1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionTracker.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopInfo.h" 62 #include "llvm/Analysis/LoopIterator.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolution.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/TargetTransformInfo.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/VectorUtils.h" 95 #include <algorithm> 96 #include <map> 97 #include <tuple> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define LV_NAME "loop-vectorize" 103 #define DEBUG_TYPE LV_NAME 104 105 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 106 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 107 108 static cl::opt<unsigned> 109 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 110 cl::desc("Sets the SIMD width. Zero is autoselect.")); 111 112 static cl::opt<unsigned> 113 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden, 114 cl::desc("Sets the vectorization interleave count. " 115 "Zero is autoselect.")); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> 123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 124 cl::Hidden, 125 cl::desc("Don't vectorize loops with a constant " 126 "trip count that is smaller than this " 127 "value.")); 128 129 /// This enables versioning on the strides of symbolically striding memory 130 /// accesses in code like the following. 131 /// for (i = 0; i < N; ++i) 132 /// A[i * Stride1] += B[i * Stride2] ... 133 /// 134 /// Will be roughly translated to 135 /// if (Stride1 == 1 && Stride2 == 1) { 136 /// for (i = 0; i < N; i+=4) 137 /// A[i:i+3] += ... 138 /// } else 139 /// ... 140 static cl::opt<bool> EnableMemAccessVersioning( 141 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 142 cl::desc("Enable symblic stride memory access versioning")); 143 144 /// We don't unroll loops with a known constant trip count below this number. 145 static const unsigned TinyTripCountUnrollThreshold = 128; 146 147 /// When performing memory disambiguation checks at runtime do not make more 148 /// than this number of comparisons. 149 static const unsigned RuntimeMemoryCheckThreshold = 8; 150 151 /// Maximum simd width. 152 static const unsigned MaxVectorWidth = 64; 153 154 static cl::opt<unsigned> ForceTargetNumScalarRegs( 155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's number of scalar registers.")); 157 158 static cl::opt<unsigned> ForceTargetNumVectorRegs( 159 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's number of vector registers.")); 161 162 /// Maximum vectorization interleave count. 163 static const unsigned MaxInterleaveFactor = 16; 164 165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's max interleave factor for " 168 "scalar loops.")); 169 170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 172 cl::desc("A flag that overrides the target's max interleave factor for " 173 "vectorized loops.")); 174 175 static cl::opt<unsigned> ForceTargetInstructionCost( 176 "force-target-instruction-cost", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's expected cost for " 178 "an instruction to a single constant value. Mostly " 179 "useful for getting consistent testing.")); 180 181 static cl::opt<unsigned> SmallLoopCost( 182 "small-loop-cost", cl::init(20), cl::Hidden, 183 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 184 185 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 187 cl::desc("Enable the use of the block frequency analysis to access PGO " 188 "heuristics minimizing code growth in cold regions and being more " 189 "aggressive in hot regions.")); 190 191 // Runtime unroll loops for load/store throughput. 192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 194 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 195 196 /// The number of stores in a loop that are allowed to need predication. 197 static cl::opt<unsigned> NumberOfStoresToPredicate( 198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 199 cl::desc("Max number of stores to be predicated behind an if.")); 200 201 static cl::opt<bool> EnableIndVarRegisterHeur( 202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 203 cl::desc("Count the induction variable only once when unrolling")); 204 205 static cl::opt<bool> EnableCondStoresVectorization( 206 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 207 cl::desc("Enable if predication of stores during vectorization.")); 208 209 static cl::opt<unsigned> MaxNestedScalarReductionUF( 210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 211 cl::desc("The maximum unroll factor to use when unrolling a scalar " 212 "reduction in a nested loop.")); 213 214 namespace { 215 216 // Forward declarations. 217 class LoopVectorizationLegality; 218 class LoopVectorizationCostModel; 219 class LoopVectorizeHints; 220 221 /// Optimization analysis message produced during vectorization. Messages inform 222 /// the user why vectorization did not occur. 223 class Report { 224 std::string Message; 225 raw_string_ostream Out; 226 Instruction *Instr; 227 228 public: 229 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 230 Out << "loop not vectorized: "; 231 } 232 233 template <typename A> Report &operator<<(const A &Value) { 234 Out << Value; 235 return *this; 236 } 237 238 Instruction *getInstr() { return Instr; } 239 240 std::string &str() { return Out.str(); } 241 operator Twine() { return Out.str(); } 242 }; 243 244 /// InnerLoopVectorizer vectorizes loops which contain only one basic 245 /// block to a specified vectorization factor (VF). 246 /// This class performs the widening of scalars into vectors, or multiple 247 /// scalars. This class also implements the following features: 248 /// * It inserts an epilogue loop for handling loops that don't have iteration 249 /// counts that are known to be a multiple of the vectorization factor. 250 /// * It handles the code generation for reduction variables. 251 /// * Scalarization (implementation using scalars) of un-vectorizable 252 /// instructions. 253 /// InnerLoopVectorizer does not perform any vectorization-legality 254 /// checks, and relies on the caller to check for the different legality 255 /// aspects. The InnerLoopVectorizer relies on the 256 /// LoopVectorizationLegality class to provide information about the induction 257 /// and reduction variables that were found to a given vectorization factor. 258 class InnerLoopVectorizer { 259 public: 260 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 261 DominatorTree *DT, const DataLayout *DL, 262 const TargetLibraryInfo *TLI, unsigned VecWidth, 263 unsigned UnrollFactor) 264 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 265 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 266 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 267 Legal(nullptr) {} 268 269 // Perform the actual loop widening (vectorization). 270 void vectorize(LoopVectorizationLegality *L) { 271 Legal = L; 272 // Create a new empty loop. Unlink the old loop and connect the new one. 273 createEmptyLoop(); 274 // Widen each instruction in the old loop to a new one in the new loop. 275 // Use the Legality module to find the induction and reduction variables. 276 vectorizeLoop(); 277 // Register the new loop and update the analysis passes. 278 updateAnalysis(); 279 } 280 281 virtual ~InnerLoopVectorizer() {} 282 283 protected: 284 /// A small list of PHINodes. 285 typedef SmallVector<PHINode*, 4> PhiVector; 286 /// When we unroll loops we have multiple vector values for each scalar. 287 /// This data structure holds the unrolled and vectorized values that 288 /// originated from one scalar instruction. 289 typedef SmallVector<Value*, 2> VectorParts; 290 291 // When we if-convert we need create edge masks. We have to cache values so 292 // that we don't end up with exponential recursion/IR. 293 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 294 VectorParts> EdgeMaskCache; 295 296 /// \brief Add code that checks at runtime if the accessed arrays overlap. 297 /// 298 /// Returns a pair of instructions where the first element is the first 299 /// instruction generated in possibly a sequence of instructions and the 300 /// second value is the final comparator value or NULL if no check is needed. 301 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 302 303 /// \brief Add checks for strides that where assumed to be 1. 304 /// 305 /// Returns the last check instruction and the first check instruction in the 306 /// pair as (first, last). 307 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 308 309 /// Create an empty loop, based on the loop ranges of the old loop. 310 void createEmptyLoop(); 311 /// Copy and widen the instructions from the old loop. 312 virtual void vectorizeLoop(); 313 314 /// \brief The Loop exit block may have single value PHI nodes where the 315 /// incoming value is 'Undef'. While vectorizing we only handled real values 316 /// that were defined inside the loop. Here we fix the 'undef case'. 317 /// See PR14725. 318 void fixLCSSAPHIs(); 319 320 /// A helper function that computes the predicate of the block BB, assuming 321 /// that the header block of the loop is set to True. It returns the *entry* 322 /// mask for the block BB. 323 VectorParts createBlockInMask(BasicBlock *BB); 324 /// A helper function that computes the predicate of the edge between SRC 325 /// and DST. 326 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 327 328 /// A helper function to vectorize a single BB within the innermost loop. 329 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 330 331 /// Vectorize a single PHINode in a block. This method handles the induction 332 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 333 /// arbitrary length vectors. 334 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 335 unsigned UF, unsigned VF, PhiVector *PV); 336 337 /// Insert the new loop to the loop hierarchy and pass manager 338 /// and update the analysis passes. 339 void updateAnalysis(); 340 341 /// This instruction is un-vectorizable. Implement it as a sequence 342 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 343 /// scalarized instruction behind an if block predicated on the control 344 /// dependence of the instruction. 345 virtual void scalarizeInstruction(Instruction *Instr, 346 bool IfPredicateStore=false); 347 348 /// Vectorize Load and Store instructions, 349 virtual void vectorizeMemoryInstruction(Instruction *Instr); 350 351 /// Create a broadcast instruction. This method generates a broadcast 352 /// instruction (shuffle) for loop invariant values and for the induction 353 /// value. If this is the induction variable then we extend it to N, N+1, ... 354 /// this is needed because each iteration in the loop corresponds to a SIMD 355 /// element. 356 virtual Value *getBroadcastInstrs(Value *V); 357 358 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 359 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 360 /// The sequence starts at StartIndex. 361 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 362 363 /// When we go over instructions in the basic block we rely on previous 364 /// values within the current basic block or on loop invariant values. 365 /// When we widen (vectorize) values we place them in the map. If the values 366 /// are not within the map, they have to be loop invariant, so we simply 367 /// broadcast them into a vector. 368 VectorParts &getVectorValue(Value *V); 369 370 /// Generate a shuffle sequence that will reverse the vector Vec. 371 virtual Value *reverseVector(Value *Vec); 372 373 /// This is a helper class that holds the vectorizer state. It maps scalar 374 /// instructions to vector instructions. When the code is 'unrolled' then 375 /// then a single scalar value is mapped to multiple vector parts. The parts 376 /// are stored in the VectorPart type. 377 struct ValueMap { 378 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 379 /// are mapped. 380 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 381 382 /// \return True if 'Key' is saved in the Value Map. 383 bool has(Value *Key) const { return MapStorage.count(Key); } 384 385 /// Initializes a new entry in the map. Sets all of the vector parts to the 386 /// save value in 'Val'. 387 /// \return A reference to a vector with splat values. 388 VectorParts &splat(Value *Key, Value *Val) { 389 VectorParts &Entry = MapStorage[Key]; 390 Entry.assign(UF, Val); 391 return Entry; 392 } 393 394 ///\return A reference to the value that is stored at 'Key'. 395 VectorParts &get(Value *Key) { 396 VectorParts &Entry = MapStorage[Key]; 397 if (Entry.empty()) 398 Entry.resize(UF); 399 assert(Entry.size() == UF); 400 return Entry; 401 } 402 403 private: 404 /// The unroll factor. Each entry in the map stores this number of vector 405 /// elements. 406 unsigned UF; 407 408 /// Map storage. We use std::map and not DenseMap because insertions to a 409 /// dense map invalidates its iterators. 410 std::map<Value *, VectorParts> MapStorage; 411 }; 412 413 /// The original loop. 414 Loop *OrigLoop; 415 /// Scev analysis to use. 416 ScalarEvolution *SE; 417 /// Loop Info. 418 LoopInfo *LI; 419 /// Dominator Tree. 420 DominatorTree *DT; 421 /// Alias Analysis. 422 AliasAnalysis *AA; 423 /// Data Layout. 424 const DataLayout *DL; 425 /// Target Library Info. 426 const TargetLibraryInfo *TLI; 427 428 /// The vectorization SIMD factor to use. Each vector will have this many 429 /// vector elements. 430 unsigned VF; 431 432 protected: 433 /// The vectorization unroll factor to use. Each scalar is vectorized to this 434 /// many different vector instructions. 435 unsigned UF; 436 437 /// The builder that we use 438 IRBuilder<> Builder; 439 440 // --- Vectorization state --- 441 442 /// The vector-loop preheader. 443 BasicBlock *LoopVectorPreHeader; 444 /// The scalar-loop preheader. 445 BasicBlock *LoopScalarPreHeader; 446 /// Middle Block between the vector and the scalar. 447 BasicBlock *LoopMiddleBlock; 448 ///The ExitBlock of the scalar loop. 449 BasicBlock *LoopExitBlock; 450 ///The vector loop body. 451 SmallVector<BasicBlock *, 4> LoopVectorBody; 452 ///The scalar loop body. 453 BasicBlock *LoopScalarBody; 454 /// A list of all bypass blocks. The first block is the entry of the loop. 455 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 456 457 /// The new Induction variable which was added to the new block. 458 PHINode *Induction; 459 /// The induction variable of the old basic block. 460 PHINode *OldInduction; 461 /// Holds the extended (to the widest induction type) start index. 462 Value *ExtendedIdx; 463 /// Maps scalars to widened vectors. 464 ValueMap WidenMap; 465 EdgeMaskCache MaskCache; 466 467 LoopVectorizationLegality *Legal; 468 }; 469 470 class InnerLoopUnroller : public InnerLoopVectorizer { 471 public: 472 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 473 DominatorTree *DT, const DataLayout *DL, 474 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 475 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 476 477 private: 478 void scalarizeInstruction(Instruction *Instr, 479 bool IfPredicateStore = false) override; 480 void vectorizeMemoryInstruction(Instruction *Instr) override; 481 Value *getBroadcastInstrs(Value *V) override; 482 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 483 Value *reverseVector(Value *Vec) override; 484 }; 485 486 /// \brief Look for a meaningful debug location on the instruction or it's 487 /// operands. 488 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 489 if (!I) 490 return I; 491 492 DebugLoc Empty; 493 if (I->getDebugLoc() != Empty) 494 return I; 495 496 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 497 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 498 if (OpInst->getDebugLoc() != Empty) 499 return OpInst; 500 } 501 502 return I; 503 } 504 505 /// \brief Set the debug location in the builder using the debug location in the 506 /// instruction. 507 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 508 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 509 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 510 else 511 B.SetCurrentDebugLocation(DebugLoc()); 512 } 513 514 #ifndef NDEBUG 515 /// \return string containing a file name and a line # for the given loop. 516 static std::string getDebugLocString(const Loop *L) { 517 std::string Result; 518 if (L) { 519 raw_string_ostream OS(Result); 520 const DebugLoc LoopDbgLoc = L->getStartLoc(); 521 if (!LoopDbgLoc.isUnknown()) 522 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 523 else 524 // Just print the module name. 525 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 526 OS.flush(); 527 } 528 return Result; 529 } 530 #endif 531 532 /// \brief Propagate known metadata from one instruction to another. 533 static void propagateMetadata(Instruction *To, const Instruction *From) { 534 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 535 From->getAllMetadataOtherThanDebugLoc(Metadata); 536 537 for (auto M : Metadata) { 538 unsigned Kind = M.first; 539 540 // These are safe to transfer (this is safe for TBAA, even when we 541 // if-convert, because should that metadata have had a control dependency 542 // on the condition, and thus actually aliased with some other 543 // non-speculated memory access when the condition was false, this would be 544 // caught by the runtime overlap checks). 545 if (Kind != LLVMContext::MD_tbaa && 546 Kind != LLVMContext::MD_alias_scope && 547 Kind != LLVMContext::MD_noalias && 548 Kind != LLVMContext::MD_fpmath) 549 continue; 550 551 To->setMetadata(Kind, M.second); 552 } 553 } 554 555 /// \brief Propagate known metadata from one instruction to a vector of others. 556 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 557 for (Value *V : To) 558 if (Instruction *I = dyn_cast<Instruction>(V)) 559 propagateMetadata(I, From); 560 } 561 562 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 563 /// to what vectorization factor. 564 /// This class does not look at the profitability of vectorization, only the 565 /// legality. This class has two main kinds of checks: 566 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 567 /// will change the order of memory accesses in a way that will change the 568 /// correctness of the program. 569 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 570 /// checks for a number of different conditions, such as the availability of a 571 /// single induction variable, that all types are supported and vectorize-able, 572 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 573 /// This class is also used by InnerLoopVectorizer for identifying 574 /// induction variable and the different reduction variables. 575 class LoopVectorizationLegality { 576 public: 577 unsigned NumLoads; 578 unsigned NumStores; 579 unsigned NumPredStores; 580 581 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 582 DominatorTree *DT, TargetLibraryInfo *TLI, 583 AliasAnalysis *AA, Function *F, 584 const TargetTransformInfo *TTI) 585 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 586 DT(DT), TLI(TLI), AA(AA), TheFunction(F), TTI(TTI), Induction(nullptr), 587 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 588 } 589 590 /// This enum represents the kinds of reductions that we support. 591 enum ReductionKind { 592 RK_NoReduction, ///< Not a reduction. 593 RK_IntegerAdd, ///< Sum of integers. 594 RK_IntegerMult, ///< Product of integers. 595 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 596 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 597 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 598 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 599 RK_FloatAdd, ///< Sum of floats. 600 RK_FloatMult, ///< Product of floats. 601 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 602 }; 603 604 /// This enum represents the kinds of inductions that we support. 605 enum InductionKind { 606 IK_NoInduction, ///< Not an induction variable. 607 IK_IntInduction, ///< Integer induction variable. Step = 1. 608 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 609 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 610 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 611 }; 612 613 // This enum represents the kind of minmax reduction. 614 enum MinMaxReductionKind { 615 MRK_Invalid, 616 MRK_UIntMin, 617 MRK_UIntMax, 618 MRK_SIntMin, 619 MRK_SIntMax, 620 MRK_FloatMin, 621 MRK_FloatMax 622 }; 623 624 /// This struct holds information about reduction variables. 625 struct ReductionDescriptor { 626 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 627 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 628 629 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 630 MinMaxReductionKind MK) 631 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 632 633 // The starting value of the reduction. 634 // It does not have to be zero! 635 TrackingVH<Value> StartValue; 636 // The instruction who's value is used outside the loop. 637 Instruction *LoopExitInstr; 638 // The kind of the reduction. 639 ReductionKind Kind; 640 // If this a min/max reduction the kind of reduction. 641 MinMaxReductionKind MinMaxKind; 642 }; 643 644 /// This POD struct holds information about a potential reduction operation. 645 struct ReductionInstDesc { 646 ReductionInstDesc(bool IsRedux, Instruction *I) : 647 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 648 649 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 650 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 651 652 // Is this instruction a reduction candidate. 653 bool IsReduction; 654 // The last instruction in a min/max pattern (select of the select(icmp()) 655 // pattern), or the current reduction instruction otherwise. 656 Instruction *PatternLastInst; 657 // If this is a min/max pattern the comparison predicate. 658 MinMaxReductionKind MinMaxKind; 659 }; 660 661 /// This struct holds information about the memory runtime legality 662 /// check that a group of pointers do not overlap. 663 struct RuntimePointerCheck { 664 RuntimePointerCheck() : Need(false) {} 665 666 /// Reset the state of the pointer runtime information. 667 void reset() { 668 Need = false; 669 Pointers.clear(); 670 Starts.clear(); 671 Ends.clear(); 672 IsWritePtr.clear(); 673 DependencySetId.clear(); 674 AliasSetId.clear(); 675 } 676 677 /// Insert a pointer and calculate the start and end SCEVs. 678 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 679 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides); 680 681 /// This flag indicates if we need to add the runtime check. 682 bool Need; 683 /// Holds the pointers that we need to check. 684 SmallVector<TrackingVH<Value>, 2> Pointers; 685 /// Holds the pointer value at the beginning of the loop. 686 SmallVector<const SCEV*, 2> Starts; 687 /// Holds the pointer value at the end of the loop. 688 SmallVector<const SCEV*, 2> Ends; 689 /// Holds the information if this pointer is used for writing to memory. 690 SmallVector<bool, 2> IsWritePtr; 691 /// Holds the id of the set of pointers that could be dependent because of a 692 /// shared underlying object. 693 SmallVector<unsigned, 2> DependencySetId; 694 /// Holds the id of the disjoint alias set to which this pointer belongs. 695 SmallVector<unsigned, 2> AliasSetId; 696 }; 697 698 /// A struct for saving information about induction variables. 699 struct InductionInfo { 700 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 701 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 702 /// Start value. 703 TrackingVH<Value> StartValue; 704 /// Induction kind. 705 InductionKind IK; 706 }; 707 708 /// ReductionList contains the reduction descriptors for all 709 /// of the reductions that were found in the loop. 710 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 711 712 /// InductionList saves induction variables and maps them to the 713 /// induction descriptor. 714 typedef MapVector<PHINode*, InductionInfo> InductionList; 715 716 /// Returns true if it is legal to vectorize this loop. 717 /// This does not mean that it is profitable to vectorize this 718 /// loop, only that it is legal to do so. 719 bool canVectorize(); 720 721 /// Returns the Induction variable. 722 PHINode *getInduction() { return Induction; } 723 724 /// Returns the reduction variables found in the loop. 725 ReductionList *getReductionVars() { return &Reductions; } 726 727 /// Returns the induction variables found in the loop. 728 InductionList *getInductionVars() { return &Inductions; } 729 730 /// Returns the widest induction type. 731 Type *getWidestInductionType() { return WidestIndTy; } 732 733 /// Returns True if V is an induction variable in this loop. 734 bool isInductionVariable(const Value *V); 735 736 /// Return true if the block BB needs to be predicated in order for the loop 737 /// to be vectorized. 738 bool blockNeedsPredication(BasicBlock *BB); 739 740 /// Check if this pointer is consecutive when vectorizing. This happens 741 /// when the last index of the GEP is the induction variable, or that the 742 /// pointer itself is an induction variable. 743 /// This check allows us to vectorize A[idx] into a wide load/store. 744 /// Returns: 745 /// 0 - Stride is unknown or non-consecutive. 746 /// 1 - Address is consecutive. 747 /// -1 - Address is consecutive, and decreasing. 748 int isConsecutivePtr(Value *Ptr); 749 750 /// Returns true if the value V is uniform within the loop. 751 bool isUniform(Value *V); 752 753 /// Returns true if this instruction will remain scalar after vectorization. 754 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 755 756 /// Returns the information that we collected about runtime memory check. 757 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 758 759 /// This function returns the identity element (or neutral element) for 760 /// the operation K. 761 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 762 763 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 764 765 bool hasStride(Value *V) { return StrideSet.count(V); } 766 bool mustCheckStrides() { return !StrideSet.empty(); } 767 SmallPtrSet<Value *, 8>::iterator strides_begin() { 768 return StrideSet.begin(); 769 } 770 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 771 772 /// Returns true if the target machine supports masked store operation 773 /// for the given \p DataType and kind of access to \p Ptr. 774 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 775 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 776 } 777 /// Returns true if the target machine supports masked load operation 778 /// for the given \p DataType and kind of access to \p Ptr. 779 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 780 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 781 } 782 /// Returns true if vector representation of the instruction \p I 783 /// requires mask. 784 bool isMaskRequired(const Instruction* I) { 785 return (MaskedOp.count(I) != 0); 786 } 787 private: 788 /// Check if a single basic block loop is vectorizable. 789 /// At this point we know that this is a loop with a constant trip count 790 /// and we only need to check individual instructions. 791 bool canVectorizeInstrs(); 792 793 /// When we vectorize loops we may change the order in which 794 /// we read and write from memory. This method checks if it is 795 /// legal to vectorize the code, considering only memory constrains. 796 /// Returns true if the loop is vectorizable 797 bool canVectorizeMemory(); 798 799 /// Return true if we can vectorize this loop using the IF-conversion 800 /// transformation. 801 bool canVectorizeWithIfConvert(); 802 803 /// Collect the variables that need to stay uniform after vectorization. 804 void collectLoopUniforms(); 805 806 /// Return true if all of the instructions in the block can be speculatively 807 /// executed. \p SafePtrs is a list of addresses that are known to be legal 808 /// and we know that we can read from them without segfault. 809 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 810 811 /// Returns True, if 'Phi' is the kind of reduction variable for type 812 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 813 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 814 /// Returns a struct describing if the instruction 'I' can be a reduction 815 /// variable of type 'Kind'. If the reduction is a min/max pattern of 816 /// select(icmp()) this function advances the instruction pointer 'I' from the 817 /// compare instruction to the select instruction and stores this pointer in 818 /// 'PatternLastInst' member of the returned struct. 819 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 820 ReductionInstDesc &Desc); 821 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 822 /// pattern corresponding to a min(X, Y) or max(X, Y). 823 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 824 ReductionInstDesc &Prev); 825 /// Returns the induction kind of Phi. This function may return NoInduction 826 /// if the PHI is not an induction variable. 827 InductionKind isInductionVariable(PHINode *Phi); 828 829 /// \brief Collect memory access with loop invariant strides. 830 /// 831 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 832 /// invariant. 833 void collectStridedAcccess(Value *LoadOrStoreInst); 834 835 /// Report an analysis message to assist the user in diagnosing loops that are 836 /// not vectorized. 837 void emitAnalysis(Report &Message) { 838 DebugLoc DL = TheLoop->getStartLoc(); 839 if (Instruction *I = Message.getInstr()) 840 DL = I->getDebugLoc(); 841 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 842 *TheFunction, DL, Message.str()); 843 } 844 845 /// The loop that we evaluate. 846 Loop *TheLoop; 847 /// Scev analysis. 848 ScalarEvolution *SE; 849 /// DataLayout analysis. 850 const DataLayout *DL; 851 /// Dominators. 852 DominatorTree *DT; 853 /// Target Library Info. 854 TargetLibraryInfo *TLI; 855 /// Alias analysis. 856 AliasAnalysis *AA; 857 /// Parent function 858 Function *TheFunction; 859 /// Target Transform Info 860 const TargetTransformInfo *TTI; 861 862 // --- vectorization state --- // 863 864 /// Holds the integer induction variable. This is the counter of the 865 /// loop. 866 PHINode *Induction; 867 /// Holds the reduction variables. 868 ReductionList Reductions; 869 /// Holds all of the induction variables that we found in the loop. 870 /// Notice that inductions don't need to start at zero and that induction 871 /// variables can be pointers. 872 InductionList Inductions; 873 /// Holds the widest induction type encountered. 874 Type *WidestIndTy; 875 876 /// Allowed outside users. This holds the reduction 877 /// vars which can be accessed from outside the loop. 878 SmallPtrSet<Value*, 4> AllowedExit; 879 /// This set holds the variables which are known to be uniform after 880 /// vectorization. 881 SmallPtrSet<Instruction*, 4> Uniforms; 882 /// We need to check that all of the pointers in this list are disjoint 883 /// at runtime. 884 RuntimePointerCheck PtrRtCheck; 885 /// Can we assume the absence of NaNs. 886 bool HasFunNoNaNAttr; 887 888 unsigned MaxSafeDepDistBytes; 889 890 ValueToValueMap Strides; 891 SmallPtrSet<Value *, 8> StrideSet; 892 893 /// While vectorizing these instructions we have to generate a 894 /// call to the appropriate masked intrinsic 895 SmallPtrSet<const Instruction*, 8> MaskedOp; 896 }; 897 898 /// LoopVectorizationCostModel - estimates the expected speedups due to 899 /// vectorization. 900 /// In many cases vectorization is not profitable. This can happen because of 901 /// a number of reasons. In this class we mainly attempt to predict the 902 /// expected speedup/slowdowns due to the supported instruction set. We use the 903 /// TargetTransformInfo to query the different backends for the cost of 904 /// different operations. 905 class LoopVectorizationCostModel { 906 public: 907 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 908 LoopVectorizationLegality *Legal, 909 const TargetTransformInfo &TTI, 910 const DataLayout *DL, const TargetLibraryInfo *TLI, 911 AssumptionTracker *AT, const Function *F, 912 const LoopVectorizeHints *Hints) 913 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), 914 TheFunction(F), Hints(Hints) { 915 CodeMetrics::collectEphemeralValues(L, AT, EphValues); 916 } 917 918 /// Information about vectorization costs 919 struct VectorizationFactor { 920 unsigned Width; // Vector width with best cost 921 unsigned Cost; // Cost of the loop with that width 922 }; 923 /// \return The most profitable vectorization factor and the cost of that VF. 924 /// This method checks every power of two up to VF. If UserVF is not ZERO 925 /// then this vectorization factor will be selected if vectorization is 926 /// possible. 927 VectorizationFactor selectVectorizationFactor(bool OptForSize); 928 929 /// \return The size (in bits) of the widest type in the code that 930 /// needs to be vectorized. We ignore values that remain scalar such as 931 /// 64 bit loop indices. 932 unsigned getWidestType(); 933 934 /// \return The most profitable unroll factor. 935 /// If UserUF is non-zero then this method finds the best unroll-factor 936 /// based on register pressure and other parameters. 937 /// VF and LoopCost are the selected vectorization factor and the cost of the 938 /// selected VF. 939 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 940 941 /// \brief A struct that represents some properties of the register usage 942 /// of a loop. 943 struct RegisterUsage { 944 /// Holds the number of loop invariant values that are used in the loop. 945 unsigned LoopInvariantRegs; 946 /// Holds the maximum number of concurrent live intervals in the loop. 947 unsigned MaxLocalUsers; 948 /// Holds the number of instructions in the loop. 949 unsigned NumInstructions; 950 }; 951 952 /// \return information about the register usage of the loop. 953 RegisterUsage calculateRegisterUsage(); 954 955 private: 956 /// Returns the expected execution cost. The unit of the cost does 957 /// not matter because we use the 'cost' units to compare different 958 /// vector widths. The cost that is returned is *not* normalized by 959 /// the factor width. 960 unsigned expectedCost(unsigned VF); 961 962 /// Returns the execution time cost of an instruction for a given vector 963 /// width. Vector width of one means scalar. 964 unsigned getInstructionCost(Instruction *I, unsigned VF); 965 966 /// A helper function for converting Scalar types to vector types. 967 /// If the incoming type is void, we return void. If the VF is 1, we return 968 /// the scalar type. 969 static Type* ToVectorTy(Type *Scalar, unsigned VF); 970 971 /// Returns whether the instruction is a load or store and will be a emitted 972 /// as a vector operation. 973 bool isConsecutiveLoadOrStore(Instruction *I); 974 975 /// Report an analysis message to assist the user in diagnosing loops that are 976 /// not vectorized. 977 void emitAnalysis(Report &Message) { 978 DebugLoc DL = TheLoop->getStartLoc(); 979 if (Instruction *I = Message.getInstr()) 980 DL = I->getDebugLoc(); 981 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 982 *TheFunction, DL, Message.str()); 983 } 984 985 /// Values used only by @llvm.assume calls. 986 SmallPtrSet<const Value *, 32> EphValues; 987 988 /// The loop that we evaluate. 989 Loop *TheLoop; 990 /// Scev analysis. 991 ScalarEvolution *SE; 992 /// Loop Info analysis. 993 LoopInfo *LI; 994 /// Vectorization legality. 995 LoopVectorizationLegality *Legal; 996 /// Vector target information. 997 const TargetTransformInfo &TTI; 998 /// Target data layout information. 999 const DataLayout *DL; 1000 /// Target Library Info. 1001 const TargetLibraryInfo *TLI; 1002 const Function *TheFunction; 1003 // Loop Vectorize Hint. 1004 const LoopVectorizeHints *Hints; 1005 }; 1006 1007 /// Utility class for getting and setting loop vectorizer hints in the form 1008 /// of loop metadata. 1009 /// This class keeps a number of loop annotations locally (as member variables) 1010 /// and can, upon request, write them back as metadata on the loop. It will 1011 /// initially scan the loop for existing metadata, and will update the local 1012 /// values based on information in the loop. 1013 /// We cannot write all values to metadata, as the mere presence of some info, 1014 /// for example 'force', means a decision has been made. So, we need to be 1015 /// careful NOT to add them if the user hasn't specifically asked so. 1016 class LoopVectorizeHints { 1017 enum HintKind { 1018 HK_WIDTH, 1019 HK_UNROLL, 1020 HK_FORCE 1021 }; 1022 1023 /// Hint - associates name and validation with the hint value. 1024 struct Hint { 1025 const char * Name; 1026 unsigned Value; // This may have to change for non-numeric values. 1027 HintKind Kind; 1028 1029 Hint(const char * Name, unsigned Value, HintKind Kind) 1030 : Name(Name), Value(Value), Kind(Kind) { } 1031 1032 bool validate(unsigned Val) { 1033 switch (Kind) { 1034 case HK_WIDTH: 1035 return isPowerOf2_32(Val) && Val <= MaxVectorWidth; 1036 case HK_UNROLL: 1037 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1038 case HK_FORCE: 1039 return (Val <= 1); 1040 } 1041 return false; 1042 } 1043 }; 1044 1045 /// Vectorization width. 1046 Hint Width; 1047 /// Vectorization interleave factor. 1048 Hint Interleave; 1049 /// Vectorization forced 1050 Hint Force; 1051 1052 /// Return the loop metadata prefix. 1053 static StringRef Prefix() { return "llvm.loop."; } 1054 1055 public: 1056 enum ForceKind { 1057 FK_Undefined = -1, ///< Not selected. 1058 FK_Disabled = 0, ///< Forcing disabled. 1059 FK_Enabled = 1, ///< Forcing enabled. 1060 }; 1061 1062 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1063 : Width("vectorize.width", VectorizationFactor, HK_WIDTH), 1064 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1065 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1066 TheLoop(L) { 1067 // Populate values with existing loop metadata. 1068 getHintsFromMetadata(); 1069 1070 // force-vector-interleave overrides DisableInterleaving. 1071 if (VectorizationInterleave.getNumOccurrences() > 0) 1072 Interleave.Value = VectorizationInterleave; 1073 1074 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1075 << "LV: Interleaving disabled by the pass manager\n"); 1076 } 1077 1078 /// Mark the loop L as already vectorized by setting the width to 1. 1079 void setAlreadyVectorized() { 1080 Width.Value = Interleave.Value = 1; 1081 Hint Hints[] = {Width, Interleave}; 1082 writeHintsToMetadata(Hints); 1083 } 1084 1085 /// Dumps all the hint information. 1086 std::string emitRemark() const { 1087 Report R; 1088 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1089 R << "vectorization is explicitly disabled"; 1090 else { 1091 R << "use -Rpass-analysis=loop-vectorize for more info"; 1092 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1093 R << " (Force=true"; 1094 if (Width.Value != 0) 1095 R << ", Vector Width=" << Width.Value; 1096 if (Interleave.Value != 0) 1097 R << ", Interleave Count=" << Interleave.Value; 1098 R << ")"; 1099 } 1100 } 1101 1102 return R.str(); 1103 } 1104 1105 unsigned getWidth() const { return Width.Value; } 1106 unsigned getInterleave() const { return Interleave.Value; } 1107 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1108 1109 private: 1110 /// Find hints specified in the loop metadata and update local values. 1111 void getHintsFromMetadata() { 1112 MDNode *LoopID = TheLoop->getLoopID(); 1113 if (!LoopID) 1114 return; 1115 1116 // First operand should refer to the loop id itself. 1117 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1118 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1119 1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1121 const MDString *S = nullptr; 1122 SmallVector<Metadata *, 4> Args; 1123 1124 // The expected hint is either a MDString or a MDNode with the first 1125 // operand a MDString. 1126 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1127 if (!MD || MD->getNumOperands() == 0) 1128 continue; 1129 S = dyn_cast<MDString>(MD->getOperand(0)); 1130 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1131 Args.push_back(MD->getOperand(i)); 1132 } else { 1133 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1134 assert(Args.size() == 0 && "too many arguments for MDString"); 1135 } 1136 1137 if (!S) 1138 continue; 1139 1140 // Check if the hint starts with the loop metadata prefix. 1141 StringRef Name = S->getString(); 1142 if (Args.size() == 1) 1143 setHint(Name, Args[0]); 1144 } 1145 } 1146 1147 /// Checks string hint with one operand and set value if valid. 1148 void setHint(StringRef Name, Metadata *Arg) { 1149 if (!Name.startswith(Prefix())) 1150 return; 1151 Name = Name.substr(Prefix().size(), StringRef::npos); 1152 1153 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1154 if (!C) return; 1155 unsigned Val = C->getZExtValue(); 1156 1157 Hint *Hints[] = {&Width, &Interleave, &Force}; 1158 for (auto H : Hints) { 1159 if (Name == H->Name) { 1160 if (H->validate(Val)) 1161 H->Value = Val; 1162 else 1163 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1164 break; 1165 } 1166 } 1167 } 1168 1169 /// Create a new hint from name / value pair. 1170 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1171 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1172 Metadata *MDs[] = {MDString::get(Context, Name), 1173 ConstantAsMetadata::get( 1174 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1175 return MDNode::get(Context, MDs); 1176 } 1177 1178 /// Matches metadata with hint name. 1179 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1180 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1181 if (!Name) 1182 return false; 1183 1184 for (auto H : HintTypes) 1185 if (Name->getString().endswith(H.Name)) 1186 return true; 1187 return false; 1188 } 1189 1190 /// Sets current hints into loop metadata, keeping other values intact. 1191 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1192 if (HintTypes.size() == 0) 1193 return; 1194 1195 // Reserve the first element to LoopID (see below). 1196 SmallVector<Metadata *, 4> MDs(1); 1197 // If the loop already has metadata, then ignore the existing operands. 1198 MDNode *LoopID = TheLoop->getLoopID(); 1199 if (LoopID) { 1200 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1201 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1202 // If node in update list, ignore old value. 1203 if (!matchesHintMetadataName(Node, HintTypes)) 1204 MDs.push_back(Node); 1205 } 1206 } 1207 1208 // Now, add the missing hints. 1209 for (auto H : HintTypes) 1210 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1211 1212 // Replace current metadata node with new one. 1213 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1214 MDNode *NewLoopID = MDNode::get(Context, MDs); 1215 // Set operand 0 to refer to the loop id itself. 1216 NewLoopID->replaceOperandWith(0, NewLoopID); 1217 1218 TheLoop->setLoopID(NewLoopID); 1219 } 1220 1221 /// The loop these hints belong to. 1222 const Loop *TheLoop; 1223 }; 1224 1225 static void emitMissedWarning(Function *F, Loop *L, 1226 const LoopVectorizeHints &LH) { 1227 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1228 L->getStartLoc(), LH.emitRemark()); 1229 1230 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1231 if (LH.getWidth() != 1) 1232 emitLoopVectorizeWarning( 1233 F->getContext(), *F, L->getStartLoc(), 1234 "failed explicitly specified loop vectorization"); 1235 else if (LH.getInterleave() != 1) 1236 emitLoopInterleaveWarning( 1237 F->getContext(), *F, L->getStartLoc(), 1238 "failed explicitly specified loop interleaving"); 1239 } 1240 } 1241 1242 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1243 if (L.empty()) 1244 return V.push_back(&L); 1245 1246 for (Loop *InnerL : L) 1247 addInnerLoop(*InnerL, V); 1248 } 1249 1250 /// The LoopVectorize Pass. 1251 struct LoopVectorize : public FunctionPass { 1252 /// Pass identification, replacement for typeid 1253 static char ID; 1254 1255 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1256 : FunctionPass(ID), 1257 DisableUnrolling(NoUnrolling), 1258 AlwaysVectorize(AlwaysVectorize) { 1259 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1260 } 1261 1262 ScalarEvolution *SE; 1263 const DataLayout *DL; 1264 LoopInfo *LI; 1265 TargetTransformInfo *TTI; 1266 DominatorTree *DT; 1267 BlockFrequencyInfo *BFI; 1268 TargetLibraryInfo *TLI; 1269 AliasAnalysis *AA; 1270 AssumptionTracker *AT; 1271 bool DisableUnrolling; 1272 bool AlwaysVectorize; 1273 1274 BlockFrequency ColdEntryFreq; 1275 1276 bool runOnFunction(Function &F) override { 1277 SE = &getAnalysis<ScalarEvolution>(); 1278 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1279 DL = DLP ? &DLP->getDataLayout() : nullptr; 1280 LI = &getAnalysis<LoopInfo>(); 1281 TTI = &getAnalysis<TargetTransformInfo>(); 1282 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1283 BFI = &getAnalysis<BlockFrequencyInfo>(); 1284 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1285 AA = &getAnalysis<AliasAnalysis>(); 1286 AT = &getAnalysis<AssumptionTracker>(); 1287 1288 // Compute some weights outside of the loop over the loops. Compute this 1289 // using a BranchProbability to re-use its scaling math. 1290 const BranchProbability ColdProb(1, 5); // 20% 1291 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1292 1293 // If the target claims to have no vector registers don't attempt 1294 // vectorization. 1295 if (!TTI->getNumberOfRegisters(true)) 1296 return false; 1297 1298 if (!DL) { 1299 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1300 << ": Missing data layout\n"); 1301 return false; 1302 } 1303 1304 // Build up a worklist of inner-loops to vectorize. This is necessary as 1305 // the act of vectorizing or partially unrolling a loop creates new loops 1306 // and can invalidate iterators across the loops. 1307 SmallVector<Loop *, 8> Worklist; 1308 1309 for (Loop *L : *LI) 1310 addInnerLoop(*L, Worklist); 1311 1312 LoopsAnalyzed += Worklist.size(); 1313 1314 // Now walk the identified inner loops. 1315 bool Changed = false; 1316 while (!Worklist.empty()) 1317 Changed |= processLoop(Worklist.pop_back_val()); 1318 1319 // Process each loop nest in the function. 1320 return Changed; 1321 } 1322 1323 bool processLoop(Loop *L) { 1324 assert(L->empty() && "Only process inner loops."); 1325 1326 #ifndef NDEBUG 1327 const std::string DebugLocStr = getDebugLocString(L); 1328 #endif /* NDEBUG */ 1329 1330 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1331 << L->getHeader()->getParent()->getName() << "\" from " 1332 << DebugLocStr << "\n"); 1333 1334 LoopVectorizeHints Hints(L, DisableUnrolling); 1335 1336 DEBUG(dbgs() << "LV: Loop hints:" 1337 << " force=" 1338 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1339 ? "disabled" 1340 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1341 ? "enabled" 1342 : "?")) << " width=" << Hints.getWidth() 1343 << " unroll=" << Hints.getInterleave() << "\n"); 1344 1345 // Function containing loop 1346 Function *F = L->getHeader()->getParent(); 1347 1348 // Looking at the diagnostic output is the only way to determine if a loop 1349 // was vectorized (other than looking at the IR or machine code), so it 1350 // is important to generate an optimization remark for each loop. Most of 1351 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1352 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1353 // less verbose reporting vectorized loops and unvectorized loops that may 1354 // benefit from vectorization, respectively. 1355 1356 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1357 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1358 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1359 L->getStartLoc(), Hints.emitRemark()); 1360 return false; 1361 } 1362 1363 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1364 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1365 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1366 L->getStartLoc(), Hints.emitRemark()); 1367 return false; 1368 } 1369 1370 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1371 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1372 emitOptimizationRemarkAnalysis( 1373 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1374 "loop not vectorized: vector width and interleave count are " 1375 "explicitly set to 1"); 1376 return false; 1377 } 1378 1379 // Check the loop for a trip count threshold: 1380 // do not vectorize loops with a tiny trip count. 1381 const unsigned TC = SE->getSmallConstantTripCount(L); 1382 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1383 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1384 << "This loop is not worth vectorizing."); 1385 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1386 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1387 else { 1388 DEBUG(dbgs() << "\n"); 1389 emitOptimizationRemarkAnalysis( 1390 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1391 "vectorization is not beneficial and is not explicitly forced"); 1392 return false; 1393 } 1394 } 1395 1396 // Check if it is legal to vectorize the loop. 1397 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI); 1398 if (!LVL.canVectorize()) { 1399 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1400 emitMissedWarning(F, L, Hints); 1401 return false; 1402 } 1403 1404 // Use the cost model. 1405 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AT, F, 1406 &Hints); 1407 1408 // Check the function attributes to find out if this function should be 1409 // optimized for size. 1410 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1411 F->hasFnAttribute(Attribute::OptimizeForSize); 1412 1413 // Compute the weighted frequency of this loop being executed and see if it 1414 // is less than 20% of the function entry baseline frequency. Note that we 1415 // always have a canonical loop here because we think we *can* vectoriez. 1416 // FIXME: This is hidden behind a flag due to pervasive problems with 1417 // exactly what block frequency models. 1418 if (LoopVectorizeWithBlockFrequency) { 1419 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1420 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1421 LoopEntryFreq < ColdEntryFreq) 1422 OptForSize = true; 1423 } 1424 1425 // Check the function attributes to see if implicit floats are allowed.a 1426 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1427 // an integer loop and the vector instructions selected are purely integer 1428 // vector instructions? 1429 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1430 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1431 "attribute is used.\n"); 1432 emitOptimizationRemarkAnalysis( 1433 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1434 "loop not vectorized due to NoImplicitFloat attribute"); 1435 emitMissedWarning(F, L, Hints); 1436 return false; 1437 } 1438 1439 // Select the optimal vectorization factor. 1440 const LoopVectorizationCostModel::VectorizationFactor VF = 1441 CM.selectVectorizationFactor(OptForSize); 1442 1443 // Select the unroll factor. 1444 const unsigned UF = 1445 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1446 1447 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1448 << DebugLocStr << '\n'); 1449 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1450 1451 if (VF.Width == 1) { 1452 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1453 1454 if (UF == 1) { 1455 emitOptimizationRemarkAnalysis( 1456 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1457 "not beneficial to vectorize and user disabled interleaving"); 1458 return false; 1459 } 1460 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1461 1462 // Report the unrolling decision. 1463 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1464 Twine("unrolled with interleaving factor " + 1465 Twine(UF) + 1466 " (vectorization not beneficial)")); 1467 1468 // We decided not to vectorize, but we may want to unroll. 1469 1470 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1471 Unroller.vectorize(&LVL); 1472 } else { 1473 // If we decided that it is *legal* to vectorize the loop then do it. 1474 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1475 LB.vectorize(&LVL); 1476 ++LoopsVectorized; 1477 1478 // Report the vectorization decision. 1479 emitOptimizationRemark( 1480 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1481 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1482 ", unrolling interleave factor: " + Twine(UF) + ")"); 1483 } 1484 1485 // Mark the loop as already vectorized to avoid vectorizing again. 1486 Hints.setAlreadyVectorized(); 1487 1488 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1489 return true; 1490 } 1491 1492 void getAnalysisUsage(AnalysisUsage &AU) const override { 1493 AU.addRequired<AssumptionTracker>(); 1494 AU.addRequiredID(LoopSimplifyID); 1495 AU.addRequiredID(LCSSAID); 1496 AU.addRequired<BlockFrequencyInfo>(); 1497 AU.addRequired<DominatorTreeWrapperPass>(); 1498 AU.addRequired<LoopInfo>(); 1499 AU.addRequired<ScalarEvolution>(); 1500 AU.addRequired<TargetTransformInfo>(); 1501 AU.addRequired<AliasAnalysis>(); 1502 AU.addPreserved<LoopInfo>(); 1503 AU.addPreserved<DominatorTreeWrapperPass>(); 1504 AU.addPreserved<AliasAnalysis>(); 1505 } 1506 1507 }; 1508 1509 } // end anonymous namespace 1510 1511 //===----------------------------------------------------------------------===// 1512 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1513 // LoopVectorizationCostModel. 1514 //===----------------------------------------------------------------------===// 1515 1516 static Value *stripIntegerCast(Value *V) { 1517 if (CastInst *CI = dyn_cast<CastInst>(V)) 1518 if (CI->getOperand(0)->getType()->isIntegerTy()) 1519 return CI->getOperand(0); 1520 return V; 1521 } 1522 1523 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1524 /// 1525 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1526 /// \p Ptr. 1527 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1528 ValueToValueMap &PtrToStride, 1529 Value *Ptr, Value *OrigPtr = nullptr) { 1530 1531 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1532 1533 // If there is an entry in the map return the SCEV of the pointer with the 1534 // symbolic stride replaced by one. 1535 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1536 if (SI != PtrToStride.end()) { 1537 Value *StrideVal = SI->second; 1538 1539 // Strip casts. 1540 StrideVal = stripIntegerCast(StrideVal); 1541 1542 // Replace symbolic stride by one. 1543 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1544 ValueToValueMap RewriteMap; 1545 RewriteMap[StrideVal] = One; 1546 1547 const SCEV *ByOne = 1548 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1549 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1550 << "\n"); 1551 return ByOne; 1552 } 1553 1554 // Otherwise, just return the SCEV of the original pointer. 1555 return SE->getSCEV(Ptr); 1556 } 1557 1558 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1559 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1560 unsigned ASId, ValueToValueMap &Strides) { 1561 // Get the stride replaced scev. 1562 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1563 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1564 assert(AR && "Invalid addrec expression"); 1565 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1566 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1567 Pointers.push_back(Ptr); 1568 Starts.push_back(AR->getStart()); 1569 Ends.push_back(ScEnd); 1570 IsWritePtr.push_back(WritePtr); 1571 DependencySetId.push_back(DepSetId); 1572 AliasSetId.push_back(ASId); 1573 } 1574 1575 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1576 // We need to place the broadcast of invariant variables outside the loop. 1577 Instruction *Instr = dyn_cast<Instruction>(V); 1578 bool NewInstr = 1579 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1580 Instr->getParent()) != LoopVectorBody.end()); 1581 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1582 1583 // Place the code for broadcasting invariant variables in the new preheader. 1584 IRBuilder<>::InsertPointGuard Guard(Builder); 1585 if (Invariant) 1586 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1587 1588 // Broadcast the scalar into all locations in the vector. 1589 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1590 1591 return Shuf; 1592 } 1593 1594 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1595 bool Negate) { 1596 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1597 assert(Val->getType()->getScalarType()->isIntegerTy() && 1598 "Elem must be an integer"); 1599 // Create the types. 1600 Type *ITy = Val->getType()->getScalarType(); 1601 VectorType *Ty = cast<VectorType>(Val->getType()); 1602 int VLen = Ty->getNumElements(); 1603 SmallVector<Constant*, 8> Indices; 1604 1605 // Create a vector of consecutive numbers from zero to VF. 1606 for (int i = 0; i < VLen; ++i) { 1607 int64_t Idx = Negate ? (-i) : i; 1608 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1609 } 1610 1611 // Add the consecutive indices to the vector value. 1612 Constant *Cv = ConstantVector::get(Indices); 1613 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1614 return Builder.CreateAdd(Val, Cv, "induction"); 1615 } 1616 1617 /// \brief Find the operand of the GEP that should be checked for consecutive 1618 /// stores. This ignores trailing indices that have no effect on the final 1619 /// pointer. 1620 static unsigned getGEPInductionOperand(const DataLayout *DL, 1621 const GetElementPtrInst *Gep) { 1622 unsigned LastOperand = Gep->getNumOperands() - 1; 1623 unsigned GEPAllocSize = DL->getTypeAllocSize( 1624 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1625 1626 // Walk backwards and try to peel off zeros. 1627 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1628 // Find the type we're currently indexing into. 1629 gep_type_iterator GEPTI = gep_type_begin(Gep); 1630 std::advance(GEPTI, LastOperand - 1); 1631 1632 // If it's a type with the same allocation size as the result of the GEP we 1633 // can peel off the zero index. 1634 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1635 break; 1636 --LastOperand; 1637 } 1638 1639 return LastOperand; 1640 } 1641 1642 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1643 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1644 // Make sure that the pointer does not point to structs. 1645 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1646 return 0; 1647 1648 // If this value is a pointer induction variable we know it is consecutive. 1649 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1650 if (Phi && Inductions.count(Phi)) { 1651 InductionInfo II = Inductions[Phi]; 1652 if (IK_PtrInduction == II.IK) 1653 return 1; 1654 else if (IK_ReversePtrInduction == II.IK) 1655 return -1; 1656 } 1657 1658 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1659 if (!Gep) 1660 return 0; 1661 1662 unsigned NumOperands = Gep->getNumOperands(); 1663 Value *GpPtr = Gep->getPointerOperand(); 1664 // If this GEP value is a consecutive pointer induction variable and all of 1665 // the indices are constant then we know it is consecutive. We can 1666 Phi = dyn_cast<PHINode>(GpPtr); 1667 if (Phi && Inductions.count(Phi)) { 1668 1669 // Make sure that the pointer does not point to structs. 1670 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1671 if (GepPtrType->getElementType()->isAggregateType()) 1672 return 0; 1673 1674 // Make sure that all of the index operands are loop invariant. 1675 for (unsigned i = 1; i < NumOperands; ++i) 1676 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1677 return 0; 1678 1679 InductionInfo II = Inductions[Phi]; 1680 if (IK_PtrInduction == II.IK) 1681 return 1; 1682 else if (IK_ReversePtrInduction == II.IK) 1683 return -1; 1684 } 1685 1686 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1687 1688 // Check that all of the gep indices are uniform except for our induction 1689 // operand. 1690 for (unsigned i = 0; i != NumOperands; ++i) 1691 if (i != InductionOperand && 1692 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1693 return 0; 1694 1695 // We can emit wide load/stores only if the last non-zero index is the 1696 // induction variable. 1697 const SCEV *Last = nullptr; 1698 if (!Strides.count(Gep)) 1699 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1700 else { 1701 // Because of the multiplication by a stride we can have a s/zext cast. 1702 // We are going to replace this stride by 1 so the cast is safe to ignore. 1703 // 1704 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1705 // %0 = trunc i64 %indvars.iv to i32 1706 // %mul = mul i32 %0, %Stride1 1707 // %idxprom = zext i32 %mul to i64 << Safe cast. 1708 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1709 // 1710 Last = replaceSymbolicStrideSCEV(SE, Strides, 1711 Gep->getOperand(InductionOperand), Gep); 1712 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1713 Last = 1714 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1715 ? C->getOperand() 1716 : Last; 1717 } 1718 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1719 const SCEV *Step = AR->getStepRecurrence(*SE); 1720 1721 // The memory is consecutive because the last index is consecutive 1722 // and all other indices are loop invariant. 1723 if (Step->isOne()) 1724 return 1; 1725 if (Step->isAllOnesValue()) 1726 return -1; 1727 } 1728 1729 return 0; 1730 } 1731 1732 bool LoopVectorizationLegality::isUniform(Value *V) { 1733 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1734 } 1735 1736 InnerLoopVectorizer::VectorParts& 1737 InnerLoopVectorizer::getVectorValue(Value *V) { 1738 assert(V != Induction && "The new induction variable should not be used."); 1739 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1740 1741 // If we have a stride that is replaced by one, do it here. 1742 if (Legal->hasStride(V)) 1743 V = ConstantInt::get(V->getType(), 1); 1744 1745 // If we have this scalar in the map, return it. 1746 if (WidenMap.has(V)) 1747 return WidenMap.get(V); 1748 1749 // If this scalar is unknown, assume that it is a constant or that it is 1750 // loop invariant. Broadcast V and save the value for future uses. 1751 Value *B = getBroadcastInstrs(V); 1752 return WidenMap.splat(V, B); 1753 } 1754 1755 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1756 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1757 SmallVector<Constant*, 8> ShuffleMask; 1758 for (unsigned i = 0; i < VF; ++i) 1759 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1760 1761 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1762 ConstantVector::get(ShuffleMask), 1763 "reverse"); 1764 } 1765 1766 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1767 // Attempt to issue a wide load. 1768 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1769 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1770 1771 assert((LI || SI) && "Invalid Load/Store instruction"); 1772 1773 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1774 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1775 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1776 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1777 // An alignment of 0 means target abi alignment. We need to use the scalar's 1778 // target abi alignment in such a case. 1779 if (!Alignment) 1780 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1781 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1782 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1783 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1784 1785 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1786 !Legal->isMaskRequired(SI)) 1787 return scalarizeInstruction(Instr, true); 1788 1789 if (ScalarAllocatedSize != VectorElementSize) 1790 return scalarizeInstruction(Instr); 1791 1792 // If the pointer is loop invariant or if it is non-consecutive, 1793 // scalarize the load. 1794 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1795 bool Reverse = ConsecutiveStride < 0; 1796 bool UniformLoad = LI && Legal->isUniform(Ptr); 1797 if (!ConsecutiveStride || UniformLoad) 1798 return scalarizeInstruction(Instr); 1799 1800 Constant *Zero = Builder.getInt32(0); 1801 VectorParts &Entry = WidenMap.get(Instr); 1802 1803 // Handle consecutive loads/stores. 1804 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1805 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1806 setDebugLocFromInst(Builder, Gep); 1807 Value *PtrOperand = Gep->getPointerOperand(); 1808 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1809 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1810 1811 // Create the new GEP with the new induction variable. 1812 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1813 Gep2->setOperand(0, FirstBasePtr); 1814 Gep2->setName("gep.indvar.base"); 1815 Ptr = Builder.Insert(Gep2); 1816 } else if (Gep) { 1817 setDebugLocFromInst(Builder, Gep); 1818 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1819 OrigLoop) && "Base ptr must be invariant"); 1820 1821 // The last index does not have to be the induction. It can be 1822 // consecutive and be a function of the index. For example A[I+1]; 1823 unsigned NumOperands = Gep->getNumOperands(); 1824 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1825 // Create the new GEP with the new induction variable. 1826 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1827 1828 for (unsigned i = 0; i < NumOperands; ++i) { 1829 Value *GepOperand = Gep->getOperand(i); 1830 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1831 1832 // Update last index or loop invariant instruction anchored in loop. 1833 if (i == InductionOperand || 1834 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1835 assert((i == InductionOperand || 1836 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1837 "Must be last index or loop invariant"); 1838 1839 VectorParts &GEPParts = getVectorValue(GepOperand); 1840 Value *Index = GEPParts[0]; 1841 Index = Builder.CreateExtractElement(Index, Zero); 1842 Gep2->setOperand(i, Index); 1843 Gep2->setName("gep.indvar.idx"); 1844 } 1845 } 1846 Ptr = Builder.Insert(Gep2); 1847 } else { 1848 // Use the induction element ptr. 1849 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1850 setDebugLocFromInst(Builder, Ptr); 1851 VectorParts &PtrVal = getVectorValue(Ptr); 1852 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1853 } 1854 1855 // Handle Stores: 1856 if (SI) { 1857 assert(!Legal->isUniform(SI->getPointerOperand()) && 1858 "We do not allow storing to uniform addresses"); 1859 setDebugLocFromInst(Builder, SI); 1860 // We don't want to update the value in the map as it might be used in 1861 // another expression. So don't use a reference type for "StoredVal". 1862 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1863 1864 for (unsigned Part = 0; Part < UF; ++Part) { 1865 // Calculate the pointer for the specific unroll-part. 1866 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1867 1868 if (Reverse) { 1869 // If we store to reverse consecutive memory locations then we need 1870 // to reverse the order of elements in the stored value. 1871 StoredVal[Part] = reverseVector(StoredVal[Part]); 1872 // If the address is consecutive but reversed, then the 1873 // wide store needs to start at the last vector element. 1874 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1875 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1876 } 1877 1878 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1879 DataTy->getPointerTo(AddressSpace)); 1880 1881 Instruction *NewSI; 1882 if (Legal->isMaskRequired(SI)) { 1883 Type *I8PtrTy = 1884 Builder.getInt8PtrTy(PartPtr->getType()->getPointerAddressSpace()); 1885 1886 Value *I8Ptr = Builder.CreateBitCast(PartPtr, I8PtrTy); 1887 1888 VectorParts Cond = createBlockInMask(SI->getParent()); 1889 SmallVector <Value *, 8> Ops; 1890 Ops.push_back(I8Ptr); 1891 Ops.push_back(StoredVal[Part]); 1892 Ops.push_back(Builder.getInt32(Alignment)); 1893 Ops.push_back(Cond[Part]); 1894 NewSI = Builder.CreateMaskedStore(Ops); 1895 } 1896 else 1897 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1898 propagateMetadata(NewSI, SI); 1899 } 1900 return; 1901 } 1902 1903 // Handle loads. 1904 assert(LI && "Must have a load instruction"); 1905 setDebugLocFromInst(Builder, LI); 1906 for (unsigned Part = 0; Part < UF; ++Part) { 1907 // Calculate the pointer for the specific unroll-part. 1908 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1909 1910 if (Reverse) { 1911 // If the address is consecutive but reversed, then the 1912 // wide load needs to start at the last vector element. 1913 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1914 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1915 } 1916 1917 Instruction* NewLI; 1918 if (Legal->isMaskRequired(LI)) { 1919 Type *I8PtrTy = 1920 Builder.getInt8PtrTy(PartPtr->getType()->getPointerAddressSpace()); 1921 1922 Value *I8Ptr = Builder.CreateBitCast(PartPtr, I8PtrTy); 1923 1924 VectorParts SrcMask = createBlockInMask(LI->getParent()); 1925 SmallVector <Value *, 8> Ops; 1926 Ops.push_back(I8Ptr); 1927 Ops.push_back(UndefValue::get(DataTy)); 1928 Ops.push_back(Builder.getInt32(Alignment)); 1929 Ops.push_back(SrcMask[Part]); 1930 NewLI = Builder.CreateMaskedLoad(Ops); 1931 } 1932 else { 1933 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1934 DataTy->getPointerTo(AddressSpace)); 1935 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1936 } 1937 propagateMetadata(NewLI, LI); 1938 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1939 } 1940 } 1941 1942 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1943 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1944 // Holds vector parameters or scalars, in case of uniform vals. 1945 SmallVector<VectorParts, 4> Params; 1946 1947 setDebugLocFromInst(Builder, Instr); 1948 1949 // Find all of the vectorized parameters. 1950 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1951 Value *SrcOp = Instr->getOperand(op); 1952 1953 // If we are accessing the old induction variable, use the new one. 1954 if (SrcOp == OldInduction) { 1955 Params.push_back(getVectorValue(SrcOp)); 1956 continue; 1957 } 1958 1959 // Try using previously calculated values. 1960 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1961 1962 // If the src is an instruction that appeared earlier in the basic block 1963 // then it should already be vectorized. 1964 if (SrcInst && OrigLoop->contains(SrcInst)) { 1965 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1966 // The parameter is a vector value from earlier. 1967 Params.push_back(WidenMap.get(SrcInst)); 1968 } else { 1969 // The parameter is a scalar from outside the loop. Maybe even a constant. 1970 VectorParts Scalars; 1971 Scalars.append(UF, SrcOp); 1972 Params.push_back(Scalars); 1973 } 1974 } 1975 1976 assert(Params.size() == Instr->getNumOperands() && 1977 "Invalid number of operands"); 1978 1979 // Does this instruction return a value ? 1980 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1981 1982 Value *UndefVec = IsVoidRetTy ? nullptr : 1983 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1984 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1985 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1986 1987 Instruction *InsertPt = Builder.GetInsertPoint(); 1988 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1989 BasicBlock *CondBlock = nullptr; 1990 1991 VectorParts Cond; 1992 Loop *VectorLp = nullptr; 1993 if (IfPredicateStore) { 1994 assert(Instr->getParent()->getSinglePredecessor() && 1995 "Only support single predecessor blocks"); 1996 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1997 Instr->getParent()); 1998 VectorLp = LI->getLoopFor(IfBlock); 1999 assert(VectorLp && "Must have a loop for this block"); 2000 } 2001 2002 // For each vector unroll 'part': 2003 for (unsigned Part = 0; Part < UF; ++Part) { 2004 // For each scalar that we create: 2005 for (unsigned Width = 0; Width < VF; ++Width) { 2006 2007 // Start if-block. 2008 Value *Cmp = nullptr; 2009 if (IfPredicateStore) { 2010 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2011 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 2012 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 2013 LoopVectorBody.push_back(CondBlock); 2014 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 2015 // Update Builder with newly created basic block. 2016 Builder.SetInsertPoint(InsertPt); 2017 } 2018 2019 Instruction *Cloned = Instr->clone(); 2020 if (!IsVoidRetTy) 2021 Cloned->setName(Instr->getName() + ".cloned"); 2022 // Replace the operands of the cloned instructions with extracted scalars. 2023 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2024 Value *Op = Params[op][Part]; 2025 // Param is a vector. Need to extract the right lane. 2026 if (Op->getType()->isVectorTy()) 2027 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2028 Cloned->setOperand(op, Op); 2029 } 2030 2031 // Place the cloned scalar in the new loop. 2032 Builder.Insert(Cloned); 2033 2034 // If the original scalar returns a value we need to place it in a vector 2035 // so that future users will be able to use it. 2036 if (!IsVoidRetTy) 2037 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2038 Builder.getInt32(Width)); 2039 // End if-block. 2040 if (IfPredicateStore) { 2041 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2042 LoopVectorBody.push_back(NewIfBlock); 2043 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 2044 Builder.SetInsertPoint(InsertPt); 2045 Instruction *OldBr = IfBlock->getTerminator(); 2046 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2047 OldBr->eraseFromParent(); 2048 IfBlock = NewIfBlock; 2049 } 2050 } 2051 } 2052 } 2053 2054 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2055 Instruction *Loc) { 2056 if (FirstInst) 2057 return FirstInst; 2058 if (Instruction *I = dyn_cast<Instruction>(V)) 2059 return I->getParent() == Loc->getParent() ? I : nullptr; 2060 return nullptr; 2061 } 2062 2063 std::pair<Instruction *, Instruction *> 2064 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2065 Instruction *tnullptr = nullptr; 2066 if (!Legal->mustCheckStrides()) 2067 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2068 2069 IRBuilder<> ChkBuilder(Loc); 2070 2071 // Emit checks. 2072 Value *Check = nullptr; 2073 Instruction *FirstInst = nullptr; 2074 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2075 SE = Legal->strides_end(); 2076 SI != SE; ++SI) { 2077 Value *Ptr = stripIntegerCast(*SI); 2078 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2079 "stride.chk"); 2080 // Store the first instruction we create. 2081 FirstInst = getFirstInst(FirstInst, C, Loc); 2082 if (Check) 2083 Check = ChkBuilder.CreateOr(Check, C); 2084 else 2085 Check = C; 2086 } 2087 2088 // We have to do this trickery because the IRBuilder might fold the check to a 2089 // constant expression in which case there is no Instruction anchored in a 2090 // the block. 2091 LLVMContext &Ctx = Loc->getContext(); 2092 Instruction *TheCheck = 2093 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2094 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2095 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2096 2097 return std::make_pair(FirstInst, TheCheck); 2098 } 2099 2100 std::pair<Instruction *, Instruction *> 2101 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 2102 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 2103 Legal->getRuntimePointerCheck(); 2104 2105 Instruction *tnullptr = nullptr; 2106 if (!PtrRtCheck->Need) 2107 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2108 2109 unsigned NumPointers = PtrRtCheck->Pointers.size(); 2110 SmallVector<TrackingVH<Value> , 2> Starts; 2111 SmallVector<TrackingVH<Value> , 2> Ends; 2112 2113 LLVMContext &Ctx = Loc->getContext(); 2114 SCEVExpander Exp(*SE, "induction"); 2115 Instruction *FirstInst = nullptr; 2116 2117 for (unsigned i = 0; i < NumPointers; ++i) { 2118 Value *Ptr = PtrRtCheck->Pointers[i]; 2119 const SCEV *Sc = SE->getSCEV(Ptr); 2120 2121 if (SE->isLoopInvariant(Sc, OrigLoop)) { 2122 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 2123 *Ptr <<"\n"); 2124 Starts.push_back(Ptr); 2125 Ends.push_back(Ptr); 2126 } else { 2127 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 2128 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2129 2130 // Use this type for pointer arithmetic. 2131 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2132 2133 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 2134 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 2135 Starts.push_back(Start); 2136 Ends.push_back(End); 2137 } 2138 } 2139 2140 IRBuilder<> ChkBuilder(Loc); 2141 // Our instructions might fold to a constant. 2142 Value *MemoryRuntimeCheck = nullptr; 2143 for (unsigned i = 0; i < NumPointers; ++i) { 2144 for (unsigned j = i+1; j < NumPointers; ++j) { 2145 // No need to check if two readonly pointers intersect. 2146 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 2147 continue; 2148 2149 // Only need to check pointers between two different dependency sets. 2150 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 2151 continue; 2152 // Only need to check pointers in the same alias set. 2153 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 2154 continue; 2155 2156 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 2157 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 2158 2159 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 2160 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 2161 "Trying to bounds check pointers with different address spaces"); 2162 2163 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2164 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2165 2166 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 2167 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 2168 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 2169 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 2170 2171 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 2172 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2173 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 2174 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2175 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2176 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2177 if (MemoryRuntimeCheck) { 2178 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 2179 "conflict.rdx"); 2180 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2181 } 2182 MemoryRuntimeCheck = IsConflict; 2183 } 2184 } 2185 2186 // We have to do this trickery because the IRBuilder might fold the check to a 2187 // constant expression in which case there is no Instruction anchored in a 2188 // the block. 2189 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2190 ConstantInt::getTrue(Ctx)); 2191 ChkBuilder.Insert(Check, "memcheck.conflict"); 2192 FirstInst = getFirstInst(FirstInst, Check, Loc); 2193 return std::make_pair(FirstInst, Check); 2194 } 2195 2196 void InnerLoopVectorizer::createEmptyLoop() { 2197 /* 2198 In this function we generate a new loop. The new loop will contain 2199 the vectorized instructions while the old loop will continue to run the 2200 scalar remainder. 2201 2202 [ ] <-- Back-edge taken count overflow check. 2203 / | 2204 / v 2205 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2206 | / | 2207 | / v 2208 || [ ] <-- vector pre header. 2209 || | 2210 || v 2211 || [ ] \ 2212 || [ ]_| <-- vector loop. 2213 || | 2214 | \ v 2215 | >[ ] <--- middle-block. 2216 | / | 2217 | / v 2218 -|- >[ ] <--- new preheader. 2219 | | 2220 | v 2221 | [ ] \ 2222 | [ ]_| <-- old scalar loop to handle remainder. 2223 \ | 2224 \ v 2225 >[ ] <-- exit block. 2226 ... 2227 */ 2228 2229 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2230 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2231 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2232 assert(BypassBlock && "Invalid loop structure"); 2233 assert(ExitBlock && "Must have an exit block"); 2234 2235 // Some loops have a single integer induction variable, while other loops 2236 // don't. One example is c++ iterators that often have multiple pointer 2237 // induction variables. In the code below we also support a case where we 2238 // don't have a single induction variable. 2239 OldInduction = Legal->getInduction(); 2240 Type *IdxTy = Legal->getWidestInductionType(); 2241 2242 // Find the loop boundaries. 2243 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2244 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2245 2246 // The exit count might have the type of i64 while the phi is i32. This can 2247 // happen if we have an induction variable that is sign extended before the 2248 // compare. The only way that we get a backedge taken count is that the 2249 // induction variable was signed and as such will not overflow. In such a case 2250 // truncation is legal. 2251 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2252 IdxTy->getPrimitiveSizeInBits()) 2253 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2254 2255 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2256 // Get the total trip count from the count by adding 1. 2257 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2258 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2259 2260 // Expand the trip count and place the new instructions in the preheader. 2261 // Notice that the pre-header does not change, only the loop body. 2262 SCEVExpander Exp(*SE, "induction"); 2263 2264 // We need to test whether the backedge-taken count is uint##_max. Adding one 2265 // to it will cause overflow and an incorrect loop trip count in the vector 2266 // body. In case of overflow we want to directly jump to the scalar remainder 2267 // loop. 2268 Value *BackedgeCount = 2269 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2270 BypassBlock->getTerminator()); 2271 if (BackedgeCount->getType()->isPointerTy()) 2272 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2273 "backedge.ptrcnt.to.int", 2274 BypassBlock->getTerminator()); 2275 Instruction *CheckBCOverflow = 2276 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2277 Constant::getAllOnesValue(BackedgeCount->getType()), 2278 "backedge.overflow", BypassBlock->getTerminator()); 2279 2280 // The loop index does not have to start at Zero. Find the original start 2281 // value from the induction PHI node. If we don't have an induction variable 2282 // then we know that it starts at zero. 2283 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2284 Value *StartIdx = ExtendedIdx = OldInduction ? 2285 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2286 IdxTy): 2287 ConstantInt::get(IdxTy, 0); 2288 2289 // We need an instruction to anchor the overflow check on. StartIdx needs to 2290 // be defined before the overflow check branch. Because the scalar preheader 2291 // is going to merge the start index and so the overflow branch block needs to 2292 // contain a definition of the start index. 2293 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2294 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2295 BypassBlock->getTerminator()); 2296 2297 // Count holds the overall loop count (N). 2298 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2299 BypassBlock->getTerminator()); 2300 2301 LoopBypassBlocks.push_back(BypassBlock); 2302 2303 // Split the single block loop into the two loop structure described above. 2304 BasicBlock *VectorPH = 2305 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2306 BasicBlock *VecBody = 2307 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2308 BasicBlock *MiddleBlock = 2309 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2310 BasicBlock *ScalarPH = 2311 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2312 2313 // Create and register the new vector loop. 2314 Loop* Lp = new Loop(); 2315 Loop *ParentLoop = OrigLoop->getParentLoop(); 2316 2317 // Insert the new loop into the loop nest and register the new basic blocks 2318 // before calling any utilities such as SCEV that require valid LoopInfo. 2319 if (ParentLoop) { 2320 ParentLoop->addChildLoop(Lp); 2321 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2322 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2323 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2324 } else { 2325 LI->addTopLevelLoop(Lp); 2326 } 2327 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2328 2329 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2330 // inside the loop. 2331 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2332 2333 // Generate the induction variable. 2334 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2335 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2336 // The loop step is equal to the vectorization factor (num of SIMD elements) 2337 // times the unroll factor (num of SIMD instructions). 2338 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2339 2340 // This is the IR builder that we use to add all of the logic for bypassing 2341 // the new vector loop. 2342 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2343 setDebugLocFromInst(BypassBuilder, 2344 getDebugLocFromInstOrOperands(OldInduction)); 2345 2346 // We may need to extend the index in case there is a type mismatch. 2347 // We know that the count starts at zero and does not overflow. 2348 if (Count->getType() != IdxTy) { 2349 // The exit count can be of pointer type. Convert it to the correct 2350 // integer type. 2351 if (ExitCount->getType()->isPointerTy()) 2352 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2353 else 2354 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2355 } 2356 2357 // Add the start index to the loop count to get the new end index. 2358 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2359 2360 // Now we need to generate the expression for N - (N % VF), which is 2361 // the part that the vectorized body will execute. 2362 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2363 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2364 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2365 "end.idx.rnd.down"); 2366 2367 // Now, compare the new count to zero. If it is zero skip the vector loop and 2368 // jump to the scalar loop. 2369 Value *Cmp = 2370 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2371 2372 BasicBlock *LastBypassBlock = BypassBlock; 2373 2374 // Generate code to check that the loops trip count that we computed by adding 2375 // one to the backedge-taken count will not overflow. 2376 { 2377 auto PastOverflowCheck = 2378 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2379 BasicBlock *CheckBlock = 2380 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2381 if (ParentLoop) 2382 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2383 LoopBypassBlocks.push_back(CheckBlock); 2384 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2385 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2386 OldTerm->eraseFromParent(); 2387 LastBypassBlock = CheckBlock; 2388 } 2389 2390 // Generate the code to check that the strides we assumed to be one are really 2391 // one. We want the new basic block to start at the first instruction in a 2392 // sequence of instructions that form a check. 2393 Instruction *StrideCheck; 2394 Instruction *FirstCheckInst; 2395 std::tie(FirstCheckInst, StrideCheck) = 2396 addStrideCheck(LastBypassBlock->getTerminator()); 2397 if (StrideCheck) { 2398 // Create a new block containing the stride check. 2399 BasicBlock *CheckBlock = 2400 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2401 if (ParentLoop) 2402 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2403 LoopBypassBlocks.push_back(CheckBlock); 2404 2405 // Replace the branch into the memory check block with a conditional branch 2406 // for the "few elements case". 2407 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2408 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2409 OldTerm->eraseFromParent(); 2410 2411 Cmp = StrideCheck; 2412 LastBypassBlock = CheckBlock; 2413 } 2414 2415 // Generate the code that checks in runtime if arrays overlap. We put the 2416 // checks into a separate block to make the more common case of few elements 2417 // faster. 2418 Instruction *MemRuntimeCheck; 2419 std::tie(FirstCheckInst, MemRuntimeCheck) = 2420 addRuntimeCheck(LastBypassBlock->getTerminator()); 2421 if (MemRuntimeCheck) { 2422 // Create a new block containing the memory check. 2423 BasicBlock *CheckBlock = 2424 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2425 if (ParentLoop) 2426 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2427 LoopBypassBlocks.push_back(CheckBlock); 2428 2429 // Replace the branch into the memory check block with a conditional branch 2430 // for the "few elements case". 2431 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2432 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2433 OldTerm->eraseFromParent(); 2434 2435 Cmp = MemRuntimeCheck; 2436 LastBypassBlock = CheckBlock; 2437 } 2438 2439 LastBypassBlock->getTerminator()->eraseFromParent(); 2440 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2441 LastBypassBlock); 2442 2443 // We are going to resume the execution of the scalar loop. 2444 // Go over all of the induction variables that we found and fix the 2445 // PHIs that are left in the scalar version of the loop. 2446 // The starting values of PHI nodes depend on the counter of the last 2447 // iteration in the vectorized loop. 2448 // If we come from a bypass edge then we need to start from the original 2449 // start value. 2450 2451 // This variable saves the new starting index for the scalar loop. 2452 PHINode *ResumeIndex = nullptr; 2453 LoopVectorizationLegality::InductionList::iterator I, E; 2454 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2455 // Set builder to point to last bypass block. 2456 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2457 for (I = List->begin(), E = List->end(); I != E; ++I) { 2458 PHINode *OrigPhi = I->first; 2459 LoopVectorizationLegality::InductionInfo II = I->second; 2460 2461 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2462 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2463 MiddleBlock->getTerminator()); 2464 // We might have extended the type of the induction variable but we need a 2465 // truncated version for the scalar loop. 2466 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2467 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2468 MiddleBlock->getTerminator()) : nullptr; 2469 2470 // Create phi nodes to merge from the backedge-taken check block. 2471 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2472 ScalarPH->getTerminator()); 2473 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2474 2475 PHINode *BCTruncResumeVal = nullptr; 2476 if (OrigPhi == OldInduction) { 2477 BCTruncResumeVal = 2478 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2479 ScalarPH->getTerminator()); 2480 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2481 } 2482 2483 Value *EndValue = nullptr; 2484 switch (II.IK) { 2485 case LoopVectorizationLegality::IK_NoInduction: 2486 llvm_unreachable("Unknown induction"); 2487 case LoopVectorizationLegality::IK_IntInduction: { 2488 // Handle the integer induction counter. 2489 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2490 2491 // We have the canonical induction variable. 2492 if (OrigPhi == OldInduction) { 2493 // Create a truncated version of the resume value for the scalar loop, 2494 // we might have promoted the type to a larger width. 2495 EndValue = 2496 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2497 // The new PHI merges the original incoming value, in case of a bypass, 2498 // or the value at the end of the vectorized loop. 2499 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2500 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2501 TruncResumeVal->addIncoming(EndValue, VecBody); 2502 2503 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2504 2505 // We know what the end value is. 2506 EndValue = IdxEndRoundDown; 2507 // We also know which PHI node holds it. 2508 ResumeIndex = ResumeVal; 2509 break; 2510 } 2511 2512 // Not the canonical induction variable - add the vector loop count to the 2513 // start value. 2514 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2515 II.StartValue->getType(), 2516 "cast.crd"); 2517 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2518 break; 2519 } 2520 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2521 // Convert the CountRoundDown variable to the PHI size. 2522 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2523 II.StartValue->getType(), 2524 "cast.crd"); 2525 // Handle reverse integer induction counter. 2526 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2527 break; 2528 } 2529 case LoopVectorizationLegality::IK_PtrInduction: { 2530 // For pointer induction variables, calculate the offset using 2531 // the end index. 2532 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2533 "ptr.ind.end"); 2534 break; 2535 } 2536 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2537 // The value at the end of the loop for the reverse pointer is calculated 2538 // by creating a GEP with a negative index starting from the start value. 2539 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2540 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2541 "rev.ind.end"); 2542 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2543 "rev.ptr.ind.end"); 2544 break; 2545 } 2546 }// end of case 2547 2548 // The new PHI merges the original incoming value, in case of a bypass, 2549 // or the value at the end of the vectorized loop. 2550 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2551 if (OrigPhi == OldInduction) 2552 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2553 else 2554 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2555 } 2556 ResumeVal->addIncoming(EndValue, VecBody); 2557 2558 // Fix the scalar body counter (PHI node). 2559 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2560 2561 // The old induction's phi node in the scalar body needs the truncated 2562 // value. 2563 if (OrigPhi == OldInduction) { 2564 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2565 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2566 } else { 2567 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2568 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2569 } 2570 } 2571 2572 // If we are generating a new induction variable then we also need to 2573 // generate the code that calculates the exit value. This value is not 2574 // simply the end of the counter because we may skip the vectorized body 2575 // in case of a runtime check. 2576 if (!OldInduction){ 2577 assert(!ResumeIndex && "Unexpected resume value found"); 2578 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2579 MiddleBlock->getTerminator()); 2580 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2581 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2582 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2583 } 2584 2585 // Make sure that we found the index where scalar loop needs to continue. 2586 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2587 "Invalid resume Index"); 2588 2589 // Add a check in the middle block to see if we have completed 2590 // all of the iterations in the first vector loop. 2591 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2592 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2593 ResumeIndex, "cmp.n", 2594 MiddleBlock->getTerminator()); 2595 2596 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2597 // Remove the old terminator. 2598 MiddleBlock->getTerminator()->eraseFromParent(); 2599 2600 // Create i+1 and fill the PHINode. 2601 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2602 Induction->addIncoming(StartIdx, VectorPH); 2603 Induction->addIncoming(NextIdx, VecBody); 2604 // Create the compare. 2605 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2606 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2607 2608 // Now we have two terminators. Remove the old one from the block. 2609 VecBody->getTerminator()->eraseFromParent(); 2610 2611 // Get ready to start creating new instructions into the vectorized body. 2612 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2613 2614 // Save the state. 2615 LoopVectorPreHeader = VectorPH; 2616 LoopScalarPreHeader = ScalarPH; 2617 LoopMiddleBlock = MiddleBlock; 2618 LoopExitBlock = ExitBlock; 2619 LoopVectorBody.push_back(VecBody); 2620 LoopScalarBody = OldBasicBlock; 2621 2622 LoopVectorizeHints Hints(Lp, true); 2623 Hints.setAlreadyVectorized(); 2624 } 2625 2626 /// This function returns the identity element (or neutral element) for 2627 /// the operation K. 2628 Constant* 2629 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2630 switch (K) { 2631 case RK_IntegerXor: 2632 case RK_IntegerAdd: 2633 case RK_IntegerOr: 2634 // Adding, Xoring, Oring zero to a number does not change it. 2635 return ConstantInt::get(Tp, 0); 2636 case RK_IntegerMult: 2637 // Multiplying a number by 1 does not change it. 2638 return ConstantInt::get(Tp, 1); 2639 case RK_IntegerAnd: 2640 // AND-ing a number with an all-1 value does not change it. 2641 return ConstantInt::get(Tp, -1, true); 2642 case RK_FloatMult: 2643 // Multiplying a number by 1 does not change it. 2644 return ConstantFP::get(Tp, 1.0L); 2645 case RK_FloatAdd: 2646 // Adding zero to a number does not change it. 2647 return ConstantFP::get(Tp, 0.0L); 2648 default: 2649 llvm_unreachable("Unknown reduction kind"); 2650 } 2651 } 2652 2653 /// This function translates the reduction kind to an LLVM binary operator. 2654 static unsigned 2655 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2656 switch (Kind) { 2657 case LoopVectorizationLegality::RK_IntegerAdd: 2658 return Instruction::Add; 2659 case LoopVectorizationLegality::RK_IntegerMult: 2660 return Instruction::Mul; 2661 case LoopVectorizationLegality::RK_IntegerOr: 2662 return Instruction::Or; 2663 case LoopVectorizationLegality::RK_IntegerAnd: 2664 return Instruction::And; 2665 case LoopVectorizationLegality::RK_IntegerXor: 2666 return Instruction::Xor; 2667 case LoopVectorizationLegality::RK_FloatMult: 2668 return Instruction::FMul; 2669 case LoopVectorizationLegality::RK_FloatAdd: 2670 return Instruction::FAdd; 2671 case LoopVectorizationLegality::RK_IntegerMinMax: 2672 return Instruction::ICmp; 2673 case LoopVectorizationLegality::RK_FloatMinMax: 2674 return Instruction::FCmp; 2675 default: 2676 llvm_unreachable("Unknown reduction operation"); 2677 } 2678 } 2679 2680 Value *createMinMaxOp(IRBuilder<> &Builder, 2681 LoopVectorizationLegality::MinMaxReductionKind RK, 2682 Value *Left, 2683 Value *Right) { 2684 CmpInst::Predicate P = CmpInst::ICMP_NE; 2685 switch (RK) { 2686 default: 2687 llvm_unreachable("Unknown min/max reduction kind"); 2688 case LoopVectorizationLegality::MRK_UIntMin: 2689 P = CmpInst::ICMP_ULT; 2690 break; 2691 case LoopVectorizationLegality::MRK_UIntMax: 2692 P = CmpInst::ICMP_UGT; 2693 break; 2694 case LoopVectorizationLegality::MRK_SIntMin: 2695 P = CmpInst::ICMP_SLT; 2696 break; 2697 case LoopVectorizationLegality::MRK_SIntMax: 2698 P = CmpInst::ICMP_SGT; 2699 break; 2700 case LoopVectorizationLegality::MRK_FloatMin: 2701 P = CmpInst::FCMP_OLT; 2702 break; 2703 case LoopVectorizationLegality::MRK_FloatMax: 2704 P = CmpInst::FCMP_OGT; 2705 break; 2706 } 2707 2708 Value *Cmp; 2709 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2710 RK == LoopVectorizationLegality::MRK_FloatMax) 2711 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2712 else 2713 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2714 2715 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2716 return Select; 2717 } 2718 2719 namespace { 2720 struct CSEDenseMapInfo { 2721 static bool canHandle(Instruction *I) { 2722 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2723 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2724 } 2725 static inline Instruction *getEmptyKey() { 2726 return DenseMapInfo<Instruction *>::getEmptyKey(); 2727 } 2728 static inline Instruction *getTombstoneKey() { 2729 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2730 } 2731 static unsigned getHashValue(Instruction *I) { 2732 assert(canHandle(I) && "Unknown instruction!"); 2733 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2734 I->value_op_end())); 2735 } 2736 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2737 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2738 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2739 return LHS == RHS; 2740 return LHS->isIdenticalTo(RHS); 2741 } 2742 }; 2743 } 2744 2745 /// \brief Check whether this block is a predicated block. 2746 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2747 /// = ...; " blocks. We start with one vectorized basic block. For every 2748 /// conditional block we split this vectorized block. Therefore, every second 2749 /// block will be a predicated one. 2750 static bool isPredicatedBlock(unsigned BlockNum) { 2751 return BlockNum % 2; 2752 } 2753 2754 ///\brief Perform cse of induction variable instructions. 2755 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2756 // Perform simple cse. 2757 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2758 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2759 BasicBlock *BB = BBs[i]; 2760 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2761 Instruction *In = I++; 2762 2763 if (!CSEDenseMapInfo::canHandle(In)) 2764 continue; 2765 2766 // Check if we can replace this instruction with any of the 2767 // visited instructions. 2768 if (Instruction *V = CSEMap.lookup(In)) { 2769 In->replaceAllUsesWith(V); 2770 In->eraseFromParent(); 2771 continue; 2772 } 2773 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2774 // ...;" blocks for predicated stores. Every second block is a predicated 2775 // block. 2776 if (isPredicatedBlock(i)) 2777 continue; 2778 2779 CSEMap[In] = In; 2780 } 2781 } 2782 } 2783 2784 /// \brief Adds a 'fast' flag to floating point operations. 2785 static Value *addFastMathFlag(Value *V) { 2786 if (isa<FPMathOperator>(V)){ 2787 FastMathFlags Flags; 2788 Flags.setUnsafeAlgebra(); 2789 cast<Instruction>(V)->setFastMathFlags(Flags); 2790 } 2791 return V; 2792 } 2793 2794 void InnerLoopVectorizer::vectorizeLoop() { 2795 //===------------------------------------------------===// 2796 // 2797 // Notice: any optimization or new instruction that go 2798 // into the code below should be also be implemented in 2799 // the cost-model. 2800 // 2801 //===------------------------------------------------===// 2802 Constant *Zero = Builder.getInt32(0); 2803 2804 // In order to support reduction variables we need to be able to vectorize 2805 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2806 // stages. First, we create a new vector PHI node with no incoming edges. 2807 // We use this value when we vectorize all of the instructions that use the 2808 // PHI. Next, after all of the instructions in the block are complete we 2809 // add the new incoming edges to the PHI. At this point all of the 2810 // instructions in the basic block are vectorized, so we can use them to 2811 // construct the PHI. 2812 PhiVector RdxPHIsToFix; 2813 2814 // Scan the loop in a topological order to ensure that defs are vectorized 2815 // before users. 2816 LoopBlocksDFS DFS(OrigLoop); 2817 DFS.perform(LI); 2818 2819 // Vectorize all of the blocks in the original loop. 2820 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2821 be = DFS.endRPO(); bb != be; ++bb) 2822 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2823 2824 // At this point every instruction in the original loop is widened to 2825 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2826 // that we vectorized. The PHI nodes are currently empty because we did 2827 // not want to introduce cycles. Notice that the remaining PHI nodes 2828 // that we need to fix are reduction variables. 2829 2830 // Create the 'reduced' values for each of the induction vars. 2831 // The reduced values are the vector values that we scalarize and combine 2832 // after the loop is finished. 2833 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2834 it != e; ++it) { 2835 PHINode *RdxPhi = *it; 2836 assert(RdxPhi && "Unable to recover vectorized PHI"); 2837 2838 // Find the reduction variable descriptor. 2839 assert(Legal->getReductionVars()->count(RdxPhi) && 2840 "Unable to find the reduction variable"); 2841 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2842 (*Legal->getReductionVars())[RdxPhi]; 2843 2844 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2845 2846 // We need to generate a reduction vector from the incoming scalar. 2847 // To do so, we need to generate the 'identity' vector and override 2848 // one of the elements with the incoming scalar reduction. We need 2849 // to do it in the vector-loop preheader. 2850 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2851 2852 // This is the vector-clone of the value that leaves the loop. 2853 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2854 Type *VecTy = VectorExit[0]->getType(); 2855 2856 // Find the reduction identity variable. Zero for addition, or, xor, 2857 // one for multiplication, -1 for And. 2858 Value *Identity; 2859 Value *VectorStart; 2860 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2861 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2862 // MinMax reduction have the start value as their identify. 2863 if (VF == 1) { 2864 VectorStart = Identity = RdxDesc.StartValue; 2865 } else { 2866 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2867 RdxDesc.StartValue, 2868 "minmax.ident"); 2869 } 2870 } else { 2871 // Handle other reduction kinds: 2872 Constant *Iden = 2873 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2874 VecTy->getScalarType()); 2875 if (VF == 1) { 2876 Identity = Iden; 2877 // This vector is the Identity vector where the first element is the 2878 // incoming scalar reduction. 2879 VectorStart = RdxDesc.StartValue; 2880 } else { 2881 Identity = ConstantVector::getSplat(VF, Iden); 2882 2883 // This vector is the Identity vector where the first element is the 2884 // incoming scalar reduction. 2885 VectorStart = Builder.CreateInsertElement(Identity, 2886 RdxDesc.StartValue, Zero); 2887 } 2888 } 2889 2890 // Fix the vector-loop phi. 2891 2892 // Reductions do not have to start at zero. They can start with 2893 // any loop invariant values. 2894 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2895 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2896 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2897 VectorParts &Val = getVectorValue(LoopVal); 2898 for (unsigned part = 0; part < UF; ++part) { 2899 // Make sure to add the reduction stat value only to the 2900 // first unroll part. 2901 Value *StartVal = (part == 0) ? VectorStart : Identity; 2902 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2903 LoopVectorPreHeader); 2904 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2905 LoopVectorBody.back()); 2906 } 2907 2908 // Before each round, move the insertion point right between 2909 // the PHIs and the values we are going to write. 2910 // This allows us to write both PHINodes and the extractelement 2911 // instructions. 2912 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2913 2914 VectorParts RdxParts; 2915 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2916 for (unsigned part = 0; part < UF; ++part) { 2917 // This PHINode contains the vectorized reduction variable, or 2918 // the initial value vector, if we bypass the vector loop. 2919 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2920 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2921 Value *StartVal = (part == 0) ? VectorStart : Identity; 2922 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2923 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2924 NewPhi->addIncoming(RdxExitVal[part], 2925 LoopVectorBody.back()); 2926 RdxParts.push_back(NewPhi); 2927 } 2928 2929 // Reduce all of the unrolled parts into a single vector. 2930 Value *ReducedPartRdx = RdxParts[0]; 2931 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2932 setDebugLocFromInst(Builder, ReducedPartRdx); 2933 for (unsigned part = 1; part < UF; ++part) { 2934 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2935 // Floating point operations had to be 'fast' to enable the reduction. 2936 ReducedPartRdx = addFastMathFlag( 2937 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2938 ReducedPartRdx, "bin.rdx")); 2939 else 2940 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2941 ReducedPartRdx, RdxParts[part]); 2942 } 2943 2944 if (VF > 1) { 2945 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2946 // and vector ops, reducing the set of values being computed by half each 2947 // round. 2948 assert(isPowerOf2_32(VF) && 2949 "Reduction emission only supported for pow2 vectors!"); 2950 Value *TmpVec = ReducedPartRdx; 2951 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2952 for (unsigned i = VF; i != 1; i >>= 1) { 2953 // Move the upper half of the vector to the lower half. 2954 for (unsigned j = 0; j != i/2; ++j) 2955 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2956 2957 // Fill the rest of the mask with undef. 2958 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2959 UndefValue::get(Builder.getInt32Ty())); 2960 2961 Value *Shuf = 2962 Builder.CreateShuffleVector(TmpVec, 2963 UndefValue::get(TmpVec->getType()), 2964 ConstantVector::get(ShuffleMask), 2965 "rdx.shuf"); 2966 2967 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2968 // Floating point operations had to be 'fast' to enable the reduction. 2969 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2970 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2971 else 2972 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2973 } 2974 2975 // The result is in the first element of the vector. 2976 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2977 Builder.getInt32(0)); 2978 } 2979 2980 // Create a phi node that merges control-flow from the backedge-taken check 2981 // block and the middle block. 2982 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2983 LoopScalarPreHeader->getTerminator()); 2984 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2985 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2986 2987 // Now, we need to fix the users of the reduction variable 2988 // inside and outside of the scalar remainder loop. 2989 // We know that the loop is in LCSSA form. We need to update the 2990 // PHI nodes in the exit blocks. 2991 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2992 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2993 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2994 if (!LCSSAPhi) break; 2995 2996 // All PHINodes need to have a single entry edge, or two if 2997 // we already fixed them. 2998 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2999 3000 // We found our reduction value exit-PHI. Update it with the 3001 // incoming bypass edge. 3002 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 3003 // Add an edge coming from the bypass. 3004 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3005 break; 3006 } 3007 }// end of the LCSSA phi scan. 3008 3009 // Fix the scalar loop reduction variable with the incoming reduction sum 3010 // from the vector body and from the backedge value. 3011 int IncomingEdgeBlockIdx = 3012 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3013 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3014 // Pick the other block. 3015 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3016 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3017 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 3018 }// end of for each redux variable. 3019 3020 fixLCSSAPHIs(); 3021 3022 // Remove redundant induction instructions. 3023 cse(LoopVectorBody); 3024 } 3025 3026 void InnerLoopVectorizer::fixLCSSAPHIs() { 3027 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3028 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3029 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3030 if (!LCSSAPhi) break; 3031 if (LCSSAPhi->getNumIncomingValues() == 1) 3032 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3033 LoopMiddleBlock); 3034 } 3035 } 3036 3037 InnerLoopVectorizer::VectorParts 3038 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3039 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3040 "Invalid edge"); 3041 3042 // Look for cached value. 3043 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3044 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3045 if (ECEntryIt != MaskCache.end()) 3046 return ECEntryIt->second; 3047 3048 VectorParts SrcMask = createBlockInMask(Src); 3049 3050 // The terminator has to be a branch inst! 3051 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3052 assert(BI && "Unexpected terminator found"); 3053 3054 if (BI->isConditional()) { 3055 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3056 3057 if (BI->getSuccessor(0) != Dst) 3058 for (unsigned part = 0; part < UF; ++part) 3059 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3060 3061 for (unsigned part = 0; part < UF; ++part) 3062 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3063 3064 MaskCache[Edge] = EdgeMask; 3065 return EdgeMask; 3066 } 3067 3068 MaskCache[Edge] = SrcMask; 3069 return SrcMask; 3070 } 3071 3072 InnerLoopVectorizer::VectorParts 3073 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3074 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3075 3076 // Loop incoming mask is all-one. 3077 if (OrigLoop->getHeader() == BB) { 3078 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3079 return getVectorValue(C); 3080 } 3081 3082 // This is the block mask. We OR all incoming edges, and with zero. 3083 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3084 VectorParts BlockMask = getVectorValue(Zero); 3085 3086 // For each pred: 3087 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3088 VectorParts EM = createEdgeMask(*it, BB); 3089 for (unsigned part = 0; part < UF; ++part) 3090 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3091 } 3092 3093 return BlockMask; 3094 } 3095 3096 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3097 InnerLoopVectorizer::VectorParts &Entry, 3098 unsigned UF, unsigned VF, PhiVector *PV) { 3099 PHINode* P = cast<PHINode>(PN); 3100 // Handle reduction variables: 3101 if (Legal->getReductionVars()->count(P)) { 3102 for (unsigned part = 0; part < UF; ++part) { 3103 // This is phase one of vectorizing PHIs. 3104 Type *VecTy = (VF == 1) ? PN->getType() : 3105 VectorType::get(PN->getType(), VF); 3106 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3107 LoopVectorBody.back()-> getFirstInsertionPt()); 3108 } 3109 PV->push_back(P); 3110 return; 3111 } 3112 3113 setDebugLocFromInst(Builder, P); 3114 // Check for PHI nodes that are lowered to vector selects. 3115 if (P->getParent() != OrigLoop->getHeader()) { 3116 // We know that all PHIs in non-header blocks are converted into 3117 // selects, so we don't have to worry about the insertion order and we 3118 // can just use the builder. 3119 // At this point we generate the predication tree. There may be 3120 // duplications since this is a simple recursive scan, but future 3121 // optimizations will clean it up. 3122 3123 unsigned NumIncoming = P->getNumIncomingValues(); 3124 3125 // Generate a sequence of selects of the form: 3126 // SELECT(Mask3, In3, 3127 // SELECT(Mask2, In2, 3128 // ( ...))) 3129 for (unsigned In = 0; In < NumIncoming; In++) { 3130 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3131 P->getParent()); 3132 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3133 3134 for (unsigned part = 0; part < UF; ++part) { 3135 // We might have single edge PHIs (blocks) - use an identity 3136 // 'select' for the first PHI operand. 3137 if (In == 0) 3138 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3139 In0[part]); 3140 else 3141 // Select between the current value and the previous incoming edge 3142 // based on the incoming mask. 3143 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3144 Entry[part], "predphi"); 3145 } 3146 } 3147 return; 3148 } 3149 3150 // This PHINode must be an induction variable. 3151 // Make sure that we know about it. 3152 assert(Legal->getInductionVars()->count(P) && 3153 "Not an induction variable"); 3154 3155 LoopVectorizationLegality::InductionInfo II = 3156 Legal->getInductionVars()->lookup(P); 3157 3158 switch (II.IK) { 3159 case LoopVectorizationLegality::IK_NoInduction: 3160 llvm_unreachable("Unknown induction"); 3161 case LoopVectorizationLegality::IK_IntInduction: { 3162 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3163 Type *PhiTy = P->getType(); 3164 Value *Broadcasted; 3165 if (P == OldInduction) { 3166 // Handle the canonical induction variable. We might have had to 3167 // extend the type. 3168 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3169 } else { 3170 // Handle other induction variables that are now based on the 3171 // canonical one. 3172 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3173 "normalized.idx"); 3174 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3175 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 3176 "offset.idx"); 3177 } 3178 Broadcasted = getBroadcastInstrs(Broadcasted); 3179 // After broadcasting the induction variable we need to make the vector 3180 // consecutive by adding 0, 1, 2, etc. 3181 for (unsigned part = 0; part < UF; ++part) 3182 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 3183 return; 3184 } 3185 case LoopVectorizationLegality::IK_ReverseIntInduction: 3186 case LoopVectorizationLegality::IK_PtrInduction: 3187 case LoopVectorizationLegality::IK_ReversePtrInduction: 3188 // Handle reverse integer and pointer inductions. 3189 Value *StartIdx = ExtendedIdx; 3190 // This is the normalized GEP that starts counting at zero. 3191 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 3192 "normalized.idx"); 3193 3194 // Handle the reverse integer induction variable case. 3195 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3196 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3197 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3198 "resize.norm.idx"); 3199 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3200 "reverse.idx"); 3201 3202 // This is a new value so do not hoist it out. 3203 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3204 // After broadcasting the induction variable we need to make the 3205 // vector consecutive by adding ... -3, -2, -1, 0. 3206 for (unsigned part = 0; part < UF; ++part) 3207 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3208 true); 3209 return; 3210 } 3211 3212 // Handle the pointer induction variable case. 3213 assert(P->getType()->isPointerTy() && "Unexpected type."); 3214 3215 // Is this a reverse induction ptr or a consecutive induction ptr. 3216 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3217 II.IK); 3218 3219 // This is the vector of results. Notice that we don't generate 3220 // vector geps because scalar geps result in better code. 3221 for (unsigned part = 0; part < UF; ++part) { 3222 if (VF == 1) { 3223 int EltIndex = (part) * (Reverse ? -1 : 1); 3224 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3225 Value *GlobalIdx; 3226 if (Reverse) 3227 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3228 else 3229 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3230 3231 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3232 "next.gep"); 3233 Entry[part] = SclrGep; 3234 continue; 3235 } 3236 3237 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3238 for (unsigned int i = 0; i < VF; ++i) { 3239 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3240 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3241 Value *GlobalIdx; 3242 if (!Reverse) 3243 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3244 else 3245 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3246 3247 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3248 "next.gep"); 3249 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3250 Builder.getInt32(i), 3251 "insert.gep"); 3252 } 3253 Entry[part] = VecVal; 3254 } 3255 return; 3256 } 3257 } 3258 3259 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3260 // For each instruction in the old loop. 3261 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3262 VectorParts &Entry = WidenMap.get(it); 3263 switch (it->getOpcode()) { 3264 case Instruction::Br: 3265 // Nothing to do for PHIs and BR, since we already took care of the 3266 // loop control flow instructions. 3267 continue; 3268 case Instruction::PHI:{ 3269 // Vectorize PHINodes. 3270 widenPHIInstruction(it, Entry, UF, VF, PV); 3271 continue; 3272 }// End of PHI. 3273 3274 case Instruction::Add: 3275 case Instruction::FAdd: 3276 case Instruction::Sub: 3277 case Instruction::FSub: 3278 case Instruction::Mul: 3279 case Instruction::FMul: 3280 case Instruction::UDiv: 3281 case Instruction::SDiv: 3282 case Instruction::FDiv: 3283 case Instruction::URem: 3284 case Instruction::SRem: 3285 case Instruction::FRem: 3286 case Instruction::Shl: 3287 case Instruction::LShr: 3288 case Instruction::AShr: 3289 case Instruction::And: 3290 case Instruction::Or: 3291 case Instruction::Xor: { 3292 // Just widen binops. 3293 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3294 setDebugLocFromInst(Builder, BinOp); 3295 VectorParts &A = getVectorValue(it->getOperand(0)); 3296 VectorParts &B = getVectorValue(it->getOperand(1)); 3297 3298 // Use this vector value for all users of the original instruction. 3299 for (unsigned Part = 0; Part < UF; ++Part) { 3300 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3301 3302 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3303 VecOp->copyIRFlags(BinOp); 3304 3305 Entry[Part] = V; 3306 } 3307 3308 propagateMetadata(Entry, it); 3309 break; 3310 } 3311 case Instruction::Select: { 3312 // Widen selects. 3313 // If the selector is loop invariant we can create a select 3314 // instruction with a scalar condition. Otherwise, use vector-select. 3315 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3316 OrigLoop); 3317 setDebugLocFromInst(Builder, it); 3318 3319 // The condition can be loop invariant but still defined inside the 3320 // loop. This means that we can't just use the original 'cond' value. 3321 // We have to take the 'vectorized' value and pick the first lane. 3322 // Instcombine will make this a no-op. 3323 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3324 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3325 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3326 3327 Value *ScalarCond = (VF == 1) ? Cond[0] : 3328 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3329 3330 for (unsigned Part = 0; Part < UF; ++Part) { 3331 Entry[Part] = Builder.CreateSelect( 3332 InvariantCond ? ScalarCond : Cond[Part], 3333 Op0[Part], 3334 Op1[Part]); 3335 } 3336 3337 propagateMetadata(Entry, it); 3338 break; 3339 } 3340 3341 case Instruction::ICmp: 3342 case Instruction::FCmp: { 3343 // Widen compares. Generate vector compares. 3344 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3345 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3346 setDebugLocFromInst(Builder, it); 3347 VectorParts &A = getVectorValue(it->getOperand(0)); 3348 VectorParts &B = getVectorValue(it->getOperand(1)); 3349 for (unsigned Part = 0; Part < UF; ++Part) { 3350 Value *C = nullptr; 3351 if (FCmp) 3352 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3353 else 3354 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3355 Entry[Part] = C; 3356 } 3357 3358 propagateMetadata(Entry, it); 3359 break; 3360 } 3361 3362 case Instruction::Store: 3363 case Instruction::Load: 3364 vectorizeMemoryInstruction(it); 3365 break; 3366 case Instruction::ZExt: 3367 case Instruction::SExt: 3368 case Instruction::FPToUI: 3369 case Instruction::FPToSI: 3370 case Instruction::FPExt: 3371 case Instruction::PtrToInt: 3372 case Instruction::IntToPtr: 3373 case Instruction::SIToFP: 3374 case Instruction::UIToFP: 3375 case Instruction::Trunc: 3376 case Instruction::FPTrunc: 3377 case Instruction::BitCast: { 3378 CastInst *CI = dyn_cast<CastInst>(it); 3379 setDebugLocFromInst(Builder, it); 3380 /// Optimize the special case where the source is the induction 3381 /// variable. Notice that we can only optimize the 'trunc' case 3382 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3383 /// c. other casts depend on pointer size. 3384 if (CI->getOperand(0) == OldInduction && 3385 it->getOpcode() == Instruction::Trunc) { 3386 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3387 CI->getType()); 3388 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3389 for (unsigned Part = 0; Part < UF; ++Part) 3390 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3391 propagateMetadata(Entry, it); 3392 break; 3393 } 3394 /// Vectorize casts. 3395 Type *DestTy = (VF == 1) ? CI->getType() : 3396 VectorType::get(CI->getType(), VF); 3397 3398 VectorParts &A = getVectorValue(it->getOperand(0)); 3399 for (unsigned Part = 0; Part < UF; ++Part) 3400 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3401 propagateMetadata(Entry, it); 3402 break; 3403 } 3404 3405 case Instruction::Call: { 3406 // Ignore dbg intrinsics. 3407 if (isa<DbgInfoIntrinsic>(it)) 3408 break; 3409 setDebugLocFromInst(Builder, it); 3410 3411 Module *M = BB->getParent()->getParent(); 3412 CallInst *CI = cast<CallInst>(it); 3413 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3414 assert(ID && "Not an intrinsic call!"); 3415 switch (ID) { 3416 case Intrinsic::assume: 3417 case Intrinsic::lifetime_end: 3418 case Intrinsic::lifetime_start: 3419 scalarizeInstruction(it); 3420 break; 3421 default: 3422 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3423 for (unsigned Part = 0; Part < UF; ++Part) { 3424 SmallVector<Value *, 4> Args; 3425 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3426 if (HasScalarOpd && i == 1) { 3427 Args.push_back(CI->getArgOperand(i)); 3428 continue; 3429 } 3430 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3431 Args.push_back(Arg[Part]); 3432 } 3433 Type *Tys[] = {CI->getType()}; 3434 if (VF > 1) 3435 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3436 3437 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3438 Entry[Part] = Builder.CreateCall(F, Args); 3439 } 3440 3441 propagateMetadata(Entry, it); 3442 break; 3443 } 3444 break; 3445 } 3446 3447 default: 3448 // All other instructions are unsupported. Scalarize them. 3449 scalarizeInstruction(it); 3450 break; 3451 }// end of switch. 3452 }// end of for_each instr. 3453 } 3454 3455 void InnerLoopVectorizer::updateAnalysis() { 3456 // Forget the original basic block. 3457 SE->forgetLoop(OrigLoop); 3458 3459 // Update the dominator tree information. 3460 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3461 "Entry does not dominate exit."); 3462 3463 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3464 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3465 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3466 3467 // Due to if predication of stores we might create a sequence of "if(pred) 3468 // a[i] = ...; " blocks. 3469 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3470 if (i == 0) 3471 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3472 else if (isPredicatedBlock(i)) { 3473 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3474 } else { 3475 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3476 } 3477 } 3478 3479 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3480 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3481 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3482 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3483 3484 DEBUG(DT->verifyDomTree()); 3485 } 3486 3487 /// \brief Check whether it is safe to if-convert this phi node. 3488 /// 3489 /// Phi nodes with constant expressions that can trap are not safe to if 3490 /// convert. 3491 static bool canIfConvertPHINodes(BasicBlock *BB) { 3492 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3493 PHINode *Phi = dyn_cast<PHINode>(I); 3494 if (!Phi) 3495 return true; 3496 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3497 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3498 if (C->canTrap()) 3499 return false; 3500 } 3501 return true; 3502 } 3503 3504 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3505 if (!EnableIfConversion) { 3506 emitAnalysis(Report() << "if-conversion is disabled"); 3507 return false; 3508 } 3509 3510 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3511 3512 // A list of pointers that we can safely read and write to. 3513 SmallPtrSet<Value *, 8> SafePointes; 3514 3515 // Collect safe addresses. 3516 for (Loop::block_iterator BI = TheLoop->block_begin(), 3517 BE = TheLoop->block_end(); BI != BE; ++BI) { 3518 BasicBlock *BB = *BI; 3519 3520 if (blockNeedsPredication(BB)) 3521 continue; 3522 3523 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3524 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3525 SafePointes.insert(LI->getPointerOperand()); 3526 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3527 SafePointes.insert(SI->getPointerOperand()); 3528 } 3529 } 3530 3531 // Collect the blocks that need predication. 3532 BasicBlock *Header = TheLoop->getHeader(); 3533 for (Loop::block_iterator BI = TheLoop->block_begin(), 3534 BE = TheLoop->block_end(); BI != BE; ++BI) { 3535 BasicBlock *BB = *BI; 3536 3537 // We don't support switch statements inside loops. 3538 if (!isa<BranchInst>(BB->getTerminator())) { 3539 emitAnalysis(Report(BB->getTerminator()) 3540 << "loop contains a switch statement"); 3541 return false; 3542 } 3543 3544 // We must be able to predicate all blocks that need to be predicated. 3545 if (blockNeedsPredication(BB)) { 3546 if (!blockCanBePredicated(BB, SafePointes)) { 3547 emitAnalysis(Report(BB->getTerminator()) 3548 << "control flow cannot be substituted for a select"); 3549 return false; 3550 } 3551 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3552 emitAnalysis(Report(BB->getTerminator()) 3553 << "control flow cannot be substituted for a select"); 3554 return false; 3555 } 3556 } 3557 3558 // We can if-convert this loop. 3559 return true; 3560 } 3561 3562 bool LoopVectorizationLegality::canVectorize() { 3563 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3564 // be canonicalized. 3565 if (!TheLoop->getLoopPreheader()) { 3566 emitAnalysis( 3567 Report() << "loop control flow is not understood by vectorizer"); 3568 return false; 3569 } 3570 3571 // We can only vectorize innermost loops. 3572 if (TheLoop->getSubLoopsVector().size()) { 3573 emitAnalysis(Report() << "loop is not the innermost loop"); 3574 return false; 3575 } 3576 3577 // We must have a single backedge. 3578 if (TheLoop->getNumBackEdges() != 1) { 3579 emitAnalysis( 3580 Report() << "loop control flow is not understood by vectorizer"); 3581 return false; 3582 } 3583 3584 // We must have a single exiting block. 3585 if (!TheLoop->getExitingBlock()) { 3586 emitAnalysis( 3587 Report() << "loop control flow is not understood by vectorizer"); 3588 return false; 3589 } 3590 3591 // We only handle bottom-tested loops, i.e. loop in which the condition is 3592 // checked at the end of each iteration. With that we can assume that all 3593 // instructions in the loop are executed the same number of times. 3594 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3595 emitAnalysis( 3596 Report() << "loop control flow is not understood by vectorizer"); 3597 return false; 3598 } 3599 3600 // We need to have a loop header. 3601 DEBUG(dbgs() << "LV: Found a loop: " << 3602 TheLoop->getHeader()->getName() << '\n'); 3603 3604 // Check if we can if-convert non-single-bb loops. 3605 unsigned NumBlocks = TheLoop->getNumBlocks(); 3606 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3607 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3608 return false; 3609 } 3610 3611 // ScalarEvolution needs to be able to find the exit count. 3612 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3613 if (ExitCount == SE->getCouldNotCompute()) { 3614 emitAnalysis(Report() << "could not determine number of loop iterations"); 3615 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3616 return false; 3617 } 3618 3619 // Check if we can vectorize the instructions and CFG in this loop. 3620 if (!canVectorizeInstrs()) { 3621 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3622 return false; 3623 } 3624 3625 // Go over each instruction and look at memory deps. 3626 if (!canVectorizeMemory()) { 3627 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3628 return false; 3629 } 3630 3631 // Collect all of the variables that remain uniform after vectorization. 3632 collectLoopUniforms(); 3633 3634 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3635 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3636 <<"!\n"); 3637 3638 // Okay! We can vectorize. At this point we don't have any other mem analysis 3639 // which may limit our maximum vectorization factor, so just return true with 3640 // no restrictions. 3641 return true; 3642 } 3643 3644 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3645 if (Ty->isPointerTy()) 3646 return DL.getIntPtrType(Ty); 3647 3648 // It is possible that char's or short's overflow when we ask for the loop's 3649 // trip count, work around this by changing the type size. 3650 if (Ty->getScalarSizeInBits() < 32) 3651 return Type::getInt32Ty(Ty->getContext()); 3652 3653 return Ty; 3654 } 3655 3656 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3657 Ty0 = convertPointerToIntegerType(DL, Ty0); 3658 Ty1 = convertPointerToIntegerType(DL, Ty1); 3659 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3660 return Ty0; 3661 return Ty1; 3662 } 3663 3664 /// \brief Check that the instruction has outside loop users and is not an 3665 /// identified reduction variable. 3666 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3667 SmallPtrSetImpl<Value *> &Reductions) { 3668 // Reduction instructions are allowed to have exit users. All other 3669 // instructions must not have external users. 3670 if (!Reductions.count(Inst)) 3671 //Check that all of the users of the loop are inside the BB. 3672 for (User *U : Inst->users()) { 3673 Instruction *UI = cast<Instruction>(U); 3674 // This user may be a reduction exit value. 3675 if (!TheLoop->contains(UI)) { 3676 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3677 return true; 3678 } 3679 } 3680 return false; 3681 } 3682 3683 bool LoopVectorizationLegality::canVectorizeInstrs() { 3684 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3685 BasicBlock *Header = TheLoop->getHeader(); 3686 3687 // Look for the attribute signaling the absence of NaNs. 3688 Function &F = *Header->getParent(); 3689 if (F.hasFnAttribute("no-nans-fp-math")) 3690 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3691 AttributeSet::FunctionIndex, 3692 "no-nans-fp-math").getValueAsString() == "true"; 3693 3694 // For each block in the loop. 3695 for (Loop::block_iterator bb = TheLoop->block_begin(), 3696 be = TheLoop->block_end(); bb != be; ++bb) { 3697 3698 // Scan the instructions in the block and look for hazards. 3699 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3700 ++it) { 3701 3702 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3703 Type *PhiTy = Phi->getType(); 3704 // Check that this PHI type is allowed. 3705 if (!PhiTy->isIntegerTy() && 3706 !PhiTy->isFloatingPointTy() && 3707 !PhiTy->isPointerTy()) { 3708 emitAnalysis(Report(it) 3709 << "loop control flow is not understood by vectorizer"); 3710 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3711 return false; 3712 } 3713 3714 // If this PHINode is not in the header block, then we know that we 3715 // can convert it to select during if-conversion. No need to check if 3716 // the PHIs in this block are induction or reduction variables. 3717 if (*bb != Header) { 3718 // Check that this instruction has no outside users or is an 3719 // identified reduction value with an outside user. 3720 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3721 continue; 3722 emitAnalysis(Report(it) << "value could not be identified as " 3723 "an induction or reduction variable"); 3724 return false; 3725 } 3726 3727 // We only allow if-converted PHIs with more than two incoming values. 3728 if (Phi->getNumIncomingValues() != 2) { 3729 emitAnalysis(Report(it) 3730 << "control flow not understood by vectorizer"); 3731 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3732 return false; 3733 } 3734 3735 // This is the value coming from the preheader. 3736 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3737 // Check if this is an induction variable. 3738 InductionKind IK = isInductionVariable(Phi); 3739 3740 if (IK_NoInduction != IK) { 3741 // Get the widest type. 3742 if (!WidestIndTy) 3743 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3744 else 3745 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3746 3747 // Int inductions are special because we only allow one IV. 3748 if (IK == IK_IntInduction) { 3749 // Use the phi node with the widest type as induction. Use the last 3750 // one if there are multiple (no good reason for doing this other 3751 // than it is expedient). 3752 if (!Induction || PhiTy == WidestIndTy) 3753 Induction = Phi; 3754 } 3755 3756 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3757 Inductions[Phi] = InductionInfo(StartValue, IK); 3758 3759 // Until we explicitly handle the case of an induction variable with 3760 // an outside loop user we have to give up vectorizing this loop. 3761 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3762 emitAnalysis(Report(it) << "use of induction value outside of the " 3763 "loop is not handled by vectorizer"); 3764 return false; 3765 } 3766 3767 continue; 3768 } 3769 3770 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3771 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3772 continue; 3773 } 3774 if (AddReductionVar(Phi, RK_IntegerMult)) { 3775 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3776 continue; 3777 } 3778 if (AddReductionVar(Phi, RK_IntegerOr)) { 3779 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3780 continue; 3781 } 3782 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3783 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3784 continue; 3785 } 3786 if (AddReductionVar(Phi, RK_IntegerXor)) { 3787 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3788 continue; 3789 } 3790 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3791 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3792 continue; 3793 } 3794 if (AddReductionVar(Phi, RK_FloatMult)) { 3795 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3796 continue; 3797 } 3798 if (AddReductionVar(Phi, RK_FloatAdd)) { 3799 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3800 continue; 3801 } 3802 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3803 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3804 "\n"); 3805 continue; 3806 } 3807 3808 emitAnalysis(Report(it) << "value that could not be identified as " 3809 "reduction is used outside the loop"); 3810 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3811 return false; 3812 }// end of PHI handling 3813 3814 // We still don't handle functions. However, we can ignore dbg intrinsic 3815 // calls and we do handle certain intrinsic and libm functions. 3816 CallInst *CI = dyn_cast<CallInst>(it); 3817 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3818 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3819 DEBUG(dbgs() << "LV: Found a call site.\n"); 3820 return false; 3821 } 3822 3823 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3824 // second argument is the same (i.e. loop invariant) 3825 if (CI && 3826 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3827 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3828 emitAnalysis(Report(it) 3829 << "intrinsic instruction cannot be vectorized"); 3830 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3831 return false; 3832 } 3833 } 3834 3835 // Check that the instruction return type is vectorizable. 3836 // Also, we can't vectorize extractelement instructions. 3837 if ((!VectorType::isValidElementType(it->getType()) && 3838 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3839 emitAnalysis(Report(it) 3840 << "instruction return type cannot be vectorized"); 3841 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3842 return false; 3843 } 3844 3845 // Check that the stored type is vectorizable. 3846 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3847 Type *T = ST->getValueOperand()->getType(); 3848 if (!VectorType::isValidElementType(T)) { 3849 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3850 return false; 3851 } 3852 if (EnableMemAccessVersioning) 3853 collectStridedAcccess(ST); 3854 } 3855 3856 if (EnableMemAccessVersioning) 3857 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3858 collectStridedAcccess(LI); 3859 3860 // Reduction instructions are allowed to have exit users. 3861 // All other instructions must not have external users. 3862 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3863 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3864 return false; 3865 } 3866 3867 } // next instr. 3868 3869 } 3870 3871 if (!Induction) { 3872 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3873 if (Inductions.empty()) { 3874 emitAnalysis(Report() 3875 << "loop induction variable could not be identified"); 3876 return false; 3877 } 3878 } 3879 3880 return true; 3881 } 3882 3883 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3884 /// return the induction operand of the gep pointer. 3885 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3886 const DataLayout *DL, Loop *Lp) { 3887 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3888 if (!GEP) 3889 return Ptr; 3890 3891 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3892 3893 // Check that all of the gep indices are uniform except for our induction 3894 // operand. 3895 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3896 if (i != InductionOperand && 3897 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3898 return Ptr; 3899 return GEP->getOperand(InductionOperand); 3900 } 3901 3902 ///\brief Look for a cast use of the passed value. 3903 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3904 Value *UniqueCast = nullptr; 3905 for (User *U : Ptr->users()) { 3906 CastInst *CI = dyn_cast<CastInst>(U); 3907 if (CI && CI->getType() == Ty) { 3908 if (!UniqueCast) 3909 UniqueCast = CI; 3910 else 3911 return nullptr; 3912 } 3913 } 3914 return UniqueCast; 3915 } 3916 3917 ///\brief Get the stride of a pointer access in a loop. 3918 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3919 /// pointer to the Value, or null otherwise. 3920 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3921 const DataLayout *DL, Loop *Lp) { 3922 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3923 if (!PtrTy || PtrTy->isAggregateType()) 3924 return nullptr; 3925 3926 // Try to remove a gep instruction to make the pointer (actually index at this 3927 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3928 // pointer, otherwise, we are analyzing the index. 3929 Value *OrigPtr = Ptr; 3930 3931 // The size of the pointer access. 3932 int64_t PtrAccessSize = 1; 3933 3934 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3935 const SCEV *V = SE->getSCEV(Ptr); 3936 3937 if (Ptr != OrigPtr) 3938 // Strip off casts. 3939 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3940 V = C->getOperand(); 3941 3942 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3943 if (!S) 3944 return nullptr; 3945 3946 V = S->getStepRecurrence(*SE); 3947 if (!V) 3948 return nullptr; 3949 3950 // Strip off the size of access multiplication if we are still analyzing the 3951 // pointer. 3952 if (OrigPtr == Ptr) { 3953 DL->getTypeAllocSize(PtrTy->getElementType()); 3954 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3955 if (M->getOperand(0)->getSCEVType() != scConstant) 3956 return nullptr; 3957 3958 const APInt &APStepVal = 3959 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3960 3961 // Huge step value - give up. 3962 if (APStepVal.getBitWidth() > 64) 3963 return nullptr; 3964 3965 int64_t StepVal = APStepVal.getSExtValue(); 3966 if (PtrAccessSize != StepVal) 3967 return nullptr; 3968 V = M->getOperand(1); 3969 } 3970 } 3971 3972 // Strip off casts. 3973 Type *StripedOffRecurrenceCast = nullptr; 3974 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3975 StripedOffRecurrenceCast = C->getType(); 3976 V = C->getOperand(); 3977 } 3978 3979 // Look for the loop invariant symbolic value. 3980 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3981 if (!U) 3982 return nullptr; 3983 3984 Value *Stride = U->getValue(); 3985 if (!Lp->isLoopInvariant(Stride)) 3986 return nullptr; 3987 3988 // If we have stripped off the recurrence cast we have to make sure that we 3989 // return the value that is used in this loop so that we can replace it later. 3990 if (StripedOffRecurrenceCast) 3991 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3992 3993 return Stride; 3994 } 3995 3996 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3997 Value *Ptr = nullptr; 3998 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3999 Ptr = LI->getPointerOperand(); 4000 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4001 Ptr = SI->getPointerOperand(); 4002 else 4003 return; 4004 4005 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 4006 if (!Stride) 4007 return; 4008 4009 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4010 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4011 Strides[Ptr] = Stride; 4012 StrideSet.insert(Stride); 4013 } 4014 4015 void LoopVectorizationLegality::collectLoopUniforms() { 4016 // We now know that the loop is vectorizable! 4017 // Collect variables that will remain uniform after vectorization. 4018 std::vector<Value*> Worklist; 4019 BasicBlock *Latch = TheLoop->getLoopLatch(); 4020 4021 // Start with the conditional branch and walk up the block. 4022 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4023 4024 // Also add all consecutive pointer values; these values will be uniform 4025 // after vectorization (and subsequent cleanup) and, until revectorization is 4026 // supported, all dependencies must also be uniform. 4027 for (Loop::block_iterator B = TheLoop->block_begin(), 4028 BE = TheLoop->block_end(); B != BE; ++B) 4029 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4030 I != IE; ++I) 4031 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 4032 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4033 4034 while (Worklist.size()) { 4035 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4036 Worklist.pop_back(); 4037 4038 // Look at instructions inside this loop. 4039 // Stop when reaching PHI nodes. 4040 // TODO: we need to follow values all over the loop, not only in this block. 4041 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4042 continue; 4043 4044 // This is a known uniform. 4045 Uniforms.insert(I); 4046 4047 // Insert all operands. 4048 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4049 } 4050 } 4051 4052 namespace { 4053 /// \brief Analyses memory accesses in a loop. 4054 /// 4055 /// Checks whether run time pointer checks are needed and builds sets for data 4056 /// dependence checking. 4057 class AccessAnalysis { 4058 public: 4059 /// \brief Read or write access location. 4060 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4061 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4062 4063 /// \brief Set of potential dependent memory accesses. 4064 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 4065 4066 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 4067 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 4068 4069 /// \brief Register a load and whether it is only read from. 4070 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 4071 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4072 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4073 Accesses.insert(MemAccessInfo(Ptr, false)); 4074 if (IsReadOnly) 4075 ReadOnlyPtr.insert(Ptr); 4076 } 4077 4078 /// \brief Register a store. 4079 void addStore(AliasAnalysis::Location &Loc) { 4080 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4081 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4082 Accesses.insert(MemAccessInfo(Ptr, true)); 4083 } 4084 4085 /// \brief Check whether we can check the pointers at runtime for 4086 /// non-intersection. 4087 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4088 unsigned &NumComparisons, ScalarEvolution *SE, 4089 Loop *TheLoop, ValueToValueMap &Strides, 4090 bool ShouldCheckStride = false); 4091 4092 /// \brief Goes over all memory accesses, checks whether a RT check is needed 4093 /// and builds sets of dependent accesses. 4094 void buildDependenceSets() { 4095 processMemAccesses(); 4096 } 4097 4098 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 4099 4100 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 4101 void resetDepChecks() { CheckDeps.clear(); } 4102 4103 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 4104 4105 private: 4106 typedef SetVector<MemAccessInfo> PtrAccessSet; 4107 4108 /// \brief Go over all memory access and check whether runtime pointer checks 4109 /// are needed /// and build sets of dependency check candidates. 4110 void processMemAccesses(); 4111 4112 /// Set of all accesses. 4113 PtrAccessSet Accesses; 4114 4115 /// Set of accesses that need a further dependence check. 4116 MemAccessInfoSet CheckDeps; 4117 4118 /// Set of pointers that are read only. 4119 SmallPtrSet<Value*, 16> ReadOnlyPtr; 4120 4121 const DataLayout *DL; 4122 4123 /// An alias set tracker to partition the access set by underlying object and 4124 //intrinsic property (such as TBAA metadata). 4125 AliasSetTracker AST; 4126 4127 /// Sets of potentially dependent accesses - members of one set share an 4128 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 4129 /// dependence check. 4130 DepCandidates &DepCands; 4131 4132 bool IsRTCheckNeeded; 4133 }; 4134 4135 } // end anonymous namespace 4136 4137 /// \brief Check whether a pointer can participate in a runtime bounds check. 4138 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 4139 Value *Ptr) { 4140 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4141 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4142 if (!AR) 4143 return false; 4144 4145 return AR->isAffine(); 4146 } 4147 4148 /// \brief Check the stride of the pointer and ensure that it does not wrap in 4149 /// the address space. 4150 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4151 const Loop *Lp, ValueToValueMap &StridesMap); 4152 4153 bool AccessAnalysis::canCheckPtrAtRT( 4154 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4155 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 4156 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 4157 // Find pointers with computable bounds. We are going to use this information 4158 // to place a runtime bound check. 4159 bool CanDoRT = true; 4160 4161 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 4162 NumComparisons = 0; 4163 4164 // We assign a consecutive id to access from different alias sets. 4165 // Accesses between different groups doesn't need to be checked. 4166 unsigned ASId = 1; 4167 for (auto &AS : AST) { 4168 unsigned NumReadPtrChecks = 0; 4169 unsigned NumWritePtrChecks = 0; 4170 4171 // We assign consecutive id to access from different dependence sets. 4172 // Accesses within the same set don't need a runtime check. 4173 unsigned RunningDepId = 1; 4174 DenseMap<Value *, unsigned> DepSetId; 4175 4176 for (auto A : AS) { 4177 Value *Ptr = A.getValue(); 4178 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 4179 MemAccessInfo Access(Ptr, IsWrite); 4180 4181 if (IsWrite) 4182 ++NumWritePtrChecks; 4183 else 4184 ++NumReadPtrChecks; 4185 4186 if (hasComputableBounds(SE, StridesMap, Ptr) && 4187 // When we run after a failing dependency check we have to make sure we 4188 // don't have wrapping pointers. 4189 (!ShouldCheckStride || 4190 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 4191 // The id of the dependence set. 4192 unsigned DepId; 4193 4194 if (IsDepCheckNeeded) { 4195 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 4196 unsigned &LeaderId = DepSetId[Leader]; 4197 if (!LeaderId) 4198 LeaderId = RunningDepId++; 4199 DepId = LeaderId; 4200 } else 4201 // Each access has its own dependence set. 4202 DepId = RunningDepId++; 4203 4204 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 4205 4206 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4207 } else { 4208 CanDoRT = false; 4209 } 4210 } 4211 4212 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4213 NumComparisons += 0; // Only one dependence set. 4214 else { 4215 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 4216 NumWritePtrChecks - 1)); 4217 } 4218 4219 ++ASId; 4220 } 4221 4222 // If the pointers that we would use for the bounds comparison have different 4223 // address spaces, assume the values aren't directly comparable, so we can't 4224 // use them for the runtime check. We also have to assume they could 4225 // overlap. In the future there should be metadata for whether address spaces 4226 // are disjoint. 4227 unsigned NumPointers = RtCheck.Pointers.size(); 4228 for (unsigned i = 0; i < NumPointers; ++i) { 4229 for (unsigned j = i + 1; j < NumPointers; ++j) { 4230 // Only need to check pointers between two different dependency sets. 4231 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4232 continue; 4233 // Only need to check pointers in the same alias set. 4234 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 4235 continue; 4236 4237 Value *PtrI = RtCheck.Pointers[i]; 4238 Value *PtrJ = RtCheck.Pointers[j]; 4239 4240 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4241 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4242 if (ASi != ASj) { 4243 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4244 " different address spaces\n"); 4245 return false; 4246 } 4247 } 4248 } 4249 4250 return CanDoRT; 4251 } 4252 4253 void AccessAnalysis::processMemAccesses() { 4254 // We process the set twice: first we process read-write pointers, last we 4255 // process read-only pointers. This allows us to skip dependence tests for 4256 // read-only pointers. 4257 4258 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 4259 DEBUG(dbgs() << " AST: "; AST.dump()); 4260 DEBUG(dbgs() << "LV: Accesses:\n"); 4261 DEBUG({ 4262 for (auto A : Accesses) 4263 dbgs() << "\t" << *A.getPointer() << " (" << 4264 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 4265 "read-only" : "read")) << ")\n"; 4266 }); 4267 4268 // The AliasSetTracker has nicely partitioned our pointers by metadata 4269 // compatibility and potential for underlying-object overlap. As a result, we 4270 // only need to check for potential pointer dependencies within each alias 4271 // set. 4272 for (auto &AS : AST) { 4273 // Note that both the alias-set tracker and the alias sets themselves used 4274 // linked lists internally and so the iteration order here is deterministic 4275 // (matching the original instruction order within each set). 4276 4277 bool SetHasWrite = false; 4278 4279 // Map of pointers to last access encountered. 4280 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 4281 UnderlyingObjToAccessMap ObjToLastAccess; 4282 4283 // Set of access to check after all writes have been processed. 4284 PtrAccessSet DeferredAccesses; 4285 4286 // Iterate over each alias set twice, once to process read/write pointers, 4287 // and then to process read-only pointers. 4288 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 4289 bool UseDeferred = SetIteration > 0; 4290 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4291 4292 for (auto A : AS) { 4293 Value *Ptr = A.getValue(); 4294 bool IsWrite = S.count(MemAccessInfo(Ptr, true)); 4295 4296 // If we're using the deferred access set, then it contains only reads. 4297 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4298 if (UseDeferred && !IsReadOnlyPtr) 4299 continue; 4300 // Otherwise, the pointer must be in the PtrAccessSet, either as a read 4301 // or a write. 4302 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 4303 S.count(MemAccessInfo(Ptr, false))) && 4304 "Alias-set pointer not in the access set?"); 4305 4306 MemAccessInfo Access(Ptr, IsWrite); 4307 DepCands.insert(Access); 4308 4309 // Memorize read-only pointers for later processing and skip them in the 4310 // first round (they need to be checked after we have seen all write 4311 // pointers). Note: we also mark pointer that are not consecutive as 4312 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need 4313 // the second check for "!IsWrite". 4314 if (!UseDeferred && IsReadOnlyPtr) { 4315 DeferredAccesses.insert(Access); 4316 continue; 4317 } 4318 4319 // If this is a write - check other reads and writes for conflicts. If 4320 // this is a read only check other writes for conflicts (but only if 4321 // there is no other write to the ptr - this is an optimization to 4322 // catch "a[i] = a[i] + " without having to do a dependence check). 4323 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 4324 CheckDeps.insert(Access); 4325 IsRTCheckNeeded = true; 4326 } 4327 4328 if (IsWrite) 4329 SetHasWrite = true; 4330 4331 // Create sets of pointers connected by a shared alias set and 4332 // underlying object. 4333 typedef SmallVector<Value *, 16> ValueVector; 4334 ValueVector TempObjects; 4335 GetUnderlyingObjects(Ptr, TempObjects, DL); 4336 for (Value *UnderlyingObj : TempObjects) { 4337 UnderlyingObjToAccessMap::iterator Prev = 4338 ObjToLastAccess.find(UnderlyingObj); 4339 if (Prev != ObjToLastAccess.end()) 4340 DepCands.unionSets(Access, Prev->second); 4341 4342 ObjToLastAccess[UnderlyingObj] = Access; 4343 } 4344 } 4345 } 4346 } 4347 } 4348 4349 namespace { 4350 /// \brief Checks memory dependences among accesses to the same underlying 4351 /// object to determine whether there vectorization is legal or not (and at 4352 /// which vectorization factor). 4353 /// 4354 /// This class works under the assumption that we already checked that memory 4355 /// locations with different underlying pointers are "must-not alias". 4356 /// We use the ScalarEvolution framework to symbolically evalutate access 4357 /// functions pairs. Since we currently don't restructure the loop we can rely 4358 /// on the program order of memory accesses to determine their safety. 4359 /// At the moment we will only deem accesses as safe for: 4360 /// * A negative constant distance assuming program order. 4361 /// 4362 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4363 /// a[i] = tmp; y = a[i]; 4364 /// 4365 /// The latter case is safe because later checks guarantuee that there can't 4366 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4367 /// the same variable: a header phi can only be an induction or a reduction, a 4368 /// reduction can't have a memory sink, an induction can't have a memory 4369 /// source). This is important and must not be violated (or we have to 4370 /// resort to checking for cycles through memory). 4371 /// 4372 /// * A positive constant distance assuming program order that is bigger 4373 /// than the biggest memory access. 4374 /// 4375 /// tmp = a[i] OR b[i] = x 4376 /// a[i+2] = tmp y = b[i+2]; 4377 /// 4378 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4379 /// 4380 /// * Zero distances and all accesses have the same size. 4381 /// 4382 class MemoryDepChecker { 4383 public: 4384 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4385 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4386 4387 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4388 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4389 ShouldRetryWithRuntimeCheck(false) {} 4390 4391 /// \brief Register the location (instructions are given increasing numbers) 4392 /// of a write access. 4393 void addAccess(StoreInst *SI) { 4394 Value *Ptr = SI->getPointerOperand(); 4395 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4396 InstMap.push_back(SI); 4397 ++AccessIdx; 4398 } 4399 4400 /// \brief Register the location (instructions are given increasing numbers) 4401 /// of a write access. 4402 void addAccess(LoadInst *LI) { 4403 Value *Ptr = LI->getPointerOperand(); 4404 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4405 InstMap.push_back(LI); 4406 ++AccessIdx; 4407 } 4408 4409 /// \brief Check whether the dependencies between the accesses are safe. 4410 /// 4411 /// Only checks sets with elements in \p CheckDeps. 4412 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4413 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4414 4415 /// \brief The maximum number of bytes of a vector register we can vectorize 4416 /// the accesses safely with. 4417 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4418 4419 /// \brief In same cases when the dependency check fails we can still 4420 /// vectorize the loop with a dynamic array access check. 4421 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4422 4423 private: 4424 ScalarEvolution *SE; 4425 const DataLayout *DL; 4426 const Loop *InnermostLoop; 4427 4428 /// \brief Maps access locations (ptr, read/write) to program order. 4429 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4430 4431 /// \brief Memory access instructions in program order. 4432 SmallVector<Instruction *, 16> InstMap; 4433 4434 /// \brief The program order index to be used for the next instruction. 4435 unsigned AccessIdx; 4436 4437 // We can access this many bytes in parallel safely. 4438 unsigned MaxSafeDepDistBytes; 4439 4440 /// \brief If we see a non-constant dependence distance we can still try to 4441 /// vectorize this loop with runtime checks. 4442 bool ShouldRetryWithRuntimeCheck; 4443 4444 /// \brief Check whether there is a plausible dependence between the two 4445 /// accesses. 4446 /// 4447 /// Access \p A must happen before \p B in program order. The two indices 4448 /// identify the index into the program order map. 4449 /// 4450 /// This function checks whether there is a plausible dependence (or the 4451 /// absence of such can't be proved) between the two accesses. If there is a 4452 /// plausible dependence but the dependence distance is bigger than one 4453 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4454 /// distance is smaller than any other distance encountered so far). 4455 /// Otherwise, this function returns true signaling a possible dependence. 4456 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4457 const MemAccessInfo &B, unsigned BIdx, 4458 ValueToValueMap &Strides); 4459 4460 /// \brief Check whether the data dependence could prevent store-load 4461 /// forwarding. 4462 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4463 }; 4464 4465 } // end anonymous namespace 4466 4467 static bool isInBoundsGep(Value *Ptr) { 4468 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4469 return GEP->isInBounds(); 4470 return false; 4471 } 4472 4473 /// \brief Check whether the access through \p Ptr has a constant stride. 4474 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4475 const Loop *Lp, ValueToValueMap &StridesMap) { 4476 const Type *Ty = Ptr->getType(); 4477 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4478 4479 // Make sure that the pointer does not point to aggregate types. 4480 const PointerType *PtrTy = cast<PointerType>(Ty); 4481 if (PtrTy->getElementType()->isAggregateType()) { 4482 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4483 "\n"); 4484 return 0; 4485 } 4486 4487 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4488 4489 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4490 if (!AR) { 4491 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4492 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4493 return 0; 4494 } 4495 4496 // The accesss function must stride over the innermost loop. 4497 if (Lp != AR->getLoop()) { 4498 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4499 *Ptr << " SCEV: " << *PtrScev << "\n"); 4500 } 4501 4502 // The address calculation must not wrap. Otherwise, a dependence could be 4503 // inverted. 4504 // An inbounds getelementptr that is a AddRec with a unit stride 4505 // cannot wrap per definition. The unit stride requirement is checked later. 4506 // An getelementptr without an inbounds attribute and unit stride would have 4507 // to access the pointer value "0" which is undefined behavior in address 4508 // space 0, therefore we can also vectorize this case. 4509 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4510 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4511 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4512 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4513 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4514 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4515 return 0; 4516 } 4517 4518 // Check the step is constant. 4519 const SCEV *Step = AR->getStepRecurrence(*SE); 4520 4521 // Calculate the pointer stride and check if it is consecutive. 4522 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4523 if (!C) { 4524 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4525 " SCEV: " << *PtrScev << "\n"); 4526 return 0; 4527 } 4528 4529 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4530 const APInt &APStepVal = C->getValue()->getValue(); 4531 4532 // Huge step value - give up. 4533 if (APStepVal.getBitWidth() > 64) 4534 return 0; 4535 4536 int64_t StepVal = APStepVal.getSExtValue(); 4537 4538 // Strided access. 4539 int64_t Stride = StepVal / Size; 4540 int64_t Rem = StepVal % Size; 4541 if (Rem) 4542 return 0; 4543 4544 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4545 // know we can't "wrap around the address space". In case of address space 4546 // zero we know that this won't happen without triggering undefined behavior. 4547 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4548 Stride != 1 && Stride != -1) 4549 return 0; 4550 4551 return Stride; 4552 } 4553 4554 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4555 unsigned TypeByteSize) { 4556 // If loads occur at a distance that is not a multiple of a feasible vector 4557 // factor store-load forwarding does not take place. 4558 // Positive dependences might cause troubles because vectorizing them might 4559 // prevent store-load forwarding making vectorized code run a lot slower. 4560 // a[i] = a[i-3] ^ a[i-8]; 4561 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4562 // hence on your typical architecture store-load forwarding does not take 4563 // place. Vectorizing in such cases does not make sense. 4564 // Store-load forwarding distance. 4565 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4566 // Maximum vector factor. 4567 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4568 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4569 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4570 4571 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4572 vf *= 2) { 4573 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4574 MaxVFWithoutSLForwardIssues = (vf >>=1); 4575 break; 4576 } 4577 } 4578 4579 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4580 DEBUG(dbgs() << "LV: Distance " << Distance << 4581 " that could cause a store-load forwarding conflict\n"); 4582 return true; 4583 } 4584 4585 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4586 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4587 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4588 return false; 4589 } 4590 4591 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4592 const MemAccessInfo &B, unsigned BIdx, 4593 ValueToValueMap &Strides) { 4594 assert (AIdx < BIdx && "Must pass arguments in program order"); 4595 4596 Value *APtr = A.getPointer(); 4597 Value *BPtr = B.getPointer(); 4598 bool AIsWrite = A.getInt(); 4599 bool BIsWrite = B.getInt(); 4600 4601 // Two reads are independent. 4602 if (!AIsWrite && !BIsWrite) 4603 return false; 4604 4605 // We cannot check pointers in different address spaces. 4606 if (APtr->getType()->getPointerAddressSpace() != 4607 BPtr->getType()->getPointerAddressSpace()) 4608 return true; 4609 4610 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4611 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4612 4613 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4614 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4615 4616 const SCEV *Src = AScev; 4617 const SCEV *Sink = BScev; 4618 4619 // If the induction step is negative we have to invert source and sink of the 4620 // dependence. 4621 if (StrideAPtr < 0) { 4622 //Src = BScev; 4623 //Sink = AScev; 4624 std::swap(APtr, BPtr); 4625 std::swap(Src, Sink); 4626 std::swap(AIsWrite, BIsWrite); 4627 std::swap(AIdx, BIdx); 4628 std::swap(StrideAPtr, StrideBPtr); 4629 } 4630 4631 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4632 4633 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4634 << "(Induction step: " << StrideAPtr << ")\n"); 4635 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4636 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4637 4638 // Need consecutive accesses. We don't want to vectorize 4639 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4640 // the address space. 4641 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4642 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4643 return true; 4644 } 4645 4646 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4647 if (!C) { 4648 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4649 ShouldRetryWithRuntimeCheck = true; 4650 return true; 4651 } 4652 4653 Type *ATy = APtr->getType()->getPointerElementType(); 4654 Type *BTy = BPtr->getType()->getPointerElementType(); 4655 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4656 4657 // Negative distances are not plausible dependencies. 4658 const APInt &Val = C->getValue()->getValue(); 4659 if (Val.isNegative()) { 4660 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4661 if (IsTrueDataDependence && 4662 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4663 ATy != BTy)) 4664 return true; 4665 4666 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4667 return false; 4668 } 4669 4670 // Write to the same location with the same size. 4671 // Could be improved to assert type sizes are the same (i32 == float, etc). 4672 if (Val == 0) { 4673 if (ATy == BTy) 4674 return false; 4675 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4676 return true; 4677 } 4678 4679 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4680 4681 // Positive distance bigger than max vectorization factor. 4682 if (ATy != BTy) { 4683 DEBUG(dbgs() << 4684 "LV: ReadWrite-Write positive dependency with different types\n"); 4685 return false; 4686 } 4687 4688 unsigned Distance = (unsigned) Val.getZExtValue(); 4689 4690 // Bail out early if passed-in parameters make vectorization not feasible. 4691 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4692 unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1; 4693 4694 // The distance must be bigger than the size needed for a vectorized version 4695 // of the operation and the size of the vectorized operation must not be 4696 // bigger than the currrent maximum size. 4697 if (Distance < 2*TypeByteSize || 4698 2*TypeByteSize > MaxSafeDepDistBytes || 4699 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4700 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4701 << Val.getSExtValue() << '\n'); 4702 return true; 4703 } 4704 4705 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4706 Distance : MaxSafeDepDistBytes; 4707 4708 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4709 if (IsTrueDataDependence && 4710 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4711 return true; 4712 4713 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4714 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4715 4716 return false; 4717 } 4718 4719 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4720 MemAccessInfoSet &CheckDeps, 4721 ValueToValueMap &Strides) { 4722 4723 MaxSafeDepDistBytes = -1U; 4724 while (!CheckDeps.empty()) { 4725 MemAccessInfo CurAccess = *CheckDeps.begin(); 4726 4727 // Get the relevant memory access set. 4728 EquivalenceClasses<MemAccessInfo>::iterator I = 4729 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4730 4731 // Check accesses within this set. 4732 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4733 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4734 4735 // Check every access pair. 4736 while (AI != AE) { 4737 CheckDeps.erase(*AI); 4738 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4739 while (OI != AE) { 4740 // Check every accessing instruction pair in program order. 4741 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4742 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4743 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4744 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4745 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4746 return false; 4747 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4748 return false; 4749 } 4750 ++OI; 4751 } 4752 AI++; 4753 } 4754 } 4755 return true; 4756 } 4757 4758 bool LoopVectorizationLegality::canVectorizeMemory() { 4759 4760 typedef SmallVector<Value*, 16> ValueVector; 4761 typedef SmallPtrSet<Value*, 16> ValueSet; 4762 4763 // Holds the Load and Store *instructions*. 4764 ValueVector Loads; 4765 ValueVector Stores; 4766 4767 // Holds all the different accesses in the loop. 4768 unsigned NumReads = 0; 4769 unsigned NumReadWrites = 0; 4770 4771 PtrRtCheck.Pointers.clear(); 4772 PtrRtCheck.Need = false; 4773 4774 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4775 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4776 4777 // For each block. 4778 for (Loop::block_iterator bb = TheLoop->block_begin(), 4779 be = TheLoop->block_end(); bb != be; ++bb) { 4780 4781 // Scan the BB and collect legal loads and stores. 4782 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4783 ++it) { 4784 4785 // If this is a load, save it. If this instruction can read from memory 4786 // but is not a load, then we quit. Notice that we don't handle function 4787 // calls that read or write. 4788 if (it->mayReadFromMemory()) { 4789 // Many math library functions read the rounding mode. We will only 4790 // vectorize a loop if it contains known function calls that don't set 4791 // the flag. Therefore, it is safe to ignore this read from memory. 4792 CallInst *Call = dyn_cast<CallInst>(it); 4793 if (Call && getIntrinsicIDForCall(Call, TLI)) 4794 continue; 4795 4796 LoadInst *Ld = dyn_cast<LoadInst>(it); 4797 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4798 emitAnalysis(Report(Ld) 4799 << "read with atomic ordering or volatile read"); 4800 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4801 return false; 4802 } 4803 NumLoads++; 4804 Loads.push_back(Ld); 4805 DepChecker.addAccess(Ld); 4806 continue; 4807 } 4808 4809 // Save 'store' instructions. Abort if other instructions write to memory. 4810 if (it->mayWriteToMemory()) { 4811 StoreInst *St = dyn_cast<StoreInst>(it); 4812 if (!St) { 4813 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4814 return false; 4815 } 4816 if (!St->isSimple() && !IsAnnotatedParallel) { 4817 emitAnalysis(Report(St) 4818 << "write with atomic ordering or volatile write"); 4819 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4820 return false; 4821 } 4822 NumStores++; 4823 Stores.push_back(St); 4824 DepChecker.addAccess(St); 4825 } 4826 } // Next instr. 4827 } // Next block. 4828 4829 // Now we have two lists that hold the loads and the stores. 4830 // Next, we find the pointers that they use. 4831 4832 // Check if we see any stores. If there are no stores, then we don't 4833 // care if the pointers are *restrict*. 4834 if (!Stores.size()) { 4835 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4836 return true; 4837 } 4838 4839 AccessAnalysis::DepCandidates DependentAccesses; 4840 AccessAnalysis Accesses(DL, AA, DependentAccesses); 4841 4842 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4843 // multiple times on the same object. If the ptr is accessed twice, once 4844 // for read and once for write, it will only appear once (on the write 4845 // list). This is okay, since we are going to check for conflicts between 4846 // writes and between reads and writes, but not between reads and reads. 4847 ValueSet Seen; 4848 4849 ValueVector::iterator I, IE; 4850 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4851 StoreInst *ST = cast<StoreInst>(*I); 4852 Value* Ptr = ST->getPointerOperand(); 4853 4854 if (isUniform(Ptr)) { 4855 emitAnalysis( 4856 Report(ST) 4857 << "write to a loop invariant address could not be vectorized"); 4858 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4859 return false; 4860 } 4861 4862 // If we did *not* see this pointer before, insert it to the read-write 4863 // list. At this phase it is only a 'write' list. 4864 if (Seen.insert(Ptr).second) { 4865 ++NumReadWrites; 4866 4867 AliasAnalysis::Location Loc = AA->getLocation(ST); 4868 // The TBAA metadata could have a control dependency on the predication 4869 // condition, so we cannot rely on it when determining whether or not we 4870 // need runtime pointer checks. 4871 if (blockNeedsPredication(ST->getParent())) 4872 Loc.AATags.TBAA = nullptr; 4873 4874 Accesses.addStore(Loc); 4875 } 4876 } 4877 4878 if (IsAnnotatedParallel) { 4879 DEBUG(dbgs() 4880 << "LV: A loop annotated parallel, ignore memory dependency " 4881 << "checks.\n"); 4882 return true; 4883 } 4884 4885 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4886 LoadInst *LD = cast<LoadInst>(*I); 4887 Value* Ptr = LD->getPointerOperand(); 4888 // If we did *not* see this pointer before, insert it to the 4889 // read list. If we *did* see it before, then it is already in 4890 // the read-write list. This allows us to vectorize expressions 4891 // such as A[i] += x; Because the address of A[i] is a read-write 4892 // pointer. This only works if the index of A[i] is consecutive. 4893 // If the address of i is unknown (for example A[B[i]]) then we may 4894 // read a few words, modify, and write a few words, and some of the 4895 // words may be written to the same address. 4896 bool IsReadOnlyPtr = false; 4897 if (Seen.insert(Ptr).second || 4898 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4899 ++NumReads; 4900 IsReadOnlyPtr = true; 4901 } 4902 4903 AliasAnalysis::Location Loc = AA->getLocation(LD); 4904 // The TBAA metadata could have a control dependency on the predication 4905 // condition, so we cannot rely on it when determining whether or not we 4906 // need runtime pointer checks. 4907 if (blockNeedsPredication(LD->getParent())) 4908 Loc.AATags.TBAA = nullptr; 4909 4910 Accesses.addLoad(Loc, IsReadOnlyPtr); 4911 } 4912 4913 // If we write (or read-write) to a single destination and there are no 4914 // other reads in this loop then is it safe to vectorize. 4915 if (NumReadWrites == 1 && NumReads == 0) { 4916 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4917 return true; 4918 } 4919 4920 // Build dependence sets and check whether we need a runtime pointer bounds 4921 // check. 4922 Accesses.buildDependenceSets(); 4923 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4924 4925 // Find pointers with computable bounds. We are going to use this information 4926 // to place a runtime bound check. 4927 unsigned NumComparisons = 0; 4928 bool CanDoRT = false; 4929 if (NeedRTCheck) 4930 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4931 Strides); 4932 4933 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4934 " pointer comparisons.\n"); 4935 4936 // If we only have one set of dependences to check pointers among we don't 4937 // need a runtime check. 4938 if (NumComparisons == 0 && NeedRTCheck) 4939 NeedRTCheck = false; 4940 4941 // Check that we did not collect too many pointers or found an unsizeable 4942 // pointer. 4943 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4944 PtrRtCheck.reset(); 4945 CanDoRT = false; 4946 } 4947 4948 if (CanDoRT) { 4949 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4950 } 4951 4952 if (NeedRTCheck && !CanDoRT) { 4953 emitAnalysis(Report() << "cannot identify array bounds"); 4954 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4955 "the array bounds.\n"); 4956 PtrRtCheck.reset(); 4957 return false; 4958 } 4959 4960 PtrRtCheck.Need = NeedRTCheck; 4961 4962 bool CanVecMem = true; 4963 if (Accesses.isDependencyCheckNeeded()) { 4964 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4965 CanVecMem = DepChecker.areDepsSafe( 4966 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4967 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4968 4969 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4970 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4971 NeedRTCheck = true; 4972 4973 // Clear the dependency checks. We assume they are not needed. 4974 Accesses.resetDepChecks(); 4975 4976 PtrRtCheck.reset(); 4977 PtrRtCheck.Need = true; 4978 4979 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4980 TheLoop, Strides, true); 4981 // Check that we did not collect too many pointers or found an unsizeable 4982 // pointer. 4983 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4984 if (!CanDoRT && NumComparisons > 0) 4985 emitAnalysis(Report() 4986 << "cannot check memory dependencies at runtime"); 4987 else 4988 emitAnalysis(Report() 4989 << NumComparisons << " exceeds limit of " 4990 << RuntimeMemoryCheckThreshold 4991 << " dependent memory operations checked at runtime"); 4992 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4993 PtrRtCheck.reset(); 4994 return false; 4995 } 4996 4997 CanVecMem = true; 4998 } 4999 } 5000 5001 if (!CanVecMem) 5002 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 5003 5004 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 5005 " need a runtime memory check.\n"); 5006 5007 return CanVecMem; 5008 } 5009 5010 static bool hasMultipleUsesOf(Instruction *I, 5011 SmallPtrSetImpl<Instruction *> &Insts) { 5012 unsigned NumUses = 0; 5013 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 5014 if (Insts.count(dyn_cast<Instruction>(*Use))) 5015 ++NumUses; 5016 if (NumUses > 1) 5017 return true; 5018 } 5019 5020 return false; 5021 } 5022 5023 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 5024 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 5025 if (!Set.count(dyn_cast<Instruction>(*Use))) 5026 return false; 5027 return true; 5028 } 5029 5030 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 5031 ReductionKind Kind) { 5032 if (Phi->getNumIncomingValues() != 2) 5033 return false; 5034 5035 // Reduction variables are only found in the loop header block. 5036 if (Phi->getParent() != TheLoop->getHeader()) 5037 return false; 5038 5039 // Obtain the reduction start value from the value that comes from the loop 5040 // preheader. 5041 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 5042 5043 // ExitInstruction is the single value which is used outside the loop. 5044 // We only allow for a single reduction value to be used outside the loop. 5045 // This includes users of the reduction, variables (which form a cycle 5046 // which ends in the phi node). 5047 Instruction *ExitInstruction = nullptr; 5048 // Indicates that we found a reduction operation in our scan. 5049 bool FoundReduxOp = false; 5050 5051 // We start with the PHI node and scan for all of the users of this 5052 // instruction. All users must be instructions that can be used as reduction 5053 // variables (such as ADD). We must have a single out-of-block user. The cycle 5054 // must include the original PHI. 5055 bool FoundStartPHI = false; 5056 5057 // To recognize min/max patterns formed by a icmp select sequence, we store 5058 // the number of instruction we saw from the recognized min/max pattern, 5059 // to make sure we only see exactly the two instructions. 5060 unsigned NumCmpSelectPatternInst = 0; 5061 ReductionInstDesc ReduxDesc(false, nullptr); 5062 5063 SmallPtrSet<Instruction *, 8> VisitedInsts; 5064 SmallVector<Instruction *, 8> Worklist; 5065 Worklist.push_back(Phi); 5066 VisitedInsts.insert(Phi); 5067 5068 // A value in the reduction can be used: 5069 // - By the reduction: 5070 // - Reduction operation: 5071 // - One use of reduction value (safe). 5072 // - Multiple use of reduction value (not safe). 5073 // - PHI: 5074 // - All uses of the PHI must be the reduction (safe). 5075 // - Otherwise, not safe. 5076 // - By one instruction outside of the loop (safe). 5077 // - By further instructions outside of the loop (not safe). 5078 // - By an instruction that is not part of the reduction (not safe). 5079 // This is either: 5080 // * An instruction type other than PHI or the reduction operation. 5081 // * A PHI in the header other than the initial PHI. 5082 while (!Worklist.empty()) { 5083 Instruction *Cur = Worklist.back(); 5084 Worklist.pop_back(); 5085 5086 // No Users. 5087 // If the instruction has no users then this is a broken chain and can't be 5088 // a reduction variable. 5089 if (Cur->use_empty()) 5090 return false; 5091 5092 bool IsAPhi = isa<PHINode>(Cur); 5093 5094 // A header PHI use other than the original PHI. 5095 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 5096 return false; 5097 5098 // Reductions of instructions such as Div, and Sub is only possible if the 5099 // LHS is the reduction variable. 5100 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 5101 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 5102 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 5103 return false; 5104 5105 // Any reduction instruction must be of one of the allowed kinds. 5106 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 5107 if (!ReduxDesc.IsReduction) 5108 return false; 5109 5110 // A reduction operation must only have one use of the reduction value. 5111 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 5112 hasMultipleUsesOf(Cur, VisitedInsts)) 5113 return false; 5114 5115 // All inputs to a PHI node must be a reduction value. 5116 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 5117 return false; 5118 5119 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 5120 isa<SelectInst>(Cur))) 5121 ++NumCmpSelectPatternInst; 5122 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 5123 isa<SelectInst>(Cur))) 5124 ++NumCmpSelectPatternInst; 5125 5126 // Check whether we found a reduction operator. 5127 FoundReduxOp |= !IsAPhi; 5128 5129 // Process users of current instruction. Push non-PHI nodes after PHI nodes 5130 // onto the stack. This way we are going to have seen all inputs to PHI 5131 // nodes once we get to them. 5132 SmallVector<Instruction *, 8> NonPHIs; 5133 SmallVector<Instruction *, 8> PHIs; 5134 for (User *U : Cur->users()) { 5135 Instruction *UI = cast<Instruction>(U); 5136 5137 // Check if we found the exit user. 5138 BasicBlock *Parent = UI->getParent(); 5139 if (!TheLoop->contains(Parent)) { 5140 // Exit if you find multiple outside users or if the header phi node is 5141 // being used. In this case the user uses the value of the previous 5142 // iteration, in which case we would loose "VF-1" iterations of the 5143 // reduction operation if we vectorize. 5144 if (ExitInstruction != nullptr || Cur == Phi) 5145 return false; 5146 5147 // The instruction used by an outside user must be the last instruction 5148 // before we feed back to the reduction phi. Otherwise, we loose VF-1 5149 // operations on the value. 5150 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 5151 return false; 5152 5153 ExitInstruction = Cur; 5154 continue; 5155 } 5156 5157 // Process instructions only once (termination). Each reduction cycle 5158 // value must only be used once, except by phi nodes and min/max 5159 // reductions which are represented as a cmp followed by a select. 5160 ReductionInstDesc IgnoredVal(false, nullptr); 5161 if (VisitedInsts.insert(UI).second) { 5162 if (isa<PHINode>(UI)) 5163 PHIs.push_back(UI); 5164 else 5165 NonPHIs.push_back(UI); 5166 } else if (!isa<PHINode>(UI) && 5167 ((!isa<FCmpInst>(UI) && 5168 !isa<ICmpInst>(UI) && 5169 !isa<SelectInst>(UI)) || 5170 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 5171 return false; 5172 5173 // Remember that we completed the cycle. 5174 if (UI == Phi) 5175 FoundStartPHI = true; 5176 } 5177 Worklist.append(PHIs.begin(), PHIs.end()); 5178 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 5179 } 5180 5181 // This means we have seen one but not the other instruction of the 5182 // pattern or more than just a select and cmp. 5183 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 5184 NumCmpSelectPatternInst != 2) 5185 return false; 5186 5187 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 5188 return false; 5189 5190 // We found a reduction var if we have reached the original phi node and we 5191 // only have a single instruction with out-of-loop users. 5192 5193 // This instruction is allowed to have out-of-loop users. 5194 AllowedExit.insert(ExitInstruction); 5195 5196 // Save the description of this reduction variable. 5197 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 5198 ReduxDesc.MinMaxKind); 5199 Reductions[Phi] = RD; 5200 // We've ended the cycle. This is a reduction variable if we have an 5201 // outside user and it has a binary op. 5202 5203 return true; 5204 } 5205 5206 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 5207 /// pattern corresponding to a min(X, Y) or max(X, Y). 5208 LoopVectorizationLegality::ReductionInstDesc 5209 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 5210 ReductionInstDesc &Prev) { 5211 5212 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 5213 "Expect a select instruction"); 5214 Instruction *Cmp = nullptr; 5215 SelectInst *Select = nullptr; 5216 5217 // We must handle the select(cmp()) as a single instruction. Advance to the 5218 // select. 5219 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 5220 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 5221 return ReductionInstDesc(false, I); 5222 return ReductionInstDesc(Select, Prev.MinMaxKind); 5223 } 5224 5225 // Only handle single use cases for now. 5226 if (!(Select = dyn_cast<SelectInst>(I))) 5227 return ReductionInstDesc(false, I); 5228 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 5229 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 5230 return ReductionInstDesc(false, I); 5231 if (!Cmp->hasOneUse()) 5232 return ReductionInstDesc(false, I); 5233 5234 Value *CmpLeft; 5235 Value *CmpRight; 5236 5237 // Look for a min/max pattern. 5238 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5239 return ReductionInstDesc(Select, MRK_UIntMin); 5240 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5241 return ReductionInstDesc(Select, MRK_UIntMax); 5242 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5243 return ReductionInstDesc(Select, MRK_SIntMax); 5244 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5245 return ReductionInstDesc(Select, MRK_SIntMin); 5246 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5247 return ReductionInstDesc(Select, MRK_FloatMin); 5248 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5249 return ReductionInstDesc(Select, MRK_FloatMax); 5250 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5251 return ReductionInstDesc(Select, MRK_FloatMin); 5252 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5253 return ReductionInstDesc(Select, MRK_FloatMax); 5254 5255 return ReductionInstDesc(false, I); 5256 } 5257 5258 LoopVectorizationLegality::ReductionInstDesc 5259 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5260 ReductionKind Kind, 5261 ReductionInstDesc &Prev) { 5262 bool FP = I->getType()->isFloatingPointTy(); 5263 bool FastMath = FP && I->hasUnsafeAlgebra(); 5264 switch (I->getOpcode()) { 5265 default: 5266 return ReductionInstDesc(false, I); 5267 case Instruction::PHI: 5268 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5269 Kind != RK_FloatMinMax)) 5270 return ReductionInstDesc(false, I); 5271 return ReductionInstDesc(I, Prev.MinMaxKind); 5272 case Instruction::Sub: 5273 case Instruction::Add: 5274 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5275 case Instruction::Mul: 5276 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5277 case Instruction::And: 5278 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5279 case Instruction::Or: 5280 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5281 case Instruction::Xor: 5282 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5283 case Instruction::FMul: 5284 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5285 case Instruction::FSub: 5286 case Instruction::FAdd: 5287 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5288 case Instruction::FCmp: 5289 case Instruction::ICmp: 5290 case Instruction::Select: 5291 if (Kind != RK_IntegerMinMax && 5292 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5293 return ReductionInstDesc(false, I); 5294 return isMinMaxSelectCmpPattern(I, Prev); 5295 } 5296 } 5297 5298 LoopVectorizationLegality::InductionKind 5299 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5300 Type *PhiTy = Phi->getType(); 5301 // We only handle integer and pointer inductions variables. 5302 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5303 return IK_NoInduction; 5304 5305 // Check that the PHI is consecutive. 5306 const SCEV *PhiScev = SE->getSCEV(Phi); 5307 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5308 if (!AR) { 5309 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5310 return IK_NoInduction; 5311 } 5312 const SCEV *Step = AR->getStepRecurrence(*SE); 5313 5314 // Integer inductions need to have a stride of one. 5315 if (PhiTy->isIntegerTy()) { 5316 if (Step->isOne()) 5317 return IK_IntInduction; 5318 if (Step->isAllOnesValue()) 5319 return IK_ReverseIntInduction; 5320 return IK_NoInduction; 5321 } 5322 5323 // Calculate the pointer stride and check if it is consecutive. 5324 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5325 if (!C) 5326 return IK_NoInduction; 5327 5328 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5329 Type *PointerElementType = PhiTy->getPointerElementType(); 5330 // The pointer stride cannot be determined if the pointer element type is not 5331 // sized. 5332 if (!PointerElementType->isSized()) 5333 return IK_NoInduction; 5334 5335 uint64_t Size = DL->getTypeAllocSize(PointerElementType); 5336 if (C->getValue()->equalsInt(Size)) 5337 return IK_PtrInduction; 5338 else if (C->getValue()->equalsInt(0 - Size)) 5339 return IK_ReversePtrInduction; 5340 5341 return IK_NoInduction; 5342 } 5343 5344 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5345 Value *In0 = const_cast<Value*>(V); 5346 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5347 if (!PN) 5348 return false; 5349 5350 return Inductions.count(PN); 5351 } 5352 5353 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5354 assert(TheLoop->contains(BB) && "Unknown block used"); 5355 5356 // Blocks that do not dominate the latch need predication. 5357 BasicBlock* Latch = TheLoop->getLoopLatch(); 5358 return !DT->dominates(BB, Latch); 5359 } 5360 5361 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5362 SmallPtrSetImpl<Value *> &SafePtrs) { 5363 5364 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5365 // Check that we don't have a constant expression that can trap as operand. 5366 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5367 OI != OE; ++OI) { 5368 if (Constant *C = dyn_cast<Constant>(*OI)) 5369 if (C->canTrap()) 5370 return false; 5371 } 5372 // We might be able to hoist the load. 5373 if (it->mayReadFromMemory()) { 5374 LoadInst *LI = dyn_cast<LoadInst>(it); 5375 if (!LI) 5376 return false; 5377 if (!SafePtrs.count(LI->getPointerOperand())) { 5378 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 5379 MaskedOp.insert(LI); 5380 continue; 5381 } 5382 return false; 5383 } 5384 } 5385 5386 // We don't predicate stores at the moment. 5387 if (it->mayWriteToMemory()) { 5388 StoreInst *SI = dyn_cast<StoreInst>(it); 5389 // We only support predication of stores in basic blocks with one 5390 // predecessor. 5391 if (!SI) 5392 return false; 5393 5394 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5395 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5396 5397 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5398 !isSinglePredecessor) { 5399 // Build a masked store if it is legal for the target, otherwise scalarize 5400 // the block. 5401 bool isLegalMaskedOp = 5402 isLegalMaskedStore(SI->getValueOperand()->getType(), 5403 SI->getPointerOperand()); 5404 if (isLegalMaskedOp) { 5405 --NumPredStores; 5406 MaskedOp.insert(SI); 5407 continue; 5408 } 5409 return false; 5410 } 5411 } 5412 if (it->mayThrow()) 5413 return false; 5414 5415 // The instructions below can trap. 5416 switch (it->getOpcode()) { 5417 default: continue; 5418 case Instruction::UDiv: 5419 case Instruction::SDiv: 5420 case Instruction::URem: 5421 case Instruction::SRem: 5422 return false; 5423 } 5424 } 5425 5426 return true; 5427 } 5428 5429 LoopVectorizationCostModel::VectorizationFactor 5430 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5431 // Width 1 means no vectorize 5432 VectorizationFactor Factor = { 1U, 0U }; 5433 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5434 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5435 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5436 return Factor; 5437 } 5438 5439 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5440 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization"); 5441 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5442 return Factor; 5443 } 5444 5445 // Find the trip count. 5446 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5447 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5448 5449 unsigned WidestType = getWidestType(); 5450 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5451 unsigned MaxSafeDepDist = -1U; 5452 if (Legal->getMaxSafeDepDistBytes() != -1U) 5453 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5454 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5455 WidestRegister : MaxSafeDepDist); 5456 unsigned MaxVectorSize = WidestRegister / WidestType; 5457 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5458 DEBUG(dbgs() << "LV: The Widest register is: " 5459 << WidestRegister << " bits.\n"); 5460 5461 if (MaxVectorSize == 0) { 5462 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5463 MaxVectorSize = 1; 5464 } 5465 5466 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5467 " into one vector!"); 5468 5469 unsigned VF = MaxVectorSize; 5470 5471 // If we optimize the program for size, avoid creating the tail loop. 5472 if (OptForSize) { 5473 // If we are unable to calculate the trip count then don't try to vectorize. 5474 if (TC < 2) { 5475 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow"); 5476 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5477 return Factor; 5478 } 5479 5480 // Find the maximum SIMD width that can fit within the trip count. 5481 VF = TC % MaxVectorSize; 5482 5483 if (VF == 0) 5484 VF = MaxVectorSize; 5485 5486 // If the trip count that we found modulo the vectorization factor is not 5487 // zero then we require a tail. 5488 if (VF < 2) { 5489 emitAnalysis(Report() << "cannot optimize for size and vectorize at the " 5490 "same time. Enable vectorization of this loop " 5491 "with '#pragma clang loop vectorize(enable)' " 5492 "when compiling with -Os"); 5493 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5494 return Factor; 5495 } 5496 } 5497 5498 int UserVF = Hints->getWidth(); 5499 if (UserVF != 0) { 5500 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5501 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5502 5503 Factor.Width = UserVF; 5504 return Factor; 5505 } 5506 5507 float Cost = expectedCost(1); 5508 #ifndef NDEBUG 5509 const float ScalarCost = Cost; 5510 #endif /* NDEBUG */ 5511 unsigned Width = 1; 5512 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5513 5514 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5515 // Ignore scalar width, because the user explicitly wants vectorization. 5516 if (ForceVectorization && VF > 1) { 5517 Width = 2; 5518 Cost = expectedCost(Width) / (float)Width; 5519 } 5520 5521 for (unsigned i=2; i <= VF; i*=2) { 5522 // Notice that the vector loop needs to be executed less times, so 5523 // we need to divide the cost of the vector loops by the width of 5524 // the vector elements. 5525 float VectorCost = expectedCost(i) / (float)i; 5526 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5527 (int)VectorCost << ".\n"); 5528 if (VectorCost < Cost) { 5529 Cost = VectorCost; 5530 Width = i; 5531 } 5532 } 5533 5534 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5535 << "LV: Vectorization seems to be not beneficial, " 5536 << "but was forced by a user.\n"); 5537 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5538 Factor.Width = Width; 5539 Factor.Cost = Width * Cost; 5540 return Factor; 5541 } 5542 5543 unsigned LoopVectorizationCostModel::getWidestType() { 5544 unsigned MaxWidth = 8; 5545 5546 // For each block. 5547 for (Loop::block_iterator bb = TheLoop->block_begin(), 5548 be = TheLoop->block_end(); bb != be; ++bb) { 5549 BasicBlock *BB = *bb; 5550 5551 // For each instruction in the loop. 5552 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5553 Type *T = it->getType(); 5554 5555 // Ignore ephemeral values. 5556 if (EphValues.count(it)) 5557 continue; 5558 5559 // Only examine Loads, Stores and PHINodes. 5560 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5561 continue; 5562 5563 // Examine PHI nodes that are reduction variables. 5564 if (PHINode *PN = dyn_cast<PHINode>(it)) 5565 if (!Legal->getReductionVars()->count(PN)) 5566 continue; 5567 5568 // Examine the stored values. 5569 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5570 T = ST->getValueOperand()->getType(); 5571 5572 // Ignore loaded pointer types and stored pointer types that are not 5573 // consecutive. However, we do want to take consecutive stores/loads of 5574 // pointer vectors into account. 5575 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5576 continue; 5577 5578 MaxWidth = std::max(MaxWidth, 5579 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5580 } 5581 } 5582 5583 return MaxWidth; 5584 } 5585 5586 unsigned 5587 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5588 unsigned VF, 5589 unsigned LoopCost) { 5590 5591 // -- The unroll heuristics -- 5592 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5593 // There are many micro-architectural considerations that we can't predict 5594 // at this level. For example, frontend pressure (on decode or fetch) due to 5595 // code size, or the number and capabilities of the execution ports. 5596 // 5597 // We use the following heuristics to select the unroll factor: 5598 // 1. If the code has reductions, then we unroll in order to break the cross 5599 // iteration dependency. 5600 // 2. If the loop is really small, then we unroll in order to reduce the loop 5601 // overhead. 5602 // 3. We don't unroll if we think that we will spill registers to memory due 5603 // to the increased register pressure. 5604 5605 // Use the user preference, unless 'auto' is selected. 5606 int UserUF = Hints->getInterleave(); 5607 if (UserUF != 0) 5608 return UserUF; 5609 5610 // When we optimize for size, we don't unroll. 5611 if (OptForSize) 5612 return 1; 5613 5614 // We used the distance for the unroll factor. 5615 if (Legal->getMaxSafeDepDistBytes() != -1U) 5616 return 1; 5617 5618 // Do not unroll loops with a relatively small trip count. 5619 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5620 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5621 return 1; 5622 5623 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5624 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5625 " registers\n"); 5626 5627 if (VF == 1) { 5628 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5629 TargetNumRegisters = ForceTargetNumScalarRegs; 5630 } else { 5631 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5632 TargetNumRegisters = ForceTargetNumVectorRegs; 5633 } 5634 5635 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5636 // We divide by these constants so assume that we have at least one 5637 // instruction that uses at least one register. 5638 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5639 R.NumInstructions = std::max(R.NumInstructions, 1U); 5640 5641 // We calculate the unroll factor using the following formula. 5642 // Subtract the number of loop invariants from the number of available 5643 // registers. These registers are used by all of the unrolled instances. 5644 // Next, divide the remaining registers by the number of registers that is 5645 // required by the loop, in order to estimate how many parallel instances 5646 // fit without causing spills. All of this is rounded down if necessary to be 5647 // a power of two. We want power of two unroll factors to simplify any 5648 // addressing operations or alignment considerations. 5649 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5650 R.MaxLocalUsers); 5651 5652 // Don't count the induction variable as unrolled. 5653 if (EnableIndVarRegisterHeur) 5654 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5655 std::max(1U, (R.MaxLocalUsers - 1))); 5656 5657 // Clamp the unroll factor ranges to reasonable factors. 5658 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 5659 5660 // Check if the user has overridden the unroll max. 5661 if (VF == 1) { 5662 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5663 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 5664 } else { 5665 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5666 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 5667 } 5668 5669 // If we did not calculate the cost for VF (because the user selected the VF) 5670 // then we calculate the cost of VF here. 5671 if (LoopCost == 0) 5672 LoopCost = expectedCost(VF); 5673 5674 // Clamp the calculated UF to be between the 1 and the max unroll factor 5675 // that the target allows. 5676 if (UF > MaxInterleaveSize) 5677 UF = MaxInterleaveSize; 5678 else if (UF < 1) 5679 UF = 1; 5680 5681 // Unroll if we vectorized this loop and there is a reduction that could 5682 // benefit from unrolling. 5683 if (VF > 1 && Legal->getReductionVars()->size()) { 5684 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5685 return UF; 5686 } 5687 5688 // Note that if we've already vectorized the loop we will have done the 5689 // runtime check and so unrolling won't require further checks. 5690 bool UnrollingRequiresRuntimePointerCheck = 5691 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5692 5693 // We want to unroll small loops in order to reduce the loop overhead and 5694 // potentially expose ILP opportunities. 5695 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5696 if (!UnrollingRequiresRuntimePointerCheck && 5697 LoopCost < SmallLoopCost) { 5698 // We assume that the cost overhead is 1 and we use the cost model 5699 // to estimate the cost of the loop and unroll until the cost of the 5700 // loop overhead is about 5% of the cost of the loop. 5701 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5702 5703 // Unroll until store/load ports (estimated by max unroll factor) are 5704 // saturated. 5705 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5706 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5707 5708 // If we have a scalar reduction (vector reductions are already dealt with 5709 // by this point), we can increase the critical path length if the loop 5710 // we're unrolling is inside another loop. Limit, by default to 2, so the 5711 // critical path only gets increased by one reduction operation. 5712 if (Legal->getReductionVars()->size() && 5713 TheLoop->getLoopDepth() > 1) { 5714 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 5715 SmallUF = std::min(SmallUF, F); 5716 StoresUF = std::min(StoresUF, F); 5717 LoadsUF = std::min(LoadsUF, F); 5718 } 5719 5720 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5721 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5722 return std::max(StoresUF, LoadsUF); 5723 } 5724 5725 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5726 return SmallUF; 5727 } 5728 5729 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5730 return 1; 5731 } 5732 5733 LoopVectorizationCostModel::RegisterUsage 5734 LoopVectorizationCostModel::calculateRegisterUsage() { 5735 // This function calculates the register usage by measuring the highest number 5736 // of values that are alive at a single location. Obviously, this is a very 5737 // rough estimation. We scan the loop in a topological order in order and 5738 // assign a number to each instruction. We use RPO to ensure that defs are 5739 // met before their users. We assume that each instruction that has in-loop 5740 // users starts an interval. We record every time that an in-loop value is 5741 // used, so we have a list of the first and last occurrences of each 5742 // instruction. Next, we transpose this data structure into a multi map that 5743 // holds the list of intervals that *end* at a specific location. This multi 5744 // map allows us to perform a linear search. We scan the instructions linearly 5745 // and record each time that a new interval starts, by placing it in a set. 5746 // If we find this value in the multi-map then we remove it from the set. 5747 // The max register usage is the maximum size of the set. 5748 // We also search for instructions that are defined outside the loop, but are 5749 // used inside the loop. We need this number separately from the max-interval 5750 // usage number because when we unroll, loop-invariant values do not take 5751 // more register. 5752 LoopBlocksDFS DFS(TheLoop); 5753 DFS.perform(LI); 5754 5755 RegisterUsage R; 5756 R.NumInstructions = 0; 5757 5758 // Each 'key' in the map opens a new interval. The values 5759 // of the map are the index of the 'last seen' usage of the 5760 // instruction that is the key. 5761 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5762 // Maps instruction to its index. 5763 DenseMap<unsigned, Instruction*> IdxToInstr; 5764 // Marks the end of each interval. 5765 IntervalMap EndPoint; 5766 // Saves the list of instruction indices that are used in the loop. 5767 SmallSet<Instruction*, 8> Ends; 5768 // Saves the list of values that are used in the loop but are 5769 // defined outside the loop, such as arguments and constants. 5770 SmallPtrSet<Value*, 8> LoopInvariants; 5771 5772 unsigned Index = 0; 5773 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5774 be = DFS.endRPO(); bb != be; ++bb) { 5775 R.NumInstructions += (*bb)->size(); 5776 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5777 ++it) { 5778 Instruction *I = it; 5779 IdxToInstr[Index++] = I; 5780 5781 // Save the end location of each USE. 5782 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5783 Value *U = I->getOperand(i); 5784 Instruction *Instr = dyn_cast<Instruction>(U); 5785 5786 // Ignore non-instruction values such as arguments, constants, etc. 5787 if (!Instr) continue; 5788 5789 // If this instruction is outside the loop then record it and continue. 5790 if (!TheLoop->contains(Instr)) { 5791 LoopInvariants.insert(Instr); 5792 continue; 5793 } 5794 5795 // Overwrite previous end points. 5796 EndPoint[Instr] = Index; 5797 Ends.insert(Instr); 5798 } 5799 } 5800 } 5801 5802 // Saves the list of intervals that end with the index in 'key'. 5803 typedef SmallVector<Instruction*, 2> InstrList; 5804 DenseMap<unsigned, InstrList> TransposeEnds; 5805 5806 // Transpose the EndPoints to a list of values that end at each index. 5807 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5808 it != e; ++it) 5809 TransposeEnds[it->second].push_back(it->first); 5810 5811 SmallSet<Instruction*, 8> OpenIntervals; 5812 unsigned MaxUsage = 0; 5813 5814 5815 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5816 for (unsigned int i = 0; i < Index; ++i) { 5817 Instruction *I = IdxToInstr[i]; 5818 // Ignore instructions that are never used within the loop. 5819 if (!Ends.count(I)) continue; 5820 5821 // Ignore ephemeral values. 5822 if (EphValues.count(I)) 5823 continue; 5824 5825 // Remove all of the instructions that end at this location. 5826 InstrList &List = TransposeEnds[i]; 5827 for (unsigned int j=0, e = List.size(); j < e; ++j) 5828 OpenIntervals.erase(List[j]); 5829 5830 // Count the number of live interals. 5831 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5832 5833 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5834 OpenIntervals.size() << '\n'); 5835 5836 // Add the current instruction to the list of open intervals. 5837 OpenIntervals.insert(I); 5838 } 5839 5840 unsigned Invariant = LoopInvariants.size(); 5841 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5842 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5843 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5844 5845 R.LoopInvariantRegs = Invariant; 5846 R.MaxLocalUsers = MaxUsage; 5847 return R; 5848 } 5849 5850 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5851 unsigned Cost = 0; 5852 5853 // For each block. 5854 for (Loop::block_iterator bb = TheLoop->block_begin(), 5855 be = TheLoop->block_end(); bb != be; ++bb) { 5856 unsigned BlockCost = 0; 5857 BasicBlock *BB = *bb; 5858 5859 // For each instruction in the old loop. 5860 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5861 // Skip dbg intrinsics. 5862 if (isa<DbgInfoIntrinsic>(it)) 5863 continue; 5864 5865 // Ignore ephemeral values. 5866 if (EphValues.count(it)) 5867 continue; 5868 5869 unsigned C = getInstructionCost(it, VF); 5870 5871 // Check if we should override the cost. 5872 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5873 C = ForceTargetInstructionCost; 5874 5875 BlockCost += C; 5876 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5877 VF << " For instruction: " << *it << '\n'); 5878 } 5879 5880 // We assume that if-converted blocks have a 50% chance of being executed. 5881 // When the code is scalar then some of the blocks are avoided due to CF. 5882 // When the code is vectorized we execute all code paths. 5883 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5884 BlockCost /= 2; 5885 5886 Cost += BlockCost; 5887 } 5888 5889 return Cost; 5890 } 5891 5892 /// \brief Check whether the address computation for a non-consecutive memory 5893 /// access looks like an unlikely candidate for being merged into the indexing 5894 /// mode. 5895 /// 5896 /// We look for a GEP which has one index that is an induction variable and all 5897 /// other indices are loop invariant. If the stride of this access is also 5898 /// within a small bound we decide that this address computation can likely be 5899 /// merged into the addressing mode. 5900 /// In all other cases, we identify the address computation as complex. 5901 static bool isLikelyComplexAddressComputation(Value *Ptr, 5902 LoopVectorizationLegality *Legal, 5903 ScalarEvolution *SE, 5904 const Loop *TheLoop) { 5905 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5906 if (!Gep) 5907 return true; 5908 5909 // We are looking for a gep with all loop invariant indices except for one 5910 // which should be an induction variable. 5911 unsigned NumOperands = Gep->getNumOperands(); 5912 for (unsigned i = 1; i < NumOperands; ++i) { 5913 Value *Opd = Gep->getOperand(i); 5914 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5915 !Legal->isInductionVariable(Opd)) 5916 return true; 5917 } 5918 5919 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5920 // can likely be merged into the address computation. 5921 unsigned MaxMergeDistance = 64; 5922 5923 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5924 if (!AddRec) 5925 return true; 5926 5927 // Check the step is constant. 5928 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5929 // Calculate the pointer stride and check if it is consecutive. 5930 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5931 if (!C) 5932 return true; 5933 5934 const APInt &APStepVal = C->getValue()->getValue(); 5935 5936 // Huge step value - give up. 5937 if (APStepVal.getBitWidth() > 64) 5938 return true; 5939 5940 int64_t StepVal = APStepVal.getSExtValue(); 5941 5942 return StepVal > MaxMergeDistance; 5943 } 5944 5945 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5946 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5947 return true; 5948 return false; 5949 } 5950 5951 unsigned 5952 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5953 // If we know that this instruction will remain uniform, check the cost of 5954 // the scalar version. 5955 if (Legal->isUniformAfterVectorization(I)) 5956 VF = 1; 5957 5958 Type *RetTy = I->getType(); 5959 Type *VectorTy = ToVectorTy(RetTy, VF); 5960 5961 // TODO: We need to estimate the cost of intrinsic calls. 5962 switch (I->getOpcode()) { 5963 case Instruction::GetElementPtr: 5964 // We mark this instruction as zero-cost because the cost of GEPs in 5965 // vectorized code depends on whether the corresponding memory instruction 5966 // is scalarized or not. Therefore, we handle GEPs with the memory 5967 // instruction cost. 5968 return 0; 5969 case Instruction::Br: { 5970 return TTI.getCFInstrCost(I->getOpcode()); 5971 } 5972 case Instruction::PHI: 5973 //TODO: IF-converted IFs become selects. 5974 return 0; 5975 case Instruction::Add: 5976 case Instruction::FAdd: 5977 case Instruction::Sub: 5978 case Instruction::FSub: 5979 case Instruction::Mul: 5980 case Instruction::FMul: 5981 case Instruction::UDiv: 5982 case Instruction::SDiv: 5983 case Instruction::FDiv: 5984 case Instruction::URem: 5985 case Instruction::SRem: 5986 case Instruction::FRem: 5987 case Instruction::Shl: 5988 case Instruction::LShr: 5989 case Instruction::AShr: 5990 case Instruction::And: 5991 case Instruction::Or: 5992 case Instruction::Xor: { 5993 // Since we will replace the stride by 1 the multiplication should go away. 5994 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5995 return 0; 5996 // Certain instructions can be cheaper to vectorize if they have a constant 5997 // second vector operand. One example of this are shifts on x86. 5998 TargetTransformInfo::OperandValueKind Op1VK = 5999 TargetTransformInfo::OK_AnyValue; 6000 TargetTransformInfo::OperandValueKind Op2VK = 6001 TargetTransformInfo::OK_AnyValue; 6002 TargetTransformInfo::OperandValueProperties Op1VP = 6003 TargetTransformInfo::OP_None; 6004 TargetTransformInfo::OperandValueProperties Op2VP = 6005 TargetTransformInfo::OP_None; 6006 Value *Op2 = I->getOperand(1); 6007 6008 // Check for a splat of a constant or for a non uniform vector of constants. 6009 if (isa<ConstantInt>(Op2)) { 6010 ConstantInt *CInt = cast<ConstantInt>(Op2); 6011 if (CInt && CInt->getValue().isPowerOf2()) 6012 Op2VP = TargetTransformInfo::OP_PowerOf2; 6013 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6014 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6015 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6016 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6017 if (SplatValue) { 6018 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6019 if (CInt && CInt->getValue().isPowerOf2()) 6020 Op2VP = TargetTransformInfo::OP_PowerOf2; 6021 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6022 } 6023 } 6024 6025 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6026 Op1VP, Op2VP); 6027 } 6028 case Instruction::Select: { 6029 SelectInst *SI = cast<SelectInst>(I); 6030 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6031 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6032 Type *CondTy = SI->getCondition()->getType(); 6033 if (!ScalarCond) 6034 CondTy = VectorType::get(CondTy, VF); 6035 6036 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6037 } 6038 case Instruction::ICmp: 6039 case Instruction::FCmp: { 6040 Type *ValTy = I->getOperand(0)->getType(); 6041 VectorTy = ToVectorTy(ValTy, VF); 6042 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6043 } 6044 case Instruction::Store: 6045 case Instruction::Load: { 6046 StoreInst *SI = dyn_cast<StoreInst>(I); 6047 LoadInst *LI = dyn_cast<LoadInst>(I); 6048 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 6049 LI->getType()); 6050 VectorTy = ToVectorTy(ValTy, VF); 6051 6052 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6053 unsigned AS = SI ? SI->getPointerAddressSpace() : 6054 LI->getPointerAddressSpace(); 6055 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 6056 // We add the cost of address computation here instead of with the gep 6057 // instruction because only here we know whether the operation is 6058 // scalarized. 6059 if (VF == 1) 6060 return TTI.getAddressComputationCost(VectorTy) + 6061 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6062 6063 // Scalarized loads/stores. 6064 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6065 bool Reverse = ConsecutiveStride < 0; 6066 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 6067 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 6068 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 6069 bool IsComplexComputation = 6070 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6071 unsigned Cost = 0; 6072 // The cost of extracting from the value vector and pointer vector. 6073 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6074 for (unsigned i = 0; i < VF; ++i) { 6075 // The cost of extracting the pointer operand. 6076 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6077 // In case of STORE, the cost of ExtractElement from the vector. 6078 // In case of LOAD, the cost of InsertElement into the returned 6079 // vector. 6080 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 6081 Instruction::InsertElement, 6082 VectorTy, i); 6083 } 6084 6085 // The cost of the scalar loads/stores. 6086 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6087 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6088 Alignment, AS); 6089 return Cost; 6090 } 6091 6092 // Wide load/stores. 6093 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6094 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6095 6096 if (Reverse) 6097 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 6098 VectorTy, 0); 6099 return Cost; 6100 } 6101 case Instruction::ZExt: 6102 case Instruction::SExt: 6103 case Instruction::FPToUI: 6104 case Instruction::FPToSI: 6105 case Instruction::FPExt: 6106 case Instruction::PtrToInt: 6107 case Instruction::IntToPtr: 6108 case Instruction::SIToFP: 6109 case Instruction::UIToFP: 6110 case Instruction::Trunc: 6111 case Instruction::FPTrunc: 6112 case Instruction::BitCast: { 6113 // We optimize the truncation of induction variable. 6114 // The cost of these is the same as the scalar operation. 6115 if (I->getOpcode() == Instruction::Trunc && 6116 Legal->isInductionVariable(I->getOperand(0))) 6117 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6118 I->getOperand(0)->getType()); 6119 6120 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 6121 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6122 } 6123 case Instruction::Call: { 6124 CallInst *CI = cast<CallInst>(I); 6125 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 6126 assert(ID && "Not an intrinsic call!"); 6127 Type *RetTy = ToVectorTy(CI->getType(), VF); 6128 SmallVector<Type*, 4> Tys; 6129 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 6130 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 6131 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 6132 } 6133 default: { 6134 // We are scalarizing the instruction. Return the cost of the scalar 6135 // instruction, plus the cost of insert and extract into vector 6136 // elements, times the vector width. 6137 unsigned Cost = 0; 6138 6139 if (!RetTy->isVoidTy() && VF != 1) { 6140 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6141 VectorTy); 6142 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6143 VectorTy); 6144 6145 // The cost of inserting the results plus extracting each one of the 6146 // operands. 6147 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6148 } 6149 6150 // The cost of executing VF copies of the scalar instruction. This opcode 6151 // is unknown. Assume that it is the same as 'mul'. 6152 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6153 return Cost; 6154 } 6155 }// end of switch. 6156 } 6157 6158 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 6159 if (Scalar->isVoidTy() || VF == 1) 6160 return Scalar; 6161 return VectorType::get(Scalar, VF); 6162 } 6163 6164 char LoopVectorize::ID = 0; 6165 static const char lv_name[] = "Loop Vectorization"; 6166 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6167 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 6168 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 6169 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 6170 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 6171 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6172 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 6173 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6174 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 6175 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6176 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6177 6178 namespace llvm { 6179 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6180 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6181 } 6182 } 6183 6184 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6185 // Check for a store. 6186 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6187 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6188 6189 // Check for a load. 6190 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6191 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6192 6193 return false; 6194 } 6195 6196 6197 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6198 bool IfPredicateStore) { 6199 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6200 // Holds vector parameters or scalars, in case of uniform vals. 6201 SmallVector<VectorParts, 4> Params; 6202 6203 setDebugLocFromInst(Builder, Instr); 6204 6205 // Find all of the vectorized parameters. 6206 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6207 Value *SrcOp = Instr->getOperand(op); 6208 6209 // If we are accessing the old induction variable, use the new one. 6210 if (SrcOp == OldInduction) { 6211 Params.push_back(getVectorValue(SrcOp)); 6212 continue; 6213 } 6214 6215 // Try using previously calculated values. 6216 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6217 6218 // If the src is an instruction that appeared earlier in the basic block 6219 // then it should already be vectorized. 6220 if (SrcInst && OrigLoop->contains(SrcInst)) { 6221 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6222 // The parameter is a vector value from earlier. 6223 Params.push_back(WidenMap.get(SrcInst)); 6224 } else { 6225 // The parameter is a scalar from outside the loop. Maybe even a constant. 6226 VectorParts Scalars; 6227 Scalars.append(UF, SrcOp); 6228 Params.push_back(Scalars); 6229 } 6230 } 6231 6232 assert(Params.size() == Instr->getNumOperands() && 6233 "Invalid number of operands"); 6234 6235 // Does this instruction return a value ? 6236 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6237 6238 Value *UndefVec = IsVoidRetTy ? nullptr : 6239 UndefValue::get(Instr->getType()); 6240 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6241 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6242 6243 Instruction *InsertPt = Builder.GetInsertPoint(); 6244 BasicBlock *IfBlock = Builder.GetInsertBlock(); 6245 BasicBlock *CondBlock = nullptr; 6246 6247 VectorParts Cond; 6248 Loop *VectorLp = nullptr; 6249 if (IfPredicateStore) { 6250 assert(Instr->getParent()->getSinglePredecessor() && 6251 "Only support single predecessor blocks"); 6252 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6253 Instr->getParent()); 6254 VectorLp = LI->getLoopFor(IfBlock); 6255 assert(VectorLp && "Must have a loop for this block"); 6256 } 6257 6258 // For each vector unroll 'part': 6259 for (unsigned Part = 0; Part < UF; ++Part) { 6260 // For each scalar that we create: 6261 6262 // Start an "if (pred) a[i] = ..." block. 6263 Value *Cmp = nullptr; 6264 if (IfPredicateStore) { 6265 if (Cond[Part]->getType()->isVectorTy()) 6266 Cond[Part] = 6267 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6268 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6269 ConstantInt::get(Cond[Part]->getType(), 1)); 6270 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 6271 LoopVectorBody.push_back(CondBlock); 6272 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 6273 // Update Builder with newly created basic block. 6274 Builder.SetInsertPoint(InsertPt); 6275 } 6276 6277 Instruction *Cloned = Instr->clone(); 6278 if (!IsVoidRetTy) 6279 Cloned->setName(Instr->getName() + ".cloned"); 6280 // Replace the operands of the cloned instructions with extracted scalars. 6281 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6282 Value *Op = Params[op][Part]; 6283 Cloned->setOperand(op, Op); 6284 } 6285 6286 // Place the cloned scalar in the new loop. 6287 Builder.Insert(Cloned); 6288 6289 // If the original scalar returns a value we need to place it in a vector 6290 // so that future users will be able to use it. 6291 if (!IsVoidRetTy) 6292 VecResults[Part] = Cloned; 6293 6294 // End if-block. 6295 if (IfPredicateStore) { 6296 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 6297 LoopVectorBody.push_back(NewIfBlock); 6298 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 6299 Builder.SetInsertPoint(InsertPt); 6300 Instruction *OldBr = IfBlock->getTerminator(); 6301 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 6302 OldBr->eraseFromParent(); 6303 IfBlock = NewIfBlock; 6304 } 6305 } 6306 } 6307 6308 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6309 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6310 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6311 6312 return scalarizeInstruction(Instr, IfPredicateStore); 6313 } 6314 6315 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6316 return Vec; 6317 } 6318 6319 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6320 return V; 6321 } 6322 6323 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6324 bool Negate) { 6325 // When unrolling and the VF is 1, we only need to add a simple scalar. 6326 Type *ITy = Val->getType(); 6327 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6328 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6329 return Builder.CreateAdd(Val, C, "induction"); 6330 } 6331