVectorizeWithIfConvert();
1708 
1709   /// Return true if all of the instructions in the block can be speculatively
1710   /// executed. \p SafePtrs is a list of addresses that are known to be legal
1711   /// and we know that we can read from them without segfault.
1712   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1713 
1714   /// Updates the vectorization state by adding \p Phi to the inductions list.
1715   /// This can set \p Phi as the main induction of the loop if \p Phi is a
1716   /// better choice for the main induction than the existing one.
1717   void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
1718                        SmallPtrSetImpl<Value *> &AllowedExit);
1719 
1720   /// Create an analysis remark that explains why vectorization failed
1721   ///
1722   /// \p RemarkName is the identifier for the remark.  If \p I is passed it is
1723   /// an instruction that prevents vectorization.  Otherwise the loop is used
1724   /// for the location of the remark.  \return the remark object that can be
1725   /// streamed to.
1726   OptimizationRemarkAnalysis
1727   createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const {
1728     return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
1729                                   RemarkName, TheLoop, I);
1730   }
1731 
1732   /// \brief If an access has a symbolic strides, this maps the pointer value to
1733   /// the stride symbol.
1734   const ValueToValueMap *getSymbolicStrides() {
1735     // FIXME: Currently, the set of symbolic strides is sometimes queried before
1736     // it's collected.  This happens from canVectorizeWithIfConvert, when the
1737     // pointer is checked to reference consecutive elements suitable for a
1738     // masked access.
1739     return LAI ? &LAI->getSymbolicStrides() : nullptr;
1740   }
1741 
1742   unsigned NumPredStores;
1743 
1744   /// The loop that we evaluate.
1745   Loop *TheLoop;
1746   /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1747   /// Applies dynamic knowledge to simplify SCEV expressions in the context
1748   /// of existing SCEV assumptions. The analysis will also add a minimal set
1749   /// of new predicates if this is required to enable vectorization and
1750   /// unrolling.
1751   PredicatedScalarEvolution &PSE;
1752   /// Target Library Info.
1753   TargetLibraryInfo *TLI;
1754   /// Target Transform Info
1755   const TargetTransformInfo *TTI;
1756   /// Dominator Tree.
1757   DominatorTree *DT;
1758   // LoopAccess analysis.
1759   std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
1760   // And the loop-accesses info corresponding to this loop.  This pointer is
1761   // null until canVectorizeMemory sets it up.
1762   const LoopAccessInfo *LAI;
1763   /// Interface to emit optimization remarks.
1764   OptimizationRemarkEmitter *ORE;
1765 
1766   /// The interleave access information contains groups of interleaved accesses
1767   /// with the same stride and close to each other.
1768   InterleavedAccessInfo InterleaveInfo;
1769 
1770   //  ---  vectorization state --- //
1771 
1772   /// Holds the primary induction variable. This is the counter of the
1773   /// loop.
1774   PHINode *PrimaryInduction;
1775   /// Holds the reduction variables.
1776   ReductionList Reductions;
1777   /// Holds all of the induction variables that we found in the loop.
1778   /// Notice that inductions don't need to start at zero and that induction
1779   /// variables can be pointers.
1780   InductionList Inductions;
1781   /// Holds the phi nodes that are first-order recurrences.
1782   RecurrenceSet FirstOrderRecurrences;
1783   /// Holds the widest induction type encountered.
1784   Type *WidestIndTy;
1785 
1786   /// Allowed outside users. This holds the induction and reduction
1787   /// vars which can be accessed from outside the loop.
1788   SmallPtrSet<Value *, 4> AllowedExit;
1789 
1790   /// Can we assume the absence of NaNs.
1791   bool HasFunNoNaNAttr;
1792 
1793   /// Vectorization requirements that will go through late-evaluation.
1794   LoopVectorizationRequirements *Requirements;
1795 
1796   /// Used to emit an analysis of any legality issues.
1797   LoopVectorizeHints *Hints;
1798 
1799   /// While vectorizing these instructions we have to generate a
1800   /// call to the appropriate masked intrinsic
1801   SmallPtrSet<const Instruction *, 8> MaskedOp;
1802 };
1803 
1804 /// LoopVectorizationCostModel - estimates the expected speedups due to
1805 /// vectorization.
1806 /// In many cases vectorization is not profitable. This can happen because of
1807 /// a number of reasons. In this class we mainly attempt to predict the
1808 /// expected speedup/slowdowns due to the supported instruction set. We use the
1809 /// TargetTransformInfo to query the different backends for the cost of
1810 /// different operations.
1811 class LoopVectorizationCostModel {
1812 public:
1813   LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1814                              LoopInfo *LI, LoopVectorizationLegality *Legal,
1815                              const TargetTransformInfo &TTI,
1816                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1817                              AssumptionCache *AC,
1818                              OptimizationRemarkEmitter *ORE, const Function *F,
1819                              const LoopVectorizeHints *Hints)
1820       : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1821         AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {}
1822 
1823   /// \return An upper bound for the vectorization factor, or None if
1824   /// vectorization should be avoided up front.
1825   Optional<unsigned> computeMaxVF(bool OptForSize);
1826 
1827   /// Information about vectorization costs
1828   struct VectorizationFactor {
1829     unsigned Width; // Vector width with best cost
1830     unsigned Cost;  // Cost of the loop with that width
1831   };
1832   /// \return The most profitable vectorization factor and the cost of that VF.
1833   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1834   /// then this vectorization factor will be selected if vectorization is
1835   /// possible.
1836   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
1837 
1838   /// Setup cost-based decisions for user vectorization factor.
1839   void selectUserVectorizationFactor(unsigned UserVF) {
1840     collectUniformsAndScalars(UserVF);
1841     collectInstsToScalarize(UserVF);
1842   }
1843 
1844   /// \return The size (in bits) of the smallest and widest types in the code
1845   /// that needs to be vectorized. We ignore values that remain scalar such as
1846   /// 64 bit loop indices.
1847   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1848 
1849   /// \return The desired interleave count.
1850   /// If interleave count has been specified by metadata it will be returned.
1851   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1852   /// are the selected vectorization factor and the cost of the selected VF.
1853   unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1854                                  unsigned LoopCost);
1855 
1856   /// Memory access instruction may be vectorized in more than one way.
1857   /// Form of instruction after vectorization depends on cost.
1858   /// This function takes cost-based decisions for Load/Store instructions
1859   /// and collects them in a map. This decisions map is used for building
1860   /// the lists of loop-uniform and loop-scalar instructions.
1861   /// The calculated cost is saved with widening decision in order to
1862   /// avoid redundant calculations.
1863   void setCostBasedWideningDecision(unsigned VF);
1864 
1865   /// \brief A struct that represents some properties of the register usage
1866   /// of a loop.
1867   struct RegisterUsage {
1868     /// Holds the number of loop invariant values that are used in the loop.
1869     unsigned LoopInvariantRegs;
1870     /// Holds the maximum number of concurrent live intervals in the loop.
1871     unsigned MaxLocalUsers;
1872     /// Holds the number of instructions in the loop.
1873     unsigned NumInstructions;
1874   };
1875 
1876   /// \return Returns information about the register usages of the loop for the
1877   /// given vectorization factors.
1878   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1879 
1880   /// Collect values we want to ignore in the cost model.
1881   void collectValuesToIgnore();
1882 
1883   /// \returns The smallest bitwidth each instruction can be represented with.
1884   /// The vector equivalents of these instructions should be truncated to this
1885   /// type.
1886   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1887     return MinBWs;
1888   }
1889 
1890   /// \returns True if it is more profitable to scalarize instruction \p I for
1891   /// vectorization factor \p VF.
1892   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1893     auto Scalars = InstsToScalarize.find(VF);
1894     assert(Scalars != InstsToScalarize.end() &&
1895            "VF not yet analyzed for scalarization profitability");
1896     return Scalars->second.count(I);
1897   }
1898 
1899   /// Returns true if \p I is known to be uniform after vectorization.
1900   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1901     if (VF == 1)
1902       return true;
1903     assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity");
1904     auto UniformsPerVF = Uniforms.find(VF);
1905     return UniformsPerVF->second.count(I);
1906   }
1907 
1908   /// Returns true if \p I is known to be scalar after vectorization.
1909   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1910     if (VF == 1)
1911       return true;
1912     assert(Scalars.count(VF) && "Scalar values are not calculated for VF");
1913     auto ScalarsPerVF = Scalars.find(VF);
1914     return ScalarsPerVF->second.count(I);
1915   }
1916 
1917   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1918   /// for vectorization factor \p VF.
1919   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1920     return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) &&
1921            !isScalarAfterVectorization(I, VF);
1922   }
1923 
1924   /// Decision that was taken during cost calculation for memory instruction.
1925   enum InstWidening {
1926     CM_Unknown,
1927     CM_Widen,
1928     CM_Interleave,
1929     CM_GatherScatter,
1930     CM_Scalarize
1931   };
1932 
1933   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1934   /// instruction \p I and vector width \p VF.
1935   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1936                            unsigned Cost) {
1937     assert(VF >= 2 && "Expected VF >=2");
1938     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1939   }
1940 
1941   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1942   /// interleaving group \p Grp and vector width \p VF.
1943   void setWideningDecision(const InterleaveGroup *Grp, unsigned VF,
1944                            InstWidening W, unsigned Cost) {
1945     assert(VF >= 2 && "Expected VF >=2");
1946     /// Broadcast this decicion to all instructions inside the group.
1947     /// But the cost will be assigned to one instruction only.
1948     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1949       if (auto *I = Grp->getMember(i)) {
1950         if (Grp->getInsertPos() == I)
1951           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1952         else
1953           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1954       }
1955     }
1956   }
1957 
1958   /// Return the cost model decision for the given instruction \p I and vector
1959   /// width \p VF. Return CM_Unknown if this instruction did not pass
1960   /// through the cost modeling.
1961   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1962     assert(VF >= 2 && "Expected VF >=2");
1963     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1964     auto Itr = WideningDecisions.find(InstOnVF);
1965     if (Itr == WideningDecisions.end())
1966       return CM_Unknown;
1967     return Itr->second.first;
1968   }
1969 
1970   /// Return the vectorization cost for the given instruction \p I and vector
1971   /// width \p VF.
1972   unsigned getWideningCost(Instruction *I, unsigned VF) {
1973     assert(VF >= 2 && "Expected VF >=2");
1974     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1975     assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated");
1976     return WideningDecisions[InstOnVF].second;
1977   }
1978 
1979   /// Return True if instruction \p I is an optimizable truncate whose operand
1980   /// is an induction variable. Such a truncate will be removed by adding a new
1981   /// induction variable with the destination type.
1982   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1983 
1984     // If the instruction is not a truncate, return false.
1985     auto *Trunc = dyn_cast<TruncInst>(I);
1986     if (!Trunc)
1987       return false;
1988 
1989     // Get the source and destination types of the truncate.
1990     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1991     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1992 
1993     // If the truncate is free for the given types, return false. Replacing a
1994     // free truncate with an induction variable would add an induction variable
1995     // update instruction to each iteration of the loop. We exclude from this
1996     // check the primary induction variable since it will need an update
1997     // instruction regardless.
1998     Value *Op = Trunc->getOperand(0);
1999     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
2000       return false;
2001 
2002     // If the truncated value is not an induction variable, return false.
2003     return Legal->isInductionVariable(Op);
2004   }
2005 
2006 private:
2007   /// \return An upper bound for the vectorization factor, larger than zero.
2008   /// One is returned if vectorization should best be avoided due to cost.
2009   unsigned computeFeasibleMaxVF(bool OptForSize);
2010 
2011   /// The vectorization cost is a combination of the cost itself and a boolean
2012   /// indicating whether any of the contributing operations will actually
2013   /// operate on
2014   /// vector values after type legalization in the backend. If this latter value
2015   /// is
2016   /// false, then all operations will be scalarized (i.e. no vectorization has
2017   /// actually taken place).
2018   typedef std::pair<unsigned, bool> VectorizationCostTy;
2019 
2020   /// Returns the expected execution cost. The unit of the cost does
2021   /// not matter because we use the 'cost' units to compare different
2022   /// vector widths. The cost that is returned is *not* normalized by
2023   /// the factor width.
2024   VectorizationCostTy expectedCost(unsigned VF);
2025 
2026   /// Returns the execution time cost of an instruction for a given vector
2027   /// width. Vector width of one means scalar.
2028   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
2029 
2030   /// The cost-computation logic from getInstructionCost which provides
2031   /// the vector type as an output parameter.
2032   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
2033 
2034   /// Calculate vectorization cost of memory instruction \p I.
2035   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
2036 
2037   /// The cost computation for scalarized memory instruction.
2038   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
2039 
2040   /// The cost computation for interleaving group of memory instructions.
2041   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
2042 
2043   /// The cost computation for Gather/Scatter instruction.
2044   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
2045 
2046   /// The cost computation for widening instruction \p I with consecutive
2047   /// memory access.
2048   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
2049 
2050   /// The cost calculation for Load instruction \p I with uniform pointer -
2051   /// scalar load + broadcast.
2052   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
2053 
2054   /// Returns whether the instruction is a load or store and will be a emitted
2055   /// as a vector operation.
2056   bool isConsecutiveLoadOrStore(Instruction *I);
2057 
2058   /// Create an analysis remark that explains why vectorization failed
2059   ///
2060   /// \p RemarkName is the identifier for the remark.  \return the remark object
2061   /// that can be streamed to.
2062   OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
2063     return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
2064                                   RemarkName, TheLoop);
2065   }
2066 
2067   /// Map of scalar integer values to the smallest bitwidth they can be legally
2068   /// represented as. The vector equivalents of these values should be truncated
2069   /// to this type.
2070   MapVector<Instruction *, uint64_t> MinBWs;
2071 
2072   /// A type representing the costs for instructions if they were to be
2073   /// scalarized rather than vectorized. The entries are Instruction-Cost
2074   /// pairs.
2075   typedef DenseMap<Instruction *, unsigned> ScalarCostsTy;
2076 
2077   /// A set containing all BasicBlocks that are known to present after
2078   /// vectorization as a predicated block.
2079   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
2080 
2081   /// A map holding scalar costs for different vectorization factors. The
2082   /// presence of a cost for an instruction in the mapping indicates that the
2083   /// instruction will be scalarized when vectorizing with the associated
2084   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
2085   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
2086 
2087   /// Holds the instructions known to be uniform after vectorization.
2088   /// The data is collected per VF.
2089   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
2090 
2091   /// Holds the instructions known to be scalar after vectorization.
2092   /// The data is collected per VF.
2093   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
2094 
2095   /// Returns the expected difference in cost from scalarizing the expression
2096   /// feeding a predicated instruction \p PredInst. The instructions to
2097   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
2098   /// non-negative return value implies the expression will be scalarized.
2099   /// Currently, only single-use chains are considered for scalarization.
2100   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
2101                               unsigned VF);
2102 
2103   /// Collects the instructions to scalarize for each predicated instruction in
2104   /// the loop.
2105   void collectInstsToScalarize(unsigned VF);
2106 
2107   /// Collect the instructions that are uniform after vectorization. An
2108   /// instruction is uniform if we represent it with a single scalar value in
2109   /// the vectorized loop corresponding to each vector iteration. Examples of
2110   /// uniform instructions include pointer operands of consecutive or
2111   /// interleaved memory accesses. Note that although uniformity implies an
2112   /// instruction will be scalar, the reverse is not true. In general, a
2113   /// scalarized instruction will be represented by VF scalar values in the
2114   /// vectorized loop, each corresponding to an iteration of the original
2115   /// scalar loop.
2116   void collectLoopUniforms(unsigned VF);
2117 
2118   /// Collect the instructions that are scalar after vectorization. An
2119   /// instruction is scalar if it is known to be uniform or will be scalarized
2120   /// during vectorization. Non-uniform scalarized instructions will be
2121   /// represented by VF values in the vectorized loop, each corresponding to an
2122   /// iteration of the original scalar loop.
2123   void collectLoopScalars(unsigned VF);
2124 
2125   /// Collect Uniform and Scalar values for the given \p VF.
2126   /// The sets depend on CM decision for Load/Store instructions
2127   /// that may be vectorized as interleave, gather-scatter or scalarized.
2128   void collectUniformsAndScalars(unsigned VF) {
2129     // Do the analysis once.
2130     if (VF == 1 || Uniforms.count(VF))
2131       return;
2132     setCostBasedWideningDecision(VF);
2133     collectLoopUniforms(VF);
2134     collectLoopScalars(VF);
2135   }
2136 
2137   /// Keeps cost model vectorization decision and cost for instructions.
2138   /// Right now it is used for memory instructions only.
2139   typedef DenseMap<std::pair<Instruction *, unsigned>,
2140                    std::pair<InstWidening, unsigned>>
2141       DecisionList;
2142 
2143   DecisionList WideningDecisions;
2144 
2145 public:
2146   /// The loop that we evaluate.
2147   Loop *TheLoop;
2148   /// Predicated scalar evolution analysis.
2149   PredicatedScalarEvolution &PSE;
2150   /// Loop Info analysis.
2151   LoopInfo *LI;
2152   /// Vectorization legality.
2153   LoopVectorizationLegality *Legal;
2154   /// Vector target information.
2155   const TargetTransformInfo &TTI;
2156   /// Target Library Info.
2157   const TargetLibraryInfo *TLI;
2158   /// Demanded bits analysis.
2159   DemandedBits *DB;
2160   /// Assumption cache.
2161   AssumptionCache *AC;
2162   /// Interface to emit optimization remarks.
2163   OptimizationRemarkEmitter *ORE;
2164 
2165   const Function *TheFunction;
2166   /// Loop Vectorize Hint.
2167   const LoopVectorizeHints *Hints;
2168   /// Values to ignore in the cost model.
2169   SmallPtrSet<const Value *, 16> ValuesToIgnore;
2170   /// Values to ignore in the cost model when VF > 1.
2171   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
2172 };
2173 
2174 /// LoopVectorizationPlanner - drives the vectorization process after having
2175 /// passed Legality checks.
2176 class LoopVectorizationPlanner {
2177 public:
2178   LoopVectorizationPlanner(Loop *OrigLoop, LoopInfo *LI,
2179                            LoopVectorizationLegality *Legal,
2180                            LoopVectorizationCostModel &CM)
2181       : OrigLoop(OrigLoop), LI(LI), Legal(Legal), CM(CM) {}
2182 
2183   ~LoopVectorizationPlanner() {}
2184 
2185   /// Plan how to best vectorize, return the best VF and its cost.
2186   LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize,
2187                                                        unsigned UserVF);
2188 
2189   /// Generate the IR code for the vectorized loop.
2190   void executePlan(InnerLoopVectorizer &ILV);
2191 
2192 protected:
2193   /// Collect the instructions from the original loop that would be trivially
2194   /// dead in the vectorized loop if generated.
2195   void collectTriviallyDeadInstructions(
2196       SmallPtrSetImpl<Instruction *> &DeadInstructions);
2197 
2198 private:
2199   /// The loop that we evaluate.
2200   Loop *OrigLoop;
2201 
2202   /// Loop Info analysis.
2203   LoopInfo *LI;
2204 
2205   /// The legality analysis.
2206   LoopVectorizationLegality *Legal;
2207 
2208   /// The profitablity analysis.
2209   LoopVectorizationCostModel &CM;
2210 };
2211 
2212 /// \brief This holds vectorization requirements that must be verified late in
2213 /// the process. The requirements are set by legalize and costmodel. Once
2214 /// vectorization has been determined to be possible and profitable the
2215 /// requirements can be verified by looking for metadata or compiler options.
2216 /// For example, some loops require FP commutativity which is only allowed if
2217 /// vectorization is explicitly specified or if the fast-math compiler option
2218 /// has been provided.
2219 /// Late evaluation of these requirements allows helpful diagnostics to be
2220 /// composed that tells the user what need to be done to vectorize the loop. For
2221 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
2222 /// evaluation should be used only when diagnostics can generated that can be
2223 /// followed by a non-expert user.
2224 class LoopVectorizationRequirements {
2225 public:
2226   LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE)
2227       : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {}
2228 
2229   void addUnsafeAlgebraInst(Instruction *I) {
2230     // First unsafe algebra instruction.
2231     if (!UnsafeAlgebraInst)
2232       UnsafeAlgebraInst = I;
2233   }
2234 
2235   void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
2236 
2237   bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
2238     const char *PassName = Hints.vectorizeAnalysisPassName();
2239     bool Failed = false;
2240     if (UnsafeAlgebraInst && !Hints.allowReordering()) {
2241       ORE.emit(
2242           OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps",
2243                                               UnsafeAlgebraInst->getDebugLoc(),
2244                                               UnsafeAlgebraInst->getParent())
2245           << "loop not vectorized: cannot prove it is safe to reorder "
2246              "floating-point operations");
2247       Failed = true;
2248     }
2249 
2250     // Test if runtime memcheck thresholds are exceeded.
2251     bool PragmaThresholdReached =
2252         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
2253     bool ThresholdReached =
2254         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
2255     if ((ThresholdReached && !Hints.allowReordering()) ||
2256         PragmaThresholdReached) {
2257       ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
2258                                                   L->getStartLoc(),
2259                                                   L->getHeader())
2260                << "loop not vectorized: cannot prove it is safe to reorder "
2261                   "memory operations");
2262       DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
2263       Failed = true;
2264     }
2265 
2266     return Failed;
2267   }
2268 
2269 private:
2270   unsigned NumRuntimePointerChecks;
2271   Instruction *UnsafeAlgebraInst;
2272 
2273   /// Interface to emit optimization remarks.
2274   OptimizationRemarkEmitter &ORE;
2275 };
2276 
2277 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
2278   if (L.empty()) {
2279     if (!hasCyclesInLoopBody(L))
2280       V.push_back(&L);
2281     return;
2282   }
2283   for (Loop *InnerL : L)
2284     addAcyclicInnerLoop(*InnerL, V);
2285 }
2286 
2287 /// The LoopVectorize Pass.
2288 struct LoopVectorize : public FunctionPass {
2289   /// Pass identification, replacement for typeid
2290   static char ID;
2291 
2292   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
2293       : FunctionPass(ID) {
2294     Impl.DisableUnrolling = NoUnrolling;
2295     Impl.AlwaysVectorize = AlwaysVectorize;
2296     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2297   }
2298 
2299   LoopVectorizePass Impl;
2300 
2301   bool runOnFunction(Function &F) override {
2302     if (skipFunction(F))
2303       return false;
2304 
2305     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2306     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2307     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2308     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2309     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2310     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2311     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2312     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2313     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2314     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2315     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2316     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2317 
2318     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2319         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2320 
2321     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2322                         GetLAA, *ORE);
2323   }
2324 
2325   void getAnalysisUsage(AnalysisUsage &AU) const override {
2326     AU.addRequired<AssumptionCacheTracker>();
2327     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2328     AU.addRequired<DominatorTreeWrapperPass>();
2329     AU.addRequired<LoopInfoWrapperPass>();
2330     AU.addRequired<ScalarEvolutionWrapperPass>();
2331     AU.addRequired<TargetTransformInfoWrapperPass>();
2332     AU.addRequired<AAResultsWrapperPass>();
2333     AU.addRequired<LoopAccessLegacyAnalysis>();
2334     AU.addRequired<DemandedBitsWrapperPass>();
2335     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2336     AU.addPreserved<LoopInfoWrapperPass>();
2337     AU.addPreserved<DominatorTreeWrapperPass>();
2338     AU.addPreserved<BasicAAWrapperPass>();
2339     AU.addPreserved<GlobalsAAWrapperPass>();
2340   }
2341 };
2342 
2343 } // end anonymous namespace
2344 
2345 //===----------------------------------------------------------------------===//
2346 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2347 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2348 //===----------------------------------------------------------------------===//
2349 
2350 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2351   // We need to place the broadcast of invariant variables outside the loop.
2352   Instruction *Instr = dyn_cast<Instruction>(V);
2353   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
2354   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
2355 
2356   // Place the code for broadcasting invariant variables in the new preheader.
2357   IRBuilder<>::InsertPointGuard Guard(Builder);
2358   if (Invariant)
2359     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2360 
2361   // Broadcast the scalar into all locations in the vector.
2362   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2363 
2364   return Shuf;
2365 }
2366 
2367 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2368     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
2369   Value *Start = II.getStartValue();
2370 
2371   // Construct the initial value of the vector IV in the vector loop preheader
2372   auto CurrIP = Builder.saveIP();
2373   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2374   if (isa<TruncInst>(EntryVal)) {
2375     assert(Start->getType()->isIntegerTy() &&
2376            "Truncation requires an integer type");
2377     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2378     Step = Builder.CreateTrunc(Step, TruncType);
2379     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2380   }
2381   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2382   Value *SteppedStart =
2383       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2384 
2385   // We create vector phi nodes for both integer and floating-point induction
2386   // variables. Here, we determine the kind of arithmetic we will perform.
2387   Instruction::BinaryOps AddOp;
2388   Instruction::BinaryOps MulOp;
2389   if (Step->getType()->isIntegerTy()) {
2390     AddOp = Instruction::Add;
2391     MulOp = Instruction::Mul;
2392   } else {
2393     AddOp = II.getInductionOpcode();
2394     MulOp = Instruction::FMul;
2395   }
2396 
2397   // Multiply the vectorization factor by the step using integer or
2398   // floating-point arithmetic as appropriate.
2399   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
2400   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
2401 
2402   // Create a vector splat to use in the induction update.
2403   //
2404   // FIXME: If the step is non-constant, we create the vector splat with
2405   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2406   //        handle a constant vector splat.
2407   Value *SplatVF = isa<Constant>(Mul)
2408                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2409                        : Builder.CreateVectorSplat(VF, Mul);
2410   Builder.restoreIP(CurrIP);
2411 
2412   // We may need to add the step a number of times, depending on the unroll
2413   // factor. The last of those goes into the PHI.
2414   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2415                                     &*LoopVectorBody->getFirstInsertionPt());
2416   Instruction *LastInduction = VecInd;
2417   VectorParts Entry(UF);
2418   for (unsigned Part = 0; Part < UF; ++Part) {
2419     Entry[Part] = LastInduction;
2420     LastInduction = cast<Instruction>(addFastMathFlag(
2421         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
2422   }
2423   VectorLoopValueMap.initVector(EntryVal, Entry);
2424   if (isa<TruncInst>(EntryVal))
2425     addMetadata(Entry, EntryVal);
2426 
2427   // Move the last step to the end of the latch block. This ensures consistent
2428   // placement of all induction updates.
2429   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2430   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2431   auto *ICmp = cast<Instruction>(Br->getCondition());
2432   LastInduction->moveBefore(ICmp);
2433   LastInduction->setName("vec.ind.next");
2434 
2435   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2436   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2437 }
2438 
2439 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2440   return Cost->isScalarAfterVectorization(I, VF) ||
2441          Cost->isProfitableToScalarize(I, VF);
2442 }
2443 
2444 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2445   if (shouldScalarizeInstruction(IV))
2446     return true;
2447   auto isScalarInst = [&](User *U) -> bool {
2448     auto *I = cast<Instruction>(U);
2449     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2450   };
2451   return any_of(IV->users(), isScalarInst);
2452 }
2453 
2454 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
2455 
2456   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2457          "Primary induction variable must have an integer type");
2458 
2459   auto II = Legal->getInductionVars()->find(IV);
2460   assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
2461 
2462   auto ID = II->second;
2463   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2464 
2465   // The scalar value to broadcast. This will be derived from the canonical
2466   // induction variable.
2467   Value *ScalarIV = nullptr;
2468 
2469   // The value from the original loop to which we are mapping the new induction
2470   // variable.
2471   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2472 
2473   // True if we have vectorized the induction variable.
2474   auto VectorizedIV = false;
2475 
2476   // Determine if we want a scalar version of the induction variable. This is
2477   // true if the induction variable itself is not widened, or if it has at
2478   // least one user in the loop that is not widened.
2479   auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
2480 
2481   // Generate code for the induction step. Note that induction steps are
2482   // required to be loop-invariant
2483   assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
2484          "Induction step should be loop invariant");
2485   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2486   Value *Step = nullptr;
2487   if (PSE.getSE()->isSCEVable(IV->getType())) {
2488     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2489     Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
2490                              LoopVectorPreHeader->getTerminator());
2491   } else {
2492     Step = cast<SCEVUnknown>(ID.getStep())->getValue();
2493   }
2494 
2495   // Try to create a new independent vector induction variable. If we can't
2496   // create the phi node, we will splat the scalar induction variable in each
2497   // loop iteration.
2498   if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
2499     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2500     VectorizedIV = true;
2501   }
2502 
2503   // If we haven't yet vectorized the induction variable, or if we will create
2504   // a scalar one, we need to define the scalar induction variable and step
2505   // values. If we were given a truncation type, truncate the canonical
2506   // induction variable and step. Otherwise, derive these values from the
2507   // induction descriptor.
2508   if (!VectorizedIV || NeedsScalarIV) {
2509     ScalarIV = Induction;
2510     if (IV != OldInduction) {
2511       ScalarIV = IV->getType()->isIntegerTy()
2512                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2513                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2514                                           IV->getType());
2515       ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
2516       ScalarIV->setName("offset.idx");
2517     }
2518     if (Trunc) {
2519       auto *TruncType = cast<IntegerType>(Trunc->getType());
2520       assert(Step->getType()->isIntegerTy() &&
2521              "Truncation requires an integer step");
2522       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2523       Step = Builder.CreateTrunc(Step, TruncType);
2524     }
2525   }
2526 
2527   // If we haven't yet vectorized the induction variable, splat the scalar
2528   // induction variable, and build the necessary step vectors.
2529   if (!VectorizedIV) {
2530     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2531     VectorParts Entry(UF);
2532     for (unsigned Part = 0; Part < UF; ++Part)
2533       Entry[Part] =
2534           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
2535     VectorLoopValueMap.initVector(EntryVal, Entry);
2536     if (Trunc)
2537       addMetadata(Entry, Trunc);
2538   }
2539 
2540   // If an induction variable is only used for counting loop iterations or
2541   // calculating addresses, it doesn't need to be widened. Create scalar steps
2542   // that can be used by instructions we will later scalarize. Note that the
2543   // addition of the scalar steps will not increase the number of instructions
2544   // in the loop in the common case prior to InstCombine. We will be trading
2545   // one vector extract for each scalar step.
2546   if (NeedsScalarIV)
2547     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2548 }
2549 
2550 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2551                                           Instruction::BinaryOps BinOp) {
2552   // Create and check the types.
2553   assert(Val->getType()->isVectorTy() && "Must be a vector");
2554   int VLen = Val->getType()->getVectorNumElements();
2555 
2556   Type *STy = Val->getType()->getScalarType();
2557   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2558          "Induction Step must be an integer or FP");
2559   assert(Step->getType() == STy && "Step has wrong type");
2560 
2561   SmallVector<Constant *, 8> Indices;
2562 
2563   if (STy->isIntegerTy()) {
2564     // Create a vector of consecutive numbers from zero to VF.
2565     for (int i = 0; i < VLen; ++i)
2566       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
2567 
2568     // Add the consecutive indices to the vector value.
2569     Constant *Cv = ConstantVector::get(Indices);
2570     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
2571     Step = Builder.CreateVectorSplat(VLen, Step);
2572     assert(Step->getType() == Val->getType() && "Invalid step vec");
2573     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2574     // which can be found from the original scalar operations.
2575     Step = Builder.CreateMul(Cv, Step);
2576     return Builder.CreateAdd(Val, Step, "induction");
2577   }
2578 
2579   // Floating point induction.
2580   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2581          "Binary Opcode should be specified for FP induction");
2582   // Create a vector of consecutive numbers from zero to VF.
2583   for (int i = 0; i < VLen; ++i)
2584     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
2585 
2586   // Add the consecutive indices to the vector value.
2587   Constant *Cv = ConstantVector::get(Indices);
2588 
2589   Step = Builder.CreateVectorSplat(VLen, Step);
2590 
2591   // Floating point operations had to be 'fast' to enable the induction.
2592   FastMathFlags Flags;
2593   Flags.setUnsafeAlgebra();
2594 
2595   Value *MulOp = Builder.CreateFMul(Cv, Step);
2596   if (isa<Instruction>(MulOp))
2597     // Have to check, MulOp may be a constant
2598     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
2599 
2600   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2601   if (isa<Instruction>(BOp))
2602     cast<Instruction>(BOp)->setFastMathFlags(Flags);
2603   return BOp;
2604 }
2605 
2606 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2607                                            Value *EntryVal,
2608                                            const InductionDescriptor &ID) {
2609 
2610   // We shouldn't have to build scalar steps if we aren't vectorizing.
2611   assert(VF > 1 && "VF should be greater than one");
2612 
2613   // Get the value type and ensure it and the step have the same integer type.
2614   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2615   assert(ScalarIVTy == Step->getType() &&
2616          "Val and Step should have the same type");
2617 
2618   // We build scalar steps for both integer and floating-point induction
2619   // variables. Here, we determine the kind of arithmetic we will perform.
2620   Instruction::BinaryOps AddOp;
2621   Instruction::BinaryOps MulOp;
2622   if (ScalarIVTy->isIntegerTy()) {
2623     AddOp = Instruction::Add;
2624     MulOp = Instruction::Mul;
2625   } else {
2626     AddOp = ID.getInductionOpcode();
2627     MulOp = Instruction::FMul;
2628   }
2629 
2630   // Determine the number of scalars we need to generate for each unroll
2631   // iteration. If EntryVal is uniform, we only need to generate the first
2632   // lane. Otherwise, we generate all VF values.
2633   unsigned Lanes =
2634     Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF;
2635 
2636   // Compute the scalar steps and save the results in VectorLoopValueMap.
2637   ScalarParts Entry(UF);
2638   for (unsigned Part = 0; Part < UF; ++Part) {
2639     Entry[Part].resize(VF);
2640     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2641       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2642       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2643       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2644       Entry[Part][Lane] = Add;
2645     }
2646   }
2647   VectorLoopValueMap.initScalar(EntryVal, Entry);
2648 }
2649 
2650 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
2651 
2652   const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() :
2653     ValueToValueMap();
2654 
2655   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
2656   if (Stride == 1 || Stride == -1)
2657     return Stride;
2658   return 0;
2659 }
2660 
2661 bool LoopVectorizationLegality::isUniform(Value *V) {
2662   return LAI->isUniform(V);
2663 }
2664 
2665 const InnerLoopVectorizer::VectorParts &
2666 InnerLoopVectorizer::getVectorValue(Value *V) {
2667   assert(V != Induction && "The new induction variable should not be used.");
2668   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2669   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2670 
2671   // If we have a stride that is replaced by one, do it here.
2672   if (Legal->hasStride(V))
2673     V = ConstantInt::get(V->getType(), 1);
2674 
2675   // If we have this scalar in the map, return it.
2676   if (VectorLoopValueMap.hasVector(V))
2677     return VectorLoopValueMap.VectorMapStorage[V];
2678 
2679   // If the value has not been vectorized, check if it has been scalarized
2680   // instead. If it has been scalarized, and we actually need the value in
2681   // vector form, we will construct the vector values on demand.
2682   if (VectorLoopValueMap.hasScalar(V)) {
2683 
2684     // Initialize a new vector map entry.
2685     VectorParts Entry(UF);
2686 
2687     // If we've scalarized a value, that value should be an instruction.
2688     auto *I = cast<Instruction>(V);
2689 
2690     // If we aren't vectorizing, we can just copy the scalar map values over to
2691     // the vector map.
2692     if (VF == 1) {
2693       for (unsigned Part = 0; Part < UF; ++Part)
2694         Entry[Part] = getScalarValue(V, Part, 0);
2695       return VectorLoopValueMap.initVector(V, Entry);
2696     }
2697 
2698     // Get the last scalar instruction we generated for V. If the value is
2699     // known to be uniform after vectorization, this corresponds to lane zero
2700     // of the last unroll iteration. Otherwise, the last instruction is the one
2701     // we created for the last vector lane of the last unroll iteration.
2702     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2703     auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane));
2704 
2705     // Set the insert point after the last scalarized instruction. This ensures
2706     // the insertelement sequence will directly follow the scalar definitions.
2707     auto OldIP = Builder.saveIP();
2708     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2709     Builder.SetInsertPoint(&*NewIP);
2710 
2711     // However, if we are vectorizing, we need to construct the vector values.
2712     // If the value is known to be uniform after vectorization, we can just
2713     // broadcast the scalar value corresponding to lane zero for each unroll
2714     // iteration. Otherwise, we construct the vector values using insertelement
2715     // instructions. Since the resulting vectors are stored in
2716     // VectorLoopValueMap, we will only generate the insertelements once.
2717     for (unsigned Part = 0; Part < UF; ++Part) {
2718       Value *VectorValue = nullptr;
2719       if (Cost->isUniformAfterVectorization(I, VF)) {
2720         VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0));
2721       } else {
2722         VectorValue = UndefValue::get(VectorType::get(V->getType(), VF));
2723         for (unsigned Lane = 0; Lane < VF; ++Lane)
2724           VectorValue = Builder.CreateInsertElement(
2725               VectorValue, getScalarValue(V, Part, Lane),
2726               Builder.getInt32(Lane));
2727       }
2728       Entry[Part] = VectorValue;
2729     }
2730     Builder.restoreIP(OldIP);
2731     return VectorLoopValueMap.initVector(V, Entry);
2732   }
2733 
2734   // If this scalar is unknown, assume that it is a constant or that it is
2735   // loop invariant. Broadcast V and save the value for future uses.
2736   Value *B = getBroadcastInstrs(V);
2737   return VectorLoopValueMap.initVector(V, VectorParts(UF, B));
2738 }
2739 
2740 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part,
2741                                            unsigned Lane) {
2742 
2743   // If the value is not an instruction contained in the loop, it should
2744   // already be scalar.
2745   if (OrigLoop->isLoopInvariant(V))
2746     return V;
2747 
2748   assert(Lane > 0 ?
2749          !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2750          : true && "Uniform values only have lane zero");
2751 
2752   // If the value from the original loop has not been vectorized, it is
2753   // represented by UF x VF scalar values in the new loop. Return the requested
2754   // scalar value.
2755   if (VectorLoopValueMap.hasScalar(V))
2756     return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane];
2757 
2758   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2759   // for the given unroll part. If this entry is not a vector type (i.e., the
2760   // vectorization factor is one), there is no need to generate an
2761   // extractelement instruction.
2762   auto *U = getVectorValue(V)[Part];
2763   if (!U->getType()->isVectorTy()) {
2764     assert(VF == 1 && "Value not scalarized has non-vector type");
2765     return U;
2766   }
2767 
2768   // Otherwise, the value from the original loop has been vectorized and is
2769   // represented by UF vector values. Extract and return the requested scalar
2770   // value from the appropriate vector lane.
2771   return Builder.CreateExtractElement(U, Builder.getInt32(Lane));
2772 }
2773 
2774 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2775   assert(Vec->getType()->isVectorTy() && "Invalid type");
2776   SmallVector<Constant *, 8> ShuffleMask;
2777   for (unsigned i = 0; i < VF; ++i)
2778     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2779 
2780   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2781                                      ConstantVector::get(ShuffleMask),
2782                                      "reverse");
2783 }
2784 
2785 // Try to vectorize the interleave group that \p Instr belongs to.
2786 //
2787 // E.g. Translate following interleaved load group (factor = 3):
2788 //   for (i = 0; i < N; i+=3) {
2789 //     R = Pic[i];             // Member of index 0
2790 //     G = Pic[i+1];           // Member of index 1
2791 //     B = Pic[i+2];           // Member of index 2
2792 //     ... // do something to R, G, B
2793 //   }
2794 // To:
2795 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2796 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2797 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2798 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2799 //
2800 // Or translate following interleaved store group (factor = 3):
2801 //   for (i = 0; i < N; i+=3) {
2802 //     ... do something to R, G, B
2803 //     Pic[i]   = R;           // Member of index 0
2804 //     Pic[i+1] = G;           // Member of index 1
2805 //     Pic[i+2] = B;           // Member of index 2
2806 //   }
2807 // To:
2808 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2809 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2810 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2811 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2812 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2813 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2814   const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2815   assert(Group && "Fail to get an interleaved access group.");
2816 
2817   // Skip if current instruction is not the insert position.
2818   if (Instr != Group->getInsertPos())
2819     return;
2820 
2821   Value *Ptr = getPointerOperand(Instr);
2822 
2823   // Prepare for the vector type of the interleaved load/store.
2824   Type *ScalarTy = getMemInstValueType(Instr);
2825   unsigned InterleaveFactor = Group->getFactor();
2826   Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2827   Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr));
2828 
2829   // Prepare for the new pointers.
2830   setDebugLocFromInst(Builder, Ptr);
2831   SmallVector<Value *, 2> NewPtrs;
2832   unsigned Index = Group->getIndex(Instr);
2833 
2834   // If the group is reverse, adjust the index to refer to the last vector lane
2835   // instead of the first. We adjust the index from the first vector lane,
2836   // rather than directly getting the pointer for lane VF - 1, because the
2837   // pointer operand of the interleaved access is supposed to be uniform. For
2838   // uniform instructions, we're only required to generate a value for the
2839   // first vector lane in each unroll iteration.
2840   if (Group->isReverse())
2841     Index += (VF - 1) * Group->getFactor();
2842 
2843   for (unsigned Part = 0; Part < UF; Part++) {
2844     Value *NewPtr = getScalarValue(Ptr, Part, 0);
2845 
2846     // Notice current instruction could be any index. Need to adjust the address
2847     // to the member of index 0.
2848     //
2849     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2850     //       b = A[i];       // Member of index 0
2851     // Current pointer is pointed to A[i+1], adjust it to A[i].
2852     //
2853     // E.g.  A[i+1] = a;     // Member of index 1
2854     //       A[i]   = b;     // Member of index 0
2855     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2856     // Current pointer is pointed to A[i+2], adjust it to A[i].
2857     NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2858 
2859     // Cast to the vector pointer type.
2860     NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2861   }
2862 
2863   setDebugLocFromInst(Builder, Instr);
2864   Value *UndefVec = UndefValue::get(VecTy);
2865 
2866   // Vectorize the interleaved load group.
2867   if (isa<LoadInst>(Instr)) {
2868 
2869     // For each unroll part, create a wide load for the group.
2870     SmallVector<Value *, 2> NewLoads;
2871     for (unsigned Part = 0; Part < UF; Part++) {
2872       auto *NewLoad = Builder.CreateAlignedLoad(
2873           NewPtrs[Part], Group->getAlignment(), "wide.vec");
2874       addMetadata(NewLoad, Instr);
2875       NewLoads.push_back(NewLoad);
2876     }
2877 
2878     // For each member in the group, shuffle out the appropriate data from the
2879     // wide loads.
2880     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2881       Instruction *Member = Group->getMember(I);
2882 
2883       // Skip the gaps in the group.
2884       if (!Member)
2885         continue;
2886 
2887       VectorParts Entry(UF);
2888       Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
2889       for (unsigned Part = 0; Part < UF; Part++) {
2890         Value *StridedVec = Builder.CreateShuffleVector(
2891             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2892 
2893         // If this member has different type, cast the result type.
2894         if (Member->getType() != ScalarTy) {
2895           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2896           StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
2897         }
2898 
2899         Entry[Part] =
2900             Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
2901       }
2902       VectorLoopValueMap.initVector(Member, Entry);
2903     }
2904     return;
2905   }
2906 
2907   // The sub vector type for current instruction.
2908   VectorType *SubVT = VectorType::get(ScalarTy, VF);
2909 
2910   // Vectorize the interleaved store group.
2911   for (unsigned Part = 0; Part < UF; Part++) {
2912     // Collect the stored vector from each member.
2913     SmallVector<Value *, 4> StoredVecs;
2914     for (unsigned i = 0; i < InterleaveFactor; i++) {
2915       // Interleaved store group doesn't allow a gap, so each index has a member
2916       Instruction *Member = Group->getMember(i);
2917       assert(Member && "Fail to get a member from an interleaved store group");
2918 
2919       Value *StoredVec =
2920           getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part];
2921       if (Group->isReverse())
2922         StoredVec = reverseVector(StoredVec);
2923 
2924       // If this member has different type, cast it to an unified type.
2925       if (StoredVec->getType() != SubVT)
2926         StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
2927 
2928       StoredVecs.push_back(StoredVec);
2929     }
2930 
2931     // Concatenate all vectors into a wide vector.
2932     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2933 
2934     // Interleave the elements in the wide vector.
2935     Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
2936     Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2937                                               "interleaved.vec");
2938 
2939     Instruction *NewStoreInstr =
2940         Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2941     addMetadata(NewStoreInstr, Instr);
2942   }
2943 }
2944 
2945 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
2946   // Attempt to issue a wide load.
2947   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2948   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2949 
2950   assert((LI || SI) && "Invalid Load/Store instruction");
2951 
2952   LoopVectorizationCostModel::InstWidening Decision =
2953       Cost->getWideningDecision(Instr, VF);
2954   assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
2955          "CM decision should be taken at this point");
2956   if (Decision == LoopVectorizationCostModel::CM_Interleave)
2957     return vectorizeInterleaveGroup(Instr);
2958 
2959   Type *ScalarDataTy = getMemInstValueType(Instr);
2960   Type *DataTy = VectorType::get(ScalarDataTy, VF);
2961   Value *Ptr = getPointerOperand(Instr);
2962   unsigned Alignment = getMemInstAlignment(Instr);
2963   // An alignment of 0 means target abi alignment. We need to use the scalar's
2964   // target abi alignment in such a case.
2965   const DataLayout &DL = Instr->getModule()->getDataLayout();
2966   if (!Alignment)
2967     Alignment = DL.getABITypeAlignment(ScalarDataTy);
2968   unsigned AddressSpace = getMemInstAddressSpace(Instr);
2969 
2970   // Scalarize the memory instruction if necessary.
2971   if (Decision == LoopVectorizationCostModel::CM_Scalarize)
2972     return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr));
2973 
2974   // Determine if the pointer operand of the access is either consecutive or
2975   // reverse consecutive.
2976   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
2977   bool Reverse = ConsecutiveStride < 0;
2978   bool CreateGatherScatter =
2979       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2980 
2981   VectorParts VectorGep;
2982 
2983   // Handle consecutive loads/stores.
2984   if (ConsecutiveStride) {
2985     Ptr = getScalarValue(Ptr, 0, 0);
2986   } else {
2987     // At this point we should vector version of GEP for Gather or Scatter
2988     assert(CreateGatherScatter && "The instruction should be scalarized");
2989     VectorGep = getVectorValue(Ptr);
2990   }
2991 
2992   VectorParts Mask = createBlockInMask(Instr->getParent());
2993   // Handle Stores:
2994   if (SI) {
2995     assert(!Legal->isUniform(SI->getPointerOperand()) &&
2996            "We do not allow storing to uniform addresses");
2997     setDebugLocFromInst(Builder, SI);
2998     // We don't want to update the value in the map as it might be used in
2999     // another expression. So don't use a reference type for "StoredVal".
3000     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
3001 
3002     for (unsigned Part = 0; Part < UF; ++Part) {
3003       Instruction *NewSI = nullptr;
3004       if (CreateGatherScatter) {
3005         Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr;
3006         NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part],
3007                                             Alignment, MaskPart);
3008       } else {
3009         // Calculate the pointer for the specific unroll-part.
3010         Value *PartPtr =
3011             Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3012 
3013         if (Reverse) {
3014           // If we store to reverse consecutive memory locations, then we need
3015           // to reverse the order of elements in the stored value.
3016           StoredVal[Part] = reverseVector(StoredVal[Part]);
3017           // If the address is consecutive but reversed, then the
3018           // wide store needs to start at the last vector element.
3019           PartPtr =
3020               Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3021           PartPtr =
3022               Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3023           Mask[Part] = reverseVector(Mask[Part]);
3024         }
3025 
3026         Value *VecPtr =
3027             Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3028 
3029         if (Legal->isMaskRequired(SI))
3030           NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
3031                                             Mask[Part]);
3032         else
3033           NewSI =
3034               Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
3035       }
3036       addMetadata(NewSI, SI);
3037     }
3038     return;
3039   }
3040 
3041   // Handle loads.
3042   assert(LI && "Must have a load instruction");
3043   setDebugLocFromInst(Builder, LI);
3044   VectorParts Entry(UF);
3045   for (unsigned Part = 0; Part < UF; ++Part) {
3046     Instruction *NewLI;
3047     if (CreateGatherScatter) {
3048       Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr;
3049       NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart,
3050                                          0, "wide.masked.gather");
3051       Entry[Part] = NewLI;
3052     } else {
3053       // Calculate the pointer for the specific unroll-part.
3054       Value *PartPtr =
3055           Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3056 
3057       if (Reverse) {
3058         // If the address is consecutive but reversed, then the
3059         // wide load needs to start at the last vector element.
3060         PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3061         PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3062         Mask[Part] = reverseVector(Mask[Part]);
3063       }
3064 
3065       Value *VecPtr =
3066           Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3067       if (Legal->isMaskRequired(LI))
3068         NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
3069                                          UndefValue::get(DataTy),
3070                                          "wide.masked.load");
3071       else
3072         NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
3073       Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
3074     }
3075     addMetadata(NewLI, LI);
3076   }
3077   VectorLoopValueMap.initVector(Instr, Entry);
3078 }
3079 
3080 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
3081                                                bool IfPredicateInstr) {
3082   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3083   DEBUG(dbgs() << "LV: Scalarizing"
3084                << (IfPredicateInstr ? " and predicating:" : ":") << *Instr
3085                << '\n');
3086   // Holds vector parameters or scalars, in case of uniform vals.
3087   SmallVector<VectorParts, 4> Params;
3088 
3089   setDebugLocFromInst(Builder, Instr);
3090 
3091   // Does this instruction return a value ?
3092   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3093 
3094   // Initialize a new scalar map entry.
3095   ScalarParts Entry(UF);
3096 
3097   VectorParts Cond;
3098   if (IfPredicateInstr)
3099     Cond = createBlockInMask(Instr->getParent());
3100 
3101   // Determine the number of scalars we need to generate for each unroll
3102   // iteration. If the instruction is uniform, we only need to generate the
3103   // first lane. Otherwise, we generate all VF values.
3104   unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF;
3105 
3106   // For each vector unroll 'part':
3107   for (unsigned Part = 0; Part < UF; ++Part) {
3108     Entry[Part].resize(VF);
3109     // For each scalar that we create:
3110     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
3111 
3112       // Start if-block.
3113       Value *Cmp = nullptr;
3114       if (IfPredicateInstr) {
3115         Cmp = Cond[Part];
3116         if (Cmp->getType()->isVectorTy())
3117           Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane));
3118         Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
3119                                  ConstantInt::get(Cmp->getType(), 1));
3120       }
3121 
3122       Instruction *Cloned = Instr->clone();
3123       if (!IsVoidRetTy)
3124         Cloned->setName(Instr->getName() + ".cloned");
3125 
3126       // Replace the operands of the cloned instructions with their scalar
3127       // equivalents in the new loop.
3128       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
3129         auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane);
3130         Cloned->setOperand(op, NewOp);
3131       }
3132       addNewMetadata(Cloned, Instr);
3133 
3134       // Place the cloned scalar in the new loop.
3135       Builder.Insert(Cloned);
3136 
3137       // Add the cloned scalar to the scalar map entry.
3138       Entry[Part][Lane] = Cloned;
3139 
3140       // If we just cloned a new assumption, add it the assumption cache.
3141       if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
3142         if (II->getIntrinsicID() == Intrinsic::assume)
3143           AC->registerAssumption(II);
3144 
3145       // End if-block.
3146       if (IfPredicateInstr)
3147         PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp));
3148     }
3149   }
3150   VectorLoopValueMap.initScalar(Instr, Entry);
3151 }
3152 
3153 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3154                                                       Value *End, Value *Step,
3155                                                       Instruction *DL) {
3156   BasicBlock *Header = L->getHeader();
3157   BasicBlock *Latch = L->getLoopLatch();
3158   // As we're just creating this loop, it's possible no latch exists
3159   // yet. If so, use the header as this will be a single block loop.
3160   if (!Latch)
3161     Latch = Header;
3162 
3163   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3164   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3165   setDebugLocFromInst(Builder, OldInst);
3166   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3167 
3168   Builder.SetInsertPoint(Latch->getTerminator());
3169   setDebugLocFromInst(Builder, OldInst);
3170 
3171   // Create i+1 and fill the PHINode.
3172   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3173   Induction->addIncoming(Start, L->getLoopPreheader());
3174   Induction->addIncoming(Next, Latch);
3175   // Create the compare.
3176   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3177   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
3178 
3179   // Now we have two terminators. Remove the old one from the block.
3180   Latch->getTerminator()->eraseFromParent();
3181 
3182   return Induction;
3183 }
3184 
3185 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3186   if (TripCount)
3187     return TripCount;
3188 
3189   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3190   // Find the loop boundaries.
3191   ScalarEvolution *SE = PSE.getSE();
3192   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3193   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
3194          "Invalid loop count");
3195 
3196   Type *IdxTy = Legal->getWidestInductionType();
3197 
3198   // The exit count might have the type of i64 while the phi is i32. This can
3199   // happen if we have an induction variable that is sign extended before the
3200   // compare. The only way that we get a backedge taken count is that the
3201   // induction variable was signed and as such will not overflow. In such a case
3202   // truncation is legal.
3203   if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
3204       IdxTy->getPrimitiveSizeInBits())
3205     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3206   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3207 
3208   // Get the total trip count from the count by adding 1.
3209   const SCEV *ExitCount = SE->getAddExpr(
3210       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3211 
3212   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3213 
3214   // Expand the trip count and place the new instructions in the preheader.
3215   // Notice that the pre-header does not change, only the loop body.
3216   SCEVExpander Exp(*SE, DL, "induction");
3217 
3218   // Count holds the overall loop count (N).
3219   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3220                                 L->getLoopPreheader()->getTerminator());
3221 
3222   if (TripCount->getType()->isPointerTy())
3223     TripCount =
3224         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3225                                     L->getLoopPreheader()->getTerminator());
3226 
3227   return TripCount;
3228 }
3229 
3230 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3231   if (VectorTripCount)
3232     return VectorTripCount;
3233 
3234   Value *TC = getOrCreateTripCount(L);
3235   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3236 
3237   // Now we need to generate the expression for the part of the loop that the
3238   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3239   // iterations are not required for correctness, or N - Step, otherwise. Step
3240   // is equal to the vectorization factor (number of SIMD elements) times the
3241   // unroll factor (number of SIMD instructions).
3242   Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
3243   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3244 
3245   // If there is a non-reversed interleaved group that may speculatively access
3246   // memory out-of-bounds, we need to ensure that there will be at least one
3247   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
3248   // the trip count, we set the remainder to be equal to the step. If the step
3249   // does not evenly divide the trip count, no adjustment is necessary since
3250   // there will already be scalar iterations. Note that the minimum iterations
3251   // check ensures that N >= Step.
3252   if (VF > 1 && Legal->requiresScalarEpilogue()) {
3253     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3254     R = Builder.CreateSelect(IsZero, Step, R);
3255   }
3256 
3257   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3258 
3259   return VectorTripCount;
3260 }
3261 
3262 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3263                                                          BasicBlock *Bypass) {
3264   Value *Count = getOrCreateTripCount(L);
3265   BasicBlock *BB = L->getLoopPreheader();
3266   IRBuilder<> Builder(BB->getTerminator());
3267 
3268   // Generate code to check that the loop's trip count that we computed by
3269   // adding one to the backedge-taken count will not overflow.
3270   Value *CheckMinIters = Builder.CreateICmpULT(
3271       Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
3272 
3273   BasicBlock *NewBB =
3274       BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked");
3275   // Update dominator tree immediately if the generated block is a
3276   // LoopBypassBlock because SCEV expansions to generate loop bypass
3277   // checks may query it before the current function is finished.
3278   DT->addNewBlock(NewBB, BB);
3279   if (L->getParentLoop())
3280     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3281   ReplaceInstWithInst(BB->getTerminator(),
3282                       BranchInst::Create(Bypass, NewBB, CheckMinIters));
3283   LoopBypassBlocks.push_back(BB);
3284 }
3285 
3286 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
3287                                                      BasicBlock *Bypass) {
3288   Value *TC = getOrCreateVectorTripCount(L);
3289   BasicBlock *BB = L->getLoopPreheader();
3290   IRBuilder<> Builder(BB->getTerminator());
3291 
3292   // Now, compare the new count to zero. If it is zero skip the vector loop and
3293   // jump to the scalar loop.
3294   Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
3295                                     "cmp.zero");
3296 
3297   // Generate code to check that the loop's trip count that we computed by
3298   // adding one to the backedge-taken count will not overflow.
3299   BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3300   // Update dominator tree immediately if the generated block is a
3301   // LoopBypassBlock because SCEV expansions to generate loop bypass
3302   // checks may query it before the current function is finished.
3303   DT->addNewBlock(NewBB, BB);
3304   if (L->getParentLoop())
3305     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3306   ReplaceInstWithInst(BB->getTerminator(),
3307                       BranchInst::Create(Bypass, NewBB, Cmp));
3308   LoopBypassBlocks.push_back(BB);
3309 }
3310 
3311 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3312   BasicBlock *BB = L->getLoopPreheader();
3313 
3314   // Generate the code to check that the SCEV assumptions that we made.
3315   // We want the new basic block to start at the first instruction in a
3316   // sequence of instructions that form a check.
3317   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
3318                    "scev.check");
3319   Value *SCEVCheck =
3320       Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
3321 
3322   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
3323     if (C->isZero())
3324       return;
3325 
3326   // Create a new block containing the stride check.
3327   BB->setName("vector.scevcheck");
3328   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3329   // Update dominator tree immediately if the generated block is a
3330   // LoopBypassBlock because SCEV expansions to generate loop bypass
3331   // checks may query it before the current function is finished.
3332   DT->addNewBlock(NewBB, BB);
3333   if (L->getParentLoop())
3334     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3335   ReplaceInstWithInst(BB->getTerminator(),
3336                       BranchInst::Create(Bypass, NewBB, SCEVCheck));
3337   LoopBypassBlocks.push_back(BB);
3338   AddedSafetyChecks = true;
3339 }
3340 
3341 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
3342   BasicBlock *BB = L->getLoopPreheader();
3343 
3344   // Generate the code that checks in runtime if arrays overlap. We put the
3345   // checks into a separate block to make the more common case of few elements
3346   // faster.
3347   Instruction *FirstCheckInst;
3348   Instruction *MemRuntimeCheck;
3349   std::tie(FirstCheckInst, MemRuntimeCheck) =
3350       Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
3351   if (!MemRuntimeCheck)
3352     return;
3353 
3354   // Create a new block containing the memory check.
3355   BB->setName("vector.memcheck");
3356   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3357   // Update dominator tree immediately if the generated block is a
3358   // LoopBypassBlock because SCEV expansions to generate loop bypass
3359   // checks may query it before the current function is finished.
3360   DT->addNewBlock(NewBB, BB);
3361   if (L->getParentLoop())
3362     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3363   ReplaceInstWithInst(BB->getTerminator(),
3364                       BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
3365   LoopBypassBlocks.push_back(BB);
3366   AddedSafetyChecks = true;
3367 
3368   // We currently don't use LoopVersioning for the actual loop cloning but we
3369   // still use it to add the noalias metadata.
3370   LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
3371                                            PSE.getSE());
3372   LVer->prepareNoAliasMetadata();
3373 }
3374 
3375 void InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3376   /*
3377    In this function we generate a new loop. The new loop will contain
3378    the vectorized instructions while the old loop will continue to run the
3379    scalar remainder.
3380 
3381        [ ] <-- loop iteration number check.
3382     /   |
3383    /    v
3384   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3385   |  /  |
3386   | /   v
3387   ||   [ ]     <-- vector pre header.
3388   |/    |
3389   |     v
3390   |    [  ] \
3391   |    [  ]_|   <-- vector loop.
3392   |     |
3393   |     v
3394   |   -[ ]   <--- middle-block.
3395   |  /  |
3396   | /   v
3397   -|- >[ ]     <--- new preheader.
3398    |    |
3399    |    v
3400    |   [ ] \
3401    |   [ ]_|   <-- old scalar loop to handle remainder.
3402     \   |
3403      \  v
3404       >[ ]     <-- exit block.
3405    ...
3406    */
3407 
3408   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
3409   BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
3410   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
3411   assert(VectorPH && "Invalid loop structure");
3412   assert(ExitBlock && "Must have an exit block");
3413 
3414   // Some loops have a single integer induction variable, while other loops
3415   // don't. One example is c++ iterators that often have multiple pointer
3416   // induction variables. In the code below we also support a case where we
3417   // don't have a single induction variable.
3418   //
3419   // We try to obtain an induction variable from the original loop as hard
3420   // as possible. However if we don't find one that:
3421   //   - is an integer
3422   //   - counts from zero, stepping by one
3423   //   - is the size of the widest induction variable type
3424   // then we create a new one.
3425   OldInduction = Legal->getPrimaryInduction();
3426   Type *IdxTy = Legal->getWidestInductionType();
3427 
3428   // Split the single block loop into the two loop structure described above.
3429   BasicBlock *VecBody =
3430       VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
3431   BasicBlock *MiddleBlock =
3432       VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
3433   BasicBlock *ScalarPH =
3434       MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
3435 
3436   // Create and register the new vector loop.
3437   Loop *Lp = new Loop();
3438   Loop *ParentLoop = OrigLoop->getParentLoop();
3439 
3440   // Insert the new loop into the loop nest and register the new basic blocks
3441   // before calling any utilities such as SCEV that require valid LoopInfo.
3442   if (ParentLoop) {
3443     ParentLoop->addChildLoop(Lp);
3444     ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
3445     ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
3446   } else {
3447     LI->addTopLevelLoop(Lp);
3448   }
3449   Lp->addBasicBlockToLoop(VecBody, *LI);
3450 
3451   // Find the loop boundaries.
3452   Value *Count = getOrCreateTripCount(Lp);
3453 
3454   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3455 
3456   // We need to test whether the backedge-taken count is uint##_max. Adding one
3457   // to it will cause overflow and an incorrect loop trip count in the vector
3458   // body. In case of overflow we want to directly jump to the scalar remainder
3459   // loop.
3460   emitMinimumIterationCountCheck(Lp, ScalarPH);
3461   // Now, compare the new count to zero. If it is zero skip the vector loop and
3462   // jump to the scalar loop.
3463   emitVectorLoopEnteredCheck(Lp, ScalarPH);
3464   // Generate the code to check any assumptions that we've made for SCEV
3465   // expressions.
3466   emitSCEVChecks(Lp, ScalarPH);
3467 
3468   // Generate the code that checks in runtime if arrays overlap. We put the
3469   // checks into a separate block to make the more common case of few elements
3470   // faster.
3471   emitMemRuntimeChecks(Lp, ScalarPH);
3472 
3473   // Generate the induction variable.
3474   // The loop step is equal to the vectorization factor (num of SIMD elements)
3475   // times the unroll factor (num of SIMD instructions).
3476   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3477   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3478   Induction =
3479       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3480                               getDebugLocFromInstOrOperands(OldInduction));
3481 
3482   // We are going to resume the execution of the scalar loop.
3483   // Go over all of the induction variables that we found and fix the
3484   // PHIs that are left in the scalar version of the loop.
3485   // The starting values of PHI nodes depend on the counter of the last
3486   // iteration in the vectorized loop.
3487   // If we come from a bypass edge then we need to start from the original
3488   // start value.
3489 
3490   // This variable saves the new starting index for the scalar loop. It is used
3491   // to test if there are any tail iterations left once the vector loop has
3492   // completed.
3493   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
3494   for (auto &InductionEntry : *List) {
3495     PHINode *OrigPhi = InductionEntry.first;
3496     InductionDescriptor II = InductionEntry.second;
3497 
3498     // Create phi nodes to merge from the  backedge-taken check block.
3499     PHINode *BCResumeVal = PHINode::Create(
3500         OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
3501     Value *&EndValue = IVEndValues[OrigPhi];
3502     if (OrigPhi == OldInduction) {
3503       // We know what the end value is.
3504       EndValue = CountRoundDown;
3505     } else {
3506       IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
3507       Type *StepType = II.getStep()->getType();
3508       Instruction::CastOps CastOp =
3509         CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3510       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3511       const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
3512       EndValue = II.transform(B, CRD, PSE.getSE(), DL);
3513       EndValue->setName("ind.end");
3514     }
3515 
3516     // The new PHI merges the original incoming value, in case of a bypass,
3517     // or the value at the end of the vectorized loop.
3518     BCResumeVal->addIncoming(EndValue, MiddleBlock);
3519 
3520     // Fix the scalar body counter (PHI node).
3521     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
3522 
3523     // The old induction's phi node in the scalar body needs the truncated
3524     // value.
3525     for (BasicBlock *BB : LoopBypassBlocks)
3526       BCResumeVal->addIncoming(II.getStartValue(), BB);
3527     OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
3528   }
3529 
3530   // Add a check in the middle block to see if we have completed
3531   // all of the iterations in the first vector loop.
3532   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3533   Value *CmpN =
3534       CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3535                       CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
3536   ReplaceInstWithInst(MiddleBlock->getTerminator(),
3537                       BranchInst::Create(ExitBlock, ScalarPH, CmpN));
3538 
3539   // Get ready to start creating new instructions into the vectorized body.
3540   Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
3541 
3542   // Save the state.
3543   LoopVectorPreHeader = Lp->getLoopPreheader();
3544   LoopScalarPreHeader = ScalarPH;
3545   LoopMiddleBlock = MiddleBlock;
3546   LoopExitBlock = ExitBlock;
3547   LoopVectorBody = VecBody;
3548   LoopScalarBody = OldBasicBlock;
3549 
3550   // Keep all loop hints from the original loop on the vector loop (we'll
3551   // replace the vectorizer-specific hints below).
3552   if (MDNode *LID = OrigLoop->getLoopID())
3553     Lp->setLoopID(LID);
3554 
3555   LoopVectorizeHints Hints(Lp, true, *ORE);
3556   Hints.setAlreadyVectorized();
3557 }
3558 
3559 // Fix up external users of the induction variable. At this point, we are
3560 // in LCSSA form, with all external PHIs that use the IV having one input value,
3561 // coming from the remainder loop. We need those PHIs to also have a correct
3562 // value for the IV when arriving directly from the middle block.
3563 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3564                                        const InductionDescriptor &II,
3565                                        Value *CountRoundDown, Value *EndValue,
3566                                        BasicBlock *MiddleBlock) {
3567   // There are two kinds of external IV usages - those that use the value
3568   // computed in the last iteration (the PHI) and those that use the penultimate
3569   // value (the value that feeds into the phi from the loop latch).
3570   // We allow both, but they, obviously, have different values.
3571 
3572   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3573 
3574   DenseMap<Value *, Value *> MissingVals;
3575 
3576   // An external user of the last iteration's value should see the value that
3577   // the remainder loop uses to initialize its own IV.
3578   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3579   for (User *U : PostInc->users()) {
3580     Instruction *UI = cast<Instruction>(U);
3581     if (!OrigLoop->contains(UI)) {
3582       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3583       MissingVals[UI] = EndValue;
3584     }
3585   }
3586 
3587   // An external user of the penultimate value need to see EndValue - Step.
3588   // The simplest way to get this is to recompute it from the constituent SCEVs,
3589   // that is Start + (Step * (CRD - 1)).
3590   for (User *U : OrigPhi->users()) {
3591     auto *UI = cast<Instruction>(U);
3592     if (!OrigLoop->contains(UI)) {
3593       const DataLayout &DL =
3594           OrigLoop->getHeader()->getModule()->getDataLayout();
3595       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3596 
3597       IRBuilder<> B(MiddleBlock->getTerminator());
3598       Value *CountMinusOne = B.CreateSub(
3599           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3600       Value *CMO =
3601           !II.getStep()->getType()->isIntegerTy()
3602               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3603                              II.getStep()->getType())
3604               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3605       CMO->setName("cast.cmo");
3606       Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
3607       Escape->setName("ind.escape");
3608       MissingVals[UI] = Escape;
3609     }
3610   }
3611 
3612   for (auto &I : MissingVals) {
3613     PHINode *PHI = cast<PHINode>(I.first);
3614     // One corner case we have to handle is two IVs "chasing" each-other,
3615     // that is %IV2 = phi [...], [ %IV1, %latch ]
3616     // In this case, if IV1 has an external use, we need to avoid adding both
3617     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3618     // don't already have an incoming value for the middle block.
3619     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3620       PHI->addIncoming(I.second, MiddleBlock);
3621   }
3622 }
3623 
3624 namespace {
3625 struct CSEDenseMapInfo {
3626   static bool canHandle(const Instruction *I) {
3627     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3628            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3629   }
3630   static inline Instruction *getEmptyKey() {
3631     return DenseMapInfo<Instruction *>::getEmptyKey();
3632   }
3633   static inline Instruction *getTombstoneKey() {
3634     return DenseMapInfo<Instruction *>::getTombstoneKey();
3635   }
3636   static unsigned getHashValue(const Instruction *I) {
3637     assert(canHandle(I) && "Unknown instruction!");
3638     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3639                                                            I->value_op_end()));
3640   }
3641   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3642     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3643         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3644       return LHS == RHS;
3645     return LHS->isIdenticalTo(RHS);
3646   }
3647 };
3648 }
3649 
3650 ///\brief Perform cse of induction variable instructions.
3651 static void cse(BasicBlock *BB) {
3652   // Perform simple cse.
3653   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3654   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3655     Instruction *In = &*I++;
3656 
3657     if (!CSEDenseMapInfo::canHandle(In))
3658       continue;
3659 
3660     // Check if we can replace this instruction with any of the
3661     // visited instructions.
3662     if (Instruction *V = CSEMap.lookup(In)) {
3663       In->replaceAllUsesWith(V);
3664       In->eraseFromParent();
3665       continue;
3666     }
3667 
3668     CSEMap[In] = In;
3669   }
3670 }
3671 
3672 /// \brief Estimate the overhead of scalarizing an instruction. This is a
3673 /// convenience wrapper for the type-based getScalarizationOverhead API.
3674 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
3675                                          const TargetTransformInfo &TTI) {
3676   if (VF == 1)
3677     return 0;
3678 
3679   unsigned Cost = 0;
3680   Type *RetTy = ToVectorTy(I->getType(), VF);
3681   if (!RetTy->isVoidTy() &&
3682       (!isa<LoadInst>(I) ||
3683        !TTI.supportsEfficientVectorElementLoadStore()))
3684     Cost += TTI.getScalarizationOverhead(RetTy, true, false);
3685 
3686   if (CallInst *CI = dyn_cast<CallInst>(I)) {
3687     SmallVector<const Value *, 4> Operands(CI->arg_operands());
3688     Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3689   }
3690   else if (!isa<StoreInst>(I) ||
3691            !TTI.supportsEfficientVectorElementLoadStore()) {
3692     SmallVector<const Value *, 4> Operands(I->operand_values());
3693     Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3694   }
3695 
3696   return Cost;
3697 }
3698 
3699 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
3700 // Return the cost of the instruction, including scalarization overhead if it's
3701 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3702 // i.e. either vector version isn't available, or is too expensive.
3703 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3704                                   const TargetTransformInfo &TTI,
3705                                   const TargetLibraryInfo *TLI,
3706                                   bool &NeedToScalarize) {
3707   Function *F = CI->getCalledFunction();
3708   StringRef FnName = CI->getCalledFunction()->getName();
3709   Type *ScalarRetTy = CI->getType();
3710   SmallVector<Type *, 4> Tys, ScalarTys;
3711   for (auto &ArgOp : CI->arg_operands())
3712     ScalarTys.push_back(ArgOp->getType());
3713 
3714   // Estimate cost of scalarized vector call. The source operands are assumed
3715   // to be vectors, so we need to extract individual elements from there,
3716   // execute VF scalar calls, and then gather the result into the vector return
3717   // value.
3718   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3719   if (VF == 1)
3720     return ScalarCallCost;
3721 
3722   // Compute corresponding vector type for return value and arguments.
3723   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3724   for (Type *ScalarTy : ScalarTys)
3725     Tys.push_back(ToVectorTy(ScalarTy, VF));
3726 
3727   // Compute costs of unpacking argument values for the scalar calls and
3728   // packing the return values to a vector.
3729   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);
3730 
3731   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3732 
3733   // If we can't emit a vector call for this function, then the currently found
3734   // cost is the cost we need to return.
3735   NeedToScalarize = true;
3736   if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3737     return Cost;
3738 
3739   // If the corresponding vector cost is cheaper, return its cost.
3740   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3741   if (VectorCallCost < Cost) {
3742     NeedToScalarize = false;
3743     return VectorCallCost;
3744   }
3745   return Cost;
3746 }
3747 
3748 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
3749 // factor VF.  Return the cost of the instruction, including scalarization
3750 // overhead if it's needed.
3751 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3752                                        const TargetTransformInfo &TTI,
3753                                        const TargetLibraryInfo *TLI) {
3754   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3755   assert(ID && "Expected intrinsic call!");
3756 
3757   FastMathFlags FMF;
3758   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3759     FMF = FPMO->getFastMathFlags();
3760 
3761   SmallVector<Value *, 4> Operands(CI->arg_operands());
3762   return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
3763 }
3764 
3765 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3766   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3767   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3768   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3769 }
3770 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3771   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3772   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3773   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3774 }
3775 
3776 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3777   // For every instruction `I` in MinBWs, truncate the operands, create a
3778   // truncated version of `I` and reextend its result. InstCombine runs
3779   // later and will remove any ext/trunc pairs.
3780   //
3781   SmallPtrSet<Value *, 4> Erased;
3782   for (const auto &KV : Cost->getMinimalBitwidths()) {
3783     // If the value wasn't vectorized, we must maintain the original scalar
3784     // type. The absence of the value from VectorLoopValueMap indicates that it
3785     // wasn't vectorized.
3786     if (!VectorLoopValueMap.hasVector(KV.first))
3787       continue;
3788     VectorParts &Parts = VectorLoopValueMap.getVector(KV.first);
3789     for (Value *&I : Parts) {
3790       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3791         continue;
3792       Type *OriginalTy = I->getType();
3793       Type *ScalarTruncatedTy =
3794           IntegerType::get(OriginalTy->getContext(), KV.second);
3795       Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3796                                           OriginalTy->getVectorNumElements());
3797       if (TruncatedTy == OriginalTy)
3798         continue;
3799 
3800       IRBuilder<> B(cast<Instruction>(I));
3801       auto ShrinkOperand = [&](Value *V) -> Value * {
3802         if (auto *ZI = dyn_cast<ZExtInst>(V))
3803           if (ZI->getSrcTy() == TruncatedTy)
3804             return ZI->getOperand(0);
3805         return B.CreateZExtOrTrunc(V, TruncatedTy);
3806       };
3807 
3808       // The actual instruction modification depends on the instruction type,
3809       // unfortunately.
3810       Value *NewI = nullptr;
3811       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3812         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3813                              ShrinkOperand(BO->getOperand(1)));
3814         cast<BinaryOperator>(NewI)->copyIRFlags(I);
3815       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3816         NewI =
3817             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3818                          ShrinkOperand(CI->getOperand(1)));
3819       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3820         NewI = B.CreateSelect(SI->getCondition(),
3821                               ShrinkOperand(SI->getTrueValue()),
3822                               ShrinkOperand(SI->getFalseValue()));
3823       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3824         switch (CI->getOpcode()) {
3825         default:
3826           llvm_unreachable("Unhandled cast!");
3827         case Instruction::Trunc:
3828           NewI = ShrinkOperand(CI->getOperand(0));
3829           break;
3830         case Instruction::SExt:
3831           NewI = B.CreateSExtOrTrunc(
3832               CI->getOperand(0),
3833               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3834           break;
3835         case Instruction::ZExt:
3836           NewI = B.CreateZExtOrTrunc(
3837               CI->getOperand(0),
3838               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3839           break;
3840         }
3841       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3842         auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3843         auto *O0 = B.CreateZExtOrTrunc(
3844             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3845         auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3846         auto *O1 = B.CreateZExtOrTrunc(
3847             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3848 
3849         NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3850       } else if (isa<LoadInst>(I)) {
3851         // Don't do anything with the operands, just extend the result.
3852         continue;
3853       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3854         auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3855         auto *O0 = B.CreateZExtOrTrunc(
3856             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3857         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3858         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3859       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3860         auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3861         auto *O0 = B.CreateZExtOrTrunc(
3862             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3863         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3864       } else {
3865         llvm_unreachable("Unhandled instruction type!");
3866       }
3867 
3868       // Lastly, extend the result.
3869       NewI->takeName(cast<Instruction>(I));
3870       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3871       I->replaceAllUsesWith(Res);
3872       cast<Instruction>(I)->eraseFromParent();
3873       Erased.insert(I);
3874       I = Res;
3875     }
3876   }
3877 
3878   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3879   for (const auto &KV : Cost->getMinimalBitwidths()) {
3880     // If the value wasn't vectorized, we must maintain the original scalar
3881     // type. The absence of the value from VectorLoopValueMap indicates that it
3882     // wasn't vectorized.
3883     if (!VectorLoopValueMap.hasVector(KV.first))
3884       continue;
3885     VectorParts &Parts = VectorLoopValueMap.getVector(KV.first);
3886     for (Value *&I : Parts) {
3887       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3888       if (Inst && Inst->use_empty()) {
3889         Value *NewI = Inst->getOperand(0);
3890         Inst->eraseFromParent();
3891         I = NewI;
3892       }
3893     }
3894   }
3895 }
3896 
3897 void InnerLoopVectorizer::fixVectorizedLoop() {
3898   // Insert truncates and extends for any truncated instructions as hints to
3899   // InstCombine.
3900   if (VF > 1)
3901     truncateToMinimalBitwidths();
3902 
3903   // At this point every instruction in the original loop is widened to a
3904   // vector form. Now we need to fix the recurrences in the loop. These PHI
3905   // nodes are currently empty because we did not want to introduce cycles.
3906   // This is the second stage of vectorizing recurrences.
3907   fixCrossIterationPHIs();
3908 
3909   // Update the dominator tree.
3910   //
3911   // FIXME: After creating the structure of the new loop, the dominator tree is
3912   //        no longer up-to-date, and it remains that way until we update it
3913   //        here. An out-of-date dominator tree is problematic for SCEV,
3914   //        because SCEVExpander uses it to guide code generation. The
3915   //        vectorizer use SCEVExpanders in several places. Instead, we should
3916   //        keep the dominator tree up-to-date as we go.
3917   updateAnalysis();
3918 
3919   // Fix-up external users of the induction variables.
3920   for (auto &Entry : *Legal->getInductionVars())
3921     fixupIVUsers(Entry.first, Entry.second,
3922                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3923                  IVEndValues[Entry.first], LoopMiddleBlock);
3924 
3925   fixLCSSAPHIs();
3926   predicateInstructions();
3927 
3928   // Remove redundant induction instructions.
3929   cse(LoopVectorBody);
3930 }
3931 
3932 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3933   // In order to support recurrences we need to be able to vectorize Phi nodes.
3934   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3935   // stage #2: We now need to fix the recurrences by adding incoming edges to
3936   // the currently empty PHI nodes. At this point every instruction in the
3937   // original loop is widened to a vector form so we can use them to construct
3938   // the incoming edges.
3939   for (Instruction &I : *OrigLoop->getHeader()) {
3940     PHINode *Phi = dyn_cast<PHINode>(&I);
3941     if (!Phi)
3942       break;
3943     // Handle first-order recurrences and reductions that need to be fixed.
3944     if (Legal->isFirstOrderRecurrence(Phi))
3945       fixFirstOrderRecurrence(Phi);
3946     else if (Legal->isReductionVariable(Phi))
3947       fixReduction(Phi);
3948   }
3949 }
3950 
3951 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3952 
3953   // This is the second phase of vectorizing first-order recurrences. An
3954   // overview of the transformation is described below. Suppose we have the
3955   // following loop.
3956   //
3957   //   for (int i = 0; i < n; ++i)
3958   //     b[i] = a[i] - a[i - 1];
3959   //
3960   // There is a first-order recurrence on "a". For this loop, the shorthand
3961   // scalar IR looks like:
3962   //
3963   //   scalar.ph:
3964   //     s_init = a[-1]
3965   //     br scalar.body
3966   //
3967   //   scalar.body:
3968   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3969   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3970   //     s2 = a[i]
3971   //     b[i] = s2 - s1
3972   //     br cond, scalar.body, ...
3973   //
3974   // In this example, s1 is a recurrence because it's value depends on the
3975   // previous iteration. In the first phase of vectorization, we created a
3976   // temporary value for s1. We now complete the vectorization and produce the
3977   // shorthand vector IR shown below (for VF = 4, UF = 1).
3978   //
3979   //   vector.ph:
3980   //     v_init = vector(..., ..., ..., a[-1])
3981   //     br vector.body
3982   //
3983   //   vector.body
3984   //     i = phi [0, vector.ph], [i+4, vector.body]
3985   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3986   //     v2 = a[i, i+1, i+2, i+3];
3987   //     v3 = vector(v1(3), v2(0, 1, 2))
3988   //     b[i, i+1, i+2, i+3] = v2 - v3
3989   //     br cond, vector.body, middle.block
3990   //
3991   //   middle.block:
3992   //     x = v2(3)
3993   //     br scalar.ph
3994   //
3995   //   scalar.ph:
3996   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3997   //     br scalar.body
3998   //
3999   // After execution completes the vector loop, we extract the next value of
4000   // the recurrence (x) to use as the initial value in the scalar loop.
4001 
4002   // Get the original loop preheader and single loop latch.
4003   auto *Preheader = OrigLoop->getLoopPreheader();
4004   auto *Latch = OrigLoop->getLoopLatch();
4005 
4006   // Get the initial and previous values of the scalar recurrence.
4007   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4008   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4009 
4010   // Create a vector from the initial value.
4011   auto *VectorInit = ScalarInit;
4012   if (VF > 1) {
4013     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4014     VectorInit = Builder.CreateInsertElement(
4015         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4016         Builder.getInt32(VF - 1), "vector.recur.init");
4017   }
4018 
4019   // We constructed a temporary phi node in the first phase of vectorization.
4020   // This phi node will eventually be deleted.
4021   VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi);
4022   Builder.SetInsertPoint(cast<Instruction>(PhiParts[0]));
4023 
4024   // Create a phi node for the new recurrence. The current value will either be
4025   // the initial value inserted into a vector or loop-varying vector value.
4026   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4027   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4028 
4029   // Get the vectorized previous value.
4030   auto &PreviousParts = getVectorValue(Previous);
4031 
4032   // Set the insertion point after the previous value if it is an instruction.
4033   // Note that the previous value may have been constant-folded so it is not
4034   // guaranteed to be an instruction in the vector loop. Also, if the previous
4035   // value is a phi node, we should insert after all the phi nodes to avoid
4036   // breaking basic block verification.
4037   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1]) ||
4038       isa<PHINode>(PreviousParts[UF - 1]))
4039     Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
4040   else
4041     Builder.SetInsertPoint(
4042         &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1])));
4043 
4044   // We will construct a vector for the recurrence by combining the values for
4045   // the current and previous iterations. This is the required shuffle mask.
4046   SmallVector<Constant *, 8> ShuffleMask(VF);
4047   ShuffleMask[0] = Builder.getInt32(VF - 1);
4048   for (unsigned I = 1; I < VF; ++I)
4049     ShuffleMask[I] = Builder.getInt32(I + VF - 1);
4050 
4051   // The vector from which to take the initial value for the current iteration
4052   // (actual or unrolled). Initially, this is the vector phi node.
4053   Value *Incoming = VecPhi;
4054 
4055   // Shuffle the current and previous vector and update the vector parts.
4056   for (unsigned Part = 0; Part < UF; ++Part) {
4057     auto *Shuffle =
4058         VF > 1
4059             ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part],
4060                                           ConstantVector::get(ShuffleMask))
4061             : Incoming;
4062     PhiParts[Part]->replaceAllUsesWith(Shuffle);
4063     cast<Instruction>(PhiParts[Part])->eraseFromParent();
4064     PhiParts[Part] = Shuffle;
4065     Incoming = PreviousParts[Part];
4066   }
4067 
4068   // Fix the latch value of the new recurrence in the vector loop.
4069   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4070 
4071   // Extract the last vector element in the middle block. This will be the
4072   // initial value for the recurrence when jumping to the scalar loop.
4073   auto *ExtractForScalar = Incoming;
4074   if (VF > 1) {
4075     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4076     ExtractForScalar = Builder.CreateExtractElement(
4077         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
4078   }
4079   // Extract the second last element in the middle block if the
4080   // Phi is used outside the loop. We need to extract the phi itself
4081   // and not the last element (the phi update in the current iteration). This
4082   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4083   // when the scalar loop is not run at all.
4084   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4085   if (VF > 1)
4086     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4087         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
4088   // When loop is unrolled without vectorizing, initialize
4089   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4090   // `Incoming`. This is analogous to the vectorized case above: extracting the
4091   // second last element when VF > 1.
4092   else if (UF > 1)
4093     ExtractForPhiUsedOutsideLoop = PreviousParts[UF - 2];
4094 
4095   // Fix the initial value of the original recurrence in the scalar loop.
4096   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4097   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4098   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4099     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4100     Start->addIncoming(Incoming, BB);
4101   }
4102 
4103   Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
4104   Phi->setName("scalar.recur");
4105 
4106   // Finally, fix users of the recurrence outside the loop. The users will need
4107   // either the last value of the scalar recurrence or the last value of the
4108   // vector recurrence we extracted in the middle block. Since the loop is in
4109   // LCSSA form, we just need to find the phi node for the original scalar
4110   // recurrence in the exit block, and then add an edge for the middle block.
4111   for (auto &I : *LoopExitBlock) {
4112     auto *LCSSAPhi = dyn_cast<PHINode>(&I);
4113     if (!LCSSAPhi)
4114       break;
4115     if (LCSSAPhi->getIncomingValue(0) == Phi) {
4116       LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4117       break;
4118     }
4119   }
4120 }
4121 
4122 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
4123   Constant *Zero = Builder.getInt32(0);
4124 
4125   // Get it's reduction variable descriptor.
4126   assert(Legal->isReductionVariable(Phi) &&
4127          "Unable to find the reduction variable");
4128   RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
4129 
4130   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
4131   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4132   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4133   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
4134     RdxDesc.getMinMaxRecurrenceKind();
4135   setDebugLocFromInst(Builder, ReductionStartValue);
4136 
4137   // We need to generate a reduction vector from the incoming scalar.
4138   // To do so, we need to generate the 'identity' vector and override
4139   // one of the elements with the incoming scalar reduction. We need
4140   // to do it in the vector-loop preheader.
4141   Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
4142 
4143   // This is the vector-clone of the value that leaves the loop.
4144   const VectorParts &VectorExit = getVectorValue(LoopExitInst);
4145   Type *VecTy = VectorExit[0]->getType();
4146 
4147   // Find the reduction identity variable. Zero for addition, or, xor,
4148   // one for multiplication, -1 for And.
4149   Value *Identity;
4150   Value *VectorStart;
4151   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
4152       RK == RecurrenceDescriptor::RK_FloatMinMax) {
4153     // MinMax reduction have the start value as their identify.
4154     if (VF == 1) {
4155       VectorStart = Identity = ReductionStartValue;
4156     } else {
4157       VectorStart = Identity =
4158         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
4159     }
4160   } else {
4161     // Handle other reduction kinds:
4162     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
4163         RK, VecTy->getScalarType());
4164     if (VF == 1) {
4165       Identity = Iden;
4166       // This vector is the Identity vector where the first element is the
4167       // incoming scalar reduction.
4168       VectorStart = ReductionStartValue;
4169     } else {
4170       Identity = ConstantVector::getSplat(VF, Iden);
4171 
4172       // This vector is the Identity vector where the first element is the
4173       // incoming scalar reduction.
4174       VectorStart =
4175         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
4176     }
4177   }
4178 
4179   // Fix the vector-loop phi.
4180 
4181   // Reductions do not have to start at zero. They can start with
4182   // any loop invariant values.
4183   const VectorParts &VecRdxPhi = getVectorValue(Phi);
4184   BasicBlock *Latch = OrigLoop->getLoopLatch();
4185   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4186   const VectorParts &Val = getVectorValue(LoopVal);
4187   for (unsigned part = 0; part < UF; ++part) {
4188     // Make sure to add the reduction stat value only to the
4189     // first unroll part.
4190     Value *StartVal = (part == 0) ? VectorStart : Identity;
4191     cast<PHINode>(VecRdxPhi[part])
4192       ->addIncoming(StartVal, LoopVectorPreHeader);
4193     cast<PHINode>(VecRdxPhi[part])
4194       ->addIncoming(Val[part], LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4195   }
4196 
4197   // Before each round, move the insertion point right between
4198   // the PHIs and the values we are going to write.
4199   // This allows us to write both PHINodes and the extractelement
4200   // instructions.
4201   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4202 
4203   VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst);
4204   setDebugLocFromInst(Builder, LoopExitInst);
4205 
4206   // If the vector reduction can be performed in a smaller type, we truncate
4207   // then extend the loop exit value to enable InstCombine to evaluate the
4208   // entire expression in the smaller type.
4209   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
4210     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4211     Builder.SetInsertPoint(LoopVectorBody->getTerminator());
4212     for (unsigned part = 0; part < UF; ++part) {
4213       Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
4214       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4215         : Builder.CreateZExt(Trunc, VecTy);
4216       for (Value::user_iterator UI = RdxParts[part]->user_begin();
4217            UI != RdxParts[part]->user_end();)
4218         if (*UI != Trunc) {
4219           (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd);
4220           RdxParts[part] = Extnd;
4221         } else {
4222           ++UI;
4223         }
4224     }
4225     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4226     for (unsigned part = 0; part < UF; ++part)
4227       RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
4228   }
4229 
4230   // Reduce all of the unrolled parts into a single vector.
4231   Value *ReducedPartRdx = RdxParts[0];
4232   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
4233   setDebugLocFromInst(Builder, ReducedPartRdx);
4234   for (unsigned part = 1; part < UF; ++part) {
4235     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
4236       // Floating point operations had to be 'fast' to enable the reduction.
4237       ReducedPartRdx = addFastMathFlag(
4238           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
4239                               ReducedPartRdx, "bin.rdx"));
4240     else
4241       ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
4242           Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
4243   }
4244 
4245   if (VF > 1) {
4246     bool NoNaN = Legal->hasFunNoNaNAttr();
4247     ReducedPartRdx =
4248         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
4249     // If the reduction can be performed in a smaller type, we need to extend
4250     // the reduction to the wider type before we branch to the original loop.
4251     if (Phi->getType() != RdxDesc.getRecurrenceType())
4252       ReducedPartRdx =
4253         RdxDesc.isSigned()
4254         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4255         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4256   }
4257 
4258   // Create a phi node that merges control-flow from the backedge-taken check
4259   // block and the middle block.
4260   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4261                                         LoopScalarPreHeader->getTerminator());
4262   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4263     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4264   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4265 
4266   // Now, we need to fix the users of the reduction variable
4267   // inside and outside of the scalar remainder loop.
4268   // We know that the loop is in LCSSA form. We need to update the
4269   // PHI nodes in the exit blocks.
4270   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
4271          LEE = LoopExitBlock->end();
4272        LEI != LEE; ++LEI) {
4273     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
4274     if (!LCSSAPhi)
4275       break;
4276 
4277     // All PHINodes need to have a single entry edge, or two if
4278     // we already fixed them.
4279     assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
4280 
4281     // We found a reduction value exit-PHI. Update it with the
4282     // incoming bypass edge.
4283     if (LCSSAPhi->getIncomingValue(0) == LoopExitInst)
4284       LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4285   } // end of the LCSSA phi scan.
4286 
4287     // Fix the scalar loop reduction variable with the incoming reduction sum
4288     // from the vector body and from the backedge value.
4289   int IncomingEdgeBlockIdx =
4290     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4291   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4292   // Pick the other block.
4293   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4294   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4295   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4296 }
4297 
4298 void InnerLoopVectorizer::fixLCSSAPHIs() {
4299   for (Instruction &LEI : *LoopExitBlock) {
4300     auto *LCSSAPhi = dyn_cast<PHINode>(&LEI);
4301     if (!LCSSAPhi)
4302       break;
4303     if (LCSSAPhi->getNumIncomingValues() == 1)
4304       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
4305                             LoopMiddleBlock);
4306   }
4307 }
4308 
4309 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4310 
4311   // The basic block and loop containing the predicated instruction.
4312   auto *PredBB = PredInst->getParent();
4313   auto *VectorLoop = LI->getLoopFor(PredBB);
4314 
4315   // Initialize a worklist with the operands of the predicated instruction.
4316   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4317 
4318   // Holds instructions that we need to analyze again. An instruction may be
4319   // reanalyzed if we don't yet know if we can sink it or not.
4320   SmallVector<Instruction *, 8> InstsToReanalyze;
4321 
4322   // Returns true if a given use occurs in the predicated block. Phi nodes use
4323   // their operands in their corresponding predecessor blocks.
4324   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4325     auto *I = cast<Instruction>(U.getUser());
4326     BasicBlock *BB = I->getParent();
4327     if (auto *Phi = dyn_cast<PHINode>(I))
4328       BB = Phi->getIncomingBlock(
4329           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4330     return BB == PredBB;
4331   };
4332 
4333   // Iteratively sink the scalarized operands of the predicated instruction
4334   // into the block we created for it. When an instruction is sunk, it's
4335   // operands are then added to the worklist. The algorithm ends after one pass
4336   // through the worklist doesn't sink a single instruction.
4337   bool Changed;
4338   do {
4339 
4340     // Add the instructions that need to be reanalyzed to the worklist, and
4341     // reset the changed indicator.
4342     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4343     InstsToReanalyze.clear();
4344     Changed = false;
4345 
4346     while (!Worklist.empty()) {
4347       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4348 
4349       // We can't sink an instruction if it is a phi node, is already in the
4350       // predicated block, is not in the loop, or may have side effects.
4351       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4352           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4353         continue;
4354 
4355       // It's legal to sink the instruction if all its uses occur in the
4356       // predicated block. Otherwise, there's nothing to do yet, and we may
4357       // need to reanalyze the instruction.
4358       if (!all_of(I->uses(), isBlockOfUsePredicated)) {
4359         InstsToReanalyze.push_back(I);
4360         continue;
4361       }
4362 
4363       // Move the instruction to the beginning of the predicated block, and add
4364       // it's operands to the worklist.
4365       I->moveBefore(&*PredBB->getFirstInsertionPt());
4366       Worklist.insert(I->op_begin(), I->op_end());
4367 
4368       // The sinking may have enabled other instructions to be sunk, so we will
4369       // need to iterate.
4370       Changed = true;
4371     }
4372   } while (Changed);
4373 }
4374 
4375 void InnerLoopVectorizer::predicateInstructions() {
4376 
4377   // For each instruction I marked for predication on value C, split I into its
4378   // own basic block to form an if-then construct over C. Since I may be fed by
4379   // an extractelement instruction or other scalar operand, we try to
4380   // iteratively sink its scalar operands into the predicated block. If I feeds
4381   // an insertelement instruction, we try to move this instruction into the
4382   // predicated block as well. For non-void types, a phi node will be created
4383   // for the resulting value (either vector or scalar).
4384   //
4385   // So for some predicated instruction, e.g. the conditional sdiv in:
4386   //
4387   // for.body:
4388   //  ...
4389   //  %add = add nsw i32 %mul, %0
4390   //  %cmp5 = icmp sgt i32 %2, 7
4391   //  br i1 %cmp5, label %if.then, label %if.end
4392   //
4393   // if.then:
4394   //  %div = sdiv i32 %0, %1
4395   //  br label %if.end
4396   //
4397   // if.end:
4398   //  %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ]
4399   //
4400   // the sdiv at this point is scalarized and if-converted using a select.
4401   // The inactive elements in the vector are not used, but the predicated
4402   // instruction is still executed for all vector elements, essentially:
4403   //
4404   // vector.body:
4405   //  ...
4406   //  %17 = add nsw <2 x i32> %16, %wide.load
4407   //  %29 = extractelement <2 x i32> %wide.load, i32 0
4408   //  %30 = extractelement <2 x i32> %wide.load51, i32 0
4409   //  %31 = sdiv i32 %29, %30
4410   //  %32 = insertelement <2 x i32> undef, i32 %31, i32 0
4411   //  %35 = extractelement <2 x i32> %wide.load, i32 1
4412   //  %36 = extractelement <2 x i32> %wide.load51, i32 1
4413   //  %37 = sdiv i32 %35, %36
4414   //  %38 = insertelement <2 x i32> %32, i32 %37, i32 1
4415   //  %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17
4416   //
4417   // Predication will now re-introduce the original control flow to avoid false
4418   // side-effects by the sdiv instructions on the inactive elements, yielding
4419   // (after cleanup):
4420   //
4421   // vector.body:
4422   //  ...
4423   //  %5 = add nsw <2 x i32> %4, %wide.load
4424   //  %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7>
4425   //  %9 = extractelement <2 x i1> %8, i32 0
4426   //  br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue
4427   //
4428   // pred.sdiv.if:
4429   //  %10 = extractelement <2 x i32> %wide.load, i32 0
4430   //  %11 = extractelement <2 x i32> %wide.load51, i32 0
4431   //  %12 = sdiv i32 %10, %11
4432   //  %13 = insertelement <2 x i32> undef, i32 %12, i32 0
4433   //  br label %pred.sdiv.continue
4434   //
4435   // pred.sdiv.continue:
4436   //  %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ]
4437   //  %15 = extractelement <2 x i1> %8, i32 1
4438   //  br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55
4439   //
4440   // pred.sdiv.if54:
4441   //  %16 = extractelement <2 x i32> %wide.load, i32 1
4442   //  %17 = extractelement <2 x i32> %wide.load51, i32 1
4443   //  %18 = sdiv i32 %16, %17
4444   //  %19 = insertelement <2 x i32> %14, i32 %18, i32 1
4445   //  br label %pred.sdiv.continue55
4446   //
4447   // pred.sdiv.continue55:
4448   //  %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ]
4449   //  %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5
4450 
4451   for (auto KV : PredicatedInstructions) {
4452     BasicBlock::iterator I(KV.first);
4453     BasicBlock *Head = I->getParent();
4454     auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
4455                                         /*BranchWeights=*/nullptr, DT, LI);
4456     I->moveBefore(T);
4457     sinkScalarOperands(&*I);
4458 
4459     BasicBlock *PredicatedBlock = I->getParent();
4460     Twine BBNamePrefix = Twine("pred.") + I->getOpcodeName();
4461     PredicatedBlock->setName(BBNamePrefix + ".if");
4462     PredicatedBlock->getSingleSuccessor()->setName(BBNamePrefix + ".continue");
4463 
4464     // If the instruction is non-void create a Phi node at reconvergence point.
4465     if (!I->getType()->isVoidTy()) {
4466       Value *IncomingTrue = nullptr;
4467       Value *IncomingFalse = nullptr;
4468 
4469       if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) {
4470         // If the predicated instruction is feeding an insert-element, move it
4471         // into the Then block; Phi node will be created for the vector.
4472         InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin());
4473         IEI->moveBefore(T);
4474         IncomingTrue = IEI; // the new vector with the inserted element.
4475         IncomingFalse = IEI->getOperand(0); // the unmodified vector
4476       } else {
4477         // Phi node will be created for the scalar predicated instruction.
4478         IncomingTrue = &*I;
4479         IncomingFalse = UndefValue::get(I->getType());
4480       }
4481 
4482       BasicBlock *PostDom = I->getParent()->getSingleSuccessor();
4483       assert(PostDom && "Then block has multiple successors");
4484       PHINode *Phi =
4485           PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front());
4486       IncomingTrue->replaceAllUsesWith(Phi);
4487       Phi->addIncoming(IncomingFalse, Head);
4488       Phi->addIncoming(IncomingTrue, I->getParent());
4489     }
4490   }
4491 
4492   DEBUG(DT->verifyDomTree());
4493 }
4494 
4495 InnerLoopVectorizer::VectorParts
4496 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
4497   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
4498 
4499   // Look for cached value.
4500   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
4501   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
4502   if (ECEntryIt != EdgeMaskCache.end())
4503     return ECEntryIt->second;
4504 
4505   VectorParts SrcMask = createBlockInMask(Src);
4506 
4507   // The terminator has to be a branch inst!
4508   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
4509   assert(BI && "Unexpected terminator found");
4510 
4511   if (BI->isConditional()) {
4512     VectorParts EdgeMask = getVectorValue(BI->getCondition());
4513 
4514     if (BI->getSuccessor(0) != Dst)
4515       for (unsigned part = 0; part < UF; ++part)
4516         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
4517 
4518     for (unsigned part = 0; part < UF; ++part)
4519       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
4520 
4521     EdgeMaskCache[Edge] = EdgeMask;
4522     return EdgeMask;
4523   }
4524 
4525   EdgeMaskCache[Edge] = SrcMask;
4526   return SrcMask;
4527 }
4528 
4529 InnerLoopVectorizer::VectorParts
4530 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
4531   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
4532 
4533   // Look for cached value.
4534   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
4535   if (BCEntryIt != BlockMaskCache.end())
4536     return BCEntryIt->second;
4537 
4538   // Loop incoming mask is all-one.
4539   if (OrigLoop->getHeader() == BB) {
4540     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
4541     const VectorParts &BlockMask = getVectorValue(C);
4542     BlockMaskCache[BB] = BlockMask;
4543     return BlockMask;
4544   }
4545 
4546   // This is the block mask. We OR all incoming edges, and with zero.
4547   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
4548   VectorParts BlockMask = getVectorValue(Zero);
4549 
4550   // For each pred:
4551   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
4552     VectorParts EM = createEdgeMask(*it, BB);
4553     for (unsigned part = 0; part < UF; ++part)
4554       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
4555   }
4556 
4557   BlockMaskCache[BB] = BlockMask;
4558   return BlockMask;
4559 }
4560 
4561 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4562                                               unsigned VF) {
4563   PHINode *P = cast<PHINode>(PN);
4564   // In order to support recurrences we need to be able to vectorize Phi nodes.
4565   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4566   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4567   // this value when we vectorize all of the instructions that use the PHI.
4568   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4569     VectorParts Entry(UF);
4570     for (unsigned part = 0; part < UF; ++part) {
4571       // This is phase one of vectorizing PHIs.
4572       Type *VecTy =
4573           (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4574       Entry[part] = PHINode::Create(
4575           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4576     }
4577     VectorLoopValueMap.initVector(P, Entry);
4578     return;
4579   }
4580 
4581   setDebugLocFromInst(Builder, P);
4582   // Check for PHI nodes that are lowered to vector selects.
4583   if (P->getParent() != OrigLoop->getHeader()) {
4584     // We know that all PHIs in non-header blocks are converted into
4585     // selects, so we don't have to worry about the insertion order and we
4586     // can just use the builder.
4587     // At this point we generate the predication tree. There may be
4588     // duplications since this is a simple recursive scan, but future
4589     // optimizations will clean it up.
4590 
4591     unsigned NumIncoming = P->getNumIncomingValues();
4592 
4593     // Generate a sequence of selects of the form:
4594     // SELECT(Mask3, In3,
4595     //      SELECT(Mask2, In2,
4596     //                   ( ...)))
4597     VectorParts Entry(UF);
4598     for (unsigned In = 0; In < NumIncoming; In++) {
4599       VectorParts Cond =
4600           createEdgeMask(P->getIncomingBlock(In), P->getParent());
4601       const VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
4602 
4603       for (unsigned part = 0; part < UF; ++part) {
4604         // We might have single edge PHIs (blocks) - use an identity
4605         // 'select' for the first PHI operand.
4606         if (In == 0)
4607           Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]);
4608         else
4609           // Select between the current value and the previous incoming edge
4610           // based on the incoming mask.
4611           Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part],
4612                                              "predphi");
4613       }
4614     }
4615     VectorLoopValueMap.initVector(P, Entry);
4616     return;
4617   }
4618 
4619   // This PHINode must be an induction variable.
4620   // Make sure that we know about it.
4621   assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
4622 
4623   InductionDescriptor II = Legal->getInductionVars()->lookup(P);
4624   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4625 
4626   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4627   // which can be found from the original scalar operations.
4628   switch (II.getKind()) {
4629   case InductionDescriptor::IK_NoInduction:
4630     llvm_unreachable("Unknown induction");
4631   case InductionDescriptor::IK_IntInduction:
4632   case InductionDescriptor::IK_FpInduction:
4633     return widenIntOrFpInduction(P);
4634   case InductionDescriptor::IK_PtrInduction: {
4635     // Handle the pointer induction variable case.
4636     assert(P->getType()->isPointerTy() && "Unexpected type.");
4637     // This is the normalized GEP that starts counting at zero.
4638     Value *PtrInd = Induction;
4639     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4640     // Determine the number of scalars we need to generate for each unroll
4641     // iteration. If the instruction is uniform, we only need to generate the
4642     // first lane. Otherwise, we generate all VF values.
4643     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4644     // These are the scalar results. Notice that we don't generate vector GEPs
4645     // because scalar GEPs result in better code.
4646     ScalarParts Entry(UF);
4647     for (unsigned Part = 0; Part < UF; ++Part) {
4648       Entry[Part].resize(VF);
4649       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4650         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4651         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4652         Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4653         SclrGep->setName("next.gep");
4654         Entry[Part][Lane] = SclrGep;
4655       }
4656     }
4657     VectorLoopValueMap.initScalar(P, Entry);
4658     return;
4659   }
4660   }
4661 }
4662 
4663 /// A helper function for checking whether an integer division-related
4664 /// instruction may divide by zero (in which case it must be predicated if
4665 /// executed conditionally in the scalar code).
4666 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4667 /// Non-zero divisors that are non compile-time constants will not be
4668 /// converted into multiplication, so we will still end up scalarizing
4669 /// the division, but can do so w/o predication.
4670 static bool mayDivideByZero(Instruction &I) {
4671   assert((I.getOpcode() == Instruction::UDiv ||
4672           I.getOpcode() == Instruction::SDiv ||
4673           I.getOpcode() == Instruction::URem ||
4674           I.getOpcode() == Instruction::SRem) &&
4675          "Unexpected instruction");
4676   Value *Divisor = I.getOperand(1);
4677   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4678   return !CInt || CInt->isZero();
4679 }
4680 
4681 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) {
4682   // Scalarize instructions that should remain scalar after vectorization.
4683   if (VF > 1 &&
4684       !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) &&
4685       shouldScalarizeInstruction(&I)) {
4686     scalarizeInstruction(&I, Legal->isScalarWithPredication(&I));
4687     return;
4688   }
4689 
4690   switch (I.getOpcode()) {
4691   case Instruction::Br:
4692     // Nothing to do for PHIs and BR, since we already took care of the
4693     // loop control flow instructions.
4694     break;
4695   case Instruction::PHI: {
4696     // Vectorize PHINodes.
4697     widenPHIInstruction(&I, UF, VF);
4698     break;
4699   } // End of PHI.
4700   case Instruction::GetElementPtr: {
4701     // Construct a vector GEP by widening the operands of the scalar GEP as
4702     // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4703     // results in a vector of pointers when at least one operand of the GEP
4704     // is vector-typed. Thus, to keep the representation compact, we only use
4705     // vector-typed operands for loop-varying values.
4706     auto *GEP = cast<GetElementPtrInst>(&I);
4707     VectorParts Entry(UF);
4708 
4709     if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
4710       // If we are vectorizing, but the GEP has only loop-invariant operands,
4711       // the GEP we build (by only using vector-typed operands for
4712       // loop-varying values) would be a scalar pointer. Thus, to ensure we
4713       // produce a vector of pointers, we need to either arbitrarily pick an
4714       // operand to broadcast, or broadcast a clone of the original GEP.
4715       // Here, we broadcast a clone of the original.
4716       //
4717       // TODO: If at some point we decide to scalarize instructions having
4718       //       loop-invariant operands, this special case will no longer be
4719       //       required. We would add the scalarization decision to
4720       //       collectLoopScalars() and teach getVectorValue() to broadcast
4721       //       the lane-zero scalar value.
4722       auto *Clone = Builder.Insert(GEP->clone());
4723       for (unsigned Part = 0; Part < UF; ++Part)
4724         Entry[Part] = Builder.CreateVectorSplat(VF, Clone);
4725     } else {
4726       // If the GEP has at least one loop-varying operand, we are sure to
4727       // produce a vector of pointers. But if we are only unrolling, we want
4728       // to produce a scalar GEP for each unroll part. Thus, the GEP we
4729       // produce with the code below will be scalar (if VF == 1) or vector
4730       // (otherwise). Note that for the unroll-only case, we still maintain
4731       // values in the vector mapping with initVector, as we do for other
4732       // instructions.
4733       for (unsigned Part = 0; Part < UF; ++Part) {
4734 
4735         // The pointer operand of the new GEP. If it's loop-invariant, we
4736         // won't broadcast it.
4737         auto *Ptr = OrigLoop->isLoopInvariant(GEP->getPointerOperand())
4738                         ? GEP->getPointerOperand()
4739                         : getVectorValue(GEP->getPointerOperand())[Part];
4740 
4741         // Collect all the indices for the new GEP. If any index is
4742         // loop-invariant, we won't broadcast it.
4743         SmallVector<Value *, 4> Indices;
4744         for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
4745           if (OrigLoop->isLoopInvariant(U.get()))
4746             Indices.push_back(U.get());
4747           else
4748             Indices.push_back(getVectorValue(U.get())[Part]);
4749         }
4750 
4751         // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4752         // but it should be a vector, otherwise.
4753         auto *NewGEP = GEP->isInBounds()
4754                            ? Builder.CreateInBoundsGEP(Ptr, Indices)
4755                            : Builder.CreateGEP(Ptr, Indices);
4756         assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4757                "NewGEP is not a pointer vector");
4758         Entry[Part] = NewGEP;
4759       }
4760     }
4761 
4762     VectorLoopValueMap.initVector(&I, Entry);
4763     addMetadata(Entry, GEP);
4764     break;
4765   }
4766   case Instruction::UDiv:
4767   case Instruction::SDiv:
4768   case Instruction::SRem:
4769   case Instruction::URem:
4770     // Scalarize with predication if this instruction may divide by zero and
4771     // block execution is conditional, otherwise fallthrough.
4772     if (Legal->isScalarWithPredication(&I)) {
4773       scalarizeInstruction(&I, true);
4774       break;
4775     }
4776   case Instruction::Add:
4777   case Instruction::FAdd:
4778   case Instruction::Sub:
4779   case Instruction::FSub:
4780   case Instruction::Mul:
4781   case Instruction::FMul:
4782   case Instruction::FDiv:
4783   case Instruction::FRem:
4784   case Instruction::Shl:
4785   case Instruction::LShr:
4786   case Instruction::AShr:
4787   case Instruction::And:
4788   case Instruction::Or:
4789   case Instruction::Xor: {
4790     // Just widen binops.
4791     auto *BinOp = cast<BinaryOperator>(&I);
4792     setDebugLocFromInst(Builder, BinOp);
4793     const VectorParts &A = getVectorValue(BinOp->getOperand(0));
4794     const VectorParts &B = getVectorValue(BinOp->getOperand(1));
4795 
4796     // Use this vector value for all users of the original instruction.
4797     VectorParts Entry(UF);
4798     for (unsigned Part = 0; Part < UF; ++Part) {
4799       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
4800 
4801       if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
4802         VecOp->copyIRFlags(BinOp);
4803 
4804       Entry[Part] = V;
4805     }
4806 
4807     VectorLoopValueMap.initVector(&I, Entry);
4808     addMetadata(Entry, BinOp);
4809     break;
4810   }
4811   case Instruction::Select: {
4812     // Widen selects.
4813     // If the selector is loop invariant we can create a select
4814     // instruction with a scalar condition. Otherwise, use vector-select.
4815     auto *SE = PSE.getSE();
4816     bool InvariantCond =
4817         SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
4818     setDebugLocFromInst(Builder, &I);
4819 
4820     // The condition can be loop invariant  but still defined inside the
4821     // loop. This means that we can't just use the original 'cond' value.
4822     // We have to take the 'vectorized' value and pick the first lane.
4823     // Instcombine will make this a no-op.
4824     const VectorParts &Cond = getVectorValue(I.getOperand(0));
4825     const VectorParts &Op0 = getVectorValue(I.getOperand(1));
4826     const VectorParts &Op1 = getVectorValue(I.getOperand(2));
4827 
4828     auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0);
4829 
4830     VectorParts Entry(UF);
4831     for (unsigned Part = 0; Part < UF; ++Part) {
4832       Entry[Part] = Builder.CreateSelect(
4833           InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]);
4834     }
4835 
4836     VectorLoopValueMap.initVector(&I, Entry);
4837     addMetadata(Entry, &I);
4838     break;
4839   }
4840 
4841   case Instruction::ICmp:
4842   case Instruction::FCmp: {
4843     // Widen compares. Generate vector compares.
4844     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4845     auto *Cmp = dyn_cast<CmpInst>(&I);
4846     setDebugLocFromInst(Builder, Cmp);
4847     const VectorParts &A = getVectorValue(Cmp->getOperand(0));
4848     const VectorParts &B = getVectorValue(Cmp->getOperand(1));
4849     VectorParts Entry(UF);
4850     for (unsigned Part = 0; Part < UF; ++Part) {
4851       Value *C = nullptr;
4852       if (FCmp) {
4853         C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
4854         cast<FCmpInst>(C)->copyFastMathFlags(Cmp);
4855       } else {
4856         C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
4857       }
4858       Entry[Part] = C;
4859     }
4860 
4861     VectorLoopValueMap.initVector(&I, Entry);
4862     addMetadata(Entry, &I);
4863     break;
4864   }
4865 
4866   case Instruction::Store:
4867   case Instruction::Load:
4868     vectorizeMemoryInstruction(&I);
4869     break;
4870   case Instruction::ZExt:
4871   case Instruction::SExt:
4872   case Instruction::FPToUI:
4873   case Instruction::FPToSI:
4874   case Instruction::FPExt:
4875   case Instruction::PtrToInt:
4876   case Instruction::IntToPtr:
4877   case Instruction::SIToFP:
4878   case Instruction::UIToFP:
4879   case Instruction::Trunc:
4880   case Instruction::FPTrunc:
4881   case Instruction::BitCast: {
4882     auto *CI = dyn_cast<CastInst>(&I);
4883     setDebugLocFromInst(Builder, CI);
4884 
4885     // Optimize the special case where the source is a constant integer
4886     // induction variable. Notice that we can only optimize the 'trunc' case
4887     // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
4888     // (c) other casts depend on pointer size.
4889     if (Cost->isOptimizableIVTruncate(CI, VF)) {
4890       widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)),
4891                             cast<TruncInst>(CI));
4892       break;
4893     }
4894 
4895     /// Vectorize casts.
4896     Type *DestTy =
4897         (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4898 
4899     const VectorParts &A = getVectorValue(CI->getOperand(0));
4900     VectorParts Entry(UF);
4901     for (unsigned Part = 0; Part < UF; ++Part)
4902       Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
4903     VectorLoopValueMap.initVector(&I, Entry);
4904     addMetadata(Entry, &I);
4905     break;
4906   }
4907 
4908   case Instruction::Call: {
4909     // Ignore dbg intrinsics.
4910     if (isa<DbgInfoIntrinsic>(I))
4911       break;
4912     setDebugLocFromInst(Builder, &I);
4913 
4914     Module *M = I.getParent()->getParent()->getParent();
4915     auto *CI = cast<CallInst>(&I);
4916 
4917     StringRef FnName = CI->getCalledFunction()->getName();
4918     Function *F = CI->getCalledFunction();
4919     Type *RetTy = ToVectorTy(CI->getType(), VF);
4920     SmallVector<Type *, 4> Tys;
4921     for (Value *ArgOperand : CI->arg_operands())
4922       Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4923 
4924     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4925     if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
4926                ID == Intrinsic::lifetime_start)) {
4927       scalarizeInstruction(&I);
4928       break;
4929     }
4930     // The flag shows whether we use Intrinsic or a usual Call for vectorized
4931     // version of the instruction.
4932     // Is it beneficial to perform intrinsic call compared to lib call?
4933     bool NeedToScalarize;
4934     unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
4935     bool UseVectorIntrinsic =
4936         ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
4937     if (!UseVectorIntrinsic && NeedToScalarize) {
4938       scalarizeInstruction(&I);
4939       break;
4940     }
4941 
4942     VectorParts Entry(UF);
4943     for (unsigned Part = 0; Part < UF; ++Part) {
4944       SmallVector<Value *, 4> Args;
4945       for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
4946         Value *Arg = CI->getArgOperand(i);
4947         // Some intrinsics have a scalar argument - don't replace it with a
4948         // vector.
4949         if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
4950           const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
4951           Arg = VectorArg[Part];
4952         }
4953         Args.push_back(Arg);
4954       }
4955 
4956       Function *VectorF;
4957       if (UseVectorIntrinsic) {
4958         // Use vector version of the intrinsic.
4959         Type *TysForDecl[] = {CI->getType()};
4960         if (VF > 1)
4961           TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4962         VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4963       } else {
4964         // Use vector version of the library call.
4965         StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
4966         assert(!VFnName.empty() && "Vector function name is empty.");
4967         VectorF = M->getFunction(VFnName);
4968         if (!VectorF) {
4969           // Generate a declaration
4970           FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
4971           VectorF =
4972               Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
4973           VectorF->copyAttributesFrom(F);
4974         }
4975       }
4976       assert(VectorF && "Can't create vector function.");
4977 
4978       SmallVector<OperandBundleDef, 1> OpBundles;
4979       CI->getOperandBundlesAsDefs(OpBundles);
4980       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4981 
4982       if (isa<FPMathOperator>(V))
4983         V->copyFastMathFlags(CI);
4984 
4985       Entry[Part] = V;
4986     }
4987 
4988     VectorLoopValueMap.initVector(&I, Entry);
4989     addMetadata(Entry, &I);
4990     break;
4991   }
4992 
4993   default:
4994     // All other instructions are unsupported. Scalarize them.
4995     scalarizeInstruction(&I);
4996     break;
4997   } // end of switch.
4998 }
4999 
5000 void InnerLoopVectorizer::updateAnalysis() {
5001   // Forget the original basic block.
5002   PSE.getSE()->forgetLoop(OrigLoop);
5003 
5004   // Update the dominator tree information.
5005   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
5006          "Entry does not dominate exit.");
5007 
5008   DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(),
5009                   LoopVectorPreHeader);
5010   DT->addNewBlock(LoopMiddleBlock,
5011                   LI->getLoopFor(LoopVectorBody)->getLoopLatch());
5012   DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
5013   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
5014   DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
5015 
5016   DEBUG(DT->verifyDomTree());
5017 }
5018 
5019 /// \brief Check whether it is safe to if-convert this phi node.
5020 ///
5021 /// Phi nodes with constant expressions that can trap are not safe to if
5022 /// convert.
5023 static bool canIfConvertPHINodes(BasicBlock *BB) {
5024   for (Instruction &I : *BB) {
5025     auto *Phi = dyn_cast<PHINode>(&I);
5026     if (!Phi)
5027       return true;
5028     for (Value *V : Phi->incoming_values())
5029       if (auto *C = dyn_cast<Constant>(V))
5030         if (C->canTrap())
5031           return false;
5032   }
5033   return true;
5034 }
5035 
5036 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
5037   if (!EnableIfConversion) {
5038     ORE->emit(createMissedAnalysis("IfConversionDisabled")
5039               << "if-conversion is disabled");
5040     return false;
5041   }
5042 
5043   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
5044 
5045   // A list of pointers that we can safely read and write to.
5046   SmallPtrSet<Value *, 8> SafePointes;
5047 
5048   // Collect safe addresses.
5049   for (BasicBlock *BB : TheLoop->blocks()) {
5050     if (blockNeedsPredication(BB))
5051       continue;
5052 
5053     for (Instruction &I : *BB)
5054       if (auto *Ptr = getPointerOperand(&I))
5055         SafePointes.insert(Ptr);
5056   }
5057 
5058   // Collect the blocks that need predication.
5059   BasicBlock *Header = TheLoop->getHeader();
5060   for (BasicBlock *BB : TheLoop->blocks()) {
5061     // We don't support switch statements inside loops.
5062     if (!isa<BranchInst>(BB->getTerminator())) {
5063       ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
5064                 << "loop contains a switch statement");
5065       return false;
5066     }
5067 
5068     // We must be able to predicate all blocks that need to be predicated.
5069     if (blockNeedsPredication(BB)) {
5070       if (!blockCanBePredicated(BB, SafePointes)) {
5071         ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
5072                   << "control flow cannot be substituted for a select");
5073         return false;
5074       }
5075     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
5076       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
5077                 << "control flow cannot be substituted for a select");
5078       return false;
5079     }
5080   }
5081 
5082   // We can if-convert this loop.
5083   return true;
5084 }
5085 
5086 bool LoopVectorizationLegality::canVectorize() {
5087   // We must have a loop in canonical form. Loops with indirectbr in them cannot
5088   // be canonicalized.
5089   if (!TheLoop->getLoopPreheader()) {
5090     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
5091               << "loop control flow is not understood by vectorizer");
5092     return false;
5093   }
5094 
5095   // FIXME: The code is currently dead, since the loop gets sent to
5096   // LoopVectorizationLegality is already an innermost loop.
5097   //
5098   // We can only vectorize innermost loops.
5099   if (!TheLoop->empty()) {
5100     ORE->emit(createMissedAnalysis("NotInnermostLoop")
5101               << "loop is not the innermost loop");
5102     return false;
5103   }
5104 
5105   // We must have a single backedge.
5106   if (TheLoop->getNumBackEdges() != 1) {
5107     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
5108               << "loop control flow is not understood by vectorizer");
5109     return false;
5110   }
5111 
5112   // We must have a single exiting block.
5113   if (!TheLoop->getExitingBlock()) {
5114     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
5115               << "loop control flow is not understood by vectorizer");
5116     return false;
5117   }
5118 
5119   // We only handle bottom-tested loops, i.e. loop in which the condition is
5120   // checked at the end of each iteration. With that we can assume that all
5121   // instructions in the loop are executed the same number of times.
5122   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5123     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
5124               << "loop control flow is not understood by vectorizer");
5125     return false;
5126   }
5127 
5128   // We need to have a loop header.
5129   DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
5130                << '\n');
5131 
5132   // Check if we can if-convert non-single-bb loops.
5133   unsigned NumBlocks = TheLoop->getNumBlocks();
5134   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
5135     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
5136     return false;
5137   }
5138 
5139   // ScalarEvolution needs to be able to find the exit count.
5140   const SCEV *ExitCount = PSE.getBackedgeTakenCount();
5141   if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
5142     ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations")
5143               << "could not determine number of loop iterations");
5144     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
5145     return false;
5146   }
5147 
5148   // Check if we can vectorize the instructions and CFG in this loop.
5149   if (!canVectorizeInstrs()) {
5150     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
5151     return false;
5152   }
5153 
5154   // Go over each instruction and look at memory deps.
5155   if (!canVectorizeMemory()) {
5156     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
5157     return false;
5158   }
5159 
5160   DEBUG(dbgs() << "LV: We can vectorize this loop"
5161                << (LAI->getRuntimePointerChecking()->Need
5162                        ? " (with a runtime bound check)"
5163                        : "")
5164                << "!\n");
5165 
5166   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
5167 
5168   // If an override option has been passed in for interleaved accesses, use it.
5169   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
5170     UseInterleaved = EnableInterleavedMemAccesses;
5171 
5172   // Analyze interleaved memory accesses.
5173   if (UseInterleaved)
5174     InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());
5175 
5176   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
5177   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
5178     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
5179 
5180   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
5181     ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
5182               << "Too many SCEV assumptions need to be made and checked "
5183               << "at runtime");
5184     DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
5185     return false;
5186   }
5187 
5188   // Okay! We can vectorize. At this point we don't have any other mem analysis
5189   // which may limit our maximum vectorization factor, so just return true with
5190   // no restrictions.
5191   return true;
5192 }
5193 
5194 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
5195   if (Ty->isPointerTy())
5196     return DL.getIntPtrType(Ty);
5197 
5198   // It is possible that char's or short's overflow when we ask for the loop's
5199   // trip count, work around this by changing the type size.
5200   if (Ty->getScalarSizeInBits() < 32)
5201     return Type::getInt32Ty(Ty->getContext());
5202 
5203   return Ty;
5204 }
5205 
5206 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
5207   Ty0 = convertPointerToIntegerType(DL, Ty0);
5208   Ty1 = convertPointerToIntegerType(DL, Ty1);
5209   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
5210     return Ty0;
5211   return Ty1;
5212 }
5213 
5214 /// \brief Check that the instruction has outside loop users and is not an
5215 /// identified reduction variable.
5216 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
5217                                SmallPtrSetImpl<Value *> &AllowedExit) {
5218   // Reduction and Induction instructions are allowed to have exit users. All
5219   // other instructions must not have external users.
5220   if (!AllowedExit.count(Inst))
5221     // Check that all of the users of the loop are inside the BB.
5222     for (User *U : Inst->users()) {
5223       Instruction *UI = cast<Instruction>(U);
5224       // This user may be a reduction exit value.
5225       if (!TheLoop->contains(UI)) {
5226         DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
5227         return true;
5228       }
5229     }
5230   return false;
5231 }
5232 
5233 void LoopVectorizationLegality::addInductionPhi(
5234     PHINode *Phi, const InductionDescriptor &ID,
5235     SmallPtrSetImpl<Value *> &AllowedExit) {
5236   Inductions[Phi] = ID;
5237   Type *PhiTy = Phi->getType();
5238   const DataLayout &DL = Phi->getModule()->getDataLayout();
5239 
5240   // Get the widest type.
5241   if (!PhiTy->isFloatingPointTy()) {
5242     if (!WidestIndTy)
5243       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
5244     else
5245       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
5246   }
5247 
5248   // Int inductions are special because we only allow one IV.
5249   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
5250       ID.getConstIntStepValue() &&
5251       ID.getConstIntStepValue()->isOne() &&
5252       isa<Constant>(ID.getStartValue()) &&
5253       cast<Constant>(ID.getStartValue())->isNullValue()) {
5254 
5255     // Use the phi node with the widest type as induction. Use the last
5256     // one if there are multiple (no good reason for doing this other
5257     // than it is expedient). We've checked that it begins at zero and
5258     // steps by one, so this is a canonical induction variable.
5259     if (!PrimaryInduction || PhiTy == WidestIndTy)
5260       PrimaryInduction = Phi;
5261   }
5262 
5263   // Both the PHI node itself, and the "post-increment" value feeding
5264   // back into the PHI node may have external users.
5265   AllowedExit.insert(Phi);
5266   AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
5267 
5268   DEBUG(dbgs() << "LV: Found an induction variable.\n");
5269   return;
5270 }
5271 
5272 bool LoopVectorizationLegality::canVectorizeInstrs() {
5273   BasicBlock *Header = TheLoop->getHeader();
5274 
5275   // Look for the attribute signaling the absence of NaNs.
5276   Function &F = *Header->getParent();
5277   HasFunNoNaNAttr =
5278       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
5279 
5280   // For each block in the loop.
5281   for (BasicBlock *BB : TheLoop->blocks()) {
5282     // Scan the instructions in the block and look for hazards.
5283     for (Instruction &I : *BB) {
5284       if (auto *Phi = dyn_cast<PHINode>(&I)) {
5285         Type *PhiTy = Phi->getType();
5286         // Check that this PHI type is allowed.
5287         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
5288             !PhiTy->isPointerTy()) {
5289           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5290                     << "loop control flow is not understood by vectorizer");
5291           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
5292           return false;
5293         }
5294 
5295         // If this PHINode is not in the header block, then we know that we
5296         // can convert it to select during if-conversion. No need to check if
5297         // the PHIs in this block are induction or reduction variables.
5298         if (BB != Header) {
5299           // Check that this instruction has no outside users or is an
5300           // identified reduction value with an outside user.
5301           if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
5302             continue;
5303           ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
5304                     << "value could not be identified as "
5305                        "an induction or reduction variable");
5306           return false;
5307         }
5308 
5309         // We only allow if-converted PHIs with exactly two incoming values.
5310         if (Phi->getNumIncomingValues() != 2) {
5311           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5312                     << "control flow not understood by vectorizer");
5313           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
5314           return false;
5315         }
5316 
5317         RecurrenceDescriptor RedDes;
5318         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) {
5319           if (RedDes.hasUnsafeAlgebra())
5320             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
5321           AllowedExit.insert(RedDes.getLoopExitInstr());
5322           Reductions[Phi] = RedDes;
5323           continue;
5324         }
5325 
5326         InductionDescriptor ID;
5327         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
5328           addInductionPhi(Phi, ID, AllowedExit);
5329           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
5330             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
5331           continue;
5332         }
5333 
5334         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) {
5335           FirstOrderRecurrences.insert(Phi);
5336           continue;
5337         }
5338 
5339         // As a last resort, coerce the PHI to a AddRec expression
5340         // and re-try classifying it a an induction PHI.
5341         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
5342           addInductionPhi(Phi, ID, AllowedExit);
5343           continue;
5344         }
5345 
5346         ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
5347                   << "value that could not be identified as "
5348                      "reduction is used outside the loop");
5349         DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
5350         return false;
5351       } // end of PHI handling
5352 
5353       // We handle calls that:
5354       //   * Are debug info intrinsics.
5355       //   * Have a mapping to an IR intrinsic.
5356       //   * Have a vector version available.
5357       auto *CI = dyn_cast<CallInst>(&I);
5358       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
5359           !isa<DbgInfoIntrinsic>(CI) &&
5360           !(CI->getCalledFunction() && TLI &&
5361             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
5362         ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
5363                   << "call instruction cannot be vectorized");
5364         DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
5365         return false;
5366       }
5367 
5368       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
5369       // second argument is the same (i.e. loop invariant)
5370       if (CI && hasVectorInstrinsicScalarOpd(
5371                     getVectorIntrinsicIDForCall(CI, TLI), 1)) {
5372         auto *SE = PSE.getSE();
5373         if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
5374           ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
5375                     << "intrinsic instruction cannot be vectorized");
5376           DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
5377           return false;
5378         }
5379       }
5380 
5381       // Check that the instruction return type is vectorizable.
5382       // Also, we can't vectorize extractelement instructions.
5383       if ((!VectorType::isValidElementType(I.getType()) &&
5384            !I.getType()->isVoidTy()) ||
5385           isa<ExtractElementInst>(I)) {
5386         ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
5387                   << "instruction return type cannot be vectorized");
5388         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
5389         return false;
5390       }
5391 
5392       // Check that the stored type is vectorizable.
5393       if (auto *ST = dyn_cast<StoreInst>(&I)) {
5394         Type *T = ST->getValueOperand()->getType();
5395         if (!VectorType::isValidElementType(T)) {
5396           ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
5397                     << "store instruction cannot be vectorized");
5398           return false;
5399         }
5400 
5401         // FP instructions can allow unsafe algebra, thus vectorizable by
5402         // non-IEEE-754 compliant SIMD units.
5403         // This applies to floating-point math operations and calls, not memory
5404         // operations, shuffles, or casts, as they don't change precision or
5405         // semantics.
5406       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
5407                  !I.hasUnsafeAlgebra()) {
5408         DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
5409         Hints->setPotentiallyUnsafe();
5410       }
5411 
5412       // Reduction instructions are allowed to have exit users.
5413       // All other instructions must not have external users.
5414       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
5415         ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
5416                   << "value cannot be used outside the loop");
5417         return false;
5418       }
5419 
5420     } // next instr.
5421   }
5422 
5423   if (!PrimaryInduction) {
5424     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
5425     if (Inductions.empty()) {
5426       ORE->emit(createMissedAnalysis("NoInductionVariable")
5427                 << "loop induction variable could not be identified");
5428       return false;
5429     }
5430   }
5431 
5432   // Now we know the widest induction type, check if our found induction
5433   // is the same size. If it's not, unset it here and InnerLoopVectorizer
5434   // will create another.
5435   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
5436     PrimaryInduction = nullptr;
5437 
5438   return true;
5439 }
5440 
5441 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
5442 
5443   // We should not collect Scalars more than once per VF. Right now, this
5444   // function is called from collectUniformsAndScalars(), which already does
5445   // this check. Collecting Scalars for VF=1 does not make any sense.
5446   assert(VF >= 2 && !Scalars.count(VF) &&
5447          "This function should not be visited twice for the same VF");
5448 
5449   SmallSetVector<Instruction *, 8> Worklist;
5450 
5451   // These sets are used to seed the analysis with pointers used by memory
5452   // accesses that will remain scalar.
5453   SmallSetVector<Instruction *, 8> ScalarPtrs;
5454   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5455 
5456   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5457   // The pointer operands of loads and stores will be scalar as long as the
5458   // memory access is not a gather or scatter operation. The value operand of a
5459   // store will remain scalar if the store is scalarized.
5460   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5461     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5462     assert(WideningDecision != CM_Unknown &&
5463            "Widening decision should be ready at this moment");
5464     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5465       if (Ptr == Store->getValueOperand())
5466         return WideningDecision == CM_Scalarize;
5467     assert(Ptr == getPointerOperand(MemAccess) &&
5468            "Ptr is neither a value or pointer operand");
5469     return WideningDecision != CM_GatherScatter;
5470   };
5471 
5472   // A helper that returns true if the given value is a bitcast or
5473   // getelementptr instruction contained in the loop.
5474   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5475     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5476             isa<GetElementPtrInst>(V)) &&
5477            !TheLoop->isLoopInvariant(V);
5478   };
5479 
5480   // A helper that evaluates a memory access's use of a pointer. If the use
5481   // will be a scalar use, and the pointer is only used by memory accesses, we
5482   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
5483   // PossibleNonScalarPtrs.
5484   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5485 
5486     // We only care about bitcast and getelementptr instructions contained in
5487     // the loop.
5488     if (!isLoopVaryingBitCastOrGEP(Ptr))
5489       return;
5490 
5491     // If the pointer has already been identified as scalar (e.g., if it was
5492     // also identified as uniform), there's nothing to do.
5493     auto *I = cast<Instruction>(Ptr);
5494     if (Worklist.count(I))
5495       return;
5496 
5497     // If the use of the pointer will be a scalar use, and all users of the
5498     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5499     // place the pointer in PossibleNonScalarPtrs.
5500     if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) {
5501           return isa<LoadInst>(U) || isa<StoreInst>(U);
5502         }))
5503       ScalarPtrs.insert(I);
5504     else
5505       PossibleNonScalarPtrs.insert(I);
5506   };
5507 
5508   // We seed the scalars analysis with three classes of instructions: (1)
5509   // instructions marked uniform-after-vectorization, (2) bitcast and
5510   // getelementptr instructions used by memory accesses requiring a scalar use,
5511   // and (3) pointer induction variables and their update instructions (we
5512   // currently only scalarize these).
5513   //
5514   // (1) Add to the worklist all instructions that have been identified as
5515   // uniform-after-vectorization.
5516   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5517 
5518   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5519   // memory accesses requiring a scalar use. The pointer operands of loads and
5520   // stores will be scalar as long as the memory accesses is not a gather or
5521   // scatter operation. The value operand of a store will remain scalar if the
5522   // store is scalarized.
5523   for (auto *BB : TheLoop->blocks())
5524     for (auto &I : *BB) {
5525       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5526         evaluatePtrUse(Load, Load->getPointerOperand());
5527       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5528         evaluatePtrUse(Store, Store->getPointerOperand());
5529         evaluatePtrUse(Store, Store->getValueOperand());
5530       }
5531     }
5532   for (auto *I : ScalarPtrs)
5533     if (!PossibleNonScalarPtrs.count(I)) {
5534       DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5535       Worklist.insert(I);
5536     }
5537 
5538   // (3) Add to the worklist all pointer induction variables and their update
5539   // instructions.
5540   //
5541   // TODO: Once we are able to vectorize pointer induction variables we should
5542   //       no longer insert them into the worklist here.
5543   auto *Latch = TheLoop->getLoopLatch();
5544   for (auto &Induction : *Legal->getInductionVars()) {
5545     auto *Ind = Induction.first;
5546     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5547     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
5548       continue;
5549     Worklist.insert(Ind);
5550     Worklist.insert(IndUpdate);
5551     DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5552     DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n");
5553   }
5554 
5555   // Expand the worklist by looking through any bitcasts and getelementptr
5556   // instructions we've already identified as scalar. This is similar to the
5557   // expansion step in collectLoopUniforms(); however, here we're only
5558   // expanding to include additional bitcasts and getelementptr instructions.
5559   unsigned Idx = 0;
5560   while (Idx != Worklist.size()) {
5561     Instruction *Dst = Worklist[Idx++];
5562     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5563       continue;
5564     auto *Src = cast<Instruction>(Dst->getOperand(0));
5565     if (all_of(Src->users(), [&](User *U) -> bool {
5566           auto *J = cast<Instruction>(U);
5567           return !TheLoop->contains(J) || Worklist.count(J) ||
5568                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5569                   isScalarUse(J, Src));
5570         })) {
5571       Worklist.insert(Src);
5572       DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5573     }
5574   }
5575 
5576   // An induction variable will remain scalar if all users of the induction
5577   // variable and induction variable update remain scalar.
5578   for (auto &Induction : *Legal->getInductionVars()) {
5579     auto *Ind = Induction.first;
5580     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5581 
5582     // We already considered pointer induction variables, so there's no reason
5583     // to look at their users again.
5584     //
5585     // TODO: Once we are able to vectorize pointer induction variables we
5586     //       should no longer skip over them here.
5587     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
5588       continue;
5589 
5590     // Determine if all users of the induction variable are scalar after
5591     // vectorization.
5592     auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
5593       auto *I = cast<Instruction>(U);
5594       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5595     });
5596     if (!ScalarInd)
5597       continue;
5598 
5599     // Determine if all users of the induction variable update instruction are
5600     // scalar after vectorization.
5601     auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
5602       auto *I = cast<Instruction>(U);
5603       return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5604     });
5605     if (!ScalarIndUpdate)
5606       continue;
5607 
5608     // The induction variable and its update instruction will remain scalar.
5609     Worklist.insert(Ind);
5610     Worklist.insert(IndUpdate);
5611     DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5612     DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n");
5613   }
5614 
5615   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5616 }
5617 
5618 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) {
5619   if (!blockNeedsPredication(I->getParent()))
5620     return false;
5621   switch(I->getOpcode()) {
5622   default:
5623     break;
5624   case Instruction::Store:
5625     return !isMaskRequired(I);
5626   case Instruction::UDiv:
5627   case Instruction::SDiv:
5628   case Instruction::SRem:
5629   case Instruction::URem:
5630     return mayDivideByZero(*I);
5631   }
5632   return false;
5633 }
5634 
5635 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I,
5636                                                               unsigned VF) {
5637   // Get and ensure we have a valid memory instruction.
5638   LoadInst *LI = dyn_cast<LoadInst>(I);
5639   StoreInst *SI = dyn_cast<StoreInst>(I);
5640   assert((LI || SI) && "Invalid memory instruction");
5641 
5642   auto *Ptr = getPointerOperand(I);
5643 
5644   // In order to be widened, the pointer should be consecutive, first of all.
5645   if (!isConsecutivePtr(Ptr))
5646     return false;
5647 
5648   // If the instruction is a store located in a predicated block, it will be
5649   // scalarized.
5650   if (isScalarWithPredication(I))
5651     return false;
5652 
5653   // If the instruction's allocated size doesn't equal it's type size, it
5654   // requires padding and will be scalarized.
5655   auto &DL = I->getModule()->getDataLayout();
5656   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5657   if (hasIrregularType(ScalarTy, DL, VF))
5658     return false;
5659 
5660   return true;
5661 }
5662 
5663 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
5664 
5665   // We should not collect Uniforms more than once per VF. Right now,
5666   // this function is called from collectUniformsAndScalars(), which
5667   // already does this check. Collecting Uniforms for VF=1 does not make any
5668   // sense.
5669 
5670   assert(VF >= 2 && !Uniforms.count(VF) &&
5671          "This function should not be visited twice for the same VF");
5672 
5673   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5674   // not analyze again.  Uniforms.count(VF) will return 1.
5675   Uniforms[VF].clear();
5676 
5677   // We now know that the loop is vectorizable!
5678   // Collect instructions inside the loop that will remain uniform after
5679   // vectorization.
5680 
5681   // Global values, params and instructions outside of current loop are out of
5682   // scope.
5683   auto isOutOfScope = [&](Value *V) -> bool {
5684     Instruction *I = dyn_cast<Instruction>(V);
5685     return (!I || !TheLoop->contains(I));
5686   };
5687 
5688   SetVector<Instruction *> Worklist;
5689   BasicBlock *Latch = TheLoop->getLoopLatch();
5690 
5691   // Start with the conditional branch. If the branch condition is an
5692   // instruction contained in the loop that is only used by the branch, it is
5693   // uniform.
5694   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5695   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
5696     Worklist.insert(Cmp);
5697     DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
5698   }
5699 
5700   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
5701   // are pointers that are treated like consecutive pointers during
5702   // vectorization. The pointer operands of interleaved accesses are an
5703   // example.
5704   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
5705 
5706   // Holds pointer operands of instructions that are possibly non-uniform.
5707   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
5708 
5709   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
5710     InstWidening WideningDecision = getWideningDecision(I, VF);
5711     assert(WideningDecision != CM_Unknown &&
5712            "Widening decision should be ready at this moment");
5713 
5714     return (WideningDecision == CM_Widen ||
5715             WideningDecision == CM_Interleave);
5716   };
5717   // Iterate over the instructions in the loop, and collect all
5718   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
5719   // that a consecutive-like pointer operand will be scalarized, we collect it
5720   // in PossibleNonUniformPtrs instead. We use two sets here because a single
5721   // getelementptr instruction can be used by both vectorized and scalarized
5722   // memory instructions. For example, if a loop loads and stores from the same
5723   // location, but the store is conditional, the store will be scalarized, and
5724   // the getelementptr won't remain uniform.
5725   for (auto *BB : TheLoop->blocks())
5726     for (auto &I : *BB) {
5727 
5728       // If there's no pointer operand, there's nothing to do.
5729       auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I));
5730       if (!Ptr)
5731         continue;
5732 
5733       // True if all users of Ptr are memory accesses that have Ptr as their
5734       // pointer operand.
5735       auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool {
5736         return getPointerOperand(U) == Ptr;
5737       });
5738 
5739       // Ensure the memory instruction will not be scalarized or used by
5740       // gather/scatter, making its pointer operand non-uniform. If the pointer
5741       // operand is used by any instruction other than a memory access, we
5742       // conservatively assume the pointer operand may be non-uniform.
5743       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
5744         PossibleNonUniformPtrs.insert(Ptr);
5745 
5746       // If the memory instruction will be vectorized and its pointer operand
5747       // is consecutive-like, or interleaving - the pointer operand should
5748       // remain uniform.
5749       else
5750         ConsecutiveLikePtrs.insert(Ptr);
5751     }
5752 
5753   // Add to the Worklist all consecutive and consecutive-like pointers that
5754   // aren't also identified as possibly non-uniform.
5755   for (auto *V : ConsecutiveLikePtrs)
5756     if (!PossibleNonUniformPtrs.count(V)) {
5757       DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
5758       Worklist.insert(V);
5759     }
5760 
5761   // Expand Worklist in topological order: whenever a new instruction
5762   // is added , its users should be either already inside Worklist, or
5763   // out of scope. It ensures a uniform instruction will only be used
5764   // by uniform instructions or out of scope instructions.
5765   unsigned idx = 0;
5766   while (idx != Worklist.size()) {
5767     Instruction *I = Worklist[idx++];
5768 
5769     for (auto OV : I->operand_values()) {
5770       if (isOutOfScope(OV))
5771         continue;
5772       auto *OI = cast<Instruction>(OV);
5773       if (all_of(OI->users(), [&](User *U) -> bool {
5774             auto *J = cast<Instruction>(U);
5775             return !TheLoop->contains(J) || Worklist.count(J) ||
5776                    (OI == getPointerOperand(J) && isUniformDecision(J, VF));
5777           })) {
5778         Worklist.insert(OI);
5779         DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
5780       }
5781     }
5782   }
5783 
5784   // Returns true if Ptr is the pointer operand of a memory access instruction
5785   // I, and I is known to not require scalarization.
5786   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5787     return getPointerOperand(I) == Ptr && isUniformDecision(I, VF);
5788   };
5789 
5790   // For an instruction to be added into Worklist above, all its users inside
5791   // the loop should also be in Worklist. However, this condition cannot be
5792   // true for phi nodes that form a cyclic dependence. We must process phi
5793   // nodes separately. An induction variable will remain uniform if all users
5794   // of the induction variable and induction variable update remain uniform.
5795   // The code below handles both pointer and non-pointer induction variables.
5796   for (auto &Induction : *Legal->getInductionVars()) {
5797     auto *Ind = Induction.first;
5798     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5799 
5800     // Determine if all users of the induction variable are uniform after
5801     // vectorization.
5802     auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
5803       auto *I = cast<Instruction>(U);
5804       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5805              isVectorizedMemAccessUse(I, Ind);
5806     });
5807     if (!UniformInd)
5808       continue;
5809 
5810     // Determine if all users of the induction variable update instruction are
5811     // uniform after vectorization.
5812     auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
5813       auto *I = cast<Instruction>(U);
5814       return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5815              isVectorizedMemAccessUse(I, IndUpdate);
5816     });
5817     if (!UniformIndUpdate)
5818       continue;
5819 
5820     // The induction variable and its update instruction will remain uniform.
5821     Worklist.insert(Ind);
5822     Worklist.insert(IndUpdate);
5823     DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
5824     DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n");
5825   }
5826 
5827   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5828 }
5829 
5830 bool LoopVectorizationLegality::canVectorizeMemory() {
5831   LAI = &(*GetLAA)(*TheLoop);
5832   InterleaveInfo.setLAI(LAI);
5833   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
5834   if (LAR) {
5835     OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(),
5836                                   "loop not vectorized: ", *LAR);
5837     ORE->emit(VR);
5838   }
5839   if (!LAI->canVectorizeMemory())
5840     return false;
5841 
5842   if (LAI->hasStoreToLoopInvariantAddress()) {
5843     ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
5844               << "write to a loop invariant address could not be vectorized");
5845     DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
5846     return false;
5847   }
5848 
5849   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
5850   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
5851 
5852   return true;
5853 }
5854 
5855 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5856   Value *In0 = const_cast<Value *>(V);
5857   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5858   if (!PN)
5859     return false;
5860 
5861   return Inductions.count(PN);
5862 }
5863 
5864 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
5865   return FirstOrderRecurrences.count(Phi);
5866 }
5867 
5868 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
5869   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
5870 }
5871 
5872 bool LoopVectorizationLegality::blockCanBePredicated(
5873     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
5874   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
5875 
5876   for (Instruction &I : *BB) {
5877     // Check that we don't have a constant expression that can trap as operand.
5878     for (Value *Operand : I.operands()) {
5879       if (auto *C = dyn_cast<Constant>(Operand))
5880         if (C->canTrap())
5881           return false;
5882     }
5883     // We might be able to hoist the load.
5884     if (I.mayReadFromMemory()) {
5885       auto *LI = dyn_cast<LoadInst>(&I);
5886       if (!LI)
5887         return false;
5888       if (!SafePtrs.count(LI->getPointerOperand())) {
5889         if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) ||
5890             isLegalMaskedGather(LI->getType())) {
5891           MaskedOp.insert(LI);
5892           continue;
5893         }
5894         // !llvm.mem.parallel_loop_access implies if-conversion safety.
5895         if (IsAnnotatedParallel)
5896           continue;
5897         return false;
5898       }
5899     }
5900 
5901     if (I.mayWriteToMemory()) {
5902       auto *SI = dyn_cast<StoreInst>(&I);
5903       // We only support predication of stores in basic blocks with one
5904       // predecessor.
5905       if (!SI)
5906         return false;
5907 
5908       // Build a masked store if it is legal for the target.
5909       if (isLegalMaskedStore(SI->getValueOperand()->getType(),
5910                              SI->getPointerOperand()) ||
5911           isLegalMaskedScatter(SI->getValueOperand()->getType())) {
5912         MaskedOp.insert(SI);
5913         continue;
5914       }
5915 
5916       bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
5917       bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
5918 
5919       if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
5920           !isSinglePredecessor)
5921         return false;
5922     }
5923     if (I.mayThrow())
5924       return false;
5925   }
5926 
5927   return true;
5928 }
5929 
5930 void InterleavedAccessInfo::collectConstStrideAccesses(
5931     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
5932     const ValueToValueMap &Strides) {
5933 
5934   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
5935 
5936   // Since it's desired that the load/store instructions be maintained in
5937   // "program order" for the interleaved access analysis, we have to visit the
5938   // blocks in the loop in reverse postorder (i.e., in a topological order).
5939   // Such an ordering will ensure that any load/store that may be executed
5940   // before a second load/store will precede the second load/store in
5941   // AccessStrideInfo.
5942   LoopBlocksDFS DFS(TheLoop);
5943   DFS.perform(LI);
5944   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
5945     for (auto &I : *BB) {
5946       auto *LI = dyn_cast<LoadInst>(&I);
5947       auto *SI = dyn_cast<StoreInst>(&I);
5948       if (!LI && !SI)
5949         continue;
5950 
5951       Value *Ptr = getPointerOperand(&I);
5952       // We don't check wrapping here because we don't know yet if Ptr will be
5953       // part of a full group or a group with gaps. Checking wrapping for all
5954       // pointers (even those that end up in groups with no gaps) will be overly
5955       // conservative. For full groups, wrapping should be ok since if we would
5956       // wrap around the address space we would do a memory access at nullptr
5957       // even without the transformation. The wrapping checks are therefore
5958       // deferred until after we've formed the interleaved groups.
5959       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
5960                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
5961 
5962       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
5963       PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
5964       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
5965 
5966       // An alignment of 0 means target ABI alignment.
5967       unsigned Align = getMemInstAlignment(&I);
5968       if (!Align)
5969         Align = DL.getABITypeAlignment(PtrTy->getElementType());
5970 
5971       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
5972     }
5973 }
5974 
5975 // Analyze interleaved accesses and collect them into interleaved load and
5976 // store groups.
5977 //
5978 // When generating code for an interleaved load group, we effectively hoist all
5979 // loads in the group to the location of the first load in program order. When
5980 // generating code for an interleaved store group, we sink all stores to the
5981 // location of the last store. This code motion can change the order of load
5982 // and store instructions and may break dependences.
5983 //
5984 // The code generation strategy mentioned above ensures that we won't violate
5985 // any write-after-read (WAR) dependences.
5986 //
5987 // E.g., for the WAR dependence:  a = A[i];      // (1)
5988 //                                A[i] = b;      // (2)
5989 //
5990 // The store group of (2) is always inserted at or below (2), and the load
5991 // group of (1) is always inserted at or above (1). Thus, the instructions will
5992 // never be reordered. All other dependences are checked to ensure the
5993 // correctness of the instruction reordering.
5994 //
5995 // The algorithm visits all memory accesses in the loop in bottom-up program
5996 // order. Program order is established by traversing the blocks in the loop in
5997 // reverse postorder when collecting the accesses.
5998 //
5999 // We visit the memory accesses in bottom-up order because it can simplify the
6000 // construction of store groups in the presence of write-after-write (WAW)
6001 // dependences.
6002 //
6003 // E.g., for the WAW dependence:  A[i] = a;      // (1)
6004 //                                A[i] = b;      // (2)
6005 //                                A[i + 1] = c;  // (3)
6006 //
6007 // We will first create a store group with (3) and (2). (1) can't be added to
6008 // this group because it and (2) are dependent. However, (1) can be grouped
6009 // with other accesses that may precede it in program order. Note that a
6010 // bottom-up order does not imply that WAW dependences should not be checked.
6011 void InterleavedAccessInfo::analyzeInterleaving(
6012     const ValueToValueMap &Strides) {
6013   DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
6014 
6015   // Holds all accesses with a constant stride.
6016   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
6017   collectConstStrideAccesses(AccessStrideInfo, Strides);
6018 
6019   if (AccessStrideInfo.empty())
6020     return;
6021 
6022   // Collect the dependences in the loop.
6023   collectDependences();
6024 
6025   // Holds all interleaved store groups temporarily.
6026   SmallSetVector<InterleaveGroup *, 4> StoreGroups;
6027   // Holds all interleaved load groups temporarily.
6028   SmallSetVector<InterleaveGroup *, 4> LoadGroups;
6029 
6030   // Search in bottom-up program order for pairs of accesses (A and B) that can
6031   // form interleaved load or store groups. In the algorithm below, access A
6032   // precedes access B in program order. We initialize a group for B in the
6033   // outer loop of the algorithm, and then in the inner loop, we attempt to
6034   // insert each A into B's group if:
6035   //
6036   //  1. A and B have the same stride,
6037   //  2. A and B have the same memory object size, and
6038   //  3. A belongs in B's group according to its distance from B.
6039   //
6040   // Special care is taken to ensure group formation will not break any
6041   // dependences.
6042   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
6043        BI != E; ++BI) {
6044     Instruction *B = BI->first;
6045     StrideDescriptor DesB = BI->second;
6046 
6047     // Initialize a group for B if it has an allowable stride. Even if we don't
6048     // create a group for B, we continue with the bottom-up algorithm to ensure
6049     // we don't break any of B's dependences.
6050     InterleaveGroup *Group = nullptr;
6051     if (isStrided(DesB.Stride)) {
6052       Group = getInterleaveGroup(B);
6053       if (!Group) {
6054         DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n');
6055         Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
6056       }
6057       if (B->mayWriteToMemory())
6058         StoreGroups.insert(Group);
6059       else
6060         LoadGroups.insert(Group);
6061     }
6062 
6063     for (auto AI = std::next(BI); AI != E; ++AI) {
6064       Instruction *A = AI->first;
6065       StrideDescriptor DesA = AI->second;
6066 
6067       // Our code motion strategy implies that we can't have dependences
6068       // between accesses in an interleaved group and other accesses located
6069       // between the first and last member of the group. Note that this also
6070       // means that a group can't have more than one member at a given offset.
6071       // The accesses in a group can have dependences with other accesses, but
6072       // we must ensure we don't extend the boundaries of the group such that
6073       // we encompass those dependent accesses.
6074       //
6075       // For example, assume we have the sequence of accesses shown below in a
6076       // stride-2 loop:
6077       //
6078       //  (1, 2) is a group | A[i]   = a;  // (1)
6079       //                    | A[i-1] = b;  // (2) |
6080       //                      A[i-3] = c;  // (3)
6081       //                      A[i]   = d;  // (4) | (2, 4) is not a group
6082       //
6083       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
6084       // but not with (4). If we did, the dependent access (3) would be within
6085       // the boundaries of the (2, 4) group.
6086       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
6087 
6088         // If a dependence exists and A is already in a group, we know that A
6089         // must be a store since A precedes B and WAR dependences are allowed.
6090         // Thus, A would be sunk below B. We release A's group to prevent this
6091         // illegal code motion. A will then be free to form another group with
6092         // instructions that precede it.
6093         if (isInterleaved(A)) {
6094           InterleaveGroup *StoreGroup = getInterleaveGroup(A);
6095           StoreGroups.remove(StoreGroup);
6096           releaseGroup(StoreGroup);
6097         }
6098 
6099         // If a dependence exists and A is not already in a group (or it was
6100         // and we just released it), B might be hoisted above A (if B is a
6101         // load) or another store might be sunk below A (if B is a store). In
6102         // either case, we can't add additional instructions to B's group. B
6103         // will only form a group with instructions that it precedes.
6104         break;
6105       }
6106 
6107       // At this point, we've checked for illegal code motion. If either A or B
6108       // isn't strided, there's nothing left to do.
6109       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
6110         continue;
6111 
6112       // Ignore A if it's already in a group or isn't the same kind of memory
6113       // operation as B.
6114       if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory())
6115         continue;
6116 
6117       // Check rules 1 and 2. Ignore A if its stride or size is different from
6118       // that of B.
6119       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
6120         continue;
6121 
6122       // Ignore A if the memory object of A and B don't belong to the same
6123       // address space
6124       if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B))
6125         continue;
6126 
6127       // Calculate the distance from A to B.
6128       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
6129           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
6130       if (!DistToB)
6131         continue;
6132       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
6133 
6134       // Check rule 3. Ignore A if its distance to B is not a multiple of the
6135       // size.
6136       if (DistanceToB % static_cast<int64_t>(DesB.Size))
6137         continue;
6138 
6139       // Ignore A if either A or B is in a predicated block. Although we
6140       // currently prevent group formation for predicated accesses, we may be
6141       // able to relax this limitation in the future once we handle more
6142       // complicated blocks.
6143       if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
6144         continue;
6145 
6146       // The index of A is the index of B plus A's distance to B in multiples
6147       // of the size.
6148       int IndexA =
6149           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
6150 
6151       // Try to insert A into B's group.
6152       if (Group->insertMember(A, IndexA, DesA.Align)) {
6153         DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
6154                      << "    into the interleave group with" << *B << '\n');
6155         InterleaveGroupMap[A] = Group;
6156 
6157         // Set the first load in program order as the insert position.
6158         if (A->mayReadFromMemory())
6159           Group->setInsertPos(A);
6160       }
6161     } // Iteration over A accesses.
6162   } // Iteration over B accesses.
6163 
6164   // Remove interleaved store groups with gaps.
6165   for (InterleaveGroup *Group : StoreGroups)
6166     if (Group->getNumMembers() != Group->getFactor())
6167       releaseGroup(Group);
6168 
6169   // Remove interleaved groups with gaps (currently only loads) whose memory
6170   // accesses may wrap around. We have to revisit the getPtrStride analysis,
6171   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
6172   // not check wrapping (see documentation there).
6173   // FORNOW we use Assume=false;
6174   // TODO: Change to Assume=true but making sure we don't exceed the threshold
6175   // of runtime SCEV assumptions checks (thereby potentially failing to
6176   // vectorize altogether).
6177   // Additional optional optimizations:
6178   // TODO: If we are peeling the loop and we know that the first pointer doesn't
6179   // wrap then we can deduce that all pointers in the group don't wrap.
6180   // This means that we can forcefully peel the loop in order to only have to
6181   // check the first pointer for no-wrap. When we'll change to use Assume=true
6182   // we'll only need at most one runtime check per interleaved group.
6183   //
6184   for (InterleaveGroup *Group : LoadGroups) {
6185 
6186     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
6187     // load would wrap around the address space we would do a memory access at
6188     // nullptr even without the transformation.
6189     if (Group->getNumMembers() == Group->getFactor())
6190       continue;
6191 
6192     // Case 2: If first and last members of the group don't wrap this implies
6193     // that all the pointers in the group don't wrap.
6194     // So we check only group member 0 (which is always guaranteed to exist),
6195     // and group member Factor - 1; If the latter doesn't exist we rely on
6196     // peeling (if it is a non-reveresed accsess -- see Case 3).
6197     Value *FirstMemberPtr = getPointerOperand(Group->getMember(0));
6198     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
6199                       /*ShouldCheckWrap=*/true)) {
6200       DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
6201                       "first group member potentially pointer-wrapping.\n");
6202       releaseGroup(Group);
6203       continue;
6204     }
6205     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
6206     if (LastMember) {
6207       Value *LastMemberPtr = getPointerOperand(LastMember);
6208       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
6209                         /*ShouldCheckWrap=*/true)) {
6210         DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
6211                         "last group member potentially pointer-wrapping.\n");
6212         releaseGroup(Group);
6213       }
6214     } else {
6215       // Case 3: A non-reversed interleaved load group with gaps: We need
6216       // to execute at least one scalar epilogue iteration. This will ensure
6217       // we don't speculatively access memory out-of-bounds. We only need
6218       // to look for a member at index factor - 1, since every group must have
6219       // a member at index zero.
6220       if (Group->isReverse()) {
6221         releaseGroup(Group);
6222         continue;
6223       }
6224       DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
6225       RequiresScalarEpilogue = true;
6226     }
6227   }
6228 }
6229 
6230 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
6231   if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
6232     ORE->emit(createMissedAnalysis("ConditionalStore")
6233               << "store that is conditionally executed prevents vectorization");
6234     DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
6235     return None;
6236   }
6237 
6238   if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
6239     return computeFeasibleMaxVF(OptForSize);
6240 
6241   if (Legal->getRuntimePointerChecking()->Need) {
6242     ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
6243               << "runtime pointer checks needed. Enable vectorization of this "
6244                  "loop with '#pragma clang loop vectorize(enable)' when "
6245                  "compiling with -Os/-Oz");
6246     DEBUG(dbgs()
6247           << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
6248     return None;
6249   }
6250 
6251   // If we optimize the program for size, avoid creating the tail loop.
6252   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6253   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
6254 
6255   // If we don't know the precise trip count, don't try to vectorize.
6256   if (TC < 2) {
6257     ORE->emit(
6258         createMissedAnalysis("UnknownLoopCountComplexCFG")
6259         << "unable to calculate the loop count due to complex control flow");
6260     DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
6261     return None;
6262   }
6263 
6264   unsigned MaxVF = computeFeasibleMaxVF(OptForSize);
6265 
6266   if (TC % MaxVF != 0) {
6267     // If the trip count that we found modulo the vectorization factor is not
6268     // zero then we require a tail.
6269     // FIXME: look for a smaller MaxVF that does divide TC rather than give up.
6270     // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a
6271     //        smaller MaxVF that does not require a scalar epilog.
6272 
6273     ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
6274               << "cannot optimize for size and vectorize at the "
6275                  "same time. Enable vectorization of this loop "
6276                  "with '#pragma clang loop vectorize(enable)' "
6277                  "when compiling with -Os/-Oz");
6278     DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
6279     return None;
6280   }
6281 
6282   return MaxVF;
6283 }
6284 
6285 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) {
6286   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
6287   unsigned SmallestType, WidestType;
6288   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
6289   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
6290   unsigned MaxSafeDepDist = -1U;
6291 
6292   // Get the maximum safe dependence distance in bits computed by LAA. If the
6293   // loop contains any interleaved accesses, we divide the dependence distance
6294   // by the maximum interleave factor of all interleaved groups. Note that
6295   // although the division ensures correctness, this is a fairly conservative
6296   // computation because the maximum distance computed by LAA may not involve
6297   // any of the interleaved accesses.
6298   if (Legal->getMaxSafeDepDistBytes() != -1U)
6299     MaxSafeDepDist =
6300         Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor();
6301 
6302   WidestRegister =
6303       ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist);
6304   unsigned MaxVectorSize = WidestRegister / WidestType;
6305 
6306   DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
6307                << WidestType << " bits.\n");
6308   DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister
6309                << " bits.\n");
6310 
6311   if (MaxVectorSize == 0) {
6312     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
6313     MaxVectorSize = 1;
6314   }
6315 
6316   assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
6317                                 " into one vector!");
6318 
6319   unsigned MaxVF = MaxVectorSize;
6320   if (MaximizeBandwidth && !OptForSize) {
6321     // Collect all viable vectorization factors.
6322     SmallVector<unsigned, 8> VFs;
6323     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
6324     for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2)
6325       VFs.push_back(VS);
6326 
6327     // For each VF calculate its register usage.
6328     auto RUs = calculateRegisterUsage(VFs);
6329 
6330     // Select the largest VF which doesn't require more registers than existing
6331     // ones.
6332     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
6333     for (int i = RUs.size() - 1; i >= 0; --i) {
6334       if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
6335         MaxVF = VFs[i];
6336         break;
6337       }
6338     }
6339   }
6340   return MaxVF;
6341 }
6342 
6343 LoopVectorizationCostModel::VectorizationFactor
6344 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
6345   float Cost = expectedCost(1).first;
6346 #ifndef NDEBUG
6347   const float ScalarCost = Cost;
6348 #endif /* NDEBUG */
6349   unsigned Width = 1;
6350   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
6351 
6352   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6353   // Ignore scalar width, because the user explicitly wants vectorization.
6354   if (ForceVectorization && MaxVF > 1) {
6355     Width = 2;
6356     Cost = expectedCost(Width).first / (float)Width;
6357   }
6358 
6359   for (unsigned i = 2; i <= MaxVF; i *= 2) {
6360     // Notice that the vector loop needs to be executed less times, so
6361     // we need to divide the cost of the vector loops by the width of
6362     // the vector elements.
6363     VectorizationCostTy C = expectedCost(i);
6364     float VectorCost = C.first / (float)i;
6365     DEBUG(dbgs() << "LV: Vector loop of width " << i
6366                  << " costs: " << (int)VectorCost << ".\n");
6367     if (!C.second && !ForceVectorization) {
6368       DEBUG(
6369           dbgs() << "LV: Not considering vector loop of width " << i
6370                  << " because it will not generate any vector instructions.\n");
6371       continue;
6372     }
6373     if (VectorCost < Cost) {
6374       Cost = VectorCost;
6375       Width = i;
6376     }
6377   }
6378 
6379   DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
6380         << "LV: Vectorization seems to be not beneficial, "
6381         << "but was forced by a user.\n");
6382   DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
6383   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
6384   return Factor;
6385 }
6386 
6387 std::pair<unsigned, unsigned>
6388 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6389   unsigned MinWidth = -1U;
6390   unsigned MaxWidth = 8;
6391   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6392 
6393   // For each block.
6394   for (BasicBlock *BB : TheLoop->blocks()) {
6395     // For each instruction in the loop.
6396     for (Instruction &I : *BB) {
6397       Type *T = I.getType();
6398 
6399       // Skip ignored values.
6400       if (ValuesToIgnore.count(&I))
6401         continue;
6402 
6403       // Only examine Loads, Stores and PHINodes.
6404       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6405         continue;
6406 
6407       // Examine PHI nodes that are reduction variables. Update the type to
6408       // account for the recurrence type.
6409       if (auto *PN = dyn_cast<PHINode>(&I)) {
6410         if (!Legal->isReductionVariable(PN))
6411           continue;
6412         RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
6413         T = RdxDesc.getRecurrenceType();
6414       }
6415 
6416       // Examine the stored values.
6417       if (auto *ST = dyn_cast<StoreInst>(&I))
6418         T = ST->getValueOperand()->getType();
6419 
6420       // Ignore loaded pointer types and stored pointer types that are not
6421       // vectorizable.
6422       //
6423       // FIXME: The check here attempts to predict whether a load or store will
6424       //        be vectorized. We only know this for certain after a VF has
6425       //        been selected. Here, we assume that if an access can be
6426       //        vectorized, it will be. We should also look at extending this
6427       //        optimization to non-pointer types.
6428       //
6429       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6430           !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I))
6431         continue;
6432 
6433       MinWidth = std::min(MinWidth,
6434                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6435       MaxWidth = std::max(MaxWidth,
6436                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6437     }
6438   }
6439 
6440   return {MinWidth, MaxWidth};
6441 }
6442 
6443 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
6444                                                            unsigned VF,
6445                                                            unsigned LoopCost) {
6446 
6447   // -- The interleave heuristics --
6448   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6449   // There are many micro-architectural considerations that we can't predict
6450   // at this level. For example, frontend pressure (on decode or fetch) due to
6451   // code size, or the number and capabilities of the execution ports.
6452   //
6453   // We use the following heuristics to select the interleave count:
6454   // 1. If the code has reductions, then we interleave to break the cross
6455   // iteration dependency.
6456   // 2. If the loop is really small, then we interleave to reduce the loop
6457   // overhead.
6458   // 3. We don't interleave if we think that we will spill registers to memory
6459   // due to the increased register pressure.
6460 
6461   // When we optimize for size, we don't interleave.
6462   if (OptForSize)
6463     return 1;
6464 
6465   // We used the distance for the interleave count.
6466   if (Legal->getMaxSafeDepDistBytes() != -1U)
6467     return 1;
6468 
6469   // Do not interleave loops with a relatively small trip count.
6470   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6471   if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
6472     return 1;
6473 
6474   unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
6475   DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6476                << " registers\n");
6477 
6478   if (VF == 1) {
6479     if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6480       TargetNumRegisters = ForceTargetNumScalarRegs;
6481   } else {
6482     if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6483       TargetNumRegisters = ForceTargetNumVectorRegs;
6484   }
6485 
6486   RegisterUsage R = calculateRegisterUsage({VF})[0];
6487   // We divide by these constants so assume that we have at least one
6488   // instruction that uses at least one register.
6489   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
6490   R.NumInstructions = std::max(R.NumInstructions, 1U);
6491 
6492   // We calculate the interleave count using the following formula.
6493   // Subtract the number of loop invariants from the number of available
6494   // registers. These registers are used by all of the interleaved instances.
6495   // Next, divide the remaining registers by the number of registers that is
6496   // required by the loop, in order to estimate how many parallel instances
6497   // fit without causing spills. All of this is rounded down if necessary to be
6498   // a power of two. We want power of two interleave count to simplify any
6499   // addressing operations or alignment considerations.
6500   unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
6501                               R.MaxLocalUsers);
6502 
6503   // Don't count the induction variable as interleaved.
6504   if (EnableIndVarRegisterHeur)
6505     IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
6506                        std::max(1U, (R.MaxLocalUsers - 1)));
6507 
6508   // Clamp the interleave ranges to reasonable counts.
6509   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
6510 
6511   // Check if the user has overridden the max.
6512   if (VF == 1) {
6513     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6514       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6515   } else {
6516     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6517       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6518   }
6519 
6520   // If we did not calculate the cost for VF (because the user selected the VF)
6521   // then we calculate the cost of VF here.
6522   if (LoopCost == 0)
6523     LoopCost = expectedCost(VF).first;
6524 
6525   // Clamp the calculated IC to be between the 1 and the max interleave count
6526   // that the target allows.
6527   if (IC > MaxInterleaveCount)
6528     IC = MaxInterleaveCount;
6529   else if (IC < 1)
6530     IC = 1;
6531 
6532   // Interleave if we vectorized this loop and there is a reduction that could
6533   // benefit from interleaving.
6534   if (VF > 1 && Legal->getReductionVars()->size()) {
6535     DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6536     return IC;
6537   }
6538 
6539   // Note that if we've already vectorized the loop we will have done the
6540   // runtime check and so interleaving won't require further checks.
6541   bool InterleavingRequiresRuntimePointerCheck =
6542       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
6543 
6544   // We want to interleave small loops in order to reduce the loop overhead and
6545   // potentially expose ILP opportunities.
6546   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
6547   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6548     // We assume that the cost overhead is 1 and we use the cost model
6549     // to estimate the cost of the loop and interleave until the cost of the
6550     // loop overhead is about 5% of the cost of the loop.
6551     unsigned SmallIC =
6552         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6553 
6554     // Interleave until store/load ports (estimated by max interleave count) are
6555     // saturated.
6556     unsigned NumStores = Legal->getNumStores();
6557     unsigned NumLoads = Legal->getNumLoads();
6558     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6559     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6560 
6561     // If we have a scalar reduction (vector reductions are already dealt with
6562     // by this point), we can increase the critical path length if the loop
6563     // we're interleaving is inside another loop. Limit, by default to 2, so the
6564     // critical path only gets increased by one reduction operation.
6565     if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) {
6566       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6567       SmallIC = std::min(SmallIC, F);
6568       StoresIC = std::min(StoresIC, F);
6569       LoadsIC = std::min(LoadsIC, F);
6570     }
6571 
6572     if (EnableLoadStoreRuntimeInterleave &&
6573         std::max(StoresIC, LoadsIC) > SmallIC) {
6574       DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6575       return std::max(StoresIC, LoadsIC);
6576     }
6577 
6578     DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6579     return SmallIC;
6580   }
6581 
6582   // Interleave if this is a large loop (small loops are already dealt with by
6583   // this point) that could benefit from interleaving.
6584   bool HasReductions = (Legal->getReductionVars()->size() > 0);
6585   if (TTI.enableAggressiveInterleaving(HasReductions)) {
6586     DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6587     return IC;
6588   }
6589 
6590   DEBUG(dbgs() << "LV: Not Interleaving.\n");
6591   return 1;
6592 }
6593 
6594 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6595 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
6596   // This function calculates the register usage by measuring the highest number
6597   // of values that are alive at a single location. Obviously, this is a very
6598   // rough estimation. We scan the loop in a topological order in order and
6599   // assign a number to each instruction. We use RPO to ensure that defs are
6600   // met before their users. We assume that each instruction that has in-loop
6601   // users starts an interval. We record every time that an in-loop value is
6602   // used, so we have a list of the first and last occurrences of each
6603   // instruction. Next, we transpose this data structure into a multi map that
6604   // holds the list of intervals that *end* at a specific location. This multi
6605   // map allows us to perform a linear search. We scan the instructions linearly
6606   // and record each time that a new interval starts, by placing it in a set.
6607   // If we find this value in the multi-map then we remove it from the set.
6608   // The max register usage is the maximum size of the set.
6609   // We also search for instructions that are defined outside the loop, but are
6610   // used inside the loop. We need this number separately from the max-interval
6611   // usage number because when we unroll, loop-invariant values do not take
6612   // more register.
6613   LoopBlocksDFS DFS(TheLoop);
6614   DFS.perform(LI);
6615 
6616   RegisterUsage RU;
6617   RU.NumInstructions = 0;
6618 
6619   // Each 'key' in the map opens a new interval. The values
6620   // of the map are the index of the 'last seen' usage of the
6621   // instruction that is the key.
6622   typedef DenseMap<Instruction *, unsigned> IntervalMap;
6623   // Maps instruction to its index.
6624   DenseMap<unsigned, Instruction *> IdxToInstr;
6625   // Marks the end of each interval.
6626   IntervalMap EndPoint;
6627   // Saves the list of instruction indices that are used in the loop.
6628   SmallSet<Instruction *, 8> Ends;
6629   // Saves the list of values that are used in the loop but are
6630   // defined outside the loop, such as arguments and constants.
6631   SmallPtrSet<Value *, 8> LoopInvariants;
6632 
6633   unsigned Index = 0;
6634   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6635     RU.NumInstructions += BB->size();
6636     for (Instruction &I : *BB) {
6637       IdxToInstr[Index++] = &I;
6638 
6639       // Save the end location of each USE.
6640       for (Value *U : I.operands()) {
6641         auto *Instr = dyn_cast<Instruction>(U);
6642 
6643         // Ignore non-instruction values such as arguments, constants, etc.
6644         if (!Instr)
6645           continue;
6646 
6647         // If this instruction is outside the loop then record it and continue.
6648         if (!TheLoop->contains(Instr)) {
6649           LoopInvariants.insert(Instr);
6650           continue;
6651         }
6652 
6653         // Overwrite previous end points.
6654         EndPoint[Instr] = Index;
6655         Ends.insert(Instr);
6656       }
6657     }
6658   }
6659 
6660   // Saves the list of intervals that end with the index in 'key'.
6661   typedef SmallVector<Instruction *, 2> InstrList;
6662   DenseMap<unsigned, InstrList> TransposeEnds;
6663 
6664   // Transpose the EndPoints to a list of values that end at each index.
6665   for (auto &Interval : EndPoint)
6666     TransposeEnds[Interval.second].push_back(Interval.first);
6667 
6668   SmallSet<Instruction *, 8> OpenIntervals;
6669 
6670   // Get the size of the widest register.
6671   unsigned MaxSafeDepDist = -1U;
6672   if (Legal->getMaxSafeDepDistBytes() != -1U)
6673     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
6674   unsigned WidestRegister =
6675       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
6676   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6677 
6678   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6679   SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
6680 
6681   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6682 
6683   // A lambda that gets the register usage for the given type and VF.
6684   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
6685     if (Ty->isTokenTy())
6686       return 0U;
6687     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
6688     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
6689   };
6690 
6691   for (unsigned int i = 0; i < Index; ++i) {
6692     Instruction *I = IdxToInstr[i];
6693 
6694     // Remove all of the instructions that end at this location.
6695     InstrList &List = TransposeEnds[i];
6696     for (Instruction *ToRemove : List)
6697       OpenIntervals.erase(ToRemove);
6698 
6699     // Ignore instructions that are never used within the loop.
6700     if (!Ends.count(I))
6701       continue;
6702 
6703     // Skip ignored values.
6704     if (ValuesToIgnore.count(I))
6705       continue;
6706 
6707     // For each VF find the maximum usage of registers.
6708     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6709       if (VFs[j] == 1) {
6710         MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
6711         continue;
6712       }
6713       collectUniformsAndScalars(VFs[j]);
6714       // Count the number of live intervals.
6715       unsigned RegUsage = 0;
6716       for (auto Inst : OpenIntervals) {
6717         // Skip ignored values for VF > 1.
6718         if (VecValuesToIgnore.count(Inst) ||
6719             isScalarAfterVectorization(Inst, VFs[j]))
6720           continue;
6721         RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
6722       }
6723       MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
6724     }
6725 
6726     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6727                  << OpenIntervals.size() << '\n');
6728 
6729     // Add the current instruction to the list of open intervals.
6730     OpenIntervals.insert(I);
6731   }
6732 
6733   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6734     unsigned Invariant = 0;
6735     if (VFs[i] == 1)
6736       Invariant = LoopInvariants.size();
6737     else {
6738       for (auto Inst : LoopInvariants)
6739         Invariant += GetRegUsage(Inst->getType(), VFs[i]);
6740     }
6741 
6742     DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
6743     DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
6744     DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
6745     DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n');
6746 
6747     RU.LoopInvariantRegs = Invariant;
6748     RU.MaxLocalUsers = MaxUsages[i];
6749     RUs[i] = RU;
6750   }
6751 
6752   return RUs;
6753 }
6754 
6755 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
6756 
6757   // If we aren't vectorizing the loop, or if we've already collected the
6758   // instructions to scalarize, there's nothing to do. Collection may already
6759   // have occurred if we have a user-selected VF and are now computing the
6760   // expected cost for interleaving.
6761   if (VF < 2 || InstsToScalarize.count(VF))
6762     return;
6763 
6764   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6765   // not profitable to scalarize any instructions, the presence of VF in the
6766   // map will indicate that we've analyzed it already.
6767   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6768 
6769   // Find all the instructions that are scalar with predication in the loop and
6770   // determine if it would be better to not if-convert the blocks they are in.
6771   // If so, we also record the instructions to scalarize.
6772   for (BasicBlock *BB : TheLoop->blocks()) {
6773     if (!Legal->blockNeedsPredication(BB))
6774       continue;
6775     for (Instruction &I : *BB)
6776       if (Legal->isScalarWithPredication(&I)) {
6777         ScalarCostsTy ScalarCosts;
6778         if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6779           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6780 
6781         // Remember that BB will remain after vectorization.
6782         PredicatedBBsAfterVectorization.insert(BB);
6783       }
6784   }
6785 }
6786 
6787 int LoopVectorizationCostModel::computePredInstDiscount(
6788     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
6789     unsigned VF) {
6790 
6791   assert(!isUniformAfterVectorization(PredInst, VF) &&
6792          "Instruction marked uniform-after-vectorization will be predicated");
6793 
6794   // Initialize the discount to zero, meaning that the scalar version and the
6795   // vector version cost the same.
6796   int Discount = 0;
6797 
6798   // Holds instructions to analyze. The instructions we visit are mapped in
6799   // ScalarCosts. Those instructions are the ones that would be scalarized if
6800   // we find that the scalar version costs less.
6801   SmallVector<Instruction *, 8> Worklist;
6802 
6803   // Returns true if the given instruction can be scalarized.
6804   auto canBeScalarized = [&](Instruction *I) -> bool {
6805 
6806     // We only attempt to scalarize instructions forming a single-use chain
6807     // from the original predicated block that would otherwise be vectorized.
6808     // Although not strictly necessary, we give up on instructions we know will
6809     // already be scalar to avoid traversing chains that are unlikely to be
6810     // beneficial.
6811     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6812         isScalarAfterVectorization(I, VF))
6813       return false;
6814 
6815     // If the instruction is scalar with predication, it will be analyzed
6816     // separately. We ignore it within the context of PredInst.
6817     if (Legal->isScalarWithPredication(I))
6818       return false;
6819 
6820     // If any of the instruction's operands are uniform after vectorization,
6821     // the instruction cannot be scalarized. This prevents, for example, a
6822     // masked load from being scalarized.
6823     //
6824     // We assume we will only emit a value for lane zero of an instruction
6825     // marked uniform after vectorization, rather than VF identical values.
6826     // Thus, if we scalarize an instruction that uses a uniform, we would
6827     // create uses of values corresponding to the lanes we aren't emitting code
6828     // for. This behavior can be changed by allowing getScalarValue to clone
6829     // the lane zero values for uniforms rather than asserting.
6830     for (Use &U : I->operands())
6831       if (auto *J = dyn_cast<Instruction>(U.get()))
6832         if (isUniformAfterVectorization(J, VF))
6833           return false;
6834 
6835     // Otherwise, we can scalarize the instruction.
6836     return true;
6837   };
6838 
6839   // Returns true if an operand that cannot be scalarized must be extracted
6840   // from a vector. We will account for this scalarization overhead below. Note
6841   // that the non-void predicated instructions are placed in their own blocks,
6842   // and their return values are inserted into vectors. Thus, an extract would
6843   // still be required.
6844   auto needsExtract = [&](Instruction *I) -> bool {
6845     return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
6846   };
6847 
6848   // Compute the expected cost discount from scalarizing the entire expression
6849   // feeding the predicated instruction. We currently only consider expressions
6850   // that are single-use instruction chains.
6851   Worklist.push_back(PredInst);
6852   while (!Worklist.empty()) {
6853     Instruction *I = Worklist.pop_back_val();
6854 
6855     // If we've already analyzed the instruction, there's nothing to do.
6856     if (ScalarCosts.count(I))
6857       continue;
6858 
6859     // Compute the cost of the vector instruction. Note that this cost already
6860     // includes the scalarization overhead of the predicated instruction.
6861     unsigned VectorCost = getInstructionCost(I, VF).first;
6862 
6863     // Compute the cost of the scalarized instruction. This cost is the cost of
6864     // the instruction as if it wasn't if-converted and instead remained in the
6865     // predicated block. We will scale this cost by block probability after
6866     // computing the scalarization overhead.
6867     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
6868 
6869     // Compute the scalarization overhead of needed insertelement instructions
6870     // and phi nodes.
6871     if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6872       ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
6873                                                  true, false);
6874       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
6875     }
6876 
6877     // Compute the scalarization overhead of needed extractelement
6878     // instructions. For each of the instruction's operands, if the operand can
6879     // be scalarized, add it to the worklist; otherwise, account for the
6880     // overhead.
6881     for (Use &U : I->operands())
6882       if (auto *J = dyn_cast<Instruction>(U.get())) {
6883         assert(VectorType::isValidElementType(J->getType()) &&
6884                "Instruction has non-scalar type");
6885         if (canBeScalarized(J))
6886           Worklist.push_back(J);
6887         else if (needsExtract(J))
6888           ScalarCost += TTI.getScalarizationOverhead(
6889                               ToVectorTy(J->getType(),VF), false, true);
6890       }
6891 
6892     // Scale the total scalar cost by block probability.
6893     ScalarCost /= getReciprocalPredBlockProb();
6894 
6895     // Compute the discount. A non-negative discount means the vector version
6896     // of the instruction costs more, and scalarizing would be beneficial.
6897     Discount += VectorCost - ScalarCost;
6898     ScalarCosts[I] = ScalarCost;
6899   }
6900 
6901   return Discount;
6902 }
6903 
6904 LoopVectorizationCostModel::VectorizationCostTy
6905 LoopVectorizationCostModel::expectedCost(unsigned VF) {
6906   VectorizationCostTy Cost;
6907 
6908   // Collect Uniform and Scalar instructions after vectorization with VF.
6909   collectUniformsAndScalars(VF);
6910 
6911   // Collect the instructions (and their associated costs) that will be more
6912   // profitable to scalarize.
6913   collectInstsToScalarize(VF);
6914 
6915   // For each block.
6916   for (BasicBlock *BB : TheLoop->blocks()) {
6917     VectorizationCostTy BlockCost;
6918 
6919     // For each instruction in the old loop.
6920     for (Instruction &I : *BB) {
6921       // Skip dbg intrinsics.
6922       if (isa<DbgInfoIntrinsic>(I))
6923         continue;
6924 
6925       // Skip ignored values.
6926       if (ValuesToIgnore.count(&I))
6927         continue;
6928 
6929       VectorizationCostTy C = getInstructionCost(&I, VF);
6930 
6931       // Check if we should override the cost.
6932       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6933         C.first = ForceTargetInstructionCost;
6934 
6935       BlockCost.first += C.first;
6936       BlockCost.second |= C.second;
6937       DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "
6938                    << VF << " For instruction: " << I << '\n');
6939     }
6940 
6941     // If we are vectorizing a predicated block, it will have been
6942     // if-converted. This means that the block's instructions (aside from
6943     // stores and instructions that may divide by zero) will now be
6944     // unconditionally executed. For the scalar case, we may not always execute
6945     // the predicated block. Thus, scale the block's cost by the probability of
6946     // executing it.
6947     if (VF == 1 && Legal->blockNeedsPredication(BB))
6948       BlockCost.first /= getReciprocalPredBlockProb();
6949 
6950     Cost.first += BlockCost.first;
6951     Cost.second |= BlockCost.second;
6952   }
6953 
6954   return Cost;
6955 }
6956 
6957 /// \brief Gets Address Access SCEV after verifying that the access pattern
6958 /// is loop invariant except the induction variable dependence.
6959 ///
6960 /// This SCEV can be sent to the Target in order to estimate the address
6961 /// calculation cost.
6962 static const SCEV *getAddressAccessSCEV(
6963               Value *Ptr,
6964               LoopVectorizationLegality *Legal,
6965               ScalarEvolution *SE,
6966               const Loop *TheLoop) {
6967   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6968   if (!Gep)
6969     return nullptr;
6970 
6971   // We are looking for a gep with all loop invariant indices except for one
6972   // which should be an induction variable.
6973   unsigned NumOperands = Gep->getNumOperands();
6974   for (unsigned i = 1; i < NumOperands; ++i) {
6975     Value *Opd = Gep->getOperand(i);
6976     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6977         !Legal->isInductionVariable(Opd))
6978       return nullptr;
6979   }
6980 
6981   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6982   return SE->getSCEV(Ptr);
6983 }
6984 
6985 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6986   return Legal->hasStride(I->getOperand(0)) ||
6987          Legal->hasStride(I->getOperand(1));
6988 }
6989 
6990 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6991                                                                  unsigned VF) {
6992   Type *ValTy = getMemInstValueType(I);
6993   auto SE = PSE.getSE();
6994 
6995   unsigned Alignment = getMemInstAlignment(I);
6996   unsigned AS = getMemInstAddressSpace(I);
6997   Value *Ptr = getPointerOperand(I);
6998   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6999 
7000   // Figure out whether the access is strided and get the stride value
7001   // if it's known in compile time
7002   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop);
7003 
7004   // Get the cost of the scalar memory instruction and address computation.
7005   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7006 
7007   Cost += VF *
7008           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7009                               AS, I);
7010 
7011   // Get the overhead of the extractelement and insertelement instructions
7012   // we might create due to scalarization.
7013   Cost += getScalarizationOverhead(I, VF, TTI);
7014 
7015   // If we have a predicated store, it may not be executed for each vector
7016   // lane. Scale the cost by the probability of executing the predicated
7017   // block.
7018   if (Legal->isScalarWithPredication(I))
7019     Cost /= getReciprocalPredBlockProb();
7020 
7021   return Cost;
7022 }
7023 
7024 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7025                                                              unsigned VF) {
7026   Type *ValTy = getMemInstValueType(I);
7027   Type *VectorTy = ToVectorTy(ValTy, VF);
7028   unsigned Alignment = getMemInstAlignment(I);
7029   Value *Ptr = getPointerOperand(I);
7030   unsigned AS = getMemInstAddressSpace(I);
7031   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7032 
7033   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7034          "Stride should be 1 or -1 for consecutive memory access");
7035   unsigned Cost = 0;
7036   if (Legal->isMaskRequired(I))
7037     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
7038   else
7039     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
7040 
7041   bool Reverse = ConsecutiveStride < 0;
7042   if (Reverse)
7043     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
7044   return Cost;
7045 }
7046 
7047 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7048                                                          unsigned VF) {
7049   LoadInst *LI = cast<LoadInst>(I);
7050   Type *ValTy = LI->getType();
7051   Type *VectorTy = ToVectorTy(ValTy, VF);
7052   unsigned Alignment = LI->getAlignment();
7053   unsigned AS = LI->getPointerAddressSpace();
7054 
7055   return TTI.getAddressComputationCost(ValTy) +
7056          TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
7057          TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7058 }
7059 
7060 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7061                                                           unsigned VF) {
7062   Type *ValTy = getMemInstValueType(I);
7063   Type *VectorTy = ToVectorTy(ValTy, VF);
7064   unsigned Alignment = getMemInstAlignment(I);
7065   Value *Ptr = getPointerOperand(I);
7066 
7067   return TTI.getAddressComputationCost(VectorTy) +
7068          TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
7069                                     Legal->isMaskRequired(I), Alignment);
7070 }
7071 
7072 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7073                                                             unsigned VF) {
7074   Type *ValTy = getMemInstValueType(I);
7075   Type *VectorTy = ToVectorTy(ValTy, VF);
7076   unsigned AS = getMemInstAddressSpace(I);
7077 
7078   auto Group = Legal->getInterleavedAccessGroup(I);
7079   assert(Group && "Fail to get an interleaved access group.");
7080 
7081   unsigned InterleaveFactor = Group->getFactor();
7082   Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7083 
7084   // Holds the indices of existing members in an interleaved load group.
7085   // An interleaved store group doesn't need this as it doesn't allow gaps.
7086   SmallVector<unsigned, 4> Indices;
7087   if (isa<LoadInst>(I)) {
7088     for (unsigned i = 0; i < InterleaveFactor; i++)
7089       if (Group->getMember(i))
7090         Indices.push_back(i);
7091   }
7092 
7093   // Calculate the cost of the whole interleaved group.
7094   unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy,
7095                                                  Group->getFactor(), Indices,
7096                                                  Group->getAlignment(), AS);
7097 
7098   if (Group->isReverse())
7099     Cost += Group->getNumMembers() *
7100             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
7101   return Cost;
7102 }
7103 
7104 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7105                                                               unsigned VF) {
7106 
7107   // Calculate scalar cost only. Vectorization cost should be ready at this
7108   // moment.
7109   if (VF == 1) {
7110     Type *ValTy = getMemInstValueType(I);
7111     unsigned Alignment = getMemInstAlignment(I);
7112     unsigned AS = getMemInstAddressSpace(I);
7113 
7114     return TTI.getAddressComputationCost(ValTy) +
7115            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
7116   }
7117   return getWideningCost(I, VF);
7118 }
7119 
7120 LoopVectorizationCostModel::VectorizationCostTy
7121 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
7122   // If we know that this instruction will remain uniform, check the cost of
7123   // the scalar version.
7124   if (isUniformAfterVectorization(I, VF))
7125     VF = 1;
7126 
7127   if (VF > 1 && isProfitableToScalarize(I, VF))
7128     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7129 
7130   Type *VectorTy;
7131   unsigned C = getInstructionCost(I, VF, VectorTy);
7132 
7133   bool TypeNotScalarized =
7134       VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF;
7135   return VectorizationCostTy(C, TypeNotScalarized);
7136 }
7137 
7138 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
7139   if (VF == 1)
7140     return;
7141   for (BasicBlock *BB : TheLoop->blocks()) {
7142     // For each instruction in the old loop.
7143     for (Instruction &I : *BB) {
7144       Value *Ptr = getPointerOperand(&I);
7145       if (!Ptr)
7146         continue;
7147 
7148       if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) {
7149         // Scalar load + broadcast
7150         unsigned Cost = getUniformMemOpCost(&I, VF);
7151         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7152         continue;
7153       }
7154 
7155       // We assume that widening is the best solution when possible.
7156       if (Legal->memoryInstructionCanBeWidened(&I, VF)) {
7157         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
7158         setWideningDecision(&I, VF, CM_Widen, Cost);
7159         continue;
7160       }
7161 
7162       // Choose between Interleaving, Gather/Scatter or Scalarization.
7163       unsigned InterleaveCost = UINT_MAX;
7164       unsigned NumAccesses = 1;
7165       if (Legal->isAccessInterleaved(&I)) {
7166         auto Group = Legal->getInterleavedAccessGroup(&I);
7167         assert(Group && "Fail to get an interleaved access group.");
7168 
7169         // Make one decision for the whole group.
7170         if (getWideningDecision(&I, VF) != CM_Unknown)
7171           continue;
7172 
7173         NumAccesses = Group->getNumMembers();
7174         InterleaveCost = getInterleaveGroupCost(&I, VF);
7175       }
7176 
7177       unsigned GatherScatterCost =
7178           Legal->isLegalGatherOrScatter(&I)
7179               ? getGatherScatterCost(&I, VF) * NumAccesses
7180               : UINT_MAX;
7181 
7182       unsigned ScalarizationCost =
7183           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7184 
7185       // Choose better solution for the current VF,
7186       // write down this decision and use it during vectorization.
7187       unsigned Cost;
7188       InstWidening Decision;
7189       if (InterleaveCost <= GatherScatterCost &&
7190           InterleaveCost < ScalarizationCost) {
7191         Decision = CM_Interleave;
7192         Cost = InterleaveCost;
7193       } else if (GatherScatterCost < ScalarizationCost) {
7194         Decision = CM_GatherScatter;
7195         Cost = GatherScatterCost;
7196       } else {
7197         Decision = CM_Scalarize;
7198         Cost = ScalarizationCost;
7199       }
7200       // If the instructions belongs to an interleave group, the whole group
7201       // receives the same decision. The whole group receives the cost, but
7202       // the cost will actually be assigned to one instruction.
7203       if (auto Group = Legal->getInterleavedAccessGroup(&I))
7204         setWideningDecision(Group, VF, Decision, Cost);
7205       else
7206         setWideningDecision(&I, VF, Decision, Cost);
7207     }
7208   }
7209 }
7210 
7211 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7212                                                         unsigned VF,
7213                                                         Type *&VectorTy) {
7214   Type *RetTy = I->getType();
7215   if (canTruncateToMinimalBitwidth(I, VF))
7216     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7217   VectorTy = ToVectorTy(RetTy, VF);
7218   auto SE = PSE.getSE();
7219 
7220   // TODO: We need to estimate the cost of intrinsic calls.
7221   switch (I->getOpcode()) {
7222   case Instruction::GetElementPtr:
7223     // We mark this instruction as zero-cost because the cost of GEPs in
7224     // vectorized code depends on whether the corresponding memory instruction
7225     // is scalarized or not. Therefore, we handle GEPs with the memory
7226     // instruction cost.
7227     return 0;
7228   case Instruction::Br: {
7229     // In cases of scalarized and predicated instructions, there will be VF
7230     // predicated blocks in the vectorized loop. Each branch around these
7231     // blocks requires also an extract of its vector compare i1 element.
7232     bool ScalarPredicatedBB = false;
7233     BranchInst *BI = cast<BranchInst>(I);
7234     if (VF > 1 && BI->isConditional() &&
7235         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7236          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7237       ScalarPredicatedBB = true;
7238 
7239     if (ScalarPredicatedBB) {
7240       // Return cost for branches around scalarized and predicated blocks.
7241       Type *Vec_i1Ty =
7242           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7243       return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
7244               (TTI.getCFInstrCost(Instruction::Br) * VF));
7245     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
7246       // The back-edge branch will remain, as will all scalar branches.
7247       return TTI.getCFInstrCost(Instruction::Br);
7248     else
7249       // This branch will be eliminated by if-conversion.
7250       return 0;
7251     // Note: We currently assume zero cost for an unconditional branch inside
7252     // a predicated block since it will become a fall-through, although we
7253     // may decide in the future to call TTI for all branches.
7254   }
7255   case Instruction::PHI: {
7256     auto *Phi = cast<PHINode>(I);
7257 
7258     // First-order recurrences are replaced by vector shuffles inside the loop.
7259     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
7260       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
7261                                 VectorTy, VF - 1, VectorTy);
7262 
7263     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7264     // converted into select instructions. We require N - 1 selects per phi
7265     // node, where N is the number of incoming values.
7266     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
7267       return (Phi->getNumIncomingValues() - 1) *
7268              TTI.getCmpSelInstrCost(
7269                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7270                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
7271 
7272     return TTI.getCFInstrCost(Instruction::PHI);
7273   }
7274   case Instruction::UDiv:
7275   case Instruction::SDiv:
7276   case Instruction::URem:
7277   case Instruction::SRem:
7278     // If we have a predicated instruction, it may not be executed for each
7279     // vector lane. Get the scalarization cost and scale this amount by the
7280     // probability of executing the predicated block. If the instruction is not
7281     // predicated, we fall through to the next case.
7282     if (VF > 1 && Legal->isScalarWithPredication(I)) {
7283       unsigned Cost = 0;
7284 
7285       // These instructions have a non-void type, so account for the phi nodes
7286       // that we will create. This cost is likely to be zero. The phi node
7287       // cost, if any, should be scaled by the block probability because it
7288       // models a copy at the end of each predicated block.
7289       Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
7290 
7291       // The cost of the non-predicated instruction.
7292       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
7293 
7294       // The cost of insertelement and extractelement instructions needed for
7295       // scalarization.
7296       Cost += getScalarizationOverhead(I, VF, TTI);
7297 
7298       // Scale the cost by the probability of executing the predicated blocks.
7299       // This assumes the predicated block for each vector lane is equally
7300       // likely.
7301       return Cost / getReciprocalPredBlockProb();
7302     }
7303   case Instruction::Add:
7304   case Instruction::FAdd:
7305   case Instruction::Sub:
7306   case Instruction::FSub:
7307   case Instruction::Mul:
7308   case Instruction::FMul:
7309   case Instruction::FDiv:
7310   case Instruction::FRem:
7311   case Instruction::Shl:
7312   case Instruction::LShr:
7313   case Instruction::AShr:
7314   case Instruction::And:
7315   case Instruction::Or:
7316   case Instruction::Xor: {
7317     // Since we will replace the stride by 1 the multiplication should go away.
7318     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7319       return 0;
7320     // Certain instructions can be cheaper to vectorize if they have a constant
7321     // second vector operand. One example of this are shifts on x86.
7322     TargetTransformInfo::OperandValueKind Op1VK =
7323         TargetTransformInfo::OK_AnyValue;
7324     TargetTransformInfo::OperandValueKind Op2VK =
7325         TargetTransformInfo::OK_AnyValue;
7326     TargetTransformInfo::OperandValueProperties Op1VP =
7327         TargetTransformInfo::OP_None;
7328     TargetTransformInfo::OperandValueProperties Op2VP =
7329         TargetTransformInfo::OP_None;
7330     Value *Op2 = I->getOperand(1);
7331 
7332     // Check for a splat or for a non uniform vector of constants.
7333     if (isa<ConstantInt>(Op2)) {
7334       ConstantInt *CInt = cast<ConstantInt>(Op2);
7335       if (CInt && CInt->getValue().isPowerOf2())
7336         Op2VP = TargetTransformInfo::OP_PowerOf2;
7337       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7338     } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
7339       Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
7340       Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
7341       if (SplatValue) {
7342         ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
7343         if (CInt && CInt->getValue().isPowerOf2())
7344           Op2VP = TargetTransformInfo::OP_PowerOf2;
7345         Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7346       }
7347     } else if (Legal->isUniform(Op2)) {
7348       Op2VK = TargetTransformInfo::OK_UniformValue;
7349     }
7350     SmallVector<const Value *, 4> Operands(I->operand_values());
7351     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK,
7352                                       Op2VK, Op1VP, Op2VP, Operands);
7353   }
7354   case Instruction::Select: {
7355     SelectInst *SI = cast<SelectInst>(I);
7356     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7357     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7358     Type *CondTy = SI->getCondition()->getType();
7359     if (!ScalarCond)
7360       CondTy = VectorType::get(CondTy, VF);
7361 
7362     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
7363   }
7364   case Instruction::ICmp:
7365   case Instruction::FCmp: {
7366     Type *ValTy = I->getOperand(0)->getType();
7367     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7368     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7369       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7370     VectorTy = ToVectorTy(ValTy, VF);
7371     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
7372   }
7373   case Instruction::Store:
7374   case Instruction::Load: {
7375     VectorTy = ToVectorTy(getMemInstValueType(I), VF);
7376     return getMemoryInstructionCost(I, VF);
7377   }
7378   case Instruction::ZExt:
7379   case Instruction::SExt:
7380   case Instruction::FPToUI:
7381   case Instruction::FPToSI:
7382   case Instruction::FPExt:
7383   case Instruction::PtrToInt:
7384   case Instruction::IntToPtr:
7385   case Instruction::SIToFP:
7386   case Instruction::UIToFP:
7387   case Instruction::Trunc:
7388   case Instruction::FPTrunc:
7389   case Instruction::BitCast: {
7390     // We optimize the truncation of induction variables having constant
7391     // integer steps. The cost of these truncations is the same as the scalar
7392     // operation.
7393     if (isOptimizableIVTruncate(I, VF)) {
7394       auto *Trunc = cast<TruncInst>(I);
7395       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7396                                   Trunc->getSrcTy(), Trunc);
7397     }
7398 
7399     Type *SrcScalarTy = I->getOperand(0)->getType();
7400     Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF);
7401     if (canTruncateToMinimalBitwidth(I, VF)) {
7402       // This cast is going to be shrunk. This may remove the cast or it might
7403       // turn it into slightly different cast. For example, if MinBW == 16,
7404       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7405       //
7406       // Calculate the modified src and dest types.
7407       Type *MinVecTy = VectorTy;
7408       if (I->getOpcode() == Instruction::Trunc) {
7409         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7410         VectorTy =
7411             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7412       } else if (I->getOpcode() == Instruction::ZExt ||
7413                  I->getOpcode() == Instruction::SExt) {
7414         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7415         VectorTy =
7416             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7417       }
7418     }
7419 
7420     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
7421   }
7422   case Instruction::Call: {
7423     bool NeedToScalarize;
7424     CallInst *CI = cast<CallInst>(I);
7425     unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
7426     if (getVectorIntrinsicIDForCall(CI, TLI))
7427       return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
7428     return CallCost;
7429   }
7430   default:
7431     // The cost of executing VF copies of the scalar instruction. This opcode
7432     // is unknown. Assume that it is the same as 'mul'.
7433     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
7434            getScalarizationOverhead(I, VF, TTI);
7435   } // end of switch.
7436 }
7437 
7438 char LoopVectorize::ID = 0;
7439 static const char lv_name[] = "Loop Vectorization";
7440 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7441 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7442 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7443 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7444 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7445 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7446 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7447 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7448 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7449 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7450 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7451 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7452 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7453 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7454 
7455 namespace llvm {
7456 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
7457   return new LoopVectorize(NoUnrolling, AlwaysVectorize);
7458 }
7459 }
7460 
7461 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7462 
7463   // Check if the pointer operand of a load or store instruction is
7464   // consecutive.
7465   if (auto *Ptr = getPointerOperand(Inst))
7466     return Legal->isConsecutivePtr(Ptr);
7467   return false;
7468 }
7469 
7470 void LoopVectorizationCostModel::collectValuesToIgnore() {
7471   // Ignore ephemeral values.
7472   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7473 
7474   // Ignore type-promoting instructions we identified during reduction
7475   // detection.
7476   for (auto &Reduction : *Legal->getReductionVars()) {
7477     RecurrenceDescriptor &RedDes = Reduction.second;
7478     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7479     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7480   }
7481 }
7482 
7483 LoopVectorizationCostModel::VectorizationFactor
7484 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
7485 
7486   // Width 1 means no vectorize, cost 0 means uncomputed cost.
7487   const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U,
7488                                                                            0U};
7489   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
7490   if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
7491     return NoVectorization;
7492 
7493   if (UserVF) {
7494     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7495     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
7496     // Collect the instructions (and their associated costs) that will be more
7497     // profitable to scalarize.
7498     CM.selectUserVectorizationFactor(UserVF);
7499     return {UserVF, 0};
7500   }
7501 
7502   unsigned MaxVF = MaybeMaxVF.getValue();
7503   assert(MaxVF != 0 && "MaxVF is zero.");
7504   if (MaxVF == 1)
7505     return NoVectorization;
7506 
7507   // Select the optimal vectorization factor.
7508   return CM.selectVectorizationFactor(MaxVF);
7509 }
7510 
7511 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV) {
7512   // Perform the actual loop transformation.
7513 
7514   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7515   ILV.createVectorizedLoopSkeleton();
7516 
7517   //===------------------------------------------------===//
7518   //
7519   // Notice: any optimization or new instruction that go
7520   // into the code below should also be implemented in
7521   // the cost-model.
7522   //
7523   //===------------------------------------------------===//
7524 
7525   // 2. Copy and widen instructions from the old loop into the new loop.
7526 
7527   // Collect instructions from the original loop that will become trivially dead
7528   // in the vectorized loop. We don't need to vectorize these instructions. For
7529   // example, original induction update instructions can become dead because we
7530   // separately emit induction "steps" when generating code for the new loop.
7531   // Similarly, we create a new latch condition when setting up the structure
7532   // of the new loop, so the old one can become dead.
7533   SmallPtrSet<Instruction *, 4> DeadInstructions;
7534   collectTriviallyDeadInstructions(DeadInstructions);
7535 
7536   // Scan the loop in a topological order to ensure that defs are vectorized
7537   // before users.
7538   LoopBlocksDFS DFS(OrigLoop);
7539   DFS.perform(LI);
7540 
7541   // Vectorize all instructions in the original loop that will not become
7542   // trivially dead when vectorized.
7543   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
7544     for (Instruction &I : *BB)
7545       if (!DeadInstructions.count(&I))
7546         ILV.vectorizeInstruction(I);
7547 
7548   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7549   //    predication, updating analyses.
7550   ILV.fixVectorizedLoop();
7551 }
7552 
7553 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7554     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7555   BasicBlock *Latch = OrigLoop->getLoopLatch();
7556 
7557   // We create new control-flow for the vectorized loop, so the original
7558   // condition will be dead after vectorization if it's only used by the
7559   // branch.
7560   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
7561   if (Cmp && Cmp->hasOneUse())
7562     DeadInstructions.insert(Cmp);
7563 
7564   // We create new "steps" for induction variable updates to which the original
7565   // induction variables map. An original update instruction will be dead if
7566   // all its users except the induction variable are dead.
7567   for (auto &Induction : *Legal->getInductionVars()) {
7568     PHINode *Ind = Induction.first;
7569     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7570     if (all_of(IndUpdate->users(), [&](User *U) -> bool {
7571           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7572         }))
7573       DeadInstructions.insert(IndUpdate);
7574   }
7575 }
7576 
7577 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
7578   auto *SI = dyn_cast<StoreInst>(Instr);
7579   bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent()));
7580 
7581   return scalarizeInstruction(Instr, IfPredicateInstr);
7582 }
7583 
7584 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7585 
7586 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7587 
7588 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7589                                         Instruction::BinaryOps BinOp) {
7590   // When unrolling and the VF is 1, we only need to add a simple scalar.
7591   Type *Ty = Val->getType();
7592   assert(!Ty->isVectorTy() && "Val must be a scalar");
7593 
7594   if (Ty->isFloatingPointTy()) {
7595     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7596 
7597     // Floating point operations had to be 'fast' to enable the unrolling.
7598     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
7599     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
7600   }
7601   Constant *C = ConstantInt::get(Ty, StartIdx);
7602   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7603 }
7604 
7605 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7606   SmallVector<Metadata *, 4> MDs;
7607   // Reserve first location for self reference to the LoopID metadata node.
7608   MDs.push_back(nullptr);
7609   bool IsUnrollMetadata = false;
7610   MDNode *LoopID = L->getLoopID();
7611   if (LoopID) {
7612     // First find existing loop unrolling disable metadata.
7613     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7614       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7615       if (MD) {
7616         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7617         IsUnrollMetadata =
7618             S && S->getString().startswith("llvm.loop.unroll.disable");
7619       }
7620       MDs.push_back(LoopID->getOperand(i));
7621     }
7622   }
7623 
7624   if (!IsUnrollMetadata) {
7625     // Add runtime unroll disable metadata.
7626     LLVMContext &Context = L->getHeader()->getContext();
7627     SmallVector<Metadata *, 1> DisableOperands;
7628     DisableOperands.push_back(
7629         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7630     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7631     MDs.push_back(DisableNode);
7632     MDNode *NewLoopID = MDNode::get(Context, MDs);
7633     // Set operand 0 to refer to the loop id itself.
7634     NewLoopID->replaceOperandWith(0, NewLoopID);
7635     L->setLoopID(NewLoopID);
7636   }
7637 }
7638 
7639 bool LoopVectorizePass::processLoop(Loop *L) {
7640   assert(L->empty() && "Only process inner loops.");
7641 
7642 #ifndef NDEBUG
7643   const std::string DebugLocStr = getDebugLocString(L);
7644 #endif /* NDEBUG */
7645 
7646   DEBUG(dbgs() << "\nLV: Checking a loop in \""
7647                << L->getHeader()->getParent()->getName() << "\" from "
7648                << DebugLocStr << "\n");
7649 
7650   LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);
7651 
7652   DEBUG(dbgs() << "LV: Loop hints:"
7653                << " force="
7654                << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7655                        ? "disabled"
7656                        : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7657                               ? "enabled"
7658                               : "?"))
7659                << " width=" << Hints.getWidth()
7660                << " unroll=" << Hints.getInterleave() << "\n");
7661 
7662   // Function containing loop
7663   Function *F = L->getHeader()->getParent();
7664 
7665   // Looking at the diagnostic output is the only way to determine if a loop
7666   // was vectorized (other than looking at the IR or machine code), so it
7667   // is important to generate an optimization remark for each loop. Most of
7668   // these messages are generated as OptimizationRemarkAnalysis. Remarks
7669   // generated as OptimizationRemark and OptimizationRemarkMissed are
7670   // less verbose reporting vectorized loops and unvectorized loops that may
7671   // benefit from vectorization, respectively.
7672 
7673   if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
7674     DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7675     return false;
7676   }
7677 
7678   // Check the loop for a trip count threshold:
7679   // do not vectorize loops with a tiny trip count.
7680   const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L);
7681   if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) {
7682     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7683                  << "This loop is not worth vectorizing.");
7684     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7685       DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7686     else {
7687       DEBUG(dbgs() << "\n");
7688       ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
7689                                      "NotBeneficial", L)
7690                 << "vectorization is not beneficial "
7691                    "and is not explicitly forced");
7692       return false;
7693     }
7694   }
7695 
7696   PredicatedScalarEvolution PSE(*SE, *L);
7697 
7698   // Check if it is legal to vectorize the loop.
7699   LoopVectorizationRequirements Requirements(*ORE);
7700   LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE,
7701                                 &Requirements, &Hints);
7702   if (!LVL.canVectorize()) {
7703     DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7704     emitMissedWarning(F, L, Hints, ORE);
7705     return false;
7706   }
7707 
7708   // Check the function attributes to find out if this function should be
7709   // optimized for size.
7710   bool OptForSize =
7711       Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
7712 
7713   // Compute the weighted frequency of this loop being executed and see if it
7714   // is less than 20% of the function entry baseline frequency. Note that we
7715   // always have a canonical loop here because we think we *can* vectorize.
7716   // FIXME: This is hidden behind a flag due to pervasive problems with
7717   // exactly what block frequency models.
7718   if (LoopVectorizeWithBlockFrequency) {
7719     BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
7720     if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
7721         LoopEntryFreq < ColdEntryFreq)
7722       OptForSize = true;
7723   }
7724 
7725   // Check the function attributes to see if implicit floats are allowed.
7726   // FIXME: This check doesn't seem possibly correct -- what if the loop is
7727   // an integer loop and the vector instructions selected are purely integer
7728   // vector instructions?
7729   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7730     DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
7731                     "attribute is used.\n");
7732     ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
7733                                    "NoImplicitFloat", L)
7734               << "loop not vectorized due to NoImplicitFloat attribute");
7735     emitMissedWarning(F, L, Hints, ORE);
7736     return false;
7737   }
7738 
7739   // Check if the target supports potentially unsafe FP vectorization.
7740   // FIXME: Add a check for the type of safety issue (denormal, signaling)
7741   // for the target we're vectorizing for, to make sure none of the
7742   // additional fp-math flags can help.
7743   if (Hints.isPotentiallyUnsafe() &&
7744       TTI->isFPVectorizationPotentiallyUnsafe()) {
7745     DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
7746     ORE->emit(
7747         createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
7748         << "loop not vectorized due to unsafe FP support.");
7749     emitMissedWarning(F, L, Hints, ORE);
7750     return false;
7751   }
7752 
7753   // Use the cost model.
7754   LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
7755                                 &Hints);
7756   CM.collectValuesToIgnore();
7757 
7758   // Use the planner for vectorization.
7759   LoopVectorizationPlanner LVP(L, LI, &LVL, CM);
7760 
7761   // Get user vectorization factor.
7762   unsigned UserVF = Hints.getWidth();
7763 
7764   // Plan how to best vectorize, return the best VF and its cost.
7765   LoopVectorizationCostModel::VectorizationFactor VF =
7766       LVP.plan(OptForSize, UserVF);
7767 
7768   // Select the interleave count.
7769   unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
7770 
7771   // Get user interleave count.
7772   unsigned UserIC = Hints.getInterleave();
7773 
7774   // Identify the diagnostic messages that should be produced.
7775   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7776   bool VectorizeLoop = true, InterleaveLoop = true;
7777   if (Requirements.doesNotMeet(F, L, Hints)) {
7778     DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7779                     "requirements.\n");
7780     emitMissedWarning(F, L, Hints, ORE);
7781     return false;
7782   }
7783 
7784   if (VF.Width == 1) {
7785     DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7786     VecDiagMsg = std::make_pair(
7787         "VectorizationNotBeneficial",
7788         "the cost-model indicates that vectorization is not beneficial");
7789     VectorizeLoop = false;
7790   }
7791 
7792   if (IC == 1 && UserIC <= 1) {
7793     // Tell the user interleaving is not beneficial.
7794     DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7795     IntDiagMsg = std::make_pair(
7796         "InterleavingNotBeneficial",
7797         "the cost-model indicates that interleaving is not beneficial");
7798     InterleaveLoop = false;
7799     if (UserIC == 1) {
7800       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7801       IntDiagMsg.second +=
7802           " and is explicitly disabled or interleave count is set to 1";
7803     }
7804   } else if (IC > 1 && UserIC == 1) {
7805     // Tell the user interleaving is beneficial, but it explicitly disabled.
7806     DEBUG(dbgs()
7807           << "LV: Interleaving is beneficial but is explicitly disabled.");
7808     IntDiagMsg = std::make_pair(
7809         "InterleavingBeneficialButDisabled",
7810         "the cost-model indicates that interleaving is beneficial "
7811         "but is explicitly disabled or interleave count is set to 1");
7812     InterleaveLoop = false;
7813   }
7814 
7815   // Override IC if user provided an interleave count.
7816   IC = UserIC > 0 ? UserIC : IC;
7817 
7818   // Emit diagnostic messages, if any.
7819   const char *VAPassName = Hints.vectorizeAnalysisPassName();
7820   if (!VectorizeLoop && !InterleaveLoop) {
7821     // Do not vectorize or interleaving the loop.
7822     ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7823                                          L->getStartLoc(), L->getHeader())
7824               << VecDiagMsg.second);
7825     ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7826                                          L->getStartLoc(), L->getHeader())
7827               << IntDiagMsg.second);
7828     return false;
7829   } else if (!VectorizeLoop && InterleaveLoop) {
7830     DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7831     ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7832                                          L->getStartLoc(), L->getHeader())
7833               << VecDiagMsg.second);
7834   } else if (VectorizeLoop && !InterleaveLoop) {
7835     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
7836                  << DebugLocStr << '\n');
7837     ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7838                                          L->getStartLoc(), L->getHeader())
7839               << IntDiagMsg.second);
7840   } else if (VectorizeLoop && InterleaveLoop) {
7841     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
7842                  << DebugLocStr << '\n');
7843     DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7844   }
7845 
7846   using namespace ore;
7847   if (!VectorizeLoop) {
7848     assert(IC > 1 && "interleave count should not be 1 or 0");
7849     // If we decided that it is not legal to vectorize the loop, then
7850     // interleave it.
7851     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7852                                &CM);
7853     LVP.executePlan(Unroller);
7854 
7855     ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7856                                  L->getHeader())
7857               << "interleaved loop (interleaved count: "
7858               << NV("InterleaveCount", IC) << ")");
7859   } else {
7860     // If we decided that it is *legal* to vectorize the loop, then do it.
7861     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7862                            &LVL, &CM);
7863     LVP.executePlan(LB);
7864     ++LoopsVectorized;
7865 
7866     // Add metadata to disable runtime unrolling a scalar loop when there are
7867     // no runtime checks about strides and memory. A scalar loop that is
7868     // rarely used is not worth unrolling.
7869     if (!LB.areSafetyChecksAdded())
7870       AddRuntimeUnrollDisableMetaData(L);
7871 
7872     // Report the vectorization decision.
7873     ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7874                                  L->getHeader())
7875               << "vectorized loop (vectorization width: "
7876               << NV("VectorizationFactor", VF.Width)
7877               << ", interleaved count: " << NV("InterleaveCount", IC) << ")");
7878   }
7879 
7880   // Mark the loop as already vectorized to avoid vectorizing again.
7881   Hints.setAlreadyVectorized();
7882 
7883   DEBUG(verifyFunction(*L->getHeader()->getParent()));
7884   return true;
7885 }
7886 
7887 bool LoopVectorizePass::runImpl(
7888     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7889     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
7890     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
7891     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
7892     OptimizationRemarkEmitter &ORE_) {
7893 
7894   SE = &SE_;
7895   LI = &LI_;
7896   TTI = &TTI_;
7897   DT = &DT_;
7898   BFI = &BFI_;
7899   TLI = TLI_;
7900   AA = &AA_;
7901   AC = &AC_;
7902   GetLAA = &GetLAA_;
7903   DB = &DB_;
7904   ORE = &ORE_;
7905 
7906   // Compute some weights outside of the loop over the loops. Compute this
7907   // using a BranchProbability to re-use its scaling math.
7908   const BranchProbability ColdProb(1, 5); // 20%
7909   ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
7910 
7911   // Don't attempt if
7912   // 1. the target claims to have no vector registers, and
7913   // 2. interleaving won't help ILP.
7914   //
7915   // The second condition is necessary because, even if the target has no
7916   // vector registers, loop vectorization may still enable scalar
7917   // interleaving.
7918   if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
7919     return false;
7920 
7921   bool Changed = false;
7922 
7923   // The vectorizer requires loops to be in simplified form.
7924   // Since simplification may add new inner loops, it has to run before the
7925   // legality and profitability checks. This means running the loop vectorizer
7926   // will simplify all loops, regardless of whether anything end up being
7927   // vectorized.
7928   for (auto &L : *LI)
7929     Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */);
7930 
7931   // Build up a worklist of inner-loops to vectorize. This is necessary as
7932   // the act of vectorizing or partially unrolling a loop creates new loops
7933   // and can invalidate iterators across the loops.
7934   SmallVector<Loop *, 8> Worklist;
7935 
7936   for (Loop *L : *LI)
7937     addAcyclicInnerLoop(*L, Worklist);
7938 
7939   LoopsAnalyzed += Worklist.size();
7940 
7941   // Now walk the identified inner loops.
7942   while (!Worklist.empty()) {
7943     Loop *L = Worklist.pop_back_val();
7944 
7945     // For the inner loops we actually process, form LCSSA to simplify the
7946     // transform.
7947     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
7948 
7949     Changed |= processLoop(L);
7950   }
7951 
7952   // Process each loop nest in the function.
7953   return Changed;
7954 
7955 }
7956 
7957 
7958 PreservedAnalyses LoopVectorizePass::run(Function &F,
7959                                          FunctionAnalysisManager &AM) {
7960     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
7961     auto &LI = AM.getResult<LoopAnalysis>(F);
7962     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
7963     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
7964     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
7965     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
7966     auto &AA = AM.getResult<AAManager>(F);
7967     auto &AC = AM.getResult<AssumptionAnalysis>(F);
7968     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
7969     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
7970 
7971     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
7972     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
7973         [&](Loop &L) -> const LoopAccessInfo & {
7974       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI};
7975       return LAM.getResult<LoopAccessAnalysis>(L, AR);
7976     };
7977     bool Changed =
7978         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE);
7979     if (!Changed)
7980       return PreservedAnalyses::all();
7981     PreservedAnalyses PA;
7982     PA.preserve<LoopAnalysis>();
7983     PA.preserve<DominatorTreeAnalysis>();
7984     PA.preserve<BasicAA>();
7985     PA.preserve<GlobalsAA>();
7986     return PA;
7987 }
7988