1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 #ifndef NDEBUG 160 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 161 #endif 162 163 /// @{ 164 /// Metadata attribute names 165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 166 const char LLVMLoopVectorizeFollowupVectorized[] = 167 "llvm.loop.vectorize.followup_vectorized"; 168 const char LLVMLoopVectorizeFollowupEpilogue[] = 169 "llvm.loop.vectorize.followup_epilogue"; 170 /// @} 171 172 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 175 176 static cl::opt<bool> EnableEpilogueVectorization( 177 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 178 cl::desc("Enable vectorization of epilogue loops.")); 179 180 static cl::opt<unsigned> EpilogueVectorizationForceVF( 181 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 182 cl::desc("When epilogue vectorization is enabled, and a value greater than " 183 "1 is specified, forces the given VF for all applicable epilogue " 184 "loops.")); 185 186 static cl::opt<unsigned> EpilogueVectorizationMinVF( 187 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 188 cl::desc("Only loops with vectorization factor equal to or larger than " 189 "the specified value are considered for epilogue vectorization.")); 190 191 /// Loops with a known constant trip count below this number are vectorized only 192 /// if no scalar iteration overheads are incurred. 193 static cl::opt<unsigned> TinyTripCountVectorThreshold( 194 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 195 cl::desc("Loops with a constant trip count that is smaller than this " 196 "value are vectorized only if no scalar iteration overheads " 197 "are incurred.")); 198 199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 200 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 201 cl::desc("The maximum allowed number of runtime memory checks with a " 202 "vectorize(enable) pragma.")); 203 204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 205 // that predication is preferred, and this lists all options. I.e., the 206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 207 // and predicate the instructions accordingly. If tail-folding fails, there are 208 // different fallback strategies depending on these values: 209 namespace PreferPredicateTy { 210 enum Option { 211 ScalarEpilogue = 0, 212 PredicateElseScalarEpilogue, 213 PredicateOrDontVectorize 214 }; 215 } // namespace PreferPredicateTy 216 217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 218 "prefer-predicate-over-epilogue", 219 cl::init(PreferPredicateTy::ScalarEpilogue), 220 cl::Hidden, 221 cl::desc("Tail-folding and predication preferences over creating a scalar " 222 "epilogue loop."), 223 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 224 "scalar-epilogue", 225 "Don't tail-predicate loops, create scalar epilogue"), 226 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 227 "predicate-else-scalar-epilogue", 228 "prefer tail-folding, create scalar epilogue if tail " 229 "folding fails."), 230 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 231 "predicate-dont-vectorize", 232 "prefers tail-folding, don't attempt vectorization if " 233 "tail-folding fails."))); 234 235 static cl::opt<bool> MaximizeBandwidth( 236 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 237 cl::desc("Maximize bandwidth when selecting vectorization factor which " 238 "will be determined by the smallest type in loop.")); 239 240 static cl::opt<bool> EnableInterleavedMemAccesses( 241 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 242 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 243 244 /// An interleave-group may need masking if it resides in a block that needs 245 /// predication, or in order to mask away gaps. 246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 247 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 248 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 249 250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 251 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 252 cl::desc("We don't interleave loops with a estimated constant trip count " 253 "below this number")); 254 255 static cl::opt<unsigned> ForceTargetNumScalarRegs( 256 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of scalar registers.")); 258 259 static cl::opt<unsigned> ForceTargetNumVectorRegs( 260 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's number of vector registers.")); 262 263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 264 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 265 cl::desc("A flag that overrides the target's max interleave factor for " 266 "scalar loops.")); 267 268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 269 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 270 cl::desc("A flag that overrides the target's max interleave factor for " 271 "vectorized loops.")); 272 273 static cl::opt<unsigned> ForceTargetInstructionCost( 274 "force-target-instruction-cost", cl::init(0), cl::Hidden, 275 cl::desc("A flag that overrides the target's expected cost for " 276 "an instruction to a single constant value. Mostly " 277 "useful for getting consistent testing.")); 278 279 static cl::opt<bool> ForceTargetSupportsScalableVectors( 280 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 281 cl::desc( 282 "Pretend that scalable vectors are supported, even if the target does " 283 "not support them. This flag should only be used for testing.")); 284 285 static cl::opt<unsigned> SmallLoopCost( 286 "small-loop-cost", cl::init(20), cl::Hidden, 287 cl::desc( 288 "The cost of a loop that is considered 'small' by the interleaver.")); 289 290 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 291 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 292 cl::desc("Enable the use of the block frequency analysis to access PGO " 293 "heuristics minimizing code growth in cold regions and being more " 294 "aggressive in hot regions.")); 295 296 // Runtime interleave loops for load/store throughput. 297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 298 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 299 cl::desc( 300 "Enable runtime interleaving until load/store ports are saturated")); 301 302 /// Interleave small loops with scalar reductions. 303 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 304 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 305 cl::desc("Enable interleaving for loops with small iteration counts that " 306 "contain scalar reductions to expose ILP.")); 307 308 /// The number of stores in a loop that are allowed to need predication. 309 static cl::opt<unsigned> NumberOfStoresToPredicate( 310 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 311 cl::desc("Max number of stores to be predicated behind an if.")); 312 313 static cl::opt<bool> EnableIndVarRegisterHeur( 314 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 315 cl::desc("Count the induction variable only once when interleaving")); 316 317 static cl::opt<bool> EnableCondStoresVectorization( 318 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 319 cl::desc("Enable if predication of stores during vectorization.")); 320 321 static cl::opt<unsigned> MaxNestedScalarReductionIC( 322 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 323 cl::desc("The maximum interleave count to use when interleaving a scalar " 324 "reduction in a nested loop.")); 325 326 static cl::opt<bool> 327 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 328 cl::Hidden, 329 cl::desc("Prefer in-loop vector reductions, " 330 "overriding the targets preference.")); 331 332 static cl::opt<bool> ForceOrderedReductions( 333 "force-ordered-reductions", cl::init(false), cl::Hidden, 334 cl::desc("Enable the vectorisation of loops with in-order (strict) " 335 "FP reductions")); 336 337 static cl::opt<bool> PreferPredicatedReductionSelect( 338 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 339 cl::desc( 340 "Prefer predicating a reduction operation over an after loop select.")); 341 342 cl::opt<bool> EnableVPlanNativePath( 343 "enable-vplan-native-path", cl::init(false), cl::Hidden, 344 cl::desc("Enable VPlan-native vectorization path with " 345 "support for outer loop vectorization.")); 346 347 // FIXME: Remove this switch once we have divergence analysis. Currently we 348 // assume divergent non-backedge branches when this switch is true. 349 cl::opt<bool> EnableVPlanPredication( 350 "enable-vplan-predication", cl::init(false), cl::Hidden, 351 cl::desc("Enable VPlan-native vectorization path predicator with " 352 "support for outer loop vectorization.")); 353 354 // This flag enables the stress testing of the VPlan H-CFG construction in the 355 // VPlan-native vectorization path. It must be used in conjuction with 356 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 357 // verification of the H-CFGs built. 358 static cl::opt<bool> VPlanBuildStressTest( 359 "vplan-build-stress-test", cl::init(false), cl::Hidden, 360 cl::desc( 361 "Build VPlan for every supported loop nest in the function and bail " 362 "out right after the build (stress test the VPlan H-CFG construction " 363 "in the VPlan-native vectorization path).")); 364 365 cl::opt<bool> llvm::EnableLoopInterleaving( 366 "interleave-loops", cl::init(true), cl::Hidden, 367 cl::desc("Enable loop interleaving in Loop vectorization passes")); 368 cl::opt<bool> llvm::EnableLoopVectorization( 369 "vectorize-loops", cl::init(true), cl::Hidden, 370 cl::desc("Run the Loop vectorization passes")); 371 372 cl::opt<bool> PrintVPlansInDotFormat( 373 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 374 cl::desc("Use dot format instead of plain text when dumping VPlans")); 375 376 /// A helper function that returns true if the given type is irregular. The 377 /// type is irregular if its allocated size doesn't equal the store size of an 378 /// element of the corresponding vector type. 379 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 380 // Determine if an array of N elements of type Ty is "bitcast compatible" 381 // with a <N x Ty> vector. 382 // This is only true if there is no padding between the array elements. 383 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 384 } 385 386 /// A helper function that returns the reciprocal of the block probability of 387 /// predicated blocks. If we return X, we are assuming the predicated block 388 /// will execute once for every X iterations of the loop header. 389 /// 390 /// TODO: We should use actual block probability here, if available. Currently, 391 /// we always assume predicated blocks have a 50% chance of executing. 392 static unsigned getReciprocalPredBlockProb() { return 2; } 393 394 /// A helper function that returns an integer or floating-point constant with 395 /// value C. 396 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 397 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 398 : ConstantFP::get(Ty, C); 399 } 400 401 /// Returns "best known" trip count for the specified loop \p L as defined by 402 /// the following procedure: 403 /// 1) Returns exact trip count if it is known. 404 /// 2) Returns expected trip count according to profile data if any. 405 /// 3) Returns upper bound estimate if it is known. 406 /// 4) Returns None if all of the above failed. 407 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 408 // Check if exact trip count is known. 409 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 410 return ExpectedTC; 411 412 // Check if there is an expected trip count available from profile data. 413 if (LoopVectorizeWithBlockFrequency) 414 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 415 return EstimatedTC; 416 417 // Check if upper bound estimate is known. 418 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 419 return ExpectedTC; 420 421 return None; 422 } 423 424 // Forward declare GeneratedRTChecks. 425 class GeneratedRTChecks; 426 427 namespace llvm { 428 429 AnalysisKey ShouldRunExtraVectorPasses::Key; 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop and the start value for the canonical induction, if it is != 0. The 472 /// latter is the case when vectorizing the epilogue loop. In the case of 473 /// epilogue vectorization, this function is overriden to handle the more 474 /// complex control flow around the loops. 475 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 476 477 /// Widen a single call instruction within the innermost loop. 478 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 479 VPTransformState &State); 480 481 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 482 void fixVectorizedLoop(VPTransformState &State); 483 484 // Return true if any runtime check is added. 485 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 486 487 /// A type for vectorized values in the new loop. Each value from the 488 /// original loop, when vectorized, is represented by UF vector values in the 489 /// new unrolled loop, where UF is the unroll factor. 490 using VectorParts = SmallVector<Value *, 2>; 491 492 /// Vectorize a single first-order recurrence or pointer induction PHINode in 493 /// a block. This method handles the induction variable canonicalization. It 494 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *CountRoundDown, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Introduce a conditional branch (on true, condition to be set later) at the 573 /// end of the header=latch connecting it to itself (across the backedge) and 574 /// to the exit block of \p L. 575 void createHeaderBranch(Loop *L); 576 577 /// Handle all cross-iteration phis in the header. 578 void fixCrossIterationPHIs(VPTransformState &State); 579 580 /// Create the exit value of first order recurrences in the middle block and 581 /// update their users. 582 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 583 VPTransformState &State); 584 585 /// Create code for the loop exit value of the reduction. 586 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 587 588 /// Clear NSW/NUW flags from reduction instructions if necessary. 589 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 590 VPTransformState &State); 591 592 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 593 /// means we need to add the appropriate incoming value from the middle 594 /// block as exiting edges from the scalar epilogue loop (if present) are 595 /// already in place, and we exit the vector loop exclusively to the middle 596 /// block. 597 void fixLCSSAPHIs(VPTransformState &State); 598 599 /// Iteratively sink the scalarized operands of a predicated instruction into 600 /// the block that was created for it. 601 void sinkScalarOperands(Instruction *PredInst); 602 603 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 604 /// represented as. 605 void truncateToMinimalBitwidths(VPTransformState &State); 606 607 /// Returns (and creates if needed) the original loop trip count. 608 Value *getOrCreateTripCount(Loop *NewLoop); 609 610 /// Returns (and creates if needed) the trip count of the widened loop. 611 Value *getOrCreateVectorTripCount(Loop *NewLoop); 612 613 /// Returns a bitcasted value to the requested vector type. 614 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 615 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 616 const DataLayout &DL); 617 618 /// Emit a bypass check to see if the vector trip count is zero, including if 619 /// it overflows. 620 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 621 622 /// Emit a bypass check to see if all of the SCEV assumptions we've 623 /// had to make are correct. Returns the block containing the checks or 624 /// nullptr if no checks have been added. 625 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 626 627 /// Emit bypass checks to check any memory assumptions we may have made. 628 /// Returns the block containing the checks or nullptr if no checks have been 629 /// added. 630 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 633 /// vector loop preheader, middle block and scalar preheader. Also 634 /// allocate a loop object for the new vector loop and return it. 635 Loop *createVectorLoopSkeleton(StringRef Prefix); 636 637 /// Create new phi nodes for the induction variables to resume iteration count 638 /// in the scalar epilogue, from where the vectorized loop left off. 639 /// In cases where the loop skeleton is more complicated (eg. epilogue 640 /// vectorization) and the resume values can come from an additional bypass 641 /// block, the \p AdditionalBypass pair provides information about the bypass 642 /// block and the end value on the edge from bypass to this loop. 643 void createInductionResumeValues( 644 Loop *L, 645 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 646 647 /// Complete the loop skeleton by adding debug MDs, creating appropriate 648 /// conditional branches in the middle block, preparing the builder and 649 /// running the verifier. Take in the vector loop \p L as argument, and return 650 /// the preheader of the completed vector loop. 651 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 652 653 /// Add additional metadata to \p To that was not present on \p Orig. 654 /// 655 /// Currently this is used to add the noalias annotations based on the 656 /// inserted memchecks. Use this for instructions that are *cloned* into the 657 /// vector loop. 658 void addNewMetadata(Instruction *To, const Instruction *Orig); 659 660 /// Collect poison-generating recipes that may generate a poison value that is 661 /// used after vectorization, even when their operands are not poison. Those 662 /// recipes meet the following conditions: 663 /// * Contribute to the address computation of a recipe generating a widen 664 /// memory load/store (VPWidenMemoryInstructionRecipe or 665 /// VPInterleaveRecipe). 666 /// * Such a widen memory load/store has at least one underlying Instruction 667 /// that is in a basic block that needs predication and after vectorization 668 /// the generated instruction won't be predicated. 669 void collectPoisonGeneratingRecipes(VPTransformState &State); 670 671 /// Allow subclasses to override and print debug traces before/after vplan 672 /// execution, when trace information is requested. 673 virtual void printDebugTracesAtStart(){}; 674 virtual void printDebugTracesAtEnd(){}; 675 676 /// The original loop. 677 Loop *OrigLoop; 678 679 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 680 /// dynamic knowledge to simplify SCEV expressions and converts them to a 681 /// more usable form. 682 PredicatedScalarEvolution &PSE; 683 684 /// Loop Info. 685 LoopInfo *LI; 686 687 /// Dominator Tree. 688 DominatorTree *DT; 689 690 /// Alias Analysis. 691 AAResults *AA; 692 693 /// Target Library Info. 694 const TargetLibraryInfo *TLI; 695 696 /// Target Transform Info. 697 const TargetTransformInfo *TTI; 698 699 /// Assumption Cache. 700 AssumptionCache *AC; 701 702 /// Interface to emit optimization remarks. 703 OptimizationRemarkEmitter *ORE; 704 705 /// LoopVersioning. It's only set up (non-null) if memchecks were 706 /// used. 707 /// 708 /// This is currently only used to add no-alias metadata based on the 709 /// memchecks. The actually versioning is performed manually. 710 std::unique_ptr<LoopVersioning> LVer; 711 712 /// The vectorization SIMD factor to use. Each vector will have this many 713 /// vector elements. 714 ElementCount VF; 715 716 /// The vectorization unroll factor to use. Each scalar is vectorized to this 717 /// many different vector instructions. 718 unsigned UF; 719 720 /// The builder that we use 721 IRBuilder<> Builder; 722 723 // --- Vectorization state --- 724 725 /// The vector-loop preheader. 726 BasicBlock *LoopVectorPreHeader; 727 728 /// The scalar-loop preheader. 729 BasicBlock *LoopScalarPreHeader; 730 731 /// Middle Block between the vector and the scalar. 732 BasicBlock *LoopMiddleBlock; 733 734 /// The unique ExitBlock of the scalar loop if one exists. Note that 735 /// there can be multiple exiting edges reaching this block. 736 BasicBlock *LoopExitBlock; 737 738 /// The scalar loop body. 739 BasicBlock *LoopScalarBody; 740 741 /// A list of all bypass blocks. The first block is the entry of the loop. 742 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 743 744 /// Store instructions that were predicated. 745 SmallVector<Instruction *, 4> PredicatedInstructions; 746 747 /// Trip count of the original loop. 748 Value *TripCount = nullptr; 749 750 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 751 Value *VectorTripCount = nullptr; 752 753 /// The legality analysis. 754 LoopVectorizationLegality *Legal; 755 756 /// The profitablity analysis. 757 LoopVectorizationCostModel *Cost; 758 759 // Record whether runtime checks are added. 760 bool AddedSafetyChecks = false; 761 762 // Holds the end values for each induction variable. We save the end values 763 // so we can later fix-up the external users of the induction variables. 764 DenseMap<PHINode *, Value *> IVEndValues; 765 766 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 767 // fixed up at the end of vector code generation. 768 SmallVector<PHINode *, 8> OrigPHIsToFix; 769 770 /// BFI and PSI are used to check for profile guided size optimizations. 771 BlockFrequencyInfo *BFI; 772 ProfileSummaryInfo *PSI; 773 774 // Whether this loop should be optimized for size based on profile guided size 775 // optimizatios. 776 bool OptForSizeBasedOnProfile; 777 778 /// Structure to hold information about generated runtime checks, responsible 779 /// for cleaning the checks, if vectorization turns out unprofitable. 780 GeneratedRTChecks &RTChecks; 781 782 // Holds the resume values for reductions in the loops, used to set the 783 // correct start value of reduction PHIs when vectorizing the epilogue. 784 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 785 ReductionResumeValues; 786 }; 787 788 class InnerLoopUnroller : public InnerLoopVectorizer { 789 public: 790 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 791 LoopInfo *LI, DominatorTree *DT, 792 const TargetLibraryInfo *TLI, 793 const TargetTransformInfo *TTI, AssumptionCache *AC, 794 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 795 LoopVectorizationLegality *LVL, 796 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 797 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 798 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 799 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 800 BFI, PSI, Check) {} 801 802 private: 803 Value *getBroadcastInstrs(Value *V) override; 804 }; 805 806 /// Encapsulate information regarding vectorization of a loop and its epilogue. 807 /// This information is meant to be updated and used across two stages of 808 /// epilogue vectorization. 809 struct EpilogueLoopVectorizationInfo { 810 ElementCount MainLoopVF = ElementCount::getFixed(0); 811 unsigned MainLoopUF = 0; 812 ElementCount EpilogueVF = ElementCount::getFixed(0); 813 unsigned EpilogueUF = 0; 814 BasicBlock *MainLoopIterationCountCheck = nullptr; 815 BasicBlock *EpilogueIterationCountCheck = nullptr; 816 BasicBlock *SCEVSafetyCheck = nullptr; 817 BasicBlock *MemSafetyCheck = nullptr; 818 Value *TripCount = nullptr; 819 Value *VectorTripCount = nullptr; 820 821 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 822 ElementCount EVF, unsigned EUF) 823 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 824 assert(EUF == 1 && 825 "A high UF for the epilogue loop is likely not beneficial."); 826 } 827 }; 828 829 /// An extension of the inner loop vectorizer that creates a skeleton for a 830 /// vectorized loop that has its epilogue (residual) also vectorized. 831 /// The idea is to run the vplan on a given loop twice, firstly to setup the 832 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 833 /// from the first step and vectorize the epilogue. This is achieved by 834 /// deriving two concrete strategy classes from this base class and invoking 835 /// them in succession from the loop vectorizer planner. 836 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 837 public: 838 InnerLoopAndEpilogueVectorizer( 839 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 840 DominatorTree *DT, const TargetLibraryInfo *TLI, 841 const TargetTransformInfo *TTI, AssumptionCache *AC, 842 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 843 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 844 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 845 GeneratedRTChecks &Checks) 846 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 847 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 848 Checks), 849 EPI(EPI) {} 850 851 // Override this function to handle the more complex control flow around the 852 // three loops. 853 std::pair<BasicBlock *, Value *> 854 createVectorizedLoopSkeleton() final override { 855 return createEpilogueVectorizedLoopSkeleton(); 856 } 857 858 /// The interface for creating a vectorized skeleton using one of two 859 /// different strategies, each corresponding to one execution of the vplan 860 /// as described above. 861 virtual std::pair<BasicBlock *, Value *> 862 createEpilogueVectorizedLoopSkeleton() = 0; 863 864 /// Holds and updates state information required to vectorize the main loop 865 /// and its epilogue in two separate passes. This setup helps us avoid 866 /// regenerating and recomputing runtime safety checks. It also helps us to 867 /// shorten the iteration-count-check path length for the cases where the 868 /// iteration count of the loop is so small that the main vector loop is 869 /// completely skipped. 870 EpilogueLoopVectorizationInfo &EPI; 871 }; 872 873 /// A specialized derived class of inner loop vectorizer that performs 874 /// vectorization of *main* loops in the process of vectorizing loops and their 875 /// epilogues. 876 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 877 public: 878 EpilogueVectorizerMainLoop( 879 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 880 DominatorTree *DT, const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 883 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 884 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 885 GeneratedRTChecks &Check) 886 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 EPI, LVL, CM, BFI, PSI, Check) {} 888 /// Implements the interface for creating a vectorized skeleton using the 889 /// *main loop* strategy (ie the first pass of vplan execution). 890 std::pair<BasicBlock *, Value *> 891 createEpilogueVectorizedLoopSkeleton() final override; 892 893 protected: 894 /// Emits an iteration count bypass check once for the main loop (when \p 895 /// ForEpilogue is false) and once for the epilogue loop (when \p 896 /// ForEpilogue is true). 897 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 898 bool ForEpilogue); 899 void printDebugTracesAtStart() override; 900 void printDebugTracesAtEnd() override; 901 }; 902 903 // A specialized derived class of inner loop vectorizer that performs 904 // vectorization of *epilogue* loops in the process of vectorizing loops and 905 // their epilogues. 906 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 907 public: 908 EpilogueVectorizerEpilogueLoop( 909 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 910 DominatorTree *DT, const TargetLibraryInfo *TLI, 911 const TargetTransformInfo *TTI, AssumptionCache *AC, 912 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 913 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 914 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 915 GeneratedRTChecks &Checks) 916 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 917 EPI, LVL, CM, BFI, PSI, Checks) {} 918 /// Implements the interface for creating a vectorized skeleton using the 919 /// *epilogue loop* strategy (ie the second pass of vplan execution). 920 std::pair<BasicBlock *, Value *> 921 createEpilogueVectorizedLoopSkeleton() final override; 922 923 protected: 924 /// Emits an iteration count bypass check after the main vector loop has 925 /// finished to see if there are any iterations left to execute by either 926 /// the vector epilogue or the scalar epilogue. 927 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 928 BasicBlock *Bypass, 929 BasicBlock *Insert); 930 void printDebugTracesAtStart() override; 931 void printDebugTracesAtEnd() override; 932 }; 933 } // end namespace llvm 934 935 /// Look for a meaningful debug location on the instruction or it's 936 /// operands. 937 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 938 if (!I) 939 return I; 940 941 DebugLoc Empty; 942 if (I->getDebugLoc() != Empty) 943 return I; 944 945 for (Use &Op : I->operands()) { 946 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 947 if (OpInst->getDebugLoc() != Empty) 948 return OpInst; 949 } 950 951 return I; 952 } 953 954 void InnerLoopVectorizer::setDebugLocFromInst( 955 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 956 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 957 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 958 const DILocation *DIL = Inst->getDebugLoc(); 959 960 // When a FSDiscriminator is enabled, we don't need to add the multiply 961 // factors to the discriminators. 962 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 963 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 964 // FIXME: For scalable vectors, assume vscale=1. 965 auto NewDIL = 966 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 967 if (NewDIL) 968 B->SetCurrentDebugLocation(NewDIL.getValue()); 969 else 970 LLVM_DEBUG(dbgs() 971 << "Failed to create new discriminator: " 972 << DIL->getFilename() << " Line: " << DIL->getLine()); 973 } else 974 B->SetCurrentDebugLocation(DIL); 975 } else 976 B->SetCurrentDebugLocation(DebugLoc()); 977 } 978 979 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 980 /// is passed, the message relates to that particular instruction. 981 #ifndef NDEBUG 982 static void debugVectorizationMessage(const StringRef Prefix, 983 const StringRef DebugMsg, 984 Instruction *I) { 985 dbgs() << "LV: " << Prefix << DebugMsg; 986 if (I != nullptr) 987 dbgs() << " " << *I; 988 else 989 dbgs() << '.'; 990 dbgs() << '\n'; 991 } 992 #endif 993 994 /// Create an analysis remark that explains why vectorization failed 995 /// 996 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 997 /// RemarkName is the identifier for the remark. If \p I is passed it is an 998 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 999 /// the location of the remark. \return the remark object that can be 1000 /// streamed to. 1001 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1002 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1003 Value *CodeRegion = TheLoop->getHeader(); 1004 DebugLoc DL = TheLoop->getStartLoc(); 1005 1006 if (I) { 1007 CodeRegion = I->getParent(); 1008 // If there is no debug location attached to the instruction, revert back to 1009 // using the loop's. 1010 if (I->getDebugLoc()) 1011 DL = I->getDebugLoc(); 1012 } 1013 1014 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1015 } 1016 1017 namespace llvm { 1018 1019 /// Return a value for Step multiplied by VF. 1020 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1021 int64_t Step) { 1022 assert(Ty->isIntegerTy() && "Expected an integer step"); 1023 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1024 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1025 } 1026 1027 /// Return the runtime value for VF. 1028 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1029 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1030 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1031 } 1032 1033 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1034 ElementCount VF) { 1035 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1036 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1037 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1038 return B.CreateUIToFP(RuntimeVF, FTy); 1039 } 1040 1041 void reportVectorizationFailure(const StringRef DebugMsg, 1042 const StringRef OREMsg, const StringRef ORETag, 1043 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1044 Instruction *I) { 1045 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1046 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1047 ORE->emit( 1048 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1049 << "loop not vectorized: " << OREMsg); 1050 } 1051 1052 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1053 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1054 Instruction *I) { 1055 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1056 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1057 ORE->emit( 1058 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1059 << Msg); 1060 } 1061 1062 } // end namespace llvm 1063 1064 #ifndef NDEBUG 1065 /// \return string containing a file name and a line # for the given loop. 1066 static std::string getDebugLocString(const Loop *L) { 1067 std::string Result; 1068 if (L) { 1069 raw_string_ostream OS(Result); 1070 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1071 LoopDbgLoc.print(OS); 1072 else 1073 // Just print the module name. 1074 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1075 OS.flush(); 1076 } 1077 return Result; 1078 } 1079 #endif 1080 1081 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1082 const Instruction *Orig) { 1083 // If the loop was versioned with memchecks, add the corresponding no-alias 1084 // metadata. 1085 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1086 LVer->annotateInstWithNoAlias(To, Orig); 1087 } 1088 1089 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1090 VPTransformState &State) { 1091 1092 // Collect recipes in the backward slice of `Root` that may generate a poison 1093 // value that is used after vectorization. 1094 SmallPtrSet<VPRecipeBase *, 16> Visited; 1095 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1096 SmallVector<VPRecipeBase *, 16> Worklist; 1097 Worklist.push_back(Root); 1098 1099 // Traverse the backward slice of Root through its use-def chain. 1100 while (!Worklist.empty()) { 1101 VPRecipeBase *CurRec = Worklist.back(); 1102 Worklist.pop_back(); 1103 1104 if (!Visited.insert(CurRec).second) 1105 continue; 1106 1107 // Prune search if we find another recipe generating a widen memory 1108 // instruction. Widen memory instructions involved in address computation 1109 // will lead to gather/scatter instructions, which don't need to be 1110 // handled. 1111 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1112 isa<VPInterleaveRecipe>(CurRec) || 1113 isa<VPScalarIVStepsRecipe>(CurRec) || 1114 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1115 continue; 1116 1117 // This recipe contributes to the address computation of a widen 1118 // load/store. Collect recipe if its underlying instruction has 1119 // poison-generating flags. 1120 Instruction *Instr = CurRec->getUnderlyingInstr(); 1121 if (Instr && Instr->hasPoisonGeneratingFlags()) 1122 State.MayGeneratePoisonRecipes.insert(CurRec); 1123 1124 // Add new definitions to the worklist. 1125 for (VPValue *operand : CurRec->operands()) 1126 if (VPDef *OpDef = operand->getDef()) 1127 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1128 } 1129 }); 1130 1131 // Traverse all the recipes in the VPlan and collect the poison-generating 1132 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1133 // VPInterleaveRecipe. 1134 auto Iter = depth_first( 1135 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1136 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1137 for (VPRecipeBase &Recipe : *VPBB) { 1138 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1139 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1140 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1141 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1142 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1143 collectPoisonGeneratingInstrsInBackwardSlice( 1144 cast<VPRecipeBase>(AddrDef)); 1145 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1146 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1147 if (AddrDef) { 1148 // Check if any member of the interleave group needs predication. 1149 const InterleaveGroup<Instruction> *InterGroup = 1150 InterleaveRec->getInterleaveGroup(); 1151 bool NeedPredication = false; 1152 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1153 I < NumMembers; ++I) { 1154 Instruction *Member = InterGroup->getMember(I); 1155 if (Member) 1156 NeedPredication |= 1157 Legal->blockNeedsPredication(Member->getParent()); 1158 } 1159 1160 if (NeedPredication) 1161 collectPoisonGeneratingInstrsInBackwardSlice( 1162 cast<VPRecipeBase>(AddrDef)); 1163 } 1164 } 1165 } 1166 } 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1184 const RecurrenceDescriptor &RdxDesc) { 1185 auto It = ReductionResumeValues.find(&RdxDesc); 1186 assert(It != ReductionResumeValues.end() && 1187 "Expected to find a resume value for the reduction."); 1188 return It->second; 1189 } 1190 1191 namespace llvm { 1192 1193 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1194 // lowered. 1195 enum ScalarEpilogueLowering { 1196 1197 // The default: allowing scalar epilogues. 1198 CM_ScalarEpilogueAllowed, 1199 1200 // Vectorization with OptForSize: don't allow epilogues. 1201 CM_ScalarEpilogueNotAllowedOptSize, 1202 1203 // A special case of vectorisation with OptForSize: loops with a very small 1204 // trip count are considered for vectorization under OptForSize, thereby 1205 // making sure the cost of their loop body is dominant, free of runtime 1206 // guards and scalar iteration overheads. 1207 CM_ScalarEpilogueNotAllowedLowTripLoop, 1208 1209 // Loop hint predicate indicating an epilogue is undesired. 1210 CM_ScalarEpilogueNotNeededUsePredicate, 1211 1212 // Directive indicating we must either tail fold or not vectorize 1213 CM_ScalarEpilogueNotAllowedUsePredicate 1214 }; 1215 1216 /// ElementCountComparator creates a total ordering for ElementCount 1217 /// for the purposes of using it in a set structure. 1218 struct ElementCountComparator { 1219 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1220 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1221 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1222 } 1223 }; 1224 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1225 1226 /// LoopVectorizationCostModel - estimates the expected speedups due to 1227 /// vectorization. 1228 /// In many cases vectorization is not profitable. This can happen because of 1229 /// a number of reasons. In this class we mainly attempt to predict the 1230 /// expected speedup/slowdowns due to the supported instruction set. We use the 1231 /// TargetTransformInfo to query the different backends for the cost of 1232 /// different operations. 1233 class LoopVectorizationCostModel { 1234 public: 1235 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1236 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1237 LoopVectorizationLegality *Legal, 1238 const TargetTransformInfo &TTI, 1239 const TargetLibraryInfo *TLI, DemandedBits *DB, 1240 AssumptionCache *AC, 1241 OptimizationRemarkEmitter *ORE, const Function *F, 1242 const LoopVectorizeHints *Hints, 1243 InterleavedAccessInfo &IAI) 1244 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1245 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1246 Hints(Hints), InterleaveInfo(IAI) {} 1247 1248 /// \return An upper bound for the vectorization factors (both fixed and 1249 /// scalable). If the factors are 0, vectorization and interleaving should be 1250 /// avoided up front. 1251 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1252 1253 /// \return True if runtime checks are required for vectorization, and false 1254 /// otherwise. 1255 bool runtimeChecksRequired(); 1256 1257 /// \return The most profitable vectorization factor and the cost of that VF. 1258 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1259 /// then this vectorization factor will be selected if vectorization is 1260 /// possible. 1261 VectorizationFactor 1262 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1263 1264 VectorizationFactor 1265 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1266 const LoopVectorizationPlanner &LVP); 1267 1268 /// Setup cost-based decisions for user vectorization factor. 1269 /// \return true if the UserVF is a feasible VF to be chosen. 1270 bool selectUserVectorizationFactor(ElementCount UserVF) { 1271 collectUniformsAndScalars(UserVF); 1272 collectInstsToScalarize(UserVF); 1273 return expectedCost(UserVF).first.isValid(); 1274 } 1275 1276 /// \return The size (in bits) of the smallest and widest types in the code 1277 /// that needs to be vectorized. We ignore values that remain scalar such as 1278 /// 64 bit loop indices. 1279 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1280 1281 /// \return The desired interleave count. 1282 /// If interleave count has been specified by metadata it will be returned. 1283 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1284 /// are the selected vectorization factor and the cost of the selected VF. 1285 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1286 1287 /// Memory access instruction may be vectorized in more than one way. 1288 /// Form of instruction after vectorization depends on cost. 1289 /// This function takes cost-based decisions for Load/Store instructions 1290 /// and collects them in a map. This decisions map is used for building 1291 /// the lists of loop-uniform and loop-scalar instructions. 1292 /// The calculated cost is saved with widening decision in order to 1293 /// avoid redundant calculations. 1294 void setCostBasedWideningDecision(ElementCount VF); 1295 1296 /// A struct that represents some properties of the register usage 1297 /// of a loop. 1298 struct RegisterUsage { 1299 /// Holds the number of loop invariant values that are used in the loop. 1300 /// The key is ClassID of target-provided register class. 1301 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1302 /// Holds the maximum number of concurrent live intervals in the loop. 1303 /// The key is ClassID of target-provided register class. 1304 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1305 }; 1306 1307 /// \return Returns information about the register usages of the loop for the 1308 /// given vectorization factors. 1309 SmallVector<RegisterUsage, 8> 1310 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1311 1312 /// Collect values we want to ignore in the cost model. 1313 void collectValuesToIgnore(); 1314 1315 /// Collect all element types in the loop for which widening is needed. 1316 void collectElementTypesForWidening(); 1317 1318 /// Split reductions into those that happen in the loop, and those that happen 1319 /// outside. In loop reductions are collected into InLoopReductionChains. 1320 void collectInLoopReductions(); 1321 1322 /// Returns true if we should use strict in-order reductions for the given 1323 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1324 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1325 /// of FP operations. 1326 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1327 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1328 } 1329 1330 /// \returns The smallest bitwidth each instruction can be represented with. 1331 /// The vector equivalents of these instructions should be truncated to this 1332 /// type. 1333 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1334 return MinBWs; 1335 } 1336 1337 /// \returns True if it is more profitable to scalarize instruction \p I for 1338 /// vectorization factor \p VF. 1339 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1340 assert(VF.isVector() && 1341 "Profitable to scalarize relevant only for VF > 1."); 1342 1343 // Cost model is not run in the VPlan-native path - return conservative 1344 // result until this changes. 1345 if (EnableVPlanNativePath) 1346 return false; 1347 1348 auto Scalars = InstsToScalarize.find(VF); 1349 assert(Scalars != InstsToScalarize.end() && 1350 "VF not yet analyzed for scalarization profitability"); 1351 return Scalars->second.find(I) != Scalars->second.end(); 1352 } 1353 1354 /// Returns true if \p I is known to be uniform after vectorization. 1355 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1356 if (VF.isScalar()) 1357 return true; 1358 1359 // Cost model is not run in the VPlan-native path - return conservative 1360 // result until this changes. 1361 if (EnableVPlanNativePath) 1362 return false; 1363 1364 auto UniformsPerVF = Uniforms.find(VF); 1365 assert(UniformsPerVF != Uniforms.end() && 1366 "VF not yet analyzed for uniformity"); 1367 return UniformsPerVF->second.count(I); 1368 } 1369 1370 /// Returns true if \p I is known to be scalar after vectorization. 1371 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1372 if (VF.isScalar()) 1373 return true; 1374 1375 // Cost model is not run in the VPlan-native path - return conservative 1376 // result until this changes. 1377 if (EnableVPlanNativePath) 1378 return false; 1379 1380 auto ScalarsPerVF = Scalars.find(VF); 1381 assert(ScalarsPerVF != Scalars.end() && 1382 "Scalar values are not calculated for VF"); 1383 return ScalarsPerVF->second.count(I); 1384 } 1385 1386 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1387 /// for vectorization factor \p VF. 1388 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1389 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1390 !isProfitableToScalarize(I, VF) && 1391 !isScalarAfterVectorization(I, VF); 1392 } 1393 1394 /// Decision that was taken during cost calculation for memory instruction. 1395 enum InstWidening { 1396 CM_Unknown, 1397 CM_Widen, // For consecutive accesses with stride +1. 1398 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1399 CM_Interleave, 1400 CM_GatherScatter, 1401 CM_Scalarize 1402 }; 1403 1404 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1405 /// instruction \p I and vector width \p VF. 1406 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1407 InstructionCost Cost) { 1408 assert(VF.isVector() && "Expected VF >=2"); 1409 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1410 } 1411 1412 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1413 /// interleaving group \p Grp and vector width \p VF. 1414 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1415 ElementCount VF, InstWidening W, 1416 InstructionCost Cost) { 1417 assert(VF.isVector() && "Expected VF >=2"); 1418 /// Broadcast this decicion to all instructions inside the group. 1419 /// But the cost will be assigned to one instruction only. 1420 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1421 if (auto *I = Grp->getMember(i)) { 1422 if (Grp->getInsertPos() == I) 1423 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1424 else 1425 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1426 } 1427 } 1428 } 1429 1430 /// Return the cost model decision for the given instruction \p I and vector 1431 /// width \p VF. Return CM_Unknown if this instruction did not pass 1432 /// through the cost modeling. 1433 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1434 assert(VF.isVector() && "Expected VF to be a vector VF"); 1435 // Cost model is not run in the VPlan-native path - return conservative 1436 // result until this changes. 1437 if (EnableVPlanNativePath) 1438 return CM_GatherScatter; 1439 1440 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1441 auto Itr = WideningDecisions.find(InstOnVF); 1442 if (Itr == WideningDecisions.end()) 1443 return CM_Unknown; 1444 return Itr->second.first; 1445 } 1446 1447 /// Return the vectorization cost for the given instruction \p I and vector 1448 /// width \p VF. 1449 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1450 assert(VF.isVector() && "Expected VF >=2"); 1451 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1452 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1453 "The cost is not calculated"); 1454 return WideningDecisions[InstOnVF].second; 1455 } 1456 1457 /// Return True if instruction \p I is an optimizable truncate whose operand 1458 /// is an induction variable. Such a truncate will be removed by adding a new 1459 /// induction variable with the destination type. 1460 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1461 // If the instruction is not a truncate, return false. 1462 auto *Trunc = dyn_cast<TruncInst>(I); 1463 if (!Trunc) 1464 return false; 1465 1466 // Get the source and destination types of the truncate. 1467 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1468 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1469 1470 // If the truncate is free for the given types, return false. Replacing a 1471 // free truncate with an induction variable would add an induction variable 1472 // update instruction to each iteration of the loop. We exclude from this 1473 // check the primary induction variable since it will need an update 1474 // instruction regardless. 1475 Value *Op = Trunc->getOperand(0); 1476 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1477 return false; 1478 1479 // If the truncated value is not an induction variable, return false. 1480 return Legal->isInductionPhi(Op); 1481 } 1482 1483 /// Collects the instructions to scalarize for each predicated instruction in 1484 /// the loop. 1485 void collectInstsToScalarize(ElementCount VF); 1486 1487 /// Collect Uniform and Scalar values for the given \p VF. 1488 /// The sets depend on CM decision for Load/Store instructions 1489 /// that may be vectorized as interleave, gather-scatter or scalarized. 1490 void collectUniformsAndScalars(ElementCount VF) { 1491 // Do the analysis once. 1492 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1493 return; 1494 setCostBasedWideningDecision(VF); 1495 collectLoopUniforms(VF); 1496 collectLoopScalars(VF); 1497 } 1498 1499 /// Returns true if the target machine supports masked store operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedStore(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine supports masked load operation 1507 /// for the given \p DataType and kind of access to \p Ptr. 1508 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1509 return Legal->isConsecutivePtr(DataType, Ptr) && 1510 TTI.isLegalMaskedLoad(DataType, Alignment); 1511 } 1512 1513 /// Returns true if the target machine can represent \p V as a masked gather 1514 /// or scatter operation. 1515 bool isLegalGatherOrScatter(Value *V, 1516 ElementCount VF = ElementCount::getFixed(1)) { 1517 bool LI = isa<LoadInst>(V); 1518 bool SI = isa<StoreInst>(V); 1519 if (!LI && !SI) 1520 return false; 1521 auto *Ty = getLoadStoreType(V); 1522 Align Align = getLoadStoreAlignment(V); 1523 if (VF.isVector()) 1524 Ty = VectorType::get(Ty, VF); 1525 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1526 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1527 } 1528 1529 /// Returns true if the target machine supports all of the reduction 1530 /// variables found for the given VF. 1531 bool canVectorizeReductions(ElementCount VF) const { 1532 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1533 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1534 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1535 })); 1536 } 1537 1538 /// Returns true if \p I is an instruction that will be scalarized with 1539 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1540 /// instructions include conditional stores and instructions that may divide 1541 /// by zero. 1542 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1543 1544 // Returns true if \p I is an instruction that will be predicated either 1545 // through scalar predication or masked load/store or masked gather/scatter. 1546 // \p VF is the vectorization factor that will be used to vectorize \p I. 1547 // Superset of instructions that return true for isScalarWithPredication. 1548 bool isPredicatedInst(Instruction *I, ElementCount VF, 1549 bool IsKnownUniform = false) { 1550 // When we know the load is uniform and the original scalar loop was not 1551 // predicated we don't need to mark it as a predicated instruction. Any 1552 // vectorised blocks created when tail-folding are something artificial we 1553 // have introduced and we know there is always at least one active lane. 1554 // That's why we call Legal->blockNeedsPredication here because it doesn't 1555 // query tail-folding. 1556 if (IsKnownUniform && isa<LoadInst>(I) && 1557 !Legal->blockNeedsPredication(I->getParent())) 1558 return false; 1559 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1560 return false; 1561 // Loads and stores that need some form of masked operation are predicated 1562 // instructions. 1563 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1564 return Legal->isMaskRequired(I); 1565 return isScalarWithPredication(I, VF); 1566 } 1567 1568 /// Returns true if \p I is a memory instruction with consecutive memory 1569 /// access that can be widened. 1570 bool 1571 memoryInstructionCanBeWidened(Instruction *I, 1572 ElementCount VF = ElementCount::getFixed(1)); 1573 1574 /// Returns true if \p I is a memory instruction in an interleaved-group 1575 /// of memory accesses that can be vectorized with wide vector loads/stores 1576 /// and shuffles. 1577 bool 1578 interleavedAccessCanBeWidened(Instruction *I, 1579 ElementCount VF = ElementCount::getFixed(1)); 1580 1581 /// Check if \p Instr belongs to any interleaved access group. 1582 bool isAccessInterleaved(Instruction *Instr) { 1583 return InterleaveInfo.isInterleaved(Instr); 1584 } 1585 1586 /// Get the interleaved access group that \p Instr belongs to. 1587 const InterleaveGroup<Instruction> * 1588 getInterleavedAccessGroup(Instruction *Instr) { 1589 return InterleaveInfo.getInterleaveGroup(Instr); 1590 } 1591 1592 /// Returns true if we're required to use a scalar epilogue for at least 1593 /// the final iteration of the original loop. 1594 bool requiresScalarEpilogue(ElementCount VF) const { 1595 if (!isScalarEpilogueAllowed()) 1596 return false; 1597 // If we might exit from anywhere but the latch, must run the exiting 1598 // iteration in scalar form. 1599 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1600 return true; 1601 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1602 } 1603 1604 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1605 /// loop hint annotation. 1606 bool isScalarEpilogueAllowed() const { 1607 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1608 } 1609 1610 /// Returns true if all loop blocks should be masked to fold tail loop. 1611 bool foldTailByMasking() const { return FoldTailByMasking; } 1612 1613 /// Returns true if the instructions in this block requires predication 1614 /// for any reason, e.g. because tail folding now requires a predicate 1615 /// or because the block in the original loop was predicated. 1616 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1617 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1618 } 1619 1620 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1621 /// nodes to the chain of instructions representing the reductions. Uses a 1622 /// MapVector to ensure deterministic iteration order. 1623 using ReductionChainMap = 1624 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1625 1626 /// Return the chain of instructions representing an inloop reduction. 1627 const ReductionChainMap &getInLoopReductionChains() const { 1628 return InLoopReductionChains; 1629 } 1630 1631 /// Returns true if the Phi is part of an inloop reduction. 1632 bool isInLoopReduction(PHINode *Phi) const { 1633 return InLoopReductionChains.count(Phi); 1634 } 1635 1636 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1637 /// with factor VF. Return the cost of the instruction, including 1638 /// scalarization overhead if it's needed. 1639 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1640 1641 /// Estimate cost of a call instruction CI if it were vectorized with factor 1642 /// VF. Return the cost of the instruction, including scalarization overhead 1643 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1644 /// scalarized - 1645 /// i.e. either vector version isn't available, or is too expensive. 1646 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1647 bool &NeedToScalarize) const; 1648 1649 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1650 /// that of B. 1651 bool isMoreProfitable(const VectorizationFactor &A, 1652 const VectorizationFactor &B) const; 1653 1654 /// Invalidates decisions already taken by the cost model. 1655 void invalidateCostModelingDecisions() { 1656 WideningDecisions.clear(); 1657 Uniforms.clear(); 1658 Scalars.clear(); 1659 } 1660 1661 private: 1662 unsigned NumPredStores = 0; 1663 1664 /// Convenience function that returns the value of vscale_range iff 1665 /// vscale_range.min == vscale_range.max or otherwise returns the value 1666 /// returned by the corresponding TLI method. 1667 Optional<unsigned> getVScaleForTuning() const; 1668 1669 /// \return An upper bound for the vectorization factors for both 1670 /// fixed and scalable vectorization, where the minimum-known number of 1671 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1672 /// disabled or unsupported, then the scalable part will be equal to 1673 /// ElementCount::getScalable(0). 1674 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1675 ElementCount UserVF, 1676 bool FoldTailByMasking); 1677 1678 /// \return the maximized element count based on the targets vector 1679 /// registers and the loop trip-count, but limited to a maximum safe VF. 1680 /// This is a helper function of computeFeasibleMaxVF. 1681 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1682 /// issue that occurred on one of the buildbots which cannot be reproduced 1683 /// without having access to the properietary compiler (see comments on 1684 /// D98509). The issue is currently under investigation and this workaround 1685 /// will be removed as soon as possible. 1686 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1687 unsigned SmallestType, 1688 unsigned WidestType, 1689 const ElementCount &MaxSafeVF, 1690 bool FoldTailByMasking); 1691 1692 /// \return the maximum legal scalable VF, based on the safe max number 1693 /// of elements. 1694 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1695 1696 /// The vectorization cost is a combination of the cost itself and a boolean 1697 /// indicating whether any of the contributing operations will actually 1698 /// operate on vector values after type legalization in the backend. If this 1699 /// latter value is false, then all operations will be scalarized (i.e. no 1700 /// vectorization has actually taken place). 1701 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1702 1703 /// Returns the expected execution cost. The unit of the cost does 1704 /// not matter because we use the 'cost' units to compare different 1705 /// vector widths. The cost that is returned is *not* normalized by 1706 /// the factor width. If \p Invalid is not nullptr, this function 1707 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1708 /// each instruction that has an Invalid cost for the given VF. 1709 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1710 VectorizationCostTy 1711 expectedCost(ElementCount VF, 1712 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1713 1714 /// Returns the execution time cost of an instruction for a given vector 1715 /// width. Vector width of one means scalar. 1716 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1717 1718 /// The cost-computation logic from getInstructionCost which provides 1719 /// the vector type as an output parameter. 1720 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1721 Type *&VectorTy); 1722 1723 /// Return the cost of instructions in an inloop reduction pattern, if I is 1724 /// part of that pattern. 1725 Optional<InstructionCost> 1726 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1727 TTI::TargetCostKind CostKind); 1728 1729 /// Calculate vectorization cost of memory instruction \p I. 1730 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1731 1732 /// The cost computation for scalarized memory instruction. 1733 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1734 1735 /// The cost computation for interleaving group of memory instructions. 1736 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1737 1738 /// The cost computation for Gather/Scatter instruction. 1739 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1740 1741 /// The cost computation for widening instruction \p I with consecutive 1742 /// memory access. 1743 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1744 1745 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1746 /// Load: scalar load + broadcast. 1747 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1748 /// element) 1749 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1750 1751 /// Estimate the overhead of scalarizing an instruction. This is a 1752 /// convenience wrapper for the type-based getScalarizationOverhead API. 1753 InstructionCost getScalarizationOverhead(Instruction *I, 1754 ElementCount VF) const; 1755 1756 /// Returns whether the instruction is a load or store and will be a emitted 1757 /// as a vector operation. 1758 bool isConsecutiveLoadOrStore(Instruction *I); 1759 1760 /// Returns true if an artificially high cost for emulated masked memrefs 1761 /// should be used. 1762 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1763 1764 /// Map of scalar integer values to the smallest bitwidth they can be legally 1765 /// represented as. The vector equivalents of these values should be truncated 1766 /// to this type. 1767 MapVector<Instruction *, uint64_t> MinBWs; 1768 1769 /// A type representing the costs for instructions if they were to be 1770 /// scalarized rather than vectorized. The entries are Instruction-Cost 1771 /// pairs. 1772 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1773 1774 /// A set containing all BasicBlocks that are known to present after 1775 /// vectorization as a predicated block. 1776 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1777 1778 /// Records whether it is allowed to have the original scalar loop execute at 1779 /// least once. This may be needed as a fallback loop in case runtime 1780 /// aliasing/dependence checks fail, or to handle the tail/remainder 1781 /// iterations when the trip count is unknown or doesn't divide by the VF, 1782 /// or as a peel-loop to handle gaps in interleave-groups. 1783 /// Under optsize and when the trip count is very small we don't allow any 1784 /// iterations to execute in the scalar loop. 1785 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1786 1787 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1788 bool FoldTailByMasking = false; 1789 1790 /// A map holding scalar costs for different vectorization factors. The 1791 /// presence of a cost for an instruction in the mapping indicates that the 1792 /// instruction will be scalarized when vectorizing with the associated 1793 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1794 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1795 1796 /// Holds the instructions known to be uniform after vectorization. 1797 /// The data is collected per VF. 1798 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1799 1800 /// Holds the instructions known to be scalar after vectorization. 1801 /// The data is collected per VF. 1802 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1803 1804 /// Holds the instructions (address computations) that are forced to be 1805 /// scalarized. 1806 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1807 1808 /// PHINodes of the reductions that should be expanded in-loop along with 1809 /// their associated chains of reduction operations, in program order from top 1810 /// (PHI) to bottom 1811 ReductionChainMap InLoopReductionChains; 1812 1813 /// A Map of inloop reduction operations and their immediate chain operand. 1814 /// FIXME: This can be removed once reductions can be costed correctly in 1815 /// vplan. This was added to allow quick lookup to the inloop operations, 1816 /// without having to loop through InLoopReductionChains. 1817 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1818 1819 /// Returns the expected difference in cost from scalarizing the expression 1820 /// feeding a predicated instruction \p PredInst. The instructions to 1821 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1822 /// non-negative return value implies the expression will be scalarized. 1823 /// Currently, only single-use chains are considered for scalarization. 1824 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1825 ElementCount VF); 1826 1827 /// Collect the instructions that are uniform after vectorization. An 1828 /// instruction is uniform if we represent it with a single scalar value in 1829 /// the vectorized loop corresponding to each vector iteration. Examples of 1830 /// uniform instructions include pointer operands of consecutive or 1831 /// interleaved memory accesses. Note that although uniformity implies an 1832 /// instruction will be scalar, the reverse is not true. In general, a 1833 /// scalarized instruction will be represented by VF scalar values in the 1834 /// vectorized loop, each corresponding to an iteration of the original 1835 /// scalar loop. 1836 void collectLoopUniforms(ElementCount VF); 1837 1838 /// Collect the instructions that are scalar after vectorization. An 1839 /// instruction is scalar if it is known to be uniform or will be scalarized 1840 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1841 /// to the list if they are used by a load/store instruction that is marked as 1842 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1843 /// VF values in the vectorized loop, each corresponding to an iteration of 1844 /// the original scalar loop. 1845 void collectLoopScalars(ElementCount VF); 1846 1847 /// Keeps cost model vectorization decision and cost for instructions. 1848 /// Right now it is used for memory instructions only. 1849 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1850 std::pair<InstWidening, InstructionCost>>; 1851 1852 DecisionList WideningDecisions; 1853 1854 /// Returns true if \p V is expected to be vectorized and it needs to be 1855 /// extracted. 1856 bool needsExtract(Value *V, ElementCount VF) const { 1857 Instruction *I = dyn_cast<Instruction>(V); 1858 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1859 TheLoop->isLoopInvariant(I)) 1860 return false; 1861 1862 // Assume we can vectorize V (and hence we need extraction) if the 1863 // scalars are not computed yet. This can happen, because it is called 1864 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1865 // the scalars are collected. That should be a safe assumption in most 1866 // cases, because we check if the operands have vectorizable types 1867 // beforehand in LoopVectorizationLegality. 1868 return Scalars.find(VF) == Scalars.end() || 1869 !isScalarAfterVectorization(I, VF); 1870 }; 1871 1872 /// Returns a range containing only operands needing to be extracted. 1873 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1874 ElementCount VF) const { 1875 return SmallVector<Value *, 4>(make_filter_range( 1876 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1877 } 1878 1879 /// Determines if we have the infrastructure to vectorize loop \p L and its 1880 /// epilogue, assuming the main loop is vectorized by \p VF. 1881 bool isCandidateForEpilogueVectorization(const Loop &L, 1882 const ElementCount VF) const; 1883 1884 /// Returns true if epilogue vectorization is considered profitable, and 1885 /// false otherwise. 1886 /// \p VF is the vectorization factor chosen for the original loop. 1887 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1888 1889 public: 1890 /// The loop that we evaluate. 1891 Loop *TheLoop; 1892 1893 /// Predicated scalar evolution analysis. 1894 PredicatedScalarEvolution &PSE; 1895 1896 /// Loop Info analysis. 1897 LoopInfo *LI; 1898 1899 /// Vectorization legality. 1900 LoopVectorizationLegality *Legal; 1901 1902 /// Vector target information. 1903 const TargetTransformInfo &TTI; 1904 1905 /// Target Library Info. 1906 const TargetLibraryInfo *TLI; 1907 1908 /// Demanded bits analysis. 1909 DemandedBits *DB; 1910 1911 /// Assumption cache. 1912 AssumptionCache *AC; 1913 1914 /// Interface to emit optimization remarks. 1915 OptimizationRemarkEmitter *ORE; 1916 1917 const Function *TheFunction; 1918 1919 /// Loop Vectorize Hint. 1920 const LoopVectorizeHints *Hints; 1921 1922 /// The interleave access information contains groups of interleaved accesses 1923 /// with the same stride and close to each other. 1924 InterleavedAccessInfo &InterleaveInfo; 1925 1926 /// Values to ignore in the cost model. 1927 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1928 1929 /// Values to ignore in the cost model when VF > 1. 1930 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1931 1932 /// All element types found in the loop. 1933 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1934 1935 /// Profitable vector factors. 1936 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1937 }; 1938 } // end namespace llvm 1939 1940 /// Helper struct to manage generating runtime checks for vectorization. 1941 /// 1942 /// The runtime checks are created up-front in temporary blocks to allow better 1943 /// estimating the cost and un-linked from the existing IR. After deciding to 1944 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1945 /// temporary blocks are completely removed. 1946 class GeneratedRTChecks { 1947 /// Basic block which contains the generated SCEV checks, if any. 1948 BasicBlock *SCEVCheckBlock = nullptr; 1949 1950 /// The value representing the result of the generated SCEV checks. If it is 1951 /// nullptr, either no SCEV checks have been generated or they have been used. 1952 Value *SCEVCheckCond = nullptr; 1953 1954 /// Basic block which contains the generated memory runtime checks, if any. 1955 BasicBlock *MemCheckBlock = nullptr; 1956 1957 /// The value representing the result of the generated memory runtime checks. 1958 /// If it is nullptr, either no memory runtime checks have been generated or 1959 /// they have been used. 1960 Value *MemRuntimeCheckCond = nullptr; 1961 1962 DominatorTree *DT; 1963 LoopInfo *LI; 1964 1965 SCEVExpander SCEVExp; 1966 SCEVExpander MemCheckExp; 1967 1968 public: 1969 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1970 const DataLayout &DL) 1971 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1972 MemCheckExp(SE, DL, "scev.check") {} 1973 1974 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1975 /// accurately estimate the cost of the runtime checks. The blocks are 1976 /// un-linked from the IR and is added back during vector code generation. If 1977 /// there is no vector code generation, the check blocks are removed 1978 /// completely. 1979 void Create(Loop *L, const LoopAccessInfo &LAI, 1980 const SCEVPredicate &Pred) { 1981 1982 BasicBlock *LoopHeader = L->getHeader(); 1983 BasicBlock *Preheader = L->getLoopPreheader(); 1984 1985 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1986 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1987 // may be used by SCEVExpander. The blocks will be un-linked from their 1988 // predecessors and removed from LI & DT at the end of the function. 1989 if (!Pred.isAlwaysTrue()) { 1990 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1991 nullptr, "vector.scevcheck"); 1992 1993 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1994 &Pred, SCEVCheckBlock->getTerminator()); 1995 } 1996 1997 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1998 if (RtPtrChecking.Need) { 1999 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2000 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2001 "vector.memcheck"); 2002 2003 MemRuntimeCheckCond = 2004 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2005 RtPtrChecking.getChecks(), MemCheckExp); 2006 assert(MemRuntimeCheckCond && 2007 "no RT checks generated although RtPtrChecking " 2008 "claimed checks are required"); 2009 } 2010 2011 if (!MemCheckBlock && !SCEVCheckBlock) 2012 return; 2013 2014 // Unhook the temporary block with the checks, update various places 2015 // accordingly. 2016 if (SCEVCheckBlock) 2017 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2018 if (MemCheckBlock) 2019 MemCheckBlock->replaceAllUsesWith(Preheader); 2020 2021 if (SCEVCheckBlock) { 2022 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2023 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2024 Preheader->getTerminator()->eraseFromParent(); 2025 } 2026 if (MemCheckBlock) { 2027 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2028 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2029 Preheader->getTerminator()->eraseFromParent(); 2030 } 2031 2032 DT->changeImmediateDominator(LoopHeader, Preheader); 2033 if (MemCheckBlock) { 2034 DT->eraseNode(MemCheckBlock); 2035 LI->removeBlock(MemCheckBlock); 2036 } 2037 if (SCEVCheckBlock) { 2038 DT->eraseNode(SCEVCheckBlock); 2039 LI->removeBlock(SCEVCheckBlock); 2040 } 2041 } 2042 2043 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2044 /// unused. 2045 ~GeneratedRTChecks() { 2046 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2047 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2048 if (!SCEVCheckCond) 2049 SCEVCleaner.markResultUsed(); 2050 2051 if (!MemRuntimeCheckCond) 2052 MemCheckCleaner.markResultUsed(); 2053 2054 if (MemRuntimeCheckCond) { 2055 auto &SE = *MemCheckExp.getSE(); 2056 // Memory runtime check generation creates compares that use expanded 2057 // values. Remove them before running the SCEVExpanderCleaners. 2058 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2059 if (MemCheckExp.isInsertedInstruction(&I)) 2060 continue; 2061 SE.forgetValue(&I); 2062 I.eraseFromParent(); 2063 } 2064 } 2065 MemCheckCleaner.cleanup(); 2066 SCEVCleaner.cleanup(); 2067 2068 if (SCEVCheckCond) 2069 SCEVCheckBlock->eraseFromParent(); 2070 if (MemRuntimeCheckCond) 2071 MemCheckBlock->eraseFromParent(); 2072 } 2073 2074 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2075 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2076 /// depending on the generated condition. 2077 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2078 BasicBlock *LoopVectorPreHeader, 2079 BasicBlock *LoopExitBlock) { 2080 if (!SCEVCheckCond) 2081 return nullptr; 2082 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2083 if (C->isZero()) 2084 return nullptr; 2085 2086 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2087 2088 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2089 // Create new preheader for vector loop. 2090 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2091 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2092 2093 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2094 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2095 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2096 SCEVCheckBlock); 2097 2098 DT->addNewBlock(SCEVCheckBlock, Pred); 2099 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2100 2101 ReplaceInstWithInst( 2102 SCEVCheckBlock->getTerminator(), 2103 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2104 // Mark the check as used, to prevent it from being removed during cleanup. 2105 SCEVCheckCond = nullptr; 2106 return SCEVCheckBlock; 2107 } 2108 2109 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2110 /// the branches to branch to the vector preheader or \p Bypass, depending on 2111 /// the generated condition. 2112 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2113 BasicBlock *LoopVectorPreHeader) { 2114 // Check if we generated code that checks in runtime if arrays overlap. 2115 if (!MemRuntimeCheckCond) 2116 return nullptr; 2117 2118 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2119 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2120 MemCheckBlock); 2121 2122 DT->addNewBlock(MemCheckBlock, Pred); 2123 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2124 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2125 2126 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2127 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2128 2129 ReplaceInstWithInst( 2130 MemCheckBlock->getTerminator(), 2131 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2132 MemCheckBlock->getTerminator()->setDebugLoc( 2133 Pred->getTerminator()->getDebugLoc()); 2134 2135 // Mark the check as used, to prevent it from being removed during cleanup. 2136 MemRuntimeCheckCond = nullptr; 2137 return MemCheckBlock; 2138 } 2139 }; 2140 2141 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2142 // vectorization. The loop needs to be annotated with #pragma omp simd 2143 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2144 // vector length information is not provided, vectorization is not considered 2145 // explicit. Interleave hints are not allowed either. These limitations will be 2146 // relaxed in the future. 2147 // Please, note that we are currently forced to abuse the pragma 'clang 2148 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2149 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2150 // provides *explicit vectorization hints* (LV can bypass legal checks and 2151 // assume that vectorization is legal). However, both hints are implemented 2152 // using the same metadata (llvm.loop.vectorize, processed by 2153 // LoopVectorizeHints). This will be fixed in the future when the native IR 2154 // representation for pragma 'omp simd' is introduced. 2155 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2156 OptimizationRemarkEmitter *ORE) { 2157 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2158 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2159 2160 // Only outer loops with an explicit vectorization hint are supported. 2161 // Unannotated outer loops are ignored. 2162 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2163 return false; 2164 2165 Function *Fn = OuterLp->getHeader()->getParent(); 2166 if (!Hints.allowVectorization(Fn, OuterLp, 2167 true /*VectorizeOnlyWhenForced*/)) { 2168 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2169 return false; 2170 } 2171 2172 if (Hints.getInterleave() > 1) { 2173 // TODO: Interleave support is future work. 2174 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2175 "outer loops.\n"); 2176 Hints.emitRemarkWithHints(); 2177 return false; 2178 } 2179 2180 return true; 2181 } 2182 2183 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2184 OptimizationRemarkEmitter *ORE, 2185 SmallVectorImpl<Loop *> &V) { 2186 // Collect inner loops and outer loops without irreducible control flow. For 2187 // now, only collect outer loops that have explicit vectorization hints. If we 2188 // are stress testing the VPlan H-CFG construction, we collect the outermost 2189 // loop of every loop nest. 2190 if (L.isInnermost() || VPlanBuildStressTest || 2191 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2192 LoopBlocksRPO RPOT(&L); 2193 RPOT.perform(LI); 2194 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2195 V.push_back(&L); 2196 // TODO: Collect inner loops inside marked outer loops in case 2197 // vectorization fails for the outer loop. Do not invoke 2198 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2199 // already known to be reducible. We can use an inherited attribute for 2200 // that. 2201 return; 2202 } 2203 } 2204 for (Loop *InnerL : L) 2205 collectSupportedLoops(*InnerL, LI, ORE, V); 2206 } 2207 2208 namespace { 2209 2210 /// The LoopVectorize Pass. 2211 struct LoopVectorize : public FunctionPass { 2212 /// Pass identification, replacement for typeid 2213 static char ID; 2214 2215 LoopVectorizePass Impl; 2216 2217 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2218 bool VectorizeOnlyWhenForced = false) 2219 : FunctionPass(ID), 2220 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2221 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2222 } 2223 2224 bool runOnFunction(Function &F) override { 2225 if (skipFunction(F)) 2226 return false; 2227 2228 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2229 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2230 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2231 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2232 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2233 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2234 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2235 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2236 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2237 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2238 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2239 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2240 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2241 2242 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2243 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2244 2245 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2246 GetLAA, *ORE, PSI).MadeAnyChange; 2247 } 2248 2249 void getAnalysisUsage(AnalysisUsage &AU) const override { 2250 AU.addRequired<AssumptionCacheTracker>(); 2251 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2252 AU.addRequired<DominatorTreeWrapperPass>(); 2253 AU.addRequired<LoopInfoWrapperPass>(); 2254 AU.addRequired<ScalarEvolutionWrapperPass>(); 2255 AU.addRequired<TargetTransformInfoWrapperPass>(); 2256 AU.addRequired<AAResultsWrapperPass>(); 2257 AU.addRequired<LoopAccessLegacyAnalysis>(); 2258 AU.addRequired<DemandedBitsWrapperPass>(); 2259 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2260 AU.addRequired<InjectTLIMappingsLegacy>(); 2261 2262 // We currently do not preserve loopinfo/dominator analyses with outer loop 2263 // vectorization. Until this is addressed, mark these analyses as preserved 2264 // only for non-VPlan-native path. 2265 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2266 if (!EnableVPlanNativePath) { 2267 AU.addPreserved<LoopInfoWrapperPass>(); 2268 AU.addPreserved<DominatorTreeWrapperPass>(); 2269 } 2270 2271 AU.addPreserved<BasicAAWrapperPass>(); 2272 AU.addPreserved<GlobalsAAWrapperPass>(); 2273 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2274 } 2275 }; 2276 2277 } // end anonymous namespace 2278 2279 //===----------------------------------------------------------------------===// 2280 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2281 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2282 //===----------------------------------------------------------------------===// 2283 2284 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2285 // We need to place the broadcast of invariant variables outside the loop, 2286 // but only if it's proven safe to do so. Else, broadcast will be inside 2287 // vector loop body. 2288 Instruction *Instr = dyn_cast<Instruction>(V); 2289 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2290 (!Instr || 2291 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2292 // Place the code for broadcasting invariant variables in the new preheader. 2293 IRBuilder<>::InsertPointGuard Guard(Builder); 2294 if (SafeToHoist) 2295 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2296 2297 // Broadcast the scalar into all locations in the vector. 2298 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2299 2300 return Shuf; 2301 } 2302 2303 /// This function adds 2304 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2305 /// to each vector element of Val. The sequence starts at StartIndex. 2306 /// \p Opcode is relevant for FP induction variable. 2307 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2308 Instruction::BinaryOps BinOp, ElementCount VF, 2309 IRBuilderBase &Builder) { 2310 assert(VF.isVector() && "only vector VFs are supported"); 2311 2312 // Create and check the types. 2313 auto *ValVTy = cast<VectorType>(Val->getType()); 2314 ElementCount VLen = ValVTy->getElementCount(); 2315 2316 Type *STy = Val->getType()->getScalarType(); 2317 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2318 "Induction Step must be an integer or FP"); 2319 assert(Step->getType() == STy && "Step has wrong type"); 2320 2321 SmallVector<Constant *, 8> Indices; 2322 2323 // Create a vector of consecutive numbers from zero to VF. 2324 VectorType *InitVecValVTy = ValVTy; 2325 if (STy->isFloatingPointTy()) { 2326 Type *InitVecValSTy = 2327 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2328 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2329 } 2330 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2331 2332 // Splat the StartIdx 2333 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2334 2335 if (STy->isIntegerTy()) { 2336 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2337 Step = Builder.CreateVectorSplat(VLen, Step); 2338 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2339 // FIXME: The newly created binary instructions should contain nsw/nuw 2340 // flags, which can be found from the original scalar operations. 2341 Step = Builder.CreateMul(InitVec, Step); 2342 return Builder.CreateAdd(Val, Step, "induction"); 2343 } 2344 2345 // Floating point induction. 2346 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2347 "Binary Opcode should be specified for FP induction"); 2348 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2349 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2350 2351 Step = Builder.CreateVectorSplat(VLen, Step); 2352 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2353 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2354 } 2355 2356 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2357 /// variable on which to base the steps, \p Step is the size of the step. 2358 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2359 const InductionDescriptor &ID, VPValue *Def, 2360 VPTransformState &State) { 2361 IRBuilderBase &Builder = State.Builder; 2362 // We shouldn't have to build scalar steps if we aren't vectorizing. 2363 assert(State.VF.isVector() && "VF should be greater than one"); 2364 // Get the value type and ensure it and the step have the same integer type. 2365 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2366 assert(ScalarIVTy == Step->getType() && 2367 "Val and Step should have the same type"); 2368 2369 // We build scalar steps for both integer and floating-point induction 2370 // variables. Here, we determine the kind of arithmetic we will perform. 2371 Instruction::BinaryOps AddOp; 2372 Instruction::BinaryOps MulOp; 2373 if (ScalarIVTy->isIntegerTy()) { 2374 AddOp = Instruction::Add; 2375 MulOp = Instruction::Mul; 2376 } else { 2377 AddOp = ID.getInductionOpcode(); 2378 MulOp = Instruction::FMul; 2379 } 2380 2381 // Determine the number of scalars we need to generate for each unroll 2382 // iteration. 2383 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2384 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2385 // Compute the scalar steps and save the results in State. 2386 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2387 ScalarIVTy->getScalarSizeInBits()); 2388 Type *VecIVTy = nullptr; 2389 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2390 if (!FirstLaneOnly && State.VF.isScalable()) { 2391 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2392 UnitStepVec = 2393 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2394 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2395 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2396 } 2397 2398 for (unsigned Part = 0; Part < State.UF; ++Part) { 2399 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2400 2401 if (!FirstLaneOnly && State.VF.isScalable()) { 2402 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2403 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2404 if (ScalarIVTy->isFloatingPointTy()) 2405 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2406 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2407 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2408 State.set(Def, Add, Part); 2409 // It's useful to record the lane values too for the known minimum number 2410 // of elements so we do those below. This improves the code quality when 2411 // trying to extract the first element, for example. 2412 } 2413 2414 if (ScalarIVTy->isFloatingPointTy()) 2415 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2416 2417 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2418 Value *StartIdx = Builder.CreateBinOp( 2419 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2420 // The step returned by `createStepForVF` is a runtime-evaluated value 2421 // when VF is scalable. Otherwise, it should be folded into a Constant. 2422 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2423 "Expected StartIdx to be folded to a constant when VF is not " 2424 "scalable"); 2425 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2426 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2427 State.set(Def, Add, VPIteration(Part, Lane)); 2428 } 2429 } 2430 } 2431 2432 // Generate code for the induction step. Note that induction steps are 2433 // required to be loop-invariant 2434 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2435 Instruction *InsertBefore, 2436 Loop *OrigLoop = nullptr) { 2437 const DataLayout &DL = SE.getDataLayout(); 2438 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2439 "Induction step should be loop invariant"); 2440 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2441 return E->getValue(); 2442 2443 SCEVExpander Exp(SE, DL, "induction"); 2444 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2445 } 2446 2447 /// Compute the transformed value of Index at offset StartValue using step 2448 /// StepValue. 2449 /// For integer induction, returns StartValue + Index * StepValue. 2450 /// For pointer induction, returns StartValue[Index * StepValue]. 2451 /// FIXME: The newly created binary instructions should contain nsw/nuw 2452 /// flags, which can be found from the original scalar operations. 2453 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2454 Value *StartValue, Value *Step, 2455 const InductionDescriptor &ID) { 2456 assert(Index->getType()->getScalarType() == Step->getType() && 2457 "Index scalar type does not match StepValue type"); 2458 2459 // Note: the IR at this point is broken. We cannot use SE to create any new 2460 // SCEV and then expand it, hoping that SCEV's simplification will give us 2461 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2462 // lead to various SCEV crashes. So all we can do is to use builder and rely 2463 // on InstCombine for future simplifications. Here we handle some trivial 2464 // cases only. 2465 auto CreateAdd = [&B](Value *X, Value *Y) { 2466 assert(X->getType() == Y->getType() && "Types don't match!"); 2467 if (auto *CX = dyn_cast<ConstantInt>(X)) 2468 if (CX->isZero()) 2469 return Y; 2470 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2471 if (CY->isZero()) 2472 return X; 2473 return B.CreateAdd(X, Y); 2474 }; 2475 2476 // We allow X to be a vector type, in which case Y will potentially be 2477 // splatted into a vector with the same element count. 2478 auto CreateMul = [&B](Value *X, Value *Y) { 2479 assert(X->getType()->getScalarType() == Y->getType() && 2480 "Types don't match!"); 2481 if (auto *CX = dyn_cast<ConstantInt>(X)) 2482 if (CX->isOne()) 2483 return Y; 2484 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2485 if (CY->isOne()) 2486 return X; 2487 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2488 if (XVTy && !isa<VectorType>(Y->getType())) 2489 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2490 return B.CreateMul(X, Y); 2491 }; 2492 2493 switch (ID.getKind()) { 2494 case InductionDescriptor::IK_IntInduction: { 2495 assert(!isa<VectorType>(Index->getType()) && 2496 "Vector indices not supported for integer inductions yet"); 2497 assert(Index->getType() == StartValue->getType() && 2498 "Index type does not match StartValue type"); 2499 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2500 return B.CreateSub(StartValue, Index); 2501 auto *Offset = CreateMul(Index, Step); 2502 return CreateAdd(StartValue, Offset); 2503 } 2504 case InductionDescriptor::IK_PtrInduction: { 2505 assert(isa<Constant>(Step) && 2506 "Expected constant step for pointer induction"); 2507 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2508 } 2509 case InductionDescriptor::IK_FpInduction: { 2510 assert(!isa<VectorType>(Index->getType()) && 2511 "Vector indices not supported for FP inductions yet"); 2512 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2513 auto InductionBinOp = ID.getInductionBinOp(); 2514 assert(InductionBinOp && 2515 (InductionBinOp->getOpcode() == Instruction::FAdd || 2516 InductionBinOp->getOpcode() == Instruction::FSub) && 2517 "Original bin op should be defined for FP induction"); 2518 2519 Value *MulExp = B.CreateFMul(Step, Index); 2520 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2521 "induction"); 2522 } 2523 case InductionDescriptor::IK_NoInduction: 2524 return nullptr; 2525 } 2526 llvm_unreachable("invalid enum"); 2527 } 2528 2529 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2530 const VPIteration &Instance, 2531 VPTransformState &State) { 2532 Value *ScalarInst = State.get(Def, Instance); 2533 Value *VectorValue = State.get(Def, Instance.Part); 2534 VectorValue = Builder.CreateInsertElement( 2535 VectorValue, ScalarInst, 2536 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2537 State.set(Def, VectorValue, Instance.Part); 2538 } 2539 2540 // Return whether we allow using masked interleave-groups (for dealing with 2541 // strided loads/stores that reside in predicated blocks, or for dealing 2542 // with gaps). 2543 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2544 // If an override option has been passed in for interleaved accesses, use it. 2545 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2546 return EnableMaskedInterleavedMemAccesses; 2547 2548 return TTI.enableMaskedInterleavedAccessVectorization(); 2549 } 2550 2551 // Try to vectorize the interleave group that \p Instr belongs to. 2552 // 2553 // E.g. Translate following interleaved load group (factor = 3): 2554 // for (i = 0; i < N; i+=3) { 2555 // R = Pic[i]; // Member of index 0 2556 // G = Pic[i+1]; // Member of index 1 2557 // B = Pic[i+2]; // Member of index 2 2558 // ... // do something to R, G, B 2559 // } 2560 // To: 2561 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2562 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2563 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2564 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2565 // 2566 // Or translate following interleaved store group (factor = 3): 2567 // for (i = 0; i < N; i+=3) { 2568 // ... do something to R, G, B 2569 // Pic[i] = R; // Member of index 0 2570 // Pic[i+1] = G; // Member of index 1 2571 // Pic[i+2] = B; // Member of index 2 2572 // } 2573 // To: 2574 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2575 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2576 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2577 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2578 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2579 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2580 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2581 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2582 VPValue *BlockInMask) { 2583 Instruction *Instr = Group->getInsertPos(); 2584 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2585 2586 // Prepare for the vector type of the interleaved load/store. 2587 Type *ScalarTy = getLoadStoreType(Instr); 2588 unsigned InterleaveFactor = Group->getFactor(); 2589 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2590 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2591 2592 // Prepare for the new pointers. 2593 SmallVector<Value *, 2> AddrParts; 2594 unsigned Index = Group->getIndex(Instr); 2595 2596 // TODO: extend the masked interleaved-group support to reversed access. 2597 assert((!BlockInMask || !Group->isReverse()) && 2598 "Reversed masked interleave-group not supported."); 2599 2600 // If the group is reverse, adjust the index to refer to the last vector lane 2601 // instead of the first. We adjust the index from the first vector lane, 2602 // rather than directly getting the pointer for lane VF - 1, because the 2603 // pointer operand of the interleaved access is supposed to be uniform. For 2604 // uniform instructions, we're only required to generate a value for the 2605 // first vector lane in each unroll iteration. 2606 if (Group->isReverse()) 2607 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2608 2609 for (unsigned Part = 0; Part < UF; Part++) { 2610 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2611 setDebugLocFromInst(AddrPart); 2612 2613 // Notice current instruction could be any index. Need to adjust the address 2614 // to the member of index 0. 2615 // 2616 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2617 // b = A[i]; // Member of index 0 2618 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2619 // 2620 // E.g. A[i+1] = a; // Member of index 1 2621 // A[i] = b; // Member of index 0 2622 // A[i+2] = c; // Member of index 2 (Current instruction) 2623 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2624 2625 bool InBounds = false; 2626 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2627 InBounds = gep->isInBounds(); 2628 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2629 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2630 2631 // Cast to the vector pointer type. 2632 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2633 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2634 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2635 } 2636 2637 setDebugLocFromInst(Instr); 2638 Value *PoisonVec = PoisonValue::get(VecTy); 2639 2640 Value *MaskForGaps = nullptr; 2641 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2642 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2643 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2644 } 2645 2646 // Vectorize the interleaved load group. 2647 if (isa<LoadInst>(Instr)) { 2648 // For each unroll part, create a wide load for the group. 2649 SmallVector<Value *, 2> NewLoads; 2650 for (unsigned Part = 0; Part < UF; Part++) { 2651 Instruction *NewLoad; 2652 if (BlockInMask || MaskForGaps) { 2653 assert(useMaskedInterleavedAccesses(*TTI) && 2654 "masked interleaved groups are not allowed."); 2655 Value *GroupMask = MaskForGaps; 2656 if (BlockInMask) { 2657 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2658 Value *ShuffledMask = Builder.CreateShuffleVector( 2659 BlockInMaskPart, 2660 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2661 "interleaved.mask"); 2662 GroupMask = MaskForGaps 2663 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2664 MaskForGaps) 2665 : ShuffledMask; 2666 } 2667 NewLoad = 2668 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2669 GroupMask, PoisonVec, "wide.masked.vec"); 2670 } 2671 else 2672 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2673 Group->getAlign(), "wide.vec"); 2674 Group->addMetadata(NewLoad); 2675 NewLoads.push_back(NewLoad); 2676 } 2677 2678 // For each member in the group, shuffle out the appropriate data from the 2679 // wide loads. 2680 unsigned J = 0; 2681 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2682 Instruction *Member = Group->getMember(I); 2683 2684 // Skip the gaps in the group. 2685 if (!Member) 2686 continue; 2687 2688 auto StrideMask = 2689 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2690 for (unsigned Part = 0; Part < UF; Part++) { 2691 Value *StridedVec = Builder.CreateShuffleVector( 2692 NewLoads[Part], StrideMask, "strided.vec"); 2693 2694 // If this member has different type, cast the result type. 2695 if (Member->getType() != ScalarTy) { 2696 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2697 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2698 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2699 } 2700 2701 if (Group->isReverse()) 2702 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2703 2704 State.set(VPDefs[J], StridedVec, Part); 2705 } 2706 ++J; 2707 } 2708 return; 2709 } 2710 2711 // The sub vector type for current instruction. 2712 auto *SubVT = VectorType::get(ScalarTy, VF); 2713 2714 // Vectorize the interleaved store group. 2715 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2716 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2717 "masked interleaved groups are not allowed."); 2718 assert((!MaskForGaps || !VF.isScalable()) && 2719 "masking gaps for scalable vectors is not yet supported."); 2720 for (unsigned Part = 0; Part < UF; Part++) { 2721 // Collect the stored vector from each member. 2722 SmallVector<Value *, 4> StoredVecs; 2723 for (unsigned i = 0; i < InterleaveFactor; i++) { 2724 assert((Group->getMember(i) || MaskForGaps) && 2725 "Fail to get a member from an interleaved store group"); 2726 Instruction *Member = Group->getMember(i); 2727 2728 // Skip the gaps in the group. 2729 if (!Member) { 2730 Value *Undef = PoisonValue::get(SubVT); 2731 StoredVecs.push_back(Undef); 2732 continue; 2733 } 2734 2735 Value *StoredVec = State.get(StoredValues[i], Part); 2736 2737 if (Group->isReverse()) 2738 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2739 2740 // If this member has different type, cast it to a unified type. 2741 2742 if (StoredVec->getType() != SubVT) 2743 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2744 2745 StoredVecs.push_back(StoredVec); 2746 } 2747 2748 // Concatenate all vectors into a wide vector. 2749 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2750 2751 // Interleave the elements in the wide vector. 2752 Value *IVec = Builder.CreateShuffleVector( 2753 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2754 "interleaved.vec"); 2755 2756 Instruction *NewStoreInstr; 2757 if (BlockInMask || MaskForGaps) { 2758 Value *GroupMask = MaskForGaps; 2759 if (BlockInMask) { 2760 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2761 Value *ShuffledMask = Builder.CreateShuffleVector( 2762 BlockInMaskPart, 2763 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2764 "interleaved.mask"); 2765 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2766 ShuffledMask, MaskForGaps) 2767 : ShuffledMask; 2768 } 2769 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2770 Group->getAlign(), GroupMask); 2771 } else 2772 NewStoreInstr = 2773 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2774 2775 Group->addMetadata(NewStoreInstr); 2776 } 2777 } 2778 2779 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2780 VPReplicateRecipe *RepRecipe, 2781 const VPIteration &Instance, 2782 bool IfPredicateInstr, 2783 VPTransformState &State) { 2784 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2785 2786 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2787 // the first lane and part. 2788 if (isa<NoAliasScopeDeclInst>(Instr)) 2789 if (!Instance.isFirstIteration()) 2790 return; 2791 2792 setDebugLocFromInst(Instr); 2793 2794 // Does this instruction return a value ? 2795 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2796 2797 Instruction *Cloned = Instr->clone(); 2798 if (!IsVoidRetTy) 2799 Cloned->setName(Instr->getName() + ".cloned"); 2800 2801 // If the scalarized instruction contributes to the address computation of a 2802 // widen masked load/store which was in a basic block that needed predication 2803 // and is not predicated after vectorization, we can't propagate 2804 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2805 // instruction could feed a poison value to the base address of the widen 2806 // load/store. 2807 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2808 Cloned->dropPoisonGeneratingFlags(); 2809 2810 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2811 Builder.GetInsertPoint()); 2812 // Replace the operands of the cloned instructions with their scalar 2813 // equivalents in the new loop. 2814 for (auto &I : enumerate(RepRecipe->operands())) { 2815 auto InputInstance = Instance; 2816 VPValue *Operand = I.value(); 2817 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2818 if (OperandR && OperandR->isUniform()) 2819 InputInstance.Lane = VPLane::getFirstLane(); 2820 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2821 } 2822 addNewMetadata(Cloned, Instr); 2823 2824 // Place the cloned scalar in the new loop. 2825 Builder.Insert(Cloned); 2826 2827 State.set(RepRecipe, Cloned, Instance); 2828 2829 // If we just cloned a new assumption, add it the assumption cache. 2830 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2831 AC->registerAssumption(II); 2832 2833 // End if-block. 2834 if (IfPredicateInstr) 2835 PredicatedInstructions.push_back(Cloned); 2836 } 2837 2838 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2839 BasicBlock *Header = L->getHeader(); 2840 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2841 2842 IRBuilder<> B(Header->getTerminator()); 2843 Instruction *OldInst = 2844 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2845 setDebugLocFromInst(OldInst, &B); 2846 2847 // Connect the header to the exit and header blocks and replace the old 2848 // terminator. 2849 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2850 2851 // Now we have two terminators. Remove the old one from the block. 2852 Header->getTerminator()->eraseFromParent(); 2853 } 2854 2855 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2856 if (TripCount) 2857 return TripCount; 2858 2859 assert(L && "Create Trip Count for null loop."); 2860 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2861 // Find the loop boundaries. 2862 ScalarEvolution *SE = PSE.getSE(); 2863 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2864 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2865 "Invalid loop count"); 2866 2867 Type *IdxTy = Legal->getWidestInductionType(); 2868 assert(IdxTy && "No type for induction"); 2869 2870 // The exit count might have the type of i64 while the phi is i32. This can 2871 // happen if we have an induction variable that is sign extended before the 2872 // compare. The only way that we get a backedge taken count is that the 2873 // induction variable was signed and as such will not overflow. In such a case 2874 // truncation is legal. 2875 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2876 IdxTy->getPrimitiveSizeInBits()) 2877 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2878 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2879 2880 // Get the total trip count from the count by adding 1. 2881 const SCEV *ExitCount = SE->getAddExpr( 2882 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2883 2884 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2885 2886 // Expand the trip count and place the new instructions in the preheader. 2887 // Notice that the pre-header does not change, only the loop body. 2888 SCEVExpander Exp(*SE, DL, "induction"); 2889 2890 // Count holds the overall loop count (N). 2891 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2892 L->getLoopPreheader()->getTerminator()); 2893 2894 if (TripCount->getType()->isPointerTy()) 2895 TripCount = 2896 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2897 L->getLoopPreheader()->getTerminator()); 2898 2899 return TripCount; 2900 } 2901 2902 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2903 if (VectorTripCount) 2904 return VectorTripCount; 2905 2906 Value *TC = getOrCreateTripCount(L); 2907 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2908 2909 Type *Ty = TC->getType(); 2910 // This is where we can make the step a runtime constant. 2911 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2912 2913 // If the tail is to be folded by masking, round the number of iterations N 2914 // up to a multiple of Step instead of rounding down. This is done by first 2915 // adding Step-1 and then rounding down. Note that it's ok if this addition 2916 // overflows: the vector induction variable will eventually wrap to zero given 2917 // that it starts at zero and its Step is a power of two; the loop will then 2918 // exit, with the last early-exit vector comparison also producing all-true. 2919 if (Cost->foldTailByMasking()) { 2920 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2921 "VF*UF must be a power of 2 when folding tail by masking"); 2922 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2923 TC = Builder.CreateAdd( 2924 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2925 } 2926 2927 // Now we need to generate the expression for the part of the loop that the 2928 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2929 // iterations are not required for correctness, or N - Step, otherwise. Step 2930 // is equal to the vectorization factor (number of SIMD elements) times the 2931 // unroll factor (number of SIMD instructions). 2932 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2933 2934 // There are cases where we *must* run at least one iteration in the remainder 2935 // loop. See the cost model for when this can happen. If the step evenly 2936 // divides the trip count, we set the remainder to be equal to the step. If 2937 // the step does not evenly divide the trip count, no adjustment is necessary 2938 // since there will already be scalar iterations. Note that the minimum 2939 // iterations check ensures that N >= Step. 2940 if (Cost->requiresScalarEpilogue(VF)) { 2941 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2942 R = Builder.CreateSelect(IsZero, Step, R); 2943 } 2944 2945 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2946 2947 return VectorTripCount; 2948 } 2949 2950 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2951 const DataLayout &DL) { 2952 // Verify that V is a vector type with same number of elements as DstVTy. 2953 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2954 unsigned VF = DstFVTy->getNumElements(); 2955 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2956 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2957 Type *SrcElemTy = SrcVecTy->getElementType(); 2958 Type *DstElemTy = DstFVTy->getElementType(); 2959 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2960 "Vector elements must have same size"); 2961 2962 // Do a direct cast if element types are castable. 2963 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2964 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2965 } 2966 // V cannot be directly casted to desired vector type. 2967 // May happen when V is a floating point vector but DstVTy is a vector of 2968 // pointers or vice-versa. Handle this using a two-step bitcast using an 2969 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2970 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2971 "Only one type should be a pointer type"); 2972 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2973 "Only one type should be a floating point type"); 2974 Type *IntTy = 2975 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2976 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2977 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2978 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2979 } 2980 2981 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2982 BasicBlock *Bypass) { 2983 Value *Count = getOrCreateTripCount(L); 2984 // Reuse existing vector loop preheader for TC checks. 2985 // Note that new preheader block is generated for vector loop. 2986 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2987 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2988 2989 // Generate code to check if the loop's trip count is less than VF * UF, or 2990 // equal to it in case a scalar epilogue is required; this implies that the 2991 // vector trip count is zero. This check also covers the case where adding one 2992 // to the backedge-taken count overflowed leading to an incorrect trip count 2993 // of zero. In this case we will also jump to the scalar loop. 2994 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2995 : ICmpInst::ICMP_ULT; 2996 2997 // If tail is to be folded, vector loop takes care of all iterations. 2998 Value *CheckMinIters = Builder.getFalse(); 2999 if (!Cost->foldTailByMasking()) { 3000 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3001 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3002 } 3003 // Create new preheader for vector loop. 3004 LoopVectorPreHeader = 3005 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3006 "vector.ph"); 3007 3008 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3009 DT->getNode(Bypass)->getIDom()) && 3010 "TC check is expected to dominate Bypass"); 3011 3012 // Update dominator for Bypass & LoopExit (if needed). 3013 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3014 if (!Cost->requiresScalarEpilogue(VF)) 3015 // If there is an epilogue which must run, there's no edge from the 3016 // middle block to exit blocks and thus no need to update the immediate 3017 // dominator of the exit blocks. 3018 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3019 3020 ReplaceInstWithInst( 3021 TCCheckBlock->getTerminator(), 3022 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3023 LoopBypassBlocks.push_back(TCCheckBlock); 3024 } 3025 3026 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3027 3028 BasicBlock *const SCEVCheckBlock = 3029 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3030 if (!SCEVCheckBlock) 3031 return nullptr; 3032 3033 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3034 (OptForSizeBasedOnProfile && 3035 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3036 "Cannot SCEV check stride or overflow when optimizing for size"); 3037 3038 3039 // Update dominator only if this is first RT check. 3040 if (LoopBypassBlocks.empty()) { 3041 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3042 if (!Cost->requiresScalarEpilogue(VF)) 3043 // If there is an epilogue which must run, there's no edge from the 3044 // middle block to exit blocks and thus no need to update the immediate 3045 // dominator of the exit blocks. 3046 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3047 } 3048 3049 LoopBypassBlocks.push_back(SCEVCheckBlock); 3050 AddedSafetyChecks = true; 3051 return SCEVCheckBlock; 3052 } 3053 3054 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3055 BasicBlock *Bypass) { 3056 // VPlan-native path does not do any analysis for runtime checks currently. 3057 if (EnableVPlanNativePath) 3058 return nullptr; 3059 3060 BasicBlock *const MemCheckBlock = 3061 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3062 3063 // Check if we generated code that checks in runtime if arrays overlap. We put 3064 // the checks into a separate block to make the more common case of few 3065 // elements faster. 3066 if (!MemCheckBlock) 3067 return nullptr; 3068 3069 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3070 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3071 "Cannot emit memory checks when optimizing for size, unless forced " 3072 "to vectorize."); 3073 ORE->emit([&]() { 3074 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3075 L->getStartLoc(), L->getHeader()) 3076 << "Code-size may be reduced by not forcing " 3077 "vectorization, or by source-code modifications " 3078 "eliminating the need for runtime checks " 3079 "(e.g., adding 'restrict')."; 3080 }); 3081 } 3082 3083 LoopBypassBlocks.push_back(MemCheckBlock); 3084 3085 AddedSafetyChecks = true; 3086 3087 // We currently don't use LoopVersioning for the actual loop cloning but we 3088 // still use it to add the noalias metadata. 3089 LVer = std::make_unique<LoopVersioning>( 3090 *Legal->getLAI(), 3091 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3092 DT, PSE.getSE()); 3093 LVer->prepareNoAliasMetadata(); 3094 return MemCheckBlock; 3095 } 3096 3097 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3098 LoopScalarBody = OrigLoop->getHeader(); 3099 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3100 assert(LoopVectorPreHeader && "Invalid loop structure"); 3101 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3102 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3103 "multiple exit loop without required epilogue?"); 3104 3105 LoopMiddleBlock = 3106 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3107 LI, nullptr, Twine(Prefix) + "middle.block"); 3108 LoopScalarPreHeader = 3109 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3110 nullptr, Twine(Prefix) + "scalar.ph"); 3111 3112 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3113 3114 // Set up the middle block terminator. Two cases: 3115 // 1) If we know that we must execute the scalar epilogue, emit an 3116 // unconditional branch. 3117 // 2) Otherwise, we must have a single unique exit block (due to how we 3118 // implement the multiple exit case). In this case, set up a conditonal 3119 // branch from the middle block to the loop scalar preheader, and the 3120 // exit block. completeLoopSkeleton will update the condition to use an 3121 // iteration check, if required to decide whether to execute the remainder. 3122 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3123 BranchInst::Create(LoopScalarPreHeader) : 3124 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3125 Builder.getTrue()); 3126 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3127 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3128 3129 // We intentionally don't let SplitBlock to update LoopInfo since 3130 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3131 // LoopVectorBody is explicitly added to the correct place few lines later. 3132 BasicBlock *LoopVectorBody = 3133 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3134 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3135 3136 // Update dominator for loop exit. 3137 if (!Cost->requiresScalarEpilogue(VF)) 3138 // If there is an epilogue which must run, there's no edge from the 3139 // middle block to exit blocks and thus no need to update the immediate 3140 // dominator of the exit blocks. 3141 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3142 3143 // Create and register the new vector loop. 3144 Loop *Lp = LI->AllocateLoop(); 3145 Loop *ParentLoop = OrigLoop->getParentLoop(); 3146 3147 // Insert the new loop into the loop nest and register the new basic blocks 3148 // before calling any utilities such as SCEV that require valid LoopInfo. 3149 if (ParentLoop) { 3150 ParentLoop->addChildLoop(Lp); 3151 } else { 3152 LI->addTopLevelLoop(Lp); 3153 } 3154 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3155 return Lp; 3156 } 3157 3158 void InnerLoopVectorizer::createInductionResumeValues( 3159 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3160 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3161 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3162 "Inconsistent information about additional bypass."); 3163 3164 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3165 assert(VectorTripCount && L && "Expected valid arguments"); 3166 // We are going to resume the execution of the scalar loop. 3167 // Go over all of the induction variables that we found and fix the 3168 // PHIs that are left in the scalar version of the loop. 3169 // The starting values of PHI nodes depend on the counter of the last 3170 // iteration in the vectorized loop. 3171 // If we come from a bypass edge then we need to start from the original 3172 // start value. 3173 Instruction *OldInduction = Legal->getPrimaryInduction(); 3174 for (auto &InductionEntry : Legal->getInductionVars()) { 3175 PHINode *OrigPhi = InductionEntry.first; 3176 InductionDescriptor II = InductionEntry.second; 3177 3178 // Create phi nodes to merge from the backedge-taken check block. 3179 PHINode *BCResumeVal = 3180 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3181 LoopScalarPreHeader->getTerminator()); 3182 // Copy original phi DL over to the new one. 3183 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3184 Value *&EndValue = IVEndValues[OrigPhi]; 3185 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3186 if (OrigPhi == OldInduction) { 3187 // We know what the end value is. 3188 EndValue = VectorTripCount; 3189 } else { 3190 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3191 3192 // Fast-math-flags propagate from the original induction instruction. 3193 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3194 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3195 3196 Type *StepType = II.getStep()->getType(); 3197 Instruction::CastOps CastOp = 3198 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3199 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3200 Value *Step = 3201 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3202 EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3203 EndValue->setName("ind.end"); 3204 3205 // Compute the end value for the additional bypass (if applicable). 3206 if (AdditionalBypass.first) { 3207 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3208 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3209 StepType, true); 3210 Value *Step = 3211 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3212 CRD = 3213 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3214 EndValueFromAdditionalBypass = 3215 emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3216 EndValueFromAdditionalBypass->setName("ind.end"); 3217 } 3218 } 3219 // The new PHI merges the original incoming value, in case of a bypass, 3220 // or the value at the end of the vectorized loop. 3221 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3222 3223 // Fix the scalar body counter (PHI node). 3224 // The old induction's phi node in the scalar body needs the truncated 3225 // value. 3226 for (BasicBlock *BB : LoopBypassBlocks) 3227 BCResumeVal->addIncoming(II.getStartValue(), BB); 3228 3229 if (AdditionalBypass.first) 3230 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3231 EndValueFromAdditionalBypass); 3232 3233 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3234 } 3235 } 3236 3237 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3238 MDNode *OrigLoopID) { 3239 assert(L && "Expected valid loop."); 3240 3241 // The trip counts should be cached by now. 3242 Value *Count = getOrCreateTripCount(L); 3243 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3244 3245 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3246 3247 // Add a check in the middle block to see if we have completed 3248 // all of the iterations in the first vector loop. Three cases: 3249 // 1) If we require a scalar epilogue, there is no conditional branch as 3250 // we unconditionally branch to the scalar preheader. Do nothing. 3251 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3252 // Thus if tail is to be folded, we know we don't need to run the 3253 // remainder and we can use the previous value for the condition (true). 3254 // 3) Otherwise, construct a runtime check. 3255 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3256 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3257 Count, VectorTripCount, "cmp.n", 3258 LoopMiddleBlock->getTerminator()); 3259 3260 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3261 // of the corresponding compare because they may have ended up with 3262 // different line numbers and we want to avoid awkward line stepping while 3263 // debugging. Eg. if the compare has got a line number inside the loop. 3264 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3265 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3266 } 3267 3268 // Get ready to start creating new instructions into the vectorized body. 3269 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3270 "Inconsistent vector loop preheader"); 3271 3272 #ifdef EXPENSIVE_CHECKS 3273 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3274 LI->verify(*DT); 3275 #endif 3276 3277 return LoopVectorPreHeader; 3278 } 3279 3280 std::pair<BasicBlock *, Value *> 3281 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3282 /* 3283 In this function we generate a new loop. The new loop will contain 3284 the vectorized instructions while the old loop will continue to run the 3285 scalar remainder. 3286 3287 [ ] <-- loop iteration number check. 3288 / | 3289 / v 3290 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3291 | / | 3292 | / v 3293 || [ ] <-- vector pre header. 3294 |/ | 3295 | v 3296 | [ ] \ 3297 | [ ]_| <-- vector loop. 3298 | | 3299 | v 3300 \ -[ ] <--- middle-block. 3301 \/ | 3302 /\ v 3303 | ->[ ] <--- new preheader. 3304 | | 3305 (opt) v <-- edge from middle to exit iff epilogue is not required. 3306 | [ ] \ 3307 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3308 \ | 3309 \ v 3310 >[ ] <-- exit block(s). 3311 ... 3312 */ 3313 3314 // Get the metadata of the original loop before it gets modified. 3315 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3316 3317 // Workaround! Compute the trip count of the original loop and cache it 3318 // before we start modifying the CFG. This code has a systemic problem 3319 // wherein it tries to run analysis over partially constructed IR; this is 3320 // wrong, and not simply for SCEV. The trip count of the original loop 3321 // simply happens to be prone to hitting this in practice. In theory, we 3322 // can hit the same issue for any SCEV, or ValueTracking query done during 3323 // mutation. See PR49900. 3324 getOrCreateTripCount(OrigLoop); 3325 3326 // Create an empty vector loop, and prepare basic blocks for the runtime 3327 // checks. 3328 Loop *Lp = createVectorLoopSkeleton(""); 3329 3330 // Now, compare the new count to zero. If it is zero skip the vector loop and 3331 // jump to the scalar loop. This check also covers the case where the 3332 // backedge-taken count is uint##_max: adding one to it will overflow leading 3333 // to an incorrect trip count of zero. In this (rare) case we will also jump 3334 // to the scalar loop. 3335 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3336 3337 // Generate the code to check any assumptions that we've made for SCEV 3338 // expressions. 3339 emitSCEVChecks(LoopScalarPreHeader); 3340 3341 // Generate the code that checks in runtime if arrays overlap. We put the 3342 // checks into a separate block to make the more common case of few elements 3343 // faster. 3344 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3345 3346 createHeaderBranch(Lp); 3347 3348 // Emit phis for the new starting index of the scalar loop. 3349 createInductionResumeValues(Lp); 3350 3351 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3352 } 3353 3354 // Fix up external users of the induction variable. At this point, we are 3355 // in LCSSA form, with all external PHIs that use the IV having one input value, 3356 // coming from the remainder loop. We need those PHIs to also have a correct 3357 // value for the IV when arriving directly from the middle block. 3358 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3359 const InductionDescriptor &II, 3360 Value *CountRoundDown, Value *EndValue, 3361 BasicBlock *MiddleBlock, 3362 BasicBlock *VectorHeader) { 3363 // There are two kinds of external IV usages - those that use the value 3364 // computed in the last iteration (the PHI) and those that use the penultimate 3365 // value (the value that feeds into the phi from the loop latch). 3366 // We allow both, but they, obviously, have different values. 3367 3368 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3369 3370 DenseMap<Value *, Value *> MissingVals; 3371 3372 // An external user of the last iteration's value should see the value that 3373 // the remainder loop uses to initialize its own IV. 3374 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3375 for (User *U : PostInc->users()) { 3376 Instruction *UI = cast<Instruction>(U); 3377 if (!OrigLoop->contains(UI)) { 3378 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3379 MissingVals[UI] = EndValue; 3380 } 3381 } 3382 3383 // An external user of the penultimate value need to see EndValue - Step. 3384 // The simplest way to get this is to recompute it from the constituent SCEVs, 3385 // that is Start + (Step * (CRD - 1)). 3386 for (User *U : OrigPhi->users()) { 3387 auto *UI = cast<Instruction>(U); 3388 if (!OrigLoop->contains(UI)) { 3389 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3390 3391 IRBuilder<> B(MiddleBlock->getTerminator()); 3392 3393 // Fast-math-flags propagate from the original induction instruction. 3394 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3395 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3396 3397 Value *CountMinusOne = B.CreateSub( 3398 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3399 Value *CMO = 3400 !II.getStep()->getType()->isIntegerTy() 3401 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3402 II.getStep()->getType()) 3403 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3404 CMO->setName("cast.cmo"); 3405 3406 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3407 VectorHeader->getTerminator()); 3408 Value *Escape = 3409 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3410 Escape->setName("ind.escape"); 3411 MissingVals[UI] = Escape; 3412 } 3413 } 3414 3415 for (auto &I : MissingVals) { 3416 PHINode *PHI = cast<PHINode>(I.first); 3417 // One corner case we have to handle is two IVs "chasing" each-other, 3418 // that is %IV2 = phi [...], [ %IV1, %latch ] 3419 // In this case, if IV1 has an external use, we need to avoid adding both 3420 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3421 // don't already have an incoming value for the middle block. 3422 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3423 PHI->addIncoming(I.second, MiddleBlock); 3424 } 3425 } 3426 3427 namespace { 3428 3429 struct CSEDenseMapInfo { 3430 static bool canHandle(const Instruction *I) { 3431 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3432 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3433 } 3434 3435 static inline Instruction *getEmptyKey() { 3436 return DenseMapInfo<Instruction *>::getEmptyKey(); 3437 } 3438 3439 static inline Instruction *getTombstoneKey() { 3440 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3441 } 3442 3443 static unsigned getHashValue(const Instruction *I) { 3444 assert(canHandle(I) && "Unknown instruction!"); 3445 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3446 I->value_op_end())); 3447 } 3448 3449 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3450 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3451 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3452 return LHS == RHS; 3453 return LHS->isIdenticalTo(RHS); 3454 } 3455 }; 3456 3457 } // end anonymous namespace 3458 3459 ///Perform cse of induction variable instructions. 3460 static void cse(BasicBlock *BB) { 3461 // Perform simple cse. 3462 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3463 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3464 if (!CSEDenseMapInfo::canHandle(&In)) 3465 continue; 3466 3467 // Check if we can replace this instruction with any of the 3468 // visited instructions. 3469 if (Instruction *V = CSEMap.lookup(&In)) { 3470 In.replaceAllUsesWith(V); 3471 In.eraseFromParent(); 3472 continue; 3473 } 3474 3475 CSEMap[&In] = &In; 3476 } 3477 } 3478 3479 InstructionCost 3480 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3481 bool &NeedToScalarize) const { 3482 Function *F = CI->getCalledFunction(); 3483 Type *ScalarRetTy = CI->getType(); 3484 SmallVector<Type *, 4> Tys, ScalarTys; 3485 for (auto &ArgOp : CI->args()) 3486 ScalarTys.push_back(ArgOp->getType()); 3487 3488 // Estimate cost of scalarized vector call. The source operands are assumed 3489 // to be vectors, so we need to extract individual elements from there, 3490 // execute VF scalar calls, and then gather the result into the vector return 3491 // value. 3492 InstructionCost ScalarCallCost = 3493 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3494 if (VF.isScalar()) 3495 return ScalarCallCost; 3496 3497 // Compute corresponding vector type for return value and arguments. 3498 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3499 for (Type *ScalarTy : ScalarTys) 3500 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3501 3502 // Compute costs of unpacking argument values for the scalar calls and 3503 // packing the return values to a vector. 3504 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3505 3506 InstructionCost Cost = 3507 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3508 3509 // If we can't emit a vector call for this function, then the currently found 3510 // cost is the cost we need to return. 3511 NeedToScalarize = true; 3512 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3513 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3514 3515 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3516 return Cost; 3517 3518 // If the corresponding vector cost is cheaper, return its cost. 3519 InstructionCost VectorCallCost = 3520 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3521 if (VectorCallCost < Cost) { 3522 NeedToScalarize = false; 3523 Cost = VectorCallCost; 3524 } 3525 return Cost; 3526 } 3527 3528 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3529 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3530 return Elt; 3531 return VectorType::get(Elt, VF); 3532 } 3533 3534 InstructionCost 3535 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3536 ElementCount VF) const { 3537 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3538 assert(ID && "Expected intrinsic call!"); 3539 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3540 FastMathFlags FMF; 3541 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3542 FMF = FPMO->getFastMathFlags(); 3543 3544 SmallVector<const Value *> Arguments(CI->args()); 3545 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3546 SmallVector<Type *> ParamTys; 3547 std::transform(FTy->param_begin(), FTy->param_end(), 3548 std::back_inserter(ParamTys), 3549 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3550 3551 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3552 dyn_cast<IntrinsicInst>(CI)); 3553 return TTI.getIntrinsicInstrCost(CostAttrs, 3554 TargetTransformInfo::TCK_RecipThroughput); 3555 } 3556 3557 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3558 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3559 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3560 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3561 } 3562 3563 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3564 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3565 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3566 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3567 } 3568 3569 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3570 // For every instruction `I` in MinBWs, truncate the operands, create a 3571 // truncated version of `I` and reextend its result. InstCombine runs 3572 // later and will remove any ext/trunc pairs. 3573 SmallPtrSet<Value *, 4> Erased; 3574 for (const auto &KV : Cost->getMinimalBitwidths()) { 3575 // If the value wasn't vectorized, we must maintain the original scalar 3576 // type. The absence of the value from State indicates that it 3577 // wasn't vectorized. 3578 // FIXME: Should not rely on getVPValue at this point. 3579 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3580 if (!State.hasAnyVectorValue(Def)) 3581 continue; 3582 for (unsigned Part = 0; Part < UF; ++Part) { 3583 Value *I = State.get(Def, Part); 3584 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3585 continue; 3586 Type *OriginalTy = I->getType(); 3587 Type *ScalarTruncatedTy = 3588 IntegerType::get(OriginalTy->getContext(), KV.second); 3589 auto *TruncatedTy = VectorType::get( 3590 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3591 if (TruncatedTy == OriginalTy) 3592 continue; 3593 3594 IRBuilder<> B(cast<Instruction>(I)); 3595 auto ShrinkOperand = [&](Value *V) -> Value * { 3596 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3597 if (ZI->getSrcTy() == TruncatedTy) 3598 return ZI->getOperand(0); 3599 return B.CreateZExtOrTrunc(V, TruncatedTy); 3600 }; 3601 3602 // The actual instruction modification depends on the instruction type, 3603 // unfortunately. 3604 Value *NewI = nullptr; 3605 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3606 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3607 ShrinkOperand(BO->getOperand(1))); 3608 3609 // Any wrapping introduced by shrinking this operation shouldn't be 3610 // considered undefined behavior. So, we can't unconditionally copy 3611 // arithmetic wrapping flags to NewI. 3612 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3613 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3614 NewI = 3615 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3616 ShrinkOperand(CI->getOperand(1))); 3617 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3618 NewI = B.CreateSelect(SI->getCondition(), 3619 ShrinkOperand(SI->getTrueValue()), 3620 ShrinkOperand(SI->getFalseValue())); 3621 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3622 switch (CI->getOpcode()) { 3623 default: 3624 llvm_unreachable("Unhandled cast!"); 3625 case Instruction::Trunc: 3626 NewI = ShrinkOperand(CI->getOperand(0)); 3627 break; 3628 case Instruction::SExt: 3629 NewI = B.CreateSExtOrTrunc( 3630 CI->getOperand(0), 3631 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3632 break; 3633 case Instruction::ZExt: 3634 NewI = B.CreateZExtOrTrunc( 3635 CI->getOperand(0), 3636 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3637 break; 3638 } 3639 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3640 auto Elements0 = 3641 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3642 auto *O0 = B.CreateZExtOrTrunc( 3643 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3644 auto Elements1 = 3645 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3646 auto *O1 = B.CreateZExtOrTrunc( 3647 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3648 3649 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3650 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3651 // Don't do anything with the operands, just extend the result. 3652 continue; 3653 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3654 auto Elements = 3655 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3656 auto *O0 = B.CreateZExtOrTrunc( 3657 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3658 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3659 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3660 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3661 auto Elements = 3662 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3663 auto *O0 = B.CreateZExtOrTrunc( 3664 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3665 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3666 } else { 3667 // If we don't know what to do, be conservative and don't do anything. 3668 continue; 3669 } 3670 3671 // Lastly, extend the result. 3672 NewI->takeName(cast<Instruction>(I)); 3673 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3674 I->replaceAllUsesWith(Res); 3675 cast<Instruction>(I)->eraseFromParent(); 3676 Erased.insert(I); 3677 State.reset(Def, Res, Part); 3678 } 3679 } 3680 3681 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3682 for (const auto &KV : Cost->getMinimalBitwidths()) { 3683 // If the value wasn't vectorized, we must maintain the original scalar 3684 // type. The absence of the value from State indicates that it 3685 // wasn't vectorized. 3686 // FIXME: Should not rely on getVPValue at this point. 3687 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3688 if (!State.hasAnyVectorValue(Def)) 3689 continue; 3690 for (unsigned Part = 0; Part < UF; ++Part) { 3691 Value *I = State.get(Def, Part); 3692 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3693 if (Inst && Inst->use_empty()) { 3694 Value *NewI = Inst->getOperand(0); 3695 Inst->eraseFromParent(); 3696 State.reset(Def, NewI, Part); 3697 } 3698 } 3699 } 3700 } 3701 3702 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3703 // Insert truncates and extends for any truncated instructions as hints to 3704 // InstCombine. 3705 if (VF.isVector()) 3706 truncateToMinimalBitwidths(State); 3707 3708 // Fix widened non-induction PHIs by setting up the PHI operands. 3709 if (OrigPHIsToFix.size()) { 3710 assert(EnableVPlanNativePath && 3711 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3712 fixNonInductionPHIs(State); 3713 } 3714 3715 // At this point every instruction in the original loop is widened to a 3716 // vector form. Now we need to fix the recurrences in the loop. These PHI 3717 // nodes are currently empty because we did not want to introduce cycles. 3718 // This is the second stage of vectorizing recurrences. 3719 fixCrossIterationPHIs(State); 3720 3721 // Forget the original basic block. 3722 PSE.getSE()->forgetLoop(OrigLoop); 3723 3724 Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB); 3725 // If we inserted an edge from the middle block to the unique exit block, 3726 // update uses outside the loop (phis) to account for the newly inserted 3727 // edge. 3728 if (!Cost->requiresScalarEpilogue(VF)) { 3729 // Fix-up external users of the induction variables. 3730 for (auto &Entry : Legal->getInductionVars()) 3731 fixupIVUsers( 3732 Entry.first, Entry.second, getOrCreateVectorTripCount(VectorLoop), 3733 IVEndValues[Entry.first], LoopMiddleBlock, VectorLoop->getHeader()); 3734 3735 fixLCSSAPHIs(State); 3736 } 3737 3738 for (Instruction *PI : PredicatedInstructions) 3739 sinkScalarOperands(&*PI); 3740 3741 // Remove redundant induction instructions. 3742 cse(VectorLoop->getHeader()); 3743 3744 // Set/update profile weights for the vector and remainder loops as original 3745 // loop iterations are now distributed among them. Note that original loop 3746 // represented by LoopScalarBody becomes remainder loop after vectorization. 3747 // 3748 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3749 // end up getting slightly roughened result but that should be OK since 3750 // profile is not inherently precise anyway. Note also possible bypass of 3751 // vector code caused by legality checks is ignored, assigning all the weight 3752 // to the vector loop, optimistically. 3753 // 3754 // For scalable vectorization we can't know at compile time how many iterations 3755 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3756 // vscale of '1'. 3757 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3758 LI->getLoopFor(LoopScalarBody), 3759 VF.getKnownMinValue() * UF); 3760 } 3761 3762 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3763 // In order to support recurrences we need to be able to vectorize Phi nodes. 3764 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3765 // stage #2: We now need to fix the recurrences by adding incoming edges to 3766 // the currently empty PHI nodes. At this point every instruction in the 3767 // original loop is widened to a vector form so we can use them to construct 3768 // the incoming edges. 3769 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3770 for (VPRecipeBase &R : Header->phis()) { 3771 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3772 fixReduction(ReductionPhi, State); 3773 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3774 fixFirstOrderRecurrence(FOR, State); 3775 } 3776 } 3777 3778 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3779 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3780 // This is the second phase of vectorizing first-order recurrences. An 3781 // overview of the transformation is described below. Suppose we have the 3782 // following loop. 3783 // 3784 // for (int i = 0; i < n; ++i) 3785 // b[i] = a[i] - a[i - 1]; 3786 // 3787 // There is a first-order recurrence on "a". For this loop, the shorthand 3788 // scalar IR looks like: 3789 // 3790 // scalar.ph: 3791 // s_init = a[-1] 3792 // br scalar.body 3793 // 3794 // scalar.body: 3795 // i = phi [0, scalar.ph], [i+1, scalar.body] 3796 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3797 // s2 = a[i] 3798 // b[i] = s2 - s1 3799 // br cond, scalar.body, ... 3800 // 3801 // In this example, s1 is a recurrence because it's value depends on the 3802 // previous iteration. In the first phase of vectorization, we created a 3803 // vector phi v1 for s1. We now complete the vectorization and produce the 3804 // shorthand vector IR shown below (for VF = 4, UF = 1). 3805 // 3806 // vector.ph: 3807 // v_init = vector(..., ..., ..., a[-1]) 3808 // br vector.body 3809 // 3810 // vector.body 3811 // i = phi [0, vector.ph], [i+4, vector.body] 3812 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3813 // v2 = a[i, i+1, i+2, i+3]; 3814 // v3 = vector(v1(3), v2(0, 1, 2)) 3815 // b[i, i+1, i+2, i+3] = v2 - v3 3816 // br cond, vector.body, middle.block 3817 // 3818 // middle.block: 3819 // x = v2(3) 3820 // br scalar.ph 3821 // 3822 // scalar.ph: 3823 // s_init = phi [x, middle.block], [a[-1], otherwise] 3824 // br scalar.body 3825 // 3826 // After execution completes the vector loop, we extract the next value of 3827 // the recurrence (x) to use as the initial value in the scalar loop. 3828 3829 // Extract the last vector element in the middle block. This will be the 3830 // initial value for the recurrence when jumping to the scalar loop. 3831 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3832 Value *Incoming = State.get(PreviousDef, UF - 1); 3833 auto *ExtractForScalar = Incoming; 3834 auto *IdxTy = Builder.getInt32Ty(); 3835 if (VF.isVector()) { 3836 auto *One = ConstantInt::get(IdxTy, 1); 3837 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3838 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3839 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3840 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3841 "vector.recur.extract"); 3842 } 3843 // Extract the second last element in the middle block if the 3844 // Phi is used outside the loop. We need to extract the phi itself 3845 // and not the last element (the phi update in the current iteration). This 3846 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3847 // when the scalar loop is not run at all. 3848 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3849 if (VF.isVector()) { 3850 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3851 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3852 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3853 Incoming, Idx, "vector.recur.extract.for.phi"); 3854 } else if (UF > 1) 3855 // When loop is unrolled without vectorizing, initialize 3856 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3857 // of `Incoming`. This is analogous to the vectorized case above: extracting 3858 // the second last element when VF > 1. 3859 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3860 3861 // Fix the initial value of the original recurrence in the scalar loop. 3862 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3863 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3864 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3865 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3866 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3867 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3868 Start->addIncoming(Incoming, BB); 3869 } 3870 3871 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3872 Phi->setName("scalar.recur"); 3873 3874 // Finally, fix users of the recurrence outside the loop. The users will need 3875 // either the last value of the scalar recurrence or the last value of the 3876 // vector recurrence we extracted in the middle block. Since the loop is in 3877 // LCSSA form, we just need to find all the phi nodes for the original scalar 3878 // recurrence in the exit block, and then add an edge for the middle block. 3879 // Note that LCSSA does not imply single entry when the original scalar loop 3880 // had multiple exiting edges (as we always run the last iteration in the 3881 // scalar epilogue); in that case, there is no edge from middle to exit and 3882 // and thus no phis which needed updated. 3883 if (!Cost->requiresScalarEpilogue(VF)) 3884 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3885 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3886 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3887 } 3888 3889 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3890 VPTransformState &State) { 3891 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3892 // Get it's reduction variable descriptor. 3893 assert(Legal->isReductionVariable(OrigPhi) && 3894 "Unable to find the reduction variable"); 3895 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3896 3897 RecurKind RK = RdxDesc.getRecurrenceKind(); 3898 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3899 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3900 setDebugLocFromInst(ReductionStartValue); 3901 3902 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3903 // This is the vector-clone of the value that leaves the loop. 3904 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3905 3906 // Wrap flags are in general invalid after vectorization, clear them. 3907 clearReductionWrapFlags(RdxDesc, State); 3908 3909 // Before each round, move the insertion point right between 3910 // the PHIs and the values we are going to write. 3911 // This allows us to write both PHINodes and the extractelement 3912 // instructions. 3913 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3914 3915 setDebugLocFromInst(LoopExitInst); 3916 3917 Type *PhiTy = OrigPhi->getType(); 3918 BasicBlock *VectorLoopLatch = 3919 LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 3920 // If tail is folded by masking, the vector value to leave the loop should be 3921 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3922 // instead of the former. For an inloop reduction the reduction will already 3923 // be predicated, and does not need to be handled here. 3924 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3925 for (unsigned Part = 0; Part < UF; ++Part) { 3926 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3927 Value *Sel = nullptr; 3928 for (User *U : VecLoopExitInst->users()) { 3929 if (isa<SelectInst>(U)) { 3930 assert(!Sel && "Reduction exit feeding two selects"); 3931 Sel = U; 3932 } else 3933 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3934 } 3935 assert(Sel && "Reduction exit feeds no select"); 3936 State.reset(LoopExitInstDef, Sel, Part); 3937 3938 // If the target can create a predicated operator for the reduction at no 3939 // extra cost in the loop (for example a predicated vadd), it can be 3940 // cheaper for the select to remain in the loop than be sunk out of it, 3941 // and so use the select value for the phi instead of the old 3942 // LoopExitValue. 3943 if (PreferPredicatedReductionSelect || 3944 TTI->preferPredicatedReductionSelect( 3945 RdxDesc.getOpcode(), PhiTy, 3946 TargetTransformInfo::ReductionFlags())) { 3947 auto *VecRdxPhi = 3948 cast<PHINode>(State.get(PhiR, Part)); 3949 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3950 } 3951 } 3952 } 3953 3954 // If the vector reduction can be performed in a smaller type, we truncate 3955 // then extend the loop exit value to enable InstCombine to evaluate the 3956 // entire expression in the smaller type. 3957 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3958 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3959 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3960 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3961 VectorParts RdxParts(UF); 3962 for (unsigned Part = 0; Part < UF; ++Part) { 3963 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3964 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3965 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3966 : Builder.CreateZExt(Trunc, VecTy); 3967 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3968 if (U != Trunc) { 3969 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3970 RdxParts[Part] = Extnd; 3971 } 3972 } 3973 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3974 for (unsigned Part = 0; Part < UF; ++Part) { 3975 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3976 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3977 } 3978 } 3979 3980 // Reduce all of the unrolled parts into a single vector. 3981 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3982 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3983 3984 // The middle block terminator has already been assigned a DebugLoc here (the 3985 // OrigLoop's single latch terminator). We want the whole middle block to 3986 // appear to execute on this line because: (a) it is all compiler generated, 3987 // (b) these instructions are always executed after evaluating the latch 3988 // conditional branch, and (c) other passes may add new predecessors which 3989 // terminate on this line. This is the easiest way to ensure we don't 3990 // accidentally cause an extra step back into the loop while debugging. 3991 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3992 if (PhiR->isOrdered()) 3993 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3994 else { 3995 // Floating-point operations should have some FMF to enable the reduction. 3996 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3997 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3998 for (unsigned Part = 1; Part < UF; ++Part) { 3999 Value *RdxPart = State.get(LoopExitInstDef, Part); 4000 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4001 ReducedPartRdx = Builder.CreateBinOp( 4002 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4003 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4004 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4005 ReducedPartRdx, RdxPart); 4006 else 4007 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4008 } 4009 } 4010 4011 // Create the reduction after the loop. Note that inloop reductions create the 4012 // target reduction in the loop using a Reduction recipe. 4013 if (VF.isVector() && !PhiR->isInLoop()) { 4014 ReducedPartRdx = 4015 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4016 // If the reduction can be performed in a smaller type, we need to extend 4017 // the reduction to the wider type before we branch to the original loop. 4018 if (PhiTy != RdxDesc.getRecurrenceType()) 4019 ReducedPartRdx = RdxDesc.isSigned() 4020 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4021 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4022 } 4023 4024 PHINode *ResumePhi = 4025 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4026 4027 // Create a phi node that merges control-flow from the backedge-taken check 4028 // block and the middle block. 4029 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4030 LoopScalarPreHeader->getTerminator()); 4031 4032 // If we are fixing reductions in the epilogue loop then we should already 4033 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4034 // we carry over the incoming values correctly. 4035 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4036 if (Incoming == LoopMiddleBlock) 4037 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4038 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4039 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4040 Incoming); 4041 else 4042 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4043 } 4044 4045 // Set the resume value for this reduction 4046 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4047 4048 // Now, we need to fix the users of the reduction variable 4049 // inside and outside of the scalar remainder loop. 4050 4051 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4052 // in the exit blocks. See comment on analogous loop in 4053 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4054 if (!Cost->requiresScalarEpilogue(VF)) 4055 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4056 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4057 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4058 4059 // Fix the scalar loop reduction variable with the incoming reduction sum 4060 // from the vector body and from the backedge value. 4061 int IncomingEdgeBlockIdx = 4062 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4063 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4064 // Pick the other block. 4065 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4066 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4067 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4068 } 4069 4070 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4071 VPTransformState &State) { 4072 RecurKind RK = RdxDesc.getRecurrenceKind(); 4073 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4074 return; 4075 4076 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4077 assert(LoopExitInstr && "null loop exit instruction"); 4078 SmallVector<Instruction *, 8> Worklist; 4079 SmallPtrSet<Instruction *, 8> Visited; 4080 Worklist.push_back(LoopExitInstr); 4081 Visited.insert(LoopExitInstr); 4082 4083 while (!Worklist.empty()) { 4084 Instruction *Cur = Worklist.pop_back_val(); 4085 if (isa<OverflowingBinaryOperator>(Cur)) 4086 for (unsigned Part = 0; Part < UF; ++Part) { 4087 // FIXME: Should not rely on getVPValue at this point. 4088 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4089 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4090 } 4091 4092 for (User *U : Cur->users()) { 4093 Instruction *UI = cast<Instruction>(U); 4094 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4095 Visited.insert(UI).second) 4096 Worklist.push_back(UI); 4097 } 4098 } 4099 } 4100 4101 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4102 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4103 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4104 // Some phis were already hand updated by the reduction and recurrence 4105 // code above, leave them alone. 4106 continue; 4107 4108 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4109 // Non-instruction incoming values will have only one value. 4110 4111 VPLane Lane = VPLane::getFirstLane(); 4112 if (isa<Instruction>(IncomingValue) && 4113 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4114 VF)) 4115 Lane = VPLane::getLastLaneForVF(VF); 4116 4117 // Can be a loop invariant incoming value or the last scalar value to be 4118 // extracted from the vectorized loop. 4119 // FIXME: Should not rely on getVPValue at this point. 4120 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4121 Value *lastIncomingValue = 4122 OrigLoop->isLoopInvariant(IncomingValue) 4123 ? IncomingValue 4124 : State.get(State.Plan->getVPValue(IncomingValue, true), 4125 VPIteration(UF - 1, Lane)); 4126 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4127 } 4128 } 4129 4130 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4131 // The basic block and loop containing the predicated instruction. 4132 auto *PredBB = PredInst->getParent(); 4133 auto *VectorLoop = LI->getLoopFor(PredBB); 4134 4135 // Initialize a worklist with the operands of the predicated instruction. 4136 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4137 4138 // Holds instructions that we need to analyze again. An instruction may be 4139 // reanalyzed if we don't yet know if we can sink it or not. 4140 SmallVector<Instruction *, 8> InstsToReanalyze; 4141 4142 // Returns true if a given use occurs in the predicated block. Phi nodes use 4143 // their operands in their corresponding predecessor blocks. 4144 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4145 auto *I = cast<Instruction>(U.getUser()); 4146 BasicBlock *BB = I->getParent(); 4147 if (auto *Phi = dyn_cast<PHINode>(I)) 4148 BB = Phi->getIncomingBlock( 4149 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4150 return BB == PredBB; 4151 }; 4152 4153 // Iteratively sink the scalarized operands of the predicated instruction 4154 // into the block we created for it. When an instruction is sunk, it's 4155 // operands are then added to the worklist. The algorithm ends after one pass 4156 // through the worklist doesn't sink a single instruction. 4157 bool Changed; 4158 do { 4159 // Add the instructions that need to be reanalyzed to the worklist, and 4160 // reset the changed indicator. 4161 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4162 InstsToReanalyze.clear(); 4163 Changed = false; 4164 4165 while (!Worklist.empty()) { 4166 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4167 4168 // We can't sink an instruction if it is a phi node, is not in the loop, 4169 // or may have side effects. 4170 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4171 I->mayHaveSideEffects()) 4172 continue; 4173 4174 // If the instruction is already in PredBB, check if we can sink its 4175 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4176 // sinking the scalar instruction I, hence it appears in PredBB; but it 4177 // may have failed to sink I's operands (recursively), which we try 4178 // (again) here. 4179 if (I->getParent() == PredBB) { 4180 Worklist.insert(I->op_begin(), I->op_end()); 4181 continue; 4182 } 4183 4184 // It's legal to sink the instruction if all its uses occur in the 4185 // predicated block. Otherwise, there's nothing to do yet, and we may 4186 // need to reanalyze the instruction. 4187 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4188 InstsToReanalyze.push_back(I); 4189 continue; 4190 } 4191 4192 // Move the instruction to the beginning of the predicated block, and add 4193 // it's operands to the worklist. 4194 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4195 Worklist.insert(I->op_begin(), I->op_end()); 4196 4197 // The sinking may have enabled other instructions to be sunk, so we will 4198 // need to iterate. 4199 Changed = true; 4200 } 4201 } while (Changed); 4202 } 4203 4204 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4205 for (PHINode *OrigPhi : OrigPHIsToFix) { 4206 VPWidenPHIRecipe *VPPhi = 4207 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4208 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4209 // Make sure the builder has a valid insert point. 4210 Builder.SetInsertPoint(NewPhi); 4211 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4212 VPValue *Inc = VPPhi->getIncomingValue(i); 4213 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4214 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4215 } 4216 } 4217 } 4218 4219 bool InnerLoopVectorizer::useOrderedReductions( 4220 const RecurrenceDescriptor &RdxDesc) { 4221 return Cost->useOrderedReductions(RdxDesc); 4222 } 4223 4224 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4225 VPWidenPHIRecipe *PhiR, 4226 VPTransformState &State) { 4227 PHINode *P = cast<PHINode>(PN); 4228 if (EnableVPlanNativePath) { 4229 // Currently we enter here in the VPlan-native path for non-induction 4230 // PHIs where all control flow is uniform. We simply widen these PHIs. 4231 // Create a vector phi with no operands - the vector phi operands will be 4232 // set at the end of vector code generation. 4233 Type *VecTy = (State.VF.isScalar()) 4234 ? PN->getType() 4235 : VectorType::get(PN->getType(), State.VF); 4236 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4237 State.set(PhiR, VecPhi, 0); 4238 OrigPHIsToFix.push_back(P); 4239 4240 return; 4241 } 4242 4243 assert(PN->getParent() == OrigLoop->getHeader() && 4244 "Non-header phis should have been handled elsewhere"); 4245 4246 // In order to support recurrences we need to be able to vectorize Phi nodes. 4247 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4248 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4249 // this value when we vectorize all of the instructions that use the PHI. 4250 4251 assert(!Legal->isReductionVariable(P) && 4252 "reductions should be handled elsewhere"); 4253 4254 setDebugLocFromInst(P); 4255 4256 // This PHINode must be an induction variable. 4257 // Make sure that we know about it. 4258 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4259 4260 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4261 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4262 4263 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4264 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4265 4266 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4267 // which can be found from the original scalar operations. 4268 switch (II.getKind()) { 4269 case InductionDescriptor::IK_NoInduction: 4270 llvm_unreachable("Unknown induction"); 4271 case InductionDescriptor::IK_IntInduction: 4272 case InductionDescriptor::IK_FpInduction: 4273 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4274 case InductionDescriptor::IK_PtrInduction: { 4275 // Handle the pointer induction variable case. 4276 assert(P->getType()->isPointerTy() && "Unexpected type."); 4277 4278 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4279 // This is the normalized GEP that starts counting at zero. 4280 Value *PtrInd = 4281 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4282 // Determine the number of scalars we need to generate for each unroll 4283 // iteration. If the instruction is uniform, we only need to generate the 4284 // first lane. Otherwise, we generate all VF values. 4285 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4286 assert((IsUniform || !State.VF.isScalable()) && 4287 "Cannot scalarize a scalable VF"); 4288 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4289 4290 for (unsigned Part = 0; Part < UF; ++Part) { 4291 Value *PartStart = 4292 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4293 4294 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4295 Value *Idx = Builder.CreateAdd( 4296 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4297 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4298 4299 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 4300 State.CFG.PrevBB->getTerminator()); 4301 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, 4302 II.getStartValue(), Step, II); 4303 SclrGep->setName("next.gep"); 4304 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4305 } 4306 } 4307 return; 4308 } 4309 assert(isa<SCEVConstant>(II.getStep()) && 4310 "Induction step not a SCEV constant!"); 4311 Type *PhiType = II.getStep()->getType(); 4312 4313 // Build a pointer phi 4314 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4315 Type *ScStValueType = ScalarStartValue->getType(); 4316 PHINode *NewPointerPhi = 4317 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4318 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4319 4320 // A pointer induction, performed by using a gep 4321 BasicBlock *LoopLatch = LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 4322 Instruction *InductionLoc = LoopLatch->getTerminator(); 4323 const SCEV *ScalarStep = II.getStep(); 4324 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4325 Value *ScalarStepValue = 4326 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4327 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4328 Value *NumUnrolledElems = 4329 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4330 Value *InductionGEP = GetElementPtrInst::Create( 4331 II.getElementType(), NewPointerPhi, 4332 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4333 InductionLoc); 4334 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4335 4336 // Create UF many actual address geps that use the pointer 4337 // phi as base and a vectorized version of the step value 4338 // (<step*0, ..., step*N>) as offset. 4339 for (unsigned Part = 0; Part < State.UF; ++Part) { 4340 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4341 Value *StartOffsetScalar = 4342 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4343 Value *StartOffset = 4344 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4345 // Create a vector of consecutive numbers from zero to VF. 4346 StartOffset = 4347 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4348 4349 Value *GEP = Builder.CreateGEP( 4350 II.getElementType(), NewPointerPhi, 4351 Builder.CreateMul( 4352 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4353 "vector.gep")); 4354 State.set(PhiR, GEP, Part); 4355 } 4356 } 4357 } 4358 } 4359 4360 /// A helper function for checking whether an integer division-related 4361 /// instruction may divide by zero (in which case it must be predicated if 4362 /// executed conditionally in the scalar code). 4363 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4364 /// Non-zero divisors that are non compile-time constants will not be 4365 /// converted into multiplication, so we will still end up scalarizing 4366 /// the division, but can do so w/o predication. 4367 static bool mayDivideByZero(Instruction &I) { 4368 assert((I.getOpcode() == Instruction::UDiv || 4369 I.getOpcode() == Instruction::SDiv || 4370 I.getOpcode() == Instruction::URem || 4371 I.getOpcode() == Instruction::SRem) && 4372 "Unexpected instruction"); 4373 Value *Divisor = I.getOperand(1); 4374 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4375 return !CInt || CInt->isZero(); 4376 } 4377 4378 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4379 VPUser &ArgOperands, 4380 VPTransformState &State) { 4381 assert(!isa<DbgInfoIntrinsic>(I) && 4382 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4383 setDebugLocFromInst(&I); 4384 4385 Module *M = I.getParent()->getParent()->getParent(); 4386 auto *CI = cast<CallInst>(&I); 4387 4388 SmallVector<Type *, 4> Tys; 4389 for (Value *ArgOperand : CI->args()) 4390 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4391 4392 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4393 4394 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4395 // version of the instruction. 4396 // Is it beneficial to perform intrinsic call compared to lib call? 4397 bool NeedToScalarize = false; 4398 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4399 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4400 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4401 assert((UseVectorIntrinsic || !NeedToScalarize) && 4402 "Instruction should be scalarized elsewhere."); 4403 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4404 "Either the intrinsic cost or vector call cost must be valid"); 4405 4406 for (unsigned Part = 0; Part < UF; ++Part) { 4407 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4408 SmallVector<Value *, 4> Args; 4409 for (auto &I : enumerate(ArgOperands.operands())) { 4410 // Some intrinsics have a scalar argument - don't replace it with a 4411 // vector. 4412 Value *Arg; 4413 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4414 Arg = State.get(I.value(), Part); 4415 else { 4416 Arg = State.get(I.value(), VPIteration(0, 0)); 4417 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4418 TysForDecl.push_back(Arg->getType()); 4419 } 4420 Args.push_back(Arg); 4421 } 4422 4423 Function *VectorF; 4424 if (UseVectorIntrinsic) { 4425 // Use vector version of the intrinsic. 4426 if (VF.isVector()) 4427 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4428 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4429 assert(VectorF && "Can't retrieve vector intrinsic."); 4430 } else { 4431 // Use vector version of the function call. 4432 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4433 #ifndef NDEBUG 4434 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4435 "Can't create vector function."); 4436 #endif 4437 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4438 } 4439 SmallVector<OperandBundleDef, 1> OpBundles; 4440 CI->getOperandBundlesAsDefs(OpBundles); 4441 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4442 4443 if (isa<FPMathOperator>(V)) 4444 V->copyFastMathFlags(CI); 4445 4446 State.set(Def, V, Part); 4447 addMetadata(V, &I); 4448 } 4449 } 4450 4451 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4452 // We should not collect Scalars more than once per VF. Right now, this 4453 // function is called from collectUniformsAndScalars(), which already does 4454 // this check. Collecting Scalars for VF=1 does not make any sense. 4455 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4456 "This function should not be visited twice for the same VF"); 4457 4458 SmallSetVector<Instruction *, 8> Worklist; 4459 4460 // These sets are used to seed the analysis with pointers used by memory 4461 // accesses that will remain scalar. 4462 SmallSetVector<Instruction *, 8> ScalarPtrs; 4463 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4464 auto *Latch = TheLoop->getLoopLatch(); 4465 4466 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4467 // The pointer operands of loads and stores will be scalar as long as the 4468 // memory access is not a gather or scatter operation. The value operand of a 4469 // store will remain scalar if the store is scalarized. 4470 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4471 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4472 assert(WideningDecision != CM_Unknown && 4473 "Widening decision should be ready at this moment"); 4474 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4475 if (Ptr == Store->getValueOperand()) 4476 return WideningDecision == CM_Scalarize; 4477 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4478 "Ptr is neither a value or pointer operand"); 4479 return WideningDecision != CM_GatherScatter; 4480 }; 4481 4482 // A helper that returns true if the given value is a bitcast or 4483 // getelementptr instruction contained in the loop. 4484 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4485 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4486 isa<GetElementPtrInst>(V)) && 4487 !TheLoop->isLoopInvariant(V); 4488 }; 4489 4490 // A helper that evaluates a memory access's use of a pointer. If the use will 4491 // be a scalar use and the pointer is only used by memory accesses, we place 4492 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4493 // PossibleNonScalarPtrs. 4494 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4495 // We only care about bitcast and getelementptr instructions contained in 4496 // the loop. 4497 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4498 return; 4499 4500 // If the pointer has already been identified as scalar (e.g., if it was 4501 // also identified as uniform), there's nothing to do. 4502 auto *I = cast<Instruction>(Ptr); 4503 if (Worklist.count(I)) 4504 return; 4505 4506 // If the use of the pointer will be a scalar use, and all users of the 4507 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4508 // place the pointer in PossibleNonScalarPtrs. 4509 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4510 return isa<LoadInst>(U) || isa<StoreInst>(U); 4511 })) 4512 ScalarPtrs.insert(I); 4513 else 4514 PossibleNonScalarPtrs.insert(I); 4515 }; 4516 4517 // We seed the scalars analysis with three classes of instructions: (1) 4518 // instructions marked uniform-after-vectorization and (2) bitcast, 4519 // getelementptr and (pointer) phi instructions used by memory accesses 4520 // requiring a scalar use. 4521 // 4522 // (1) Add to the worklist all instructions that have been identified as 4523 // uniform-after-vectorization. 4524 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4525 4526 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4527 // memory accesses requiring a scalar use. The pointer operands of loads and 4528 // stores will be scalar as long as the memory accesses is not a gather or 4529 // scatter operation. The value operand of a store will remain scalar if the 4530 // store is scalarized. 4531 for (auto *BB : TheLoop->blocks()) 4532 for (auto &I : *BB) { 4533 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4534 evaluatePtrUse(Load, Load->getPointerOperand()); 4535 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4536 evaluatePtrUse(Store, Store->getPointerOperand()); 4537 evaluatePtrUse(Store, Store->getValueOperand()); 4538 } 4539 } 4540 for (auto *I : ScalarPtrs) 4541 if (!PossibleNonScalarPtrs.count(I)) { 4542 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4543 Worklist.insert(I); 4544 } 4545 4546 // Insert the forced scalars. 4547 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4548 // induction variable when the PHI user is scalarized. 4549 auto ForcedScalar = ForcedScalars.find(VF); 4550 if (ForcedScalar != ForcedScalars.end()) 4551 for (auto *I : ForcedScalar->second) 4552 Worklist.insert(I); 4553 4554 // Expand the worklist by looking through any bitcasts and getelementptr 4555 // instructions we've already identified as scalar. This is similar to the 4556 // expansion step in collectLoopUniforms(); however, here we're only 4557 // expanding to include additional bitcasts and getelementptr instructions. 4558 unsigned Idx = 0; 4559 while (Idx != Worklist.size()) { 4560 Instruction *Dst = Worklist[Idx++]; 4561 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4562 continue; 4563 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4564 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4565 auto *J = cast<Instruction>(U); 4566 return !TheLoop->contains(J) || Worklist.count(J) || 4567 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4568 isScalarUse(J, Src)); 4569 })) { 4570 Worklist.insert(Src); 4571 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4572 } 4573 } 4574 4575 // An induction variable will remain scalar if all users of the induction 4576 // variable and induction variable update remain scalar. 4577 for (auto &Induction : Legal->getInductionVars()) { 4578 auto *Ind = Induction.first; 4579 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4580 4581 // If tail-folding is applied, the primary induction variable will be used 4582 // to feed a vector compare. 4583 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4584 continue; 4585 4586 // Returns true if \p Indvar is a pointer induction that is used directly by 4587 // load/store instruction \p I. 4588 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4589 Instruction *I) { 4590 return Induction.second.getKind() == 4591 InductionDescriptor::IK_PtrInduction && 4592 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4593 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4594 }; 4595 4596 // Determine if all users of the induction variable are scalar after 4597 // vectorization. 4598 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4599 auto *I = cast<Instruction>(U); 4600 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4601 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4602 }); 4603 if (!ScalarInd) 4604 continue; 4605 4606 // Determine if all users of the induction variable update instruction are 4607 // scalar after vectorization. 4608 auto ScalarIndUpdate = 4609 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4610 auto *I = cast<Instruction>(U); 4611 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4612 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4613 }); 4614 if (!ScalarIndUpdate) 4615 continue; 4616 4617 // The induction variable and its update instruction will remain scalar. 4618 Worklist.insert(Ind); 4619 Worklist.insert(IndUpdate); 4620 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4621 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4622 << "\n"); 4623 } 4624 4625 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4626 } 4627 4628 bool LoopVectorizationCostModel::isScalarWithPredication( 4629 Instruction *I, ElementCount VF) const { 4630 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4631 return false; 4632 switch(I->getOpcode()) { 4633 default: 4634 break; 4635 case Instruction::Load: 4636 case Instruction::Store: { 4637 if (!Legal->isMaskRequired(I)) 4638 return false; 4639 auto *Ptr = getLoadStorePointerOperand(I); 4640 auto *Ty = getLoadStoreType(I); 4641 Type *VTy = Ty; 4642 if (VF.isVector()) 4643 VTy = VectorType::get(Ty, VF); 4644 const Align Alignment = getLoadStoreAlignment(I); 4645 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4646 TTI.isLegalMaskedGather(VTy, Alignment)) 4647 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4648 TTI.isLegalMaskedScatter(VTy, Alignment)); 4649 } 4650 case Instruction::UDiv: 4651 case Instruction::SDiv: 4652 case Instruction::SRem: 4653 case Instruction::URem: 4654 return mayDivideByZero(*I); 4655 } 4656 return false; 4657 } 4658 4659 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4660 Instruction *I, ElementCount VF) { 4661 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4662 assert(getWideningDecision(I, VF) == CM_Unknown && 4663 "Decision should not be set yet."); 4664 auto *Group = getInterleavedAccessGroup(I); 4665 assert(Group && "Must have a group."); 4666 4667 // If the instruction's allocated size doesn't equal it's type size, it 4668 // requires padding and will be scalarized. 4669 auto &DL = I->getModule()->getDataLayout(); 4670 auto *ScalarTy = getLoadStoreType(I); 4671 if (hasIrregularType(ScalarTy, DL)) 4672 return false; 4673 4674 // Check if masking is required. 4675 // A Group may need masking for one of two reasons: it resides in a block that 4676 // needs predication, or it was decided to use masking to deal with gaps 4677 // (either a gap at the end of a load-access that may result in a speculative 4678 // load, or any gaps in a store-access). 4679 bool PredicatedAccessRequiresMasking = 4680 blockNeedsPredicationForAnyReason(I->getParent()) && 4681 Legal->isMaskRequired(I); 4682 bool LoadAccessWithGapsRequiresEpilogMasking = 4683 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4684 !isScalarEpilogueAllowed(); 4685 bool StoreAccessWithGapsRequiresMasking = 4686 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4687 if (!PredicatedAccessRequiresMasking && 4688 !LoadAccessWithGapsRequiresEpilogMasking && 4689 !StoreAccessWithGapsRequiresMasking) 4690 return true; 4691 4692 // If masked interleaving is required, we expect that the user/target had 4693 // enabled it, because otherwise it either wouldn't have been created or 4694 // it should have been invalidated by the CostModel. 4695 assert(useMaskedInterleavedAccesses(TTI) && 4696 "Masked interleave-groups for predicated accesses are not enabled."); 4697 4698 if (Group->isReverse()) 4699 return false; 4700 4701 auto *Ty = getLoadStoreType(I); 4702 const Align Alignment = getLoadStoreAlignment(I); 4703 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4704 : TTI.isLegalMaskedStore(Ty, Alignment); 4705 } 4706 4707 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4708 Instruction *I, ElementCount VF) { 4709 // Get and ensure we have a valid memory instruction. 4710 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4711 4712 auto *Ptr = getLoadStorePointerOperand(I); 4713 auto *ScalarTy = getLoadStoreType(I); 4714 4715 // In order to be widened, the pointer should be consecutive, first of all. 4716 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4717 return false; 4718 4719 // If the instruction is a store located in a predicated block, it will be 4720 // scalarized. 4721 if (isScalarWithPredication(I, VF)) 4722 return false; 4723 4724 // If the instruction's allocated size doesn't equal it's type size, it 4725 // requires padding and will be scalarized. 4726 auto &DL = I->getModule()->getDataLayout(); 4727 if (hasIrregularType(ScalarTy, DL)) 4728 return false; 4729 4730 return true; 4731 } 4732 4733 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4734 // We should not collect Uniforms more than once per VF. Right now, 4735 // this function is called from collectUniformsAndScalars(), which 4736 // already does this check. Collecting Uniforms for VF=1 does not make any 4737 // sense. 4738 4739 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4740 "This function should not be visited twice for the same VF"); 4741 4742 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4743 // not analyze again. Uniforms.count(VF) will return 1. 4744 Uniforms[VF].clear(); 4745 4746 // We now know that the loop is vectorizable! 4747 // Collect instructions inside the loop that will remain uniform after 4748 // vectorization. 4749 4750 // Global values, params and instructions outside of current loop are out of 4751 // scope. 4752 auto isOutOfScope = [&](Value *V) -> bool { 4753 Instruction *I = dyn_cast<Instruction>(V); 4754 return (!I || !TheLoop->contains(I)); 4755 }; 4756 4757 // Worklist containing uniform instructions demanding lane 0. 4758 SetVector<Instruction *> Worklist; 4759 BasicBlock *Latch = TheLoop->getLoopLatch(); 4760 4761 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4762 // that are scalar with predication must not be considered uniform after 4763 // vectorization, because that would create an erroneous replicating region 4764 // where only a single instance out of VF should be formed. 4765 // TODO: optimize such seldom cases if found important, see PR40816. 4766 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4767 if (isOutOfScope(I)) { 4768 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4769 << *I << "\n"); 4770 return; 4771 } 4772 if (isScalarWithPredication(I, VF)) { 4773 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4774 << *I << "\n"); 4775 return; 4776 } 4777 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4778 Worklist.insert(I); 4779 }; 4780 4781 // Start with the conditional branch. If the branch condition is an 4782 // instruction contained in the loop that is only used by the branch, it is 4783 // uniform. 4784 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4785 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4786 addToWorklistIfAllowed(Cmp); 4787 4788 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4789 InstWidening WideningDecision = getWideningDecision(I, VF); 4790 assert(WideningDecision != CM_Unknown && 4791 "Widening decision should be ready at this moment"); 4792 4793 // A uniform memory op is itself uniform. We exclude uniform stores 4794 // here as they demand the last lane, not the first one. 4795 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4796 assert(WideningDecision == CM_Scalarize); 4797 return true; 4798 } 4799 4800 return (WideningDecision == CM_Widen || 4801 WideningDecision == CM_Widen_Reverse || 4802 WideningDecision == CM_Interleave); 4803 }; 4804 4805 4806 // Returns true if Ptr is the pointer operand of a memory access instruction 4807 // I, and I is known to not require scalarization. 4808 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4809 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4810 }; 4811 4812 // Holds a list of values which are known to have at least one uniform use. 4813 // Note that there may be other uses which aren't uniform. A "uniform use" 4814 // here is something which only demands lane 0 of the unrolled iterations; 4815 // it does not imply that all lanes produce the same value (e.g. this is not 4816 // the usual meaning of uniform) 4817 SetVector<Value *> HasUniformUse; 4818 4819 // Scan the loop for instructions which are either a) known to have only 4820 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4821 for (auto *BB : TheLoop->blocks()) 4822 for (auto &I : *BB) { 4823 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4824 switch (II->getIntrinsicID()) { 4825 case Intrinsic::sideeffect: 4826 case Intrinsic::experimental_noalias_scope_decl: 4827 case Intrinsic::assume: 4828 case Intrinsic::lifetime_start: 4829 case Intrinsic::lifetime_end: 4830 if (TheLoop->hasLoopInvariantOperands(&I)) 4831 addToWorklistIfAllowed(&I); 4832 break; 4833 default: 4834 break; 4835 } 4836 } 4837 4838 // ExtractValue instructions must be uniform, because the operands are 4839 // known to be loop-invariant. 4840 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4841 assert(isOutOfScope(EVI->getAggregateOperand()) && 4842 "Expected aggregate value to be loop invariant"); 4843 addToWorklistIfAllowed(EVI); 4844 continue; 4845 } 4846 4847 // If there's no pointer operand, there's nothing to do. 4848 auto *Ptr = getLoadStorePointerOperand(&I); 4849 if (!Ptr) 4850 continue; 4851 4852 // A uniform memory op is itself uniform. We exclude uniform stores 4853 // here as they demand the last lane, not the first one. 4854 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4855 addToWorklistIfAllowed(&I); 4856 4857 if (isUniformDecision(&I, VF)) { 4858 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4859 HasUniformUse.insert(Ptr); 4860 } 4861 } 4862 4863 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4864 // demanding) users. Since loops are assumed to be in LCSSA form, this 4865 // disallows uses outside the loop as well. 4866 for (auto *V : HasUniformUse) { 4867 if (isOutOfScope(V)) 4868 continue; 4869 auto *I = cast<Instruction>(V); 4870 auto UsersAreMemAccesses = 4871 llvm::all_of(I->users(), [&](User *U) -> bool { 4872 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4873 }); 4874 if (UsersAreMemAccesses) 4875 addToWorklistIfAllowed(I); 4876 } 4877 4878 // Expand Worklist in topological order: whenever a new instruction 4879 // is added , its users should be already inside Worklist. It ensures 4880 // a uniform instruction will only be used by uniform instructions. 4881 unsigned idx = 0; 4882 while (idx != Worklist.size()) { 4883 Instruction *I = Worklist[idx++]; 4884 4885 for (auto OV : I->operand_values()) { 4886 // isOutOfScope operands cannot be uniform instructions. 4887 if (isOutOfScope(OV)) 4888 continue; 4889 // First order recurrence Phi's should typically be considered 4890 // non-uniform. 4891 auto *OP = dyn_cast<PHINode>(OV); 4892 if (OP && Legal->isFirstOrderRecurrence(OP)) 4893 continue; 4894 // If all the users of the operand are uniform, then add the 4895 // operand into the uniform worklist. 4896 auto *OI = cast<Instruction>(OV); 4897 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4898 auto *J = cast<Instruction>(U); 4899 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4900 })) 4901 addToWorklistIfAllowed(OI); 4902 } 4903 } 4904 4905 // For an instruction to be added into Worklist above, all its users inside 4906 // the loop should also be in Worklist. However, this condition cannot be 4907 // true for phi nodes that form a cyclic dependence. We must process phi 4908 // nodes separately. An induction variable will remain uniform if all users 4909 // of the induction variable and induction variable update remain uniform. 4910 // The code below handles both pointer and non-pointer induction variables. 4911 for (auto &Induction : Legal->getInductionVars()) { 4912 auto *Ind = Induction.first; 4913 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4914 4915 // Determine if all users of the induction variable are uniform after 4916 // vectorization. 4917 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4918 auto *I = cast<Instruction>(U); 4919 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4920 isVectorizedMemAccessUse(I, Ind); 4921 }); 4922 if (!UniformInd) 4923 continue; 4924 4925 // Determine if all users of the induction variable update instruction are 4926 // uniform after vectorization. 4927 auto UniformIndUpdate = 4928 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4929 auto *I = cast<Instruction>(U); 4930 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4931 isVectorizedMemAccessUse(I, IndUpdate); 4932 }); 4933 if (!UniformIndUpdate) 4934 continue; 4935 4936 // The induction variable and its update instruction will remain uniform. 4937 addToWorklistIfAllowed(Ind); 4938 addToWorklistIfAllowed(IndUpdate); 4939 } 4940 4941 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4942 } 4943 4944 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4945 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4946 4947 if (Legal->getRuntimePointerChecking()->Need) { 4948 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4949 "runtime pointer checks needed. Enable vectorization of this " 4950 "loop with '#pragma clang loop vectorize(enable)' when " 4951 "compiling with -Os/-Oz", 4952 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4953 return true; 4954 } 4955 4956 if (!PSE.getPredicate().isAlwaysTrue()) { 4957 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4958 "runtime SCEV checks needed. Enable vectorization of this " 4959 "loop with '#pragma clang loop vectorize(enable)' when " 4960 "compiling with -Os/-Oz", 4961 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4962 return true; 4963 } 4964 4965 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4966 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4967 reportVectorizationFailure("Runtime stride check for small trip count", 4968 "runtime stride == 1 checks needed. Enable vectorization of " 4969 "this loop without such check by compiling with -Os/-Oz", 4970 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4971 return true; 4972 } 4973 4974 return false; 4975 } 4976 4977 ElementCount 4978 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4979 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4980 return ElementCount::getScalable(0); 4981 4982 if (Hints->isScalableVectorizationDisabled()) { 4983 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4984 "ScalableVectorizationDisabled", ORE, TheLoop); 4985 return ElementCount::getScalable(0); 4986 } 4987 4988 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4989 4990 auto MaxScalableVF = ElementCount::getScalable( 4991 std::numeric_limits<ElementCount::ScalarTy>::max()); 4992 4993 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4994 // FIXME: While for scalable vectors this is currently sufficient, this should 4995 // be replaced by a more detailed mechanism that filters out specific VFs, 4996 // instead of invalidating vectorization for a whole set of VFs based on the 4997 // MaxVF. 4998 4999 // Disable scalable vectorization if the loop contains unsupported reductions. 5000 if (!canVectorizeReductions(MaxScalableVF)) { 5001 reportVectorizationInfo( 5002 "Scalable vectorization not supported for the reduction " 5003 "operations found in this loop.", 5004 "ScalableVFUnfeasible", ORE, TheLoop); 5005 return ElementCount::getScalable(0); 5006 } 5007 5008 // Disable scalable vectorization if the loop contains any instructions 5009 // with element types not supported for scalable vectors. 5010 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5011 return !Ty->isVoidTy() && 5012 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5013 })) { 5014 reportVectorizationInfo("Scalable vectorization is not supported " 5015 "for all element types found in this loop.", 5016 "ScalableVFUnfeasible", ORE, TheLoop); 5017 return ElementCount::getScalable(0); 5018 } 5019 5020 if (Legal->isSafeForAnyVectorWidth()) 5021 return MaxScalableVF; 5022 5023 // Limit MaxScalableVF by the maximum safe dependence distance. 5024 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5025 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5026 MaxVScale = 5027 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5028 MaxScalableVF = ElementCount::getScalable( 5029 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5030 if (!MaxScalableVF) 5031 reportVectorizationInfo( 5032 "Max legal vector width too small, scalable vectorization " 5033 "unfeasible.", 5034 "ScalableVFUnfeasible", ORE, TheLoop); 5035 5036 return MaxScalableVF; 5037 } 5038 5039 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5040 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5041 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5042 unsigned SmallestType, WidestType; 5043 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5044 5045 // Get the maximum safe dependence distance in bits computed by LAA. 5046 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5047 // the memory accesses that is most restrictive (involved in the smallest 5048 // dependence distance). 5049 unsigned MaxSafeElements = 5050 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5051 5052 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5053 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5054 5055 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5056 << ".\n"); 5057 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5058 << ".\n"); 5059 5060 // First analyze the UserVF, fall back if the UserVF should be ignored. 5061 if (UserVF) { 5062 auto MaxSafeUserVF = 5063 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5064 5065 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5066 // If `VF=vscale x N` is safe, then so is `VF=N` 5067 if (UserVF.isScalable()) 5068 return FixedScalableVFPair( 5069 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5070 else 5071 return UserVF; 5072 } 5073 5074 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5075 5076 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5077 // is better to ignore the hint and let the compiler choose a suitable VF. 5078 if (!UserVF.isScalable()) { 5079 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5080 << " is unsafe, clamping to max safe VF=" 5081 << MaxSafeFixedVF << ".\n"); 5082 ORE->emit([&]() { 5083 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5084 TheLoop->getStartLoc(), 5085 TheLoop->getHeader()) 5086 << "User-specified vectorization factor " 5087 << ore::NV("UserVectorizationFactor", UserVF) 5088 << " is unsafe, clamping to maximum safe vectorization factor " 5089 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5090 }); 5091 return MaxSafeFixedVF; 5092 } 5093 5094 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5095 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5096 << " is ignored because scalable vectors are not " 5097 "available.\n"); 5098 ORE->emit([&]() { 5099 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5100 TheLoop->getStartLoc(), 5101 TheLoop->getHeader()) 5102 << "User-specified vectorization factor " 5103 << ore::NV("UserVectorizationFactor", UserVF) 5104 << " is ignored because the target does not support scalable " 5105 "vectors. The compiler will pick a more suitable value."; 5106 }); 5107 } else { 5108 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5109 << " is unsafe. Ignoring scalable UserVF.\n"); 5110 ORE->emit([&]() { 5111 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5112 TheLoop->getStartLoc(), 5113 TheLoop->getHeader()) 5114 << "User-specified vectorization factor " 5115 << ore::NV("UserVectorizationFactor", UserVF) 5116 << " is unsafe. Ignoring the hint to let the compiler pick a " 5117 "more suitable value."; 5118 }); 5119 } 5120 } 5121 5122 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5123 << " / " << WidestType << " bits.\n"); 5124 5125 FixedScalableVFPair Result(ElementCount::getFixed(1), 5126 ElementCount::getScalable(0)); 5127 if (auto MaxVF = 5128 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5129 MaxSafeFixedVF, FoldTailByMasking)) 5130 Result.FixedVF = MaxVF; 5131 5132 if (auto MaxVF = 5133 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5134 MaxSafeScalableVF, FoldTailByMasking)) 5135 if (MaxVF.isScalable()) { 5136 Result.ScalableVF = MaxVF; 5137 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5138 << "\n"); 5139 } 5140 5141 return Result; 5142 } 5143 5144 FixedScalableVFPair 5145 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5146 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5147 // TODO: It may by useful to do since it's still likely to be dynamically 5148 // uniform if the target can skip. 5149 reportVectorizationFailure( 5150 "Not inserting runtime ptr check for divergent target", 5151 "runtime pointer checks needed. Not enabled for divergent target", 5152 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5153 return FixedScalableVFPair::getNone(); 5154 } 5155 5156 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5157 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5158 if (TC == 1) { 5159 reportVectorizationFailure("Single iteration (non) loop", 5160 "loop trip count is one, irrelevant for vectorization", 5161 "SingleIterationLoop", ORE, TheLoop); 5162 return FixedScalableVFPair::getNone(); 5163 } 5164 5165 switch (ScalarEpilogueStatus) { 5166 case CM_ScalarEpilogueAllowed: 5167 return computeFeasibleMaxVF(TC, UserVF, false); 5168 case CM_ScalarEpilogueNotAllowedUsePredicate: 5169 LLVM_FALLTHROUGH; 5170 case CM_ScalarEpilogueNotNeededUsePredicate: 5171 LLVM_DEBUG( 5172 dbgs() << "LV: vector predicate hint/switch found.\n" 5173 << "LV: Not allowing scalar epilogue, creating predicated " 5174 << "vector loop.\n"); 5175 break; 5176 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5177 // fallthrough as a special case of OptForSize 5178 case CM_ScalarEpilogueNotAllowedOptSize: 5179 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5180 LLVM_DEBUG( 5181 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5182 else 5183 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5184 << "count.\n"); 5185 5186 // Bail if runtime checks are required, which are not good when optimising 5187 // for size. 5188 if (runtimeChecksRequired()) 5189 return FixedScalableVFPair::getNone(); 5190 5191 break; 5192 } 5193 5194 // The only loops we can vectorize without a scalar epilogue, are loops with 5195 // a bottom-test and a single exiting block. We'd have to handle the fact 5196 // that not every instruction executes on the last iteration. This will 5197 // require a lane mask which varies through the vector loop body. (TODO) 5198 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5199 // If there was a tail-folding hint/switch, but we can't fold the tail by 5200 // masking, fallback to a vectorization with a scalar epilogue. 5201 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5202 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5203 "scalar epilogue instead.\n"); 5204 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5205 return computeFeasibleMaxVF(TC, UserVF, false); 5206 } 5207 return FixedScalableVFPair::getNone(); 5208 } 5209 5210 // Now try the tail folding 5211 5212 // Invalidate interleave groups that require an epilogue if we can't mask 5213 // the interleave-group. 5214 if (!useMaskedInterleavedAccesses(TTI)) { 5215 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5216 "No decisions should have been taken at this point"); 5217 // Note: There is no need to invalidate any cost modeling decisions here, as 5218 // non where taken so far. 5219 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5220 } 5221 5222 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5223 // Avoid tail folding if the trip count is known to be a multiple of any VF 5224 // we chose. 5225 // FIXME: The condition below pessimises the case for fixed-width vectors, 5226 // when scalable VFs are also candidates for vectorization. 5227 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5228 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5229 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5230 "MaxFixedVF must be a power of 2"); 5231 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5232 : MaxFixedVF.getFixedValue(); 5233 ScalarEvolution *SE = PSE.getSE(); 5234 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5235 const SCEV *ExitCount = SE->getAddExpr( 5236 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5237 const SCEV *Rem = SE->getURemExpr( 5238 SE->applyLoopGuards(ExitCount, TheLoop), 5239 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5240 if (Rem->isZero()) { 5241 // Accept MaxFixedVF if we do not have a tail. 5242 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5243 return MaxFactors; 5244 } 5245 } 5246 5247 // For scalable vectors don't use tail folding for low trip counts or 5248 // optimizing for code size. We only permit this if the user has explicitly 5249 // requested it. 5250 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5251 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5252 MaxFactors.ScalableVF.isVector()) 5253 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5254 5255 // If we don't know the precise trip count, or if the trip count that we 5256 // found modulo the vectorization factor is not zero, try to fold the tail 5257 // by masking. 5258 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5259 if (Legal->prepareToFoldTailByMasking()) { 5260 FoldTailByMasking = true; 5261 return MaxFactors; 5262 } 5263 5264 // If there was a tail-folding hint/switch, but we can't fold the tail by 5265 // masking, fallback to a vectorization with a scalar epilogue. 5266 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5267 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5268 "scalar epilogue instead.\n"); 5269 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5270 return MaxFactors; 5271 } 5272 5273 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5274 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5275 return FixedScalableVFPair::getNone(); 5276 } 5277 5278 if (TC == 0) { 5279 reportVectorizationFailure( 5280 "Unable to calculate the loop count due to complex control flow", 5281 "unable to calculate the loop count due to complex control flow", 5282 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5283 return FixedScalableVFPair::getNone(); 5284 } 5285 5286 reportVectorizationFailure( 5287 "Cannot optimize for size and vectorize at the same time.", 5288 "cannot optimize for size and vectorize at the same time. " 5289 "Enable vectorization of this loop with '#pragma clang loop " 5290 "vectorize(enable)' when compiling with -Os/-Oz", 5291 "NoTailLoopWithOptForSize", ORE, TheLoop); 5292 return FixedScalableVFPair::getNone(); 5293 } 5294 5295 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5296 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5297 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5298 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5299 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5300 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5301 : TargetTransformInfo::RGK_FixedWidthVector); 5302 5303 // Convenience function to return the minimum of two ElementCounts. 5304 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5305 assert((LHS.isScalable() == RHS.isScalable()) && 5306 "Scalable flags must match"); 5307 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5308 }; 5309 5310 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5311 // Note that both WidestRegister and WidestType may not be a powers of 2. 5312 auto MaxVectorElementCount = ElementCount::get( 5313 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5314 ComputeScalableMaxVF); 5315 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5316 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5317 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5318 5319 if (!MaxVectorElementCount) { 5320 LLVM_DEBUG(dbgs() << "LV: The target has no " 5321 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5322 << " vector registers.\n"); 5323 return ElementCount::getFixed(1); 5324 } 5325 5326 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5327 if (ConstTripCount && 5328 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5329 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5330 // If loop trip count (TC) is known at compile time there is no point in 5331 // choosing VF greater than TC (as done in the loop below). Select maximum 5332 // power of two which doesn't exceed TC. 5333 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5334 // when the TC is less than or equal to the known number of lanes. 5335 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5336 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5337 "exceeding the constant trip count: " 5338 << ClampedConstTripCount << "\n"); 5339 return ElementCount::getFixed(ClampedConstTripCount); 5340 } 5341 5342 ElementCount MaxVF = MaxVectorElementCount; 5343 if (TTI.shouldMaximizeVectorBandwidth() || 5344 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5345 auto MaxVectorElementCountMaxBW = ElementCount::get( 5346 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5347 ComputeScalableMaxVF); 5348 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5349 5350 // Collect all viable vectorization factors larger than the default MaxVF 5351 // (i.e. MaxVectorElementCount). 5352 SmallVector<ElementCount, 8> VFs; 5353 for (ElementCount VS = MaxVectorElementCount * 2; 5354 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5355 VFs.push_back(VS); 5356 5357 // For each VF calculate its register usage. 5358 auto RUs = calculateRegisterUsage(VFs); 5359 5360 // Select the largest VF which doesn't require more registers than existing 5361 // ones. 5362 for (int i = RUs.size() - 1; i >= 0; --i) { 5363 bool Selected = true; 5364 for (auto &pair : RUs[i].MaxLocalUsers) { 5365 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5366 if (pair.second > TargetNumRegisters) 5367 Selected = false; 5368 } 5369 if (Selected) { 5370 MaxVF = VFs[i]; 5371 break; 5372 } 5373 } 5374 if (ElementCount MinVF = 5375 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5376 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5377 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5378 << ") with target's minimum: " << MinVF << '\n'); 5379 MaxVF = MinVF; 5380 } 5381 } 5382 } 5383 return MaxVF; 5384 } 5385 5386 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5387 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5388 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5389 auto Min = Attr.getVScaleRangeMin(); 5390 auto Max = Attr.getVScaleRangeMax(); 5391 if (Max && Min == Max) 5392 return Max; 5393 } 5394 5395 return TTI.getVScaleForTuning(); 5396 } 5397 5398 bool LoopVectorizationCostModel::isMoreProfitable( 5399 const VectorizationFactor &A, const VectorizationFactor &B) const { 5400 InstructionCost CostA = A.Cost; 5401 InstructionCost CostB = B.Cost; 5402 5403 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5404 5405 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5406 MaxTripCount) { 5407 // If we are folding the tail and the trip count is a known (possibly small) 5408 // constant, the trip count will be rounded up to an integer number of 5409 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5410 // which we compare directly. When not folding the tail, the total cost will 5411 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5412 // approximated with the per-lane cost below instead of using the tripcount 5413 // as here. 5414 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5415 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5416 return RTCostA < RTCostB; 5417 } 5418 5419 // Improve estimate for the vector width if it is scalable. 5420 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5421 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5422 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5423 if (A.Width.isScalable()) 5424 EstimatedWidthA *= VScale.getValue(); 5425 if (B.Width.isScalable()) 5426 EstimatedWidthB *= VScale.getValue(); 5427 } 5428 5429 // Assume vscale may be larger than 1 (or the value being tuned for), 5430 // so that scalable vectorization is slightly favorable over fixed-width 5431 // vectorization. 5432 if (A.Width.isScalable() && !B.Width.isScalable()) 5433 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5434 5435 // To avoid the need for FP division: 5436 // (CostA / A.Width) < (CostB / B.Width) 5437 // <=> (CostA * B.Width) < (CostB * A.Width) 5438 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5439 } 5440 5441 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5442 const ElementCountSet &VFCandidates) { 5443 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5444 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5445 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5446 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5447 "Expected Scalar VF to be a candidate"); 5448 5449 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5450 VectorizationFactor ChosenFactor = ScalarCost; 5451 5452 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5453 if (ForceVectorization && VFCandidates.size() > 1) { 5454 // Ignore scalar width, because the user explicitly wants vectorization. 5455 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5456 // evaluation. 5457 ChosenFactor.Cost = InstructionCost::getMax(); 5458 } 5459 5460 SmallVector<InstructionVFPair> InvalidCosts; 5461 for (const auto &i : VFCandidates) { 5462 // The cost for scalar VF=1 is already calculated, so ignore it. 5463 if (i.isScalar()) 5464 continue; 5465 5466 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5467 VectorizationFactor Candidate(i, C.first); 5468 5469 #ifndef NDEBUG 5470 unsigned AssumedMinimumVscale = 1; 5471 if (Optional<unsigned> VScale = getVScaleForTuning()) 5472 AssumedMinimumVscale = VScale.getValue(); 5473 unsigned Width = 5474 Candidate.Width.isScalable() 5475 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5476 : Candidate.Width.getFixedValue(); 5477 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5478 << " costs: " << (Candidate.Cost / Width)); 5479 if (i.isScalable()) 5480 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5481 << AssumedMinimumVscale << ")"); 5482 LLVM_DEBUG(dbgs() << ".\n"); 5483 #endif 5484 5485 if (!C.second && !ForceVectorization) { 5486 LLVM_DEBUG( 5487 dbgs() << "LV: Not considering vector loop of width " << i 5488 << " because it will not generate any vector instructions.\n"); 5489 continue; 5490 } 5491 5492 // If profitable add it to ProfitableVF list. 5493 if (isMoreProfitable(Candidate, ScalarCost)) 5494 ProfitableVFs.push_back(Candidate); 5495 5496 if (isMoreProfitable(Candidate, ChosenFactor)) 5497 ChosenFactor = Candidate; 5498 } 5499 5500 // Emit a report of VFs with invalid costs in the loop. 5501 if (!InvalidCosts.empty()) { 5502 // Group the remarks per instruction, keeping the instruction order from 5503 // InvalidCosts. 5504 std::map<Instruction *, unsigned> Numbering; 5505 unsigned I = 0; 5506 for (auto &Pair : InvalidCosts) 5507 if (!Numbering.count(Pair.first)) 5508 Numbering[Pair.first] = I++; 5509 5510 // Sort the list, first on instruction(number) then on VF. 5511 llvm::sort(InvalidCosts, 5512 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5513 if (Numbering[A.first] != Numbering[B.first]) 5514 return Numbering[A.first] < Numbering[B.first]; 5515 ElementCountComparator ECC; 5516 return ECC(A.second, B.second); 5517 }); 5518 5519 // For a list of ordered instruction-vf pairs: 5520 // [(load, vf1), (load, vf2), (store, vf1)] 5521 // Group the instructions together to emit separate remarks for: 5522 // load (vf1, vf2) 5523 // store (vf1) 5524 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5525 auto Subset = ArrayRef<InstructionVFPair>(); 5526 do { 5527 if (Subset.empty()) 5528 Subset = Tail.take_front(1); 5529 5530 Instruction *I = Subset.front().first; 5531 5532 // If the next instruction is different, or if there are no other pairs, 5533 // emit a remark for the collated subset. e.g. 5534 // [(load, vf1), (load, vf2))] 5535 // to emit: 5536 // remark: invalid costs for 'load' at VF=(vf, vf2) 5537 if (Subset == Tail || Tail[Subset.size()].first != I) { 5538 std::string OutString; 5539 raw_string_ostream OS(OutString); 5540 assert(!Subset.empty() && "Unexpected empty range"); 5541 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5542 for (auto &Pair : Subset) 5543 OS << (Pair.second == Subset.front().second ? "" : ", ") 5544 << Pair.second; 5545 OS << "):"; 5546 if (auto *CI = dyn_cast<CallInst>(I)) 5547 OS << " call to " << CI->getCalledFunction()->getName(); 5548 else 5549 OS << " " << I->getOpcodeName(); 5550 OS.flush(); 5551 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5552 Tail = Tail.drop_front(Subset.size()); 5553 Subset = {}; 5554 } else 5555 // Grow the subset by one element 5556 Subset = Tail.take_front(Subset.size() + 1); 5557 } while (!Tail.empty()); 5558 } 5559 5560 if (!EnableCondStoresVectorization && NumPredStores) { 5561 reportVectorizationFailure("There are conditional stores.", 5562 "store that is conditionally executed prevents vectorization", 5563 "ConditionalStore", ORE, TheLoop); 5564 ChosenFactor = ScalarCost; 5565 } 5566 5567 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5568 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5569 << "LV: Vectorization seems to be not beneficial, " 5570 << "but was forced by a user.\n"); 5571 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5572 return ChosenFactor; 5573 } 5574 5575 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5576 const Loop &L, ElementCount VF) const { 5577 // Cross iteration phis such as reductions need special handling and are 5578 // currently unsupported. 5579 if (any_of(L.getHeader()->phis(), 5580 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5581 return false; 5582 5583 // Phis with uses outside of the loop require special handling and are 5584 // currently unsupported. 5585 for (auto &Entry : Legal->getInductionVars()) { 5586 // Look for uses of the value of the induction at the last iteration. 5587 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5588 for (User *U : PostInc->users()) 5589 if (!L.contains(cast<Instruction>(U))) 5590 return false; 5591 // Look for uses of penultimate value of the induction. 5592 for (User *U : Entry.first->users()) 5593 if (!L.contains(cast<Instruction>(U))) 5594 return false; 5595 } 5596 5597 // Induction variables that are widened require special handling that is 5598 // currently not supported. 5599 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5600 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5601 this->isProfitableToScalarize(Entry.first, VF)); 5602 })) 5603 return false; 5604 5605 // Epilogue vectorization code has not been auditted to ensure it handles 5606 // non-latch exits properly. It may be fine, but it needs auditted and 5607 // tested. 5608 if (L.getExitingBlock() != L.getLoopLatch()) 5609 return false; 5610 5611 return true; 5612 } 5613 5614 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5615 const ElementCount VF) const { 5616 // FIXME: We need a much better cost-model to take different parameters such 5617 // as register pressure, code size increase and cost of extra branches into 5618 // account. For now we apply a very crude heuristic and only consider loops 5619 // with vectorization factors larger than a certain value. 5620 // We also consider epilogue vectorization unprofitable for targets that don't 5621 // consider interleaving beneficial (eg. MVE). 5622 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5623 return false; 5624 // FIXME: We should consider changing the threshold for scalable 5625 // vectors to take VScaleForTuning into account. 5626 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5627 return true; 5628 return false; 5629 } 5630 5631 VectorizationFactor 5632 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5633 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5634 VectorizationFactor Result = VectorizationFactor::Disabled(); 5635 if (!EnableEpilogueVectorization) { 5636 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5637 return Result; 5638 } 5639 5640 if (!isScalarEpilogueAllowed()) { 5641 LLVM_DEBUG( 5642 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5643 "allowed.\n";); 5644 return Result; 5645 } 5646 5647 // Not really a cost consideration, but check for unsupported cases here to 5648 // simplify the logic. 5649 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5650 LLVM_DEBUG( 5651 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5652 "not a supported candidate.\n";); 5653 return Result; 5654 } 5655 5656 if (EpilogueVectorizationForceVF > 1) { 5657 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5658 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5659 if (LVP.hasPlanWithVF(ForcedEC)) 5660 return {ForcedEC, 0}; 5661 else { 5662 LLVM_DEBUG( 5663 dbgs() 5664 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5665 return Result; 5666 } 5667 } 5668 5669 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5670 TheLoop->getHeader()->getParent()->hasMinSize()) { 5671 LLVM_DEBUG( 5672 dbgs() 5673 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5674 return Result; 5675 } 5676 5677 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5678 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5679 "this loop\n"); 5680 return Result; 5681 } 5682 5683 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5684 // the main loop handles 8 lanes per iteration. We could still benefit from 5685 // vectorizing the epilogue loop with VF=4. 5686 ElementCount EstimatedRuntimeVF = MainLoopVF; 5687 if (MainLoopVF.isScalable()) { 5688 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5689 if (Optional<unsigned> VScale = getVScaleForTuning()) 5690 EstimatedRuntimeVF *= VScale.getValue(); 5691 } 5692 5693 for (auto &NextVF : ProfitableVFs) 5694 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5695 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5696 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5697 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5698 LVP.hasPlanWithVF(NextVF.Width)) 5699 Result = NextVF; 5700 5701 if (Result != VectorizationFactor::Disabled()) 5702 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5703 << Result.Width << "\n";); 5704 return Result; 5705 } 5706 5707 std::pair<unsigned, unsigned> 5708 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5709 unsigned MinWidth = -1U; 5710 unsigned MaxWidth = 8; 5711 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5712 // For in-loop reductions, no element types are added to ElementTypesInLoop 5713 // if there are no loads/stores in the loop. In this case, check through the 5714 // reduction variables to determine the maximum width. 5715 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5716 // Reset MaxWidth so that we can find the smallest type used by recurrences 5717 // in the loop. 5718 MaxWidth = -1U; 5719 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5720 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5721 // When finding the min width used by the recurrence we need to account 5722 // for casts on the input operands of the recurrence. 5723 MaxWidth = std::min<unsigned>( 5724 MaxWidth, std::min<unsigned>( 5725 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5726 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5727 } 5728 } else { 5729 for (Type *T : ElementTypesInLoop) { 5730 MinWidth = std::min<unsigned>( 5731 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5732 MaxWidth = std::max<unsigned>( 5733 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5734 } 5735 } 5736 return {MinWidth, MaxWidth}; 5737 } 5738 5739 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5740 ElementTypesInLoop.clear(); 5741 // For each block. 5742 for (BasicBlock *BB : TheLoop->blocks()) { 5743 // For each instruction in the loop. 5744 for (Instruction &I : BB->instructionsWithoutDebug()) { 5745 Type *T = I.getType(); 5746 5747 // Skip ignored values. 5748 if (ValuesToIgnore.count(&I)) 5749 continue; 5750 5751 // Only examine Loads, Stores and PHINodes. 5752 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5753 continue; 5754 5755 // Examine PHI nodes that are reduction variables. Update the type to 5756 // account for the recurrence type. 5757 if (auto *PN = dyn_cast<PHINode>(&I)) { 5758 if (!Legal->isReductionVariable(PN)) 5759 continue; 5760 const RecurrenceDescriptor &RdxDesc = 5761 Legal->getReductionVars().find(PN)->second; 5762 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5763 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5764 RdxDesc.getRecurrenceType(), 5765 TargetTransformInfo::ReductionFlags())) 5766 continue; 5767 T = RdxDesc.getRecurrenceType(); 5768 } 5769 5770 // Examine the stored values. 5771 if (auto *ST = dyn_cast<StoreInst>(&I)) 5772 T = ST->getValueOperand()->getType(); 5773 5774 assert(T->isSized() && 5775 "Expected the load/store/recurrence type to be sized"); 5776 5777 ElementTypesInLoop.insert(T); 5778 } 5779 } 5780 } 5781 5782 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5783 unsigned LoopCost) { 5784 // -- The interleave heuristics -- 5785 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5786 // There are many micro-architectural considerations that we can't predict 5787 // at this level. For example, frontend pressure (on decode or fetch) due to 5788 // code size, or the number and capabilities of the execution ports. 5789 // 5790 // We use the following heuristics to select the interleave count: 5791 // 1. If the code has reductions, then we interleave to break the cross 5792 // iteration dependency. 5793 // 2. If the loop is really small, then we interleave to reduce the loop 5794 // overhead. 5795 // 3. We don't interleave if we think that we will spill registers to memory 5796 // due to the increased register pressure. 5797 5798 if (!isScalarEpilogueAllowed()) 5799 return 1; 5800 5801 // We used the distance for the interleave count. 5802 if (Legal->getMaxSafeDepDistBytes() != -1U) 5803 return 1; 5804 5805 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5806 const bool HasReductions = !Legal->getReductionVars().empty(); 5807 // Do not interleave loops with a relatively small known or estimated trip 5808 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5809 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5810 // because with the above conditions interleaving can expose ILP and break 5811 // cross iteration dependences for reductions. 5812 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5813 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5814 return 1; 5815 5816 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5817 // We divide by these constants so assume that we have at least one 5818 // instruction that uses at least one register. 5819 for (auto& pair : R.MaxLocalUsers) { 5820 pair.second = std::max(pair.second, 1U); 5821 } 5822 5823 // We calculate the interleave count using the following formula. 5824 // Subtract the number of loop invariants from the number of available 5825 // registers. These registers are used by all of the interleaved instances. 5826 // Next, divide the remaining registers by the number of registers that is 5827 // required by the loop, in order to estimate how many parallel instances 5828 // fit without causing spills. All of this is rounded down if necessary to be 5829 // a power of two. We want power of two interleave count to simplify any 5830 // addressing operations or alignment considerations. 5831 // We also want power of two interleave counts to ensure that the induction 5832 // variable of the vector loop wraps to zero, when tail is folded by masking; 5833 // this currently happens when OptForSize, in which case IC is set to 1 above. 5834 unsigned IC = UINT_MAX; 5835 5836 for (auto& pair : R.MaxLocalUsers) { 5837 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5838 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5839 << " registers of " 5840 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5841 if (VF.isScalar()) { 5842 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5843 TargetNumRegisters = ForceTargetNumScalarRegs; 5844 } else { 5845 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5846 TargetNumRegisters = ForceTargetNumVectorRegs; 5847 } 5848 unsigned MaxLocalUsers = pair.second; 5849 unsigned LoopInvariantRegs = 0; 5850 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5851 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5852 5853 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5854 // Don't count the induction variable as interleaved. 5855 if (EnableIndVarRegisterHeur) { 5856 TmpIC = 5857 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5858 std::max(1U, (MaxLocalUsers - 1))); 5859 } 5860 5861 IC = std::min(IC, TmpIC); 5862 } 5863 5864 // Clamp the interleave ranges to reasonable counts. 5865 unsigned MaxInterleaveCount = 5866 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5867 5868 // Check if the user has overridden the max. 5869 if (VF.isScalar()) { 5870 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5871 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5872 } else { 5873 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5874 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5875 } 5876 5877 // If trip count is known or estimated compile time constant, limit the 5878 // interleave count to be less than the trip count divided by VF, provided it 5879 // is at least 1. 5880 // 5881 // For scalable vectors we can't know if interleaving is beneficial. It may 5882 // not be beneficial for small loops if none of the lanes in the second vector 5883 // iterations is enabled. However, for larger loops, there is likely to be a 5884 // similar benefit as for fixed-width vectors. For now, we choose to leave 5885 // the InterleaveCount as if vscale is '1', although if some information about 5886 // the vector is known (e.g. min vector size), we can make a better decision. 5887 if (BestKnownTC) { 5888 MaxInterleaveCount = 5889 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5890 // Make sure MaxInterleaveCount is greater than 0. 5891 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5892 } 5893 5894 assert(MaxInterleaveCount > 0 && 5895 "Maximum interleave count must be greater than 0"); 5896 5897 // Clamp the calculated IC to be between the 1 and the max interleave count 5898 // that the target and trip count allows. 5899 if (IC > MaxInterleaveCount) 5900 IC = MaxInterleaveCount; 5901 else 5902 // Make sure IC is greater than 0. 5903 IC = std::max(1u, IC); 5904 5905 assert(IC > 0 && "Interleave count must be greater than 0."); 5906 5907 // If we did not calculate the cost for VF (because the user selected the VF) 5908 // then we calculate the cost of VF here. 5909 if (LoopCost == 0) { 5910 InstructionCost C = expectedCost(VF).first; 5911 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5912 LoopCost = *C.getValue(); 5913 } 5914 5915 assert(LoopCost && "Non-zero loop cost expected"); 5916 5917 // Interleave if we vectorized this loop and there is a reduction that could 5918 // benefit from interleaving. 5919 if (VF.isVector() && HasReductions) { 5920 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5921 return IC; 5922 } 5923 5924 // For any scalar loop that either requires runtime checks or predication we 5925 // are better off leaving this to the unroller. Note that if we've already 5926 // vectorized the loop we will have done the runtime check and so interleaving 5927 // won't require further checks. 5928 bool ScalarInterleavingRequiresPredication = 5929 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5930 return Legal->blockNeedsPredication(BB); 5931 })); 5932 bool ScalarInterleavingRequiresRuntimePointerCheck = 5933 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5934 5935 // We want to interleave small loops in order to reduce the loop overhead and 5936 // potentially expose ILP opportunities. 5937 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5938 << "LV: IC is " << IC << '\n' 5939 << "LV: VF is " << VF << '\n'); 5940 const bool AggressivelyInterleaveReductions = 5941 TTI.enableAggressiveInterleaving(HasReductions); 5942 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5943 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5944 // We assume that the cost overhead is 1 and we use the cost model 5945 // to estimate the cost of the loop and interleave until the cost of the 5946 // loop overhead is about 5% of the cost of the loop. 5947 unsigned SmallIC = 5948 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5949 5950 // Interleave until store/load ports (estimated by max interleave count) are 5951 // saturated. 5952 unsigned NumStores = Legal->getNumStores(); 5953 unsigned NumLoads = Legal->getNumLoads(); 5954 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5955 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5956 5957 // There is little point in interleaving for reductions containing selects 5958 // and compares when VF=1 since it may just create more overhead than it's 5959 // worth for loops with small trip counts. This is because we still have to 5960 // do the final reduction after the loop. 5961 bool HasSelectCmpReductions = 5962 HasReductions && 5963 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5964 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5965 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5966 RdxDesc.getRecurrenceKind()); 5967 }); 5968 if (HasSelectCmpReductions) { 5969 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5970 return 1; 5971 } 5972 5973 // If we have a scalar reduction (vector reductions are already dealt with 5974 // by this point), we can increase the critical path length if the loop 5975 // we're interleaving is inside another loop. For tree-wise reductions 5976 // set the limit to 2, and for ordered reductions it's best to disable 5977 // interleaving entirely. 5978 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5979 bool HasOrderedReductions = 5980 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5981 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5982 return RdxDesc.isOrdered(); 5983 }); 5984 if (HasOrderedReductions) { 5985 LLVM_DEBUG( 5986 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5987 return 1; 5988 } 5989 5990 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5991 SmallIC = std::min(SmallIC, F); 5992 StoresIC = std::min(StoresIC, F); 5993 LoadsIC = std::min(LoadsIC, F); 5994 } 5995 5996 if (EnableLoadStoreRuntimeInterleave && 5997 std::max(StoresIC, LoadsIC) > SmallIC) { 5998 LLVM_DEBUG( 5999 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6000 return std::max(StoresIC, LoadsIC); 6001 } 6002 6003 // If there are scalar reductions and TTI has enabled aggressive 6004 // interleaving for reductions, we will interleave to expose ILP. 6005 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6006 AggressivelyInterleaveReductions) { 6007 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6008 // Interleave no less than SmallIC but not as aggressive as the normal IC 6009 // to satisfy the rare situation when resources are too limited. 6010 return std::max(IC / 2, SmallIC); 6011 } else { 6012 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6013 return SmallIC; 6014 } 6015 } 6016 6017 // Interleave if this is a large loop (small loops are already dealt with by 6018 // this point) that could benefit from interleaving. 6019 if (AggressivelyInterleaveReductions) { 6020 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6021 return IC; 6022 } 6023 6024 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6025 return 1; 6026 } 6027 6028 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6029 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6030 // This function calculates the register usage by measuring the highest number 6031 // of values that are alive at a single location. Obviously, this is a very 6032 // rough estimation. We scan the loop in a topological order in order and 6033 // assign a number to each instruction. We use RPO to ensure that defs are 6034 // met before their users. We assume that each instruction that has in-loop 6035 // users starts an interval. We record every time that an in-loop value is 6036 // used, so we have a list of the first and last occurrences of each 6037 // instruction. Next, we transpose this data structure into a multi map that 6038 // holds the list of intervals that *end* at a specific location. This multi 6039 // map allows us to perform a linear search. We scan the instructions linearly 6040 // and record each time that a new interval starts, by placing it in a set. 6041 // If we find this value in the multi-map then we remove it from the set. 6042 // The max register usage is the maximum size of the set. 6043 // We also search for instructions that are defined outside the loop, but are 6044 // used inside the loop. We need this number separately from the max-interval 6045 // usage number because when we unroll, loop-invariant values do not take 6046 // more register. 6047 LoopBlocksDFS DFS(TheLoop); 6048 DFS.perform(LI); 6049 6050 RegisterUsage RU; 6051 6052 // Each 'key' in the map opens a new interval. The values 6053 // of the map are the index of the 'last seen' usage of the 6054 // instruction that is the key. 6055 using IntervalMap = DenseMap<Instruction *, unsigned>; 6056 6057 // Maps instruction to its index. 6058 SmallVector<Instruction *, 64> IdxToInstr; 6059 // Marks the end of each interval. 6060 IntervalMap EndPoint; 6061 // Saves the list of instruction indices that are used in the loop. 6062 SmallPtrSet<Instruction *, 8> Ends; 6063 // Saves the list of values that are used in the loop but are 6064 // defined outside the loop, such as arguments and constants. 6065 SmallPtrSet<Value *, 8> LoopInvariants; 6066 6067 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6068 for (Instruction &I : BB->instructionsWithoutDebug()) { 6069 IdxToInstr.push_back(&I); 6070 6071 // Save the end location of each USE. 6072 for (Value *U : I.operands()) { 6073 auto *Instr = dyn_cast<Instruction>(U); 6074 6075 // Ignore non-instruction values such as arguments, constants, etc. 6076 if (!Instr) 6077 continue; 6078 6079 // If this instruction is outside the loop then record it and continue. 6080 if (!TheLoop->contains(Instr)) { 6081 LoopInvariants.insert(Instr); 6082 continue; 6083 } 6084 6085 // Overwrite previous end points. 6086 EndPoint[Instr] = IdxToInstr.size(); 6087 Ends.insert(Instr); 6088 } 6089 } 6090 } 6091 6092 // Saves the list of intervals that end with the index in 'key'. 6093 using InstrList = SmallVector<Instruction *, 2>; 6094 DenseMap<unsigned, InstrList> TransposeEnds; 6095 6096 // Transpose the EndPoints to a list of values that end at each index. 6097 for (auto &Interval : EndPoint) 6098 TransposeEnds[Interval.second].push_back(Interval.first); 6099 6100 SmallPtrSet<Instruction *, 8> OpenIntervals; 6101 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6102 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6103 6104 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6105 6106 // A lambda that gets the register usage for the given type and VF. 6107 const auto &TTICapture = TTI; 6108 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6109 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6110 return 0; 6111 InstructionCost::CostType RegUsage = 6112 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6113 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6114 "Nonsensical values for register usage."); 6115 return RegUsage; 6116 }; 6117 6118 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6119 Instruction *I = IdxToInstr[i]; 6120 6121 // Remove all of the instructions that end at this location. 6122 InstrList &List = TransposeEnds[i]; 6123 for (Instruction *ToRemove : List) 6124 OpenIntervals.erase(ToRemove); 6125 6126 // Ignore instructions that are never used within the loop. 6127 if (!Ends.count(I)) 6128 continue; 6129 6130 // Skip ignored values. 6131 if (ValuesToIgnore.count(I)) 6132 continue; 6133 6134 // For each VF find the maximum usage of registers. 6135 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6136 // Count the number of live intervals. 6137 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6138 6139 if (VFs[j].isScalar()) { 6140 for (auto Inst : OpenIntervals) { 6141 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6142 if (RegUsage.find(ClassID) == RegUsage.end()) 6143 RegUsage[ClassID] = 1; 6144 else 6145 RegUsage[ClassID] += 1; 6146 } 6147 } else { 6148 collectUniformsAndScalars(VFs[j]); 6149 for (auto Inst : OpenIntervals) { 6150 // Skip ignored values for VF > 1. 6151 if (VecValuesToIgnore.count(Inst)) 6152 continue; 6153 if (isScalarAfterVectorization(Inst, VFs[j])) { 6154 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6155 if (RegUsage.find(ClassID) == RegUsage.end()) 6156 RegUsage[ClassID] = 1; 6157 else 6158 RegUsage[ClassID] += 1; 6159 } else { 6160 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6161 if (RegUsage.find(ClassID) == RegUsage.end()) 6162 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6163 else 6164 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6165 } 6166 } 6167 } 6168 6169 for (auto& pair : RegUsage) { 6170 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6171 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6172 else 6173 MaxUsages[j][pair.first] = pair.second; 6174 } 6175 } 6176 6177 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6178 << OpenIntervals.size() << '\n'); 6179 6180 // Add the current instruction to the list of open intervals. 6181 OpenIntervals.insert(I); 6182 } 6183 6184 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6185 SmallMapVector<unsigned, unsigned, 4> Invariant; 6186 6187 for (auto Inst : LoopInvariants) { 6188 unsigned Usage = 6189 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6190 unsigned ClassID = 6191 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6192 if (Invariant.find(ClassID) == Invariant.end()) 6193 Invariant[ClassID] = Usage; 6194 else 6195 Invariant[ClassID] += Usage; 6196 } 6197 6198 LLVM_DEBUG({ 6199 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6200 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6201 << " item\n"; 6202 for (const auto &pair : MaxUsages[i]) { 6203 dbgs() << "LV(REG): RegisterClass: " 6204 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6205 << " registers\n"; 6206 } 6207 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6208 << " item\n"; 6209 for (const auto &pair : Invariant) { 6210 dbgs() << "LV(REG): RegisterClass: " 6211 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6212 << " registers\n"; 6213 } 6214 }); 6215 6216 RU.LoopInvariantRegs = Invariant; 6217 RU.MaxLocalUsers = MaxUsages[i]; 6218 RUs[i] = RU; 6219 } 6220 6221 return RUs; 6222 } 6223 6224 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6225 ElementCount VF) { 6226 // TODO: Cost model for emulated masked load/store is completely 6227 // broken. This hack guides the cost model to use an artificially 6228 // high enough value to practically disable vectorization with such 6229 // operations, except where previously deployed legality hack allowed 6230 // using very low cost values. This is to avoid regressions coming simply 6231 // from moving "masked load/store" check from legality to cost model. 6232 // Masked Load/Gather emulation was previously never allowed. 6233 // Limited number of Masked Store/Scatter emulation was allowed. 6234 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6235 return isa<LoadInst>(I) || 6236 (isa<StoreInst>(I) && 6237 NumPredStores > NumberOfStoresToPredicate); 6238 } 6239 6240 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6241 // If we aren't vectorizing the loop, or if we've already collected the 6242 // instructions to scalarize, there's nothing to do. Collection may already 6243 // have occurred if we have a user-selected VF and are now computing the 6244 // expected cost for interleaving. 6245 if (VF.isScalar() || VF.isZero() || 6246 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6247 return; 6248 6249 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6250 // not profitable to scalarize any instructions, the presence of VF in the 6251 // map will indicate that we've analyzed it already. 6252 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6253 6254 // Find all the instructions that are scalar with predication in the loop and 6255 // determine if it would be better to not if-convert the blocks they are in. 6256 // If so, we also record the instructions to scalarize. 6257 for (BasicBlock *BB : TheLoop->blocks()) { 6258 if (!blockNeedsPredicationForAnyReason(BB)) 6259 continue; 6260 for (Instruction &I : *BB) 6261 if (isScalarWithPredication(&I, VF)) { 6262 ScalarCostsTy ScalarCosts; 6263 // Do not apply discount if scalable, because that would lead to 6264 // invalid scalarization costs. 6265 // Do not apply discount logic if hacked cost is needed 6266 // for emulated masked memrefs. 6267 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6268 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6269 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6270 // Remember that BB will remain after vectorization. 6271 PredicatedBBsAfterVectorization.insert(BB); 6272 } 6273 } 6274 } 6275 6276 int LoopVectorizationCostModel::computePredInstDiscount( 6277 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6278 assert(!isUniformAfterVectorization(PredInst, VF) && 6279 "Instruction marked uniform-after-vectorization will be predicated"); 6280 6281 // Initialize the discount to zero, meaning that the scalar version and the 6282 // vector version cost the same. 6283 InstructionCost Discount = 0; 6284 6285 // Holds instructions to analyze. The instructions we visit are mapped in 6286 // ScalarCosts. Those instructions are the ones that would be scalarized if 6287 // we find that the scalar version costs less. 6288 SmallVector<Instruction *, 8> Worklist; 6289 6290 // Returns true if the given instruction can be scalarized. 6291 auto canBeScalarized = [&](Instruction *I) -> bool { 6292 // We only attempt to scalarize instructions forming a single-use chain 6293 // from the original predicated block that would otherwise be vectorized. 6294 // Although not strictly necessary, we give up on instructions we know will 6295 // already be scalar to avoid traversing chains that are unlikely to be 6296 // beneficial. 6297 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6298 isScalarAfterVectorization(I, VF)) 6299 return false; 6300 6301 // If the instruction is scalar with predication, it will be analyzed 6302 // separately. We ignore it within the context of PredInst. 6303 if (isScalarWithPredication(I, VF)) 6304 return false; 6305 6306 // If any of the instruction's operands are uniform after vectorization, 6307 // the instruction cannot be scalarized. This prevents, for example, a 6308 // masked load from being scalarized. 6309 // 6310 // We assume we will only emit a value for lane zero of an instruction 6311 // marked uniform after vectorization, rather than VF identical values. 6312 // Thus, if we scalarize an instruction that uses a uniform, we would 6313 // create uses of values corresponding to the lanes we aren't emitting code 6314 // for. This behavior can be changed by allowing getScalarValue to clone 6315 // the lane zero values for uniforms rather than asserting. 6316 for (Use &U : I->operands()) 6317 if (auto *J = dyn_cast<Instruction>(U.get())) 6318 if (isUniformAfterVectorization(J, VF)) 6319 return false; 6320 6321 // Otherwise, we can scalarize the instruction. 6322 return true; 6323 }; 6324 6325 // Compute the expected cost discount from scalarizing the entire expression 6326 // feeding the predicated instruction. We currently only consider expressions 6327 // that are single-use instruction chains. 6328 Worklist.push_back(PredInst); 6329 while (!Worklist.empty()) { 6330 Instruction *I = Worklist.pop_back_val(); 6331 6332 // If we've already analyzed the instruction, there's nothing to do. 6333 if (ScalarCosts.find(I) != ScalarCosts.end()) 6334 continue; 6335 6336 // Compute the cost of the vector instruction. Note that this cost already 6337 // includes the scalarization overhead of the predicated instruction. 6338 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6339 6340 // Compute the cost of the scalarized instruction. This cost is the cost of 6341 // the instruction as if it wasn't if-converted and instead remained in the 6342 // predicated block. We will scale this cost by block probability after 6343 // computing the scalarization overhead. 6344 InstructionCost ScalarCost = 6345 VF.getFixedValue() * 6346 getInstructionCost(I, ElementCount::getFixed(1)).first; 6347 6348 // Compute the scalarization overhead of needed insertelement instructions 6349 // and phi nodes. 6350 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6351 ScalarCost += TTI.getScalarizationOverhead( 6352 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6353 APInt::getAllOnes(VF.getFixedValue()), true, false); 6354 ScalarCost += 6355 VF.getFixedValue() * 6356 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6357 } 6358 6359 // Compute the scalarization overhead of needed extractelement 6360 // instructions. For each of the instruction's operands, if the operand can 6361 // be scalarized, add it to the worklist; otherwise, account for the 6362 // overhead. 6363 for (Use &U : I->operands()) 6364 if (auto *J = dyn_cast<Instruction>(U.get())) { 6365 assert(VectorType::isValidElementType(J->getType()) && 6366 "Instruction has non-scalar type"); 6367 if (canBeScalarized(J)) 6368 Worklist.push_back(J); 6369 else if (needsExtract(J, VF)) { 6370 ScalarCost += TTI.getScalarizationOverhead( 6371 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6372 APInt::getAllOnes(VF.getFixedValue()), false, true); 6373 } 6374 } 6375 6376 // Scale the total scalar cost by block probability. 6377 ScalarCost /= getReciprocalPredBlockProb(); 6378 6379 // Compute the discount. A non-negative discount means the vector version 6380 // of the instruction costs more, and scalarizing would be beneficial. 6381 Discount += VectorCost - ScalarCost; 6382 ScalarCosts[I] = ScalarCost; 6383 } 6384 6385 return *Discount.getValue(); 6386 } 6387 6388 LoopVectorizationCostModel::VectorizationCostTy 6389 LoopVectorizationCostModel::expectedCost( 6390 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6391 VectorizationCostTy Cost; 6392 6393 // For each block. 6394 for (BasicBlock *BB : TheLoop->blocks()) { 6395 VectorizationCostTy BlockCost; 6396 6397 // For each instruction in the old loop. 6398 for (Instruction &I : BB->instructionsWithoutDebug()) { 6399 // Skip ignored values. 6400 if (ValuesToIgnore.count(&I) || 6401 (VF.isVector() && VecValuesToIgnore.count(&I))) 6402 continue; 6403 6404 VectorizationCostTy C = getInstructionCost(&I, VF); 6405 6406 // Check if we should override the cost. 6407 if (C.first.isValid() && 6408 ForceTargetInstructionCost.getNumOccurrences() > 0) 6409 C.first = InstructionCost(ForceTargetInstructionCost); 6410 6411 // Keep a list of instructions with invalid costs. 6412 if (Invalid && !C.first.isValid()) 6413 Invalid->emplace_back(&I, VF); 6414 6415 BlockCost.first += C.first; 6416 BlockCost.second |= C.second; 6417 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6418 << " for VF " << VF << " For instruction: " << I 6419 << '\n'); 6420 } 6421 6422 // If we are vectorizing a predicated block, it will have been 6423 // if-converted. This means that the block's instructions (aside from 6424 // stores and instructions that may divide by zero) will now be 6425 // unconditionally executed. For the scalar case, we may not always execute 6426 // the predicated block, if it is an if-else block. Thus, scale the block's 6427 // cost by the probability of executing it. blockNeedsPredication from 6428 // Legal is used so as to not include all blocks in tail folded loops. 6429 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6430 BlockCost.first /= getReciprocalPredBlockProb(); 6431 6432 Cost.first += BlockCost.first; 6433 Cost.second |= BlockCost.second; 6434 } 6435 6436 return Cost; 6437 } 6438 6439 /// Gets Address Access SCEV after verifying that the access pattern 6440 /// is loop invariant except the induction variable dependence. 6441 /// 6442 /// This SCEV can be sent to the Target in order to estimate the address 6443 /// calculation cost. 6444 static const SCEV *getAddressAccessSCEV( 6445 Value *Ptr, 6446 LoopVectorizationLegality *Legal, 6447 PredicatedScalarEvolution &PSE, 6448 const Loop *TheLoop) { 6449 6450 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6451 if (!Gep) 6452 return nullptr; 6453 6454 // We are looking for a gep with all loop invariant indices except for one 6455 // which should be an induction variable. 6456 auto SE = PSE.getSE(); 6457 unsigned NumOperands = Gep->getNumOperands(); 6458 for (unsigned i = 1; i < NumOperands; ++i) { 6459 Value *Opd = Gep->getOperand(i); 6460 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6461 !Legal->isInductionVariable(Opd)) 6462 return nullptr; 6463 } 6464 6465 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6466 return PSE.getSCEV(Ptr); 6467 } 6468 6469 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6470 return Legal->hasStride(I->getOperand(0)) || 6471 Legal->hasStride(I->getOperand(1)); 6472 } 6473 6474 InstructionCost 6475 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6476 ElementCount VF) { 6477 assert(VF.isVector() && 6478 "Scalarization cost of instruction implies vectorization."); 6479 if (VF.isScalable()) 6480 return InstructionCost::getInvalid(); 6481 6482 Type *ValTy = getLoadStoreType(I); 6483 auto SE = PSE.getSE(); 6484 6485 unsigned AS = getLoadStoreAddressSpace(I); 6486 Value *Ptr = getLoadStorePointerOperand(I); 6487 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6488 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6489 // that it is being called from this specific place. 6490 6491 // Figure out whether the access is strided and get the stride value 6492 // if it's known in compile time 6493 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6494 6495 // Get the cost of the scalar memory instruction and address computation. 6496 InstructionCost Cost = 6497 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6498 6499 // Don't pass *I here, since it is scalar but will actually be part of a 6500 // vectorized loop where the user of it is a vectorized instruction. 6501 const Align Alignment = getLoadStoreAlignment(I); 6502 Cost += VF.getKnownMinValue() * 6503 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6504 AS, TTI::TCK_RecipThroughput); 6505 6506 // Get the overhead of the extractelement and insertelement instructions 6507 // we might create due to scalarization. 6508 Cost += getScalarizationOverhead(I, VF); 6509 6510 // If we have a predicated load/store, it will need extra i1 extracts and 6511 // conditional branches, but may not be executed for each vector lane. Scale 6512 // the cost by the probability of executing the predicated block. 6513 if (isPredicatedInst(I, VF)) { 6514 Cost /= getReciprocalPredBlockProb(); 6515 6516 // Add the cost of an i1 extract and a branch 6517 auto *Vec_i1Ty = 6518 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6519 Cost += TTI.getScalarizationOverhead( 6520 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6521 /*Insert=*/false, /*Extract=*/true); 6522 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6523 6524 if (useEmulatedMaskMemRefHack(I, VF)) 6525 // Artificially setting to a high enough value to practically disable 6526 // vectorization with such operations. 6527 Cost = 3000000; 6528 } 6529 6530 return Cost; 6531 } 6532 6533 InstructionCost 6534 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6535 ElementCount VF) { 6536 Type *ValTy = getLoadStoreType(I); 6537 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6538 Value *Ptr = getLoadStorePointerOperand(I); 6539 unsigned AS = getLoadStoreAddressSpace(I); 6540 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6541 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6542 6543 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6544 "Stride should be 1 or -1 for consecutive memory access"); 6545 const Align Alignment = getLoadStoreAlignment(I); 6546 InstructionCost Cost = 0; 6547 if (Legal->isMaskRequired(I)) 6548 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6549 CostKind); 6550 else 6551 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6552 CostKind, I); 6553 6554 bool Reverse = ConsecutiveStride < 0; 6555 if (Reverse) 6556 Cost += 6557 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6558 return Cost; 6559 } 6560 6561 InstructionCost 6562 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6563 ElementCount VF) { 6564 assert(Legal->isUniformMemOp(*I)); 6565 6566 Type *ValTy = getLoadStoreType(I); 6567 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6568 const Align Alignment = getLoadStoreAlignment(I); 6569 unsigned AS = getLoadStoreAddressSpace(I); 6570 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6571 if (isa<LoadInst>(I)) { 6572 return TTI.getAddressComputationCost(ValTy) + 6573 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6574 CostKind) + 6575 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6576 } 6577 StoreInst *SI = cast<StoreInst>(I); 6578 6579 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6580 return TTI.getAddressComputationCost(ValTy) + 6581 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6582 CostKind) + 6583 (isLoopInvariantStoreValue 6584 ? 0 6585 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6586 VF.getKnownMinValue() - 1)); 6587 } 6588 6589 InstructionCost 6590 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6591 ElementCount VF) { 6592 Type *ValTy = getLoadStoreType(I); 6593 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6594 const Align Alignment = getLoadStoreAlignment(I); 6595 const Value *Ptr = getLoadStorePointerOperand(I); 6596 6597 return TTI.getAddressComputationCost(VectorTy) + 6598 TTI.getGatherScatterOpCost( 6599 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6600 TargetTransformInfo::TCK_RecipThroughput, I); 6601 } 6602 6603 InstructionCost 6604 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6605 ElementCount VF) { 6606 // TODO: Once we have support for interleaving with scalable vectors 6607 // we can calculate the cost properly here. 6608 if (VF.isScalable()) 6609 return InstructionCost::getInvalid(); 6610 6611 Type *ValTy = getLoadStoreType(I); 6612 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6613 unsigned AS = getLoadStoreAddressSpace(I); 6614 6615 auto Group = getInterleavedAccessGroup(I); 6616 assert(Group && "Fail to get an interleaved access group."); 6617 6618 unsigned InterleaveFactor = Group->getFactor(); 6619 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6620 6621 // Holds the indices of existing members in the interleaved group. 6622 SmallVector<unsigned, 4> Indices; 6623 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6624 if (Group->getMember(IF)) 6625 Indices.push_back(IF); 6626 6627 // Calculate the cost of the whole interleaved group. 6628 bool UseMaskForGaps = 6629 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6630 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6631 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6632 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6633 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6634 6635 if (Group->isReverse()) { 6636 // TODO: Add support for reversed masked interleaved access. 6637 assert(!Legal->isMaskRequired(I) && 6638 "Reverse masked interleaved access not supported."); 6639 Cost += 6640 Group->getNumMembers() * 6641 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6642 } 6643 return Cost; 6644 } 6645 6646 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6647 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6648 using namespace llvm::PatternMatch; 6649 // Early exit for no inloop reductions 6650 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6651 return None; 6652 auto *VectorTy = cast<VectorType>(Ty); 6653 6654 // We are looking for a pattern of, and finding the minimal acceptable cost: 6655 // reduce(mul(ext(A), ext(B))) or 6656 // reduce(mul(A, B)) or 6657 // reduce(ext(A)) or 6658 // reduce(A). 6659 // The basic idea is that we walk down the tree to do that, finding the root 6660 // reduction instruction in InLoopReductionImmediateChains. From there we find 6661 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6662 // of the components. If the reduction cost is lower then we return it for the 6663 // reduction instruction and 0 for the other instructions in the pattern. If 6664 // it is not we return an invalid cost specifying the orignal cost method 6665 // should be used. 6666 Instruction *RetI = I; 6667 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6668 if (!RetI->hasOneUser()) 6669 return None; 6670 RetI = RetI->user_back(); 6671 } 6672 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6673 RetI->user_back()->getOpcode() == Instruction::Add) { 6674 if (!RetI->hasOneUser()) 6675 return None; 6676 RetI = RetI->user_back(); 6677 } 6678 6679 // Test if the found instruction is a reduction, and if not return an invalid 6680 // cost specifying the parent to use the original cost modelling. 6681 if (!InLoopReductionImmediateChains.count(RetI)) 6682 return None; 6683 6684 // Find the reduction this chain is a part of and calculate the basic cost of 6685 // the reduction on its own. 6686 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6687 Instruction *ReductionPhi = LastChain; 6688 while (!isa<PHINode>(ReductionPhi)) 6689 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6690 6691 const RecurrenceDescriptor &RdxDesc = 6692 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6693 6694 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6695 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6696 6697 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6698 // normal fmul instruction to the cost of the fadd reduction. 6699 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6700 BaseCost += 6701 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6702 6703 // If we're using ordered reductions then we can just return the base cost 6704 // here, since getArithmeticReductionCost calculates the full ordered 6705 // reduction cost when FP reassociation is not allowed. 6706 if (useOrderedReductions(RdxDesc)) 6707 return BaseCost; 6708 6709 // Get the operand that was not the reduction chain and match it to one of the 6710 // patterns, returning the better cost if it is found. 6711 Instruction *RedOp = RetI->getOperand(1) == LastChain 6712 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6713 : dyn_cast<Instruction>(RetI->getOperand(1)); 6714 6715 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6716 6717 Instruction *Op0, *Op1; 6718 if (RedOp && 6719 match(RedOp, 6720 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6721 match(Op0, m_ZExtOrSExt(m_Value())) && 6722 Op0->getOpcode() == Op1->getOpcode() && 6723 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6724 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6725 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6726 6727 // Matched reduce(ext(mul(ext(A), ext(B))) 6728 // Note that the extend opcodes need to all match, or if A==B they will have 6729 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6730 // which is equally fine. 6731 bool IsUnsigned = isa<ZExtInst>(Op0); 6732 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6733 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6734 6735 InstructionCost ExtCost = 6736 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6737 TTI::CastContextHint::None, CostKind, Op0); 6738 InstructionCost MulCost = 6739 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6740 InstructionCost Ext2Cost = 6741 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6742 TTI::CastContextHint::None, CostKind, RedOp); 6743 6744 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6745 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6746 CostKind); 6747 6748 if (RedCost.isValid() && 6749 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6750 return I == RetI ? RedCost : 0; 6751 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6752 !TheLoop->isLoopInvariant(RedOp)) { 6753 // Matched reduce(ext(A)) 6754 bool IsUnsigned = isa<ZExtInst>(RedOp); 6755 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6756 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6757 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6758 CostKind); 6759 6760 InstructionCost ExtCost = 6761 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6762 TTI::CastContextHint::None, CostKind, RedOp); 6763 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6764 return I == RetI ? RedCost : 0; 6765 } else if (RedOp && 6766 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6767 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6768 Op0->getOpcode() == Op1->getOpcode() && 6769 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6770 bool IsUnsigned = isa<ZExtInst>(Op0); 6771 Type *Op0Ty = Op0->getOperand(0)->getType(); 6772 Type *Op1Ty = Op1->getOperand(0)->getType(); 6773 Type *LargestOpTy = 6774 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6775 : Op0Ty; 6776 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6777 6778 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6779 // different sizes. We take the largest type as the ext to reduce, and add 6780 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6781 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6782 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6783 TTI::CastContextHint::None, CostKind, Op0); 6784 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6785 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6786 TTI::CastContextHint::None, CostKind, Op1); 6787 InstructionCost MulCost = 6788 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6789 6790 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6791 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6792 CostKind); 6793 InstructionCost ExtraExtCost = 0; 6794 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6795 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6796 ExtraExtCost = TTI.getCastInstrCost( 6797 ExtraExtOp->getOpcode(), ExtType, 6798 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6799 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6800 } 6801 6802 if (RedCost.isValid() && 6803 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6804 return I == RetI ? RedCost : 0; 6805 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6806 // Matched reduce(mul()) 6807 InstructionCost MulCost = 6808 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6809 6810 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6811 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6812 CostKind); 6813 6814 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6815 return I == RetI ? RedCost : 0; 6816 } 6817 } 6818 6819 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6820 } 6821 6822 InstructionCost 6823 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6824 ElementCount VF) { 6825 // Calculate scalar cost only. Vectorization cost should be ready at this 6826 // moment. 6827 if (VF.isScalar()) { 6828 Type *ValTy = getLoadStoreType(I); 6829 const Align Alignment = getLoadStoreAlignment(I); 6830 unsigned AS = getLoadStoreAddressSpace(I); 6831 6832 return TTI.getAddressComputationCost(ValTy) + 6833 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6834 TTI::TCK_RecipThroughput, I); 6835 } 6836 return getWideningCost(I, VF); 6837 } 6838 6839 LoopVectorizationCostModel::VectorizationCostTy 6840 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6841 ElementCount VF) { 6842 // If we know that this instruction will remain uniform, check the cost of 6843 // the scalar version. 6844 if (isUniformAfterVectorization(I, VF)) 6845 VF = ElementCount::getFixed(1); 6846 6847 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6848 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6849 6850 // Forced scalars do not have any scalarization overhead. 6851 auto ForcedScalar = ForcedScalars.find(VF); 6852 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6853 auto InstSet = ForcedScalar->second; 6854 if (InstSet.count(I)) 6855 return VectorizationCostTy( 6856 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6857 VF.getKnownMinValue()), 6858 false); 6859 } 6860 6861 Type *VectorTy; 6862 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6863 6864 bool TypeNotScalarized = false; 6865 if (VF.isVector() && VectorTy->isVectorTy()) { 6866 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6867 if (NumParts) 6868 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6869 else 6870 C = InstructionCost::getInvalid(); 6871 } 6872 return VectorizationCostTy(C, TypeNotScalarized); 6873 } 6874 6875 InstructionCost 6876 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6877 ElementCount VF) const { 6878 6879 // There is no mechanism yet to create a scalable scalarization loop, 6880 // so this is currently Invalid. 6881 if (VF.isScalable()) 6882 return InstructionCost::getInvalid(); 6883 6884 if (VF.isScalar()) 6885 return 0; 6886 6887 InstructionCost Cost = 0; 6888 Type *RetTy = ToVectorTy(I->getType(), VF); 6889 if (!RetTy->isVoidTy() && 6890 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6891 Cost += TTI.getScalarizationOverhead( 6892 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6893 false); 6894 6895 // Some targets keep addresses scalar. 6896 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6897 return Cost; 6898 6899 // Some targets support efficient element stores. 6900 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6901 return Cost; 6902 6903 // Collect operands to consider. 6904 CallInst *CI = dyn_cast<CallInst>(I); 6905 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6906 6907 // Skip operands that do not require extraction/scalarization and do not incur 6908 // any overhead. 6909 SmallVector<Type *> Tys; 6910 for (auto *V : filterExtractingOperands(Ops, VF)) 6911 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6912 return Cost + TTI.getOperandsScalarizationOverhead( 6913 filterExtractingOperands(Ops, VF), Tys); 6914 } 6915 6916 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6917 if (VF.isScalar()) 6918 return; 6919 NumPredStores = 0; 6920 for (BasicBlock *BB : TheLoop->blocks()) { 6921 // For each instruction in the old loop. 6922 for (Instruction &I : *BB) { 6923 Value *Ptr = getLoadStorePointerOperand(&I); 6924 if (!Ptr) 6925 continue; 6926 6927 // TODO: We should generate better code and update the cost model for 6928 // predicated uniform stores. Today they are treated as any other 6929 // predicated store (see added test cases in 6930 // invariant-store-vectorization.ll). 6931 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6932 NumPredStores++; 6933 6934 if (Legal->isUniformMemOp(I)) { 6935 // TODO: Avoid replicating loads and stores instead of 6936 // relying on instcombine to remove them. 6937 // Load: Scalar load + broadcast 6938 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6939 InstructionCost Cost; 6940 if (isa<StoreInst>(&I) && VF.isScalable() && 6941 isLegalGatherOrScatter(&I, VF)) { 6942 Cost = getGatherScatterCost(&I, VF); 6943 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6944 } else { 6945 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6946 "Cannot yet scalarize uniform stores"); 6947 Cost = getUniformMemOpCost(&I, VF); 6948 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6949 } 6950 continue; 6951 } 6952 6953 // We assume that widening is the best solution when possible. 6954 if (memoryInstructionCanBeWidened(&I, VF)) { 6955 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6956 int ConsecutiveStride = Legal->isConsecutivePtr( 6957 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6958 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6959 "Expected consecutive stride."); 6960 InstWidening Decision = 6961 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6962 setWideningDecision(&I, VF, Decision, Cost); 6963 continue; 6964 } 6965 6966 // Choose between Interleaving, Gather/Scatter or Scalarization. 6967 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6968 unsigned NumAccesses = 1; 6969 if (isAccessInterleaved(&I)) { 6970 auto Group = getInterleavedAccessGroup(&I); 6971 assert(Group && "Fail to get an interleaved access group."); 6972 6973 // Make one decision for the whole group. 6974 if (getWideningDecision(&I, VF) != CM_Unknown) 6975 continue; 6976 6977 NumAccesses = Group->getNumMembers(); 6978 if (interleavedAccessCanBeWidened(&I, VF)) 6979 InterleaveCost = getInterleaveGroupCost(&I, VF); 6980 } 6981 6982 InstructionCost GatherScatterCost = 6983 isLegalGatherOrScatter(&I, VF) 6984 ? getGatherScatterCost(&I, VF) * NumAccesses 6985 : InstructionCost::getInvalid(); 6986 6987 InstructionCost ScalarizationCost = 6988 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6989 6990 // Choose better solution for the current VF, 6991 // write down this decision and use it during vectorization. 6992 InstructionCost Cost; 6993 InstWidening Decision; 6994 if (InterleaveCost <= GatherScatterCost && 6995 InterleaveCost < ScalarizationCost) { 6996 Decision = CM_Interleave; 6997 Cost = InterleaveCost; 6998 } else if (GatherScatterCost < ScalarizationCost) { 6999 Decision = CM_GatherScatter; 7000 Cost = GatherScatterCost; 7001 } else { 7002 Decision = CM_Scalarize; 7003 Cost = ScalarizationCost; 7004 } 7005 // If the instructions belongs to an interleave group, the whole group 7006 // receives the same decision. The whole group receives the cost, but 7007 // the cost will actually be assigned to one instruction. 7008 if (auto Group = getInterleavedAccessGroup(&I)) 7009 setWideningDecision(Group, VF, Decision, Cost); 7010 else 7011 setWideningDecision(&I, VF, Decision, Cost); 7012 } 7013 } 7014 7015 // Make sure that any load of address and any other address computation 7016 // remains scalar unless there is gather/scatter support. This avoids 7017 // inevitable extracts into address registers, and also has the benefit of 7018 // activating LSR more, since that pass can't optimize vectorized 7019 // addresses. 7020 if (TTI.prefersVectorizedAddressing()) 7021 return; 7022 7023 // Start with all scalar pointer uses. 7024 SmallPtrSet<Instruction *, 8> AddrDefs; 7025 for (BasicBlock *BB : TheLoop->blocks()) 7026 for (Instruction &I : *BB) { 7027 Instruction *PtrDef = 7028 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7029 if (PtrDef && TheLoop->contains(PtrDef) && 7030 getWideningDecision(&I, VF) != CM_GatherScatter) 7031 AddrDefs.insert(PtrDef); 7032 } 7033 7034 // Add all instructions used to generate the addresses. 7035 SmallVector<Instruction *, 4> Worklist; 7036 append_range(Worklist, AddrDefs); 7037 while (!Worklist.empty()) { 7038 Instruction *I = Worklist.pop_back_val(); 7039 for (auto &Op : I->operands()) 7040 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7041 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7042 AddrDefs.insert(InstOp).second) 7043 Worklist.push_back(InstOp); 7044 } 7045 7046 for (auto *I : AddrDefs) { 7047 if (isa<LoadInst>(I)) { 7048 // Setting the desired widening decision should ideally be handled in 7049 // by cost functions, but since this involves the task of finding out 7050 // if the loaded register is involved in an address computation, it is 7051 // instead changed here when we know this is the case. 7052 InstWidening Decision = getWideningDecision(I, VF); 7053 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7054 // Scalarize a widened load of address. 7055 setWideningDecision( 7056 I, VF, CM_Scalarize, 7057 (VF.getKnownMinValue() * 7058 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7059 else if (auto Group = getInterleavedAccessGroup(I)) { 7060 // Scalarize an interleave group of address loads. 7061 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7062 if (Instruction *Member = Group->getMember(I)) 7063 setWideningDecision( 7064 Member, VF, CM_Scalarize, 7065 (VF.getKnownMinValue() * 7066 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7067 } 7068 } 7069 } else 7070 // Make sure I gets scalarized and a cost estimate without 7071 // scalarization overhead. 7072 ForcedScalars[VF].insert(I); 7073 } 7074 } 7075 7076 InstructionCost 7077 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7078 Type *&VectorTy) { 7079 Type *RetTy = I->getType(); 7080 if (canTruncateToMinimalBitwidth(I, VF)) 7081 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7082 auto SE = PSE.getSE(); 7083 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7084 7085 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7086 ElementCount VF) -> bool { 7087 if (VF.isScalar()) 7088 return true; 7089 7090 auto Scalarized = InstsToScalarize.find(VF); 7091 assert(Scalarized != InstsToScalarize.end() && 7092 "VF not yet analyzed for scalarization profitability"); 7093 return !Scalarized->second.count(I) && 7094 llvm::all_of(I->users(), [&](User *U) { 7095 auto *UI = cast<Instruction>(U); 7096 return !Scalarized->second.count(UI); 7097 }); 7098 }; 7099 (void) hasSingleCopyAfterVectorization; 7100 7101 if (isScalarAfterVectorization(I, VF)) { 7102 // With the exception of GEPs and PHIs, after scalarization there should 7103 // only be one copy of the instruction generated in the loop. This is 7104 // because the VF is either 1, or any instructions that need scalarizing 7105 // have already been dealt with by the the time we get here. As a result, 7106 // it means we don't have to multiply the instruction cost by VF. 7107 assert(I->getOpcode() == Instruction::GetElementPtr || 7108 I->getOpcode() == Instruction::PHI || 7109 (I->getOpcode() == Instruction::BitCast && 7110 I->getType()->isPointerTy()) || 7111 hasSingleCopyAfterVectorization(I, VF)); 7112 VectorTy = RetTy; 7113 } else 7114 VectorTy = ToVectorTy(RetTy, VF); 7115 7116 // TODO: We need to estimate the cost of intrinsic calls. 7117 switch (I->getOpcode()) { 7118 case Instruction::GetElementPtr: 7119 // We mark this instruction as zero-cost because the cost of GEPs in 7120 // vectorized code depends on whether the corresponding memory instruction 7121 // is scalarized or not. Therefore, we handle GEPs with the memory 7122 // instruction cost. 7123 return 0; 7124 case Instruction::Br: { 7125 // In cases of scalarized and predicated instructions, there will be VF 7126 // predicated blocks in the vectorized loop. Each branch around these 7127 // blocks requires also an extract of its vector compare i1 element. 7128 bool ScalarPredicatedBB = false; 7129 BranchInst *BI = cast<BranchInst>(I); 7130 if (VF.isVector() && BI->isConditional() && 7131 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7132 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7133 ScalarPredicatedBB = true; 7134 7135 if (ScalarPredicatedBB) { 7136 // Not possible to scalarize scalable vector with predicated instructions. 7137 if (VF.isScalable()) 7138 return InstructionCost::getInvalid(); 7139 // Return cost for branches around scalarized and predicated blocks. 7140 auto *Vec_i1Ty = 7141 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7142 return ( 7143 TTI.getScalarizationOverhead( 7144 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7145 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7146 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7147 // The back-edge branch will remain, as will all scalar branches. 7148 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7149 else 7150 // This branch will be eliminated by if-conversion. 7151 return 0; 7152 // Note: We currently assume zero cost for an unconditional branch inside 7153 // a predicated block since it will become a fall-through, although we 7154 // may decide in the future to call TTI for all branches. 7155 } 7156 case Instruction::PHI: { 7157 auto *Phi = cast<PHINode>(I); 7158 7159 // First-order recurrences are replaced by vector shuffles inside the loop. 7160 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7161 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7162 return TTI.getShuffleCost( 7163 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7164 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7165 7166 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7167 // converted into select instructions. We require N - 1 selects per phi 7168 // node, where N is the number of incoming values. 7169 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7170 return (Phi->getNumIncomingValues() - 1) * 7171 TTI.getCmpSelInstrCost( 7172 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7173 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7174 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7175 7176 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7177 } 7178 case Instruction::UDiv: 7179 case Instruction::SDiv: 7180 case Instruction::URem: 7181 case Instruction::SRem: 7182 // If we have a predicated instruction, it may not be executed for each 7183 // vector lane. Get the scalarization cost and scale this amount by the 7184 // probability of executing the predicated block. If the instruction is not 7185 // predicated, we fall through to the next case. 7186 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7187 InstructionCost Cost = 0; 7188 7189 // These instructions have a non-void type, so account for the phi nodes 7190 // that we will create. This cost is likely to be zero. The phi node 7191 // cost, if any, should be scaled by the block probability because it 7192 // models a copy at the end of each predicated block. 7193 Cost += VF.getKnownMinValue() * 7194 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7195 7196 // The cost of the non-predicated instruction. 7197 Cost += VF.getKnownMinValue() * 7198 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7199 7200 // The cost of insertelement and extractelement instructions needed for 7201 // scalarization. 7202 Cost += getScalarizationOverhead(I, VF); 7203 7204 // Scale the cost by the probability of executing the predicated blocks. 7205 // This assumes the predicated block for each vector lane is equally 7206 // likely. 7207 return Cost / getReciprocalPredBlockProb(); 7208 } 7209 LLVM_FALLTHROUGH; 7210 case Instruction::Add: 7211 case Instruction::FAdd: 7212 case Instruction::Sub: 7213 case Instruction::FSub: 7214 case Instruction::Mul: 7215 case Instruction::FMul: 7216 case Instruction::FDiv: 7217 case Instruction::FRem: 7218 case Instruction::Shl: 7219 case Instruction::LShr: 7220 case Instruction::AShr: 7221 case Instruction::And: 7222 case Instruction::Or: 7223 case Instruction::Xor: { 7224 // Since we will replace the stride by 1 the multiplication should go away. 7225 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7226 return 0; 7227 7228 // Detect reduction patterns 7229 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7230 return *RedCost; 7231 7232 // Certain instructions can be cheaper to vectorize if they have a constant 7233 // second vector operand. One example of this are shifts on x86. 7234 Value *Op2 = I->getOperand(1); 7235 TargetTransformInfo::OperandValueProperties Op2VP; 7236 TargetTransformInfo::OperandValueKind Op2VK = 7237 TTI.getOperandInfo(Op2, Op2VP); 7238 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7239 Op2VK = TargetTransformInfo::OK_UniformValue; 7240 7241 SmallVector<const Value *, 4> Operands(I->operand_values()); 7242 return TTI.getArithmeticInstrCost( 7243 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7244 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7245 } 7246 case Instruction::FNeg: { 7247 return TTI.getArithmeticInstrCost( 7248 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7249 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7250 TargetTransformInfo::OP_None, I->getOperand(0), I); 7251 } 7252 case Instruction::Select: { 7253 SelectInst *SI = cast<SelectInst>(I); 7254 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7255 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7256 7257 const Value *Op0, *Op1; 7258 using namespace llvm::PatternMatch; 7259 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7260 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7261 // select x, y, false --> x & y 7262 // select x, true, y --> x | y 7263 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7264 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7265 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7266 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7267 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7268 Op1->getType()->getScalarSizeInBits() == 1); 7269 7270 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7271 return TTI.getArithmeticInstrCost( 7272 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7273 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7274 } 7275 7276 Type *CondTy = SI->getCondition()->getType(); 7277 if (!ScalarCond) 7278 CondTy = VectorType::get(CondTy, VF); 7279 7280 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7281 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7282 Pred = Cmp->getPredicate(); 7283 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7284 CostKind, I); 7285 } 7286 case Instruction::ICmp: 7287 case Instruction::FCmp: { 7288 Type *ValTy = I->getOperand(0)->getType(); 7289 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7290 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7291 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7292 VectorTy = ToVectorTy(ValTy, VF); 7293 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7294 cast<CmpInst>(I)->getPredicate(), CostKind, 7295 I); 7296 } 7297 case Instruction::Store: 7298 case Instruction::Load: { 7299 ElementCount Width = VF; 7300 if (Width.isVector()) { 7301 InstWidening Decision = getWideningDecision(I, Width); 7302 assert(Decision != CM_Unknown && 7303 "CM decision should be taken at this point"); 7304 if (Decision == CM_Scalarize) 7305 Width = ElementCount::getFixed(1); 7306 } 7307 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7308 return getMemoryInstructionCost(I, VF); 7309 } 7310 case Instruction::BitCast: 7311 if (I->getType()->isPointerTy()) 7312 return 0; 7313 LLVM_FALLTHROUGH; 7314 case Instruction::ZExt: 7315 case Instruction::SExt: 7316 case Instruction::FPToUI: 7317 case Instruction::FPToSI: 7318 case Instruction::FPExt: 7319 case Instruction::PtrToInt: 7320 case Instruction::IntToPtr: 7321 case Instruction::SIToFP: 7322 case Instruction::UIToFP: 7323 case Instruction::Trunc: 7324 case Instruction::FPTrunc: { 7325 // Computes the CastContextHint from a Load/Store instruction. 7326 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7327 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7328 "Expected a load or a store!"); 7329 7330 if (VF.isScalar() || !TheLoop->contains(I)) 7331 return TTI::CastContextHint::Normal; 7332 7333 switch (getWideningDecision(I, VF)) { 7334 case LoopVectorizationCostModel::CM_GatherScatter: 7335 return TTI::CastContextHint::GatherScatter; 7336 case LoopVectorizationCostModel::CM_Interleave: 7337 return TTI::CastContextHint::Interleave; 7338 case LoopVectorizationCostModel::CM_Scalarize: 7339 case LoopVectorizationCostModel::CM_Widen: 7340 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7341 : TTI::CastContextHint::Normal; 7342 case LoopVectorizationCostModel::CM_Widen_Reverse: 7343 return TTI::CastContextHint::Reversed; 7344 case LoopVectorizationCostModel::CM_Unknown: 7345 llvm_unreachable("Instr did not go through cost modelling?"); 7346 } 7347 7348 llvm_unreachable("Unhandled case!"); 7349 }; 7350 7351 unsigned Opcode = I->getOpcode(); 7352 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7353 // For Trunc, the context is the only user, which must be a StoreInst. 7354 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7355 if (I->hasOneUse()) 7356 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7357 CCH = ComputeCCH(Store); 7358 } 7359 // For Z/Sext, the context is the operand, which must be a LoadInst. 7360 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7361 Opcode == Instruction::FPExt) { 7362 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7363 CCH = ComputeCCH(Load); 7364 } 7365 7366 // We optimize the truncation of induction variables having constant 7367 // integer steps. The cost of these truncations is the same as the scalar 7368 // operation. 7369 if (isOptimizableIVTruncate(I, VF)) { 7370 auto *Trunc = cast<TruncInst>(I); 7371 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7372 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7373 } 7374 7375 // Detect reduction patterns 7376 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7377 return *RedCost; 7378 7379 Type *SrcScalarTy = I->getOperand(0)->getType(); 7380 Type *SrcVecTy = 7381 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7382 if (canTruncateToMinimalBitwidth(I, VF)) { 7383 // This cast is going to be shrunk. This may remove the cast or it might 7384 // turn it into slightly different cast. For example, if MinBW == 16, 7385 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7386 // 7387 // Calculate the modified src and dest types. 7388 Type *MinVecTy = VectorTy; 7389 if (Opcode == Instruction::Trunc) { 7390 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7391 VectorTy = 7392 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7393 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7394 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7395 VectorTy = 7396 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7397 } 7398 } 7399 7400 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7401 } 7402 case Instruction::Call: { 7403 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7404 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7405 return *RedCost; 7406 bool NeedToScalarize; 7407 CallInst *CI = cast<CallInst>(I); 7408 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7409 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7410 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7411 return std::min(CallCost, IntrinsicCost); 7412 } 7413 return CallCost; 7414 } 7415 case Instruction::ExtractValue: 7416 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7417 case Instruction::Alloca: 7418 // We cannot easily widen alloca to a scalable alloca, as 7419 // the result would need to be a vector of pointers. 7420 if (VF.isScalable()) 7421 return InstructionCost::getInvalid(); 7422 LLVM_FALLTHROUGH; 7423 default: 7424 // This opcode is unknown. Assume that it is the same as 'mul'. 7425 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7426 } // end of switch. 7427 } 7428 7429 char LoopVectorize::ID = 0; 7430 7431 static const char lv_name[] = "Loop Vectorization"; 7432 7433 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7434 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7435 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7436 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7437 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7438 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7439 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7440 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7441 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7443 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7444 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7445 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7447 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7448 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7449 7450 namespace llvm { 7451 7452 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7453 7454 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7455 bool VectorizeOnlyWhenForced) { 7456 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7457 } 7458 7459 } // end namespace llvm 7460 7461 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7462 // Check if the pointer operand of a load or store instruction is 7463 // consecutive. 7464 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7465 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7466 return false; 7467 } 7468 7469 void LoopVectorizationCostModel::collectValuesToIgnore() { 7470 // Ignore ephemeral values. 7471 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7472 7473 // Ignore type-promoting instructions we identified during reduction 7474 // detection. 7475 for (auto &Reduction : Legal->getReductionVars()) { 7476 const RecurrenceDescriptor &RedDes = Reduction.second; 7477 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7478 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7479 } 7480 // Ignore type-casting instructions we identified during induction 7481 // detection. 7482 for (auto &Induction : Legal->getInductionVars()) { 7483 const InductionDescriptor &IndDes = Induction.second; 7484 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7485 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7486 } 7487 } 7488 7489 void LoopVectorizationCostModel::collectInLoopReductions() { 7490 for (auto &Reduction : Legal->getReductionVars()) { 7491 PHINode *Phi = Reduction.first; 7492 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7493 7494 // We don't collect reductions that are type promoted (yet). 7495 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7496 continue; 7497 7498 // If the target would prefer this reduction to happen "in-loop", then we 7499 // want to record it as such. 7500 unsigned Opcode = RdxDesc.getOpcode(); 7501 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7502 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7503 TargetTransformInfo::ReductionFlags())) 7504 continue; 7505 7506 // Check that we can correctly put the reductions into the loop, by 7507 // finding the chain of operations that leads from the phi to the loop 7508 // exit value. 7509 SmallVector<Instruction *, 4> ReductionOperations = 7510 RdxDesc.getReductionOpChain(Phi, TheLoop); 7511 bool InLoop = !ReductionOperations.empty(); 7512 if (InLoop) { 7513 InLoopReductionChains[Phi] = ReductionOperations; 7514 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7515 Instruction *LastChain = Phi; 7516 for (auto *I : ReductionOperations) { 7517 InLoopReductionImmediateChains[I] = LastChain; 7518 LastChain = I; 7519 } 7520 } 7521 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7522 << " reduction for phi: " << *Phi << "\n"); 7523 } 7524 } 7525 7526 // TODO: we could return a pair of values that specify the max VF and 7527 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7528 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7529 // doesn't have a cost model that can choose which plan to execute if 7530 // more than one is generated. 7531 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7532 LoopVectorizationCostModel &CM) { 7533 unsigned WidestType; 7534 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7535 return WidestVectorRegBits / WidestType; 7536 } 7537 7538 VectorizationFactor 7539 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7540 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7541 ElementCount VF = UserVF; 7542 // Outer loop handling: They may require CFG and instruction level 7543 // transformations before even evaluating whether vectorization is profitable. 7544 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7545 // the vectorization pipeline. 7546 if (!OrigLoop->isInnermost()) { 7547 // If the user doesn't provide a vectorization factor, determine a 7548 // reasonable one. 7549 if (UserVF.isZero()) { 7550 VF = ElementCount::getFixed(determineVPlanVF( 7551 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7552 .getFixedSize(), 7553 CM)); 7554 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7555 7556 // Make sure we have a VF > 1 for stress testing. 7557 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7558 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7559 << "overriding computed VF.\n"); 7560 VF = ElementCount::getFixed(4); 7561 } 7562 } 7563 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7564 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7565 "VF needs to be a power of two"); 7566 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7567 << "VF " << VF << " to build VPlans.\n"); 7568 buildVPlans(VF, VF); 7569 7570 // For VPlan build stress testing, we bail out after VPlan construction. 7571 if (VPlanBuildStressTest) 7572 return VectorizationFactor::Disabled(); 7573 7574 return {VF, 0 /*Cost*/}; 7575 } 7576 7577 LLVM_DEBUG( 7578 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7579 "VPlan-native path.\n"); 7580 return VectorizationFactor::Disabled(); 7581 } 7582 7583 Optional<VectorizationFactor> 7584 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7585 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7586 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7587 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7588 return None; 7589 7590 // Invalidate interleave groups if all blocks of loop will be predicated. 7591 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7592 !useMaskedInterleavedAccesses(*TTI)) { 7593 LLVM_DEBUG( 7594 dbgs() 7595 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7596 "which requires masked-interleaved support.\n"); 7597 if (CM.InterleaveInfo.invalidateGroups()) 7598 // Invalidating interleave groups also requires invalidating all decisions 7599 // based on them, which includes widening decisions and uniform and scalar 7600 // values. 7601 CM.invalidateCostModelingDecisions(); 7602 } 7603 7604 ElementCount MaxUserVF = 7605 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7606 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7607 if (!UserVF.isZero() && UserVFIsLegal) { 7608 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7609 "VF needs to be a power of two"); 7610 // Collect the instructions (and their associated costs) that will be more 7611 // profitable to scalarize. 7612 if (CM.selectUserVectorizationFactor(UserVF)) { 7613 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7614 CM.collectInLoopReductions(); 7615 buildVPlansWithVPRecipes(UserVF, UserVF); 7616 LLVM_DEBUG(printPlans(dbgs())); 7617 return {{UserVF, 0}}; 7618 } else 7619 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7620 "InvalidCost", ORE, OrigLoop); 7621 } 7622 7623 // Populate the set of Vectorization Factor Candidates. 7624 ElementCountSet VFCandidates; 7625 for (auto VF = ElementCount::getFixed(1); 7626 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7627 VFCandidates.insert(VF); 7628 for (auto VF = ElementCount::getScalable(1); 7629 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7630 VFCandidates.insert(VF); 7631 7632 for (const auto &VF : VFCandidates) { 7633 // Collect Uniform and Scalar instructions after vectorization with VF. 7634 CM.collectUniformsAndScalars(VF); 7635 7636 // Collect the instructions (and their associated costs) that will be more 7637 // profitable to scalarize. 7638 if (VF.isVector()) 7639 CM.collectInstsToScalarize(VF); 7640 } 7641 7642 CM.collectInLoopReductions(); 7643 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7644 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7645 7646 LLVM_DEBUG(printPlans(dbgs())); 7647 if (!MaxFactors.hasVector()) 7648 return VectorizationFactor::Disabled(); 7649 7650 // Select the optimal vectorization factor. 7651 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7652 7653 // Check if it is profitable to vectorize with runtime checks. 7654 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7655 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7656 bool PragmaThresholdReached = 7657 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7658 bool ThresholdReached = 7659 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7660 if ((ThresholdReached && !Hints.allowReordering()) || 7661 PragmaThresholdReached) { 7662 ORE->emit([&]() { 7663 return OptimizationRemarkAnalysisAliasing( 7664 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7665 OrigLoop->getHeader()) 7666 << "loop not vectorized: cannot prove it is safe to reorder " 7667 "memory operations"; 7668 }); 7669 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7670 Hints.emitRemarkWithHints(); 7671 return VectorizationFactor::Disabled(); 7672 } 7673 } 7674 return SelectedVF; 7675 } 7676 7677 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7678 assert(count_if(VPlans, 7679 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7680 1 && 7681 "Best VF has not a single VPlan."); 7682 7683 for (const VPlanPtr &Plan : VPlans) { 7684 if (Plan->hasVF(VF)) 7685 return *Plan.get(); 7686 } 7687 llvm_unreachable("No plan found!"); 7688 } 7689 7690 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7691 SmallVector<Metadata *, 4> MDs; 7692 // Reserve first location for self reference to the LoopID metadata node. 7693 MDs.push_back(nullptr); 7694 bool IsUnrollMetadata = false; 7695 MDNode *LoopID = L->getLoopID(); 7696 if (LoopID) { 7697 // First find existing loop unrolling disable metadata. 7698 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7699 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7700 if (MD) { 7701 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7702 IsUnrollMetadata = 7703 S && S->getString().startswith("llvm.loop.unroll.disable"); 7704 } 7705 MDs.push_back(LoopID->getOperand(i)); 7706 } 7707 } 7708 7709 if (!IsUnrollMetadata) { 7710 // Add runtime unroll disable metadata. 7711 LLVMContext &Context = L->getHeader()->getContext(); 7712 SmallVector<Metadata *, 1> DisableOperands; 7713 DisableOperands.push_back( 7714 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7715 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7716 MDs.push_back(DisableNode); 7717 MDNode *NewLoopID = MDNode::get(Context, MDs); 7718 // Set operand 0 to refer to the loop id itself. 7719 NewLoopID->replaceOperandWith(0, NewLoopID); 7720 L->setLoopID(NewLoopID); 7721 } 7722 } 7723 7724 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7725 VPlan &BestVPlan, 7726 InnerLoopVectorizer &ILV, 7727 DominatorTree *DT) { 7728 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7729 << '\n'); 7730 7731 // Perform the actual loop transformation. 7732 7733 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7734 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7735 Value *CanonicalIVStartValue; 7736 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7737 ILV.createVectorizedLoopSkeleton(); 7738 ILV.collectPoisonGeneratingRecipes(State); 7739 7740 ILV.printDebugTracesAtStart(); 7741 7742 //===------------------------------------------------===// 7743 // 7744 // Notice: any optimization or new instruction that go 7745 // into the code below should also be implemented in 7746 // the cost-model. 7747 // 7748 //===------------------------------------------------===// 7749 7750 // 2. Copy and widen instructions from the old loop into the new loop. 7751 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7752 ILV.getOrCreateVectorTripCount(nullptr), 7753 CanonicalIVStartValue, State); 7754 BestVPlan.execute(&State); 7755 7756 // Keep all loop hints from the original loop on the vector loop (we'll 7757 // replace the vectorizer-specific hints below). 7758 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7759 7760 Optional<MDNode *> VectorizedLoopID = 7761 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7762 LLVMLoopVectorizeFollowupVectorized}); 7763 7764 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7765 if (VectorizedLoopID.hasValue()) 7766 L->setLoopID(VectorizedLoopID.getValue()); 7767 else { 7768 // Keep all loop hints from the original loop on the vector loop (we'll 7769 // replace the vectorizer-specific hints below). 7770 if (MDNode *LID = OrigLoop->getLoopID()) 7771 L->setLoopID(LID); 7772 7773 LoopVectorizeHints Hints(L, true, *ORE); 7774 Hints.setAlreadyVectorized(); 7775 } 7776 // Disable runtime unrolling when vectorizing the epilogue loop. 7777 if (CanonicalIVStartValue) 7778 AddRuntimeUnrollDisableMetaData(L); 7779 7780 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7781 // predication, updating analyses. 7782 ILV.fixVectorizedLoop(State); 7783 7784 ILV.printDebugTracesAtEnd(); 7785 } 7786 7787 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7788 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7789 for (const auto &Plan : VPlans) 7790 if (PrintVPlansInDotFormat) 7791 Plan->printDOT(O); 7792 else 7793 Plan->print(O); 7794 } 7795 #endif 7796 7797 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7798 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7799 7800 // We create new control-flow for the vectorized loop, so the original exit 7801 // conditions will be dead after vectorization if it's only used by the 7802 // terminator 7803 SmallVector<BasicBlock*> ExitingBlocks; 7804 OrigLoop->getExitingBlocks(ExitingBlocks); 7805 for (auto *BB : ExitingBlocks) { 7806 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7807 if (!Cmp || !Cmp->hasOneUse()) 7808 continue; 7809 7810 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7811 if (!DeadInstructions.insert(Cmp).second) 7812 continue; 7813 7814 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7815 // TODO: can recurse through operands in general 7816 for (Value *Op : Cmp->operands()) { 7817 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7818 DeadInstructions.insert(cast<Instruction>(Op)); 7819 } 7820 } 7821 7822 // We create new "steps" for induction variable updates to which the original 7823 // induction variables map. An original update instruction will be dead if 7824 // all its users except the induction variable are dead. 7825 auto *Latch = OrigLoop->getLoopLatch(); 7826 for (auto &Induction : Legal->getInductionVars()) { 7827 PHINode *Ind = Induction.first; 7828 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7829 7830 // If the tail is to be folded by masking, the primary induction variable, 7831 // if exists, isn't dead: it will be used for masking. Don't kill it. 7832 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7833 continue; 7834 7835 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7836 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7837 })) 7838 DeadInstructions.insert(IndUpdate); 7839 } 7840 } 7841 7842 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7843 7844 //===--------------------------------------------------------------------===// 7845 // EpilogueVectorizerMainLoop 7846 //===--------------------------------------------------------------------===// 7847 7848 /// This function is partially responsible for generating the control flow 7849 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7850 std::pair<BasicBlock *, Value *> 7851 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7852 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7853 Loop *Lp = createVectorLoopSkeleton(""); 7854 7855 // Generate the code to check the minimum iteration count of the vector 7856 // epilogue (see below). 7857 EPI.EpilogueIterationCountCheck = 7858 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7859 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7860 7861 // Generate the code to check any assumptions that we've made for SCEV 7862 // expressions. 7863 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7864 7865 // Generate the code that checks at runtime if arrays overlap. We put the 7866 // checks into a separate block to make the more common case of few elements 7867 // faster. 7868 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7869 7870 // Generate the iteration count check for the main loop, *after* the check 7871 // for the epilogue loop, so that the path-length is shorter for the case 7872 // that goes directly through the vector epilogue. The longer-path length for 7873 // the main loop is compensated for, by the gain from vectorizing the larger 7874 // trip count. Note: the branch will get updated later on when we vectorize 7875 // the epilogue. 7876 EPI.MainLoopIterationCountCheck = 7877 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7878 7879 // Generate the induction variable. 7880 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7881 EPI.VectorTripCount = CountRoundDown; 7882 createHeaderBranch(Lp); 7883 7884 // Skip induction resume value creation here because they will be created in 7885 // the second pass. If we created them here, they wouldn't be used anyway, 7886 // because the vplan in the second pass still contains the inductions from the 7887 // original loop. 7888 7889 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 7890 } 7891 7892 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7893 LLVM_DEBUG({ 7894 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7895 << "Main Loop VF:" << EPI.MainLoopVF 7896 << ", Main Loop UF:" << EPI.MainLoopUF 7897 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7898 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7899 }); 7900 } 7901 7902 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7903 DEBUG_WITH_TYPE(VerboseDebug, { 7904 dbgs() << "intermediate fn:\n" 7905 << *OrigLoop->getHeader()->getParent() << "\n"; 7906 }); 7907 } 7908 7909 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 7910 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 7911 assert(L && "Expected valid Loop."); 7912 assert(Bypass && "Expected valid bypass basic block."); 7913 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7914 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7915 Value *Count = getOrCreateTripCount(L); 7916 // Reuse existing vector loop preheader for TC checks. 7917 // Note that new preheader block is generated for vector loop. 7918 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7919 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7920 7921 // Generate code to check if the loop's trip count is less than VF * UF of the 7922 // main vector loop. 7923 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7924 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7925 7926 Value *CheckMinIters = Builder.CreateICmp( 7927 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7928 "min.iters.check"); 7929 7930 if (!ForEpilogue) 7931 TCCheckBlock->setName("vector.main.loop.iter.check"); 7932 7933 // Create new preheader for vector loop. 7934 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7935 DT, LI, nullptr, "vector.ph"); 7936 7937 if (ForEpilogue) { 7938 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7939 DT->getNode(Bypass)->getIDom()) && 7940 "TC check is expected to dominate Bypass"); 7941 7942 // Update dominator for Bypass & LoopExit. 7943 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7944 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7945 // For loops with multiple exits, there's no edge from the middle block 7946 // to exit blocks (as the epilogue must run) and thus no need to update 7947 // the immediate dominator of the exit blocks. 7948 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7949 7950 LoopBypassBlocks.push_back(TCCheckBlock); 7951 7952 // Save the trip count so we don't have to regenerate it in the 7953 // vec.epilog.iter.check. This is safe to do because the trip count 7954 // generated here dominates the vector epilog iter check. 7955 EPI.TripCount = Count; 7956 } 7957 7958 ReplaceInstWithInst( 7959 TCCheckBlock->getTerminator(), 7960 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7961 7962 return TCCheckBlock; 7963 } 7964 7965 //===--------------------------------------------------------------------===// 7966 // EpilogueVectorizerEpilogueLoop 7967 //===--------------------------------------------------------------------===// 7968 7969 /// This function is partially responsible for generating the control flow 7970 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7971 std::pair<BasicBlock *, Value *> 7972 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7973 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7974 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 7975 7976 // Now, compare the remaining count and if there aren't enough iterations to 7977 // execute the vectorized epilogue skip to the scalar part. 7978 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7979 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7980 LoopVectorPreHeader = 7981 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7982 LI, nullptr, "vec.epilog.ph"); 7983 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7984 VecEpilogueIterationCountCheck); 7985 7986 // Adjust the control flow taking the state info from the main loop 7987 // vectorization into account. 7988 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7989 "expected this to be saved from the previous pass."); 7990 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7991 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7992 7993 DT->changeImmediateDominator(LoopVectorPreHeader, 7994 EPI.MainLoopIterationCountCheck); 7995 7996 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7997 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7998 7999 if (EPI.SCEVSafetyCheck) 8000 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8001 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8002 if (EPI.MemSafetyCheck) 8003 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8004 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8005 8006 DT->changeImmediateDominator( 8007 VecEpilogueIterationCountCheck, 8008 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8009 8010 DT->changeImmediateDominator(LoopScalarPreHeader, 8011 EPI.EpilogueIterationCountCheck); 8012 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8013 // If there is an epilogue which must run, there's no edge from the 8014 // middle block to exit blocks and thus no need to update the immediate 8015 // dominator of the exit blocks. 8016 DT->changeImmediateDominator(LoopExitBlock, 8017 EPI.EpilogueIterationCountCheck); 8018 8019 // Keep track of bypass blocks, as they feed start values to the induction 8020 // phis in the scalar loop preheader. 8021 if (EPI.SCEVSafetyCheck) 8022 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8023 if (EPI.MemSafetyCheck) 8024 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8025 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8026 8027 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8028 // merge control-flow from the latch block and the middle block. Update the 8029 // incoming values here and move the Phi into the preheader. 8030 SmallVector<PHINode *, 4> PhisInBlock; 8031 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8032 PhisInBlock.push_back(&Phi); 8033 8034 for (PHINode *Phi : PhisInBlock) { 8035 Phi->replaceIncomingBlockWith( 8036 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8037 VecEpilogueIterationCountCheck); 8038 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8039 if (EPI.SCEVSafetyCheck) 8040 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8041 if (EPI.MemSafetyCheck) 8042 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8043 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8044 } 8045 8046 // Generate a resume induction for the vector epilogue and put it in the 8047 // vector epilogue preheader 8048 Type *IdxTy = Legal->getWidestInductionType(); 8049 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8050 LoopVectorPreHeader->getFirstNonPHI()); 8051 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8052 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8053 EPI.MainLoopIterationCountCheck); 8054 8055 // Generate the induction variable. 8056 createHeaderBranch(Lp); 8057 8058 // Generate induction resume values. These variables save the new starting 8059 // indexes for the scalar loop. They are used to test if there are any tail 8060 // iterations left once the vector loop has completed. 8061 // Note that when the vectorized epilogue is skipped due to iteration count 8062 // check, then the resume value for the induction variable comes from 8063 // the trip count of the main vector loop, hence passing the AdditionalBypass 8064 // argument. 8065 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8066 EPI.VectorTripCount} /* AdditionalBypass */); 8067 8068 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8069 } 8070 8071 BasicBlock * 8072 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8073 BasicBlock *Bypass, BasicBlock *Insert) { 8074 8075 assert(EPI.TripCount && 8076 "Expected trip count to have been safed in the first pass."); 8077 assert( 8078 (!isa<Instruction>(EPI.TripCount) || 8079 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8080 "saved trip count does not dominate insertion point."); 8081 Value *TC = EPI.TripCount; 8082 IRBuilder<> Builder(Insert->getTerminator()); 8083 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8084 8085 // Generate code to check if the loop's trip count is less than VF * UF of the 8086 // vector epilogue loop. 8087 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8088 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8089 8090 Value *CheckMinIters = 8091 Builder.CreateICmp(P, Count, 8092 createStepForVF(Builder, Count->getType(), 8093 EPI.EpilogueVF, EPI.EpilogueUF), 8094 "min.epilog.iters.check"); 8095 8096 ReplaceInstWithInst( 8097 Insert->getTerminator(), 8098 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8099 8100 LoopBypassBlocks.push_back(Insert); 8101 return Insert; 8102 } 8103 8104 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8105 LLVM_DEBUG({ 8106 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8107 << "Epilogue Loop VF:" << EPI.EpilogueVF 8108 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8109 }); 8110 } 8111 8112 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8113 DEBUG_WITH_TYPE(VerboseDebug, { 8114 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8115 }); 8116 } 8117 8118 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8119 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8120 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8121 bool PredicateAtRangeStart = Predicate(Range.Start); 8122 8123 for (ElementCount TmpVF = Range.Start * 2; 8124 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8125 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8126 Range.End = TmpVF; 8127 break; 8128 } 8129 8130 return PredicateAtRangeStart; 8131 } 8132 8133 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8134 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8135 /// of VF's starting at a given VF and extending it as much as possible. Each 8136 /// vectorization decision can potentially shorten this sub-range during 8137 /// buildVPlan(). 8138 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8139 ElementCount MaxVF) { 8140 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8141 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8142 VFRange SubRange = {VF, MaxVFPlusOne}; 8143 VPlans.push_back(buildVPlan(SubRange)); 8144 VF = SubRange.End; 8145 } 8146 } 8147 8148 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8149 VPlanPtr &Plan) { 8150 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8151 8152 // Look for cached value. 8153 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8154 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8155 if (ECEntryIt != EdgeMaskCache.end()) 8156 return ECEntryIt->second; 8157 8158 VPValue *SrcMask = createBlockInMask(Src, Plan); 8159 8160 // The terminator has to be a branch inst! 8161 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8162 assert(BI && "Unexpected terminator found"); 8163 8164 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8165 return EdgeMaskCache[Edge] = SrcMask; 8166 8167 // If source is an exiting block, we know the exit edge is dynamically dead 8168 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8169 // adding uses of an otherwise potentially dead instruction. 8170 if (OrigLoop->isLoopExiting(Src)) 8171 return EdgeMaskCache[Edge] = SrcMask; 8172 8173 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8174 assert(EdgeMask && "No Edge Mask found for condition"); 8175 8176 if (BI->getSuccessor(0) != Dst) 8177 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8178 8179 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8180 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8181 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8182 // The select version does not introduce new UB if SrcMask is false and 8183 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8184 VPValue *False = Plan->getOrAddVPValue( 8185 ConstantInt::getFalse(BI->getCondition()->getType())); 8186 EdgeMask = 8187 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8188 } 8189 8190 return EdgeMaskCache[Edge] = EdgeMask; 8191 } 8192 8193 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8194 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8195 8196 // Look for cached value. 8197 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8198 if (BCEntryIt != BlockMaskCache.end()) 8199 return BCEntryIt->second; 8200 8201 // All-one mask is modelled as no-mask following the convention for masked 8202 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8203 VPValue *BlockMask = nullptr; 8204 8205 if (OrigLoop->getHeader() == BB) { 8206 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8207 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8208 8209 // Introduce the early-exit compare IV <= BTC to form header block mask. 8210 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8211 // constructing the desired canonical IV in the header block as its first 8212 // non-phi instructions. 8213 assert(CM.foldTailByMasking() && "must fold the tail"); 8214 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8215 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8216 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8217 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8218 8219 VPBuilder::InsertPointGuard Guard(Builder); 8220 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8221 if (CM.TTI.emitGetActiveLaneMask()) { 8222 VPValue *TC = Plan->getOrCreateTripCount(); 8223 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8224 } else { 8225 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8226 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8227 } 8228 return BlockMaskCache[BB] = BlockMask; 8229 } 8230 8231 // This is the block mask. We OR all incoming edges. 8232 for (auto *Predecessor : predecessors(BB)) { 8233 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8234 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8235 return BlockMaskCache[BB] = EdgeMask; 8236 8237 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8238 BlockMask = EdgeMask; 8239 continue; 8240 } 8241 8242 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8243 } 8244 8245 return BlockMaskCache[BB] = BlockMask; 8246 } 8247 8248 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8249 ArrayRef<VPValue *> Operands, 8250 VFRange &Range, 8251 VPlanPtr &Plan) { 8252 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8253 "Must be called with either a load or store"); 8254 8255 auto willWiden = [&](ElementCount VF) -> bool { 8256 if (VF.isScalar()) 8257 return false; 8258 LoopVectorizationCostModel::InstWidening Decision = 8259 CM.getWideningDecision(I, VF); 8260 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8261 "CM decision should be taken at this point."); 8262 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8263 return true; 8264 if (CM.isScalarAfterVectorization(I, VF) || 8265 CM.isProfitableToScalarize(I, VF)) 8266 return false; 8267 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8268 }; 8269 8270 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8271 return nullptr; 8272 8273 VPValue *Mask = nullptr; 8274 if (Legal->isMaskRequired(I)) 8275 Mask = createBlockInMask(I->getParent(), Plan); 8276 8277 // Determine if the pointer operand of the access is either consecutive or 8278 // reverse consecutive. 8279 LoopVectorizationCostModel::InstWidening Decision = 8280 CM.getWideningDecision(I, Range.Start); 8281 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8282 bool Consecutive = 8283 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8284 8285 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8286 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8287 Consecutive, Reverse); 8288 8289 StoreInst *Store = cast<StoreInst>(I); 8290 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8291 Mask, Consecutive, Reverse); 8292 } 8293 8294 static VPWidenIntOrFpInductionRecipe * 8295 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8296 VPValue *Start, const InductionDescriptor &IndDesc, 8297 LoopVectorizationCostModel &CM, ScalarEvolution &SE, 8298 Loop &OrigLoop, VFRange &Range) { 8299 // Returns true if an instruction \p I should be scalarized instead of 8300 // vectorized for the chosen vectorization factor. 8301 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8302 return CM.isScalarAfterVectorization(I, VF) || 8303 CM.isProfitableToScalarize(I, VF); 8304 }; 8305 8306 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8307 [&](ElementCount VF) { 8308 // Returns true if we should generate a scalar version of \p IV. 8309 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8310 return true; 8311 auto isScalarInst = [&](User *U) -> bool { 8312 auto *I = cast<Instruction>(U); 8313 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8314 }; 8315 return any_of(PhiOrTrunc->users(), isScalarInst); 8316 }, 8317 Range); 8318 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8319 [&](ElementCount VF) { 8320 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8321 }, 8322 Range); 8323 assert(IndDesc.getStartValue() == 8324 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8325 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8326 "step must be loop invariant"); 8327 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8328 return new VPWidenIntOrFpInductionRecipe( 8329 Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE); 8330 } 8331 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8332 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8333 !NeedsScalarIVOnly, SE); 8334 } 8335 8336 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8337 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8338 8339 // Check if this is an integer or fp induction. If so, build the recipe that 8340 // produces its scalar and vector values. 8341 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8342 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, 8343 *PSE.getSE(), *OrigLoop, Range); 8344 8345 return nullptr; 8346 } 8347 8348 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8349 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8350 VPlan &Plan) const { 8351 // Optimize the special case where the source is a constant integer 8352 // induction variable. Notice that we can only optimize the 'trunc' case 8353 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8354 // (c) other casts depend on pointer size. 8355 8356 // Determine whether \p K is a truncation based on an induction variable that 8357 // can be optimized. 8358 auto isOptimizableIVTruncate = 8359 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8360 return [=](ElementCount VF) -> bool { 8361 return CM.isOptimizableIVTruncate(K, VF); 8362 }; 8363 }; 8364 8365 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8366 isOptimizableIVTruncate(I), Range)) { 8367 8368 auto *Phi = cast<PHINode>(I->getOperand(0)); 8369 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8370 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8371 return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(), 8372 *OrigLoop, Range); 8373 } 8374 return nullptr; 8375 } 8376 8377 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8378 ArrayRef<VPValue *> Operands, 8379 VPlanPtr &Plan) { 8380 // If all incoming values are equal, the incoming VPValue can be used directly 8381 // instead of creating a new VPBlendRecipe. 8382 VPValue *FirstIncoming = Operands[0]; 8383 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8384 return FirstIncoming == Inc; 8385 })) { 8386 return Operands[0]; 8387 } 8388 8389 unsigned NumIncoming = Phi->getNumIncomingValues(); 8390 // For in-loop reductions, we do not need to create an additional select. 8391 VPValue *InLoopVal = nullptr; 8392 for (unsigned In = 0; In < NumIncoming; In++) { 8393 PHINode *PhiOp = 8394 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8395 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8396 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8397 InLoopVal = Operands[In]; 8398 } 8399 } 8400 8401 assert((!InLoopVal || NumIncoming == 2) && 8402 "Found an in-loop reduction for PHI with unexpected number of " 8403 "incoming values"); 8404 if (InLoopVal) 8405 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8406 8407 // We know that all PHIs in non-header blocks are converted into selects, so 8408 // we don't have to worry about the insertion order and we can just use the 8409 // builder. At this point we generate the predication tree. There may be 8410 // duplications since this is a simple recursive scan, but future 8411 // optimizations will clean it up. 8412 SmallVector<VPValue *, 2> OperandsWithMask; 8413 8414 for (unsigned In = 0; In < NumIncoming; In++) { 8415 VPValue *EdgeMask = 8416 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8417 assert((EdgeMask || NumIncoming == 1) && 8418 "Multiple predecessors with one having a full mask"); 8419 OperandsWithMask.push_back(Operands[In]); 8420 if (EdgeMask) 8421 OperandsWithMask.push_back(EdgeMask); 8422 } 8423 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8424 } 8425 8426 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8427 ArrayRef<VPValue *> Operands, 8428 VFRange &Range) const { 8429 8430 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8431 [this, CI](ElementCount VF) { 8432 return CM.isScalarWithPredication(CI, VF); 8433 }, 8434 Range); 8435 8436 if (IsPredicated) 8437 return nullptr; 8438 8439 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8440 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8441 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8442 ID == Intrinsic::pseudoprobe || 8443 ID == Intrinsic::experimental_noalias_scope_decl)) 8444 return nullptr; 8445 8446 auto willWiden = [&](ElementCount VF) -> bool { 8447 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8448 // The following case may be scalarized depending on the VF. 8449 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8450 // version of the instruction. 8451 // Is it beneficial to perform intrinsic call compared to lib call? 8452 bool NeedToScalarize = false; 8453 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8454 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8455 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8456 return UseVectorIntrinsic || !NeedToScalarize; 8457 }; 8458 8459 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8460 return nullptr; 8461 8462 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8463 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8464 } 8465 8466 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8467 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8468 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8469 // Instruction should be widened, unless it is scalar after vectorization, 8470 // scalarization is profitable or it is predicated. 8471 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8472 return CM.isScalarAfterVectorization(I, VF) || 8473 CM.isProfitableToScalarize(I, VF) || 8474 CM.isScalarWithPredication(I, VF); 8475 }; 8476 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8477 Range); 8478 } 8479 8480 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8481 ArrayRef<VPValue *> Operands) const { 8482 auto IsVectorizableOpcode = [](unsigned Opcode) { 8483 switch (Opcode) { 8484 case Instruction::Add: 8485 case Instruction::And: 8486 case Instruction::AShr: 8487 case Instruction::BitCast: 8488 case Instruction::FAdd: 8489 case Instruction::FCmp: 8490 case Instruction::FDiv: 8491 case Instruction::FMul: 8492 case Instruction::FNeg: 8493 case Instruction::FPExt: 8494 case Instruction::FPToSI: 8495 case Instruction::FPToUI: 8496 case Instruction::FPTrunc: 8497 case Instruction::FRem: 8498 case Instruction::FSub: 8499 case Instruction::ICmp: 8500 case Instruction::IntToPtr: 8501 case Instruction::LShr: 8502 case Instruction::Mul: 8503 case Instruction::Or: 8504 case Instruction::PtrToInt: 8505 case Instruction::SDiv: 8506 case Instruction::Select: 8507 case Instruction::SExt: 8508 case Instruction::Shl: 8509 case Instruction::SIToFP: 8510 case Instruction::SRem: 8511 case Instruction::Sub: 8512 case Instruction::Trunc: 8513 case Instruction::UDiv: 8514 case Instruction::UIToFP: 8515 case Instruction::URem: 8516 case Instruction::Xor: 8517 case Instruction::ZExt: 8518 return true; 8519 } 8520 return false; 8521 }; 8522 8523 if (!IsVectorizableOpcode(I->getOpcode())) 8524 return nullptr; 8525 8526 // Success: widen this instruction. 8527 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8528 } 8529 8530 void VPRecipeBuilder::fixHeaderPhis() { 8531 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8532 for (VPHeaderPHIRecipe *R : PhisToFix) { 8533 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8534 VPRecipeBase *IncR = 8535 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8536 R->addOperand(IncR->getVPSingleValue()); 8537 } 8538 } 8539 8540 VPBasicBlock *VPRecipeBuilder::handleReplication( 8541 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8542 VPlanPtr &Plan) { 8543 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8544 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8545 Range); 8546 8547 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8548 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8549 Range); 8550 8551 // Even if the instruction is not marked as uniform, there are certain 8552 // intrinsic calls that can be effectively treated as such, so we check for 8553 // them here. Conservatively, we only do this for scalable vectors, since 8554 // for fixed-width VFs we can always fall back on full scalarization. 8555 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8556 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8557 case Intrinsic::assume: 8558 case Intrinsic::lifetime_start: 8559 case Intrinsic::lifetime_end: 8560 // For scalable vectors if one of the operands is variant then we still 8561 // want to mark as uniform, which will generate one instruction for just 8562 // the first lane of the vector. We can't scalarize the call in the same 8563 // way as for fixed-width vectors because we don't know how many lanes 8564 // there are. 8565 // 8566 // The reasons for doing it this way for scalable vectors are: 8567 // 1. For the assume intrinsic generating the instruction for the first 8568 // lane is still be better than not generating any at all. For 8569 // example, the input may be a splat across all lanes. 8570 // 2. For the lifetime start/end intrinsics the pointer operand only 8571 // does anything useful when the input comes from a stack object, 8572 // which suggests it should always be uniform. For non-stack objects 8573 // the effect is to poison the object, which still allows us to 8574 // remove the call. 8575 IsUniform = true; 8576 break; 8577 default: 8578 break; 8579 } 8580 } 8581 8582 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8583 IsUniform, IsPredicated); 8584 setRecipe(I, Recipe); 8585 Plan->addVPValue(I, Recipe); 8586 8587 // Find if I uses a predicated instruction. If so, it will use its scalar 8588 // value. Avoid hoisting the insert-element which packs the scalar value into 8589 // a vector value, as that happens iff all users use the vector value. 8590 for (VPValue *Op : Recipe->operands()) { 8591 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8592 if (!PredR) 8593 continue; 8594 auto *RepR = 8595 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8596 assert(RepR->isPredicated() && 8597 "expected Replicate recipe to be predicated"); 8598 RepR->setAlsoPack(false); 8599 } 8600 8601 // Finalize the recipe for Instr, first if it is not predicated. 8602 if (!IsPredicated) { 8603 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8604 VPBB->appendRecipe(Recipe); 8605 return VPBB; 8606 } 8607 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8608 8609 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8610 assert(SingleSucc && "VPBB must have a single successor when handling " 8611 "predicated replication."); 8612 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8613 // Record predicated instructions for above packing optimizations. 8614 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8615 VPBlockUtils::insertBlockAfter(Region, VPBB); 8616 auto *RegSucc = new VPBasicBlock(); 8617 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8618 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8619 return RegSucc; 8620 } 8621 8622 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8623 VPRecipeBase *PredRecipe, 8624 VPlanPtr &Plan) { 8625 // Instructions marked for predication are replicated and placed under an 8626 // if-then construct to prevent side-effects. 8627 8628 // Generate recipes to compute the block mask for this region. 8629 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8630 8631 // Build the triangular if-then region. 8632 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8633 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8634 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8635 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8636 auto *PHIRecipe = Instr->getType()->isVoidTy() 8637 ? nullptr 8638 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8639 if (PHIRecipe) { 8640 Plan->removeVPValueFor(Instr); 8641 Plan->addVPValue(Instr, PHIRecipe); 8642 } 8643 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8644 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8645 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8646 8647 // Note: first set Entry as region entry and then connect successors starting 8648 // from it in order, to propagate the "parent" of each VPBasicBlock. 8649 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8650 VPBlockUtils::connectBlocks(Pred, Exit); 8651 8652 return Region; 8653 } 8654 8655 VPRecipeOrVPValueTy 8656 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8657 ArrayRef<VPValue *> Operands, 8658 VFRange &Range, VPlanPtr &Plan) { 8659 // First, check for specific widening recipes that deal with calls, memory 8660 // operations, inductions and Phi nodes. 8661 if (auto *CI = dyn_cast<CallInst>(Instr)) 8662 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8663 8664 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8665 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8666 8667 VPRecipeBase *Recipe; 8668 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8669 if (Phi->getParent() != OrigLoop->getHeader()) 8670 return tryToBlend(Phi, Operands, Plan); 8671 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8672 return toVPRecipeResult(Recipe); 8673 8674 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8675 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8676 VPValue *StartV = Operands[0]; 8677 if (Legal->isReductionVariable(Phi)) { 8678 const RecurrenceDescriptor &RdxDesc = 8679 Legal->getReductionVars().find(Phi)->second; 8680 assert(RdxDesc.getRecurrenceStartValue() == 8681 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8682 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8683 CM.isInLoopReduction(Phi), 8684 CM.useOrderedReductions(RdxDesc)); 8685 } else { 8686 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8687 } 8688 8689 // Record the incoming value from the backedge, so we can add the incoming 8690 // value from the backedge after all recipes have been created. 8691 recordRecipeOf(cast<Instruction>( 8692 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8693 PhisToFix.push_back(PhiRecipe); 8694 } else { 8695 // TODO: record backedge value for remaining pointer induction phis. 8696 assert(Phi->getType()->isPointerTy() && 8697 "only pointer phis should be handled here"); 8698 assert(Legal->getInductionVars().count(Phi) && 8699 "Not an induction variable"); 8700 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8701 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8702 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8703 } 8704 8705 return toVPRecipeResult(PhiRecipe); 8706 } 8707 8708 if (isa<TruncInst>(Instr) && 8709 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8710 Range, *Plan))) 8711 return toVPRecipeResult(Recipe); 8712 8713 if (!shouldWiden(Instr, Range)) 8714 return nullptr; 8715 8716 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8717 return toVPRecipeResult(new VPWidenGEPRecipe( 8718 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8719 8720 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8721 bool InvariantCond = 8722 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8723 return toVPRecipeResult(new VPWidenSelectRecipe( 8724 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8725 } 8726 8727 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8728 } 8729 8730 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8731 ElementCount MaxVF) { 8732 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8733 8734 // Collect instructions from the original loop that will become trivially dead 8735 // in the vectorized loop. We don't need to vectorize these instructions. For 8736 // example, original induction update instructions can become dead because we 8737 // separately emit induction "steps" when generating code for the new loop. 8738 // Similarly, we create a new latch condition when setting up the structure 8739 // of the new loop, so the old one can become dead. 8740 SmallPtrSet<Instruction *, 4> DeadInstructions; 8741 collectTriviallyDeadInstructions(DeadInstructions); 8742 8743 // Add assume instructions we need to drop to DeadInstructions, to prevent 8744 // them from being added to the VPlan. 8745 // TODO: We only need to drop assumes in blocks that get flattend. If the 8746 // control flow is preserved, we should keep them. 8747 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8748 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8749 8750 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8751 // Dead instructions do not need sinking. Remove them from SinkAfter. 8752 for (Instruction *I : DeadInstructions) 8753 SinkAfter.erase(I); 8754 8755 // Cannot sink instructions after dead instructions (there won't be any 8756 // recipes for them). Instead, find the first non-dead previous instruction. 8757 for (auto &P : Legal->getSinkAfter()) { 8758 Instruction *SinkTarget = P.second; 8759 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8760 (void)FirstInst; 8761 while (DeadInstructions.contains(SinkTarget)) { 8762 assert( 8763 SinkTarget != FirstInst && 8764 "Must find a live instruction (at least the one feeding the " 8765 "first-order recurrence PHI) before reaching beginning of the block"); 8766 SinkTarget = SinkTarget->getPrevNode(); 8767 assert(SinkTarget != P.first && 8768 "sink source equals target, no sinking required"); 8769 } 8770 P.second = SinkTarget; 8771 } 8772 8773 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8774 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8775 VFRange SubRange = {VF, MaxVFPlusOne}; 8776 VPlans.push_back( 8777 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8778 VF = SubRange.End; 8779 } 8780 } 8781 8782 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8783 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8784 // BranchOnCount VPInstruction to the latch. 8785 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8786 bool HasNUW, bool IsVPlanNative) { 8787 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8788 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8789 8790 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8791 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8792 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8793 if (IsVPlanNative) 8794 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8795 Header->insert(CanonicalIVPHI, Header->begin()); 8796 8797 auto *CanonicalIVIncrement = 8798 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8799 : VPInstruction::CanonicalIVIncrement, 8800 {CanonicalIVPHI}, DL); 8801 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8802 8803 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8804 if (IsVPlanNative) { 8805 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8806 EB->setCondBit(nullptr); 8807 } 8808 EB->appendRecipe(CanonicalIVIncrement); 8809 8810 auto *BranchOnCount = 8811 new VPInstruction(VPInstruction::BranchOnCount, 8812 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8813 EB->appendRecipe(BranchOnCount); 8814 } 8815 8816 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8817 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8818 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8819 8820 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8821 8822 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8823 8824 // --------------------------------------------------------------------------- 8825 // Pre-construction: record ingredients whose recipes we'll need to further 8826 // process after constructing the initial VPlan. 8827 // --------------------------------------------------------------------------- 8828 8829 // Mark instructions we'll need to sink later and their targets as 8830 // ingredients whose recipe we'll need to record. 8831 for (auto &Entry : SinkAfter) { 8832 RecipeBuilder.recordRecipeOf(Entry.first); 8833 RecipeBuilder.recordRecipeOf(Entry.second); 8834 } 8835 for (auto &Reduction : CM.getInLoopReductionChains()) { 8836 PHINode *Phi = Reduction.first; 8837 RecurKind Kind = 8838 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8839 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8840 8841 RecipeBuilder.recordRecipeOf(Phi); 8842 for (auto &R : ReductionOperations) { 8843 RecipeBuilder.recordRecipeOf(R); 8844 // For min/max reducitons, where we have a pair of icmp/select, we also 8845 // need to record the ICmp recipe, so it can be removed later. 8846 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8847 "Only min/max recurrences allowed for inloop reductions"); 8848 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8849 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8850 } 8851 } 8852 8853 // For each interleave group which is relevant for this (possibly trimmed) 8854 // Range, add it to the set of groups to be later applied to the VPlan and add 8855 // placeholders for its members' Recipes which we'll be replacing with a 8856 // single VPInterleaveRecipe. 8857 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8858 auto applyIG = [IG, this](ElementCount VF) -> bool { 8859 return (VF.isVector() && // Query is illegal for VF == 1 8860 CM.getWideningDecision(IG->getInsertPos(), VF) == 8861 LoopVectorizationCostModel::CM_Interleave); 8862 }; 8863 if (!getDecisionAndClampRange(applyIG, Range)) 8864 continue; 8865 InterleaveGroups.insert(IG); 8866 for (unsigned i = 0; i < IG->getFactor(); i++) 8867 if (Instruction *Member = IG->getMember(i)) 8868 RecipeBuilder.recordRecipeOf(Member); 8869 }; 8870 8871 // --------------------------------------------------------------------------- 8872 // Build initial VPlan: Scan the body of the loop in a topological order to 8873 // visit each basic block after having visited its predecessor basic blocks. 8874 // --------------------------------------------------------------------------- 8875 8876 // Create initial VPlan skeleton, with separate header and latch blocks. 8877 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 8878 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8879 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8880 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8881 auto Plan = std::make_unique<VPlan>(TopRegion); 8882 8883 Instruction *DLInst = 8884 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8885 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8886 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8887 !CM.foldTailByMasking(), false); 8888 8889 // Scan the body of the loop in a topological order to visit each basic block 8890 // after having visited its predecessor basic blocks. 8891 LoopBlocksDFS DFS(OrigLoop); 8892 DFS.perform(LI); 8893 8894 VPBasicBlock *VPBB = HeaderVPBB; 8895 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8896 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8897 // Relevant instructions from basic block BB will be grouped into VPRecipe 8898 // ingredients and fill a new VPBasicBlock. 8899 unsigned VPBBsForBB = 0; 8900 VPBB->setName(BB->getName()); 8901 Builder.setInsertPoint(VPBB); 8902 8903 // Introduce each ingredient into VPlan. 8904 // TODO: Model and preserve debug instrinsics in VPlan. 8905 for (Instruction &I : BB->instructionsWithoutDebug()) { 8906 Instruction *Instr = &I; 8907 8908 // First filter out irrelevant instructions, to ensure no recipes are 8909 // built for them. 8910 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8911 continue; 8912 8913 SmallVector<VPValue *, 4> Operands; 8914 auto *Phi = dyn_cast<PHINode>(Instr); 8915 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8916 Operands.push_back(Plan->getOrAddVPValue( 8917 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8918 } else { 8919 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8920 Operands = {OpRange.begin(), OpRange.end()}; 8921 } 8922 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8923 Instr, Operands, Range, Plan)) { 8924 // If Instr can be simplified to an existing VPValue, use it. 8925 if (RecipeOrValue.is<VPValue *>()) { 8926 auto *VPV = RecipeOrValue.get<VPValue *>(); 8927 Plan->addVPValue(Instr, VPV); 8928 // If the re-used value is a recipe, register the recipe for the 8929 // instruction, in case the recipe for Instr needs to be recorded. 8930 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8931 RecipeBuilder.setRecipe(Instr, R); 8932 continue; 8933 } 8934 // Otherwise, add the new recipe. 8935 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8936 for (auto *Def : Recipe->definedValues()) { 8937 auto *UV = Def->getUnderlyingValue(); 8938 Plan->addVPValue(UV, Def); 8939 } 8940 8941 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8942 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8943 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8944 // of the header block. That can happen for truncates of induction 8945 // variables. Those recipes are moved to the phi section of the header 8946 // block after applying SinkAfter, which relies on the original 8947 // position of the trunc. 8948 assert(isa<TruncInst>(Instr)); 8949 InductionsToMove.push_back( 8950 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8951 } 8952 RecipeBuilder.setRecipe(Instr, Recipe); 8953 VPBB->appendRecipe(Recipe); 8954 continue; 8955 } 8956 8957 // Otherwise, if all widening options failed, Instruction is to be 8958 // replicated. This may create a successor for VPBB. 8959 VPBasicBlock *NextVPBB = 8960 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8961 if (NextVPBB != VPBB) { 8962 VPBB = NextVPBB; 8963 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8964 : ""); 8965 } 8966 } 8967 8968 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8969 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8970 } 8971 8972 // Fold the last, empty block into its predecessor. 8973 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8974 assert(VPBB && "expected to fold last (empty) block"); 8975 // After here, VPBB should not be used. 8976 VPBB = nullptr; 8977 8978 assert(isa<VPRegionBlock>(Plan->getEntry()) && 8979 !Plan->getEntry()->getEntryBasicBlock()->empty() && 8980 "entry block must be set to a VPRegionBlock having a non-empty entry " 8981 "VPBasicBlock"); 8982 RecipeBuilder.fixHeaderPhis(); 8983 8984 // --------------------------------------------------------------------------- 8985 // Transform initial VPlan: Apply previously taken decisions, in order, to 8986 // bring the VPlan to its final state. 8987 // --------------------------------------------------------------------------- 8988 8989 // Apply Sink-After legal constraints. 8990 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8991 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8992 if (Region && Region->isReplicator()) { 8993 assert(Region->getNumSuccessors() == 1 && 8994 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8995 assert(R->getParent()->size() == 1 && 8996 "A recipe in an original replicator region must be the only " 8997 "recipe in its block"); 8998 return Region; 8999 } 9000 return nullptr; 9001 }; 9002 for (auto &Entry : SinkAfter) { 9003 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9004 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9005 9006 auto *TargetRegion = GetReplicateRegion(Target); 9007 auto *SinkRegion = GetReplicateRegion(Sink); 9008 if (!SinkRegion) { 9009 // If the sink source is not a replicate region, sink the recipe directly. 9010 if (TargetRegion) { 9011 // The target is in a replication region, make sure to move Sink to 9012 // the block after it, not into the replication region itself. 9013 VPBasicBlock *NextBlock = 9014 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9015 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9016 } else 9017 Sink->moveAfter(Target); 9018 continue; 9019 } 9020 9021 // The sink source is in a replicate region. Unhook the region from the CFG. 9022 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9023 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9024 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9025 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9026 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9027 9028 if (TargetRegion) { 9029 // The target recipe is also in a replicate region, move the sink region 9030 // after the target region. 9031 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9032 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9033 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9034 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9035 } else { 9036 // The sink source is in a replicate region, we need to move the whole 9037 // replicate region, which should only contain a single recipe in the 9038 // main block. 9039 auto *SplitBlock = 9040 Target->getParent()->splitAt(std::next(Target->getIterator())); 9041 9042 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9043 9044 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9045 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9046 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9047 } 9048 } 9049 9050 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9051 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9052 9053 // Now that sink-after is done, move induction recipes for optimized truncates 9054 // to the phi section of the header block. 9055 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9056 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9057 9058 // Adjust the recipes for any inloop reductions. 9059 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9060 RecipeBuilder, Range.Start); 9061 9062 // Introduce a recipe to combine the incoming and previous values of a 9063 // first-order recurrence. 9064 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9065 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9066 if (!RecurPhi) 9067 continue; 9068 9069 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9070 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9071 auto *Region = GetReplicateRegion(PrevRecipe); 9072 if (Region) 9073 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9074 if (Region || PrevRecipe->isPhi()) 9075 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9076 else 9077 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9078 9079 auto *RecurSplice = cast<VPInstruction>( 9080 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9081 {RecurPhi, RecurPhi->getBackedgeValue()})); 9082 9083 RecurPhi->replaceAllUsesWith(RecurSplice); 9084 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9085 // all users. 9086 RecurSplice->setOperand(0, RecurPhi); 9087 } 9088 9089 // Interleave memory: for each Interleave Group we marked earlier as relevant 9090 // for this VPlan, replace the Recipes widening its memory instructions with a 9091 // single VPInterleaveRecipe at its insertion point. 9092 for (auto IG : InterleaveGroups) { 9093 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9094 RecipeBuilder.getRecipe(IG->getInsertPos())); 9095 SmallVector<VPValue *, 4> StoredValues; 9096 for (unsigned i = 0; i < IG->getFactor(); ++i) 9097 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9098 auto *StoreR = 9099 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9100 StoredValues.push_back(StoreR->getStoredValue()); 9101 } 9102 9103 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9104 Recipe->getMask()); 9105 VPIG->insertBefore(Recipe); 9106 unsigned J = 0; 9107 for (unsigned i = 0; i < IG->getFactor(); ++i) 9108 if (Instruction *Member = IG->getMember(i)) { 9109 if (!Member->getType()->isVoidTy()) { 9110 VPValue *OriginalV = Plan->getVPValue(Member); 9111 Plan->removeVPValueFor(Member); 9112 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9113 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9114 J++; 9115 } 9116 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9117 } 9118 } 9119 9120 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9121 // in ways that accessing values using original IR values is incorrect. 9122 Plan->disableValue2VPValue(); 9123 9124 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9125 VPlanTransforms::sinkScalarOperands(*Plan); 9126 VPlanTransforms::mergeReplicateRegions(*Plan); 9127 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9128 9129 std::string PlanName; 9130 raw_string_ostream RSO(PlanName); 9131 ElementCount VF = Range.Start; 9132 Plan->addVF(VF); 9133 RSO << "Initial VPlan for VF={" << VF; 9134 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9135 Plan->addVF(VF); 9136 RSO << "," << VF; 9137 } 9138 RSO << "},UF>=1"; 9139 RSO.flush(); 9140 Plan->setName(PlanName); 9141 9142 // Fold Exit block into its predecessor if possible. 9143 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9144 // VPBasicBlock as exit. 9145 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9146 9147 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9148 return Plan; 9149 } 9150 9151 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9152 // Outer loop handling: They may require CFG and instruction level 9153 // transformations before even evaluating whether vectorization is profitable. 9154 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9155 // the vectorization pipeline. 9156 assert(!OrigLoop->isInnermost()); 9157 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9158 9159 // Create new empty VPlan 9160 auto Plan = std::make_unique<VPlan>(); 9161 9162 // Build hierarchical CFG 9163 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9164 HCFGBuilder.buildHierarchicalCFG(); 9165 9166 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9167 VF *= 2) 9168 Plan->addVF(VF); 9169 9170 if (EnableVPlanPredication) { 9171 VPlanPredicator VPP(*Plan); 9172 VPP.predicate(); 9173 9174 // Avoid running transformation to recipes until masked code generation in 9175 // VPlan-native path is in place. 9176 return Plan; 9177 } 9178 9179 SmallPtrSet<Instruction *, 1> DeadInstructions; 9180 VPlanTransforms::VPInstructionsToVPRecipes( 9181 OrigLoop, Plan, 9182 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9183 DeadInstructions, *PSE.getSE()); 9184 9185 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9186 true, true); 9187 return Plan; 9188 } 9189 9190 // Adjust the recipes for reductions. For in-loop reductions the chain of 9191 // instructions leading from the loop exit instr to the phi need to be converted 9192 // to reductions, with one operand being vector and the other being the scalar 9193 // reduction chain. For other reductions, a select is introduced between the phi 9194 // and live-out recipes when folding the tail. 9195 void LoopVectorizationPlanner::adjustRecipesForReductions( 9196 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9197 ElementCount MinVF) { 9198 for (auto &Reduction : CM.getInLoopReductionChains()) { 9199 PHINode *Phi = Reduction.first; 9200 const RecurrenceDescriptor &RdxDesc = 9201 Legal->getReductionVars().find(Phi)->second; 9202 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9203 9204 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9205 continue; 9206 9207 // ReductionOperations are orders top-down from the phi's use to the 9208 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9209 // which of the two operands will remain scalar and which will be reduced. 9210 // For minmax the chain will be the select instructions. 9211 Instruction *Chain = Phi; 9212 for (Instruction *R : ReductionOperations) { 9213 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9214 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9215 9216 VPValue *ChainOp = Plan->getVPValue(Chain); 9217 unsigned FirstOpId; 9218 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9219 "Only min/max recurrences allowed for inloop reductions"); 9220 // Recognize a call to the llvm.fmuladd intrinsic. 9221 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9222 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9223 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9224 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9225 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9226 "Expected to replace a VPWidenSelectSC"); 9227 FirstOpId = 1; 9228 } else { 9229 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9230 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9231 "Expected to replace a VPWidenSC"); 9232 FirstOpId = 0; 9233 } 9234 unsigned VecOpId = 9235 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9236 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9237 9238 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9239 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9240 : nullptr; 9241 9242 if (IsFMulAdd) { 9243 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9244 // need to create an fmul recipe to use as the vector operand for the 9245 // fadd reduction. 9246 VPInstruction *FMulRecipe = new VPInstruction( 9247 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9248 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9249 WidenRecipe->getParent()->insert(FMulRecipe, 9250 WidenRecipe->getIterator()); 9251 VecOp = FMulRecipe; 9252 } 9253 VPReductionRecipe *RedRecipe = 9254 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9255 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9256 Plan->removeVPValueFor(R); 9257 Plan->addVPValue(R, RedRecipe); 9258 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9259 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9260 WidenRecipe->eraseFromParent(); 9261 9262 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9263 VPRecipeBase *CompareRecipe = 9264 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9265 assert(isa<VPWidenRecipe>(CompareRecipe) && 9266 "Expected to replace a VPWidenSC"); 9267 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9268 "Expected no remaining users"); 9269 CompareRecipe->eraseFromParent(); 9270 } 9271 Chain = R; 9272 } 9273 } 9274 9275 // If tail is folded by masking, introduce selects between the phi 9276 // and the live-out instruction of each reduction, at the beginning of the 9277 // dedicated latch block. 9278 if (CM.foldTailByMasking()) { 9279 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9280 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9281 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9282 if (!PhiR || PhiR->isInLoop()) 9283 continue; 9284 VPValue *Cond = 9285 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9286 VPValue *Red = PhiR->getBackedgeValue(); 9287 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9288 "reduction recipe must be defined before latch"); 9289 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9290 } 9291 } 9292 } 9293 9294 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9295 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9296 VPSlotTracker &SlotTracker) const { 9297 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9298 IG->getInsertPos()->printAsOperand(O, false); 9299 O << ", "; 9300 getAddr()->printAsOperand(O, SlotTracker); 9301 VPValue *Mask = getMask(); 9302 if (Mask) { 9303 O << ", "; 9304 Mask->printAsOperand(O, SlotTracker); 9305 } 9306 9307 unsigned OpIdx = 0; 9308 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9309 if (!IG->getMember(i)) 9310 continue; 9311 if (getNumStoreOperands() > 0) { 9312 O << "\n" << Indent << " store "; 9313 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9314 O << " to index " << i; 9315 } else { 9316 O << "\n" << Indent << " "; 9317 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9318 O << " = load from index " << i; 9319 } 9320 ++OpIdx; 9321 } 9322 } 9323 #endif 9324 9325 void VPWidenCallRecipe::execute(VPTransformState &State) { 9326 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9327 *this, State); 9328 } 9329 9330 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9331 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9332 State.ILV->setDebugLocFromInst(&I); 9333 9334 // The condition can be loop invariant but still defined inside the 9335 // loop. This means that we can't just use the original 'cond' value. 9336 // We have to take the 'vectorized' value and pick the first lane. 9337 // Instcombine will make this a no-op. 9338 auto *InvarCond = 9339 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9340 9341 for (unsigned Part = 0; Part < State.UF; ++Part) { 9342 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9343 Value *Op0 = State.get(getOperand(1), Part); 9344 Value *Op1 = State.get(getOperand(2), Part); 9345 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9346 State.set(this, Sel, Part); 9347 State.ILV->addMetadata(Sel, &I); 9348 } 9349 } 9350 9351 void VPWidenRecipe::execute(VPTransformState &State) { 9352 auto &I = *cast<Instruction>(getUnderlyingValue()); 9353 auto &Builder = State.Builder; 9354 switch (I.getOpcode()) { 9355 case Instruction::Call: 9356 case Instruction::Br: 9357 case Instruction::PHI: 9358 case Instruction::GetElementPtr: 9359 case Instruction::Select: 9360 llvm_unreachable("This instruction is handled by a different recipe."); 9361 case Instruction::UDiv: 9362 case Instruction::SDiv: 9363 case Instruction::SRem: 9364 case Instruction::URem: 9365 case Instruction::Add: 9366 case Instruction::FAdd: 9367 case Instruction::Sub: 9368 case Instruction::FSub: 9369 case Instruction::FNeg: 9370 case Instruction::Mul: 9371 case Instruction::FMul: 9372 case Instruction::FDiv: 9373 case Instruction::FRem: 9374 case Instruction::Shl: 9375 case Instruction::LShr: 9376 case Instruction::AShr: 9377 case Instruction::And: 9378 case Instruction::Or: 9379 case Instruction::Xor: { 9380 // Just widen unops and binops. 9381 State.ILV->setDebugLocFromInst(&I); 9382 9383 for (unsigned Part = 0; Part < State.UF; ++Part) { 9384 SmallVector<Value *, 2> Ops; 9385 for (VPValue *VPOp : operands()) 9386 Ops.push_back(State.get(VPOp, Part)); 9387 9388 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9389 9390 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9391 VecOp->copyIRFlags(&I); 9392 9393 // If the instruction is vectorized and was in a basic block that needed 9394 // predication, we can't propagate poison-generating flags (nuw/nsw, 9395 // exact, etc.). The control flow has been linearized and the 9396 // instruction is no longer guarded by the predicate, which could make 9397 // the flag properties to no longer hold. 9398 if (State.MayGeneratePoisonRecipes.contains(this)) 9399 VecOp->dropPoisonGeneratingFlags(); 9400 } 9401 9402 // Use this vector value for all users of the original instruction. 9403 State.set(this, V, Part); 9404 State.ILV->addMetadata(V, &I); 9405 } 9406 9407 break; 9408 } 9409 case Instruction::ICmp: 9410 case Instruction::FCmp: { 9411 // Widen compares. Generate vector compares. 9412 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9413 auto *Cmp = cast<CmpInst>(&I); 9414 State.ILV->setDebugLocFromInst(Cmp); 9415 for (unsigned Part = 0; Part < State.UF; ++Part) { 9416 Value *A = State.get(getOperand(0), Part); 9417 Value *B = State.get(getOperand(1), Part); 9418 Value *C = nullptr; 9419 if (FCmp) { 9420 // Propagate fast math flags. 9421 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9422 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9423 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9424 } else { 9425 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9426 } 9427 State.set(this, C, Part); 9428 State.ILV->addMetadata(C, &I); 9429 } 9430 9431 break; 9432 } 9433 9434 case Instruction::ZExt: 9435 case Instruction::SExt: 9436 case Instruction::FPToUI: 9437 case Instruction::FPToSI: 9438 case Instruction::FPExt: 9439 case Instruction::PtrToInt: 9440 case Instruction::IntToPtr: 9441 case Instruction::SIToFP: 9442 case Instruction::UIToFP: 9443 case Instruction::Trunc: 9444 case Instruction::FPTrunc: 9445 case Instruction::BitCast: { 9446 auto *CI = cast<CastInst>(&I); 9447 State.ILV->setDebugLocFromInst(CI); 9448 9449 /// Vectorize casts. 9450 Type *DestTy = (State.VF.isScalar()) 9451 ? CI->getType() 9452 : VectorType::get(CI->getType(), State.VF); 9453 9454 for (unsigned Part = 0; Part < State.UF; ++Part) { 9455 Value *A = State.get(getOperand(0), Part); 9456 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9457 State.set(this, Cast, Part); 9458 State.ILV->addMetadata(Cast, &I); 9459 } 9460 break; 9461 } 9462 default: 9463 // This instruction is not vectorized by simple widening. 9464 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9465 llvm_unreachable("Unhandled instruction!"); 9466 } // end of switch. 9467 } 9468 9469 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9470 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9471 // Construct a vector GEP by widening the operands of the scalar GEP as 9472 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9473 // results in a vector of pointers when at least one operand of the GEP 9474 // is vector-typed. Thus, to keep the representation compact, we only use 9475 // vector-typed operands for loop-varying values. 9476 9477 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9478 // If we are vectorizing, but the GEP has only loop-invariant operands, 9479 // the GEP we build (by only using vector-typed operands for 9480 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9481 // produce a vector of pointers, we need to either arbitrarily pick an 9482 // operand to broadcast, or broadcast a clone of the original GEP. 9483 // Here, we broadcast a clone of the original. 9484 // 9485 // TODO: If at some point we decide to scalarize instructions having 9486 // loop-invariant operands, this special case will no longer be 9487 // required. We would add the scalarization decision to 9488 // collectLoopScalars() and teach getVectorValue() to broadcast 9489 // the lane-zero scalar value. 9490 auto *Clone = State.Builder.Insert(GEP->clone()); 9491 for (unsigned Part = 0; Part < State.UF; ++Part) { 9492 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9493 State.set(this, EntryPart, Part); 9494 State.ILV->addMetadata(EntryPart, GEP); 9495 } 9496 } else { 9497 // If the GEP has at least one loop-varying operand, we are sure to 9498 // produce a vector of pointers. But if we are only unrolling, we want 9499 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9500 // produce with the code below will be scalar (if VF == 1) or vector 9501 // (otherwise). Note that for the unroll-only case, we still maintain 9502 // values in the vector mapping with initVector, as we do for other 9503 // instructions. 9504 for (unsigned Part = 0; Part < State.UF; ++Part) { 9505 // The pointer operand of the new GEP. If it's loop-invariant, we 9506 // won't broadcast it. 9507 auto *Ptr = IsPtrLoopInvariant 9508 ? State.get(getOperand(0), VPIteration(0, 0)) 9509 : State.get(getOperand(0), Part); 9510 9511 // Collect all the indices for the new GEP. If any index is 9512 // loop-invariant, we won't broadcast it. 9513 SmallVector<Value *, 4> Indices; 9514 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9515 VPValue *Operand = getOperand(I); 9516 if (IsIndexLoopInvariant[I - 1]) 9517 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9518 else 9519 Indices.push_back(State.get(Operand, Part)); 9520 } 9521 9522 // If the GEP instruction is vectorized and was in a basic block that 9523 // needed predication, we can't propagate the poison-generating 'inbounds' 9524 // flag. The control flow has been linearized and the GEP is no longer 9525 // guarded by the predicate, which could make the 'inbounds' properties to 9526 // no longer hold. 9527 bool IsInBounds = 9528 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9529 9530 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9531 // but it should be a vector, otherwise. 9532 auto *NewGEP = IsInBounds 9533 ? State.Builder.CreateInBoundsGEP( 9534 GEP->getSourceElementType(), Ptr, Indices) 9535 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9536 Ptr, Indices); 9537 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9538 "NewGEP is not a pointer vector"); 9539 State.set(this, NewGEP, Part); 9540 State.ILV->addMetadata(NewGEP, GEP); 9541 } 9542 } 9543 } 9544 9545 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9546 assert(!State.Instance && "Int or FP induction being replicated."); 9547 9548 Value *Start = getStartValue()->getLiveInIRValue(); 9549 const InductionDescriptor &ID = getInductionDescriptor(); 9550 TruncInst *Trunc = getTruncInst(); 9551 IRBuilderBase &Builder = State.Builder; 9552 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9553 assert(State.VF.isVector() && "must have vector VF"); 9554 9555 // The value from the original loop to which we are mapping the new induction 9556 // variable. 9557 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9558 9559 auto &DL = EntryVal->getModule()->getDataLayout(); 9560 9561 // Generate code for the induction step. Note that induction steps are 9562 // required to be loop-invariant 9563 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 9564 if (SE.isSCEVable(IV->getType())) { 9565 SCEVExpander Exp(SE, DL, "induction"); 9566 return Exp.expandCodeFor(Step, Step->getType(), 9567 State.CFG.VectorPreHeader->getTerminator()); 9568 } 9569 return cast<SCEVUnknown>(Step)->getValue(); 9570 }; 9571 9572 // Fast-math-flags propagate from the original induction instruction. 9573 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9574 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9575 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9576 9577 // Now do the actual transformations, and start with creating the step value. 9578 Value *Step = CreateStepValue(ID.getStep()); 9579 9580 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9581 "Expected either an induction phi-node or a truncate of it!"); 9582 9583 // Construct the initial value of the vector IV in the vector loop preheader 9584 auto CurrIP = Builder.saveIP(); 9585 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 9586 if (isa<TruncInst>(EntryVal)) { 9587 assert(Start->getType()->isIntegerTy() && 9588 "Truncation requires an integer type"); 9589 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9590 Step = Builder.CreateTrunc(Step, TruncType); 9591 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9592 } 9593 9594 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9595 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9596 Value *SteppedStart = getStepVector( 9597 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9598 9599 // We create vector phi nodes for both integer and floating-point induction 9600 // variables. Here, we determine the kind of arithmetic we will perform. 9601 Instruction::BinaryOps AddOp; 9602 Instruction::BinaryOps MulOp; 9603 if (Step->getType()->isIntegerTy()) { 9604 AddOp = Instruction::Add; 9605 MulOp = Instruction::Mul; 9606 } else { 9607 AddOp = ID.getInductionOpcode(); 9608 MulOp = Instruction::FMul; 9609 } 9610 9611 // Multiply the vectorization factor by the step using integer or 9612 // floating-point arithmetic as appropriate. 9613 Type *StepType = Step->getType(); 9614 Value *RuntimeVF; 9615 if (Step->getType()->isFloatingPointTy()) 9616 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9617 else 9618 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9619 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9620 9621 // Create a vector splat to use in the induction update. 9622 // 9623 // FIXME: If the step is non-constant, we create the vector splat with 9624 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9625 // handle a constant vector splat. 9626 Value *SplatVF = isa<Constant>(Mul) 9627 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9628 : Builder.CreateVectorSplat(State.VF, Mul); 9629 Builder.restoreIP(CurrIP); 9630 9631 // We may need to add the step a number of times, depending on the unroll 9632 // factor. The last of those goes into the PHI. 9633 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9634 &*State.CFG.PrevBB->getFirstInsertionPt()); 9635 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9636 Instruction *LastInduction = VecInd; 9637 for (unsigned Part = 0; Part < State.UF; ++Part) { 9638 State.set(this, LastInduction, Part); 9639 9640 if (isa<TruncInst>(EntryVal)) 9641 State.ILV->addMetadata(LastInduction, EntryVal); 9642 9643 LastInduction = cast<Instruction>( 9644 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9645 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9646 } 9647 9648 // Move the last step to the end of the latch block. This ensures consistent 9649 // placement of all induction updates. 9650 auto *LoopVectorLatch = 9651 State.LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 9652 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 9653 LastInduction->moveBefore(Br); 9654 LastInduction->setName("vec.ind.next"); 9655 9656 VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader); 9657 VecInd->addIncoming(LastInduction, LoopVectorLatch); 9658 } 9659 9660 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9661 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9662 9663 // Fast-math-flags propagate from the original induction instruction. 9664 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9665 if (IndDesc.getInductionBinOp() && 9666 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9667 State.Builder.setFastMathFlags( 9668 IndDesc.getInductionBinOp()->getFastMathFlags()); 9669 9670 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9671 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9672 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9673 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9674 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9675 ScalarIV = 9676 Ty->isIntegerTy() 9677 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9678 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9679 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9680 getStartValue()->getLiveInIRValue(), Step, 9681 IndDesc); 9682 ScalarIV->setName("offset.idx"); 9683 } 9684 if (TruncToTy) { 9685 assert(Step->getType()->isIntegerTy() && 9686 "Truncation requires an integer step"); 9687 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9688 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9689 } 9690 return ScalarIV; 9691 }; 9692 9693 Value *ScalarIV = CreateScalarIV(Step); 9694 if (State.VF.isVector()) { 9695 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9696 return; 9697 } 9698 9699 for (unsigned Part = 0; Part < State.UF; ++Part) { 9700 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9701 Value *EntryPart; 9702 if (Step->getType()->isFloatingPointTy()) { 9703 Value *StartIdx = 9704 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9705 // Floating-point operations inherit FMF via the builder's flags. 9706 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9707 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9708 ScalarIV, MulOp); 9709 } else { 9710 Value *StartIdx = 9711 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9712 EntryPart = State.Builder.CreateAdd( 9713 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9714 } 9715 State.set(this, EntryPart, Part); 9716 } 9717 } 9718 9719 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9720 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9721 State); 9722 } 9723 9724 void VPBlendRecipe::execute(VPTransformState &State) { 9725 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9726 // We know that all PHIs in non-header blocks are converted into 9727 // selects, so we don't have to worry about the insertion order and we 9728 // can just use the builder. 9729 // At this point we generate the predication tree. There may be 9730 // duplications since this is a simple recursive scan, but future 9731 // optimizations will clean it up. 9732 9733 unsigned NumIncoming = getNumIncomingValues(); 9734 9735 // Generate a sequence of selects of the form: 9736 // SELECT(Mask3, In3, 9737 // SELECT(Mask2, In2, 9738 // SELECT(Mask1, In1, 9739 // In0))) 9740 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9741 // are essentially undef are taken from In0. 9742 InnerLoopVectorizer::VectorParts Entry(State.UF); 9743 for (unsigned In = 0; In < NumIncoming; ++In) { 9744 for (unsigned Part = 0; Part < State.UF; ++Part) { 9745 // We might have single edge PHIs (blocks) - use an identity 9746 // 'select' for the first PHI operand. 9747 Value *In0 = State.get(getIncomingValue(In), Part); 9748 if (In == 0) 9749 Entry[Part] = In0; // Initialize with the first incoming value. 9750 else { 9751 // Select between the current value and the previous incoming edge 9752 // based on the incoming mask. 9753 Value *Cond = State.get(getMask(In), Part); 9754 Entry[Part] = 9755 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9756 } 9757 } 9758 } 9759 for (unsigned Part = 0; Part < State.UF; ++Part) 9760 State.set(this, Entry[Part], Part); 9761 } 9762 9763 void VPInterleaveRecipe::execute(VPTransformState &State) { 9764 assert(!State.Instance && "Interleave group being replicated."); 9765 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9766 getStoredValues(), getMask()); 9767 } 9768 9769 void VPReductionRecipe::execute(VPTransformState &State) { 9770 assert(!State.Instance && "Reduction being replicated."); 9771 Value *PrevInChain = State.get(getChainOp(), 0); 9772 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9773 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9774 // Propagate the fast-math flags carried by the underlying instruction. 9775 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9776 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9777 for (unsigned Part = 0; Part < State.UF; ++Part) { 9778 Value *NewVecOp = State.get(getVecOp(), Part); 9779 if (VPValue *Cond = getCondOp()) { 9780 Value *NewCond = State.get(Cond, Part); 9781 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9782 Value *Iden = RdxDesc->getRecurrenceIdentity( 9783 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9784 Value *IdenVec = 9785 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9786 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9787 NewVecOp = Select; 9788 } 9789 Value *NewRed; 9790 Value *NextInChain; 9791 if (IsOrdered) { 9792 if (State.VF.isVector()) 9793 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9794 PrevInChain); 9795 else 9796 NewRed = State.Builder.CreateBinOp( 9797 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9798 NewVecOp); 9799 PrevInChain = NewRed; 9800 } else { 9801 PrevInChain = State.get(getChainOp(), Part); 9802 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9803 } 9804 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9805 NextInChain = 9806 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9807 NewRed, PrevInChain); 9808 } else if (IsOrdered) 9809 NextInChain = NewRed; 9810 else 9811 NextInChain = State.Builder.CreateBinOp( 9812 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9813 PrevInChain); 9814 State.set(this, NextInChain, Part); 9815 } 9816 } 9817 9818 void VPReplicateRecipe::execute(VPTransformState &State) { 9819 if (State.Instance) { // Generate a single instance. 9820 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9821 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9822 IsPredicated, State); 9823 // Insert scalar instance packing it into a vector. 9824 if (AlsoPack && State.VF.isVector()) { 9825 // If we're constructing lane 0, initialize to start from poison. 9826 if (State.Instance->Lane.isFirstLane()) { 9827 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9828 Value *Poison = PoisonValue::get( 9829 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9830 State.set(this, Poison, State.Instance->Part); 9831 } 9832 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9833 } 9834 return; 9835 } 9836 9837 // Generate scalar instances for all VF lanes of all UF parts, unless the 9838 // instruction is uniform inwhich case generate only the first lane for each 9839 // of the UF parts. 9840 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9841 assert((!State.VF.isScalable() || IsUniform) && 9842 "Can't scalarize a scalable vector"); 9843 for (unsigned Part = 0; Part < State.UF; ++Part) 9844 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9845 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9846 VPIteration(Part, Lane), IsPredicated, 9847 State); 9848 } 9849 9850 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9851 assert(State.Instance && "Branch on Mask works only on single instance."); 9852 9853 unsigned Part = State.Instance->Part; 9854 unsigned Lane = State.Instance->Lane.getKnownLane(); 9855 9856 Value *ConditionBit = nullptr; 9857 VPValue *BlockInMask = getMask(); 9858 if (BlockInMask) { 9859 ConditionBit = State.get(BlockInMask, Part); 9860 if (ConditionBit->getType()->isVectorTy()) 9861 ConditionBit = State.Builder.CreateExtractElement( 9862 ConditionBit, State.Builder.getInt32(Lane)); 9863 } else // Block in mask is all-one. 9864 ConditionBit = State.Builder.getTrue(); 9865 9866 // Replace the temporary unreachable terminator with a new conditional branch, 9867 // whose two destinations will be set later when they are created. 9868 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9869 assert(isa<UnreachableInst>(CurrentTerminator) && 9870 "Expected to replace unreachable terminator with conditional branch."); 9871 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9872 CondBr->setSuccessor(0, nullptr); 9873 ReplaceInstWithInst(CurrentTerminator, CondBr); 9874 } 9875 9876 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9877 assert(State.Instance && "Predicated instruction PHI works per instance."); 9878 Instruction *ScalarPredInst = 9879 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9880 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9881 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9882 assert(PredicatingBB && "Predicated block has no single predecessor."); 9883 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9884 "operand must be VPReplicateRecipe"); 9885 9886 // By current pack/unpack logic we need to generate only a single phi node: if 9887 // a vector value for the predicated instruction exists at this point it means 9888 // the instruction has vector users only, and a phi for the vector value is 9889 // needed. In this case the recipe of the predicated instruction is marked to 9890 // also do that packing, thereby "hoisting" the insert-element sequence. 9891 // Otherwise, a phi node for the scalar value is needed. 9892 unsigned Part = State.Instance->Part; 9893 if (State.hasVectorValue(getOperand(0), Part)) { 9894 Value *VectorValue = State.get(getOperand(0), Part); 9895 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9896 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9897 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9898 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9899 if (State.hasVectorValue(this, Part)) 9900 State.reset(this, VPhi, Part); 9901 else 9902 State.set(this, VPhi, Part); 9903 // NOTE: Currently we need to update the value of the operand, so the next 9904 // predicated iteration inserts its generated value in the correct vector. 9905 State.reset(getOperand(0), VPhi, Part); 9906 } else { 9907 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9908 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9909 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9910 PredicatingBB); 9911 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9912 if (State.hasScalarValue(this, *State.Instance)) 9913 State.reset(this, Phi, *State.Instance); 9914 else 9915 State.set(this, Phi, *State.Instance); 9916 // NOTE: Currently we need to update the value of the operand, so the next 9917 // predicated iteration inserts its generated value in the correct vector. 9918 State.reset(getOperand(0), Phi, *State.Instance); 9919 } 9920 } 9921 9922 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9923 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9924 9925 // Attempt to issue a wide load. 9926 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9927 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9928 9929 assert((LI || SI) && "Invalid Load/Store instruction"); 9930 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9931 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9932 9933 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9934 9935 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9936 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9937 bool CreateGatherScatter = !Consecutive; 9938 9939 auto &Builder = State.Builder; 9940 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9941 bool isMaskRequired = getMask(); 9942 if (isMaskRequired) 9943 for (unsigned Part = 0; Part < State.UF; ++Part) 9944 BlockInMaskParts[Part] = State.get(getMask(), Part); 9945 9946 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9947 // Calculate the pointer for the specific unroll-part. 9948 GetElementPtrInst *PartPtr = nullptr; 9949 9950 bool InBounds = false; 9951 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9952 InBounds = gep->isInBounds(); 9953 if (Reverse) { 9954 // If the address is consecutive but reversed, then the 9955 // wide store needs to start at the last vector element. 9956 // RunTimeVF = VScale * VF.getKnownMinValue() 9957 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9958 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9959 // NumElt = -Part * RunTimeVF 9960 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9961 // LastLane = 1 - RunTimeVF 9962 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9963 PartPtr = 9964 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9965 PartPtr->setIsInBounds(InBounds); 9966 PartPtr = cast<GetElementPtrInst>( 9967 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9968 PartPtr->setIsInBounds(InBounds); 9969 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9970 BlockInMaskParts[Part] = 9971 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9972 } else { 9973 Value *Increment = 9974 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9975 PartPtr = cast<GetElementPtrInst>( 9976 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9977 PartPtr->setIsInBounds(InBounds); 9978 } 9979 9980 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9981 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9982 }; 9983 9984 // Handle Stores: 9985 if (SI) { 9986 State.ILV->setDebugLocFromInst(SI); 9987 9988 for (unsigned Part = 0; Part < State.UF; ++Part) { 9989 Instruction *NewSI = nullptr; 9990 Value *StoredVal = State.get(StoredValue, Part); 9991 if (CreateGatherScatter) { 9992 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9993 Value *VectorGep = State.get(getAddr(), Part); 9994 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9995 MaskPart); 9996 } else { 9997 if (Reverse) { 9998 // If we store to reverse consecutive memory locations, then we need 9999 // to reverse the order of elements in the stored value. 10000 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10001 // We don't want to update the value in the map as it might be used in 10002 // another expression. So don't call resetVectorValue(StoredVal). 10003 } 10004 auto *VecPtr = 10005 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10006 if (isMaskRequired) 10007 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10008 BlockInMaskParts[Part]); 10009 else 10010 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10011 } 10012 State.ILV->addMetadata(NewSI, SI); 10013 } 10014 return; 10015 } 10016 10017 // Handle loads. 10018 assert(LI && "Must have a load instruction"); 10019 State.ILV->setDebugLocFromInst(LI); 10020 for (unsigned Part = 0; Part < State.UF; ++Part) { 10021 Value *NewLI; 10022 if (CreateGatherScatter) { 10023 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10024 Value *VectorGep = State.get(getAddr(), Part); 10025 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10026 nullptr, "wide.masked.gather"); 10027 State.ILV->addMetadata(NewLI, LI); 10028 } else { 10029 auto *VecPtr = 10030 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10031 if (isMaskRequired) 10032 NewLI = Builder.CreateMaskedLoad( 10033 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10034 PoisonValue::get(DataTy), "wide.masked.load"); 10035 else 10036 NewLI = 10037 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10038 10039 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10040 State.ILV->addMetadata(NewLI, LI); 10041 if (Reverse) 10042 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10043 } 10044 10045 State.set(this, NewLI, Part); 10046 } 10047 } 10048 10049 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10050 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10051 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10052 // for predication. 10053 static ScalarEpilogueLowering getScalarEpilogueLowering( 10054 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10055 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10056 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10057 LoopVectorizationLegality &LVL) { 10058 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10059 // don't look at hints or options, and don't request a scalar epilogue. 10060 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10061 // LoopAccessInfo (due to code dependency and not being able to reliably get 10062 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10063 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10064 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10065 // back to the old way and vectorize with versioning when forced. See D81345.) 10066 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10067 PGSOQueryType::IRPass) && 10068 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10069 return CM_ScalarEpilogueNotAllowedOptSize; 10070 10071 // 2) If set, obey the directives 10072 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10073 switch (PreferPredicateOverEpilogue) { 10074 case PreferPredicateTy::ScalarEpilogue: 10075 return CM_ScalarEpilogueAllowed; 10076 case PreferPredicateTy::PredicateElseScalarEpilogue: 10077 return CM_ScalarEpilogueNotNeededUsePredicate; 10078 case PreferPredicateTy::PredicateOrDontVectorize: 10079 return CM_ScalarEpilogueNotAllowedUsePredicate; 10080 }; 10081 } 10082 10083 // 3) If set, obey the hints 10084 switch (Hints.getPredicate()) { 10085 case LoopVectorizeHints::FK_Enabled: 10086 return CM_ScalarEpilogueNotNeededUsePredicate; 10087 case LoopVectorizeHints::FK_Disabled: 10088 return CM_ScalarEpilogueAllowed; 10089 }; 10090 10091 // 4) if the TTI hook indicates this is profitable, request predication. 10092 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10093 LVL.getLAI())) 10094 return CM_ScalarEpilogueNotNeededUsePredicate; 10095 10096 return CM_ScalarEpilogueAllowed; 10097 } 10098 10099 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10100 // If Values have been set for this Def return the one relevant for \p Part. 10101 if (hasVectorValue(Def, Part)) 10102 return Data.PerPartOutput[Def][Part]; 10103 10104 if (!hasScalarValue(Def, {Part, 0})) { 10105 Value *IRV = Def->getLiveInIRValue(); 10106 Value *B = ILV->getBroadcastInstrs(IRV); 10107 set(Def, B, Part); 10108 return B; 10109 } 10110 10111 Value *ScalarValue = get(Def, {Part, 0}); 10112 // If we aren't vectorizing, we can just copy the scalar map values over 10113 // to the vector map. 10114 if (VF.isScalar()) { 10115 set(Def, ScalarValue, Part); 10116 return ScalarValue; 10117 } 10118 10119 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10120 bool IsUniform = RepR && RepR->isUniform(); 10121 10122 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10123 // Check if there is a scalar value for the selected lane. 10124 if (!hasScalarValue(Def, {Part, LastLane})) { 10125 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10126 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10127 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10128 "unexpected recipe found to be invariant"); 10129 IsUniform = true; 10130 LastLane = 0; 10131 } 10132 10133 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10134 // Set the insert point after the last scalarized instruction or after the 10135 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10136 // will directly follow the scalar definitions. 10137 auto OldIP = Builder.saveIP(); 10138 auto NewIP = 10139 isa<PHINode>(LastInst) 10140 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10141 : std::next(BasicBlock::iterator(LastInst)); 10142 Builder.SetInsertPoint(&*NewIP); 10143 10144 // However, if we are vectorizing, we need to construct the vector values. 10145 // If the value is known to be uniform after vectorization, we can just 10146 // broadcast the scalar value corresponding to lane zero for each unroll 10147 // iteration. Otherwise, we construct the vector values using 10148 // insertelement instructions. Since the resulting vectors are stored in 10149 // State, we will only generate the insertelements once. 10150 Value *VectorValue = nullptr; 10151 if (IsUniform) { 10152 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10153 set(Def, VectorValue, Part); 10154 } else { 10155 // Initialize packing with insertelements to start from undef. 10156 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10157 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10158 set(Def, Undef, Part); 10159 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10160 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10161 VectorValue = get(Def, Part); 10162 } 10163 Builder.restoreIP(OldIP); 10164 return VectorValue; 10165 } 10166 10167 // Process the loop in the VPlan-native vectorization path. This path builds 10168 // VPlan upfront in the vectorization pipeline, which allows to apply 10169 // VPlan-to-VPlan transformations from the very beginning without modifying the 10170 // input LLVM IR. 10171 static bool processLoopInVPlanNativePath( 10172 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10173 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10174 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10175 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10176 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10177 LoopVectorizationRequirements &Requirements) { 10178 10179 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10180 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10181 return false; 10182 } 10183 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10184 Function *F = L->getHeader()->getParent(); 10185 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10186 10187 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10188 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10189 10190 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10191 &Hints, IAI); 10192 // Use the planner for outer loop vectorization. 10193 // TODO: CM is not used at this point inside the planner. Turn CM into an 10194 // optional argument if we don't need it in the future. 10195 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10196 Requirements, ORE); 10197 10198 // Get user vectorization factor. 10199 ElementCount UserVF = Hints.getWidth(); 10200 10201 CM.collectElementTypesForWidening(); 10202 10203 // Plan how to best vectorize, return the best VF and its cost. 10204 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10205 10206 // If we are stress testing VPlan builds, do not attempt to generate vector 10207 // code. Masked vector code generation support will follow soon. 10208 // Also, do not attempt to vectorize if no vector code will be produced. 10209 if (VPlanBuildStressTest || EnableVPlanPredication || 10210 VectorizationFactor::Disabled() == VF) 10211 return false; 10212 10213 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10214 10215 { 10216 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10217 F->getParent()->getDataLayout()); 10218 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10219 &CM, BFI, PSI, Checks); 10220 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10221 << L->getHeader()->getParent()->getName() << "\"\n"); 10222 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10223 } 10224 10225 // Mark the loop as already vectorized to avoid vectorizing again. 10226 Hints.setAlreadyVectorized(); 10227 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10228 return true; 10229 } 10230 10231 // Emit a remark if there are stores to floats that required a floating point 10232 // extension. If the vectorized loop was generated with floating point there 10233 // will be a performance penalty from the conversion overhead and the change in 10234 // the vector width. 10235 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10236 SmallVector<Instruction *, 4> Worklist; 10237 for (BasicBlock *BB : L->getBlocks()) { 10238 for (Instruction &Inst : *BB) { 10239 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10240 if (S->getValueOperand()->getType()->isFloatTy()) 10241 Worklist.push_back(S); 10242 } 10243 } 10244 } 10245 10246 // Traverse the floating point stores upwards searching, for floating point 10247 // conversions. 10248 SmallPtrSet<const Instruction *, 4> Visited; 10249 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10250 while (!Worklist.empty()) { 10251 auto *I = Worklist.pop_back_val(); 10252 if (!L->contains(I)) 10253 continue; 10254 if (!Visited.insert(I).second) 10255 continue; 10256 10257 // Emit a remark if the floating point store required a floating 10258 // point conversion. 10259 // TODO: More work could be done to identify the root cause such as a 10260 // constant or a function return type and point the user to it. 10261 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10262 ORE->emit([&]() { 10263 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10264 I->getDebugLoc(), L->getHeader()) 10265 << "floating point conversion changes vector width. " 10266 << "Mixed floating point precision requires an up/down " 10267 << "cast that will negatively impact performance."; 10268 }); 10269 10270 for (Use &Op : I->operands()) 10271 if (auto *OpI = dyn_cast<Instruction>(Op)) 10272 Worklist.push_back(OpI); 10273 } 10274 } 10275 10276 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10277 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10278 !EnableLoopInterleaving), 10279 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10280 !EnableLoopVectorization) {} 10281 10282 bool LoopVectorizePass::processLoop(Loop *L) { 10283 assert((EnableVPlanNativePath || L->isInnermost()) && 10284 "VPlan-native path is not enabled. Only process inner loops."); 10285 10286 #ifndef NDEBUG 10287 const std::string DebugLocStr = getDebugLocString(L); 10288 #endif /* NDEBUG */ 10289 10290 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10291 << L->getHeader()->getParent()->getName() << "' from " 10292 << DebugLocStr << "\n"); 10293 10294 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10295 10296 LLVM_DEBUG( 10297 dbgs() << "LV: Loop hints:" 10298 << " force=" 10299 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10300 ? "disabled" 10301 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10302 ? "enabled" 10303 : "?")) 10304 << " width=" << Hints.getWidth() 10305 << " interleave=" << Hints.getInterleave() << "\n"); 10306 10307 // Function containing loop 10308 Function *F = L->getHeader()->getParent(); 10309 10310 // Looking at the diagnostic output is the only way to determine if a loop 10311 // was vectorized (other than looking at the IR or machine code), so it 10312 // is important to generate an optimization remark for each loop. Most of 10313 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10314 // generated as OptimizationRemark and OptimizationRemarkMissed are 10315 // less verbose reporting vectorized loops and unvectorized loops that may 10316 // benefit from vectorization, respectively. 10317 10318 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10319 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10320 return false; 10321 } 10322 10323 PredicatedScalarEvolution PSE(*SE, *L); 10324 10325 // Check if it is legal to vectorize the loop. 10326 LoopVectorizationRequirements Requirements; 10327 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10328 &Requirements, &Hints, DB, AC, BFI, PSI); 10329 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10330 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10331 Hints.emitRemarkWithHints(); 10332 return false; 10333 } 10334 10335 // Check the function attributes and profiles to find out if this function 10336 // should be optimized for size. 10337 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10338 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10339 10340 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10341 // here. They may require CFG and instruction level transformations before 10342 // even evaluating whether vectorization is profitable. Since we cannot modify 10343 // the incoming IR, we need to build VPlan upfront in the vectorization 10344 // pipeline. 10345 if (!L->isInnermost()) 10346 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10347 ORE, BFI, PSI, Hints, Requirements); 10348 10349 assert(L->isInnermost() && "Inner loop expected."); 10350 10351 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10352 // count by optimizing for size, to minimize overheads. 10353 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10354 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10355 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10356 << "This loop is worth vectorizing only if no scalar " 10357 << "iteration overheads are incurred."); 10358 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10359 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10360 else { 10361 LLVM_DEBUG(dbgs() << "\n"); 10362 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10363 } 10364 } 10365 10366 // Check the function attributes to see if implicit floats are allowed. 10367 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10368 // an integer loop and the vector instructions selected are purely integer 10369 // vector instructions? 10370 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10371 reportVectorizationFailure( 10372 "Can't vectorize when the NoImplicitFloat attribute is used", 10373 "loop not vectorized due to NoImplicitFloat attribute", 10374 "NoImplicitFloat", ORE, L); 10375 Hints.emitRemarkWithHints(); 10376 return false; 10377 } 10378 10379 // Check if the target supports potentially unsafe FP vectorization. 10380 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10381 // for the target we're vectorizing for, to make sure none of the 10382 // additional fp-math flags can help. 10383 if (Hints.isPotentiallyUnsafe() && 10384 TTI->isFPVectorizationPotentiallyUnsafe()) { 10385 reportVectorizationFailure( 10386 "Potentially unsafe FP op prevents vectorization", 10387 "loop not vectorized due to unsafe FP support.", 10388 "UnsafeFP", ORE, L); 10389 Hints.emitRemarkWithHints(); 10390 return false; 10391 } 10392 10393 bool AllowOrderedReductions; 10394 // If the flag is set, use that instead and override the TTI behaviour. 10395 if (ForceOrderedReductions.getNumOccurrences() > 0) 10396 AllowOrderedReductions = ForceOrderedReductions; 10397 else 10398 AllowOrderedReductions = TTI->enableOrderedReductions(); 10399 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10400 ORE->emit([&]() { 10401 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10402 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10403 ExactFPMathInst->getDebugLoc(), 10404 ExactFPMathInst->getParent()) 10405 << "loop not vectorized: cannot prove it is safe to reorder " 10406 "floating-point operations"; 10407 }); 10408 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10409 "reorder floating-point operations\n"); 10410 Hints.emitRemarkWithHints(); 10411 return false; 10412 } 10413 10414 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10415 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10416 10417 // If an override option has been passed in for interleaved accesses, use it. 10418 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10419 UseInterleaved = EnableInterleavedMemAccesses; 10420 10421 // Analyze interleaved memory accesses. 10422 if (UseInterleaved) { 10423 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10424 } 10425 10426 // Use the cost model. 10427 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10428 F, &Hints, IAI); 10429 CM.collectValuesToIgnore(); 10430 CM.collectElementTypesForWidening(); 10431 10432 // Use the planner for vectorization. 10433 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10434 Requirements, ORE); 10435 10436 // Get user vectorization factor and interleave count. 10437 ElementCount UserVF = Hints.getWidth(); 10438 unsigned UserIC = Hints.getInterleave(); 10439 10440 // Plan how to best vectorize, return the best VF and its cost. 10441 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10442 10443 VectorizationFactor VF = VectorizationFactor::Disabled(); 10444 unsigned IC = 1; 10445 10446 if (MaybeVF) { 10447 VF = *MaybeVF; 10448 // Select the interleave count. 10449 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10450 } 10451 10452 // Identify the diagnostic messages that should be produced. 10453 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10454 bool VectorizeLoop = true, InterleaveLoop = true; 10455 if (VF.Width.isScalar()) { 10456 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10457 VecDiagMsg = std::make_pair( 10458 "VectorizationNotBeneficial", 10459 "the cost-model indicates that vectorization is not beneficial"); 10460 VectorizeLoop = false; 10461 } 10462 10463 if (!MaybeVF && UserIC > 1) { 10464 // Tell the user interleaving was avoided up-front, despite being explicitly 10465 // requested. 10466 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10467 "interleaving should be avoided up front\n"); 10468 IntDiagMsg = std::make_pair( 10469 "InterleavingAvoided", 10470 "Ignoring UserIC, because interleaving was avoided up front"); 10471 InterleaveLoop = false; 10472 } else if (IC == 1 && UserIC <= 1) { 10473 // Tell the user interleaving is not beneficial. 10474 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10475 IntDiagMsg = std::make_pair( 10476 "InterleavingNotBeneficial", 10477 "the cost-model indicates that interleaving is not beneficial"); 10478 InterleaveLoop = false; 10479 if (UserIC == 1) { 10480 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10481 IntDiagMsg.second += 10482 " and is explicitly disabled or interleave count is set to 1"; 10483 } 10484 } else if (IC > 1 && UserIC == 1) { 10485 // Tell the user interleaving is beneficial, but it explicitly disabled. 10486 LLVM_DEBUG( 10487 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10488 IntDiagMsg = std::make_pair( 10489 "InterleavingBeneficialButDisabled", 10490 "the cost-model indicates that interleaving is beneficial " 10491 "but is explicitly disabled or interleave count is set to 1"); 10492 InterleaveLoop = false; 10493 } 10494 10495 // Override IC if user provided an interleave count. 10496 IC = UserIC > 0 ? UserIC : IC; 10497 10498 // Emit diagnostic messages, if any. 10499 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10500 if (!VectorizeLoop && !InterleaveLoop) { 10501 // Do not vectorize or interleaving the loop. 10502 ORE->emit([&]() { 10503 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10504 L->getStartLoc(), L->getHeader()) 10505 << VecDiagMsg.second; 10506 }); 10507 ORE->emit([&]() { 10508 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10509 L->getStartLoc(), L->getHeader()) 10510 << IntDiagMsg.second; 10511 }); 10512 return false; 10513 } else if (!VectorizeLoop && InterleaveLoop) { 10514 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10515 ORE->emit([&]() { 10516 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10517 L->getStartLoc(), L->getHeader()) 10518 << VecDiagMsg.second; 10519 }); 10520 } else if (VectorizeLoop && !InterleaveLoop) { 10521 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10522 << ") in " << DebugLocStr << '\n'); 10523 ORE->emit([&]() { 10524 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10525 L->getStartLoc(), L->getHeader()) 10526 << IntDiagMsg.second; 10527 }); 10528 } else if (VectorizeLoop && InterleaveLoop) { 10529 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10530 << ") in " << DebugLocStr << '\n'); 10531 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10532 } 10533 10534 bool DisableRuntimeUnroll = false; 10535 MDNode *OrigLoopID = L->getLoopID(); 10536 { 10537 // Optimistically generate runtime checks. Drop them if they turn out to not 10538 // be profitable. Limit the scope of Checks, so the cleanup happens 10539 // immediately after vector codegeneration is done. 10540 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10541 F->getParent()->getDataLayout()); 10542 if (!VF.Width.isScalar() || IC > 1) 10543 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10544 10545 using namespace ore; 10546 if (!VectorizeLoop) { 10547 assert(IC > 1 && "interleave count should not be 1 or 0"); 10548 // If we decided that it is not legal to vectorize the loop, then 10549 // interleave it. 10550 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10551 &CM, BFI, PSI, Checks); 10552 10553 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10554 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10555 10556 ORE->emit([&]() { 10557 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10558 L->getHeader()) 10559 << "interleaved loop (interleaved count: " 10560 << NV("InterleaveCount", IC) << ")"; 10561 }); 10562 } else { 10563 // If we decided that it is *legal* to vectorize the loop, then do it. 10564 10565 // Consider vectorizing the epilogue too if it's profitable. 10566 VectorizationFactor EpilogueVF = 10567 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10568 if (EpilogueVF.Width.isVector()) { 10569 10570 // The first pass vectorizes the main loop and creates a scalar epilogue 10571 // to be vectorized by executing the plan (potentially with a different 10572 // factor) again shortly afterwards. 10573 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10574 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10575 EPI, &LVL, &CM, BFI, PSI, Checks); 10576 10577 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10578 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10579 DT); 10580 ++LoopsVectorized; 10581 10582 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10583 formLCSSARecursively(*L, *DT, LI, SE); 10584 10585 // Second pass vectorizes the epilogue and adjusts the control flow 10586 // edges from the first pass. 10587 EPI.MainLoopVF = EPI.EpilogueVF; 10588 EPI.MainLoopUF = EPI.EpilogueUF; 10589 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10590 ORE, EPI, &LVL, &CM, BFI, PSI, 10591 Checks); 10592 10593 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10594 10595 // Ensure that the start values for any VPReductionPHIRecipes are 10596 // updated before vectorising the epilogue loop. 10597 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10598 for (VPRecipeBase &R : Header->phis()) { 10599 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10600 if (auto *Resume = MainILV.getReductionResumeValue( 10601 ReductionPhi->getRecurrenceDescriptor())) { 10602 VPValue *StartVal = new VPValue(Resume); 10603 BestEpiPlan.addExternalDef(StartVal); 10604 ReductionPhi->setOperand(0, StartVal); 10605 } 10606 } 10607 } 10608 10609 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10610 DT); 10611 ++LoopsEpilogueVectorized; 10612 10613 if (!MainILV.areSafetyChecksAdded()) 10614 DisableRuntimeUnroll = true; 10615 } else { 10616 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10617 &LVL, &CM, BFI, PSI, Checks); 10618 10619 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10620 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10621 ++LoopsVectorized; 10622 10623 // Add metadata to disable runtime unrolling a scalar loop when there 10624 // are no runtime checks about strides and memory. A scalar loop that is 10625 // rarely used is not worth unrolling. 10626 if (!LB.areSafetyChecksAdded()) 10627 DisableRuntimeUnroll = true; 10628 } 10629 // Report the vectorization decision. 10630 ORE->emit([&]() { 10631 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10632 L->getHeader()) 10633 << "vectorized loop (vectorization width: " 10634 << NV("VectorizationFactor", VF.Width) 10635 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10636 }); 10637 } 10638 10639 if (ORE->allowExtraAnalysis(LV_NAME)) 10640 checkMixedPrecision(L, ORE); 10641 } 10642 10643 Optional<MDNode *> RemainderLoopID = 10644 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10645 LLVMLoopVectorizeFollowupEpilogue}); 10646 if (RemainderLoopID.hasValue()) { 10647 L->setLoopID(RemainderLoopID.getValue()); 10648 } else { 10649 if (DisableRuntimeUnroll) 10650 AddRuntimeUnrollDisableMetaData(L); 10651 10652 // Mark the loop as already vectorized to avoid vectorizing again. 10653 Hints.setAlreadyVectorized(); 10654 } 10655 10656 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10657 return true; 10658 } 10659 10660 LoopVectorizeResult LoopVectorizePass::runImpl( 10661 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10662 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10663 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10664 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10665 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10666 SE = &SE_; 10667 LI = &LI_; 10668 TTI = &TTI_; 10669 DT = &DT_; 10670 BFI = &BFI_; 10671 TLI = TLI_; 10672 AA = &AA_; 10673 AC = &AC_; 10674 GetLAA = &GetLAA_; 10675 DB = &DB_; 10676 ORE = &ORE_; 10677 PSI = PSI_; 10678 10679 // Don't attempt if 10680 // 1. the target claims to have no vector registers, and 10681 // 2. interleaving won't help ILP. 10682 // 10683 // The second condition is necessary because, even if the target has no 10684 // vector registers, loop vectorization may still enable scalar 10685 // interleaving. 10686 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10687 TTI->getMaxInterleaveFactor(1) < 2) 10688 return LoopVectorizeResult(false, false); 10689 10690 bool Changed = false, CFGChanged = false; 10691 10692 // The vectorizer requires loops to be in simplified form. 10693 // Since simplification may add new inner loops, it has to run before the 10694 // legality and profitability checks. This means running the loop vectorizer 10695 // will simplify all loops, regardless of whether anything end up being 10696 // vectorized. 10697 for (auto &L : *LI) 10698 Changed |= CFGChanged |= 10699 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10700 10701 // Build up a worklist of inner-loops to vectorize. This is necessary as 10702 // the act of vectorizing or partially unrolling a loop creates new loops 10703 // and can invalidate iterators across the loops. 10704 SmallVector<Loop *, 8> Worklist; 10705 10706 for (Loop *L : *LI) 10707 collectSupportedLoops(*L, LI, ORE, Worklist); 10708 10709 LoopsAnalyzed += Worklist.size(); 10710 10711 // Now walk the identified inner loops. 10712 while (!Worklist.empty()) { 10713 Loop *L = Worklist.pop_back_val(); 10714 10715 // For the inner loops we actually process, form LCSSA to simplify the 10716 // transform. 10717 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10718 10719 Changed |= CFGChanged |= processLoop(L); 10720 } 10721 10722 // Process each loop nest in the function. 10723 return LoopVectorizeResult(Changed, CFGChanged); 10724 } 10725 10726 PreservedAnalyses LoopVectorizePass::run(Function &F, 10727 FunctionAnalysisManager &AM) { 10728 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10729 auto &LI = AM.getResult<LoopAnalysis>(F); 10730 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10731 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10732 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10733 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10734 auto &AA = AM.getResult<AAManager>(F); 10735 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10736 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10737 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10738 10739 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10740 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10741 [&](Loop &L) -> const LoopAccessInfo & { 10742 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10743 TLI, TTI, nullptr, nullptr, nullptr}; 10744 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10745 }; 10746 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10747 ProfileSummaryInfo *PSI = 10748 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10749 LoopVectorizeResult Result = 10750 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10751 if (!Result.MadeAnyChange) 10752 return PreservedAnalyses::all(); 10753 PreservedAnalyses PA; 10754 10755 // We currently do not preserve loopinfo/dominator analyses with outer loop 10756 // vectorization. Until this is addressed, mark these analyses as preserved 10757 // only for non-VPlan-native path. 10758 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10759 if (!EnableVPlanNativePath) { 10760 PA.preserve<LoopAnalysis>(); 10761 PA.preserve<DominatorTreeAnalysis>(); 10762 } 10763 10764 if (Result.MadeCFGChange) { 10765 // Making CFG changes likely means a loop got vectorized. Indicate that 10766 // extra simplification passes should be run. 10767 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10768 // be run if runtime checks have been added. 10769 AM.getResult<ShouldRunExtraVectorPasses>(F); 10770 PA.preserve<ShouldRunExtraVectorPasses>(); 10771 } else { 10772 PA.preserveSet<CFGAnalyses>(); 10773 } 10774 return PA; 10775 } 10776 10777 void LoopVectorizePass::printPipeline( 10778 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10779 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10780 OS, MapClassName2PassName); 10781 10782 OS << "<"; 10783 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10784 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10785 OS << ">"; 10786 } 10787