1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "LoopVectorizationPlanner.h" 51 #include "llvm/ADT/APInt.h" 52 #include "llvm/ADT/ArrayRef.h" 53 #include "llvm/ADT/DenseMap.h" 54 #include "llvm/ADT/DenseMapInfo.h" 55 #include "llvm/ADT/Hashing.h" 56 #include "llvm/ADT/MapVector.h" 57 #include "llvm/ADT/None.h" 58 #include "llvm/ADT/Optional.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallPtrSet.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/ADT/SmallVector.h" 64 #include "llvm/ADT/Statistic.h" 65 #include "llvm/ADT/StringRef.h" 66 #include "llvm/ADT/Twine.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/BasicAliasAnalysis.h" 70 #include "llvm/Analysis/BlockFrequencyInfo.h" 71 #include "llvm/Analysis/CFG.h" 72 #include "llvm/Analysis/CodeMetrics.h" 73 #include "llvm/Analysis/DemandedBits.h" 74 #include "llvm/Analysis/GlobalsModRef.h" 75 #include "llvm/Analysis/LoopAccessAnalysis.h" 76 #include "llvm/Analysis/LoopAnalysisManager.h" 77 #include "llvm/Analysis/LoopInfo.h" 78 #include "llvm/Analysis/LoopIterator.h" 79 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 80 #include "llvm/Analysis/ScalarEvolution.h" 81 #include "llvm/Analysis/ScalarEvolutionExpander.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/TargetTransformInfo.h" 85 #include "llvm/Analysis/VectorUtils.h" 86 #include "llvm/IR/Attributes.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DebugInfoMetadata.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/DiagnosticInfo.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/IRBuilder.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Metadata.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/Use.h" 110 #include "llvm/IR/User.h" 111 #include "llvm/IR/Value.h" 112 #include "llvm/IR/ValueHandle.h" 113 #include "llvm/IR/Verifier.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/Compiler.h" 118 #include "llvm/Support/Debug.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/MathExtras.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 123 #include "llvm/Transforms/Utils/LoopSimplify.h" 124 #include "llvm/Transforms/Utils/LoopUtils.h" 125 #include "llvm/Transforms/Utils/LoopVersioning.h" 126 #include <algorithm> 127 #include <cassert> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <functional> 131 #include <iterator> 132 #include <limits> 133 #include <memory> 134 #include <string> 135 #include <tuple> 136 #include <utility> 137 #include <vector> 138 139 using namespace llvm; 140 141 #define LV_NAME "loop-vectorize" 142 #define DEBUG_TYPE LV_NAME 143 144 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 145 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 146 147 static cl::opt<bool> 148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 149 cl::desc("Enable if-conversion during vectorization.")); 150 151 /// Loops with a known constant trip count below this number are vectorized only 152 /// if no scalar iteration overheads are incurred. 153 static cl::opt<unsigned> TinyTripCountVectorThreshold( 154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 155 cl::desc("Loops with a constant trip count that is smaller than this " 156 "value are vectorized only if no scalar iteration overheads " 157 "are incurred.")); 158 159 static cl::opt<bool> MaximizeBandwidth( 160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 161 cl::desc("Maximize bandwidth when selecting vectorization factor which " 162 "will be determined by the smallest type in loop.")); 163 164 static cl::opt<bool> EnableInterleavedMemAccesses( 165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 166 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 167 168 /// Maximum factor for an interleaved memory access. 169 static cl::opt<unsigned> MaxInterleaveGroupFactor( 170 "max-interleave-group-factor", cl::Hidden, 171 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 172 cl::init(8)); 173 174 /// We don't interleave loops with a known constant trip count below this 175 /// number. 176 static const unsigned TinyTripCountInterleaveThreshold = 128; 177 178 static cl::opt<unsigned> ForceTargetNumScalarRegs( 179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's number of scalar registers.")); 181 182 static cl::opt<unsigned> ForceTargetNumVectorRegs( 183 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 184 cl::desc("A flag that overrides the target's number of vector registers.")); 185 186 /// Maximum vectorization interleave count. 187 static const unsigned MaxInterleaveFactor = 16; 188 189 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's max interleave factor for " 192 "scalar loops.")); 193 194 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 196 cl::desc("A flag that overrides the target's max interleave factor for " 197 "vectorized loops.")); 198 199 static cl::opt<unsigned> ForceTargetInstructionCost( 200 "force-target-instruction-cost", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's expected cost for " 202 "an instruction to a single constant value. Mostly " 203 "useful for getting consistent testing.")); 204 205 static cl::opt<unsigned> SmallLoopCost( 206 "small-loop-cost", cl::init(20), cl::Hidden, 207 cl::desc( 208 "The cost of a loop that is considered 'small' by the interleaver.")); 209 210 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 211 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 212 cl::desc("Enable the use of the block frequency analysis to access PGO " 213 "heuristics minimizing code growth in cold regions and being more " 214 "aggressive in hot regions.")); 215 216 // Runtime interleave loops for load/store throughput. 217 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 219 cl::desc( 220 "Enable runtime interleaving until load/store ports are saturated")); 221 222 /// The number of stores in a loop that are allowed to need predication. 223 static cl::opt<unsigned> NumberOfStoresToPredicate( 224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 225 cl::desc("Max number of stores to be predicated behind an if.")); 226 227 static cl::opt<bool> EnableIndVarRegisterHeur( 228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 229 cl::desc("Count the induction variable only once when interleaving")); 230 231 static cl::opt<bool> EnableCondStoresVectorization( 232 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 233 cl::desc("Enable if predication of stores during vectorization.")); 234 235 static cl::opt<unsigned> MaxNestedScalarReductionIC( 236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 237 cl::desc("The maximum interleave count to use when interleaving a scalar " 238 "reduction in a nested loop.")); 239 240 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 242 cl::desc("The maximum allowed number of runtime memory checks with a " 243 "vectorize(enable) pragma.")); 244 245 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 247 cl::desc("The maximum number of SCEV checks allowed.")); 248 249 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 251 cl::desc("The maximum number of SCEV checks allowed with a " 252 "vectorize(enable) pragma")); 253 254 /// Create an analysis remark that explains why vectorization failed 255 /// 256 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 257 /// RemarkName is the identifier for the remark. If \p I is passed it is an 258 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 259 /// the location of the remark. \return the remark object that can be 260 /// streamed to. 261 static OptimizationRemarkAnalysis 262 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 263 Instruction *I = nullptr) { 264 Value *CodeRegion = TheLoop->getHeader(); 265 DebugLoc DL = TheLoop->getStartLoc(); 266 267 if (I) { 268 CodeRegion = I->getParent(); 269 // If there is no debug location attached to the instruction, revert back to 270 // using the loop's. 271 if (I->getDebugLoc()) 272 DL = I->getDebugLoc(); 273 } 274 275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 276 R << "loop not vectorized: "; 277 return R; 278 } 279 280 namespace { 281 282 class LoopVectorizationRequirements; 283 284 } // end anonymous namespace 285 286 /// A helper function for converting Scalar types to vector types. 287 /// If the incoming type is void, we return void. If the VF is 1, we return 288 /// the scalar type. 289 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 290 if (Scalar->isVoidTy() || VF == 1) 291 return Scalar; 292 return VectorType::get(Scalar, VF); 293 } 294 295 // FIXME: The following helper functions have multiple implementations 296 // in the project. They can be effectively organized in a common Load/Store 297 // utilities unit. 298 299 /// A helper function that returns the type of loaded or stored value. 300 static Type *getMemInstValueType(Value *I) { 301 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 302 "Expected Load or Store instruction"); 303 if (auto *LI = dyn_cast<LoadInst>(I)) 304 return LI->getType(); 305 return cast<StoreInst>(I)->getValueOperand()->getType(); 306 } 307 308 /// A helper function that returns the alignment of load or store instruction. 309 static unsigned getMemInstAlignment(Value *I) { 310 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 311 "Expected Load or Store instruction"); 312 if (auto *LI = dyn_cast<LoadInst>(I)) 313 return LI->getAlignment(); 314 return cast<StoreInst>(I)->getAlignment(); 315 } 316 317 /// A helper function that returns the address space of the pointer operand of 318 /// load or store instruction. 319 static unsigned getMemInstAddressSpace(Value *I) { 320 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 321 "Expected Load or Store instruction"); 322 if (auto *LI = dyn_cast<LoadInst>(I)) 323 return LI->getPointerAddressSpace(); 324 return cast<StoreInst>(I)->getPointerAddressSpace(); 325 } 326 327 /// A helper function that returns true if the given type is irregular. The 328 /// type is irregular if its allocated size doesn't equal the store size of an 329 /// element of the corresponding vector type at the given vectorization factor. 330 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 331 // Determine if an array of VF elements of type Ty is "bitcast compatible" 332 // with a <VF x Ty> vector. 333 if (VF > 1) { 334 auto *VectorTy = VectorType::get(Ty, VF); 335 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 336 } 337 338 // If the vectorization factor is one, we just check if an array of type Ty 339 // requires padding between elements. 340 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 341 } 342 343 /// A helper function that returns the reciprocal of the block probability of 344 /// predicated blocks. If we return X, we are assuming the predicated block 345 /// will execute once for every X iterations of the loop header. 346 /// 347 /// TODO: We should use actual block probability here, if available. Currently, 348 /// we always assume predicated blocks have a 50% chance of executing. 349 static unsigned getReciprocalPredBlockProb() { return 2; } 350 351 /// A helper function that adds a 'fast' flag to floating-point operations. 352 static Value *addFastMathFlag(Value *V) { 353 if (isa<FPMathOperator>(V)) { 354 FastMathFlags Flags; 355 Flags.setFast(); 356 cast<Instruction>(V)->setFastMathFlags(Flags); 357 } 358 return V; 359 } 360 361 /// A helper function that returns an integer or floating-point constant with 362 /// value C. 363 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 364 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 365 : ConstantFP::get(Ty, C); 366 } 367 368 namespace llvm { 369 370 /// InnerLoopVectorizer vectorizes loops which contain only one basic 371 /// block to a specified vectorization factor (VF). 372 /// This class performs the widening of scalars into vectors, or multiple 373 /// scalars. This class also implements the following features: 374 /// * It inserts an epilogue loop for handling loops that don't have iteration 375 /// counts that are known to be a multiple of the vectorization factor. 376 /// * It handles the code generation for reduction variables. 377 /// * Scalarization (implementation using scalars) of un-vectorizable 378 /// instructions. 379 /// InnerLoopVectorizer does not perform any vectorization-legality 380 /// checks, and relies on the caller to check for the different legality 381 /// aspects. The InnerLoopVectorizer relies on the 382 /// LoopVectorizationLegality class to provide information about the induction 383 /// and reduction variables that were found to a given vectorization factor. 384 class InnerLoopVectorizer { 385 public: 386 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 387 LoopInfo *LI, DominatorTree *DT, 388 const TargetLibraryInfo *TLI, 389 const TargetTransformInfo *TTI, AssumptionCache *AC, 390 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 391 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 392 LoopVectorizationCostModel *CM) 393 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 394 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 395 Builder(PSE.getSE()->getContext()), 396 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 397 virtual ~InnerLoopVectorizer() = default; 398 399 /// Create a new empty loop. Unlink the old loop and connect the new one. 400 /// Return the pre-header block of the new loop. 401 BasicBlock *createVectorizedLoopSkeleton(); 402 403 /// Widen a single instruction within the innermost loop. 404 void widenInstruction(Instruction &I); 405 406 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 407 void fixVectorizedLoop(); 408 409 // Return true if any runtime check is added. 410 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 411 412 /// A type for vectorized values in the new loop. Each value from the 413 /// original loop, when vectorized, is represented by UF vector values in the 414 /// new unrolled loop, where UF is the unroll factor. 415 using VectorParts = SmallVector<Value *, 2>; 416 417 /// Vectorize a single PHINode in a block. This method handles the induction 418 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 419 /// arbitrary length vectors. 420 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 421 422 /// A helper function to scalarize a single Instruction in the innermost loop. 423 /// Generates a sequence of scalar instances for each lane between \p MinLane 424 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 425 /// inclusive.. 426 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 427 bool IfPredicateInstr); 428 429 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 430 /// is provided, the integer induction variable will first be truncated to 431 /// the corresponding type. 432 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 433 434 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 435 /// vector or scalar value on-demand if one is not yet available. When 436 /// vectorizing a loop, we visit the definition of an instruction before its 437 /// uses. When visiting the definition, we either vectorize or scalarize the 438 /// instruction, creating an entry for it in the corresponding map. (In some 439 /// cases, such as induction variables, we will create both vector and scalar 440 /// entries.) Then, as we encounter uses of the definition, we derive values 441 /// for each scalar or vector use unless such a value is already available. 442 /// For example, if we scalarize a definition and one of its uses is vector, 443 /// we build the required vector on-demand with an insertelement sequence 444 /// when visiting the use. Otherwise, if the use is scalar, we can use the 445 /// existing scalar definition. 446 /// 447 /// Return a value in the new loop corresponding to \p V from the original 448 /// loop at unroll index \p Part. If the value has already been vectorized, 449 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 450 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 451 /// a new vector value on-demand by inserting the scalar values into a vector 452 /// with an insertelement sequence. If the value has been neither vectorized 453 /// nor scalarized, it must be loop invariant, so we simply broadcast the 454 /// value into a vector. 455 Value *getOrCreateVectorValue(Value *V, unsigned Part); 456 457 /// Return a value in the new loop corresponding to \p V from the original 458 /// loop at unroll and vector indices \p Instance. If the value has been 459 /// vectorized but not scalarized, the necessary extractelement instruction 460 /// will be generated. 461 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 462 463 /// Construct the vector value of a scalarized value \p V one lane at a time. 464 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 465 466 /// Try to vectorize the interleaved access group that \p Instr belongs to. 467 void vectorizeInterleaveGroup(Instruction *Instr); 468 469 /// Vectorize Load and Store instructions, optionally masking the vector 470 /// operations if \p BlockInMask is non-null. 471 void vectorizeMemoryInstruction(Instruction *Instr, 472 VectorParts *BlockInMask = nullptr); 473 474 /// \brief Set the debug location in the builder using the debug location in 475 /// the instruction. 476 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 477 478 protected: 479 friend class LoopVectorizationPlanner; 480 481 /// A small list of PHINodes. 482 using PhiVector = SmallVector<PHINode *, 4>; 483 484 /// A type for scalarized values in the new loop. Each value from the 485 /// original loop, when scalarized, is represented by UF x VF scalar values 486 /// in the new unrolled loop, where UF is the unroll factor and VF is the 487 /// vectorization factor. 488 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 489 490 /// Set up the values of the IVs correctly when exiting the vector loop. 491 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 492 Value *CountRoundDown, Value *EndValue, 493 BasicBlock *MiddleBlock); 494 495 /// Create a new induction variable inside L. 496 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 497 Value *Step, Instruction *DL); 498 499 /// Handle all cross-iteration phis in the header. 500 void fixCrossIterationPHIs(); 501 502 /// Fix a first-order recurrence. This is the second phase of vectorizing 503 /// this phi node. 504 void fixFirstOrderRecurrence(PHINode *Phi); 505 506 /// Fix a reduction cross-iteration phi. This is the second phase of 507 /// vectorizing this phi node. 508 void fixReduction(PHINode *Phi); 509 510 /// \brief The Loop exit block may have single value PHI nodes with some 511 /// incoming value. While vectorizing we only handled real values 512 /// that were defined inside the loop and we should have one value for 513 /// each predecessor of its parent basic block. See PR14725. 514 void fixLCSSAPHIs(); 515 516 /// Iteratively sink the scalarized operands of a predicated instruction into 517 /// the block that was created for it. 518 void sinkScalarOperands(Instruction *PredInst); 519 520 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 521 /// represented as. 522 void truncateToMinimalBitwidths(); 523 524 /// Insert the new loop to the loop hierarchy and pass manager 525 /// and update the analysis passes. 526 void updateAnalysis(); 527 528 /// Create a broadcast instruction. This method generates a broadcast 529 /// instruction (shuffle) for loop invariant values and for the induction 530 /// value. If this is the induction variable then we extend it to N, N+1, ... 531 /// this is needed because each iteration in the loop corresponds to a SIMD 532 /// element. 533 virtual Value *getBroadcastInstrs(Value *V); 534 535 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 536 /// to each vector element of Val. The sequence starts at StartIndex. 537 /// \p Opcode is relevant for FP induction variable. 538 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 539 Instruction::BinaryOps Opcode = 540 Instruction::BinaryOpsEnd); 541 542 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 543 /// variable on which to base the steps, \p Step is the size of the step, and 544 /// \p EntryVal is the value from the original loop that maps to the steps. 545 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 546 /// can be a truncate instruction). 547 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 548 const InductionDescriptor &ID); 549 550 /// Create a vector induction phi node based on an existing scalar one. \p 551 /// EntryVal is the value from the original loop that maps to the vector phi 552 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 553 /// truncate instruction, instead of widening the original IV, we widen a 554 /// version of the IV truncated to \p EntryVal's type. 555 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 556 Value *Step, Instruction *EntryVal); 557 558 /// Returns true if an instruction \p I should be scalarized instead of 559 /// vectorized for the chosen vectorization factor. 560 bool shouldScalarizeInstruction(Instruction *I) const; 561 562 /// Returns true if we should generate a scalar version of \p IV. 563 bool needsScalarInduction(Instruction *IV) const; 564 565 /// If there is a cast involved in the induction variable \p ID, which should 566 /// be ignored in the vectorized loop body, this function records the 567 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 568 /// cast. We had already proved that the casted Phi is equal to the uncasted 569 /// Phi in the vectorized loop (under a runtime guard), and therefore 570 /// there is no need to vectorize the cast - the same value can be used in the 571 /// vector loop for both the Phi and the cast. 572 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 573 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 574 void recordVectorLoopValueForInductionCast (const InductionDescriptor &ID, 575 Value *VectorLoopValue, 576 unsigned Part, 577 unsigned Lane = UINT_MAX); 578 579 /// Generate a shuffle sequence that will reverse the vector Vec. 580 virtual Value *reverseVector(Value *Vec); 581 582 /// Returns (and creates if needed) the original loop trip count. 583 Value *getOrCreateTripCount(Loop *NewLoop); 584 585 /// Returns (and creates if needed) the trip count of the widened loop. 586 Value *getOrCreateVectorTripCount(Loop *NewLoop); 587 588 /// Returns a bitcasted value to the requested vector type. 589 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 590 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 591 const DataLayout &DL); 592 593 /// Emit a bypass check to see if the vector trip count is zero, including if 594 /// it overflows. 595 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 596 597 /// Emit a bypass check to see if all of the SCEV assumptions we've 598 /// had to make are correct. 599 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 600 601 /// Emit bypass checks to check any memory assumptions we may have made. 602 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 603 604 /// Add additional metadata to \p To that was not present on \p Orig. 605 /// 606 /// Currently this is used to add the noalias annotations based on the 607 /// inserted memchecks. Use this for instructions that are *cloned* into the 608 /// vector loop. 609 void addNewMetadata(Instruction *To, const Instruction *Orig); 610 611 /// Add metadata from one instruction to another. 612 /// 613 /// This includes both the original MDs from \p From and additional ones (\see 614 /// addNewMetadata). Use this for *newly created* instructions in the vector 615 /// loop. 616 void addMetadata(Instruction *To, Instruction *From); 617 618 /// \brief Similar to the previous function but it adds the metadata to a 619 /// vector of instructions. 620 void addMetadata(ArrayRef<Value *> To, Instruction *From); 621 622 /// The original loop. 623 Loop *OrigLoop; 624 625 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 626 /// dynamic knowledge to simplify SCEV expressions and converts them to a 627 /// more usable form. 628 PredicatedScalarEvolution &PSE; 629 630 /// Loop Info. 631 LoopInfo *LI; 632 633 /// Dominator Tree. 634 DominatorTree *DT; 635 636 /// Alias Analysis. 637 AliasAnalysis *AA; 638 639 /// Target Library Info. 640 const TargetLibraryInfo *TLI; 641 642 /// Target Transform Info. 643 const TargetTransformInfo *TTI; 644 645 /// Assumption Cache. 646 AssumptionCache *AC; 647 648 /// Interface to emit optimization remarks. 649 OptimizationRemarkEmitter *ORE; 650 651 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 652 /// used. 653 /// 654 /// This is currently only used to add no-alias metadata based on the 655 /// memchecks. The actually versioning is performed manually. 656 std::unique_ptr<LoopVersioning> LVer; 657 658 /// The vectorization SIMD factor to use. Each vector will have this many 659 /// vector elements. 660 unsigned VF; 661 662 /// The vectorization unroll factor to use. Each scalar is vectorized to this 663 /// many different vector instructions. 664 unsigned UF; 665 666 /// The builder that we use 667 IRBuilder<> Builder; 668 669 // --- Vectorization state --- 670 671 /// The vector-loop preheader. 672 BasicBlock *LoopVectorPreHeader; 673 674 /// The scalar-loop preheader. 675 BasicBlock *LoopScalarPreHeader; 676 677 /// Middle Block between the vector and the scalar. 678 BasicBlock *LoopMiddleBlock; 679 680 /// The ExitBlock of the scalar loop. 681 BasicBlock *LoopExitBlock; 682 683 /// The vector loop body. 684 BasicBlock *LoopVectorBody; 685 686 /// The scalar loop body. 687 BasicBlock *LoopScalarBody; 688 689 /// A list of all bypass blocks. The first block is the entry of the loop. 690 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 691 692 /// The new Induction variable which was added to the new block. 693 PHINode *Induction = nullptr; 694 695 /// The induction variable of the old basic block. 696 PHINode *OldInduction = nullptr; 697 698 /// Maps values from the original loop to their corresponding values in the 699 /// vectorized loop. A key value can map to either vector values, scalar 700 /// values or both kinds of values, depending on whether the key was 701 /// vectorized and scalarized. 702 VectorizerValueMap VectorLoopValueMap; 703 704 /// Store instructions that were predicated. 705 SmallVector<Instruction *, 4> PredicatedInstructions; 706 707 /// Trip count of the original loop. 708 Value *TripCount = nullptr; 709 710 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 711 Value *VectorTripCount = nullptr; 712 713 /// The legality analysis. 714 LoopVectorizationLegality *Legal; 715 716 /// The profitablity analysis. 717 LoopVectorizationCostModel *Cost; 718 719 // Record whether runtime checks are added. 720 bool AddedSafetyChecks = false; 721 722 // Holds the end values for each induction variable. We save the end values 723 // so we can later fix-up the external users of the induction variables. 724 DenseMap<PHINode *, Value *> IVEndValues; 725 }; 726 727 class InnerLoopUnroller : public InnerLoopVectorizer { 728 public: 729 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 730 LoopInfo *LI, DominatorTree *DT, 731 const TargetLibraryInfo *TLI, 732 const TargetTransformInfo *TTI, AssumptionCache *AC, 733 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 734 LoopVectorizationLegality *LVL, 735 LoopVectorizationCostModel *CM) 736 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 737 UnrollFactor, LVL, CM) {} 738 739 private: 740 Value *getBroadcastInstrs(Value *V) override; 741 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 742 Instruction::BinaryOps Opcode = 743 Instruction::BinaryOpsEnd) override; 744 Value *reverseVector(Value *Vec) override; 745 }; 746 747 } // end namespace llvm 748 749 /// \brief Look for a meaningful debug location on the instruction or it's 750 /// operands. 751 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 752 if (!I) 753 return I; 754 755 DebugLoc Empty; 756 if (I->getDebugLoc() != Empty) 757 return I; 758 759 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 760 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 761 if (OpInst->getDebugLoc() != Empty) 762 return OpInst; 763 } 764 765 return I; 766 } 767 768 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 769 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 770 const DILocation *DIL = Inst->getDebugLoc(); 771 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 772 !isa<DbgInfoIntrinsic>(Inst)) 773 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 774 else 775 B.SetCurrentDebugLocation(DIL); 776 } else 777 B.SetCurrentDebugLocation(DebugLoc()); 778 } 779 780 #ifndef NDEBUG 781 /// \return string containing a file name and a line # for the given loop. 782 static std::string getDebugLocString(const Loop *L) { 783 std::string Result; 784 if (L) { 785 raw_string_ostream OS(Result); 786 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 787 LoopDbgLoc.print(OS); 788 else 789 // Just print the module name. 790 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 791 OS.flush(); 792 } 793 return Result; 794 } 795 #endif 796 797 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 798 const Instruction *Orig) { 799 // If the loop was versioned with memchecks, add the corresponding no-alias 800 // metadata. 801 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 802 LVer->annotateInstWithNoAlias(To, Orig); 803 } 804 805 void InnerLoopVectorizer::addMetadata(Instruction *To, 806 Instruction *From) { 807 propagateMetadata(To, From); 808 addNewMetadata(To, From); 809 } 810 811 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 812 Instruction *From) { 813 for (Value *V : To) { 814 if (Instruction *I = dyn_cast<Instruction>(V)) 815 addMetadata(I, From); 816 } 817 } 818 819 namespace llvm { 820 821 /// \brief The group of interleaved loads/stores sharing the same stride and 822 /// close to each other. 823 /// 824 /// Each member in this group has an index starting from 0, and the largest 825 /// index should be less than interleaved factor, which is equal to the absolute 826 /// value of the access's stride. 827 /// 828 /// E.g. An interleaved load group of factor 4: 829 /// for (unsigned i = 0; i < 1024; i+=4) { 830 /// a = A[i]; // Member of index 0 831 /// b = A[i+1]; // Member of index 1 832 /// d = A[i+3]; // Member of index 3 833 /// ... 834 /// } 835 /// 836 /// An interleaved store group of factor 4: 837 /// for (unsigned i = 0; i < 1024; i+=4) { 838 /// ... 839 /// A[i] = a; // Member of index 0 840 /// A[i+1] = b; // Member of index 1 841 /// A[i+2] = c; // Member of index 2 842 /// A[i+3] = d; // Member of index 3 843 /// } 844 /// 845 /// Note: the interleaved load group could have gaps (missing members), but 846 /// the interleaved store group doesn't allow gaps. 847 class InterleaveGroup { 848 public: 849 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 850 : Align(Align), InsertPos(Instr) { 851 assert(Align && "The alignment should be non-zero"); 852 853 Factor = std::abs(Stride); 854 assert(Factor > 1 && "Invalid interleave factor"); 855 856 Reverse = Stride < 0; 857 Members[0] = Instr; 858 } 859 860 bool isReverse() const { return Reverse; } 861 unsigned getFactor() const { return Factor; } 862 unsigned getAlignment() const { return Align; } 863 unsigned getNumMembers() const { return Members.size(); } 864 865 /// \brief Try to insert a new member \p Instr with index \p Index and 866 /// alignment \p NewAlign. The index is related to the leader and it could be 867 /// negative if it is the new leader. 868 /// 869 /// \returns false if the instruction doesn't belong to the group. 870 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 871 assert(NewAlign && "The new member's alignment should be non-zero"); 872 873 int Key = Index + SmallestKey; 874 875 // Skip if there is already a member with the same index. 876 if (Members.count(Key)) 877 return false; 878 879 if (Key > LargestKey) { 880 // The largest index is always less than the interleave factor. 881 if (Index >= static_cast<int>(Factor)) 882 return false; 883 884 LargestKey = Key; 885 } else if (Key < SmallestKey) { 886 // The largest index is always less than the interleave factor. 887 if (LargestKey - Key >= static_cast<int>(Factor)) 888 return false; 889 890 SmallestKey = Key; 891 } 892 893 // It's always safe to select the minimum alignment. 894 Align = std::min(Align, NewAlign); 895 Members[Key] = Instr; 896 return true; 897 } 898 899 /// \brief Get the member with the given index \p Index 900 /// 901 /// \returns nullptr if contains no such member. 902 Instruction *getMember(unsigned Index) const { 903 int Key = SmallestKey + Index; 904 if (!Members.count(Key)) 905 return nullptr; 906 907 return Members.find(Key)->second; 908 } 909 910 /// \brief Get the index for the given member. Unlike the key in the member 911 /// map, the index starts from 0. 912 unsigned getIndex(Instruction *Instr) const { 913 for (auto I : Members) 914 if (I.second == Instr) 915 return I.first - SmallestKey; 916 917 llvm_unreachable("InterleaveGroup contains no such member"); 918 } 919 920 Instruction *getInsertPos() const { return InsertPos; } 921 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 922 923 /// Add metadata (e.g. alias info) from the instructions in this group to \p 924 /// NewInst. 925 /// 926 /// FIXME: this function currently does not add noalias metadata a'la 927 /// addNewMedata. To do that we need to compute the intersection of the 928 /// noalias info from all members. 929 void addMetadata(Instruction *NewInst) const { 930 SmallVector<Value *, 4> VL; 931 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 932 [](std::pair<int, Instruction *> p) { return p.second; }); 933 propagateMetadata(NewInst, VL); 934 } 935 936 private: 937 unsigned Factor; // Interleave Factor. 938 bool Reverse; 939 unsigned Align; 940 DenseMap<int, Instruction *> Members; 941 int SmallestKey = 0; 942 int LargestKey = 0; 943 944 // To avoid breaking dependences, vectorized instructions of an interleave 945 // group should be inserted at either the first load or the last store in 946 // program order. 947 // 948 // E.g. %even = load i32 // Insert Position 949 // %add = add i32 %even // Use of %even 950 // %odd = load i32 951 // 952 // store i32 %even 953 // %odd = add i32 // Def of %odd 954 // store i32 %odd // Insert Position 955 Instruction *InsertPos; 956 }; 957 } // end namespace llvm 958 959 namespace { 960 961 /// \brief Drive the analysis of interleaved memory accesses in the loop. 962 /// 963 /// Use this class to analyze interleaved accesses only when we can vectorize 964 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 965 /// on interleaved accesses is unsafe. 966 /// 967 /// The analysis collects interleave groups and records the relationships 968 /// between the member and the group in a map. 969 class InterleavedAccessInfo { 970 public: 971 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 972 DominatorTree *DT, LoopInfo *LI) 973 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 974 975 ~InterleavedAccessInfo() { 976 SmallSet<InterleaveGroup *, 4> DelSet; 977 // Avoid releasing a pointer twice. 978 for (auto &I : InterleaveGroupMap) 979 DelSet.insert(I.second); 980 for (auto *Ptr : DelSet) 981 delete Ptr; 982 } 983 984 /// \brief Analyze the interleaved accesses and collect them in interleave 985 /// groups. Substitute symbolic strides using \p Strides. 986 void analyzeInterleaving(const ValueToValueMap &Strides); 987 988 /// \brief Check if \p Instr belongs to any interleave group. 989 bool isInterleaved(Instruction *Instr) const { 990 return InterleaveGroupMap.count(Instr); 991 } 992 993 /// \brief Get the interleave group that \p Instr belongs to. 994 /// 995 /// \returns nullptr if doesn't have such group. 996 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 997 if (InterleaveGroupMap.count(Instr)) 998 return InterleaveGroupMap.find(Instr)->second; 999 return nullptr; 1000 } 1001 1002 /// \brief Returns true if an interleaved group that may access memory 1003 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1004 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1005 1006 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1007 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1008 1009 private: 1010 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1011 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1012 /// The interleaved access analysis can also add new predicates (for example 1013 /// by versioning strides of pointers). 1014 PredicatedScalarEvolution &PSE; 1015 1016 Loop *TheLoop; 1017 DominatorTree *DT; 1018 LoopInfo *LI; 1019 const LoopAccessInfo *LAI = nullptr; 1020 1021 /// True if the loop may contain non-reversed interleaved groups with 1022 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1023 /// out-of-bounds by executing at least one scalar epilogue iteration. 1024 bool RequiresScalarEpilogue = false; 1025 1026 /// Holds the relationships between the members and the interleave group. 1027 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1028 1029 /// Holds dependences among the memory accesses in the loop. It maps a source 1030 /// access to a set of dependent sink accesses. 1031 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1032 1033 /// \brief The descriptor for a strided memory access. 1034 struct StrideDescriptor { 1035 StrideDescriptor() = default; 1036 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1037 unsigned Align) 1038 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1039 1040 // The access's stride. It is negative for a reverse access. 1041 int64_t Stride = 0; 1042 1043 // The scalar expression of this access. 1044 const SCEV *Scev = nullptr; 1045 1046 // The size of the memory object. 1047 uint64_t Size = 0; 1048 1049 // The alignment of this access. 1050 unsigned Align = 0; 1051 }; 1052 1053 /// \brief A type for holding instructions and their stride descriptors. 1054 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1055 1056 /// \brief Create a new interleave group with the given instruction \p Instr, 1057 /// stride \p Stride and alignment \p Align. 1058 /// 1059 /// \returns the newly created interleave group. 1060 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1061 unsigned Align) { 1062 assert(!InterleaveGroupMap.count(Instr) && 1063 "Already in an interleaved access group"); 1064 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1065 return InterleaveGroupMap[Instr]; 1066 } 1067 1068 /// \brief Release the group and remove all the relationships. 1069 void releaseGroup(InterleaveGroup *Group) { 1070 for (unsigned i = 0; i < Group->getFactor(); i++) 1071 if (Instruction *Member = Group->getMember(i)) 1072 InterleaveGroupMap.erase(Member); 1073 1074 delete Group; 1075 } 1076 1077 /// \brief Collect all the accesses with a constant stride in program order. 1078 void collectConstStrideAccesses( 1079 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1080 const ValueToValueMap &Strides); 1081 1082 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1083 static bool isStrided(int Stride) { 1084 unsigned Factor = std::abs(Stride); 1085 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1086 } 1087 1088 /// \brief Returns true if \p BB is a predicated block. 1089 bool isPredicated(BasicBlock *BB) const { 1090 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1091 } 1092 1093 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1094 bool areDependencesValid() const { 1095 return LAI && LAI->getDepChecker().getDependences(); 1096 } 1097 1098 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1099 /// necessary, when constructing interleaved groups. 1100 /// 1101 /// \p A must precede \p B in program order. We return false if reordering is 1102 /// not necessary or is prevented because \p A and \p B may be dependent. 1103 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1104 StrideEntry *B) const { 1105 // Code motion for interleaved accesses can potentially hoist strided loads 1106 // and sink strided stores. The code below checks the legality of the 1107 // following two conditions: 1108 // 1109 // 1. Potentially moving a strided load (B) before any store (A) that 1110 // precedes B, or 1111 // 1112 // 2. Potentially moving a strided store (A) after any load or store (B) 1113 // that A precedes. 1114 // 1115 // It's legal to reorder A and B if we know there isn't a dependence from A 1116 // to B. Note that this determination is conservative since some 1117 // dependences could potentially be reordered safely. 1118 1119 // A is potentially the source of a dependence. 1120 auto *Src = A->first; 1121 auto SrcDes = A->second; 1122 1123 // B is potentially the sink of a dependence. 1124 auto *Sink = B->first; 1125 auto SinkDes = B->second; 1126 1127 // Code motion for interleaved accesses can't violate WAR dependences. 1128 // Thus, reordering is legal if the source isn't a write. 1129 if (!Src->mayWriteToMemory()) 1130 return true; 1131 1132 // At least one of the accesses must be strided. 1133 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1134 return true; 1135 1136 // If dependence information is not available from LoopAccessInfo, 1137 // conservatively assume the instructions can't be reordered. 1138 if (!areDependencesValid()) 1139 return false; 1140 1141 // If we know there is a dependence from source to sink, assume the 1142 // instructions can't be reordered. Otherwise, reordering is legal. 1143 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1144 } 1145 1146 /// \brief Collect the dependences from LoopAccessInfo. 1147 /// 1148 /// We process the dependences once during the interleaved access analysis to 1149 /// enable constant-time dependence queries. 1150 void collectDependences() { 1151 if (!areDependencesValid()) 1152 return; 1153 auto *Deps = LAI->getDepChecker().getDependences(); 1154 for (auto Dep : *Deps) 1155 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1156 } 1157 }; 1158 1159 /// Utility class for getting and setting loop vectorizer hints in the form 1160 /// of loop metadata. 1161 /// This class keeps a number of loop annotations locally (as member variables) 1162 /// and can, upon request, write them back as metadata on the loop. It will 1163 /// initially scan the loop for existing metadata, and will update the local 1164 /// values based on information in the loop. 1165 /// We cannot write all values to metadata, as the mere presence of some info, 1166 /// for example 'force', means a decision has been made. So, we need to be 1167 /// careful NOT to add them if the user hasn't specifically asked so. 1168 class LoopVectorizeHints { 1169 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1170 1171 /// Hint - associates name and validation with the hint value. 1172 struct Hint { 1173 const char *Name; 1174 unsigned Value; // This may have to change for non-numeric values. 1175 HintKind Kind; 1176 1177 Hint(const char *Name, unsigned Value, HintKind Kind) 1178 : Name(Name), Value(Value), Kind(Kind) {} 1179 1180 bool validate(unsigned Val) { 1181 switch (Kind) { 1182 case HK_WIDTH: 1183 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1184 case HK_UNROLL: 1185 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1186 case HK_FORCE: 1187 return (Val <= 1); 1188 case HK_ISVECTORIZED: 1189 return (Val==0 || Val==1); 1190 } 1191 return false; 1192 } 1193 }; 1194 1195 /// Vectorization width. 1196 Hint Width; 1197 1198 /// Vectorization interleave factor. 1199 Hint Interleave; 1200 1201 /// Vectorization forced 1202 Hint Force; 1203 1204 /// Already Vectorized 1205 Hint IsVectorized; 1206 1207 /// Return the loop metadata prefix. 1208 static StringRef Prefix() { return "llvm.loop."; } 1209 1210 /// True if there is any unsafe math in the loop. 1211 bool PotentiallyUnsafe = false; 1212 1213 public: 1214 enum ForceKind { 1215 FK_Undefined = -1, ///< Not selected. 1216 FK_Disabled = 0, ///< Forcing disabled. 1217 FK_Enabled = 1, ///< Forcing enabled. 1218 }; 1219 1220 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1221 OptimizationRemarkEmitter &ORE) 1222 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1223 HK_WIDTH), 1224 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1225 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1226 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1227 // Populate values with existing loop metadata. 1228 getHintsFromMetadata(); 1229 1230 // force-vector-interleave overrides DisableInterleaving. 1231 if (VectorizerParams::isInterleaveForced()) 1232 Interleave.Value = VectorizerParams::VectorizationInterleave; 1233 1234 if (IsVectorized.Value != 1) 1235 // If the vectorization width and interleaving count are both 1 then 1236 // consider the loop to have been already vectorized because there's 1237 // nothing more that we can do. 1238 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1239 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1240 << "LV: Interleaving disabled by the pass manager\n"); 1241 } 1242 1243 /// Mark the loop L as already vectorized by setting the width to 1. 1244 void setAlreadyVectorized() { 1245 IsVectorized.Value = 1; 1246 Hint Hints[] = {IsVectorized}; 1247 writeHintsToMetadata(Hints); 1248 } 1249 1250 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1251 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1252 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1253 emitRemarkWithHints(); 1254 return false; 1255 } 1256 1257 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1258 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1259 emitRemarkWithHints(); 1260 return false; 1261 } 1262 1263 if (getIsVectorized() == 1) { 1264 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1265 // FIXME: Add interleave.disable metadata. This will allow 1266 // vectorize.disable to be used without disabling the pass and errors 1267 // to differentiate between disabled vectorization and a width of 1. 1268 ORE.emit([&]() { 1269 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1270 "AllDisabled", L->getStartLoc(), 1271 L->getHeader()) 1272 << "loop not vectorized: vectorization and interleaving are " 1273 "explicitly disabled, or the loop has already been " 1274 "vectorized"; 1275 }); 1276 return false; 1277 } 1278 1279 return true; 1280 } 1281 1282 /// Dumps all the hint information. 1283 void emitRemarkWithHints() const { 1284 using namespace ore; 1285 1286 ORE.emit([&]() { 1287 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1288 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1289 TheLoop->getStartLoc(), 1290 TheLoop->getHeader()) 1291 << "loop not vectorized: vectorization is explicitly disabled"; 1292 else { 1293 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1294 TheLoop->getStartLoc(), 1295 TheLoop->getHeader()); 1296 R << "loop not vectorized"; 1297 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1298 R << " (Force=" << NV("Force", true); 1299 if (Width.Value != 0) 1300 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1301 if (Interleave.Value != 0) 1302 R << ", Interleave Count=" 1303 << NV("InterleaveCount", Interleave.Value); 1304 R << ")"; 1305 } 1306 return R; 1307 } 1308 }); 1309 } 1310 1311 unsigned getWidth() const { return Width.Value; } 1312 unsigned getInterleave() const { return Interleave.Value; } 1313 unsigned getIsVectorized() const { return IsVectorized.Value; } 1314 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1315 1316 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1317 /// pass name to force the frontend to print the diagnostic. 1318 const char *vectorizeAnalysisPassName() const { 1319 if (getWidth() == 1) 1320 return LV_NAME; 1321 if (getForce() == LoopVectorizeHints::FK_Disabled) 1322 return LV_NAME; 1323 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1324 return LV_NAME; 1325 return OptimizationRemarkAnalysis::AlwaysPrint; 1326 } 1327 1328 bool allowReordering() const { 1329 // When enabling loop hints are provided we allow the vectorizer to change 1330 // the order of operations that is given by the scalar loop. This is not 1331 // enabled by default because can be unsafe or inefficient. For example, 1332 // reordering floating-point operations will change the way round-off 1333 // error accumulates in the loop. 1334 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1335 } 1336 1337 bool isPotentiallyUnsafe() const { 1338 // Avoid FP vectorization if the target is unsure about proper support. 1339 // This may be related to the SIMD unit in the target not handling 1340 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1341 // Otherwise, a sequence of vectorized loops, even without reduction, 1342 // could lead to different end results on the destination vectors. 1343 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1344 } 1345 1346 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1347 1348 private: 1349 /// Find hints specified in the loop metadata and update local values. 1350 void getHintsFromMetadata() { 1351 MDNode *LoopID = TheLoop->getLoopID(); 1352 if (!LoopID) 1353 return; 1354 1355 // First operand should refer to the loop id itself. 1356 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1357 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1358 1359 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1360 const MDString *S = nullptr; 1361 SmallVector<Metadata *, 4> Args; 1362 1363 // The expected hint is either a MDString or a MDNode with the first 1364 // operand a MDString. 1365 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1366 if (!MD || MD->getNumOperands() == 0) 1367 continue; 1368 S = dyn_cast<MDString>(MD->getOperand(0)); 1369 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1370 Args.push_back(MD->getOperand(i)); 1371 } else { 1372 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1373 assert(Args.size() == 0 && "too many arguments for MDString"); 1374 } 1375 1376 if (!S) 1377 continue; 1378 1379 // Check if the hint starts with the loop metadata prefix. 1380 StringRef Name = S->getString(); 1381 if (Args.size() == 1) 1382 setHint(Name, Args[0]); 1383 } 1384 } 1385 1386 /// Checks string hint with one operand and set value if valid. 1387 void setHint(StringRef Name, Metadata *Arg) { 1388 if (!Name.startswith(Prefix())) 1389 return; 1390 Name = Name.substr(Prefix().size(), StringRef::npos); 1391 1392 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1393 if (!C) 1394 return; 1395 unsigned Val = C->getZExtValue(); 1396 1397 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1398 for (auto H : Hints) { 1399 if (Name == H->Name) { 1400 if (H->validate(Val)) 1401 H->Value = Val; 1402 else 1403 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1404 break; 1405 } 1406 } 1407 } 1408 1409 /// Create a new hint from name / value pair. 1410 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1411 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1412 Metadata *MDs[] = {MDString::get(Context, Name), 1413 ConstantAsMetadata::get( 1414 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1415 return MDNode::get(Context, MDs); 1416 } 1417 1418 /// Matches metadata with hint name. 1419 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1420 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1421 if (!Name) 1422 return false; 1423 1424 for (auto H : HintTypes) 1425 if (Name->getString().endswith(H.Name)) 1426 return true; 1427 return false; 1428 } 1429 1430 /// Sets current hints into loop metadata, keeping other values intact. 1431 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1432 if (HintTypes.empty()) 1433 return; 1434 1435 // Reserve the first element to LoopID (see below). 1436 SmallVector<Metadata *, 4> MDs(1); 1437 // If the loop already has metadata, then ignore the existing operands. 1438 MDNode *LoopID = TheLoop->getLoopID(); 1439 if (LoopID) { 1440 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1441 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1442 // If node in update list, ignore old value. 1443 if (!matchesHintMetadataName(Node, HintTypes)) 1444 MDs.push_back(Node); 1445 } 1446 } 1447 1448 // Now, add the missing hints. 1449 for (auto H : HintTypes) 1450 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1451 1452 // Replace current metadata node with new one. 1453 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1454 MDNode *NewLoopID = MDNode::get(Context, MDs); 1455 // Set operand 0 to refer to the loop id itself. 1456 NewLoopID->replaceOperandWith(0, NewLoopID); 1457 1458 TheLoop->setLoopID(NewLoopID); 1459 } 1460 1461 /// The loop these hints belong to. 1462 const Loop *TheLoop; 1463 1464 /// Interface to emit optimization remarks. 1465 OptimizationRemarkEmitter &ORE; 1466 }; 1467 1468 } // end anonymous namespace 1469 1470 static void emitMissedWarning(Function *F, Loop *L, 1471 const LoopVectorizeHints &LH, 1472 OptimizationRemarkEmitter *ORE) { 1473 LH.emitRemarkWithHints(); 1474 1475 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1476 if (LH.getWidth() != 1) 1477 ORE->emit(DiagnosticInfoOptimizationFailure( 1478 DEBUG_TYPE, "FailedRequestedVectorization", 1479 L->getStartLoc(), L->getHeader()) 1480 << "loop not vectorized: " 1481 << "failed explicitly specified loop vectorization"); 1482 else if (LH.getInterleave() != 1) 1483 ORE->emit(DiagnosticInfoOptimizationFailure( 1484 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1485 L->getHeader()) 1486 << "loop not interleaved: " 1487 << "failed explicitly specified loop interleaving"); 1488 } 1489 } 1490 1491 namespace llvm { 1492 1493 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1494 /// to what vectorization factor. 1495 /// This class does not look at the profitability of vectorization, only the 1496 /// legality. This class has two main kinds of checks: 1497 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1498 /// will change the order of memory accesses in a way that will change the 1499 /// correctness of the program. 1500 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1501 /// checks for a number of different conditions, such as the availability of a 1502 /// single induction variable, that all types are supported and vectorize-able, 1503 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1504 /// This class is also used by InnerLoopVectorizer for identifying 1505 /// induction variable and the different reduction variables. 1506 class LoopVectorizationLegality { 1507 public: 1508 LoopVectorizationLegality( 1509 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1510 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1511 const TargetTransformInfo *TTI, 1512 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1513 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1514 LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC) 1515 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1516 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H), 1517 DB(DB), AC(AC) {} 1518 1519 /// ReductionList contains the reduction descriptors for all 1520 /// of the reductions that were found in the loop. 1521 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1522 1523 /// InductionList saves induction variables and maps them to the 1524 /// induction descriptor. 1525 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1526 1527 /// RecurrenceSet contains the phi nodes that are recurrences other than 1528 /// inductions and reductions. 1529 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1530 1531 /// Returns true if it is legal to vectorize this loop. 1532 /// This does not mean that it is profitable to vectorize this 1533 /// loop, only that it is legal to do so. 1534 bool canVectorize(); 1535 1536 /// Returns the primary induction variable. 1537 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1538 1539 /// Returns the reduction variables found in the loop. 1540 ReductionList *getReductionVars() { return &Reductions; } 1541 1542 /// Returns the induction variables found in the loop. 1543 InductionList *getInductionVars() { return &Inductions; } 1544 1545 /// Return the first-order recurrences found in the loop. 1546 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1547 1548 /// Return the set of instructions to sink to handle first-order recurrences. 1549 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1550 1551 /// Returns the widest induction type. 1552 Type *getWidestInductionType() { return WidestIndTy; } 1553 1554 /// Returns True if V is a Phi node of an induction variable in this loop. 1555 bool isInductionPhi(const Value *V); 1556 1557 /// Returns True if V is a cast that is part of an induction def-use chain, 1558 /// and had been proven to be redundant under a runtime guard (in other 1559 /// words, the cast has the same SCEV expression as the induction phi). 1560 bool isCastedInductionVariable(const Value *V); 1561 1562 /// Returns True if V can be considered as an induction variable in this 1563 /// loop. V can be the induction phi, or some redundant cast in the def-use 1564 /// chain of the inducion phi. 1565 bool isInductionVariable(const Value *V); 1566 1567 /// Returns True if PN is a reduction variable in this loop. 1568 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1569 1570 /// Returns True if Phi is a first-order recurrence in this loop. 1571 bool isFirstOrderRecurrence(const PHINode *Phi); 1572 1573 /// Return true if the block BB needs to be predicated in order for the loop 1574 /// to be vectorized. 1575 bool blockNeedsPredication(BasicBlock *BB); 1576 1577 /// Check if this pointer is consecutive when vectorizing. This happens 1578 /// when the last index of the GEP is the induction variable, or that the 1579 /// pointer itself is an induction variable. 1580 /// This check allows us to vectorize A[idx] into a wide load/store. 1581 /// Returns: 1582 /// 0 - Stride is unknown or non-consecutive. 1583 /// 1 - Address is consecutive. 1584 /// -1 - Address is consecutive, and decreasing. 1585 /// NOTE: This method must only be used before modifying the original scalar 1586 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1587 int isConsecutivePtr(Value *Ptr); 1588 1589 /// Returns true if the value V is uniform within the loop. 1590 bool isUniform(Value *V); 1591 1592 /// Returns the information that we collected about runtime memory check. 1593 const RuntimePointerChecking *getRuntimePointerChecking() const { 1594 return LAI->getRuntimePointerChecking(); 1595 } 1596 1597 const LoopAccessInfo *getLAI() const { return LAI; } 1598 1599 /// \brief Check if \p Instr belongs to any interleaved access group. 1600 bool isAccessInterleaved(Instruction *Instr) { 1601 return InterleaveInfo.isInterleaved(Instr); 1602 } 1603 1604 /// \brief Get the interleaved access group that \p Instr belongs to. 1605 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1606 return InterleaveInfo.getInterleaveGroup(Instr); 1607 } 1608 1609 /// \brief Returns true if an interleaved group requires a scalar iteration 1610 /// to handle accesses with gaps. 1611 bool requiresScalarEpilogue() const { 1612 return InterleaveInfo.requiresScalarEpilogue(); 1613 } 1614 1615 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1616 1617 uint64_t getMaxSafeRegisterWidth() const { 1618 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1619 } 1620 1621 bool hasStride(Value *V) { return LAI->hasStride(V); } 1622 1623 /// Returns true if vector representation of the instruction \p I 1624 /// requires mask. 1625 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1626 1627 unsigned getNumStores() const { return LAI->getNumStores(); } 1628 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1629 1630 // Returns true if the NoNaN attribute is set on the function. 1631 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1632 1633 private: 1634 /// Check if a single basic block loop is vectorizable. 1635 /// At this point we know that this is a loop with a constant trip count 1636 /// and we only need to check individual instructions. 1637 bool canVectorizeInstrs(); 1638 1639 /// When we vectorize loops we may change the order in which 1640 /// we read and write from memory. This method checks if it is 1641 /// legal to vectorize the code, considering only memory constrains. 1642 /// Returns true if the loop is vectorizable 1643 bool canVectorizeMemory(); 1644 1645 /// Return true if we can vectorize this loop using the IF-conversion 1646 /// transformation. 1647 bool canVectorizeWithIfConvert(); 1648 1649 /// Return true if all of the instructions in the block can be speculatively 1650 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1651 /// and we know that we can read from them without segfault. 1652 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1653 1654 /// Updates the vectorization state by adding \p Phi to the inductions list. 1655 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1656 /// better choice for the main induction than the existing one. 1657 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1658 SmallPtrSetImpl<Value *> &AllowedExit); 1659 1660 /// Create an analysis remark that explains why vectorization failed 1661 /// 1662 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1663 /// an instruction that prevents vectorization. Otherwise the loop is used 1664 /// for the location of the remark. \return the remark object that can be 1665 /// streamed to. 1666 OptimizationRemarkAnalysis 1667 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1668 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1669 RemarkName, TheLoop, I); 1670 } 1671 1672 /// \brief If an access has a symbolic strides, this maps the pointer value to 1673 /// the stride symbol. 1674 const ValueToValueMap *getSymbolicStrides() { 1675 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1676 // it's collected. This happens from canVectorizeWithIfConvert, when the 1677 // pointer is checked to reference consecutive elements suitable for a 1678 // masked access. 1679 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1680 } 1681 1682 /// The loop that we evaluate. 1683 Loop *TheLoop; 1684 1685 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1686 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1687 /// of existing SCEV assumptions. The analysis will also add a minimal set 1688 /// of new predicates if this is required to enable vectorization and 1689 /// unrolling. 1690 PredicatedScalarEvolution &PSE; 1691 1692 /// Target Library Info. 1693 TargetLibraryInfo *TLI; 1694 1695 /// Target Transform Info 1696 const TargetTransformInfo *TTI; 1697 1698 /// Dominator Tree. 1699 DominatorTree *DT; 1700 1701 // LoopAccess analysis. 1702 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1703 1704 // And the loop-accesses info corresponding to this loop. This pointer is 1705 // null until canVectorizeMemory sets it up. 1706 const LoopAccessInfo *LAI = nullptr; 1707 1708 /// Interface to emit optimization remarks. 1709 OptimizationRemarkEmitter *ORE; 1710 1711 /// The interleave access information contains groups of interleaved accesses 1712 /// with the same stride and close to each other. 1713 InterleavedAccessInfo InterleaveInfo; 1714 1715 // --- vectorization state --- // 1716 1717 /// Holds the primary induction variable. This is the counter of the 1718 /// loop. 1719 PHINode *PrimaryInduction = nullptr; 1720 1721 /// Holds the reduction variables. 1722 ReductionList Reductions; 1723 1724 /// Holds all of the induction variables that we found in the loop. 1725 /// Notice that inductions don't need to start at zero and that induction 1726 /// variables can be pointers. 1727 InductionList Inductions; 1728 1729 /// Holds all the casts that participate in the update chain of the induction 1730 /// variables, and that have been proven to be redundant (possibly under a 1731 /// runtime guard). These casts can be ignored when creating the vectorized 1732 /// loop body. 1733 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1734 1735 /// Holds the phi nodes that are first-order recurrences. 1736 RecurrenceSet FirstOrderRecurrences; 1737 1738 /// Holds instructions that need to sink past other instructions to handle 1739 /// first-order recurrences. 1740 DenseMap<Instruction *, Instruction *> SinkAfter; 1741 1742 /// Holds the widest induction type encountered. 1743 Type *WidestIndTy = nullptr; 1744 1745 /// Allowed outside users. This holds the induction and reduction 1746 /// vars which can be accessed from outside the loop. 1747 SmallPtrSet<Value *, 4> AllowedExit; 1748 1749 /// Can we assume the absence of NaNs. 1750 bool HasFunNoNaNAttr = false; 1751 1752 /// Vectorization requirements that will go through late-evaluation. 1753 LoopVectorizationRequirements *Requirements; 1754 1755 /// Used to emit an analysis of any legality issues. 1756 LoopVectorizeHints *Hints; 1757 1758 /// The demanded bits analsyis is used to compute the minimum type size in 1759 /// which a reduction can be computed. 1760 DemandedBits *DB; 1761 1762 /// The assumption cache analysis is used to compute the minimum type size in 1763 /// which a reduction can be computed. 1764 AssumptionCache *AC; 1765 1766 /// While vectorizing these instructions we have to generate a 1767 /// call to the appropriate masked intrinsic 1768 SmallPtrSet<const Instruction *, 8> MaskedOp; 1769 }; 1770 1771 /// LoopVectorizationCostModel - estimates the expected speedups due to 1772 /// vectorization. 1773 /// In many cases vectorization is not profitable. This can happen because of 1774 /// a number of reasons. In this class we mainly attempt to predict the 1775 /// expected speedup/slowdowns due to the supported instruction set. We use the 1776 /// TargetTransformInfo to query the different backends for the cost of 1777 /// different operations. 1778 class LoopVectorizationCostModel { 1779 public: 1780 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1781 LoopInfo *LI, LoopVectorizationLegality *Legal, 1782 const TargetTransformInfo &TTI, 1783 const TargetLibraryInfo *TLI, DemandedBits *DB, 1784 AssumptionCache *AC, 1785 OptimizationRemarkEmitter *ORE, const Function *F, 1786 const LoopVectorizeHints *Hints) 1787 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1788 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1789 1790 /// \return An upper bound for the vectorization factor, or None if 1791 /// vectorization should be avoided up front. 1792 Optional<unsigned> computeMaxVF(bool OptForSize); 1793 1794 /// \return The most profitable vectorization factor and the cost of that VF. 1795 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1796 /// then this vectorization factor will be selected if vectorization is 1797 /// possible. 1798 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1799 1800 /// Setup cost-based decisions for user vectorization factor. 1801 void selectUserVectorizationFactor(unsigned UserVF) { 1802 collectUniformsAndScalars(UserVF); 1803 collectInstsToScalarize(UserVF); 1804 } 1805 1806 /// \return The size (in bits) of the smallest and widest types in the code 1807 /// that needs to be vectorized. We ignore values that remain scalar such as 1808 /// 64 bit loop indices. 1809 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1810 1811 /// \return The desired interleave count. 1812 /// If interleave count has been specified by metadata it will be returned. 1813 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1814 /// are the selected vectorization factor and the cost of the selected VF. 1815 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1816 unsigned LoopCost); 1817 1818 /// Memory access instruction may be vectorized in more than one way. 1819 /// Form of instruction after vectorization depends on cost. 1820 /// This function takes cost-based decisions for Load/Store instructions 1821 /// and collects them in a map. This decisions map is used for building 1822 /// the lists of loop-uniform and loop-scalar instructions. 1823 /// The calculated cost is saved with widening decision in order to 1824 /// avoid redundant calculations. 1825 void setCostBasedWideningDecision(unsigned VF); 1826 1827 /// \brief A struct that represents some properties of the register usage 1828 /// of a loop. 1829 struct RegisterUsage { 1830 /// Holds the number of loop invariant values that are used in the loop. 1831 unsigned LoopInvariantRegs; 1832 1833 /// Holds the maximum number of concurrent live intervals in the loop. 1834 unsigned MaxLocalUsers; 1835 }; 1836 1837 /// \return Returns information about the register usages of the loop for the 1838 /// given vectorization factors. 1839 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1840 1841 /// Collect values we want to ignore in the cost model. 1842 void collectValuesToIgnore(); 1843 1844 /// \returns The smallest bitwidth each instruction can be represented with. 1845 /// The vector equivalents of these instructions should be truncated to this 1846 /// type. 1847 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1848 return MinBWs; 1849 } 1850 1851 /// \returns True if it is more profitable to scalarize instruction \p I for 1852 /// vectorization factor \p VF. 1853 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1854 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1855 auto Scalars = InstsToScalarize.find(VF); 1856 assert(Scalars != InstsToScalarize.end() && 1857 "VF not yet analyzed for scalarization profitability"); 1858 return Scalars->second.count(I); 1859 } 1860 1861 /// Returns true if \p I is known to be uniform after vectorization. 1862 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1863 if (VF == 1) 1864 return true; 1865 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1866 auto UniformsPerVF = Uniforms.find(VF); 1867 return UniformsPerVF->second.count(I); 1868 } 1869 1870 /// Returns true if \p I is known to be scalar after vectorization. 1871 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1872 if (VF == 1) 1873 return true; 1874 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1875 auto ScalarsPerVF = Scalars.find(VF); 1876 return ScalarsPerVF->second.count(I); 1877 } 1878 1879 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1880 /// for vectorization factor \p VF. 1881 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1882 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1883 !isScalarAfterVectorization(I, VF); 1884 } 1885 1886 /// Decision that was taken during cost calculation for memory instruction. 1887 enum InstWidening { 1888 CM_Unknown, 1889 CM_Widen, // For consecutive accesses with stride +1. 1890 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1891 CM_Interleave, 1892 CM_GatherScatter, 1893 CM_Scalarize 1894 }; 1895 1896 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1897 /// instruction \p I and vector width \p VF. 1898 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1899 unsigned Cost) { 1900 assert(VF >= 2 && "Expected VF >=2"); 1901 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1902 } 1903 1904 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1905 /// interleaving group \p Grp and vector width \p VF. 1906 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1907 InstWidening W, unsigned Cost) { 1908 assert(VF >= 2 && "Expected VF >=2"); 1909 /// Broadcast this decicion to all instructions inside the group. 1910 /// But the cost will be assigned to one instruction only. 1911 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1912 if (auto *I = Grp->getMember(i)) { 1913 if (Grp->getInsertPos() == I) 1914 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1915 else 1916 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1917 } 1918 } 1919 } 1920 1921 /// Return the cost model decision for the given instruction \p I and vector 1922 /// width \p VF. Return CM_Unknown if this instruction did not pass 1923 /// through the cost modeling. 1924 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1925 assert(VF >= 2 && "Expected VF >=2"); 1926 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1927 auto Itr = WideningDecisions.find(InstOnVF); 1928 if (Itr == WideningDecisions.end()) 1929 return CM_Unknown; 1930 return Itr->second.first; 1931 } 1932 1933 /// Return the vectorization cost for the given instruction \p I and vector 1934 /// width \p VF. 1935 unsigned getWideningCost(Instruction *I, unsigned VF) { 1936 assert(VF >= 2 && "Expected VF >=2"); 1937 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1938 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1939 return WideningDecisions[InstOnVF].second; 1940 } 1941 1942 /// Return True if instruction \p I is an optimizable truncate whose operand 1943 /// is an induction variable. Such a truncate will be removed by adding a new 1944 /// induction variable with the destination type. 1945 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1946 // If the instruction is not a truncate, return false. 1947 auto *Trunc = dyn_cast<TruncInst>(I); 1948 if (!Trunc) 1949 return false; 1950 1951 // Get the source and destination types of the truncate. 1952 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1953 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1954 1955 // If the truncate is free for the given types, return false. Replacing a 1956 // free truncate with an induction variable would add an induction variable 1957 // update instruction to each iteration of the loop. We exclude from this 1958 // check the primary induction variable since it will need an update 1959 // instruction regardless. 1960 Value *Op = Trunc->getOperand(0); 1961 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1962 return false; 1963 1964 // If the truncated value is not an induction variable, return false. 1965 return Legal->isInductionPhi(Op); 1966 } 1967 1968 /// Collects the instructions to scalarize for each predicated instruction in 1969 /// the loop. 1970 void collectInstsToScalarize(unsigned VF); 1971 1972 /// Collect Uniform and Scalar values for the given \p VF. 1973 /// The sets depend on CM decision for Load/Store instructions 1974 /// that may be vectorized as interleave, gather-scatter or scalarized. 1975 void collectUniformsAndScalars(unsigned VF) { 1976 // Do the analysis once. 1977 if (VF == 1 || Uniforms.count(VF)) 1978 return; 1979 setCostBasedWideningDecision(VF); 1980 collectLoopUniforms(VF); 1981 collectLoopScalars(VF); 1982 } 1983 1984 /// Returns true if the target machine supports masked store operation 1985 /// for the given \p DataType and kind of access to \p Ptr. 1986 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1987 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1988 } 1989 1990 /// Returns true if the target machine supports masked load operation 1991 /// for the given \p DataType and kind of access to \p Ptr. 1992 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1993 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1994 } 1995 1996 /// Returns true if the target machine supports masked scatter operation 1997 /// for the given \p DataType. 1998 bool isLegalMaskedScatter(Type *DataType) { 1999 return TTI.isLegalMaskedScatter(DataType); 2000 } 2001 2002 /// Returns true if the target machine supports masked gather operation 2003 /// for the given \p DataType. 2004 bool isLegalMaskedGather(Type *DataType) { 2005 return TTI.isLegalMaskedGather(DataType); 2006 } 2007 2008 /// Returns true if the target machine can represent \p V as a masked gather 2009 /// or scatter operation. 2010 bool isLegalGatherOrScatter(Value *V) { 2011 bool LI = isa<LoadInst>(V); 2012 bool SI = isa<StoreInst>(V); 2013 if (!LI && !SI) 2014 return false; 2015 auto *Ty = getMemInstValueType(V); 2016 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 2017 } 2018 2019 /// Returns true if \p I is an instruction that will be scalarized with 2020 /// predication. Such instructions include conditional stores and 2021 /// instructions that may divide by zero. 2022 bool isScalarWithPredication(Instruction *I); 2023 2024 /// Returns true if \p I is a memory instruction with consecutive memory 2025 /// access that can be widened. 2026 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 2027 2028 private: 2029 unsigned NumPredStores = 0; 2030 2031 /// \return An upper bound for the vectorization factor, larger than zero. 2032 /// One is returned if vectorization should best be avoided due to cost. 2033 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2034 2035 /// The vectorization cost is a combination of the cost itself and a boolean 2036 /// indicating whether any of the contributing operations will actually 2037 /// operate on 2038 /// vector values after type legalization in the backend. If this latter value 2039 /// is 2040 /// false, then all operations will be scalarized (i.e. no vectorization has 2041 /// actually taken place). 2042 using VectorizationCostTy = std::pair<unsigned, bool>; 2043 2044 /// Returns the expected execution cost. The unit of the cost does 2045 /// not matter because we use the 'cost' units to compare different 2046 /// vector widths. The cost that is returned is *not* normalized by 2047 /// the factor width. 2048 VectorizationCostTy expectedCost(unsigned VF); 2049 2050 /// Returns the execution time cost of an instruction for a given vector 2051 /// width. Vector width of one means scalar. 2052 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2053 2054 /// The cost-computation logic from getInstructionCost which provides 2055 /// the vector type as an output parameter. 2056 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2057 2058 /// Calculate vectorization cost of memory instruction \p I. 2059 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2060 2061 /// The cost computation for scalarized memory instruction. 2062 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2063 2064 /// The cost computation for interleaving group of memory instructions. 2065 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2066 2067 /// The cost computation for Gather/Scatter instruction. 2068 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2069 2070 /// The cost computation for widening instruction \p I with consecutive 2071 /// memory access. 2072 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2073 2074 /// The cost calculation for Load instruction \p I with uniform pointer - 2075 /// scalar load + broadcast. 2076 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2077 2078 /// Returns whether the instruction is a load or store and will be a emitted 2079 /// as a vector operation. 2080 bool isConsecutiveLoadOrStore(Instruction *I); 2081 2082 /// Returns true if an artificially high cost for emulated masked memrefs 2083 /// should be used. 2084 bool useEmulatedMaskMemRefHack(Instruction *I); 2085 2086 /// Create an analysis remark that explains why vectorization failed 2087 /// 2088 /// \p RemarkName is the identifier for the remark. \return the remark object 2089 /// that can be streamed to. 2090 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2091 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2092 RemarkName, TheLoop); 2093 } 2094 2095 /// Map of scalar integer values to the smallest bitwidth they can be legally 2096 /// represented as. The vector equivalents of these values should be truncated 2097 /// to this type. 2098 MapVector<Instruction *, uint64_t> MinBWs; 2099 2100 /// A type representing the costs for instructions if they were to be 2101 /// scalarized rather than vectorized. The entries are Instruction-Cost 2102 /// pairs. 2103 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2104 2105 /// A set containing all BasicBlocks that are known to present after 2106 /// vectorization as a predicated block. 2107 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2108 2109 /// A map holding scalar costs for different vectorization factors. The 2110 /// presence of a cost for an instruction in the mapping indicates that the 2111 /// instruction will be scalarized when vectorizing with the associated 2112 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2113 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2114 2115 /// Holds the instructions known to be uniform after vectorization. 2116 /// The data is collected per VF. 2117 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2118 2119 /// Holds the instructions known to be scalar after vectorization. 2120 /// The data is collected per VF. 2121 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2122 2123 /// Holds the instructions (address computations) that are forced to be 2124 /// scalarized. 2125 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2126 2127 /// Returns the expected difference in cost from scalarizing the expression 2128 /// feeding a predicated instruction \p PredInst. The instructions to 2129 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2130 /// non-negative return value implies the expression will be scalarized. 2131 /// Currently, only single-use chains are considered for scalarization. 2132 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2133 unsigned VF); 2134 2135 /// Collect the instructions that are uniform after vectorization. An 2136 /// instruction is uniform if we represent it with a single scalar value in 2137 /// the vectorized loop corresponding to each vector iteration. Examples of 2138 /// uniform instructions include pointer operands of consecutive or 2139 /// interleaved memory accesses. Note that although uniformity implies an 2140 /// instruction will be scalar, the reverse is not true. In general, a 2141 /// scalarized instruction will be represented by VF scalar values in the 2142 /// vectorized loop, each corresponding to an iteration of the original 2143 /// scalar loop. 2144 void collectLoopUniforms(unsigned VF); 2145 2146 /// Collect the instructions that are scalar after vectorization. An 2147 /// instruction is scalar if it is known to be uniform or will be scalarized 2148 /// during vectorization. Non-uniform scalarized instructions will be 2149 /// represented by VF values in the vectorized loop, each corresponding to an 2150 /// iteration of the original scalar loop. 2151 void collectLoopScalars(unsigned VF); 2152 2153 /// Keeps cost model vectorization decision and cost for instructions. 2154 /// Right now it is used for memory instructions only. 2155 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2156 std::pair<InstWidening, unsigned>>; 2157 2158 DecisionList WideningDecisions; 2159 2160 public: 2161 /// The loop that we evaluate. 2162 Loop *TheLoop; 2163 2164 /// Predicated scalar evolution analysis. 2165 PredicatedScalarEvolution &PSE; 2166 2167 /// Loop Info analysis. 2168 LoopInfo *LI; 2169 2170 /// Vectorization legality. 2171 LoopVectorizationLegality *Legal; 2172 2173 /// Vector target information. 2174 const TargetTransformInfo &TTI; 2175 2176 /// Target Library Info. 2177 const TargetLibraryInfo *TLI; 2178 2179 /// Demanded bits analysis. 2180 DemandedBits *DB; 2181 2182 /// Assumption cache. 2183 AssumptionCache *AC; 2184 2185 /// Interface to emit optimization remarks. 2186 OptimizationRemarkEmitter *ORE; 2187 2188 const Function *TheFunction; 2189 2190 /// Loop Vectorize Hint. 2191 const LoopVectorizeHints *Hints; 2192 2193 /// Values to ignore in the cost model. 2194 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2195 2196 /// Values to ignore in the cost model when VF > 1. 2197 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2198 }; 2199 2200 } // end namespace llvm 2201 2202 namespace { 2203 2204 /// \brief This holds vectorization requirements that must be verified late in 2205 /// the process. The requirements are set by legalize and costmodel. Once 2206 /// vectorization has been determined to be possible and profitable the 2207 /// requirements can be verified by looking for metadata or compiler options. 2208 /// For example, some loops require FP commutativity which is only allowed if 2209 /// vectorization is explicitly specified or if the fast-math compiler option 2210 /// has been provided. 2211 /// Late evaluation of these requirements allows helpful diagnostics to be 2212 /// composed that tells the user what need to be done to vectorize the loop. For 2213 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2214 /// evaluation should be used only when diagnostics can generated that can be 2215 /// followed by a non-expert user. 2216 class LoopVectorizationRequirements { 2217 public: 2218 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2219 2220 void addUnsafeAlgebraInst(Instruction *I) { 2221 // First unsafe algebra instruction. 2222 if (!UnsafeAlgebraInst) 2223 UnsafeAlgebraInst = I; 2224 } 2225 2226 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2227 2228 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2229 const char *PassName = Hints.vectorizeAnalysisPassName(); 2230 bool Failed = false; 2231 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2232 ORE.emit([&]() { 2233 return OptimizationRemarkAnalysisFPCommute( 2234 PassName, "CantReorderFPOps", 2235 UnsafeAlgebraInst->getDebugLoc(), 2236 UnsafeAlgebraInst->getParent()) 2237 << "loop not vectorized: cannot prove it is safe to reorder " 2238 "floating-point operations"; 2239 }); 2240 Failed = true; 2241 } 2242 2243 // Test if runtime memcheck thresholds are exceeded. 2244 bool PragmaThresholdReached = 2245 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2246 bool ThresholdReached = 2247 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2248 if ((ThresholdReached && !Hints.allowReordering()) || 2249 PragmaThresholdReached) { 2250 ORE.emit([&]() { 2251 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2252 L->getStartLoc(), 2253 L->getHeader()) 2254 << "loop not vectorized: cannot prove it is safe to reorder " 2255 "memory operations"; 2256 }); 2257 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2258 Failed = true; 2259 } 2260 2261 return Failed; 2262 } 2263 2264 private: 2265 unsigned NumRuntimePointerChecks = 0; 2266 Instruction *UnsafeAlgebraInst = nullptr; 2267 2268 /// Interface to emit optimization remarks. 2269 OptimizationRemarkEmitter &ORE; 2270 }; 2271 2272 } // end anonymous namespace 2273 2274 static void addAcyclicInnerLoop(Loop &L, LoopInfo &LI, 2275 SmallVectorImpl<Loop *> &V) { 2276 if (L.empty()) { 2277 LoopBlocksRPO RPOT(&L); 2278 RPOT.perform(&LI); 2279 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2280 V.push_back(&L); 2281 return; 2282 } 2283 for (Loop *InnerL : L) 2284 addAcyclicInnerLoop(*InnerL, LI, V); 2285 } 2286 2287 namespace { 2288 2289 /// The LoopVectorize Pass. 2290 struct LoopVectorize : public FunctionPass { 2291 /// Pass identification, replacement for typeid 2292 static char ID; 2293 2294 LoopVectorizePass Impl; 2295 2296 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2297 : FunctionPass(ID) { 2298 Impl.DisableUnrolling = NoUnrolling; 2299 Impl.AlwaysVectorize = AlwaysVectorize; 2300 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2301 } 2302 2303 bool runOnFunction(Function &F) override { 2304 if (skipFunction(F)) 2305 return false; 2306 2307 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2308 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2309 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2310 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2311 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2312 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2313 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2314 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2315 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2316 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2317 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2318 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2319 2320 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2321 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2322 2323 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2324 GetLAA, *ORE); 2325 } 2326 2327 void getAnalysisUsage(AnalysisUsage &AU) const override { 2328 AU.addRequired<AssumptionCacheTracker>(); 2329 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2330 AU.addRequired<DominatorTreeWrapperPass>(); 2331 AU.addRequired<LoopInfoWrapperPass>(); 2332 AU.addRequired<ScalarEvolutionWrapperPass>(); 2333 AU.addRequired<TargetTransformInfoWrapperPass>(); 2334 AU.addRequired<AAResultsWrapperPass>(); 2335 AU.addRequired<LoopAccessLegacyAnalysis>(); 2336 AU.addRequired<DemandedBitsWrapperPass>(); 2337 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2338 AU.addPreserved<LoopInfoWrapperPass>(); 2339 AU.addPreserved<DominatorTreeWrapperPass>(); 2340 AU.addPreserved<BasicAAWrapperPass>(); 2341 AU.addPreserved<GlobalsAAWrapperPass>(); 2342 } 2343 }; 2344 2345 } // end anonymous namespace 2346 2347 //===----------------------------------------------------------------------===// 2348 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2349 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2350 //===----------------------------------------------------------------------===// 2351 2352 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2353 // We need to place the broadcast of invariant variables outside the loop. 2354 Instruction *Instr = dyn_cast<Instruction>(V); 2355 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2356 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2357 2358 // Place the code for broadcasting invariant variables in the new preheader. 2359 IRBuilder<>::InsertPointGuard Guard(Builder); 2360 if (Invariant) 2361 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2362 2363 // Broadcast the scalar into all locations in the vector. 2364 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2365 2366 return Shuf; 2367 } 2368 2369 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2370 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2371 Value *Start = II.getStartValue(); 2372 2373 // Construct the initial value of the vector IV in the vector loop preheader 2374 auto CurrIP = Builder.saveIP(); 2375 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2376 if (isa<TruncInst>(EntryVal)) { 2377 assert(Start->getType()->isIntegerTy() && 2378 "Truncation requires an integer type"); 2379 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2380 Step = Builder.CreateTrunc(Step, TruncType); 2381 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2382 } 2383 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2384 Value *SteppedStart = 2385 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2386 2387 // We create vector phi nodes for both integer and floating-point induction 2388 // variables. Here, we determine the kind of arithmetic we will perform. 2389 Instruction::BinaryOps AddOp; 2390 Instruction::BinaryOps MulOp; 2391 if (Step->getType()->isIntegerTy()) { 2392 AddOp = Instruction::Add; 2393 MulOp = Instruction::Mul; 2394 } else { 2395 AddOp = II.getInductionOpcode(); 2396 MulOp = Instruction::FMul; 2397 } 2398 2399 // Multiply the vectorization factor by the step using integer or 2400 // floating-point arithmetic as appropriate. 2401 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2402 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2403 2404 // Create a vector splat to use in the induction update. 2405 // 2406 // FIXME: If the step is non-constant, we create the vector splat with 2407 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2408 // handle a constant vector splat. 2409 Value *SplatVF = isa<Constant>(Mul) 2410 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2411 : Builder.CreateVectorSplat(VF, Mul); 2412 Builder.restoreIP(CurrIP); 2413 2414 // We may need to add the step a number of times, depending on the unroll 2415 // factor. The last of those goes into the PHI. 2416 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2417 &*LoopVectorBody->getFirstInsertionPt()); 2418 Instruction *LastInduction = VecInd; 2419 for (unsigned Part = 0; Part < UF; ++Part) { 2420 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2421 2422 if (isa<TruncInst>(EntryVal)) 2423 addMetadata(LastInduction, EntryVal); 2424 else 2425 recordVectorLoopValueForInductionCast(II, LastInduction, Part); 2426 2427 LastInduction = cast<Instruction>(addFastMathFlag( 2428 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2429 } 2430 2431 // Move the last step to the end of the latch block. This ensures consistent 2432 // placement of all induction updates. 2433 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2434 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2435 auto *ICmp = cast<Instruction>(Br->getCondition()); 2436 LastInduction->moveBefore(ICmp); 2437 LastInduction->setName("vec.ind.next"); 2438 2439 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2440 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2441 } 2442 2443 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2444 return Cost->isScalarAfterVectorization(I, VF) || 2445 Cost->isProfitableToScalarize(I, VF); 2446 } 2447 2448 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2449 if (shouldScalarizeInstruction(IV)) 2450 return true; 2451 auto isScalarInst = [&](User *U) -> bool { 2452 auto *I = cast<Instruction>(U); 2453 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2454 }; 2455 return llvm::any_of(IV->users(), isScalarInst); 2456 } 2457 2458 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2459 const InductionDescriptor &ID, Value *VectorLoopVal, unsigned Part, 2460 unsigned Lane) { 2461 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2462 if (Casts.empty()) 2463 return; 2464 // Only the first Cast instruction in the Casts vector is of interest. 2465 // The rest of the Casts (if exist) have no uses outside the 2466 // induction update chain itself. 2467 Instruction *CastInst = *Casts.begin(); 2468 if (Lane < UINT_MAX) 2469 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2470 else 2471 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2472 } 2473 2474 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2475 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2476 "Primary induction variable must have an integer type"); 2477 2478 auto II = Legal->getInductionVars()->find(IV); 2479 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2480 2481 auto ID = II->second; 2482 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2483 2484 // The scalar value to broadcast. This will be derived from the canonical 2485 // induction variable. 2486 Value *ScalarIV = nullptr; 2487 2488 // The value from the original loop to which we are mapping the new induction 2489 // variable. 2490 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2491 2492 // True if we have vectorized the induction variable. 2493 auto VectorizedIV = false; 2494 2495 // Determine if we want a scalar version of the induction variable. This is 2496 // true if the induction variable itself is not widened, or if it has at 2497 // least one user in the loop that is not widened. 2498 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2499 2500 // Generate code for the induction step. Note that induction steps are 2501 // required to be loop-invariant 2502 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2503 "Induction step should be loop invariant"); 2504 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2505 Value *Step = nullptr; 2506 if (PSE.getSE()->isSCEVable(IV->getType())) { 2507 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2508 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2509 LoopVectorPreHeader->getTerminator()); 2510 } else { 2511 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2512 } 2513 2514 // Try to create a new independent vector induction variable. If we can't 2515 // create the phi node, we will splat the scalar induction variable in each 2516 // loop iteration. 2517 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2518 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2519 VectorizedIV = true; 2520 } 2521 2522 // If we haven't yet vectorized the induction variable, or if we will create 2523 // a scalar one, we need to define the scalar induction variable and step 2524 // values. If we were given a truncation type, truncate the canonical 2525 // induction variable and step. Otherwise, derive these values from the 2526 // induction descriptor. 2527 if (!VectorizedIV || NeedsScalarIV) { 2528 ScalarIV = Induction; 2529 if (IV != OldInduction) { 2530 ScalarIV = IV->getType()->isIntegerTy() 2531 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2532 : Builder.CreateCast(Instruction::SIToFP, Induction, 2533 IV->getType()); 2534 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2535 ScalarIV->setName("offset.idx"); 2536 } 2537 if (Trunc) { 2538 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2539 assert(Step->getType()->isIntegerTy() && 2540 "Truncation requires an integer step"); 2541 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2542 Step = Builder.CreateTrunc(Step, TruncType); 2543 } 2544 } 2545 2546 // If we haven't yet vectorized the induction variable, splat the scalar 2547 // induction variable, and build the necessary step vectors. 2548 // TODO: Don't do it unless the vectorized IV is really required. 2549 if (!VectorizedIV) { 2550 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2551 for (unsigned Part = 0; Part < UF; ++Part) { 2552 Value *EntryPart = 2553 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2554 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2555 if (Trunc) 2556 addMetadata(EntryPart, Trunc); 2557 else 2558 recordVectorLoopValueForInductionCast(ID, EntryPart, Part); 2559 } 2560 } 2561 2562 // If an induction variable is only used for counting loop iterations or 2563 // calculating addresses, it doesn't need to be widened. Create scalar steps 2564 // that can be used by instructions we will later scalarize. Note that the 2565 // addition of the scalar steps will not increase the number of instructions 2566 // in the loop in the common case prior to InstCombine. We will be trading 2567 // one vector extract for each scalar step. 2568 if (NeedsScalarIV) 2569 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2570 } 2571 2572 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2573 Instruction::BinaryOps BinOp) { 2574 // Create and check the types. 2575 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2576 int VLen = Val->getType()->getVectorNumElements(); 2577 2578 Type *STy = Val->getType()->getScalarType(); 2579 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2580 "Induction Step must be an integer or FP"); 2581 assert(Step->getType() == STy && "Step has wrong type"); 2582 2583 SmallVector<Constant *, 8> Indices; 2584 2585 if (STy->isIntegerTy()) { 2586 // Create a vector of consecutive numbers from zero to VF. 2587 for (int i = 0; i < VLen; ++i) 2588 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2589 2590 // Add the consecutive indices to the vector value. 2591 Constant *Cv = ConstantVector::get(Indices); 2592 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2593 Step = Builder.CreateVectorSplat(VLen, Step); 2594 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2595 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2596 // which can be found from the original scalar operations. 2597 Step = Builder.CreateMul(Cv, Step); 2598 return Builder.CreateAdd(Val, Step, "induction"); 2599 } 2600 2601 // Floating point induction. 2602 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2603 "Binary Opcode should be specified for FP induction"); 2604 // Create a vector of consecutive numbers from zero to VF. 2605 for (int i = 0; i < VLen; ++i) 2606 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2607 2608 // Add the consecutive indices to the vector value. 2609 Constant *Cv = ConstantVector::get(Indices); 2610 2611 Step = Builder.CreateVectorSplat(VLen, Step); 2612 2613 // Floating point operations had to be 'fast' to enable the induction. 2614 FastMathFlags Flags; 2615 Flags.setFast(); 2616 2617 Value *MulOp = Builder.CreateFMul(Cv, Step); 2618 if (isa<Instruction>(MulOp)) 2619 // Have to check, MulOp may be a constant 2620 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2621 2622 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2623 if (isa<Instruction>(BOp)) 2624 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2625 return BOp; 2626 } 2627 2628 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2629 Value *EntryVal, 2630 const InductionDescriptor &ID) { 2631 // We shouldn't have to build scalar steps if we aren't vectorizing. 2632 assert(VF > 1 && "VF should be greater than one"); 2633 2634 // Get the value type and ensure it and the step have the same integer type. 2635 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2636 assert(ScalarIVTy == Step->getType() && 2637 "Val and Step should have the same type"); 2638 2639 // We build scalar steps for both integer and floating-point induction 2640 // variables. Here, we determine the kind of arithmetic we will perform. 2641 Instruction::BinaryOps AddOp; 2642 Instruction::BinaryOps MulOp; 2643 if (ScalarIVTy->isIntegerTy()) { 2644 AddOp = Instruction::Add; 2645 MulOp = Instruction::Mul; 2646 } else { 2647 AddOp = ID.getInductionOpcode(); 2648 MulOp = Instruction::FMul; 2649 } 2650 2651 // Determine the number of scalars we need to generate for each unroll 2652 // iteration. If EntryVal is uniform, we only need to generate the first 2653 // lane. Otherwise, we generate all VF values. 2654 unsigned Lanes = 2655 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2656 : VF; 2657 // Compute the scalar steps and save the results in VectorLoopValueMap. 2658 for (unsigned Part = 0; Part < UF; ++Part) { 2659 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2660 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2661 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2662 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2663 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2664 recordVectorLoopValueForInductionCast(ID, Add, Part, Lane); 2665 } 2666 } 2667 } 2668 2669 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2670 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2671 ValueToValueMap(); 2672 2673 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2674 if (Stride == 1 || Stride == -1) 2675 return Stride; 2676 return 0; 2677 } 2678 2679 bool LoopVectorizationLegality::isUniform(Value *V) { 2680 return LAI->isUniform(V); 2681 } 2682 2683 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2684 assert(V != Induction && "The new induction variable should not be used."); 2685 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2686 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2687 2688 // If we have a stride that is replaced by one, do it here. 2689 if (Legal->hasStride(V)) 2690 V = ConstantInt::get(V->getType(), 1); 2691 2692 // If we have a vector mapped to this value, return it. 2693 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2694 return VectorLoopValueMap.getVectorValue(V, Part); 2695 2696 // If the value has not been vectorized, check if it has been scalarized 2697 // instead. If it has been scalarized, and we actually need the value in 2698 // vector form, we will construct the vector values on demand. 2699 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2700 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2701 2702 // If we've scalarized a value, that value should be an instruction. 2703 auto *I = cast<Instruction>(V); 2704 2705 // If we aren't vectorizing, we can just copy the scalar map values over to 2706 // the vector map. 2707 if (VF == 1) { 2708 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2709 return ScalarValue; 2710 } 2711 2712 // Get the last scalar instruction we generated for V and Part. If the value 2713 // is known to be uniform after vectorization, this corresponds to lane zero 2714 // of the Part unroll iteration. Otherwise, the last instruction is the one 2715 // we created for the last vector lane of the Part unroll iteration. 2716 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2717 auto *LastInst = cast<Instruction>( 2718 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2719 2720 // Set the insert point after the last scalarized instruction. This ensures 2721 // the insertelement sequence will directly follow the scalar definitions. 2722 auto OldIP = Builder.saveIP(); 2723 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2724 Builder.SetInsertPoint(&*NewIP); 2725 2726 // However, if we are vectorizing, we need to construct the vector values. 2727 // If the value is known to be uniform after vectorization, we can just 2728 // broadcast the scalar value corresponding to lane zero for each unroll 2729 // iteration. Otherwise, we construct the vector values using insertelement 2730 // instructions. Since the resulting vectors are stored in 2731 // VectorLoopValueMap, we will only generate the insertelements once. 2732 Value *VectorValue = nullptr; 2733 if (Cost->isUniformAfterVectorization(I, VF)) { 2734 VectorValue = getBroadcastInstrs(ScalarValue); 2735 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2736 } else { 2737 // Initialize packing with insertelements to start from undef. 2738 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2739 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2740 for (unsigned Lane = 0; Lane < VF; ++Lane) 2741 packScalarIntoVectorValue(V, {Part, Lane}); 2742 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2743 } 2744 Builder.restoreIP(OldIP); 2745 return VectorValue; 2746 } 2747 2748 // If this scalar is unknown, assume that it is a constant or that it is 2749 // loop invariant. Broadcast V and save the value for future uses. 2750 Value *B = getBroadcastInstrs(V); 2751 VectorLoopValueMap.setVectorValue(V, Part, B); 2752 return B; 2753 } 2754 2755 Value * 2756 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2757 const VPIteration &Instance) { 2758 // If the value is not an instruction contained in the loop, it should 2759 // already be scalar. 2760 if (OrigLoop->isLoopInvariant(V)) 2761 return V; 2762 2763 assert(Instance.Lane > 0 2764 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2765 : true && "Uniform values only have lane zero"); 2766 2767 // If the value from the original loop has not been vectorized, it is 2768 // represented by UF x VF scalar values in the new loop. Return the requested 2769 // scalar value. 2770 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2771 return VectorLoopValueMap.getScalarValue(V, Instance); 2772 2773 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2774 // for the given unroll part. If this entry is not a vector type (i.e., the 2775 // vectorization factor is one), there is no need to generate an 2776 // extractelement instruction. 2777 auto *U = getOrCreateVectorValue(V, Instance.Part); 2778 if (!U->getType()->isVectorTy()) { 2779 assert(VF == 1 && "Value not scalarized has non-vector type"); 2780 return U; 2781 } 2782 2783 // Otherwise, the value from the original loop has been vectorized and is 2784 // represented by UF vector values. Extract and return the requested scalar 2785 // value from the appropriate vector lane. 2786 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2787 } 2788 2789 void InnerLoopVectorizer::packScalarIntoVectorValue( 2790 Value *V, const VPIteration &Instance) { 2791 assert(V != Induction && "The new induction variable should not be used."); 2792 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2793 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2794 2795 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2796 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2797 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2798 Builder.getInt32(Instance.Lane)); 2799 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2800 } 2801 2802 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2803 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2804 SmallVector<Constant *, 8> ShuffleMask; 2805 for (unsigned i = 0; i < VF; ++i) 2806 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2807 2808 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2809 ConstantVector::get(ShuffleMask), 2810 "reverse"); 2811 } 2812 2813 // Try to vectorize the interleave group that \p Instr belongs to. 2814 // 2815 // E.g. Translate following interleaved load group (factor = 3): 2816 // for (i = 0; i < N; i+=3) { 2817 // R = Pic[i]; // Member of index 0 2818 // G = Pic[i+1]; // Member of index 1 2819 // B = Pic[i+2]; // Member of index 2 2820 // ... // do something to R, G, B 2821 // } 2822 // To: 2823 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2824 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2825 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2826 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2827 // 2828 // Or translate following interleaved store group (factor = 3): 2829 // for (i = 0; i < N; i+=3) { 2830 // ... do something to R, G, B 2831 // Pic[i] = R; // Member of index 0 2832 // Pic[i+1] = G; // Member of index 1 2833 // Pic[i+2] = B; // Member of index 2 2834 // } 2835 // To: 2836 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2837 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2838 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2839 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2840 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2841 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2842 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2843 assert(Group && "Fail to get an interleaved access group."); 2844 2845 // Skip if current instruction is not the insert position. 2846 if (Instr != Group->getInsertPos()) 2847 return; 2848 2849 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2850 Value *Ptr = getLoadStorePointerOperand(Instr); 2851 2852 // Prepare for the vector type of the interleaved load/store. 2853 Type *ScalarTy = getMemInstValueType(Instr); 2854 unsigned InterleaveFactor = Group->getFactor(); 2855 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2856 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2857 2858 // Prepare for the new pointers. 2859 setDebugLocFromInst(Builder, Ptr); 2860 SmallVector<Value *, 2> NewPtrs; 2861 unsigned Index = Group->getIndex(Instr); 2862 2863 // If the group is reverse, adjust the index to refer to the last vector lane 2864 // instead of the first. We adjust the index from the first vector lane, 2865 // rather than directly getting the pointer for lane VF - 1, because the 2866 // pointer operand of the interleaved access is supposed to be uniform. For 2867 // uniform instructions, we're only required to generate a value for the 2868 // first vector lane in each unroll iteration. 2869 if (Group->isReverse()) 2870 Index += (VF - 1) * Group->getFactor(); 2871 2872 for (unsigned Part = 0; Part < UF; Part++) { 2873 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2874 2875 // Notice current instruction could be any index. Need to adjust the address 2876 // to the member of index 0. 2877 // 2878 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2879 // b = A[i]; // Member of index 0 2880 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2881 // 2882 // E.g. A[i+1] = a; // Member of index 1 2883 // A[i] = b; // Member of index 0 2884 // A[i+2] = c; // Member of index 2 (Current instruction) 2885 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2886 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2887 2888 // Cast to the vector pointer type. 2889 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2890 } 2891 2892 setDebugLocFromInst(Builder, Instr); 2893 Value *UndefVec = UndefValue::get(VecTy); 2894 2895 // Vectorize the interleaved load group. 2896 if (isa<LoadInst>(Instr)) { 2897 // For each unroll part, create a wide load for the group. 2898 SmallVector<Value *, 2> NewLoads; 2899 for (unsigned Part = 0; Part < UF; Part++) { 2900 auto *NewLoad = Builder.CreateAlignedLoad( 2901 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2902 Group->addMetadata(NewLoad); 2903 NewLoads.push_back(NewLoad); 2904 } 2905 2906 // For each member in the group, shuffle out the appropriate data from the 2907 // wide loads. 2908 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2909 Instruction *Member = Group->getMember(I); 2910 2911 // Skip the gaps in the group. 2912 if (!Member) 2913 continue; 2914 2915 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2916 for (unsigned Part = 0; Part < UF; Part++) { 2917 Value *StridedVec = Builder.CreateShuffleVector( 2918 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2919 2920 // If this member has different type, cast the result type. 2921 if (Member->getType() != ScalarTy) { 2922 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2923 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2924 } 2925 2926 if (Group->isReverse()) 2927 StridedVec = reverseVector(StridedVec); 2928 2929 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2930 } 2931 } 2932 return; 2933 } 2934 2935 // The sub vector type for current instruction. 2936 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2937 2938 // Vectorize the interleaved store group. 2939 for (unsigned Part = 0; Part < UF; Part++) { 2940 // Collect the stored vector from each member. 2941 SmallVector<Value *, 4> StoredVecs; 2942 for (unsigned i = 0; i < InterleaveFactor; i++) { 2943 // Interleaved store group doesn't allow a gap, so each index has a member 2944 Instruction *Member = Group->getMember(i); 2945 assert(Member && "Fail to get a member from an interleaved store group"); 2946 2947 Value *StoredVec = getOrCreateVectorValue( 2948 cast<StoreInst>(Member)->getValueOperand(), Part); 2949 if (Group->isReverse()) 2950 StoredVec = reverseVector(StoredVec); 2951 2952 // If this member has different type, cast it to a unified type. 2953 2954 if (StoredVec->getType() != SubVT) 2955 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2956 2957 StoredVecs.push_back(StoredVec); 2958 } 2959 2960 // Concatenate all vectors into a wide vector. 2961 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2962 2963 // Interleave the elements in the wide vector. 2964 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2965 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2966 "interleaved.vec"); 2967 2968 Instruction *NewStoreInstr = 2969 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2970 2971 Group->addMetadata(NewStoreInstr); 2972 } 2973 } 2974 2975 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2976 VectorParts *BlockInMask) { 2977 // Attempt to issue a wide load. 2978 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2979 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2980 2981 assert((LI || SI) && "Invalid Load/Store instruction"); 2982 2983 LoopVectorizationCostModel::InstWidening Decision = 2984 Cost->getWideningDecision(Instr, VF); 2985 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2986 "CM decision should be taken at this point"); 2987 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2988 return vectorizeInterleaveGroup(Instr); 2989 2990 Type *ScalarDataTy = getMemInstValueType(Instr); 2991 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2992 Value *Ptr = getLoadStorePointerOperand(Instr); 2993 unsigned Alignment = getMemInstAlignment(Instr); 2994 // An alignment of 0 means target abi alignment. We need to use the scalar's 2995 // target abi alignment in such a case. 2996 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2997 if (!Alignment) 2998 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2999 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3000 3001 // Determine if the pointer operand of the access is either consecutive or 3002 // reverse consecutive. 3003 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3004 bool ConsecutiveStride = 3005 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3006 bool CreateGatherScatter = 3007 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3008 3009 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3010 // gather/scatter. Otherwise Decision should have been to Scalarize. 3011 assert((ConsecutiveStride || CreateGatherScatter) && 3012 "The instruction should be scalarized"); 3013 3014 // Handle consecutive loads/stores. 3015 if (ConsecutiveStride) 3016 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3017 3018 VectorParts Mask; 3019 bool isMaskRequired = BlockInMask; 3020 if (isMaskRequired) 3021 Mask = *BlockInMask; 3022 3023 // Handle Stores: 3024 if (SI) { 3025 setDebugLocFromInst(Builder, SI); 3026 3027 for (unsigned Part = 0; Part < UF; ++Part) { 3028 Instruction *NewSI = nullptr; 3029 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3030 if (CreateGatherScatter) { 3031 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3032 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3033 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3034 MaskPart); 3035 } else { 3036 // Calculate the pointer for the specific unroll-part. 3037 Value *PartPtr = 3038 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3039 3040 if (Reverse) { 3041 // If we store to reverse consecutive memory locations, then we need 3042 // to reverse the order of elements in the stored value. 3043 StoredVal = reverseVector(StoredVal); 3044 // We don't want to update the value in the map as it might be used in 3045 // another expression. So don't call resetVectorValue(StoredVal). 3046 3047 // If the address is consecutive but reversed, then the 3048 // wide store needs to start at the last vector element. 3049 PartPtr = 3050 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3051 PartPtr = 3052 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3053 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3054 Mask[Part] = reverseVector(Mask[Part]); 3055 } 3056 3057 Value *VecPtr = 3058 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3059 3060 if (isMaskRequired) 3061 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3062 Mask[Part]); 3063 else 3064 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3065 } 3066 addMetadata(NewSI, SI); 3067 } 3068 return; 3069 } 3070 3071 // Handle loads. 3072 assert(LI && "Must have a load instruction"); 3073 setDebugLocFromInst(Builder, LI); 3074 for (unsigned Part = 0; Part < UF; ++Part) { 3075 Value *NewLI; 3076 if (CreateGatherScatter) { 3077 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3078 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3079 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3080 nullptr, "wide.masked.gather"); 3081 addMetadata(NewLI, LI); 3082 } else { 3083 // Calculate the pointer for the specific unroll-part. 3084 Value *PartPtr = 3085 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3086 3087 if (Reverse) { 3088 // If the address is consecutive but reversed, then the 3089 // wide load needs to start at the last vector element. 3090 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3091 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3092 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3093 Mask[Part] = reverseVector(Mask[Part]); 3094 } 3095 3096 Value *VecPtr = 3097 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3098 if (isMaskRequired) 3099 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3100 UndefValue::get(DataTy), 3101 "wide.masked.load"); 3102 else 3103 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3104 3105 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3106 addMetadata(NewLI, LI); 3107 if (Reverse) 3108 NewLI = reverseVector(NewLI); 3109 } 3110 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3111 } 3112 } 3113 3114 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3115 const VPIteration &Instance, 3116 bool IfPredicateInstr) { 3117 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3118 3119 setDebugLocFromInst(Builder, Instr); 3120 3121 // Does this instruction return a value ? 3122 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3123 3124 Instruction *Cloned = Instr->clone(); 3125 if (!IsVoidRetTy) 3126 Cloned->setName(Instr->getName() + ".cloned"); 3127 3128 // Replace the operands of the cloned instructions with their scalar 3129 // equivalents in the new loop. 3130 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3131 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3132 Cloned->setOperand(op, NewOp); 3133 } 3134 addNewMetadata(Cloned, Instr); 3135 3136 // Place the cloned scalar in the new loop. 3137 Builder.Insert(Cloned); 3138 3139 // Add the cloned scalar to the scalar map entry. 3140 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3141 3142 // If we just cloned a new assumption, add it the assumption cache. 3143 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3144 if (II->getIntrinsicID() == Intrinsic::assume) 3145 AC->registerAssumption(II); 3146 3147 // End if-block. 3148 if (IfPredicateInstr) 3149 PredicatedInstructions.push_back(Cloned); 3150 } 3151 3152 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3153 Value *End, Value *Step, 3154 Instruction *DL) { 3155 BasicBlock *Header = L->getHeader(); 3156 BasicBlock *Latch = L->getLoopLatch(); 3157 // As we're just creating this loop, it's possible no latch exists 3158 // yet. If so, use the header as this will be a single block loop. 3159 if (!Latch) 3160 Latch = Header; 3161 3162 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3163 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3164 setDebugLocFromInst(Builder, OldInst); 3165 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3166 3167 Builder.SetInsertPoint(Latch->getTerminator()); 3168 setDebugLocFromInst(Builder, OldInst); 3169 3170 // Create i+1 and fill the PHINode. 3171 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3172 Induction->addIncoming(Start, L->getLoopPreheader()); 3173 Induction->addIncoming(Next, Latch); 3174 // Create the compare. 3175 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3176 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3177 3178 // Now we have two terminators. Remove the old one from the block. 3179 Latch->getTerminator()->eraseFromParent(); 3180 3181 return Induction; 3182 } 3183 3184 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3185 if (TripCount) 3186 return TripCount; 3187 3188 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3189 // Find the loop boundaries. 3190 ScalarEvolution *SE = PSE.getSE(); 3191 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3192 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3193 "Invalid loop count"); 3194 3195 Type *IdxTy = Legal->getWidestInductionType(); 3196 3197 // The exit count might have the type of i64 while the phi is i32. This can 3198 // happen if we have an induction variable that is sign extended before the 3199 // compare. The only way that we get a backedge taken count is that the 3200 // induction variable was signed and as such will not overflow. In such a case 3201 // truncation is legal. 3202 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3203 IdxTy->getPrimitiveSizeInBits()) 3204 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3205 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3206 3207 // Get the total trip count from the count by adding 1. 3208 const SCEV *ExitCount = SE->getAddExpr( 3209 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3210 3211 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3212 3213 // Expand the trip count and place the new instructions in the preheader. 3214 // Notice that the pre-header does not change, only the loop body. 3215 SCEVExpander Exp(*SE, DL, "induction"); 3216 3217 // Count holds the overall loop count (N). 3218 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3219 L->getLoopPreheader()->getTerminator()); 3220 3221 if (TripCount->getType()->isPointerTy()) 3222 TripCount = 3223 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3224 L->getLoopPreheader()->getTerminator()); 3225 3226 return TripCount; 3227 } 3228 3229 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3230 if (VectorTripCount) 3231 return VectorTripCount; 3232 3233 Value *TC = getOrCreateTripCount(L); 3234 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3235 3236 // Now we need to generate the expression for the part of the loop that the 3237 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3238 // iterations are not required for correctness, or N - Step, otherwise. Step 3239 // is equal to the vectorization factor (number of SIMD elements) times the 3240 // unroll factor (number of SIMD instructions). 3241 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3242 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3243 3244 // If there is a non-reversed interleaved group that may speculatively access 3245 // memory out-of-bounds, we need to ensure that there will be at least one 3246 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3247 // the trip count, we set the remainder to be equal to the step. If the step 3248 // does not evenly divide the trip count, no adjustment is necessary since 3249 // there will already be scalar iterations. Note that the minimum iterations 3250 // check ensures that N >= Step. 3251 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3252 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3253 R = Builder.CreateSelect(IsZero, Step, R); 3254 } 3255 3256 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3257 3258 return VectorTripCount; 3259 } 3260 3261 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3262 const DataLayout &DL) { 3263 // Verify that V is a vector type with same number of elements as DstVTy. 3264 unsigned VF = DstVTy->getNumElements(); 3265 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3266 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3267 Type *SrcElemTy = SrcVecTy->getElementType(); 3268 Type *DstElemTy = DstVTy->getElementType(); 3269 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3270 "Vector elements must have same size"); 3271 3272 // Do a direct cast if element types are castable. 3273 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3274 return Builder.CreateBitOrPointerCast(V, DstVTy); 3275 } 3276 // V cannot be directly casted to desired vector type. 3277 // May happen when V is a floating point vector but DstVTy is a vector of 3278 // pointers or vice-versa. Handle this using a two-step bitcast using an 3279 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3280 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3281 "Only one type should be a pointer type"); 3282 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3283 "Only one type should be a floating point type"); 3284 Type *IntTy = 3285 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3286 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3287 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3288 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3289 } 3290 3291 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3292 BasicBlock *Bypass) { 3293 Value *Count = getOrCreateTripCount(L); 3294 BasicBlock *BB = L->getLoopPreheader(); 3295 IRBuilder<> Builder(BB->getTerminator()); 3296 3297 // Generate code to check if the loop's trip count is less than VF * UF, or 3298 // equal to it in case a scalar epilogue is required; this implies that the 3299 // vector trip count is zero. This check also covers the case where adding one 3300 // to the backedge-taken count overflowed leading to an incorrect trip count 3301 // of zero. In this case we will also jump to the scalar loop. 3302 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3303 : ICmpInst::ICMP_ULT; 3304 Value *CheckMinIters = Builder.CreateICmp( 3305 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3306 3307 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3308 // Update dominator tree immediately if the generated block is a 3309 // LoopBypassBlock because SCEV expansions to generate loop bypass 3310 // checks may query it before the current function is finished. 3311 DT->addNewBlock(NewBB, BB); 3312 if (L->getParentLoop()) 3313 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3314 ReplaceInstWithInst(BB->getTerminator(), 3315 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3316 LoopBypassBlocks.push_back(BB); 3317 } 3318 3319 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3320 BasicBlock *BB = L->getLoopPreheader(); 3321 3322 // Generate the code to check that the SCEV assumptions that we made. 3323 // We want the new basic block to start at the first instruction in a 3324 // sequence of instructions that form a check. 3325 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3326 "scev.check"); 3327 Value *SCEVCheck = 3328 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3329 3330 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3331 if (C->isZero()) 3332 return; 3333 3334 // Create a new block containing the stride check. 3335 BB->setName("vector.scevcheck"); 3336 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3337 // Update dominator tree immediately if the generated block is a 3338 // LoopBypassBlock because SCEV expansions to generate loop bypass 3339 // checks may query it before the current function is finished. 3340 DT->addNewBlock(NewBB, BB); 3341 if (L->getParentLoop()) 3342 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3343 ReplaceInstWithInst(BB->getTerminator(), 3344 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3345 LoopBypassBlocks.push_back(BB); 3346 AddedSafetyChecks = true; 3347 } 3348 3349 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3350 BasicBlock *BB = L->getLoopPreheader(); 3351 3352 // Generate the code that checks in runtime if arrays overlap. We put the 3353 // checks into a separate block to make the more common case of few elements 3354 // faster. 3355 Instruction *FirstCheckInst; 3356 Instruction *MemRuntimeCheck; 3357 std::tie(FirstCheckInst, MemRuntimeCheck) = 3358 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3359 if (!MemRuntimeCheck) 3360 return; 3361 3362 // Create a new block containing the memory check. 3363 BB->setName("vector.memcheck"); 3364 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3365 // Update dominator tree immediately if the generated block is a 3366 // LoopBypassBlock because SCEV expansions to generate loop bypass 3367 // checks may query it before the current function is finished. 3368 DT->addNewBlock(NewBB, BB); 3369 if (L->getParentLoop()) 3370 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3371 ReplaceInstWithInst(BB->getTerminator(), 3372 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3373 LoopBypassBlocks.push_back(BB); 3374 AddedSafetyChecks = true; 3375 3376 // We currently don't use LoopVersioning for the actual loop cloning but we 3377 // still use it to add the noalias metadata. 3378 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3379 PSE.getSE()); 3380 LVer->prepareNoAliasMetadata(); 3381 } 3382 3383 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3384 /* 3385 In this function we generate a new loop. The new loop will contain 3386 the vectorized instructions while the old loop will continue to run the 3387 scalar remainder. 3388 3389 [ ] <-- loop iteration number check. 3390 / | 3391 / v 3392 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3393 | / | 3394 | / v 3395 || [ ] <-- vector pre header. 3396 |/ | 3397 | v 3398 | [ ] \ 3399 | [ ]_| <-- vector loop. 3400 | | 3401 | v 3402 | -[ ] <--- middle-block. 3403 | / | 3404 | / v 3405 -|- >[ ] <--- new preheader. 3406 | | 3407 | v 3408 | [ ] \ 3409 | [ ]_| <-- old scalar loop to handle remainder. 3410 \ | 3411 \ v 3412 >[ ] <-- exit block. 3413 ... 3414 */ 3415 3416 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3417 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3418 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3419 assert(VectorPH && "Invalid loop structure"); 3420 assert(ExitBlock && "Must have an exit block"); 3421 3422 // Some loops have a single integer induction variable, while other loops 3423 // don't. One example is c++ iterators that often have multiple pointer 3424 // induction variables. In the code below we also support a case where we 3425 // don't have a single induction variable. 3426 // 3427 // We try to obtain an induction variable from the original loop as hard 3428 // as possible. However if we don't find one that: 3429 // - is an integer 3430 // - counts from zero, stepping by one 3431 // - is the size of the widest induction variable type 3432 // then we create a new one. 3433 OldInduction = Legal->getPrimaryInduction(); 3434 Type *IdxTy = Legal->getWidestInductionType(); 3435 3436 // Split the single block loop into the two loop structure described above. 3437 BasicBlock *VecBody = 3438 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3439 BasicBlock *MiddleBlock = 3440 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3441 BasicBlock *ScalarPH = 3442 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3443 3444 // Create and register the new vector loop. 3445 Loop *Lp = LI->AllocateLoop(); 3446 Loop *ParentLoop = OrigLoop->getParentLoop(); 3447 3448 // Insert the new loop into the loop nest and register the new basic blocks 3449 // before calling any utilities such as SCEV that require valid LoopInfo. 3450 if (ParentLoop) { 3451 ParentLoop->addChildLoop(Lp); 3452 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3453 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3454 } else { 3455 LI->addTopLevelLoop(Lp); 3456 } 3457 Lp->addBasicBlockToLoop(VecBody, *LI); 3458 3459 // Find the loop boundaries. 3460 Value *Count = getOrCreateTripCount(Lp); 3461 3462 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3463 3464 // Now, compare the new count to zero. If it is zero skip the vector loop and 3465 // jump to the scalar loop. This check also covers the case where the 3466 // backedge-taken count is uint##_max: adding one to it will overflow leading 3467 // to an incorrect trip count of zero. In this (rare) case we will also jump 3468 // to the scalar loop. 3469 emitMinimumIterationCountCheck(Lp, ScalarPH); 3470 3471 // Generate the code to check any assumptions that we've made for SCEV 3472 // expressions. 3473 emitSCEVChecks(Lp, ScalarPH); 3474 3475 // Generate the code that checks in runtime if arrays overlap. We put the 3476 // checks into a separate block to make the more common case of few elements 3477 // faster. 3478 emitMemRuntimeChecks(Lp, ScalarPH); 3479 3480 // Generate the induction variable. 3481 // The loop step is equal to the vectorization factor (num of SIMD elements) 3482 // times the unroll factor (num of SIMD instructions). 3483 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3484 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3485 Induction = 3486 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3487 getDebugLocFromInstOrOperands(OldInduction)); 3488 3489 // We are going to resume the execution of the scalar loop. 3490 // Go over all of the induction variables that we found and fix the 3491 // PHIs that are left in the scalar version of the loop. 3492 // The starting values of PHI nodes depend on the counter of the last 3493 // iteration in the vectorized loop. 3494 // If we come from a bypass edge then we need to start from the original 3495 // start value. 3496 3497 // This variable saves the new starting index for the scalar loop. It is used 3498 // to test if there are any tail iterations left once the vector loop has 3499 // completed. 3500 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3501 for (auto &InductionEntry : *List) { 3502 PHINode *OrigPhi = InductionEntry.first; 3503 InductionDescriptor II = InductionEntry.second; 3504 3505 // Create phi nodes to merge from the backedge-taken check block. 3506 PHINode *BCResumeVal = PHINode::Create( 3507 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3508 Value *&EndValue = IVEndValues[OrigPhi]; 3509 if (OrigPhi == OldInduction) { 3510 // We know what the end value is. 3511 EndValue = CountRoundDown; 3512 } else { 3513 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3514 Type *StepType = II.getStep()->getType(); 3515 Instruction::CastOps CastOp = 3516 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3517 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3518 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3519 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3520 EndValue->setName("ind.end"); 3521 } 3522 3523 // The new PHI merges the original incoming value, in case of a bypass, 3524 // or the value at the end of the vectorized loop. 3525 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3526 3527 // Fix the scalar body counter (PHI node). 3528 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3529 3530 // The old induction's phi node in the scalar body needs the truncated 3531 // value. 3532 for (BasicBlock *BB : LoopBypassBlocks) 3533 BCResumeVal->addIncoming(II.getStartValue(), BB); 3534 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3535 } 3536 3537 // Add a check in the middle block to see if we have completed 3538 // all of the iterations in the first vector loop. 3539 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3540 Value *CmpN = 3541 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3542 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3543 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3544 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3545 3546 // Get ready to start creating new instructions into the vectorized body. 3547 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3548 3549 // Save the state. 3550 LoopVectorPreHeader = Lp->getLoopPreheader(); 3551 LoopScalarPreHeader = ScalarPH; 3552 LoopMiddleBlock = MiddleBlock; 3553 LoopExitBlock = ExitBlock; 3554 LoopVectorBody = VecBody; 3555 LoopScalarBody = OldBasicBlock; 3556 3557 // Keep all loop hints from the original loop on the vector loop (we'll 3558 // replace the vectorizer-specific hints below). 3559 if (MDNode *LID = OrigLoop->getLoopID()) 3560 Lp->setLoopID(LID); 3561 3562 LoopVectorizeHints Hints(Lp, true, *ORE); 3563 Hints.setAlreadyVectorized(); 3564 3565 return LoopVectorPreHeader; 3566 } 3567 3568 // Fix up external users of the induction variable. At this point, we are 3569 // in LCSSA form, with all external PHIs that use the IV having one input value, 3570 // coming from the remainder loop. We need those PHIs to also have a correct 3571 // value for the IV when arriving directly from the middle block. 3572 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3573 const InductionDescriptor &II, 3574 Value *CountRoundDown, Value *EndValue, 3575 BasicBlock *MiddleBlock) { 3576 // There are two kinds of external IV usages - those that use the value 3577 // computed in the last iteration (the PHI) and those that use the penultimate 3578 // value (the value that feeds into the phi from the loop latch). 3579 // We allow both, but they, obviously, have different values. 3580 3581 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3582 3583 DenseMap<Value *, Value *> MissingVals; 3584 3585 // An external user of the last iteration's value should see the value that 3586 // the remainder loop uses to initialize its own IV. 3587 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3588 for (User *U : PostInc->users()) { 3589 Instruction *UI = cast<Instruction>(U); 3590 if (!OrigLoop->contains(UI)) { 3591 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3592 MissingVals[UI] = EndValue; 3593 } 3594 } 3595 3596 // An external user of the penultimate value need to see EndValue - Step. 3597 // The simplest way to get this is to recompute it from the constituent SCEVs, 3598 // that is Start + (Step * (CRD - 1)). 3599 for (User *U : OrigPhi->users()) { 3600 auto *UI = cast<Instruction>(U); 3601 if (!OrigLoop->contains(UI)) { 3602 const DataLayout &DL = 3603 OrigLoop->getHeader()->getModule()->getDataLayout(); 3604 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3605 3606 IRBuilder<> B(MiddleBlock->getTerminator()); 3607 Value *CountMinusOne = B.CreateSub( 3608 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3609 Value *CMO = 3610 !II.getStep()->getType()->isIntegerTy() 3611 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3612 II.getStep()->getType()) 3613 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3614 CMO->setName("cast.cmo"); 3615 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3616 Escape->setName("ind.escape"); 3617 MissingVals[UI] = Escape; 3618 } 3619 } 3620 3621 for (auto &I : MissingVals) { 3622 PHINode *PHI = cast<PHINode>(I.first); 3623 // One corner case we have to handle is two IVs "chasing" each-other, 3624 // that is %IV2 = phi [...], [ %IV1, %latch ] 3625 // In this case, if IV1 has an external use, we need to avoid adding both 3626 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3627 // don't already have an incoming value for the middle block. 3628 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3629 PHI->addIncoming(I.second, MiddleBlock); 3630 } 3631 } 3632 3633 namespace { 3634 3635 struct CSEDenseMapInfo { 3636 static bool canHandle(const Instruction *I) { 3637 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3638 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3639 } 3640 3641 static inline Instruction *getEmptyKey() { 3642 return DenseMapInfo<Instruction *>::getEmptyKey(); 3643 } 3644 3645 static inline Instruction *getTombstoneKey() { 3646 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3647 } 3648 3649 static unsigned getHashValue(const Instruction *I) { 3650 assert(canHandle(I) && "Unknown instruction!"); 3651 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3652 I->value_op_end())); 3653 } 3654 3655 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3656 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3657 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3658 return LHS == RHS; 3659 return LHS->isIdenticalTo(RHS); 3660 } 3661 }; 3662 3663 } // end anonymous namespace 3664 3665 ///\brief Perform cse of induction variable instructions. 3666 static void cse(BasicBlock *BB) { 3667 // Perform simple cse. 3668 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3669 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3670 Instruction *In = &*I++; 3671 3672 if (!CSEDenseMapInfo::canHandle(In)) 3673 continue; 3674 3675 // Check if we can replace this instruction with any of the 3676 // visited instructions. 3677 if (Instruction *V = CSEMap.lookup(In)) { 3678 In->replaceAllUsesWith(V); 3679 In->eraseFromParent(); 3680 continue; 3681 } 3682 3683 CSEMap[In] = In; 3684 } 3685 } 3686 3687 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3688 /// convenience wrapper for the type-based getScalarizationOverhead API. 3689 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3690 const TargetTransformInfo &TTI) { 3691 if (VF == 1) 3692 return 0; 3693 3694 unsigned Cost = 0; 3695 Type *RetTy = ToVectorTy(I->getType(), VF); 3696 if (!RetTy->isVoidTy() && 3697 (!isa<LoadInst>(I) || 3698 !TTI.supportsEfficientVectorElementLoadStore())) 3699 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3700 3701 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3702 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3703 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3704 } 3705 else if (!isa<StoreInst>(I) || 3706 !TTI.supportsEfficientVectorElementLoadStore()) { 3707 SmallVector<const Value *, 4> Operands(I->operand_values()); 3708 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3709 } 3710 3711 return Cost; 3712 } 3713 3714 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3715 // Return the cost of the instruction, including scalarization overhead if it's 3716 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3717 // i.e. either vector version isn't available, or is too expensive. 3718 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3719 const TargetTransformInfo &TTI, 3720 const TargetLibraryInfo *TLI, 3721 bool &NeedToScalarize) { 3722 Function *F = CI->getCalledFunction(); 3723 StringRef FnName = CI->getCalledFunction()->getName(); 3724 Type *ScalarRetTy = CI->getType(); 3725 SmallVector<Type *, 4> Tys, ScalarTys; 3726 for (auto &ArgOp : CI->arg_operands()) 3727 ScalarTys.push_back(ArgOp->getType()); 3728 3729 // Estimate cost of scalarized vector call. The source operands are assumed 3730 // to be vectors, so we need to extract individual elements from there, 3731 // execute VF scalar calls, and then gather the result into the vector return 3732 // value. 3733 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3734 if (VF == 1) 3735 return ScalarCallCost; 3736 3737 // Compute corresponding vector type for return value and arguments. 3738 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3739 for (Type *ScalarTy : ScalarTys) 3740 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3741 3742 // Compute costs of unpacking argument values for the scalar calls and 3743 // packing the return values to a vector. 3744 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3745 3746 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3747 3748 // If we can't emit a vector call for this function, then the currently found 3749 // cost is the cost we need to return. 3750 NeedToScalarize = true; 3751 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3752 return Cost; 3753 3754 // If the corresponding vector cost is cheaper, return its cost. 3755 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3756 if (VectorCallCost < Cost) { 3757 NeedToScalarize = false; 3758 return VectorCallCost; 3759 } 3760 return Cost; 3761 } 3762 3763 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3764 // factor VF. Return the cost of the instruction, including scalarization 3765 // overhead if it's needed. 3766 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3767 const TargetTransformInfo &TTI, 3768 const TargetLibraryInfo *TLI) { 3769 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3770 assert(ID && "Expected intrinsic call!"); 3771 3772 FastMathFlags FMF; 3773 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3774 FMF = FPMO->getFastMathFlags(); 3775 3776 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3777 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3778 } 3779 3780 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3781 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3782 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3783 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3784 } 3785 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3786 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3787 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3788 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3789 } 3790 3791 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3792 // For every instruction `I` in MinBWs, truncate the operands, create a 3793 // truncated version of `I` and reextend its result. InstCombine runs 3794 // later and will remove any ext/trunc pairs. 3795 SmallPtrSet<Value *, 4> Erased; 3796 for (const auto &KV : Cost->getMinimalBitwidths()) { 3797 // If the value wasn't vectorized, we must maintain the original scalar 3798 // type. The absence of the value from VectorLoopValueMap indicates that it 3799 // wasn't vectorized. 3800 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3801 continue; 3802 for (unsigned Part = 0; Part < UF; ++Part) { 3803 Value *I = getOrCreateVectorValue(KV.first, Part); 3804 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3805 continue; 3806 Type *OriginalTy = I->getType(); 3807 Type *ScalarTruncatedTy = 3808 IntegerType::get(OriginalTy->getContext(), KV.second); 3809 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3810 OriginalTy->getVectorNumElements()); 3811 if (TruncatedTy == OriginalTy) 3812 continue; 3813 3814 IRBuilder<> B(cast<Instruction>(I)); 3815 auto ShrinkOperand = [&](Value *V) -> Value * { 3816 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3817 if (ZI->getSrcTy() == TruncatedTy) 3818 return ZI->getOperand(0); 3819 return B.CreateZExtOrTrunc(V, TruncatedTy); 3820 }; 3821 3822 // The actual instruction modification depends on the instruction type, 3823 // unfortunately. 3824 Value *NewI = nullptr; 3825 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3826 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3827 ShrinkOperand(BO->getOperand(1))); 3828 3829 // Any wrapping introduced by shrinking this operation shouldn't be 3830 // considered undefined behavior. So, we can't unconditionally copy 3831 // arithmetic wrapping flags to NewI. 3832 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3833 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3834 NewI = 3835 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3836 ShrinkOperand(CI->getOperand(1))); 3837 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3838 NewI = B.CreateSelect(SI->getCondition(), 3839 ShrinkOperand(SI->getTrueValue()), 3840 ShrinkOperand(SI->getFalseValue())); 3841 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3842 switch (CI->getOpcode()) { 3843 default: 3844 llvm_unreachable("Unhandled cast!"); 3845 case Instruction::Trunc: 3846 NewI = ShrinkOperand(CI->getOperand(0)); 3847 break; 3848 case Instruction::SExt: 3849 NewI = B.CreateSExtOrTrunc( 3850 CI->getOperand(0), 3851 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3852 break; 3853 case Instruction::ZExt: 3854 NewI = B.CreateZExtOrTrunc( 3855 CI->getOperand(0), 3856 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3857 break; 3858 } 3859 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3860 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3861 auto *O0 = B.CreateZExtOrTrunc( 3862 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3863 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3864 auto *O1 = B.CreateZExtOrTrunc( 3865 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3866 3867 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3868 } else if (isa<LoadInst>(I)) { 3869 // Don't do anything with the operands, just extend the result. 3870 continue; 3871 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3872 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3873 auto *O0 = B.CreateZExtOrTrunc( 3874 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3875 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3876 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3877 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3878 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3879 auto *O0 = B.CreateZExtOrTrunc( 3880 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3881 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3882 } else { 3883 llvm_unreachable("Unhandled instruction type!"); 3884 } 3885 3886 // Lastly, extend the result. 3887 NewI->takeName(cast<Instruction>(I)); 3888 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3889 I->replaceAllUsesWith(Res); 3890 cast<Instruction>(I)->eraseFromParent(); 3891 Erased.insert(I); 3892 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3893 } 3894 } 3895 3896 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3897 for (const auto &KV : Cost->getMinimalBitwidths()) { 3898 // If the value wasn't vectorized, we must maintain the original scalar 3899 // type. The absence of the value from VectorLoopValueMap indicates that it 3900 // wasn't vectorized. 3901 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3902 continue; 3903 for (unsigned Part = 0; Part < UF; ++Part) { 3904 Value *I = getOrCreateVectorValue(KV.first, Part); 3905 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3906 if (Inst && Inst->use_empty()) { 3907 Value *NewI = Inst->getOperand(0); 3908 Inst->eraseFromParent(); 3909 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3910 } 3911 } 3912 } 3913 } 3914 3915 void InnerLoopVectorizer::fixVectorizedLoop() { 3916 // Insert truncates and extends for any truncated instructions as hints to 3917 // InstCombine. 3918 if (VF > 1) 3919 truncateToMinimalBitwidths(); 3920 3921 // At this point every instruction in the original loop is widened to a 3922 // vector form. Now we need to fix the recurrences in the loop. These PHI 3923 // nodes are currently empty because we did not want to introduce cycles. 3924 // This is the second stage of vectorizing recurrences. 3925 fixCrossIterationPHIs(); 3926 3927 // Update the dominator tree. 3928 // 3929 // FIXME: After creating the structure of the new loop, the dominator tree is 3930 // no longer up-to-date, and it remains that way until we update it 3931 // here. An out-of-date dominator tree is problematic for SCEV, 3932 // because SCEVExpander uses it to guide code generation. The 3933 // vectorizer use SCEVExpanders in several places. Instead, we should 3934 // keep the dominator tree up-to-date as we go. 3935 updateAnalysis(); 3936 3937 // Fix-up external users of the induction variables. 3938 for (auto &Entry : *Legal->getInductionVars()) 3939 fixupIVUsers(Entry.first, Entry.second, 3940 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3941 IVEndValues[Entry.first], LoopMiddleBlock); 3942 3943 fixLCSSAPHIs(); 3944 for (Instruction *PI : PredicatedInstructions) 3945 sinkScalarOperands(&*PI); 3946 3947 // Remove redundant induction instructions. 3948 cse(LoopVectorBody); 3949 } 3950 3951 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3952 // In order to support recurrences we need to be able to vectorize Phi nodes. 3953 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3954 // stage #2: We now need to fix the recurrences by adding incoming edges to 3955 // the currently empty PHI nodes. At this point every instruction in the 3956 // original loop is widened to a vector form so we can use them to construct 3957 // the incoming edges. 3958 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3959 // Handle first-order recurrences and reductions that need to be fixed. 3960 if (Legal->isFirstOrderRecurrence(&Phi)) 3961 fixFirstOrderRecurrence(&Phi); 3962 else if (Legal->isReductionVariable(&Phi)) 3963 fixReduction(&Phi); 3964 } 3965 } 3966 3967 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3968 // This is the second phase of vectorizing first-order recurrences. An 3969 // overview of the transformation is described below. Suppose we have the 3970 // following loop. 3971 // 3972 // for (int i = 0; i < n; ++i) 3973 // b[i] = a[i] - a[i - 1]; 3974 // 3975 // There is a first-order recurrence on "a". For this loop, the shorthand 3976 // scalar IR looks like: 3977 // 3978 // scalar.ph: 3979 // s_init = a[-1] 3980 // br scalar.body 3981 // 3982 // scalar.body: 3983 // i = phi [0, scalar.ph], [i+1, scalar.body] 3984 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3985 // s2 = a[i] 3986 // b[i] = s2 - s1 3987 // br cond, scalar.body, ... 3988 // 3989 // In this example, s1 is a recurrence because it's value depends on the 3990 // previous iteration. In the first phase of vectorization, we created a 3991 // temporary value for s1. We now complete the vectorization and produce the 3992 // shorthand vector IR shown below (for VF = 4, UF = 1). 3993 // 3994 // vector.ph: 3995 // v_init = vector(..., ..., ..., a[-1]) 3996 // br vector.body 3997 // 3998 // vector.body 3999 // i = phi [0, vector.ph], [i+4, vector.body] 4000 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4001 // v2 = a[i, i+1, i+2, i+3]; 4002 // v3 = vector(v1(3), v2(0, 1, 2)) 4003 // b[i, i+1, i+2, i+3] = v2 - v3 4004 // br cond, vector.body, middle.block 4005 // 4006 // middle.block: 4007 // x = v2(3) 4008 // br scalar.ph 4009 // 4010 // scalar.ph: 4011 // s_init = phi [x, middle.block], [a[-1], otherwise] 4012 // br scalar.body 4013 // 4014 // After execution completes the vector loop, we extract the next value of 4015 // the recurrence (x) to use as the initial value in the scalar loop. 4016 4017 // Get the original loop preheader and single loop latch. 4018 auto *Preheader = OrigLoop->getLoopPreheader(); 4019 auto *Latch = OrigLoop->getLoopLatch(); 4020 4021 // Get the initial and previous values of the scalar recurrence. 4022 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4023 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4024 4025 // Create a vector from the initial value. 4026 auto *VectorInit = ScalarInit; 4027 if (VF > 1) { 4028 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4029 VectorInit = Builder.CreateInsertElement( 4030 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4031 Builder.getInt32(VF - 1), "vector.recur.init"); 4032 } 4033 4034 // We constructed a temporary phi node in the first phase of vectorization. 4035 // This phi node will eventually be deleted. 4036 Builder.SetInsertPoint( 4037 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4038 4039 // Create a phi node for the new recurrence. The current value will either be 4040 // the initial value inserted into a vector or loop-varying vector value. 4041 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4042 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4043 4044 // Get the vectorized previous value of the last part UF - 1. It appears last 4045 // among all unrolled iterations, due to the order of their construction. 4046 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4047 4048 // Set the insertion point after the previous value if it is an instruction. 4049 // Note that the previous value may have been constant-folded so it is not 4050 // guaranteed to be an instruction in the vector loop. Also, if the previous 4051 // value is a phi node, we should insert after all the phi nodes to avoid 4052 // breaking basic block verification. 4053 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4054 isa<PHINode>(PreviousLastPart)) 4055 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4056 else 4057 Builder.SetInsertPoint( 4058 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4059 4060 // We will construct a vector for the recurrence by combining the values for 4061 // the current and previous iterations. This is the required shuffle mask. 4062 SmallVector<Constant *, 8> ShuffleMask(VF); 4063 ShuffleMask[0] = Builder.getInt32(VF - 1); 4064 for (unsigned I = 1; I < VF; ++I) 4065 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4066 4067 // The vector from which to take the initial value for the current iteration 4068 // (actual or unrolled). Initially, this is the vector phi node. 4069 Value *Incoming = VecPhi; 4070 4071 // Shuffle the current and previous vector and update the vector parts. 4072 for (unsigned Part = 0; Part < UF; ++Part) { 4073 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4074 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4075 auto *Shuffle = 4076 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4077 ConstantVector::get(ShuffleMask)) 4078 : Incoming; 4079 PhiPart->replaceAllUsesWith(Shuffle); 4080 cast<Instruction>(PhiPart)->eraseFromParent(); 4081 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4082 Incoming = PreviousPart; 4083 } 4084 4085 // Fix the latch value of the new recurrence in the vector loop. 4086 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4087 4088 // Extract the last vector element in the middle block. This will be the 4089 // initial value for the recurrence when jumping to the scalar loop. 4090 auto *ExtractForScalar = Incoming; 4091 if (VF > 1) { 4092 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4093 ExtractForScalar = Builder.CreateExtractElement( 4094 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4095 } 4096 // Extract the second last element in the middle block if the 4097 // Phi is used outside the loop. We need to extract the phi itself 4098 // and not the last element (the phi update in the current iteration). This 4099 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4100 // when the scalar loop is not run at all. 4101 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4102 if (VF > 1) 4103 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4104 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4105 // When loop is unrolled without vectorizing, initialize 4106 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4107 // `Incoming`. This is analogous to the vectorized case above: extracting the 4108 // second last element when VF > 1. 4109 else if (UF > 1) 4110 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4111 4112 // Fix the initial value of the original recurrence in the scalar loop. 4113 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4114 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4115 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4116 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4117 Start->addIncoming(Incoming, BB); 4118 } 4119 4120 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4121 Phi->setName("scalar.recur"); 4122 4123 // Finally, fix users of the recurrence outside the loop. The users will need 4124 // either the last value of the scalar recurrence or the last value of the 4125 // vector recurrence we extracted in the middle block. Since the loop is in 4126 // LCSSA form, we just need to find the phi node for the original scalar 4127 // recurrence in the exit block, and then add an edge for the middle block. 4128 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4129 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4130 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4131 break; 4132 } 4133 } 4134 } 4135 4136 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4137 Constant *Zero = Builder.getInt32(0); 4138 4139 // Get it's reduction variable descriptor. 4140 assert(Legal->isReductionVariable(Phi) && 4141 "Unable to find the reduction variable"); 4142 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4143 4144 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4145 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4146 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4147 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4148 RdxDesc.getMinMaxRecurrenceKind(); 4149 setDebugLocFromInst(Builder, ReductionStartValue); 4150 4151 // We need to generate a reduction vector from the incoming scalar. 4152 // To do so, we need to generate the 'identity' vector and override 4153 // one of the elements with the incoming scalar reduction. We need 4154 // to do it in the vector-loop preheader. 4155 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4156 4157 // This is the vector-clone of the value that leaves the loop. 4158 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4159 4160 // Find the reduction identity variable. Zero for addition, or, xor, 4161 // one for multiplication, -1 for And. 4162 Value *Identity; 4163 Value *VectorStart; 4164 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4165 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4166 // MinMax reduction have the start value as their identify. 4167 if (VF == 1) { 4168 VectorStart = Identity = ReductionStartValue; 4169 } else { 4170 VectorStart = Identity = 4171 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4172 } 4173 } else { 4174 // Handle other reduction kinds: 4175 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4176 RK, VecTy->getScalarType()); 4177 if (VF == 1) { 4178 Identity = Iden; 4179 // This vector is the Identity vector where the first element is the 4180 // incoming scalar reduction. 4181 VectorStart = ReductionStartValue; 4182 } else { 4183 Identity = ConstantVector::getSplat(VF, Iden); 4184 4185 // This vector is the Identity vector where the first element is the 4186 // incoming scalar reduction. 4187 VectorStart = 4188 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4189 } 4190 } 4191 4192 // Fix the vector-loop phi. 4193 4194 // Reductions do not have to start at zero. They can start with 4195 // any loop invariant values. 4196 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4197 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4198 for (unsigned Part = 0; Part < UF; ++Part) { 4199 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4200 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4201 // Make sure to add the reduction stat value only to the 4202 // first unroll part. 4203 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4204 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4205 cast<PHINode>(VecRdxPhi) 4206 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4207 } 4208 4209 // Before each round, move the insertion point right between 4210 // the PHIs and the values we are going to write. 4211 // This allows us to write both PHINodes and the extractelement 4212 // instructions. 4213 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4214 4215 setDebugLocFromInst(Builder, LoopExitInst); 4216 4217 // If the vector reduction can be performed in a smaller type, we truncate 4218 // then extend the loop exit value to enable InstCombine to evaluate the 4219 // entire expression in the smaller type. 4220 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4221 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4222 Builder.SetInsertPoint( 4223 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4224 VectorParts RdxParts(UF); 4225 for (unsigned Part = 0; Part < UF; ++Part) { 4226 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4227 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4228 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4229 : Builder.CreateZExt(Trunc, VecTy); 4230 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4231 UI != RdxParts[Part]->user_end();) 4232 if (*UI != Trunc) { 4233 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4234 RdxParts[Part] = Extnd; 4235 } else { 4236 ++UI; 4237 } 4238 } 4239 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4240 for (unsigned Part = 0; Part < UF; ++Part) { 4241 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4242 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4243 } 4244 } 4245 4246 // Reduce all of the unrolled parts into a single vector. 4247 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4248 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4249 setDebugLocFromInst(Builder, ReducedPartRdx); 4250 for (unsigned Part = 1; Part < UF; ++Part) { 4251 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4252 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4253 // Floating point operations had to be 'fast' to enable the reduction. 4254 ReducedPartRdx = addFastMathFlag( 4255 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4256 ReducedPartRdx, "bin.rdx")); 4257 else 4258 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4259 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4260 } 4261 4262 if (VF > 1) { 4263 bool NoNaN = Legal->hasFunNoNaNAttr(); 4264 ReducedPartRdx = 4265 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4266 // If the reduction can be performed in a smaller type, we need to extend 4267 // the reduction to the wider type before we branch to the original loop. 4268 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4269 ReducedPartRdx = 4270 RdxDesc.isSigned() 4271 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4272 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4273 } 4274 4275 // Create a phi node that merges control-flow from the backedge-taken check 4276 // block and the middle block. 4277 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4278 LoopScalarPreHeader->getTerminator()); 4279 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4280 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4281 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4282 4283 // Now, we need to fix the users of the reduction variable 4284 // inside and outside of the scalar remainder loop. 4285 // We know that the loop is in LCSSA form. We need to update the 4286 // PHI nodes in the exit blocks. 4287 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4288 // All PHINodes need to have a single entry edge, or two if 4289 // we already fixed them. 4290 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4291 4292 // We found a reduction value exit-PHI. Update it with the 4293 // incoming bypass edge. 4294 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4295 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4296 } // end of the LCSSA phi scan. 4297 4298 // Fix the scalar loop reduction variable with the incoming reduction sum 4299 // from the vector body and from the backedge value. 4300 int IncomingEdgeBlockIdx = 4301 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4302 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4303 // Pick the other block. 4304 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4305 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4306 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4307 } 4308 4309 void InnerLoopVectorizer::fixLCSSAPHIs() { 4310 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4311 if (LCSSAPhi.getNumIncomingValues() == 1) { 4312 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 4313 "Incoming value isn't loop invariant"); 4314 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 4315 } 4316 } 4317 } 4318 4319 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4320 // The basic block and loop containing the predicated instruction. 4321 auto *PredBB = PredInst->getParent(); 4322 auto *VectorLoop = LI->getLoopFor(PredBB); 4323 4324 // Initialize a worklist with the operands of the predicated instruction. 4325 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4326 4327 // Holds instructions that we need to analyze again. An instruction may be 4328 // reanalyzed if we don't yet know if we can sink it or not. 4329 SmallVector<Instruction *, 8> InstsToReanalyze; 4330 4331 // Returns true if a given use occurs in the predicated block. Phi nodes use 4332 // their operands in their corresponding predecessor blocks. 4333 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4334 auto *I = cast<Instruction>(U.getUser()); 4335 BasicBlock *BB = I->getParent(); 4336 if (auto *Phi = dyn_cast<PHINode>(I)) 4337 BB = Phi->getIncomingBlock( 4338 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4339 return BB == PredBB; 4340 }; 4341 4342 // Iteratively sink the scalarized operands of the predicated instruction 4343 // into the block we created for it. When an instruction is sunk, it's 4344 // operands are then added to the worklist. The algorithm ends after one pass 4345 // through the worklist doesn't sink a single instruction. 4346 bool Changed; 4347 do { 4348 // Add the instructions that need to be reanalyzed to the worklist, and 4349 // reset the changed indicator. 4350 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4351 InstsToReanalyze.clear(); 4352 Changed = false; 4353 4354 while (!Worklist.empty()) { 4355 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4356 4357 // We can't sink an instruction if it is a phi node, is already in the 4358 // predicated block, is not in the loop, or may have side effects. 4359 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4360 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4361 continue; 4362 4363 // It's legal to sink the instruction if all its uses occur in the 4364 // predicated block. Otherwise, there's nothing to do yet, and we may 4365 // need to reanalyze the instruction. 4366 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4367 InstsToReanalyze.push_back(I); 4368 continue; 4369 } 4370 4371 // Move the instruction to the beginning of the predicated block, and add 4372 // it's operands to the worklist. 4373 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4374 Worklist.insert(I->op_begin(), I->op_end()); 4375 4376 // The sinking may have enabled other instructions to be sunk, so we will 4377 // need to iterate. 4378 Changed = true; 4379 } 4380 } while (Changed); 4381 } 4382 4383 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4384 unsigned VF) { 4385 assert(PN->getParent() == OrigLoop->getHeader() && 4386 "Non-header phis should have been handled elsewhere"); 4387 4388 PHINode *P = cast<PHINode>(PN); 4389 // In order to support recurrences we need to be able to vectorize Phi nodes. 4390 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4391 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4392 // this value when we vectorize all of the instructions that use the PHI. 4393 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4394 for (unsigned Part = 0; Part < UF; ++Part) { 4395 // This is phase one of vectorizing PHIs. 4396 Type *VecTy = 4397 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4398 Value *EntryPart = PHINode::Create( 4399 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4400 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4401 } 4402 return; 4403 } 4404 4405 setDebugLocFromInst(Builder, P); 4406 4407 // This PHINode must be an induction variable. 4408 // Make sure that we know about it. 4409 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4410 4411 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4412 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4413 4414 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4415 // which can be found from the original scalar operations. 4416 switch (II.getKind()) { 4417 case InductionDescriptor::IK_NoInduction: 4418 llvm_unreachable("Unknown induction"); 4419 case InductionDescriptor::IK_IntInduction: 4420 case InductionDescriptor::IK_FpInduction: 4421 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4422 case InductionDescriptor::IK_PtrInduction: { 4423 // Handle the pointer induction variable case. 4424 assert(P->getType()->isPointerTy() && "Unexpected type."); 4425 // This is the normalized GEP that starts counting at zero. 4426 Value *PtrInd = Induction; 4427 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4428 // Determine the number of scalars we need to generate for each unroll 4429 // iteration. If the instruction is uniform, we only need to generate the 4430 // first lane. Otherwise, we generate all VF values. 4431 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4432 // These are the scalar results. Notice that we don't generate vector GEPs 4433 // because scalar GEPs result in better code. 4434 for (unsigned Part = 0; Part < UF; ++Part) { 4435 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4436 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4437 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4438 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4439 SclrGep->setName("next.gep"); 4440 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4441 } 4442 } 4443 return; 4444 } 4445 } 4446 } 4447 4448 /// A helper function for checking whether an integer division-related 4449 /// instruction may divide by zero (in which case it must be predicated if 4450 /// executed conditionally in the scalar code). 4451 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4452 /// Non-zero divisors that are non compile-time constants will not be 4453 /// converted into multiplication, so we will still end up scalarizing 4454 /// the division, but can do so w/o predication. 4455 static bool mayDivideByZero(Instruction &I) { 4456 assert((I.getOpcode() == Instruction::UDiv || 4457 I.getOpcode() == Instruction::SDiv || 4458 I.getOpcode() == Instruction::URem || 4459 I.getOpcode() == Instruction::SRem) && 4460 "Unexpected instruction"); 4461 Value *Divisor = I.getOperand(1); 4462 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4463 return !CInt || CInt->isZero(); 4464 } 4465 4466 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4467 switch (I.getOpcode()) { 4468 case Instruction::Br: 4469 case Instruction::PHI: 4470 llvm_unreachable("This instruction is handled by a different recipe."); 4471 case Instruction::GetElementPtr: { 4472 // Construct a vector GEP by widening the operands of the scalar GEP as 4473 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4474 // results in a vector of pointers when at least one operand of the GEP 4475 // is vector-typed. Thus, to keep the representation compact, we only use 4476 // vector-typed operands for loop-varying values. 4477 auto *GEP = cast<GetElementPtrInst>(&I); 4478 4479 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4480 // If we are vectorizing, but the GEP has only loop-invariant operands, 4481 // the GEP we build (by only using vector-typed operands for 4482 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4483 // produce a vector of pointers, we need to either arbitrarily pick an 4484 // operand to broadcast, or broadcast a clone of the original GEP. 4485 // Here, we broadcast a clone of the original. 4486 // 4487 // TODO: If at some point we decide to scalarize instructions having 4488 // loop-invariant operands, this special case will no longer be 4489 // required. We would add the scalarization decision to 4490 // collectLoopScalars() and teach getVectorValue() to broadcast 4491 // the lane-zero scalar value. 4492 auto *Clone = Builder.Insert(GEP->clone()); 4493 for (unsigned Part = 0; Part < UF; ++Part) { 4494 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4495 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4496 addMetadata(EntryPart, GEP); 4497 } 4498 } else { 4499 // If the GEP has at least one loop-varying operand, we are sure to 4500 // produce a vector of pointers. But if we are only unrolling, we want 4501 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4502 // produce with the code below will be scalar (if VF == 1) or vector 4503 // (otherwise). Note that for the unroll-only case, we still maintain 4504 // values in the vector mapping with initVector, as we do for other 4505 // instructions. 4506 for (unsigned Part = 0; Part < UF; ++Part) { 4507 // The pointer operand of the new GEP. If it's loop-invariant, we 4508 // won't broadcast it. 4509 auto *Ptr = 4510 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4511 ? GEP->getPointerOperand() 4512 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4513 4514 // Collect all the indices for the new GEP. If any index is 4515 // loop-invariant, we won't broadcast it. 4516 SmallVector<Value *, 4> Indices; 4517 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4518 if (OrigLoop->isLoopInvariant(U.get())) 4519 Indices.push_back(U.get()); 4520 else 4521 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4522 } 4523 4524 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4525 // but it should be a vector, otherwise. 4526 auto *NewGEP = GEP->isInBounds() 4527 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4528 : Builder.CreateGEP(Ptr, Indices); 4529 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4530 "NewGEP is not a pointer vector"); 4531 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4532 addMetadata(NewGEP, GEP); 4533 } 4534 } 4535 4536 break; 4537 } 4538 case Instruction::UDiv: 4539 case Instruction::SDiv: 4540 case Instruction::SRem: 4541 case Instruction::URem: 4542 case Instruction::Add: 4543 case Instruction::FAdd: 4544 case Instruction::Sub: 4545 case Instruction::FSub: 4546 case Instruction::Mul: 4547 case Instruction::FMul: 4548 case Instruction::FDiv: 4549 case Instruction::FRem: 4550 case Instruction::Shl: 4551 case Instruction::LShr: 4552 case Instruction::AShr: 4553 case Instruction::And: 4554 case Instruction::Or: 4555 case Instruction::Xor: { 4556 // Just widen binops. 4557 auto *BinOp = cast<BinaryOperator>(&I); 4558 setDebugLocFromInst(Builder, BinOp); 4559 4560 for (unsigned Part = 0; Part < UF; ++Part) { 4561 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4562 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4563 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4564 4565 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4566 VecOp->copyIRFlags(BinOp); 4567 4568 // Use this vector value for all users of the original instruction. 4569 VectorLoopValueMap.setVectorValue(&I, Part, V); 4570 addMetadata(V, BinOp); 4571 } 4572 4573 break; 4574 } 4575 case Instruction::Select: { 4576 // Widen selects. 4577 // If the selector is loop invariant we can create a select 4578 // instruction with a scalar condition. Otherwise, use vector-select. 4579 auto *SE = PSE.getSE(); 4580 bool InvariantCond = 4581 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4582 setDebugLocFromInst(Builder, &I); 4583 4584 // The condition can be loop invariant but still defined inside the 4585 // loop. This means that we can't just use the original 'cond' value. 4586 // We have to take the 'vectorized' value and pick the first lane. 4587 // Instcombine will make this a no-op. 4588 4589 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4590 4591 for (unsigned Part = 0; Part < UF; ++Part) { 4592 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4593 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4594 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4595 Value *Sel = 4596 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4597 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4598 addMetadata(Sel, &I); 4599 } 4600 4601 break; 4602 } 4603 4604 case Instruction::ICmp: 4605 case Instruction::FCmp: { 4606 // Widen compares. Generate vector compares. 4607 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4608 auto *Cmp = dyn_cast<CmpInst>(&I); 4609 setDebugLocFromInst(Builder, Cmp); 4610 for (unsigned Part = 0; Part < UF; ++Part) { 4611 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4612 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4613 Value *C = nullptr; 4614 if (FCmp) { 4615 // Propagate fast math flags. 4616 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4617 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4618 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4619 } else { 4620 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4621 } 4622 VectorLoopValueMap.setVectorValue(&I, Part, C); 4623 addMetadata(C, &I); 4624 } 4625 4626 break; 4627 } 4628 4629 case Instruction::ZExt: 4630 case Instruction::SExt: 4631 case Instruction::FPToUI: 4632 case Instruction::FPToSI: 4633 case Instruction::FPExt: 4634 case Instruction::PtrToInt: 4635 case Instruction::IntToPtr: 4636 case Instruction::SIToFP: 4637 case Instruction::UIToFP: 4638 case Instruction::Trunc: 4639 case Instruction::FPTrunc: 4640 case Instruction::BitCast: { 4641 auto *CI = dyn_cast<CastInst>(&I); 4642 setDebugLocFromInst(Builder, CI); 4643 4644 /// Vectorize casts. 4645 Type *DestTy = 4646 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4647 4648 for (unsigned Part = 0; Part < UF; ++Part) { 4649 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4650 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4651 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4652 addMetadata(Cast, &I); 4653 } 4654 break; 4655 } 4656 4657 case Instruction::Call: { 4658 // Ignore dbg intrinsics. 4659 if (isa<DbgInfoIntrinsic>(I)) 4660 break; 4661 setDebugLocFromInst(Builder, &I); 4662 4663 Module *M = I.getParent()->getParent()->getParent(); 4664 auto *CI = cast<CallInst>(&I); 4665 4666 StringRef FnName = CI->getCalledFunction()->getName(); 4667 Function *F = CI->getCalledFunction(); 4668 Type *RetTy = ToVectorTy(CI->getType(), VF); 4669 SmallVector<Type *, 4> Tys; 4670 for (Value *ArgOperand : CI->arg_operands()) 4671 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4672 4673 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4674 4675 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4676 // version of the instruction. 4677 // Is it beneficial to perform intrinsic call compared to lib call? 4678 bool NeedToScalarize; 4679 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4680 bool UseVectorIntrinsic = 4681 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4682 assert((UseVectorIntrinsic || !NeedToScalarize) && 4683 "Instruction should be scalarized elsewhere."); 4684 4685 for (unsigned Part = 0; Part < UF; ++Part) { 4686 SmallVector<Value *, 4> Args; 4687 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4688 Value *Arg = CI->getArgOperand(i); 4689 // Some intrinsics have a scalar argument - don't replace it with a 4690 // vector. 4691 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4692 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4693 Args.push_back(Arg); 4694 } 4695 4696 Function *VectorF; 4697 if (UseVectorIntrinsic) { 4698 // Use vector version of the intrinsic. 4699 Type *TysForDecl[] = {CI->getType()}; 4700 if (VF > 1) 4701 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4702 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4703 } else { 4704 // Use vector version of the library call. 4705 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4706 assert(!VFnName.empty() && "Vector function name is empty."); 4707 VectorF = M->getFunction(VFnName); 4708 if (!VectorF) { 4709 // Generate a declaration 4710 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4711 VectorF = 4712 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4713 VectorF->copyAttributesFrom(F); 4714 } 4715 } 4716 assert(VectorF && "Can't create vector function."); 4717 4718 SmallVector<OperandBundleDef, 1> OpBundles; 4719 CI->getOperandBundlesAsDefs(OpBundles); 4720 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4721 4722 if (isa<FPMathOperator>(V)) 4723 V->copyFastMathFlags(CI); 4724 4725 VectorLoopValueMap.setVectorValue(&I, Part, V); 4726 addMetadata(V, &I); 4727 } 4728 4729 break; 4730 } 4731 4732 default: 4733 // This instruction is not vectorized by simple widening. 4734 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4735 llvm_unreachable("Unhandled instruction!"); 4736 } // end of switch. 4737 } 4738 4739 void InnerLoopVectorizer::updateAnalysis() { 4740 // Forget the original basic block. 4741 PSE.getSE()->forgetLoop(OrigLoop); 4742 4743 // Update the dominator tree information. 4744 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4745 "Entry does not dominate exit."); 4746 4747 DT->addNewBlock(LoopMiddleBlock, 4748 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4749 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4750 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4751 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4752 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4753 } 4754 4755 /// \brief Check whether it is safe to if-convert this phi node. 4756 /// 4757 /// Phi nodes with constant expressions that can trap are not safe to if 4758 /// convert. 4759 static bool canIfConvertPHINodes(BasicBlock *BB) { 4760 for (PHINode &Phi : BB->phis()) { 4761 for (Value *V : Phi.incoming_values()) 4762 if (auto *C = dyn_cast<Constant>(V)) 4763 if (C->canTrap()) 4764 return false; 4765 } 4766 return true; 4767 } 4768 4769 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4770 if (!EnableIfConversion) { 4771 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4772 << "if-conversion is disabled"); 4773 return false; 4774 } 4775 4776 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4777 4778 // A list of pointers that we can safely read and write to. 4779 SmallPtrSet<Value *, 8> SafePointes; 4780 4781 // Collect safe addresses. 4782 for (BasicBlock *BB : TheLoop->blocks()) { 4783 if (blockNeedsPredication(BB)) 4784 continue; 4785 4786 for (Instruction &I : *BB) 4787 if (auto *Ptr = getLoadStorePointerOperand(&I)) 4788 SafePointes.insert(Ptr); 4789 } 4790 4791 // Collect the blocks that need predication. 4792 BasicBlock *Header = TheLoop->getHeader(); 4793 for (BasicBlock *BB : TheLoop->blocks()) { 4794 // We don't support switch statements inside loops. 4795 if (!isa<BranchInst>(BB->getTerminator())) { 4796 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4797 << "loop contains a switch statement"); 4798 return false; 4799 } 4800 4801 // We must be able to predicate all blocks that need to be predicated. 4802 if (blockNeedsPredication(BB)) { 4803 if (!blockCanBePredicated(BB, SafePointes)) { 4804 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4805 << "control flow cannot be substituted for a select"); 4806 return false; 4807 } 4808 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4809 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4810 << "control flow cannot be substituted for a select"); 4811 return false; 4812 } 4813 } 4814 4815 // We can if-convert this loop. 4816 return true; 4817 } 4818 4819 bool LoopVectorizationLegality::canVectorize() { 4820 // Store the result and return it at the end instead of exiting early, in case 4821 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4822 bool Result = true; 4823 4824 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 4825 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4826 // be canonicalized. 4827 if (!TheLoop->getLoopPreheader()) { 4828 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 4829 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4830 << "loop control flow is not understood by vectorizer"); 4831 if (DoExtraAnalysis) 4832 Result = false; 4833 else 4834 return false; 4835 } 4836 4837 // FIXME: The code is currently dead, since the loop gets sent to 4838 // LoopVectorizationLegality is already an innermost loop. 4839 // 4840 // We can only vectorize innermost loops. 4841 if (!TheLoop->empty()) { 4842 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4843 << "loop is not the innermost loop"); 4844 if (DoExtraAnalysis) 4845 Result = false; 4846 else 4847 return false; 4848 } 4849 4850 // We must have a single backedge. 4851 if (TheLoop->getNumBackEdges() != 1) { 4852 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4853 << "loop control flow is not understood by vectorizer"); 4854 if (DoExtraAnalysis) 4855 Result = false; 4856 else 4857 return false; 4858 } 4859 4860 // We must have a single exiting block. 4861 if (!TheLoop->getExitingBlock()) { 4862 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4863 << "loop control flow is not understood by vectorizer"); 4864 if (DoExtraAnalysis) 4865 Result = false; 4866 else 4867 return false; 4868 } 4869 4870 // We only handle bottom-tested loops, i.e. loop in which the condition is 4871 // checked at the end of each iteration. With that we can assume that all 4872 // instructions in the loop are executed the same number of times. 4873 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4874 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4875 << "loop control flow is not understood by vectorizer"); 4876 if (DoExtraAnalysis) 4877 Result = false; 4878 else 4879 return false; 4880 } 4881 4882 // We need to have a loop header. 4883 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4884 << '\n'); 4885 4886 // Check if we can if-convert non-single-bb loops. 4887 unsigned NumBlocks = TheLoop->getNumBlocks(); 4888 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4889 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4890 if (DoExtraAnalysis) 4891 Result = false; 4892 else 4893 return false; 4894 } 4895 4896 // Check if we can vectorize the instructions and CFG in this loop. 4897 if (!canVectorizeInstrs()) { 4898 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4899 if (DoExtraAnalysis) 4900 Result = false; 4901 else 4902 return false; 4903 } 4904 4905 // Go over each instruction and look at memory deps. 4906 if (!canVectorizeMemory()) { 4907 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4908 if (DoExtraAnalysis) 4909 Result = false; 4910 else 4911 return false; 4912 } 4913 4914 DEBUG(dbgs() << "LV: We can vectorize this loop" 4915 << (LAI->getRuntimePointerChecking()->Need 4916 ? " (with a runtime bound check)" 4917 : "") 4918 << "!\n"); 4919 4920 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4921 4922 // If an override option has been passed in for interleaved accesses, use it. 4923 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4924 UseInterleaved = EnableInterleavedMemAccesses; 4925 4926 // Analyze interleaved memory accesses. 4927 if (UseInterleaved) 4928 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4929 4930 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4931 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4932 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4933 4934 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4935 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 4936 << "Too many SCEV assumptions need to be made and checked " 4937 << "at runtime"); 4938 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4939 if (DoExtraAnalysis) 4940 Result = false; 4941 else 4942 return false; 4943 } 4944 4945 // Okay! We've done all the tests. If any have failed, return false. Otherwise 4946 // we can vectorize, and at this point we don't have any other mem analysis 4947 // which may limit our maximum vectorization factor, so just return true with 4948 // no restrictions. 4949 return Result; 4950 } 4951 4952 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4953 if (Ty->isPointerTy()) 4954 return DL.getIntPtrType(Ty); 4955 4956 // It is possible that char's or short's overflow when we ask for the loop's 4957 // trip count, work around this by changing the type size. 4958 if (Ty->getScalarSizeInBits() < 32) 4959 return Type::getInt32Ty(Ty->getContext()); 4960 4961 return Ty; 4962 } 4963 4964 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4965 Ty0 = convertPointerToIntegerType(DL, Ty0); 4966 Ty1 = convertPointerToIntegerType(DL, Ty1); 4967 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4968 return Ty0; 4969 return Ty1; 4970 } 4971 4972 /// \brief Check that the instruction has outside loop users and is not an 4973 /// identified reduction variable. 4974 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4975 SmallPtrSetImpl<Value *> &AllowedExit) { 4976 // Reduction and Induction instructions are allowed to have exit users. All 4977 // other instructions must not have external users. 4978 if (!AllowedExit.count(Inst)) 4979 // Check that all of the users of the loop are inside the BB. 4980 for (User *U : Inst->users()) { 4981 Instruction *UI = cast<Instruction>(U); 4982 // This user may be a reduction exit value. 4983 if (!TheLoop->contains(UI)) { 4984 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4985 return true; 4986 } 4987 } 4988 return false; 4989 } 4990 4991 void LoopVectorizationLegality::addInductionPhi( 4992 PHINode *Phi, const InductionDescriptor &ID, 4993 SmallPtrSetImpl<Value *> &AllowedExit) { 4994 Inductions[Phi] = ID; 4995 4996 // In case this induction also comes with casts that we know we can ignore 4997 // in the vectorized loop body, record them here. All casts could be recorded 4998 // here for ignoring, but suffices to record only the first (as it is the 4999 // only one that may bw used outside the cast sequence). 5000 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5001 if (!Casts.empty()) 5002 InductionCastsToIgnore.insert(*Casts.begin()); 5003 5004 Type *PhiTy = Phi->getType(); 5005 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5006 5007 // Get the widest type. 5008 if (!PhiTy->isFloatingPointTy()) { 5009 if (!WidestIndTy) 5010 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5011 else 5012 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5013 } 5014 5015 // Int inductions are special because we only allow one IV. 5016 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5017 ID.getConstIntStepValue() && 5018 ID.getConstIntStepValue()->isOne() && 5019 isa<Constant>(ID.getStartValue()) && 5020 cast<Constant>(ID.getStartValue())->isNullValue()) { 5021 5022 // Use the phi node with the widest type as induction. Use the last 5023 // one if there are multiple (no good reason for doing this other 5024 // than it is expedient). We've checked that it begins at zero and 5025 // steps by one, so this is a canonical induction variable. 5026 if (!PrimaryInduction || PhiTy == WidestIndTy) 5027 PrimaryInduction = Phi; 5028 } 5029 5030 // Both the PHI node itself, and the "post-increment" value feeding 5031 // back into the PHI node may have external users. 5032 // We can allow those uses, except if the SCEVs we have for them rely 5033 // on predicates that only hold within the loop, since allowing the exit 5034 // currently means re-using this SCEV outside the loop. 5035 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5036 AllowedExit.insert(Phi); 5037 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5038 } 5039 5040 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5041 } 5042 5043 bool LoopVectorizationLegality::canVectorizeInstrs() { 5044 BasicBlock *Header = TheLoop->getHeader(); 5045 5046 // Look for the attribute signaling the absence of NaNs. 5047 Function &F = *Header->getParent(); 5048 HasFunNoNaNAttr = 5049 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5050 5051 // For each block in the loop. 5052 for (BasicBlock *BB : TheLoop->blocks()) { 5053 // Scan the instructions in the block and look for hazards. 5054 for (Instruction &I : *BB) { 5055 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5056 Type *PhiTy = Phi->getType(); 5057 // Check that this PHI type is allowed. 5058 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5059 !PhiTy->isPointerTy()) { 5060 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5061 << "loop control flow is not understood by vectorizer"); 5062 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5063 return false; 5064 } 5065 5066 // If this PHINode is not in the header block, then we know that we 5067 // can convert it to select during if-conversion. No need to check if 5068 // the PHIs in this block are induction or reduction variables. 5069 if (BB != Header) { 5070 // Check that this instruction has no outside users or is an 5071 // identified reduction value with an outside user. 5072 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5073 continue; 5074 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5075 << "value could not be identified as " 5076 "an induction or reduction variable"); 5077 return false; 5078 } 5079 5080 // We only allow if-converted PHIs with exactly two incoming values. 5081 if (Phi->getNumIncomingValues() != 2) { 5082 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5083 << "control flow not understood by vectorizer"); 5084 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5085 return false; 5086 } 5087 5088 RecurrenceDescriptor RedDes; 5089 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 5090 DT)) { 5091 if (RedDes.hasUnsafeAlgebra()) 5092 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5093 AllowedExit.insert(RedDes.getLoopExitInstr()); 5094 Reductions[Phi] = RedDes; 5095 continue; 5096 } 5097 5098 InductionDescriptor ID; 5099 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5100 addInductionPhi(Phi, ID, AllowedExit); 5101 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5102 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5103 continue; 5104 } 5105 5106 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5107 SinkAfter, DT)) { 5108 FirstOrderRecurrences.insert(Phi); 5109 continue; 5110 } 5111 5112 // As a last resort, coerce the PHI to a AddRec expression 5113 // and re-try classifying it a an induction PHI. 5114 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5115 addInductionPhi(Phi, ID, AllowedExit); 5116 continue; 5117 } 5118 5119 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5120 << "value that could not be identified as " 5121 "reduction is used outside the loop"); 5122 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5123 return false; 5124 } // end of PHI handling 5125 5126 // We handle calls that: 5127 // * Are debug info intrinsics. 5128 // * Have a mapping to an IR intrinsic. 5129 // * Have a vector version available. 5130 auto *CI = dyn_cast<CallInst>(&I); 5131 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5132 !isa<DbgInfoIntrinsic>(CI) && 5133 !(CI->getCalledFunction() && TLI && 5134 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5135 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5136 << "call instruction cannot be vectorized"); 5137 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5138 return false; 5139 } 5140 5141 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5142 // second argument is the same (i.e. loop invariant) 5143 if (CI && hasVectorInstrinsicScalarOpd( 5144 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5145 auto *SE = PSE.getSE(); 5146 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5147 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5148 << "intrinsic instruction cannot be vectorized"); 5149 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5150 return false; 5151 } 5152 } 5153 5154 // Check that the instruction return type is vectorizable. 5155 // Also, we can't vectorize extractelement instructions. 5156 if ((!VectorType::isValidElementType(I.getType()) && 5157 !I.getType()->isVoidTy()) || 5158 isa<ExtractElementInst>(I)) { 5159 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5160 << "instruction return type cannot be vectorized"); 5161 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5162 return false; 5163 } 5164 5165 // Check that the stored type is vectorizable. 5166 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5167 Type *T = ST->getValueOperand()->getType(); 5168 if (!VectorType::isValidElementType(T)) { 5169 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5170 << "store instruction cannot be vectorized"); 5171 return false; 5172 } 5173 5174 // FP instructions can allow unsafe algebra, thus vectorizable by 5175 // non-IEEE-754 compliant SIMD units. 5176 // This applies to floating-point math operations and calls, not memory 5177 // operations, shuffles, or casts, as they don't change precision or 5178 // semantics. 5179 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5180 !I.isFast()) { 5181 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5182 Hints->setPotentiallyUnsafe(); 5183 } 5184 5185 // Reduction instructions are allowed to have exit users. 5186 // All other instructions must not have external users. 5187 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5188 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5189 << "value cannot be used outside the loop"); 5190 return false; 5191 } 5192 } // next instr. 5193 } 5194 5195 if (!PrimaryInduction) { 5196 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5197 if (Inductions.empty()) { 5198 ORE->emit(createMissedAnalysis("NoInductionVariable") 5199 << "loop induction variable could not be identified"); 5200 return false; 5201 } 5202 } 5203 5204 // Now we know the widest induction type, check if our found induction 5205 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5206 // will create another. 5207 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5208 PrimaryInduction = nullptr; 5209 5210 return true; 5211 } 5212 5213 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5214 // We should not collect Scalars more than once per VF. Right now, this 5215 // function is called from collectUniformsAndScalars(), which already does 5216 // this check. Collecting Scalars for VF=1 does not make any sense. 5217 assert(VF >= 2 && !Scalars.count(VF) && 5218 "This function should not be visited twice for the same VF"); 5219 5220 SmallSetVector<Instruction *, 8> Worklist; 5221 5222 // These sets are used to seed the analysis with pointers used by memory 5223 // accesses that will remain scalar. 5224 SmallSetVector<Instruction *, 8> ScalarPtrs; 5225 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5226 5227 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5228 // The pointer operands of loads and stores will be scalar as long as the 5229 // memory access is not a gather or scatter operation. The value operand of a 5230 // store will remain scalar if the store is scalarized. 5231 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5232 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5233 assert(WideningDecision != CM_Unknown && 5234 "Widening decision should be ready at this moment"); 5235 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5236 if (Ptr == Store->getValueOperand()) 5237 return WideningDecision == CM_Scalarize; 5238 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5239 "Ptr is neither a value or pointer operand"); 5240 return WideningDecision != CM_GatherScatter; 5241 }; 5242 5243 // A helper that returns true if the given value is a bitcast or 5244 // getelementptr instruction contained in the loop. 5245 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5246 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5247 isa<GetElementPtrInst>(V)) && 5248 !TheLoop->isLoopInvariant(V); 5249 }; 5250 5251 // A helper that evaluates a memory access's use of a pointer. If the use 5252 // will be a scalar use, and the pointer is only used by memory accesses, we 5253 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5254 // PossibleNonScalarPtrs. 5255 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5256 // We only care about bitcast and getelementptr instructions contained in 5257 // the loop. 5258 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5259 return; 5260 5261 // If the pointer has already been identified as scalar (e.g., if it was 5262 // also identified as uniform), there's nothing to do. 5263 auto *I = cast<Instruction>(Ptr); 5264 if (Worklist.count(I)) 5265 return; 5266 5267 // If the use of the pointer will be a scalar use, and all users of the 5268 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5269 // place the pointer in PossibleNonScalarPtrs. 5270 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5271 return isa<LoadInst>(U) || isa<StoreInst>(U); 5272 })) 5273 ScalarPtrs.insert(I); 5274 else 5275 PossibleNonScalarPtrs.insert(I); 5276 }; 5277 5278 // We seed the scalars analysis with three classes of instructions: (1) 5279 // instructions marked uniform-after-vectorization, (2) bitcast and 5280 // getelementptr instructions used by memory accesses requiring a scalar use, 5281 // and (3) pointer induction variables and their update instructions (we 5282 // currently only scalarize these). 5283 // 5284 // (1) Add to the worklist all instructions that have been identified as 5285 // uniform-after-vectorization. 5286 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5287 5288 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5289 // memory accesses requiring a scalar use. The pointer operands of loads and 5290 // stores will be scalar as long as the memory accesses is not a gather or 5291 // scatter operation. The value operand of a store will remain scalar if the 5292 // store is scalarized. 5293 for (auto *BB : TheLoop->blocks()) 5294 for (auto &I : *BB) { 5295 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5296 evaluatePtrUse(Load, Load->getPointerOperand()); 5297 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5298 evaluatePtrUse(Store, Store->getPointerOperand()); 5299 evaluatePtrUse(Store, Store->getValueOperand()); 5300 } 5301 } 5302 for (auto *I : ScalarPtrs) 5303 if (!PossibleNonScalarPtrs.count(I)) { 5304 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5305 Worklist.insert(I); 5306 } 5307 5308 // (3) Add to the worklist all pointer induction variables and their update 5309 // instructions. 5310 // 5311 // TODO: Once we are able to vectorize pointer induction variables we should 5312 // no longer insert them into the worklist here. 5313 auto *Latch = TheLoop->getLoopLatch(); 5314 for (auto &Induction : *Legal->getInductionVars()) { 5315 auto *Ind = Induction.first; 5316 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5317 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5318 continue; 5319 Worklist.insert(Ind); 5320 Worklist.insert(IndUpdate); 5321 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5322 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5323 } 5324 5325 // Insert the forced scalars. 5326 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5327 // induction variable when the PHI user is scalarized. 5328 if (ForcedScalars.count(VF)) 5329 for (auto *I : ForcedScalars.find(VF)->second) 5330 Worklist.insert(I); 5331 5332 // Expand the worklist by looking through any bitcasts and getelementptr 5333 // instructions we've already identified as scalar. This is similar to the 5334 // expansion step in collectLoopUniforms(); however, here we're only 5335 // expanding to include additional bitcasts and getelementptr instructions. 5336 unsigned Idx = 0; 5337 while (Idx != Worklist.size()) { 5338 Instruction *Dst = Worklist[Idx++]; 5339 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5340 continue; 5341 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5342 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5343 auto *J = cast<Instruction>(U); 5344 return !TheLoop->contains(J) || Worklist.count(J) || 5345 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5346 isScalarUse(J, Src)); 5347 })) { 5348 Worklist.insert(Src); 5349 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5350 } 5351 } 5352 5353 // An induction variable will remain scalar if all users of the induction 5354 // variable and induction variable update remain scalar. 5355 for (auto &Induction : *Legal->getInductionVars()) { 5356 auto *Ind = Induction.first; 5357 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5358 5359 // We already considered pointer induction variables, so there's no reason 5360 // to look at their users again. 5361 // 5362 // TODO: Once we are able to vectorize pointer induction variables we 5363 // should no longer skip over them here. 5364 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5365 continue; 5366 5367 // Determine if all users of the induction variable are scalar after 5368 // vectorization. 5369 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5370 auto *I = cast<Instruction>(U); 5371 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5372 }); 5373 if (!ScalarInd) 5374 continue; 5375 5376 // Determine if all users of the induction variable update instruction are 5377 // scalar after vectorization. 5378 auto ScalarIndUpdate = 5379 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5380 auto *I = cast<Instruction>(U); 5381 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5382 }); 5383 if (!ScalarIndUpdate) 5384 continue; 5385 5386 // The induction variable and its update instruction will remain scalar. 5387 Worklist.insert(Ind); 5388 Worklist.insert(IndUpdate); 5389 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5390 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5391 } 5392 5393 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5394 } 5395 5396 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) { 5397 if (!Legal->blockNeedsPredication(I->getParent())) 5398 return false; 5399 switch(I->getOpcode()) { 5400 default: 5401 break; 5402 case Instruction::Load: 5403 case Instruction::Store: { 5404 if (!Legal->isMaskRequired(I)) 5405 return false; 5406 auto *Ptr = getLoadStorePointerOperand(I); 5407 auto *Ty = getMemInstValueType(I); 5408 return isa<LoadInst>(I) ? 5409 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 5410 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 5411 } 5412 case Instruction::UDiv: 5413 case Instruction::SDiv: 5414 case Instruction::SRem: 5415 case Instruction::URem: 5416 return mayDivideByZero(*I); 5417 } 5418 return false; 5419 } 5420 5421 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 5422 unsigned VF) { 5423 // Get and ensure we have a valid memory instruction. 5424 LoadInst *LI = dyn_cast<LoadInst>(I); 5425 StoreInst *SI = dyn_cast<StoreInst>(I); 5426 assert((LI || SI) && "Invalid memory instruction"); 5427 5428 auto *Ptr = getLoadStorePointerOperand(I); 5429 5430 // In order to be widened, the pointer should be consecutive, first of all. 5431 if (!Legal->isConsecutivePtr(Ptr)) 5432 return false; 5433 5434 // If the instruction is a store located in a predicated block, it will be 5435 // scalarized. 5436 if (isScalarWithPredication(I)) 5437 return false; 5438 5439 // If the instruction's allocated size doesn't equal it's type size, it 5440 // requires padding and will be scalarized. 5441 auto &DL = I->getModule()->getDataLayout(); 5442 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5443 if (hasIrregularType(ScalarTy, DL, VF)) 5444 return false; 5445 5446 return true; 5447 } 5448 5449 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5450 // We should not collect Uniforms more than once per VF. Right now, 5451 // this function is called from collectUniformsAndScalars(), which 5452 // already does this check. Collecting Uniforms for VF=1 does not make any 5453 // sense. 5454 5455 assert(VF >= 2 && !Uniforms.count(VF) && 5456 "This function should not be visited twice for the same VF"); 5457 5458 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5459 // not analyze again. Uniforms.count(VF) will return 1. 5460 Uniforms[VF].clear(); 5461 5462 // We now know that the loop is vectorizable! 5463 // Collect instructions inside the loop that will remain uniform after 5464 // vectorization. 5465 5466 // Global values, params and instructions outside of current loop are out of 5467 // scope. 5468 auto isOutOfScope = [&](Value *V) -> bool { 5469 Instruction *I = dyn_cast<Instruction>(V); 5470 return (!I || !TheLoop->contains(I)); 5471 }; 5472 5473 SetVector<Instruction *> Worklist; 5474 BasicBlock *Latch = TheLoop->getLoopLatch(); 5475 5476 // Start with the conditional branch. If the branch condition is an 5477 // instruction contained in the loop that is only used by the branch, it is 5478 // uniform. 5479 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5480 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5481 Worklist.insert(Cmp); 5482 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5483 } 5484 5485 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5486 // are pointers that are treated like consecutive pointers during 5487 // vectorization. The pointer operands of interleaved accesses are an 5488 // example. 5489 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5490 5491 // Holds pointer operands of instructions that are possibly non-uniform. 5492 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5493 5494 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5495 InstWidening WideningDecision = getWideningDecision(I, VF); 5496 assert(WideningDecision != CM_Unknown && 5497 "Widening decision should be ready at this moment"); 5498 5499 return (WideningDecision == CM_Widen || 5500 WideningDecision == CM_Widen_Reverse || 5501 WideningDecision == CM_Interleave); 5502 }; 5503 // Iterate over the instructions in the loop, and collect all 5504 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5505 // that a consecutive-like pointer operand will be scalarized, we collect it 5506 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5507 // getelementptr instruction can be used by both vectorized and scalarized 5508 // memory instructions. For example, if a loop loads and stores from the same 5509 // location, but the store is conditional, the store will be scalarized, and 5510 // the getelementptr won't remain uniform. 5511 for (auto *BB : TheLoop->blocks()) 5512 for (auto &I : *BB) { 5513 // If there's no pointer operand, there's nothing to do. 5514 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5515 if (!Ptr) 5516 continue; 5517 5518 // True if all users of Ptr are memory accesses that have Ptr as their 5519 // pointer operand. 5520 auto UsersAreMemAccesses = 5521 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5522 return getLoadStorePointerOperand(U) == Ptr; 5523 }); 5524 5525 // Ensure the memory instruction will not be scalarized or used by 5526 // gather/scatter, making its pointer operand non-uniform. If the pointer 5527 // operand is used by any instruction other than a memory access, we 5528 // conservatively assume the pointer operand may be non-uniform. 5529 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5530 PossibleNonUniformPtrs.insert(Ptr); 5531 5532 // If the memory instruction will be vectorized and its pointer operand 5533 // is consecutive-like, or interleaving - the pointer operand should 5534 // remain uniform. 5535 else 5536 ConsecutiveLikePtrs.insert(Ptr); 5537 } 5538 5539 // Add to the Worklist all consecutive and consecutive-like pointers that 5540 // aren't also identified as possibly non-uniform. 5541 for (auto *V : ConsecutiveLikePtrs) 5542 if (!PossibleNonUniformPtrs.count(V)) { 5543 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5544 Worklist.insert(V); 5545 } 5546 5547 // Expand Worklist in topological order: whenever a new instruction 5548 // is added , its users should be either already inside Worklist, or 5549 // out of scope. It ensures a uniform instruction will only be used 5550 // by uniform instructions or out of scope instructions. 5551 unsigned idx = 0; 5552 while (idx != Worklist.size()) { 5553 Instruction *I = Worklist[idx++]; 5554 5555 for (auto OV : I->operand_values()) { 5556 if (isOutOfScope(OV)) 5557 continue; 5558 auto *OI = cast<Instruction>(OV); 5559 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5560 auto *J = cast<Instruction>(U); 5561 return !TheLoop->contains(J) || Worklist.count(J) || 5562 (OI == getLoadStorePointerOperand(J) && 5563 isUniformDecision(J, VF)); 5564 })) { 5565 Worklist.insert(OI); 5566 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5567 } 5568 } 5569 } 5570 5571 // Returns true if Ptr is the pointer operand of a memory access instruction 5572 // I, and I is known to not require scalarization. 5573 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5574 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5575 }; 5576 5577 // For an instruction to be added into Worklist above, all its users inside 5578 // the loop should also be in Worklist. However, this condition cannot be 5579 // true for phi nodes that form a cyclic dependence. We must process phi 5580 // nodes separately. An induction variable will remain uniform if all users 5581 // of the induction variable and induction variable update remain uniform. 5582 // The code below handles both pointer and non-pointer induction variables. 5583 for (auto &Induction : *Legal->getInductionVars()) { 5584 auto *Ind = Induction.first; 5585 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5586 5587 // Determine if all users of the induction variable are uniform after 5588 // vectorization. 5589 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5590 auto *I = cast<Instruction>(U); 5591 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5592 isVectorizedMemAccessUse(I, Ind); 5593 }); 5594 if (!UniformInd) 5595 continue; 5596 5597 // Determine if all users of the induction variable update instruction are 5598 // uniform after vectorization. 5599 auto UniformIndUpdate = 5600 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5601 auto *I = cast<Instruction>(U); 5602 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5603 isVectorizedMemAccessUse(I, IndUpdate); 5604 }); 5605 if (!UniformIndUpdate) 5606 continue; 5607 5608 // The induction variable and its update instruction will remain uniform. 5609 Worklist.insert(Ind); 5610 Worklist.insert(IndUpdate); 5611 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5612 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5613 } 5614 5615 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5616 } 5617 5618 bool LoopVectorizationLegality::canVectorizeMemory() { 5619 LAI = &(*GetLAA)(*TheLoop); 5620 InterleaveInfo.setLAI(LAI); 5621 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5622 if (LAR) { 5623 ORE->emit([&]() { 5624 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5625 "loop not vectorized: ", *LAR); 5626 }); 5627 } 5628 if (!LAI->canVectorizeMemory()) 5629 return false; 5630 5631 if (LAI->hasStoreToLoopInvariantAddress()) { 5632 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5633 << "write to a loop invariant address could not be vectorized"); 5634 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5635 return false; 5636 } 5637 5638 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5639 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5640 5641 return true; 5642 } 5643 5644 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5645 Value *In0 = const_cast<Value *>(V); 5646 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5647 if (!PN) 5648 return false; 5649 5650 return Inductions.count(PN); 5651 } 5652 5653 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5654 auto *Inst = dyn_cast<Instruction>(V); 5655 return (Inst && InductionCastsToIgnore.count(Inst)); 5656 } 5657 5658 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5659 return isInductionPhi(V) || isCastedInductionVariable(V); 5660 } 5661 5662 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5663 return FirstOrderRecurrences.count(Phi); 5664 } 5665 5666 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5667 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5668 } 5669 5670 bool LoopVectorizationLegality::blockCanBePredicated( 5671 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5672 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5673 5674 for (Instruction &I : *BB) { 5675 // Check that we don't have a constant expression that can trap as operand. 5676 for (Value *Operand : I.operands()) { 5677 if (auto *C = dyn_cast<Constant>(Operand)) 5678 if (C->canTrap()) 5679 return false; 5680 } 5681 // We might be able to hoist the load. 5682 if (I.mayReadFromMemory()) { 5683 auto *LI = dyn_cast<LoadInst>(&I); 5684 if (!LI) 5685 return false; 5686 if (!SafePtrs.count(LI->getPointerOperand())) { 5687 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5688 // Otherwise, record that the load needs (real or emulated) masking 5689 // and let the cost model decide. 5690 if (!IsAnnotatedParallel) 5691 MaskedOp.insert(LI); 5692 continue; 5693 } 5694 } 5695 5696 if (I.mayWriteToMemory()) { 5697 auto *SI = dyn_cast<StoreInst>(&I); 5698 if (!SI) 5699 return false; 5700 // Predicated store requires some form of masking: 5701 // 1) masked store HW instruction, 5702 // 2) emulation via load-blend-store (only if safe and legal to do so, 5703 // be aware on the race conditions), or 5704 // 3) element-by-element predicate check and scalar store. 5705 MaskedOp.insert(SI); 5706 continue; 5707 } 5708 if (I.mayThrow()) 5709 return false; 5710 } 5711 5712 return true; 5713 } 5714 5715 void InterleavedAccessInfo::collectConstStrideAccesses( 5716 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5717 const ValueToValueMap &Strides) { 5718 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5719 5720 // Since it's desired that the load/store instructions be maintained in 5721 // "program order" for the interleaved access analysis, we have to visit the 5722 // blocks in the loop in reverse postorder (i.e., in a topological order). 5723 // Such an ordering will ensure that any load/store that may be executed 5724 // before a second load/store will precede the second load/store in 5725 // AccessStrideInfo. 5726 LoopBlocksDFS DFS(TheLoop); 5727 DFS.perform(LI); 5728 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5729 for (auto &I : *BB) { 5730 auto *LI = dyn_cast<LoadInst>(&I); 5731 auto *SI = dyn_cast<StoreInst>(&I); 5732 if (!LI && !SI) 5733 continue; 5734 5735 Value *Ptr = getLoadStorePointerOperand(&I); 5736 // We don't check wrapping here because we don't know yet if Ptr will be 5737 // part of a full group or a group with gaps. Checking wrapping for all 5738 // pointers (even those that end up in groups with no gaps) will be overly 5739 // conservative. For full groups, wrapping should be ok since if we would 5740 // wrap around the address space we would do a memory access at nullptr 5741 // even without the transformation. The wrapping checks are therefore 5742 // deferred until after we've formed the interleaved groups. 5743 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5744 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5745 5746 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5747 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5748 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5749 5750 // An alignment of 0 means target ABI alignment. 5751 unsigned Align = getMemInstAlignment(&I); 5752 if (!Align) 5753 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5754 5755 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5756 } 5757 } 5758 5759 // Analyze interleaved accesses and collect them into interleaved load and 5760 // store groups. 5761 // 5762 // When generating code for an interleaved load group, we effectively hoist all 5763 // loads in the group to the location of the first load in program order. When 5764 // generating code for an interleaved store group, we sink all stores to the 5765 // location of the last store. This code motion can change the order of load 5766 // and store instructions and may break dependences. 5767 // 5768 // The code generation strategy mentioned above ensures that we won't violate 5769 // any write-after-read (WAR) dependences. 5770 // 5771 // E.g., for the WAR dependence: a = A[i]; // (1) 5772 // A[i] = b; // (2) 5773 // 5774 // The store group of (2) is always inserted at or below (2), and the load 5775 // group of (1) is always inserted at or above (1). Thus, the instructions will 5776 // never be reordered. All other dependences are checked to ensure the 5777 // correctness of the instruction reordering. 5778 // 5779 // The algorithm visits all memory accesses in the loop in bottom-up program 5780 // order. Program order is established by traversing the blocks in the loop in 5781 // reverse postorder when collecting the accesses. 5782 // 5783 // We visit the memory accesses in bottom-up order because it can simplify the 5784 // construction of store groups in the presence of write-after-write (WAW) 5785 // dependences. 5786 // 5787 // E.g., for the WAW dependence: A[i] = a; // (1) 5788 // A[i] = b; // (2) 5789 // A[i + 1] = c; // (3) 5790 // 5791 // We will first create a store group with (3) and (2). (1) can't be added to 5792 // this group because it and (2) are dependent. However, (1) can be grouped 5793 // with other accesses that may precede it in program order. Note that a 5794 // bottom-up order does not imply that WAW dependences should not be checked. 5795 void InterleavedAccessInfo::analyzeInterleaving( 5796 const ValueToValueMap &Strides) { 5797 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5798 5799 // Holds all accesses with a constant stride. 5800 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5801 collectConstStrideAccesses(AccessStrideInfo, Strides); 5802 5803 if (AccessStrideInfo.empty()) 5804 return; 5805 5806 // Collect the dependences in the loop. 5807 collectDependences(); 5808 5809 // Holds all interleaved store groups temporarily. 5810 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5811 // Holds all interleaved load groups temporarily. 5812 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5813 5814 // Search in bottom-up program order for pairs of accesses (A and B) that can 5815 // form interleaved load or store groups. In the algorithm below, access A 5816 // precedes access B in program order. We initialize a group for B in the 5817 // outer loop of the algorithm, and then in the inner loop, we attempt to 5818 // insert each A into B's group if: 5819 // 5820 // 1. A and B have the same stride, 5821 // 2. A and B have the same memory object size, and 5822 // 3. A belongs in B's group according to its distance from B. 5823 // 5824 // Special care is taken to ensure group formation will not break any 5825 // dependences. 5826 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5827 BI != E; ++BI) { 5828 Instruction *B = BI->first; 5829 StrideDescriptor DesB = BI->second; 5830 5831 // Initialize a group for B if it has an allowable stride. Even if we don't 5832 // create a group for B, we continue with the bottom-up algorithm to ensure 5833 // we don't break any of B's dependences. 5834 InterleaveGroup *Group = nullptr; 5835 if (isStrided(DesB.Stride)) { 5836 Group = getInterleaveGroup(B); 5837 if (!Group) { 5838 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5839 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5840 } 5841 if (B->mayWriteToMemory()) 5842 StoreGroups.insert(Group); 5843 else 5844 LoadGroups.insert(Group); 5845 } 5846 5847 for (auto AI = std::next(BI); AI != E; ++AI) { 5848 Instruction *A = AI->first; 5849 StrideDescriptor DesA = AI->second; 5850 5851 // Our code motion strategy implies that we can't have dependences 5852 // between accesses in an interleaved group and other accesses located 5853 // between the first and last member of the group. Note that this also 5854 // means that a group can't have more than one member at a given offset. 5855 // The accesses in a group can have dependences with other accesses, but 5856 // we must ensure we don't extend the boundaries of the group such that 5857 // we encompass those dependent accesses. 5858 // 5859 // For example, assume we have the sequence of accesses shown below in a 5860 // stride-2 loop: 5861 // 5862 // (1, 2) is a group | A[i] = a; // (1) 5863 // | A[i-1] = b; // (2) | 5864 // A[i-3] = c; // (3) 5865 // A[i] = d; // (4) | (2, 4) is not a group 5866 // 5867 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5868 // but not with (4). If we did, the dependent access (3) would be within 5869 // the boundaries of the (2, 4) group. 5870 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5871 // If a dependence exists and A is already in a group, we know that A 5872 // must be a store since A precedes B and WAR dependences are allowed. 5873 // Thus, A would be sunk below B. We release A's group to prevent this 5874 // illegal code motion. A will then be free to form another group with 5875 // instructions that precede it. 5876 if (isInterleaved(A)) { 5877 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5878 StoreGroups.remove(StoreGroup); 5879 releaseGroup(StoreGroup); 5880 } 5881 5882 // If a dependence exists and A is not already in a group (or it was 5883 // and we just released it), B might be hoisted above A (if B is a 5884 // load) or another store might be sunk below A (if B is a store). In 5885 // either case, we can't add additional instructions to B's group. B 5886 // will only form a group with instructions that it precedes. 5887 break; 5888 } 5889 5890 // At this point, we've checked for illegal code motion. If either A or B 5891 // isn't strided, there's nothing left to do. 5892 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5893 continue; 5894 5895 // Ignore A if it's already in a group or isn't the same kind of memory 5896 // operation as B. 5897 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory 5898 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() 5899 // should have returned false - except for the case we asked for optimization 5900 // remarks. 5901 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) 5902 || (A->mayWriteToMemory() != B->mayWriteToMemory())) 5903 continue; 5904 5905 // Check rules 1 and 2. Ignore A if its stride or size is different from 5906 // that of B. 5907 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5908 continue; 5909 5910 // Ignore A if the memory object of A and B don't belong to the same 5911 // address space 5912 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 5913 continue; 5914 5915 // Calculate the distance from A to B. 5916 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5917 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5918 if (!DistToB) 5919 continue; 5920 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5921 5922 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5923 // size. 5924 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5925 continue; 5926 5927 // Ignore A if either A or B is in a predicated block. Although we 5928 // currently prevent group formation for predicated accesses, we may be 5929 // able to relax this limitation in the future once we handle more 5930 // complicated blocks. 5931 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5932 continue; 5933 5934 // The index of A is the index of B plus A's distance to B in multiples 5935 // of the size. 5936 int IndexA = 5937 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5938 5939 // Try to insert A into B's group. 5940 if (Group->insertMember(A, IndexA, DesA.Align)) { 5941 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5942 << " into the interleave group with" << *B << '\n'); 5943 InterleaveGroupMap[A] = Group; 5944 5945 // Set the first load in program order as the insert position. 5946 if (A->mayReadFromMemory()) 5947 Group->setInsertPos(A); 5948 } 5949 } // Iteration over A accesses. 5950 } // Iteration over B accesses. 5951 5952 // Remove interleaved store groups with gaps. 5953 for (InterleaveGroup *Group : StoreGroups) 5954 if (Group->getNumMembers() != Group->getFactor()) { 5955 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 5956 "to gaps.\n"); 5957 releaseGroup(Group); 5958 } 5959 // Remove interleaved groups with gaps (currently only loads) whose memory 5960 // accesses may wrap around. We have to revisit the getPtrStride analysis, 5961 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 5962 // not check wrapping (see documentation there). 5963 // FORNOW we use Assume=false; 5964 // TODO: Change to Assume=true but making sure we don't exceed the threshold 5965 // of runtime SCEV assumptions checks (thereby potentially failing to 5966 // vectorize altogether). 5967 // Additional optional optimizations: 5968 // TODO: If we are peeling the loop and we know that the first pointer doesn't 5969 // wrap then we can deduce that all pointers in the group don't wrap. 5970 // This means that we can forcefully peel the loop in order to only have to 5971 // check the first pointer for no-wrap. When we'll change to use Assume=true 5972 // we'll only need at most one runtime check per interleaved group. 5973 for (InterleaveGroup *Group : LoadGroups) { 5974 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 5975 // load would wrap around the address space we would do a memory access at 5976 // nullptr even without the transformation. 5977 if (Group->getNumMembers() == Group->getFactor()) 5978 continue; 5979 5980 // Case 2: If first and last members of the group don't wrap this implies 5981 // that all the pointers in the group don't wrap. 5982 // So we check only group member 0 (which is always guaranteed to exist), 5983 // and group member Factor - 1; If the latter doesn't exist we rely on 5984 // peeling (if it is a non-reveresed accsess -- see Case 3). 5985 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 5986 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 5987 /*ShouldCheckWrap=*/true)) { 5988 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 5989 "first group member potentially pointer-wrapping.\n"); 5990 releaseGroup(Group); 5991 continue; 5992 } 5993 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 5994 if (LastMember) { 5995 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 5996 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 5997 /*ShouldCheckWrap=*/true)) { 5998 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 5999 "last group member potentially pointer-wrapping.\n"); 6000 releaseGroup(Group); 6001 } 6002 } else { 6003 // Case 3: A non-reversed interleaved load group with gaps: We need 6004 // to execute at least one scalar epilogue iteration. This will ensure 6005 // we don't speculatively access memory out-of-bounds. We only need 6006 // to look for a member at index factor - 1, since every group must have 6007 // a member at index zero. 6008 if (Group->isReverse()) { 6009 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6010 "a reverse access with gaps.\n"); 6011 releaseGroup(Group); 6012 continue; 6013 } 6014 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6015 RequiresScalarEpilogue = true; 6016 } 6017 } 6018 } 6019 6020 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6021 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6022 // TODO: It may by useful to do since it's still likely to be dynamically 6023 // uniform if the target can skip. 6024 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6025 6026 ORE->emit( 6027 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6028 << "runtime pointer checks needed. Not enabled for divergent target"); 6029 6030 return None; 6031 } 6032 6033 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6034 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6035 return computeFeasibleMaxVF(OptForSize, TC); 6036 6037 if (Legal->getRuntimePointerChecking()->Need) { 6038 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6039 << "runtime pointer checks needed. Enable vectorization of this " 6040 "loop with '#pragma clang loop vectorize(enable)' when " 6041 "compiling with -Os/-Oz"); 6042 DEBUG(dbgs() 6043 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6044 return None; 6045 } 6046 6047 // If we optimize the program for size, avoid creating the tail loop. 6048 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6049 6050 // If we don't know the precise trip count, don't try to vectorize. 6051 if (TC < 2) { 6052 ORE->emit( 6053 createMissedAnalysis("UnknownLoopCountComplexCFG") 6054 << "unable to calculate the loop count due to complex control flow"); 6055 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6056 return None; 6057 } 6058 6059 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6060 6061 if (TC % MaxVF != 0) { 6062 // If the trip count that we found modulo the vectorization factor is not 6063 // zero then we require a tail. 6064 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6065 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6066 // smaller MaxVF that does not require a scalar epilog. 6067 6068 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6069 << "cannot optimize for size and vectorize at the " 6070 "same time. Enable vectorization of this loop " 6071 "with '#pragma clang loop vectorize(enable)' " 6072 "when compiling with -Os/-Oz"); 6073 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6074 return None; 6075 } 6076 6077 return MaxVF; 6078 } 6079 6080 unsigned 6081 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6082 unsigned ConstTripCount) { 6083 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6084 unsigned SmallestType, WidestType; 6085 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6086 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6087 6088 // Get the maximum safe dependence distance in bits computed by LAA. 6089 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6090 // the memory accesses that is most restrictive (involved in the smallest 6091 // dependence distance). 6092 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6093 6094 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6095 6096 unsigned MaxVectorSize = WidestRegister / WidestType; 6097 6098 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6099 << WidestType << " bits.\n"); 6100 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6101 << " bits.\n"); 6102 6103 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6104 " into one vector!"); 6105 if (MaxVectorSize == 0) { 6106 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6107 MaxVectorSize = 1; 6108 return MaxVectorSize; 6109 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6110 isPowerOf2_32(ConstTripCount)) { 6111 // We need to clamp the VF to be the ConstTripCount. There is no point in 6112 // choosing a higher viable VF as done in the loop below. 6113 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6114 << ConstTripCount << "\n"); 6115 MaxVectorSize = ConstTripCount; 6116 return MaxVectorSize; 6117 } 6118 6119 unsigned MaxVF = MaxVectorSize; 6120 if (MaximizeBandwidth && !OptForSize) { 6121 // Collect all viable vectorization factors larger than the default MaxVF 6122 // (i.e. MaxVectorSize). 6123 SmallVector<unsigned, 8> VFs; 6124 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6125 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6126 VFs.push_back(VS); 6127 6128 // For each VF calculate its register usage. 6129 auto RUs = calculateRegisterUsage(VFs); 6130 6131 // Select the largest VF which doesn't require more registers than existing 6132 // ones. 6133 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6134 for (int i = RUs.size() - 1; i >= 0; --i) { 6135 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6136 MaxVF = VFs[i]; 6137 break; 6138 } 6139 } 6140 } 6141 return MaxVF; 6142 } 6143 6144 VectorizationFactor 6145 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6146 float Cost = expectedCost(1).first; 6147 const float ScalarCost = Cost; 6148 unsigned Width = 1; 6149 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6150 6151 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6152 // Ignore scalar width, because the user explicitly wants vectorization. 6153 if (ForceVectorization && MaxVF > 1) { 6154 Width = 2; 6155 Cost = expectedCost(Width).first / (float)Width; 6156 } 6157 6158 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6159 // Notice that the vector loop needs to be executed less times, so 6160 // we need to divide the cost of the vector loops by the width of 6161 // the vector elements. 6162 VectorizationCostTy C = expectedCost(i); 6163 float VectorCost = C.first / (float)i; 6164 DEBUG(dbgs() << "LV: Vector loop of width " << i 6165 << " costs: " << (int)VectorCost << ".\n"); 6166 if (!C.second && !ForceVectorization) { 6167 DEBUG( 6168 dbgs() << "LV: Not considering vector loop of width " << i 6169 << " because it will not generate any vector instructions.\n"); 6170 continue; 6171 } 6172 if (VectorCost < Cost) { 6173 Cost = VectorCost; 6174 Width = i; 6175 } 6176 } 6177 6178 if (!EnableCondStoresVectorization && NumPredStores) { 6179 ORE->emit(createMissedAnalysis("ConditionalStore") 6180 << "store that is conditionally executed prevents vectorization"); 6181 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6182 Width = 1; 6183 Cost = ScalarCost; 6184 } 6185 6186 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6187 << "LV: Vectorization seems to be not beneficial, " 6188 << "but was forced by a user.\n"); 6189 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6190 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6191 return Factor; 6192 } 6193 6194 std::pair<unsigned, unsigned> 6195 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6196 unsigned MinWidth = -1U; 6197 unsigned MaxWidth = 8; 6198 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6199 6200 // For each block. 6201 for (BasicBlock *BB : TheLoop->blocks()) { 6202 // For each instruction in the loop. 6203 for (Instruction &I : *BB) { 6204 Type *T = I.getType(); 6205 6206 // Skip ignored values. 6207 if (ValuesToIgnore.count(&I)) 6208 continue; 6209 6210 // Only examine Loads, Stores and PHINodes. 6211 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6212 continue; 6213 6214 // Examine PHI nodes that are reduction variables. Update the type to 6215 // account for the recurrence type. 6216 if (auto *PN = dyn_cast<PHINode>(&I)) { 6217 if (!Legal->isReductionVariable(PN)) 6218 continue; 6219 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6220 T = RdxDesc.getRecurrenceType(); 6221 } 6222 6223 // Examine the stored values. 6224 if (auto *ST = dyn_cast<StoreInst>(&I)) 6225 T = ST->getValueOperand()->getType(); 6226 6227 // Ignore loaded pointer types and stored pointer types that are not 6228 // vectorizable. 6229 // 6230 // FIXME: The check here attempts to predict whether a load or store will 6231 // be vectorized. We only know this for certain after a VF has 6232 // been selected. Here, we assume that if an access can be 6233 // vectorized, it will be. We should also look at extending this 6234 // optimization to non-pointer types. 6235 // 6236 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6237 !Legal->isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6238 continue; 6239 6240 MinWidth = std::min(MinWidth, 6241 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6242 MaxWidth = std::max(MaxWidth, 6243 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6244 } 6245 } 6246 6247 return {MinWidth, MaxWidth}; 6248 } 6249 6250 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6251 unsigned VF, 6252 unsigned LoopCost) { 6253 // -- The interleave heuristics -- 6254 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6255 // There are many micro-architectural considerations that we can't predict 6256 // at this level. For example, frontend pressure (on decode or fetch) due to 6257 // code size, or the number and capabilities of the execution ports. 6258 // 6259 // We use the following heuristics to select the interleave count: 6260 // 1. If the code has reductions, then we interleave to break the cross 6261 // iteration dependency. 6262 // 2. If the loop is really small, then we interleave to reduce the loop 6263 // overhead. 6264 // 3. We don't interleave if we think that we will spill registers to memory 6265 // due to the increased register pressure. 6266 6267 // When we optimize for size, we don't interleave. 6268 if (OptForSize) 6269 return 1; 6270 6271 // We used the distance for the interleave count. 6272 if (Legal->getMaxSafeDepDistBytes() != -1U) 6273 return 1; 6274 6275 // Do not interleave loops with a relatively small trip count. 6276 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6277 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6278 return 1; 6279 6280 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6281 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6282 << " registers\n"); 6283 6284 if (VF == 1) { 6285 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6286 TargetNumRegisters = ForceTargetNumScalarRegs; 6287 } else { 6288 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6289 TargetNumRegisters = ForceTargetNumVectorRegs; 6290 } 6291 6292 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6293 // We divide by these constants so assume that we have at least one 6294 // instruction that uses at least one register. 6295 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6296 6297 // We calculate the interleave count using the following formula. 6298 // Subtract the number of loop invariants from the number of available 6299 // registers. These registers are used by all of the interleaved instances. 6300 // Next, divide the remaining registers by the number of registers that is 6301 // required by the loop, in order to estimate how many parallel instances 6302 // fit without causing spills. All of this is rounded down if necessary to be 6303 // a power of two. We want power of two interleave count to simplify any 6304 // addressing operations or alignment considerations. 6305 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6306 R.MaxLocalUsers); 6307 6308 // Don't count the induction variable as interleaved. 6309 if (EnableIndVarRegisterHeur) 6310 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6311 std::max(1U, (R.MaxLocalUsers - 1))); 6312 6313 // Clamp the interleave ranges to reasonable counts. 6314 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6315 6316 // Check if the user has overridden the max. 6317 if (VF == 1) { 6318 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6319 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6320 } else { 6321 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6322 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6323 } 6324 6325 // If we did not calculate the cost for VF (because the user selected the VF) 6326 // then we calculate the cost of VF here. 6327 if (LoopCost == 0) 6328 LoopCost = expectedCost(VF).first; 6329 6330 // Clamp the calculated IC to be between the 1 and the max interleave count 6331 // that the target allows. 6332 if (IC > MaxInterleaveCount) 6333 IC = MaxInterleaveCount; 6334 else if (IC < 1) 6335 IC = 1; 6336 6337 // Interleave if we vectorized this loop and there is a reduction that could 6338 // benefit from interleaving. 6339 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6340 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6341 return IC; 6342 } 6343 6344 // Note that if we've already vectorized the loop we will have done the 6345 // runtime check and so interleaving won't require further checks. 6346 bool InterleavingRequiresRuntimePointerCheck = 6347 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6348 6349 // We want to interleave small loops in order to reduce the loop overhead and 6350 // potentially expose ILP opportunities. 6351 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6352 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6353 // We assume that the cost overhead is 1 and we use the cost model 6354 // to estimate the cost of the loop and interleave until the cost of the 6355 // loop overhead is about 5% of the cost of the loop. 6356 unsigned SmallIC = 6357 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6358 6359 // Interleave until store/load ports (estimated by max interleave count) are 6360 // saturated. 6361 unsigned NumStores = Legal->getNumStores(); 6362 unsigned NumLoads = Legal->getNumLoads(); 6363 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6364 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6365 6366 // If we have a scalar reduction (vector reductions are already dealt with 6367 // by this point), we can increase the critical path length if the loop 6368 // we're interleaving is inside another loop. Limit, by default to 2, so the 6369 // critical path only gets increased by one reduction operation. 6370 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6371 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6372 SmallIC = std::min(SmallIC, F); 6373 StoresIC = std::min(StoresIC, F); 6374 LoadsIC = std::min(LoadsIC, F); 6375 } 6376 6377 if (EnableLoadStoreRuntimeInterleave && 6378 std::max(StoresIC, LoadsIC) > SmallIC) { 6379 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6380 return std::max(StoresIC, LoadsIC); 6381 } 6382 6383 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6384 return SmallIC; 6385 } 6386 6387 // Interleave if this is a large loop (small loops are already dealt with by 6388 // this point) that could benefit from interleaving. 6389 bool HasReductions = !Legal->getReductionVars()->empty(); 6390 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6391 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6392 return IC; 6393 } 6394 6395 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6396 return 1; 6397 } 6398 6399 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6400 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6401 // This function calculates the register usage by measuring the highest number 6402 // of values that are alive at a single location. Obviously, this is a very 6403 // rough estimation. We scan the loop in a topological order in order and 6404 // assign a number to each instruction. We use RPO to ensure that defs are 6405 // met before their users. We assume that each instruction that has in-loop 6406 // users starts an interval. We record every time that an in-loop value is 6407 // used, so we have a list of the first and last occurrences of each 6408 // instruction. Next, we transpose this data structure into a multi map that 6409 // holds the list of intervals that *end* at a specific location. This multi 6410 // map allows us to perform a linear search. We scan the instructions linearly 6411 // and record each time that a new interval starts, by placing it in a set. 6412 // If we find this value in the multi-map then we remove it from the set. 6413 // The max register usage is the maximum size of the set. 6414 // We also search for instructions that are defined outside the loop, but are 6415 // used inside the loop. We need this number separately from the max-interval 6416 // usage number because when we unroll, loop-invariant values do not take 6417 // more register. 6418 LoopBlocksDFS DFS(TheLoop); 6419 DFS.perform(LI); 6420 6421 RegisterUsage RU; 6422 6423 // Each 'key' in the map opens a new interval. The values 6424 // of the map are the index of the 'last seen' usage of the 6425 // instruction that is the key. 6426 using IntervalMap = DenseMap<Instruction *, unsigned>; 6427 6428 // Maps instruction to its index. 6429 DenseMap<unsigned, Instruction *> IdxToInstr; 6430 // Marks the end of each interval. 6431 IntervalMap EndPoint; 6432 // Saves the list of instruction indices that are used in the loop. 6433 SmallSet<Instruction *, 8> Ends; 6434 // Saves the list of values that are used in the loop but are 6435 // defined outside the loop, such as arguments and constants. 6436 SmallPtrSet<Value *, 8> LoopInvariants; 6437 6438 unsigned Index = 0; 6439 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6440 for (Instruction &I : *BB) { 6441 IdxToInstr[Index++] = &I; 6442 6443 // Save the end location of each USE. 6444 for (Value *U : I.operands()) { 6445 auto *Instr = dyn_cast<Instruction>(U); 6446 6447 // Ignore non-instruction values such as arguments, constants, etc. 6448 if (!Instr) 6449 continue; 6450 6451 // If this instruction is outside the loop then record it and continue. 6452 if (!TheLoop->contains(Instr)) { 6453 LoopInvariants.insert(Instr); 6454 continue; 6455 } 6456 6457 // Overwrite previous end points. 6458 EndPoint[Instr] = Index; 6459 Ends.insert(Instr); 6460 } 6461 } 6462 } 6463 6464 // Saves the list of intervals that end with the index in 'key'. 6465 using InstrList = SmallVector<Instruction *, 2>; 6466 DenseMap<unsigned, InstrList> TransposeEnds; 6467 6468 // Transpose the EndPoints to a list of values that end at each index. 6469 for (auto &Interval : EndPoint) 6470 TransposeEnds[Interval.second].push_back(Interval.first); 6471 6472 SmallSet<Instruction *, 8> OpenIntervals; 6473 6474 // Get the size of the widest register. 6475 unsigned MaxSafeDepDist = -1U; 6476 if (Legal->getMaxSafeDepDistBytes() != -1U) 6477 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6478 unsigned WidestRegister = 6479 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6480 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6481 6482 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6483 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6484 6485 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6486 6487 // A lambda that gets the register usage for the given type and VF. 6488 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6489 if (Ty->isTokenTy()) 6490 return 0U; 6491 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6492 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6493 }; 6494 6495 for (unsigned int i = 0; i < Index; ++i) { 6496 Instruction *I = IdxToInstr[i]; 6497 6498 // Remove all of the instructions that end at this location. 6499 InstrList &List = TransposeEnds[i]; 6500 for (Instruction *ToRemove : List) 6501 OpenIntervals.erase(ToRemove); 6502 6503 // Ignore instructions that are never used within the loop. 6504 if (!Ends.count(I)) 6505 continue; 6506 6507 // Skip ignored values. 6508 if (ValuesToIgnore.count(I)) 6509 continue; 6510 6511 // For each VF find the maximum usage of registers. 6512 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6513 if (VFs[j] == 1) { 6514 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6515 continue; 6516 } 6517 collectUniformsAndScalars(VFs[j]); 6518 // Count the number of live intervals. 6519 unsigned RegUsage = 0; 6520 for (auto Inst : OpenIntervals) { 6521 // Skip ignored values for VF > 1. 6522 if (VecValuesToIgnore.count(Inst) || 6523 isScalarAfterVectorization(Inst, VFs[j])) 6524 continue; 6525 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6526 } 6527 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6528 } 6529 6530 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6531 << OpenIntervals.size() << '\n'); 6532 6533 // Add the current instruction to the list of open intervals. 6534 OpenIntervals.insert(I); 6535 } 6536 6537 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6538 unsigned Invariant = 0; 6539 if (VFs[i] == 1) 6540 Invariant = LoopInvariants.size(); 6541 else { 6542 for (auto Inst : LoopInvariants) 6543 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6544 } 6545 6546 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6547 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6548 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6549 6550 RU.LoopInvariantRegs = Invariant; 6551 RU.MaxLocalUsers = MaxUsages[i]; 6552 RUs[i] = RU; 6553 } 6554 6555 return RUs; 6556 } 6557 6558 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6559 // TODO: Cost model for emulated masked load/store is completely 6560 // broken. This hack guides the cost model to use an artificially 6561 // high enough value to practically disable vectorization with such 6562 // operations, except where previously deployed legality hack allowed 6563 // using very low cost values. This is to avoid regressions coming simply 6564 // from moving "masked load/store" check from legality to cost model. 6565 // Masked Load/Gather emulation was previously never allowed. 6566 // Limited number of Masked Store/Scatter emulation was allowed. 6567 assert(isScalarWithPredication(I) && 6568 "Expecting a scalar emulated instruction"); 6569 return isa<LoadInst>(I) || 6570 (isa<StoreInst>(I) && 6571 NumPredStores > NumberOfStoresToPredicate); 6572 } 6573 6574 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6575 // If we aren't vectorizing the loop, or if we've already collected the 6576 // instructions to scalarize, there's nothing to do. Collection may already 6577 // have occurred if we have a user-selected VF and are now computing the 6578 // expected cost for interleaving. 6579 if (VF < 2 || InstsToScalarize.count(VF)) 6580 return; 6581 6582 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6583 // not profitable to scalarize any instructions, the presence of VF in the 6584 // map will indicate that we've analyzed it already. 6585 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6586 6587 // Find all the instructions that are scalar with predication in the loop and 6588 // determine if it would be better to not if-convert the blocks they are in. 6589 // If so, we also record the instructions to scalarize. 6590 for (BasicBlock *BB : TheLoop->blocks()) { 6591 if (!Legal->blockNeedsPredication(BB)) 6592 continue; 6593 for (Instruction &I : *BB) 6594 if (isScalarWithPredication(&I)) { 6595 ScalarCostsTy ScalarCosts; 6596 // Do not apply discount logic if hacked cost is needed 6597 // for emulated masked memrefs. 6598 if (!useEmulatedMaskMemRefHack(&I) && 6599 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6600 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6601 // Remember that BB will remain after vectorization. 6602 PredicatedBBsAfterVectorization.insert(BB); 6603 } 6604 } 6605 } 6606 6607 int LoopVectorizationCostModel::computePredInstDiscount( 6608 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6609 unsigned VF) { 6610 assert(!isUniformAfterVectorization(PredInst, VF) && 6611 "Instruction marked uniform-after-vectorization will be predicated"); 6612 6613 // Initialize the discount to zero, meaning that the scalar version and the 6614 // vector version cost the same. 6615 int Discount = 0; 6616 6617 // Holds instructions to analyze. The instructions we visit are mapped in 6618 // ScalarCosts. Those instructions are the ones that would be scalarized if 6619 // we find that the scalar version costs less. 6620 SmallVector<Instruction *, 8> Worklist; 6621 6622 // Returns true if the given instruction can be scalarized. 6623 auto canBeScalarized = [&](Instruction *I) -> bool { 6624 // We only attempt to scalarize instructions forming a single-use chain 6625 // from the original predicated block that would otherwise be vectorized. 6626 // Although not strictly necessary, we give up on instructions we know will 6627 // already be scalar to avoid traversing chains that are unlikely to be 6628 // beneficial. 6629 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6630 isScalarAfterVectorization(I, VF)) 6631 return false; 6632 6633 // If the instruction is scalar with predication, it will be analyzed 6634 // separately. We ignore it within the context of PredInst. 6635 if (isScalarWithPredication(I)) 6636 return false; 6637 6638 // If any of the instruction's operands are uniform after vectorization, 6639 // the instruction cannot be scalarized. This prevents, for example, a 6640 // masked load from being scalarized. 6641 // 6642 // We assume we will only emit a value for lane zero of an instruction 6643 // marked uniform after vectorization, rather than VF identical values. 6644 // Thus, if we scalarize an instruction that uses a uniform, we would 6645 // create uses of values corresponding to the lanes we aren't emitting code 6646 // for. This behavior can be changed by allowing getScalarValue to clone 6647 // the lane zero values for uniforms rather than asserting. 6648 for (Use &U : I->operands()) 6649 if (auto *J = dyn_cast<Instruction>(U.get())) 6650 if (isUniformAfterVectorization(J, VF)) 6651 return false; 6652 6653 // Otherwise, we can scalarize the instruction. 6654 return true; 6655 }; 6656 6657 // Returns true if an operand that cannot be scalarized must be extracted 6658 // from a vector. We will account for this scalarization overhead below. Note 6659 // that the non-void predicated instructions are placed in their own blocks, 6660 // and their return values are inserted into vectors. Thus, an extract would 6661 // still be required. 6662 auto needsExtract = [&](Instruction *I) -> bool { 6663 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6664 }; 6665 6666 // Compute the expected cost discount from scalarizing the entire expression 6667 // feeding the predicated instruction. We currently only consider expressions 6668 // that are single-use instruction chains. 6669 Worklist.push_back(PredInst); 6670 while (!Worklist.empty()) { 6671 Instruction *I = Worklist.pop_back_val(); 6672 6673 // If we've already analyzed the instruction, there's nothing to do. 6674 if (ScalarCosts.count(I)) 6675 continue; 6676 6677 // Compute the cost of the vector instruction. Note that this cost already 6678 // includes the scalarization overhead of the predicated instruction. 6679 unsigned VectorCost = getInstructionCost(I, VF).first; 6680 6681 // Compute the cost of the scalarized instruction. This cost is the cost of 6682 // the instruction as if it wasn't if-converted and instead remained in the 6683 // predicated block. We will scale this cost by block probability after 6684 // computing the scalarization overhead. 6685 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6686 6687 // Compute the scalarization overhead of needed insertelement instructions 6688 // and phi nodes. 6689 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6690 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6691 true, false); 6692 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6693 } 6694 6695 // Compute the scalarization overhead of needed extractelement 6696 // instructions. For each of the instruction's operands, if the operand can 6697 // be scalarized, add it to the worklist; otherwise, account for the 6698 // overhead. 6699 for (Use &U : I->operands()) 6700 if (auto *J = dyn_cast<Instruction>(U.get())) { 6701 assert(VectorType::isValidElementType(J->getType()) && 6702 "Instruction has non-scalar type"); 6703 if (canBeScalarized(J)) 6704 Worklist.push_back(J); 6705 else if (needsExtract(J)) 6706 ScalarCost += TTI.getScalarizationOverhead( 6707 ToVectorTy(J->getType(),VF), false, true); 6708 } 6709 6710 // Scale the total scalar cost by block probability. 6711 ScalarCost /= getReciprocalPredBlockProb(); 6712 6713 // Compute the discount. A non-negative discount means the vector version 6714 // of the instruction costs more, and scalarizing would be beneficial. 6715 Discount += VectorCost - ScalarCost; 6716 ScalarCosts[I] = ScalarCost; 6717 } 6718 6719 return Discount; 6720 } 6721 6722 LoopVectorizationCostModel::VectorizationCostTy 6723 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6724 VectorizationCostTy Cost; 6725 6726 // For each block. 6727 for (BasicBlock *BB : TheLoop->blocks()) { 6728 VectorizationCostTy BlockCost; 6729 6730 // For each instruction in the old loop. 6731 for (Instruction &I : *BB) { 6732 // Skip dbg intrinsics. 6733 if (isa<DbgInfoIntrinsic>(I)) 6734 continue; 6735 6736 // Skip ignored values. 6737 if (ValuesToIgnore.count(&I) || 6738 (VF > 1 && VecValuesToIgnore.count(&I))) 6739 continue; 6740 6741 VectorizationCostTy C = getInstructionCost(&I, VF); 6742 6743 // Check if we should override the cost. 6744 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6745 C.first = ForceTargetInstructionCost; 6746 6747 BlockCost.first += C.first; 6748 BlockCost.second |= C.second; 6749 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6750 << VF << " For instruction: " << I << '\n'); 6751 } 6752 6753 // If we are vectorizing a predicated block, it will have been 6754 // if-converted. This means that the block's instructions (aside from 6755 // stores and instructions that may divide by zero) will now be 6756 // unconditionally executed. For the scalar case, we may not always execute 6757 // the predicated block. Thus, scale the block's cost by the probability of 6758 // executing it. 6759 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6760 BlockCost.first /= getReciprocalPredBlockProb(); 6761 6762 Cost.first += BlockCost.first; 6763 Cost.second |= BlockCost.second; 6764 } 6765 6766 return Cost; 6767 } 6768 6769 /// \brief Gets Address Access SCEV after verifying that the access pattern 6770 /// is loop invariant except the induction variable dependence. 6771 /// 6772 /// This SCEV can be sent to the Target in order to estimate the address 6773 /// calculation cost. 6774 static const SCEV *getAddressAccessSCEV( 6775 Value *Ptr, 6776 LoopVectorizationLegality *Legal, 6777 PredicatedScalarEvolution &PSE, 6778 const Loop *TheLoop) { 6779 6780 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6781 if (!Gep) 6782 return nullptr; 6783 6784 // We are looking for a gep with all loop invariant indices except for one 6785 // which should be an induction variable. 6786 auto SE = PSE.getSE(); 6787 unsigned NumOperands = Gep->getNumOperands(); 6788 for (unsigned i = 1; i < NumOperands; ++i) { 6789 Value *Opd = Gep->getOperand(i); 6790 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6791 !Legal->isInductionVariable(Opd)) 6792 return nullptr; 6793 } 6794 6795 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6796 return PSE.getSCEV(Ptr); 6797 } 6798 6799 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6800 return Legal->hasStride(I->getOperand(0)) || 6801 Legal->hasStride(I->getOperand(1)); 6802 } 6803 6804 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6805 unsigned VF) { 6806 Type *ValTy = getMemInstValueType(I); 6807 auto SE = PSE.getSE(); 6808 6809 unsigned Alignment = getMemInstAlignment(I); 6810 unsigned AS = getMemInstAddressSpace(I); 6811 Value *Ptr = getLoadStorePointerOperand(I); 6812 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6813 6814 // Figure out whether the access is strided and get the stride value 6815 // if it's known in compile time 6816 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6817 6818 // Get the cost of the scalar memory instruction and address computation. 6819 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6820 6821 Cost += VF * 6822 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6823 AS, I); 6824 6825 // Get the overhead of the extractelement and insertelement instructions 6826 // we might create due to scalarization. 6827 Cost += getScalarizationOverhead(I, VF, TTI); 6828 6829 // If we have a predicated store, it may not be executed for each vector 6830 // lane. Scale the cost by the probability of executing the predicated 6831 // block. 6832 if (isScalarWithPredication(I)) { 6833 Cost /= getReciprocalPredBlockProb(); 6834 6835 if (useEmulatedMaskMemRefHack(I)) 6836 // Artificially setting to a high enough value to practically disable 6837 // vectorization with such operations. 6838 Cost = 3000000; 6839 } 6840 6841 return Cost; 6842 } 6843 6844 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6845 unsigned VF) { 6846 Type *ValTy = getMemInstValueType(I); 6847 Type *VectorTy = ToVectorTy(ValTy, VF); 6848 unsigned Alignment = getMemInstAlignment(I); 6849 Value *Ptr = getLoadStorePointerOperand(I); 6850 unsigned AS = getMemInstAddressSpace(I); 6851 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6852 6853 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6854 "Stride should be 1 or -1 for consecutive memory access"); 6855 unsigned Cost = 0; 6856 if (Legal->isMaskRequired(I)) 6857 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6858 else 6859 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6860 6861 bool Reverse = ConsecutiveStride < 0; 6862 if (Reverse) 6863 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6864 return Cost; 6865 } 6866 6867 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6868 unsigned VF) { 6869 LoadInst *LI = cast<LoadInst>(I); 6870 Type *ValTy = LI->getType(); 6871 Type *VectorTy = ToVectorTy(ValTy, VF); 6872 unsigned Alignment = LI->getAlignment(); 6873 unsigned AS = LI->getPointerAddressSpace(); 6874 6875 return TTI.getAddressComputationCost(ValTy) + 6876 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6877 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6878 } 6879 6880 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6881 unsigned VF) { 6882 Type *ValTy = getMemInstValueType(I); 6883 Type *VectorTy = ToVectorTy(ValTy, VF); 6884 unsigned Alignment = getMemInstAlignment(I); 6885 Value *Ptr = getLoadStorePointerOperand(I); 6886 6887 return TTI.getAddressComputationCost(VectorTy) + 6888 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6889 Legal->isMaskRequired(I), Alignment); 6890 } 6891 6892 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6893 unsigned VF) { 6894 Type *ValTy = getMemInstValueType(I); 6895 Type *VectorTy = ToVectorTy(ValTy, VF); 6896 unsigned AS = getMemInstAddressSpace(I); 6897 6898 auto Group = Legal->getInterleavedAccessGroup(I); 6899 assert(Group && "Fail to get an interleaved access group."); 6900 6901 unsigned InterleaveFactor = Group->getFactor(); 6902 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6903 6904 // Holds the indices of existing members in an interleaved load group. 6905 // An interleaved store group doesn't need this as it doesn't allow gaps. 6906 SmallVector<unsigned, 4> Indices; 6907 if (isa<LoadInst>(I)) { 6908 for (unsigned i = 0; i < InterleaveFactor; i++) 6909 if (Group->getMember(i)) 6910 Indices.push_back(i); 6911 } 6912 6913 // Calculate the cost of the whole interleaved group. 6914 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 6915 Group->getFactor(), Indices, 6916 Group->getAlignment(), AS); 6917 6918 if (Group->isReverse()) 6919 Cost += Group->getNumMembers() * 6920 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6921 return Cost; 6922 } 6923 6924 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6925 unsigned VF) { 6926 // Calculate scalar cost only. Vectorization cost should be ready at this 6927 // moment. 6928 if (VF == 1) { 6929 Type *ValTy = getMemInstValueType(I); 6930 unsigned Alignment = getMemInstAlignment(I); 6931 unsigned AS = getMemInstAddressSpace(I); 6932 6933 return TTI.getAddressComputationCost(ValTy) + 6934 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 6935 } 6936 return getWideningCost(I, VF); 6937 } 6938 6939 LoopVectorizationCostModel::VectorizationCostTy 6940 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6941 // If we know that this instruction will remain uniform, check the cost of 6942 // the scalar version. 6943 if (isUniformAfterVectorization(I, VF)) 6944 VF = 1; 6945 6946 if (VF > 1 && isProfitableToScalarize(I, VF)) 6947 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6948 6949 // Forced scalars do not have any scalarization overhead. 6950 if (VF > 1 && ForcedScalars.count(VF) && 6951 ForcedScalars.find(VF)->second.count(I)) 6952 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6953 6954 Type *VectorTy; 6955 unsigned C = getInstructionCost(I, VF, VectorTy); 6956 6957 bool TypeNotScalarized = 6958 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6959 return VectorizationCostTy(C, TypeNotScalarized); 6960 } 6961 6962 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6963 if (VF == 1) 6964 return; 6965 NumPredStores = 0; 6966 for (BasicBlock *BB : TheLoop->blocks()) { 6967 // For each instruction in the old loop. 6968 for (Instruction &I : *BB) { 6969 Value *Ptr = getLoadStorePointerOperand(&I); 6970 if (!Ptr) 6971 continue; 6972 6973 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6974 NumPredStores++; 6975 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 6976 // Scalar load + broadcast 6977 unsigned Cost = getUniformMemOpCost(&I, VF); 6978 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6979 continue; 6980 } 6981 6982 // We assume that widening is the best solution when possible. 6983 if (memoryInstructionCanBeWidened(&I, VF)) { 6984 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6985 int ConsecutiveStride = 6986 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6987 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6988 "Expected consecutive stride."); 6989 InstWidening Decision = 6990 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6991 setWideningDecision(&I, VF, Decision, Cost); 6992 continue; 6993 } 6994 6995 // Choose between Interleaving, Gather/Scatter or Scalarization. 6996 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6997 unsigned NumAccesses = 1; 6998 if (Legal->isAccessInterleaved(&I)) { 6999 auto Group = Legal->getInterleavedAccessGroup(&I); 7000 assert(Group && "Fail to get an interleaved access group."); 7001 7002 // Make one decision for the whole group. 7003 if (getWideningDecision(&I, VF) != CM_Unknown) 7004 continue; 7005 7006 NumAccesses = Group->getNumMembers(); 7007 InterleaveCost = getInterleaveGroupCost(&I, VF); 7008 } 7009 7010 unsigned GatherScatterCost = 7011 isLegalGatherOrScatter(&I) 7012 ? getGatherScatterCost(&I, VF) * NumAccesses 7013 : std::numeric_limits<unsigned>::max(); 7014 7015 unsigned ScalarizationCost = 7016 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7017 7018 // Choose better solution for the current VF, 7019 // write down this decision and use it during vectorization. 7020 unsigned Cost; 7021 InstWidening Decision; 7022 if (InterleaveCost <= GatherScatterCost && 7023 InterleaveCost < ScalarizationCost) { 7024 Decision = CM_Interleave; 7025 Cost = InterleaveCost; 7026 } else if (GatherScatterCost < ScalarizationCost) { 7027 Decision = CM_GatherScatter; 7028 Cost = GatherScatterCost; 7029 } else { 7030 Decision = CM_Scalarize; 7031 Cost = ScalarizationCost; 7032 } 7033 // If the instructions belongs to an interleave group, the whole group 7034 // receives the same decision. The whole group receives the cost, but 7035 // the cost will actually be assigned to one instruction. 7036 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7037 setWideningDecision(Group, VF, Decision, Cost); 7038 else 7039 setWideningDecision(&I, VF, Decision, Cost); 7040 } 7041 } 7042 7043 // Make sure that any load of address and any other address computation 7044 // remains scalar unless there is gather/scatter support. This avoids 7045 // inevitable extracts into address registers, and also has the benefit of 7046 // activating LSR more, since that pass can't optimize vectorized 7047 // addresses. 7048 if (TTI.prefersVectorizedAddressing()) 7049 return; 7050 7051 // Start with all scalar pointer uses. 7052 SmallPtrSet<Instruction *, 8> AddrDefs; 7053 for (BasicBlock *BB : TheLoop->blocks()) 7054 for (Instruction &I : *BB) { 7055 Instruction *PtrDef = 7056 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7057 if (PtrDef && TheLoop->contains(PtrDef) && 7058 getWideningDecision(&I, VF) != CM_GatherScatter) 7059 AddrDefs.insert(PtrDef); 7060 } 7061 7062 // Add all instructions used to generate the addresses. 7063 SmallVector<Instruction *, 4> Worklist; 7064 for (auto *I : AddrDefs) 7065 Worklist.push_back(I); 7066 while (!Worklist.empty()) { 7067 Instruction *I = Worklist.pop_back_val(); 7068 for (auto &Op : I->operands()) 7069 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7070 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7071 AddrDefs.insert(InstOp).second) 7072 Worklist.push_back(InstOp); 7073 } 7074 7075 for (auto *I : AddrDefs) { 7076 if (isa<LoadInst>(I)) { 7077 // Setting the desired widening decision should ideally be handled in 7078 // by cost functions, but since this involves the task of finding out 7079 // if the loaded register is involved in an address computation, it is 7080 // instead changed here when we know this is the case. 7081 InstWidening Decision = getWideningDecision(I, VF); 7082 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7083 // Scalarize a widened load of address. 7084 setWideningDecision(I, VF, CM_Scalarize, 7085 (VF * getMemoryInstructionCost(I, 1))); 7086 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7087 // Scalarize an interleave group of address loads. 7088 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7089 if (Instruction *Member = Group->getMember(I)) 7090 setWideningDecision(Member, VF, CM_Scalarize, 7091 (VF * getMemoryInstructionCost(Member, 1))); 7092 } 7093 } 7094 } else 7095 // Make sure I gets scalarized and a cost estimate without 7096 // scalarization overhead. 7097 ForcedScalars[VF].insert(I); 7098 } 7099 } 7100 7101 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7102 unsigned VF, 7103 Type *&VectorTy) { 7104 Type *RetTy = I->getType(); 7105 if (canTruncateToMinimalBitwidth(I, VF)) 7106 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7107 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7108 auto SE = PSE.getSE(); 7109 7110 // TODO: We need to estimate the cost of intrinsic calls. 7111 switch (I->getOpcode()) { 7112 case Instruction::GetElementPtr: 7113 // We mark this instruction as zero-cost because the cost of GEPs in 7114 // vectorized code depends on whether the corresponding memory instruction 7115 // is scalarized or not. Therefore, we handle GEPs with the memory 7116 // instruction cost. 7117 return 0; 7118 case Instruction::Br: { 7119 // In cases of scalarized and predicated instructions, there will be VF 7120 // predicated blocks in the vectorized loop. Each branch around these 7121 // blocks requires also an extract of its vector compare i1 element. 7122 bool ScalarPredicatedBB = false; 7123 BranchInst *BI = cast<BranchInst>(I); 7124 if (VF > 1 && BI->isConditional() && 7125 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7126 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7127 ScalarPredicatedBB = true; 7128 7129 if (ScalarPredicatedBB) { 7130 // Return cost for branches around scalarized and predicated blocks. 7131 Type *Vec_i1Ty = 7132 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7133 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7134 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7135 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7136 // The back-edge branch will remain, as will all scalar branches. 7137 return TTI.getCFInstrCost(Instruction::Br); 7138 else 7139 // This branch will be eliminated by if-conversion. 7140 return 0; 7141 // Note: We currently assume zero cost for an unconditional branch inside 7142 // a predicated block since it will become a fall-through, although we 7143 // may decide in the future to call TTI for all branches. 7144 } 7145 case Instruction::PHI: { 7146 auto *Phi = cast<PHINode>(I); 7147 7148 // First-order recurrences are replaced by vector shuffles inside the loop. 7149 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7150 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7151 VectorTy, VF - 1, VectorTy); 7152 7153 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7154 // converted into select instructions. We require N - 1 selects per phi 7155 // node, where N is the number of incoming values. 7156 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7157 return (Phi->getNumIncomingValues() - 1) * 7158 TTI.getCmpSelInstrCost( 7159 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7160 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7161 7162 return TTI.getCFInstrCost(Instruction::PHI); 7163 } 7164 case Instruction::UDiv: 7165 case Instruction::SDiv: 7166 case Instruction::URem: 7167 case Instruction::SRem: 7168 // If we have a predicated instruction, it may not be executed for each 7169 // vector lane. Get the scalarization cost and scale this amount by the 7170 // probability of executing the predicated block. If the instruction is not 7171 // predicated, we fall through to the next case. 7172 if (VF > 1 && isScalarWithPredication(I)) { 7173 unsigned Cost = 0; 7174 7175 // These instructions have a non-void type, so account for the phi nodes 7176 // that we will create. This cost is likely to be zero. The phi node 7177 // cost, if any, should be scaled by the block probability because it 7178 // models a copy at the end of each predicated block. 7179 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7180 7181 // The cost of the non-predicated instruction. 7182 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7183 7184 // The cost of insertelement and extractelement instructions needed for 7185 // scalarization. 7186 Cost += getScalarizationOverhead(I, VF, TTI); 7187 7188 // Scale the cost by the probability of executing the predicated blocks. 7189 // This assumes the predicated block for each vector lane is equally 7190 // likely. 7191 return Cost / getReciprocalPredBlockProb(); 7192 } 7193 LLVM_FALLTHROUGH; 7194 case Instruction::Add: 7195 case Instruction::FAdd: 7196 case Instruction::Sub: 7197 case Instruction::FSub: 7198 case Instruction::Mul: 7199 case Instruction::FMul: 7200 case Instruction::FDiv: 7201 case Instruction::FRem: 7202 case Instruction::Shl: 7203 case Instruction::LShr: 7204 case Instruction::AShr: 7205 case Instruction::And: 7206 case Instruction::Or: 7207 case Instruction::Xor: { 7208 // Since we will replace the stride by 1 the multiplication should go away. 7209 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7210 return 0; 7211 // Certain instructions can be cheaper to vectorize if they have a constant 7212 // second vector operand. One example of this are shifts on x86. 7213 TargetTransformInfo::OperandValueKind Op1VK = 7214 TargetTransformInfo::OK_AnyValue; 7215 TargetTransformInfo::OperandValueKind Op2VK = 7216 TargetTransformInfo::OK_AnyValue; 7217 TargetTransformInfo::OperandValueProperties Op1VP = 7218 TargetTransformInfo::OP_None; 7219 TargetTransformInfo::OperandValueProperties Op2VP = 7220 TargetTransformInfo::OP_None; 7221 Value *Op2 = I->getOperand(1); 7222 7223 // Check for a splat or for a non uniform vector of constants. 7224 if (isa<ConstantInt>(Op2)) { 7225 ConstantInt *CInt = cast<ConstantInt>(Op2); 7226 if (CInt && CInt->getValue().isPowerOf2()) 7227 Op2VP = TargetTransformInfo::OP_PowerOf2; 7228 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7229 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7230 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7231 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7232 if (SplatValue) { 7233 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7234 if (CInt && CInt->getValue().isPowerOf2()) 7235 Op2VP = TargetTransformInfo::OP_PowerOf2; 7236 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7237 } 7238 } else if (Legal->isUniform(Op2)) { 7239 Op2VK = TargetTransformInfo::OK_UniformValue; 7240 } 7241 SmallVector<const Value *, 4> Operands(I->operand_values()); 7242 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7243 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7244 Op2VK, Op1VP, Op2VP, Operands); 7245 } 7246 case Instruction::Select: { 7247 SelectInst *SI = cast<SelectInst>(I); 7248 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7249 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7250 Type *CondTy = SI->getCondition()->getType(); 7251 if (!ScalarCond) 7252 CondTy = VectorType::get(CondTy, VF); 7253 7254 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7255 } 7256 case Instruction::ICmp: 7257 case Instruction::FCmp: { 7258 Type *ValTy = I->getOperand(0)->getType(); 7259 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7260 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7261 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7262 VectorTy = ToVectorTy(ValTy, VF); 7263 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7264 } 7265 case Instruction::Store: 7266 case Instruction::Load: { 7267 unsigned Width = VF; 7268 if (Width > 1) { 7269 InstWidening Decision = getWideningDecision(I, Width); 7270 assert(Decision != CM_Unknown && 7271 "CM decision should be taken at this point"); 7272 if (Decision == CM_Scalarize) 7273 Width = 1; 7274 } 7275 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7276 return getMemoryInstructionCost(I, VF); 7277 } 7278 case Instruction::ZExt: 7279 case Instruction::SExt: 7280 case Instruction::FPToUI: 7281 case Instruction::FPToSI: 7282 case Instruction::FPExt: 7283 case Instruction::PtrToInt: 7284 case Instruction::IntToPtr: 7285 case Instruction::SIToFP: 7286 case Instruction::UIToFP: 7287 case Instruction::Trunc: 7288 case Instruction::FPTrunc: 7289 case Instruction::BitCast: { 7290 // We optimize the truncation of induction variables having constant 7291 // integer steps. The cost of these truncations is the same as the scalar 7292 // operation. 7293 if (isOptimizableIVTruncate(I, VF)) { 7294 auto *Trunc = cast<TruncInst>(I); 7295 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7296 Trunc->getSrcTy(), Trunc); 7297 } 7298 7299 Type *SrcScalarTy = I->getOperand(0)->getType(); 7300 Type *SrcVecTy = 7301 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7302 if (canTruncateToMinimalBitwidth(I, VF)) { 7303 // This cast is going to be shrunk. This may remove the cast or it might 7304 // turn it into slightly different cast. For example, if MinBW == 16, 7305 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7306 // 7307 // Calculate the modified src and dest types. 7308 Type *MinVecTy = VectorTy; 7309 if (I->getOpcode() == Instruction::Trunc) { 7310 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7311 VectorTy = 7312 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7313 } else if (I->getOpcode() == Instruction::ZExt || 7314 I->getOpcode() == Instruction::SExt) { 7315 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7316 VectorTy = 7317 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7318 } 7319 } 7320 7321 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7322 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7323 } 7324 case Instruction::Call: { 7325 bool NeedToScalarize; 7326 CallInst *CI = cast<CallInst>(I); 7327 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7328 if (getVectorIntrinsicIDForCall(CI, TLI)) 7329 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7330 return CallCost; 7331 } 7332 default: 7333 // The cost of executing VF copies of the scalar instruction. This opcode 7334 // is unknown. Assume that it is the same as 'mul'. 7335 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7336 getScalarizationOverhead(I, VF, TTI); 7337 } // end of switch. 7338 } 7339 7340 char LoopVectorize::ID = 0; 7341 7342 static const char lv_name[] = "Loop Vectorization"; 7343 7344 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7345 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7346 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7347 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7348 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7349 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7350 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7351 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7352 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7353 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7354 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7355 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7356 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7357 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7358 7359 namespace llvm { 7360 7361 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7362 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7363 } 7364 7365 } // end namespace llvm 7366 7367 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7368 // Check if the pointer operand of a load or store instruction is 7369 // consecutive. 7370 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7371 return Legal->isConsecutivePtr(Ptr); 7372 return false; 7373 } 7374 7375 void LoopVectorizationCostModel::collectValuesToIgnore() { 7376 // Ignore ephemeral values. 7377 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7378 7379 // Ignore type-promoting instructions we identified during reduction 7380 // detection. 7381 for (auto &Reduction : *Legal->getReductionVars()) { 7382 RecurrenceDescriptor &RedDes = Reduction.second; 7383 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7384 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7385 } 7386 // Ignore type-casting instructions we identified during induction 7387 // detection. 7388 for (auto &Induction : *Legal->getInductionVars()) { 7389 InductionDescriptor &IndDes = Induction.second; 7390 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7391 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7392 } 7393 } 7394 7395 VectorizationFactor 7396 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7397 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7398 const VectorizationFactor NoVectorization = {1U, 0U}; 7399 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7400 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7401 return NoVectorization; 7402 7403 if (UserVF) { 7404 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7405 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7406 // Collect the instructions (and their associated costs) that will be more 7407 // profitable to scalarize. 7408 CM.selectUserVectorizationFactor(UserVF); 7409 buildVPlans(UserVF, UserVF); 7410 DEBUG(printPlans(dbgs())); 7411 return {UserVF, 0}; 7412 } 7413 7414 unsigned MaxVF = MaybeMaxVF.getValue(); 7415 assert(MaxVF != 0 && "MaxVF is zero."); 7416 7417 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7418 // Collect Uniform and Scalar instructions after vectorization with VF. 7419 CM.collectUniformsAndScalars(VF); 7420 7421 // Collect the instructions (and their associated costs) that will be more 7422 // profitable to scalarize. 7423 if (VF > 1) 7424 CM.collectInstsToScalarize(VF); 7425 } 7426 7427 buildVPlans(1, MaxVF); 7428 DEBUG(printPlans(dbgs())); 7429 if (MaxVF == 1) 7430 return NoVectorization; 7431 7432 // Select the optimal vectorization factor. 7433 return CM.selectVectorizationFactor(MaxVF); 7434 } 7435 7436 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7437 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7438 BestVF = VF; 7439 BestUF = UF; 7440 7441 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7442 return !Plan->hasVF(VF); 7443 }); 7444 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7445 } 7446 7447 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7448 DominatorTree *DT) { 7449 // Perform the actual loop transformation. 7450 7451 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7452 VPCallbackILV CallbackILV(ILV); 7453 7454 VPTransformState State{BestVF, BestUF, LI, 7455 DT, ILV.Builder, ILV.VectorLoopValueMap, 7456 &ILV, CallbackILV}; 7457 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7458 7459 //===------------------------------------------------===// 7460 // 7461 // Notice: any optimization or new instruction that go 7462 // into the code below should also be implemented in 7463 // the cost-model. 7464 // 7465 //===------------------------------------------------===// 7466 7467 // 2. Copy and widen instructions from the old loop into the new loop. 7468 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7469 VPlans.front()->execute(&State); 7470 7471 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7472 // predication, updating analyses. 7473 ILV.fixVectorizedLoop(); 7474 } 7475 7476 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7477 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7478 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7479 7480 // We create new control-flow for the vectorized loop, so the original 7481 // condition will be dead after vectorization if it's only used by the 7482 // branch. 7483 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7484 if (Cmp && Cmp->hasOneUse()) 7485 DeadInstructions.insert(Cmp); 7486 7487 // We create new "steps" for induction variable updates to which the original 7488 // induction variables map. An original update instruction will be dead if 7489 // all its users except the induction variable are dead. 7490 for (auto &Induction : *Legal->getInductionVars()) { 7491 PHINode *Ind = Induction.first; 7492 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7493 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7494 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7495 })) 7496 DeadInstructions.insert(IndUpdate); 7497 7498 // We record as "Dead" also the type-casting instructions we had identified 7499 // during induction analysis. We don't need any handling for them in the 7500 // vectorized loop because we have proven that, under a proper runtime 7501 // test guarding the vectorized loop, the value of the phi, and the casted 7502 // value of the phi, are the same. The last instruction in this casting chain 7503 // will get its scalar/vector/widened def from the scalar/vector/widened def 7504 // of the respective phi node. Any other casts in the induction def-use chain 7505 // have no other uses outside the phi update chain, and will be ignored. 7506 InductionDescriptor &IndDes = Induction.second; 7507 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7508 DeadInstructions.insert(Casts.begin(), Casts.end()); 7509 } 7510 } 7511 7512 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7513 7514 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7515 7516 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7517 Instruction::BinaryOps BinOp) { 7518 // When unrolling and the VF is 1, we only need to add a simple scalar. 7519 Type *Ty = Val->getType(); 7520 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7521 7522 if (Ty->isFloatingPointTy()) { 7523 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7524 7525 // Floating point operations had to be 'fast' to enable the unrolling. 7526 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7527 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7528 } 7529 Constant *C = ConstantInt::get(Ty, StartIdx); 7530 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7531 } 7532 7533 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7534 SmallVector<Metadata *, 4> MDs; 7535 // Reserve first location for self reference to the LoopID metadata node. 7536 MDs.push_back(nullptr); 7537 bool IsUnrollMetadata = false; 7538 MDNode *LoopID = L->getLoopID(); 7539 if (LoopID) { 7540 // First find existing loop unrolling disable metadata. 7541 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7542 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7543 if (MD) { 7544 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7545 IsUnrollMetadata = 7546 S && S->getString().startswith("llvm.loop.unroll.disable"); 7547 } 7548 MDs.push_back(LoopID->getOperand(i)); 7549 } 7550 } 7551 7552 if (!IsUnrollMetadata) { 7553 // Add runtime unroll disable metadata. 7554 LLVMContext &Context = L->getHeader()->getContext(); 7555 SmallVector<Metadata *, 1> DisableOperands; 7556 DisableOperands.push_back( 7557 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7558 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7559 MDs.push_back(DisableNode); 7560 MDNode *NewLoopID = MDNode::get(Context, MDs); 7561 // Set operand 0 to refer to the loop id itself. 7562 NewLoopID->replaceOperandWith(0, NewLoopID); 7563 L->setLoopID(NewLoopID); 7564 } 7565 } 7566 7567 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7568 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7569 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7570 bool PredicateAtRangeStart = Predicate(Range.Start); 7571 7572 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7573 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7574 Range.End = TmpVF; 7575 break; 7576 } 7577 7578 return PredicateAtRangeStart; 7579 } 7580 7581 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7582 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7583 /// of VF's starting at a given VF and extending it as much as possible. Each 7584 /// vectorization decision can potentially shorten this sub-range during 7585 /// buildVPlan(). 7586 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7587 7588 // Collect conditions feeding internal conditional branches; they need to be 7589 // represented in VPlan for it to model masking. 7590 SmallPtrSet<Value *, 1> NeedDef; 7591 7592 auto *Latch = OrigLoop->getLoopLatch(); 7593 for (BasicBlock *BB : OrigLoop->blocks()) { 7594 if (BB == Latch) 7595 continue; 7596 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7597 if (Branch && Branch->isConditional()) 7598 NeedDef.insert(Branch->getCondition()); 7599 } 7600 7601 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7602 VFRange SubRange = {VF, MaxVF + 1}; 7603 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7604 VF = SubRange.End; 7605 } 7606 } 7607 7608 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7609 BasicBlock *Dst, 7610 VPlanPtr &Plan) { 7611 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7612 7613 // Look for cached value. 7614 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7615 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7616 if (ECEntryIt != EdgeMaskCache.end()) 7617 return ECEntryIt->second; 7618 7619 VPValue *SrcMask = createBlockInMask(Src, Plan); 7620 7621 // The terminator has to be a branch inst! 7622 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7623 assert(BI && "Unexpected terminator found"); 7624 7625 if (!BI->isConditional()) 7626 return EdgeMaskCache[Edge] = SrcMask; 7627 7628 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7629 assert(EdgeMask && "No Edge Mask found for condition"); 7630 7631 if (BI->getSuccessor(0) != Dst) 7632 EdgeMask = Builder.createNot(EdgeMask); 7633 7634 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7635 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7636 7637 return EdgeMaskCache[Edge] = EdgeMask; 7638 } 7639 7640 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7641 VPlanPtr &Plan) { 7642 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7643 7644 // Look for cached value. 7645 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7646 if (BCEntryIt != BlockMaskCache.end()) 7647 return BCEntryIt->second; 7648 7649 // All-one mask is modelled as no-mask following the convention for masked 7650 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7651 VPValue *BlockMask = nullptr; 7652 7653 // Loop incoming mask is all-one. 7654 if (OrigLoop->getHeader() == BB) 7655 return BlockMaskCache[BB] = BlockMask; 7656 7657 // This is the block mask. We OR all incoming edges. 7658 for (auto *Predecessor : predecessors(BB)) { 7659 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7660 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7661 return BlockMaskCache[BB] = EdgeMask; 7662 7663 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7664 BlockMask = EdgeMask; 7665 continue; 7666 } 7667 7668 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7669 } 7670 7671 return BlockMaskCache[BB] = BlockMask; 7672 } 7673 7674 VPInterleaveRecipe * 7675 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7676 VFRange &Range) { 7677 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7678 if (!IG) 7679 return nullptr; 7680 7681 // Now check if IG is relevant for VF's in the given range. 7682 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7683 return [=](unsigned VF) -> bool { 7684 return (VF >= 2 && // Query is illegal for VF == 1 7685 CM.getWideningDecision(I, VF) == 7686 LoopVectorizationCostModel::CM_Interleave); 7687 }; 7688 }; 7689 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7690 return nullptr; 7691 7692 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7693 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7694 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7695 assert(I == IG->getInsertPos() && 7696 "Generating a recipe for an adjunct member of an interleave group"); 7697 7698 return new VPInterleaveRecipe(IG); 7699 } 7700 7701 VPWidenMemoryInstructionRecipe * 7702 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7703 VPlanPtr &Plan) { 7704 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7705 return nullptr; 7706 7707 auto willWiden = [&](unsigned VF) -> bool { 7708 if (VF == 1) 7709 return false; 7710 if (CM.isScalarAfterVectorization(I, VF) || 7711 CM.isProfitableToScalarize(I, VF)) 7712 return false; 7713 LoopVectorizationCostModel::InstWidening Decision = 7714 CM.getWideningDecision(I, VF); 7715 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7716 "CM decision should be taken at this point."); 7717 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7718 "Interleave memory opportunity should be caught earlier."); 7719 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7720 }; 7721 7722 if (!getDecisionAndClampRange(willWiden, Range)) 7723 return nullptr; 7724 7725 VPValue *Mask = nullptr; 7726 if (Legal->isMaskRequired(I)) 7727 Mask = createBlockInMask(I->getParent(), Plan); 7728 7729 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7730 } 7731 7732 VPWidenIntOrFpInductionRecipe * 7733 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7734 VFRange &Range) { 7735 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7736 // Check if this is an integer or fp induction. If so, build the recipe that 7737 // produces its scalar and vector values. 7738 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7739 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7740 II.getKind() == InductionDescriptor::IK_FpInduction) 7741 return new VPWidenIntOrFpInductionRecipe(Phi); 7742 7743 return nullptr; 7744 } 7745 7746 // Optimize the special case where the source is a constant integer 7747 // induction variable. Notice that we can only optimize the 'trunc' case 7748 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7749 // (c) other casts depend on pointer size. 7750 7751 // Determine whether \p K is a truncation based on an induction variable that 7752 // can be optimized. 7753 auto isOptimizableIVTruncate = 7754 [&](Instruction *K) -> std::function<bool(unsigned)> { 7755 return 7756 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7757 }; 7758 7759 if (isa<TruncInst>(I) && 7760 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7761 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7762 cast<TruncInst>(I)); 7763 return nullptr; 7764 } 7765 7766 VPBlendRecipe * 7767 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7768 PHINode *Phi = dyn_cast<PHINode>(I); 7769 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7770 return nullptr; 7771 7772 // We know that all PHIs in non-header blocks are converted into selects, so 7773 // we don't have to worry about the insertion order and we can just use the 7774 // builder. At this point we generate the predication tree. There may be 7775 // duplications since this is a simple recursive scan, but future 7776 // optimizations will clean it up. 7777 7778 SmallVector<VPValue *, 2> Masks; 7779 unsigned NumIncoming = Phi->getNumIncomingValues(); 7780 for (unsigned In = 0; In < NumIncoming; In++) { 7781 VPValue *EdgeMask = 7782 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7783 assert((EdgeMask || NumIncoming == 1) && 7784 "Multiple predecessors with one having a full mask"); 7785 if (EdgeMask) 7786 Masks.push_back(EdgeMask); 7787 } 7788 return new VPBlendRecipe(Phi, Masks); 7789 } 7790 7791 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7792 VFRange &Range) { 7793 if (CM.isScalarWithPredication(I)) 7794 return false; 7795 7796 auto IsVectorizableOpcode = [](unsigned Opcode) { 7797 switch (Opcode) { 7798 case Instruction::Add: 7799 case Instruction::And: 7800 case Instruction::AShr: 7801 case Instruction::BitCast: 7802 case Instruction::Br: 7803 case Instruction::Call: 7804 case Instruction::FAdd: 7805 case Instruction::FCmp: 7806 case Instruction::FDiv: 7807 case Instruction::FMul: 7808 case Instruction::FPExt: 7809 case Instruction::FPToSI: 7810 case Instruction::FPToUI: 7811 case Instruction::FPTrunc: 7812 case Instruction::FRem: 7813 case Instruction::FSub: 7814 case Instruction::GetElementPtr: 7815 case Instruction::ICmp: 7816 case Instruction::IntToPtr: 7817 case Instruction::Load: 7818 case Instruction::LShr: 7819 case Instruction::Mul: 7820 case Instruction::Or: 7821 case Instruction::PHI: 7822 case Instruction::PtrToInt: 7823 case Instruction::SDiv: 7824 case Instruction::Select: 7825 case Instruction::SExt: 7826 case Instruction::Shl: 7827 case Instruction::SIToFP: 7828 case Instruction::SRem: 7829 case Instruction::Store: 7830 case Instruction::Sub: 7831 case Instruction::Trunc: 7832 case Instruction::UDiv: 7833 case Instruction::UIToFP: 7834 case Instruction::URem: 7835 case Instruction::Xor: 7836 case Instruction::ZExt: 7837 return true; 7838 } 7839 return false; 7840 }; 7841 7842 if (!IsVectorizableOpcode(I->getOpcode())) 7843 return false; 7844 7845 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7846 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7847 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7848 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7849 return false; 7850 } 7851 7852 auto willWiden = [&](unsigned VF) -> bool { 7853 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 7854 CM.isProfitableToScalarize(I, VF))) 7855 return false; 7856 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7857 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7858 // The following case may be scalarized depending on the VF. 7859 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7860 // version of the instruction. 7861 // Is it beneficial to perform intrinsic call compared to lib call? 7862 bool NeedToScalarize; 7863 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 7864 bool UseVectorIntrinsic = 7865 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 7866 return UseVectorIntrinsic || !NeedToScalarize; 7867 } 7868 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 7869 assert(CM.getWideningDecision(I, VF) == 7870 LoopVectorizationCostModel::CM_Scalarize && 7871 "Memory widening decisions should have been taken care by now"); 7872 return false; 7873 } 7874 return true; 7875 }; 7876 7877 if (!getDecisionAndClampRange(willWiden, Range)) 7878 return false; 7879 7880 // Success: widen this instruction. We optimize the common case where 7881 // consecutive instructions can be represented by a single recipe. 7882 if (!VPBB->empty()) { 7883 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 7884 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 7885 return true; 7886 } 7887 7888 VPBB->appendRecipe(new VPWidenRecipe(I)); 7889 return true; 7890 } 7891 7892 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 7893 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7894 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7895 VPlanPtr &Plan) { 7896 bool IsUniform = getDecisionAndClampRange( 7897 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7898 Range); 7899 7900 bool IsPredicated = CM.isScalarWithPredication(I); 7901 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7902 7903 // Find if I uses a predicated instruction. If so, it will use its scalar 7904 // value. Avoid hoisting the insert-element which packs the scalar value into 7905 // a vector value, as that happens iff all users use the vector value. 7906 for (auto &Op : I->operands()) 7907 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7908 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7909 PredInst2Recipe[PredInst]->setAlsoPack(false); 7910 7911 // Finalize the recipe for Instr, first if it is not predicated. 7912 if (!IsPredicated) { 7913 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7914 VPBB->appendRecipe(Recipe); 7915 return VPBB; 7916 } 7917 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7918 assert(VPBB->getSuccessors().empty() && 7919 "VPBB has successors when handling predicated replication."); 7920 // Record predicated instructions for above packing optimizations. 7921 PredInst2Recipe[I] = Recipe; 7922 VPBlockBase *Region = 7923 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 7924 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 7925 } 7926 7927 VPRegionBlock * 7928 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 7929 VPRecipeBase *PredRecipe, 7930 VPlanPtr &Plan) { 7931 // Instructions marked for predication are replicated and placed under an 7932 // if-then construct to prevent side-effects. 7933 7934 // Generate recipes to compute the block mask for this region. 7935 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7936 7937 // Build the triangular if-then region. 7938 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7939 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7940 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7941 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7942 auto *PHIRecipe = 7943 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7944 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7945 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7946 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7947 7948 // Note: first set Entry as region entry and then connect successors starting 7949 // from it in order, to propagate the "parent" of each VPBasicBlock. 7950 Entry->setTwoSuccessors(Pred, Exit); 7951 Pred->setOneSuccessor(Exit); 7952 7953 return Region; 7954 } 7955 7956 LoopVectorizationPlanner::VPlanPtr 7957 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 7958 const SmallPtrSetImpl<Value *> &NeedDef) { 7959 EdgeMaskCache.clear(); 7960 BlockMaskCache.clear(); 7961 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7962 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 7963 7964 // Collect instructions from the original loop that will become trivially dead 7965 // in the vectorized loop. We don't need to vectorize these instructions. For 7966 // example, original induction update instructions can become dead because we 7967 // separately emit induction "steps" when generating code for the new loop. 7968 // Similarly, we create a new latch condition when setting up the structure 7969 // of the new loop, so the old one can become dead. 7970 SmallPtrSet<Instruction *, 4> DeadInstructions; 7971 collectTriviallyDeadInstructions(DeadInstructions); 7972 7973 // Hold a mapping from predicated instructions to their recipes, in order to 7974 // fix their AlsoPack behavior if a user is determined to replicate and use a 7975 // scalar instead of vector value. 7976 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7977 7978 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7979 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7980 auto Plan = llvm::make_unique<VPlan>(VPBB); 7981 7982 // Represent values that will have defs inside VPlan. 7983 for (Value *V : NeedDef) 7984 Plan->addVPValue(V); 7985 7986 // Scan the body of the loop in a topological order to visit each basic block 7987 // after having visited its predecessor basic blocks. 7988 LoopBlocksDFS DFS(OrigLoop); 7989 DFS.perform(LI); 7990 7991 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7992 // Relevant instructions from basic block BB will be grouped into VPRecipe 7993 // ingredients and fill a new VPBasicBlock. 7994 unsigned VPBBsForBB = 0; 7995 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7996 VPBB->setOneSuccessor(FirstVPBBForBB); 7997 VPBB = FirstVPBBForBB; 7998 Builder.setInsertPoint(VPBB); 7999 8000 std::vector<Instruction *> Ingredients; 8001 8002 // Organize the ingredients to vectorize from current basic block in the 8003 // right order. 8004 for (Instruction &I : *BB) { 8005 Instruction *Instr = &I; 8006 8007 // First filter out irrelevant instructions, to ensure no recipes are 8008 // built for them. 8009 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8010 DeadInstructions.count(Instr)) 8011 continue; 8012 8013 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8014 // member of the IG, do not construct any Recipe for it. 8015 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8016 if (IG && Instr != IG->getInsertPos() && 8017 Range.Start >= 2 && // Query is illegal for VF == 1 8018 CM.getWideningDecision(Instr, Range.Start) == 8019 LoopVectorizationCostModel::CM_Interleave) { 8020 if (SinkAfterInverse.count(Instr)) 8021 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8022 continue; 8023 } 8024 8025 // Move instructions to handle first-order recurrences, step 1: avoid 8026 // handling this instruction until after we've handled the instruction it 8027 // should follow. 8028 auto SAIt = SinkAfter.find(Instr); 8029 if (SAIt != SinkAfter.end()) { 8030 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8031 << " to vectorize a 1st order recurrence.\n"); 8032 SinkAfterInverse[SAIt->second] = Instr; 8033 continue; 8034 } 8035 8036 Ingredients.push_back(Instr); 8037 8038 // Move instructions to handle first-order recurrences, step 2: push the 8039 // instruction to be sunk at its insertion point. 8040 auto SAInvIt = SinkAfterInverse.find(Instr); 8041 if (SAInvIt != SinkAfterInverse.end()) 8042 Ingredients.push_back(SAInvIt->second); 8043 } 8044 8045 // Introduce each ingredient into VPlan. 8046 for (Instruction *Instr : Ingredients) { 8047 VPRecipeBase *Recipe = nullptr; 8048 8049 // Check if Instr should belong to an interleave memory recipe, or already 8050 // does. In the latter case Instr is irrelevant. 8051 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8052 VPBB->appendRecipe(Recipe); 8053 continue; 8054 } 8055 8056 // Check if Instr is a memory operation that should be widened. 8057 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8058 VPBB->appendRecipe(Recipe); 8059 continue; 8060 } 8061 8062 // Check if Instr should form some PHI recipe. 8063 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8064 VPBB->appendRecipe(Recipe); 8065 continue; 8066 } 8067 if ((Recipe = tryToBlend(Instr, Plan))) { 8068 VPBB->appendRecipe(Recipe); 8069 continue; 8070 } 8071 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8072 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8073 continue; 8074 } 8075 8076 // Check if Instr is to be widened by a general VPWidenRecipe, after 8077 // having first checked for specific widening recipes that deal with 8078 // Interleave Groups, Inductions and Phi nodes. 8079 if (tryToWiden(Instr, VPBB, Range)) 8080 continue; 8081 8082 // Otherwise, if all widening options failed, Instruction is to be 8083 // replicated. This may create a successor for VPBB. 8084 VPBasicBlock *NextVPBB = 8085 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8086 if (NextVPBB != VPBB) { 8087 VPBB = NextVPBB; 8088 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8089 : ""); 8090 } 8091 } 8092 } 8093 8094 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8095 // may also be empty, such as the last one VPBB, reflecting original 8096 // basic-blocks with no recipes. 8097 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8098 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8099 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8100 PreEntry->disconnectSuccessor(Entry); 8101 delete PreEntry; 8102 8103 std::string PlanName; 8104 raw_string_ostream RSO(PlanName); 8105 unsigned VF = Range.Start; 8106 Plan->addVF(VF); 8107 RSO << "Initial VPlan for VF={" << VF; 8108 for (VF *= 2; VF < Range.End; VF *= 2) { 8109 Plan->addVF(VF); 8110 RSO << "," << VF; 8111 } 8112 RSO << "},UF>=1"; 8113 RSO.flush(); 8114 Plan->setName(PlanName); 8115 8116 return Plan; 8117 } 8118 8119 Value* LoopVectorizationPlanner::VPCallbackILV:: 8120 getOrCreateVectorValues(Value *V, unsigned Part) { 8121 return ILV.getOrCreateVectorValue(V, Part); 8122 } 8123 8124 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8125 O << " +\n" 8126 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8127 IG->getInsertPos()->printAsOperand(O, false); 8128 O << "\\l\""; 8129 for (unsigned i = 0; i < IG->getFactor(); ++i) 8130 if (Instruction *I = IG->getMember(i)) 8131 O << " +\n" 8132 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8133 } 8134 8135 void VPWidenRecipe::execute(VPTransformState &State) { 8136 for (auto &Instr : make_range(Begin, End)) 8137 State.ILV->widenInstruction(Instr); 8138 } 8139 8140 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8141 assert(!State.Instance && "Int or FP induction being replicated."); 8142 State.ILV->widenIntOrFpInduction(IV, Trunc); 8143 } 8144 8145 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8146 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8147 } 8148 8149 void VPBlendRecipe::execute(VPTransformState &State) { 8150 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8151 // We know that all PHIs in non-header blocks are converted into 8152 // selects, so we don't have to worry about the insertion order and we 8153 // can just use the builder. 8154 // At this point we generate the predication tree. There may be 8155 // duplications since this is a simple recursive scan, but future 8156 // optimizations will clean it up. 8157 8158 unsigned NumIncoming = Phi->getNumIncomingValues(); 8159 8160 assert((User || NumIncoming == 1) && 8161 "Multiple predecessors with predecessors having a full mask"); 8162 // Generate a sequence of selects of the form: 8163 // SELECT(Mask3, In3, 8164 // SELECT(Mask2, In2, 8165 // ( ...))) 8166 InnerLoopVectorizer::VectorParts Entry(State.UF); 8167 for (unsigned In = 0; In < NumIncoming; ++In) { 8168 for (unsigned Part = 0; Part < State.UF; ++Part) { 8169 // We might have single edge PHIs (blocks) - use an identity 8170 // 'select' for the first PHI operand. 8171 Value *In0 = 8172 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8173 if (In == 0) 8174 Entry[Part] = In0; // Initialize with the first incoming value. 8175 else { 8176 // Select between the current value and the previous incoming edge 8177 // based on the incoming mask. 8178 Value *Cond = State.get(User->getOperand(In), Part); 8179 Entry[Part] = 8180 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8181 } 8182 } 8183 } 8184 for (unsigned Part = 0; Part < State.UF; ++Part) 8185 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8186 } 8187 8188 void VPInterleaveRecipe::execute(VPTransformState &State) { 8189 assert(!State.Instance && "Interleave group being replicated."); 8190 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8191 } 8192 8193 void VPReplicateRecipe::execute(VPTransformState &State) { 8194 if (State.Instance) { // Generate a single instance. 8195 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8196 // Insert scalar instance packing it into a vector. 8197 if (AlsoPack && State.VF > 1) { 8198 // If we're constructing lane 0, initialize to start from undef. 8199 if (State.Instance->Lane == 0) { 8200 Value *Undef = 8201 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8202 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8203 } 8204 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8205 } 8206 return; 8207 } 8208 8209 // Generate scalar instances for all VF lanes of all UF parts, unless the 8210 // instruction is uniform inwhich case generate only the first lane for each 8211 // of the UF parts. 8212 unsigned EndLane = IsUniform ? 1 : State.VF; 8213 for (unsigned Part = 0; Part < State.UF; ++Part) 8214 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8215 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8216 } 8217 8218 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8219 assert(State.Instance && "Branch on Mask works only on single instance."); 8220 8221 unsigned Part = State.Instance->Part; 8222 unsigned Lane = State.Instance->Lane; 8223 8224 Value *ConditionBit = nullptr; 8225 if (!User) // Block in mask is all-one. 8226 ConditionBit = State.Builder.getTrue(); 8227 else { 8228 VPValue *BlockInMask = User->getOperand(0); 8229 ConditionBit = State.get(BlockInMask, Part); 8230 if (ConditionBit->getType()->isVectorTy()) 8231 ConditionBit = State.Builder.CreateExtractElement( 8232 ConditionBit, State.Builder.getInt32(Lane)); 8233 } 8234 8235 // Replace the temporary unreachable terminator with a new conditional branch, 8236 // whose two destinations will be set later when they are created. 8237 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8238 assert(isa<UnreachableInst>(CurrentTerminator) && 8239 "Expected to replace unreachable terminator with conditional branch."); 8240 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8241 CondBr->setSuccessor(0, nullptr); 8242 ReplaceInstWithInst(CurrentTerminator, CondBr); 8243 } 8244 8245 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8246 assert(State.Instance && "Predicated instruction PHI works per instance."); 8247 Instruction *ScalarPredInst = cast<Instruction>( 8248 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8249 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8250 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8251 assert(PredicatingBB && "Predicated block has no single predecessor."); 8252 8253 // By current pack/unpack logic we need to generate only a single phi node: if 8254 // a vector value for the predicated instruction exists at this point it means 8255 // the instruction has vector users only, and a phi for the vector value is 8256 // needed. In this case the recipe of the predicated instruction is marked to 8257 // also do that packing, thereby "hoisting" the insert-element sequence. 8258 // Otherwise, a phi node for the scalar value is needed. 8259 unsigned Part = State.Instance->Part; 8260 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8261 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8262 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8263 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8264 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8265 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8266 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8267 } else { 8268 Type *PredInstType = PredInst->getType(); 8269 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8270 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8271 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8272 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8273 } 8274 } 8275 8276 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8277 if (!User) 8278 return State.ILV->vectorizeMemoryInstruction(&Instr); 8279 8280 // Last (and currently only) operand is a mask. 8281 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8282 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8283 for (unsigned Part = 0; Part < State.UF; ++Part) 8284 MaskValues[Part] = State.get(Mask, Part); 8285 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8286 } 8287 8288 bool LoopVectorizePass::processLoop(Loop *L) { 8289 assert(L->empty() && "Only process inner loops."); 8290 8291 #ifndef NDEBUG 8292 const std::string DebugLocStr = getDebugLocString(L); 8293 #endif /* NDEBUG */ 8294 8295 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8296 << L->getHeader()->getParent()->getName() << "\" from " 8297 << DebugLocStr << "\n"); 8298 8299 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8300 8301 DEBUG(dbgs() << "LV: Loop hints:" 8302 << " force=" 8303 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8304 ? "disabled" 8305 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8306 ? "enabled" 8307 : "?")) 8308 << " width=" << Hints.getWidth() 8309 << " unroll=" << Hints.getInterleave() << "\n"); 8310 8311 // Function containing loop 8312 Function *F = L->getHeader()->getParent(); 8313 8314 // Looking at the diagnostic output is the only way to determine if a loop 8315 // was vectorized (other than looking at the IR or machine code), so it 8316 // is important to generate an optimization remark for each loop. Most of 8317 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8318 // generated as OptimizationRemark and OptimizationRemarkMissed are 8319 // less verbose reporting vectorized loops and unvectorized loops that may 8320 // benefit from vectorization, respectively. 8321 8322 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8323 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8324 return false; 8325 } 8326 8327 PredicatedScalarEvolution PSE(*SE, *L); 8328 8329 // Check if it is legal to vectorize the loop. 8330 LoopVectorizationRequirements Requirements(*ORE); 8331 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8332 &Requirements, &Hints, DB, AC); 8333 if (!LVL.canVectorize()) { 8334 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8335 emitMissedWarning(F, L, Hints, ORE); 8336 return false; 8337 } 8338 8339 // Check the function attributes to find out if this function should be 8340 // optimized for size. 8341 bool OptForSize = 8342 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8343 8344 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8345 // count by optimizing for size, to minimize overheads. 8346 // Prefer constant trip counts over profile data, over upper bound estimate. 8347 unsigned ExpectedTC = 0; 8348 bool HasExpectedTC = false; 8349 if (const SCEVConstant *ConstExits = 8350 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 8351 const APInt &ExitsCount = ConstExits->getAPInt(); 8352 // We are interested in small values for ExpectedTC. Skip over those that 8353 // can't fit an unsigned. 8354 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 8355 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 8356 HasExpectedTC = true; 8357 } 8358 } 8359 // ExpectedTC may be large because it's bound by a variable. Check 8360 // profiling information to validate we should vectorize. 8361 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8362 auto EstimatedTC = getLoopEstimatedTripCount(L); 8363 if (EstimatedTC) { 8364 ExpectedTC = *EstimatedTC; 8365 HasExpectedTC = true; 8366 } 8367 } 8368 if (!HasExpectedTC) { 8369 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8370 HasExpectedTC = (ExpectedTC > 0); 8371 } 8372 8373 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8374 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8375 << "This loop is worth vectorizing only if no scalar " 8376 << "iteration overheads are incurred."); 8377 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8378 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8379 else { 8380 DEBUG(dbgs() << "\n"); 8381 // Loops with a very small trip count are considered for vectorization 8382 // under OptForSize, thereby making sure the cost of their loop body is 8383 // dominant, free of runtime guards and scalar iteration overheads. 8384 OptForSize = true; 8385 } 8386 } 8387 8388 // Check the function attributes to see if implicit floats are allowed. 8389 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8390 // an integer loop and the vector instructions selected are purely integer 8391 // vector instructions? 8392 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8393 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8394 "attribute is used.\n"); 8395 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8396 "NoImplicitFloat", L) 8397 << "loop not vectorized due to NoImplicitFloat attribute"); 8398 emitMissedWarning(F, L, Hints, ORE); 8399 return false; 8400 } 8401 8402 // Check if the target supports potentially unsafe FP vectorization. 8403 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8404 // for the target we're vectorizing for, to make sure none of the 8405 // additional fp-math flags can help. 8406 if (Hints.isPotentiallyUnsafe() && 8407 TTI->isFPVectorizationPotentiallyUnsafe()) { 8408 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8409 ORE->emit( 8410 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8411 << "loop not vectorized due to unsafe FP support."); 8412 emitMissedWarning(F, L, Hints, ORE); 8413 return false; 8414 } 8415 8416 // Use the cost model. 8417 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8418 &Hints); 8419 CM.collectValuesToIgnore(); 8420 8421 // Use the planner for vectorization. 8422 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8423 8424 // Get user vectorization factor. 8425 unsigned UserVF = Hints.getWidth(); 8426 8427 // Plan how to best vectorize, return the best VF and its cost. 8428 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 8429 8430 // Select the interleave count. 8431 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8432 8433 // Get user interleave count. 8434 unsigned UserIC = Hints.getInterleave(); 8435 8436 // Identify the diagnostic messages that should be produced. 8437 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8438 bool VectorizeLoop = true, InterleaveLoop = true; 8439 if (Requirements.doesNotMeet(F, L, Hints)) { 8440 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8441 "requirements.\n"); 8442 emitMissedWarning(F, L, Hints, ORE); 8443 return false; 8444 } 8445 8446 if (VF.Width == 1) { 8447 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8448 VecDiagMsg = std::make_pair( 8449 "VectorizationNotBeneficial", 8450 "the cost-model indicates that vectorization is not beneficial"); 8451 VectorizeLoop = false; 8452 } 8453 8454 if (IC == 1 && UserIC <= 1) { 8455 // Tell the user interleaving is not beneficial. 8456 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8457 IntDiagMsg = std::make_pair( 8458 "InterleavingNotBeneficial", 8459 "the cost-model indicates that interleaving is not beneficial"); 8460 InterleaveLoop = false; 8461 if (UserIC == 1) { 8462 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8463 IntDiagMsg.second += 8464 " and is explicitly disabled or interleave count is set to 1"; 8465 } 8466 } else if (IC > 1 && UserIC == 1) { 8467 // Tell the user interleaving is beneficial, but it explicitly disabled. 8468 DEBUG(dbgs() 8469 << "LV: Interleaving is beneficial but is explicitly disabled."); 8470 IntDiagMsg = std::make_pair( 8471 "InterleavingBeneficialButDisabled", 8472 "the cost-model indicates that interleaving is beneficial " 8473 "but is explicitly disabled or interleave count is set to 1"); 8474 InterleaveLoop = false; 8475 } 8476 8477 // Override IC if user provided an interleave count. 8478 IC = UserIC > 0 ? UserIC : IC; 8479 8480 // Emit diagnostic messages, if any. 8481 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8482 if (!VectorizeLoop && !InterleaveLoop) { 8483 // Do not vectorize or interleaving the loop. 8484 ORE->emit([&]() { 8485 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8486 L->getStartLoc(), L->getHeader()) 8487 << VecDiagMsg.second; 8488 }); 8489 ORE->emit([&]() { 8490 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8491 L->getStartLoc(), L->getHeader()) 8492 << IntDiagMsg.second; 8493 }); 8494 return false; 8495 } else if (!VectorizeLoop && InterleaveLoop) { 8496 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8497 ORE->emit([&]() { 8498 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8499 L->getStartLoc(), L->getHeader()) 8500 << VecDiagMsg.second; 8501 }); 8502 } else if (VectorizeLoop && !InterleaveLoop) { 8503 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8504 << DebugLocStr << '\n'); 8505 ORE->emit([&]() { 8506 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8507 L->getStartLoc(), L->getHeader()) 8508 << IntDiagMsg.second; 8509 }); 8510 } else if (VectorizeLoop && InterleaveLoop) { 8511 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8512 << DebugLocStr << '\n'); 8513 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8514 } 8515 8516 LVP.setBestPlan(VF.Width, IC); 8517 8518 using namespace ore; 8519 8520 if (!VectorizeLoop) { 8521 assert(IC > 1 && "interleave count should not be 1 or 0"); 8522 // If we decided that it is not legal to vectorize the loop, then 8523 // interleave it. 8524 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8525 &CM); 8526 LVP.executePlan(Unroller, DT); 8527 8528 ORE->emit([&]() { 8529 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8530 L->getHeader()) 8531 << "interleaved loop (interleaved count: " 8532 << NV("InterleaveCount", IC) << ")"; 8533 }); 8534 } else { 8535 // If we decided that it is *legal* to vectorize the loop, then do it. 8536 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8537 &LVL, &CM); 8538 LVP.executePlan(LB, DT); 8539 ++LoopsVectorized; 8540 8541 // Add metadata to disable runtime unrolling a scalar loop when there are 8542 // no runtime checks about strides and memory. A scalar loop that is 8543 // rarely used is not worth unrolling. 8544 if (!LB.areSafetyChecksAdded()) 8545 AddRuntimeUnrollDisableMetaData(L); 8546 8547 // Report the vectorization decision. 8548 ORE->emit([&]() { 8549 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8550 L->getHeader()) 8551 << "vectorized loop (vectorization width: " 8552 << NV("VectorizationFactor", VF.Width) 8553 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8554 }); 8555 } 8556 8557 // Mark the loop as already vectorized to avoid vectorizing again. 8558 Hints.setAlreadyVectorized(); 8559 8560 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8561 return true; 8562 } 8563 8564 bool LoopVectorizePass::runImpl( 8565 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8566 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8567 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8568 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8569 OptimizationRemarkEmitter &ORE_) { 8570 SE = &SE_; 8571 LI = &LI_; 8572 TTI = &TTI_; 8573 DT = &DT_; 8574 BFI = &BFI_; 8575 TLI = TLI_; 8576 AA = &AA_; 8577 AC = &AC_; 8578 GetLAA = &GetLAA_; 8579 DB = &DB_; 8580 ORE = &ORE_; 8581 8582 // Don't attempt if 8583 // 1. the target claims to have no vector registers, and 8584 // 2. interleaving won't help ILP. 8585 // 8586 // The second condition is necessary because, even if the target has no 8587 // vector registers, loop vectorization may still enable scalar 8588 // interleaving. 8589 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8590 return false; 8591 8592 bool Changed = false; 8593 8594 // The vectorizer requires loops to be in simplified form. 8595 // Since simplification may add new inner loops, it has to run before the 8596 // legality and profitability checks. This means running the loop vectorizer 8597 // will simplify all loops, regardless of whether anything end up being 8598 // vectorized. 8599 for (auto &L : *LI) 8600 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8601 8602 // Build up a worklist of inner-loops to vectorize. This is necessary as 8603 // the act of vectorizing or partially unrolling a loop creates new loops 8604 // and can invalidate iterators across the loops. 8605 SmallVector<Loop *, 8> Worklist; 8606 8607 for (Loop *L : *LI) 8608 addAcyclicInnerLoop(*L, *LI, Worklist); 8609 8610 LoopsAnalyzed += Worklist.size(); 8611 8612 // Now walk the identified inner loops. 8613 while (!Worklist.empty()) { 8614 Loop *L = Worklist.pop_back_val(); 8615 8616 // For the inner loops we actually process, form LCSSA to simplify the 8617 // transform. 8618 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8619 8620 Changed |= processLoop(L); 8621 } 8622 8623 // Process each loop nest in the function. 8624 return Changed; 8625 } 8626 8627 PreservedAnalyses LoopVectorizePass::run(Function &F, 8628 FunctionAnalysisManager &AM) { 8629 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8630 auto &LI = AM.getResult<LoopAnalysis>(F); 8631 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8632 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8633 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8634 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8635 auto &AA = AM.getResult<AAManager>(F); 8636 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8637 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8638 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8639 8640 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8641 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8642 [&](Loop &L) -> const LoopAccessInfo & { 8643 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8644 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8645 }; 8646 bool Changed = 8647 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8648 if (!Changed) 8649 return PreservedAnalyses::all(); 8650 PreservedAnalyses PA; 8651 PA.preserve<LoopAnalysis>(); 8652 PA.preserve<DominatorTreeAnalysis>(); 8653 PA.preserve<BasicAA>(); 8654 PA.preserve<GlobalsAA>(); 8655 return PA; 8656 } 8657