1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/BlockFrequencyInfo.h" 58 #include "llvm/Analysis/LoopInfo.h" 59 #include "llvm/Analysis/LoopIterator.h" 60 #include "llvm/Analysis/LoopPass.h" 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/Analysis/ScalarEvolutionExpander.h" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Analysis/TargetTransformInfo.h" 65 #include "llvm/Analysis/ValueTracking.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfo.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/LLVMContext.h" 77 #include "llvm/IR/Module.h" 78 #include "llvm/IR/PatternMatch.h" 79 #include "llvm/IR/Type.h" 80 #include "llvm/IR/Value.h" 81 #include "llvm/IR/ValueHandle.h" 82 #include "llvm/IR/Verifier.h" 83 #include "llvm/Pass.h" 84 #include "llvm/Support/BranchProbability.h" 85 #include "llvm/Support/CommandLine.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Scalar.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/VectorUtils.h" 92 #include <algorithm> 93 #include <map> 94 #include <tuple> 95 96 using namespace llvm; 97 using namespace llvm::PatternMatch; 98 99 #define LV_NAME "loop-vectorize" 100 #define DEBUG_TYPE LV_NAME 101 102 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 103 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 104 105 static cl::opt<unsigned> 106 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 107 cl::desc("Sets the SIMD width. Zero is autoselect.")); 108 109 static cl::opt<unsigned> 110 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 111 cl::desc("Sets the vectorization unroll count. " 112 "Zero is autoselect.")); 113 114 static cl::opt<bool> 115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 116 cl::desc("Enable if-conversion during vectorization.")); 117 118 /// We don't vectorize loops with a known constant trip count below this number. 119 static cl::opt<unsigned> 120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 121 cl::Hidden, 122 cl::desc("Don't vectorize loops with a constant " 123 "trip count that is smaller than this " 124 "value.")); 125 126 /// This enables versioning on the strides of symbolically striding memory 127 /// accesses in code like the following. 128 /// for (i = 0; i < N; ++i) 129 /// A[i * Stride1] += B[i * Stride2] ... 130 /// 131 /// Will be roughly translated to 132 /// if (Stride1 == 1 && Stride2 == 1) { 133 /// for (i = 0; i < N; i+=4) 134 /// A[i:i+3] += ... 135 /// } else 136 /// ... 137 static cl::opt<bool> EnableMemAccessVersioning( 138 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 139 cl::desc("Enable symblic stride memory access versioning")); 140 141 /// We don't unroll loops with a known constant trip count below this number. 142 static const unsigned TinyTripCountUnrollThreshold = 128; 143 144 /// When performing memory disambiguation checks at runtime do not make more 145 /// than this number of comparisons. 146 static const unsigned RuntimeMemoryCheckThreshold = 8; 147 148 /// Maximum simd width. 149 static const unsigned MaxVectorWidth = 64; 150 151 static cl::opt<unsigned> ForceTargetNumScalarRegs( 152 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's number of scalar registers.")); 154 155 static cl::opt<unsigned> ForceTargetNumVectorRegs( 156 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's number of vector registers.")); 158 159 /// Maximum vectorization unroll count. 160 static const unsigned MaxUnrollFactor = 16; 161 162 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor( 163 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's max unroll factor for scalar " 165 "loops.")); 166 167 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor( 168 "force-target-max-vector-unroll", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's max unroll factor for " 170 "vectorized loops.")); 171 172 static cl::opt<unsigned> ForceTargetInstructionCost( 173 "force-target-instruction-cost", cl::init(0), cl::Hidden, 174 cl::desc("A flag that overrides the target's expected cost for " 175 "an instruction to a single constant value. Mostly " 176 "useful for getting consistent testing.")); 177 178 static cl::opt<unsigned> SmallLoopCost( 179 "small-loop-cost", cl::init(20), cl::Hidden, 180 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 181 182 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 183 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 184 cl::desc("Enable the use of the block frequency analysis to access PGO " 185 "heuristics minimizing code growth in cold regions and being more " 186 "aggressive in hot regions.")); 187 188 // Runtime unroll loops for load/store throughput. 189 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 190 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 191 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 192 193 /// The number of stores in a loop that are allowed to need predication. 194 static cl::opt<unsigned> NumberOfStoresToPredicate( 195 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 196 cl::desc("Max number of stores to be predicated behind an if.")); 197 198 static cl::opt<bool> EnableIndVarRegisterHeur( 199 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 200 cl::desc("Count the induction variable only once when unrolling")); 201 202 static cl::opt<bool> EnableCondStoresVectorization( 203 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 204 cl::desc("Enable if predication of stores during vectorization.")); 205 206 namespace { 207 208 // Forward declarations. 209 class LoopVectorizationLegality; 210 class LoopVectorizationCostModel; 211 212 /// Optimization analysis message produced during vectorization. Messages inform 213 /// the user why vectorization did not occur. 214 class Report { 215 string_ostream Message; 216 Instruction *Instr; 217 218 public: 219 Report(Instruction *I = nullptr) : Instr(I) { 220 Message << "loop not vectorized: "; 221 } 222 223 template <typename A> Report &operator<<(const A &Value) { 224 Message << Value; 225 return *this; 226 } 227 228 Instruction *getInstr() { return Instr; } 229 230 StringRef str() { return Message.str(); } 231 operator Twine() { return Message.str(); } 232 }; 233 234 /// InnerLoopVectorizer vectorizes loops which contain only one basic 235 /// block to a specified vectorization factor (VF). 236 /// This class performs the widening of scalars into vectors, or multiple 237 /// scalars. This class also implements the following features: 238 /// * It inserts an epilogue loop for handling loops that don't have iteration 239 /// counts that are known to be a multiple of the vectorization factor. 240 /// * It handles the code generation for reduction variables. 241 /// * Scalarization (implementation using scalars) of un-vectorizable 242 /// instructions. 243 /// InnerLoopVectorizer does not perform any vectorization-legality 244 /// checks, and relies on the caller to check for the different legality 245 /// aspects. The InnerLoopVectorizer relies on the 246 /// LoopVectorizationLegality class to provide information about the induction 247 /// and reduction variables that were found to a given vectorization factor. 248 class InnerLoopVectorizer { 249 public: 250 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 251 DominatorTree *DT, const DataLayout *DL, 252 const TargetLibraryInfo *TLI, unsigned VecWidth, 253 unsigned UnrollFactor) 254 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 255 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 256 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 257 Legal(nullptr) {} 258 259 // Perform the actual loop widening (vectorization). 260 void vectorize(LoopVectorizationLegality *L) { 261 Legal = L; 262 // Create a new empty loop. Unlink the old loop and connect the new one. 263 createEmptyLoop(); 264 // Widen each instruction in the old loop to a new one in the new loop. 265 // Use the Legality module to find the induction and reduction variables. 266 vectorizeLoop(); 267 // Register the new loop and update the analysis passes. 268 updateAnalysis(); 269 } 270 271 virtual ~InnerLoopVectorizer() {} 272 273 protected: 274 /// A small list of PHINodes. 275 typedef SmallVector<PHINode*, 4> PhiVector; 276 /// When we unroll loops we have multiple vector values for each scalar. 277 /// This data structure holds the unrolled and vectorized values that 278 /// originated from one scalar instruction. 279 typedef SmallVector<Value*, 2> VectorParts; 280 281 // When we if-convert we need create edge masks. We have to cache values so 282 // that we don't end up with exponential recursion/IR. 283 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 284 VectorParts> EdgeMaskCache; 285 286 /// \brief Add code that checks at runtime if the accessed arrays overlap. 287 /// 288 /// Returns a pair of instructions where the first element is the first 289 /// instruction generated in possibly a sequence of instructions and the 290 /// second value is the final comparator value or NULL if no check is needed. 291 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 292 293 /// \brief Add checks for strides that where assumed to be 1. 294 /// 295 /// Returns the last check instruction and the first check instruction in the 296 /// pair as (first, last). 297 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 298 299 /// Create an empty loop, based on the loop ranges of the old loop. 300 void createEmptyLoop(); 301 /// Copy and widen the instructions from the old loop. 302 virtual void vectorizeLoop(); 303 304 /// \brief The Loop exit block may have single value PHI nodes where the 305 /// incoming value is 'Undef'. While vectorizing we only handled real values 306 /// that were defined inside the loop. Here we fix the 'undef case'. 307 /// See PR14725. 308 void fixLCSSAPHIs(); 309 310 /// A helper function that computes the predicate of the block BB, assuming 311 /// that the header block of the loop is set to True. It returns the *entry* 312 /// mask for the block BB. 313 VectorParts createBlockInMask(BasicBlock *BB); 314 /// A helper function that computes the predicate of the edge between SRC 315 /// and DST. 316 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 317 318 /// A helper function to vectorize a single BB within the innermost loop. 319 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 320 321 /// Vectorize a single PHINode in a block. This method handles the induction 322 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 323 /// arbitrary length vectors. 324 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 325 unsigned UF, unsigned VF, PhiVector *PV); 326 327 /// Insert the new loop to the loop hierarchy and pass manager 328 /// and update the analysis passes. 329 void updateAnalysis(); 330 331 /// This instruction is un-vectorizable. Implement it as a sequence 332 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 333 /// scalarized instruction behind an if block predicated on the control 334 /// dependence of the instruction. 335 virtual void scalarizeInstruction(Instruction *Instr, 336 bool IfPredicateStore=false); 337 338 /// Vectorize Load and Store instructions, 339 virtual void vectorizeMemoryInstruction(Instruction *Instr); 340 341 /// Create a broadcast instruction. This method generates a broadcast 342 /// instruction (shuffle) for loop invariant values and for the induction 343 /// value. If this is the induction variable then we extend it to N, N+1, ... 344 /// this is needed because each iteration in the loop corresponds to a SIMD 345 /// element. 346 virtual Value *getBroadcastInstrs(Value *V); 347 348 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 349 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 350 /// The sequence starts at StartIndex. 351 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 352 353 /// When we go over instructions in the basic block we rely on previous 354 /// values within the current basic block or on loop invariant values. 355 /// When we widen (vectorize) values we place them in the map. If the values 356 /// are not within the map, they have to be loop invariant, so we simply 357 /// broadcast them into a vector. 358 VectorParts &getVectorValue(Value *V); 359 360 /// Generate a shuffle sequence that will reverse the vector Vec. 361 virtual Value *reverseVector(Value *Vec); 362 363 /// This is a helper class that holds the vectorizer state. It maps scalar 364 /// instructions to vector instructions. When the code is 'unrolled' then 365 /// then a single scalar value is mapped to multiple vector parts. The parts 366 /// are stored in the VectorPart type. 367 struct ValueMap { 368 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 369 /// are mapped. 370 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 371 372 /// \return True if 'Key' is saved in the Value Map. 373 bool has(Value *Key) const { return MapStorage.count(Key); } 374 375 /// Initializes a new entry in the map. Sets all of the vector parts to the 376 /// save value in 'Val'. 377 /// \return A reference to a vector with splat values. 378 VectorParts &splat(Value *Key, Value *Val) { 379 VectorParts &Entry = MapStorage[Key]; 380 Entry.assign(UF, Val); 381 return Entry; 382 } 383 384 ///\return A reference to the value that is stored at 'Key'. 385 VectorParts &get(Value *Key) { 386 VectorParts &Entry = MapStorage[Key]; 387 if (Entry.empty()) 388 Entry.resize(UF); 389 assert(Entry.size() == UF); 390 return Entry; 391 } 392 393 private: 394 /// The unroll factor. Each entry in the map stores this number of vector 395 /// elements. 396 unsigned UF; 397 398 /// Map storage. We use std::map and not DenseMap because insertions to a 399 /// dense map invalidates its iterators. 400 std::map<Value *, VectorParts> MapStorage; 401 }; 402 403 /// The original loop. 404 Loop *OrigLoop; 405 /// Scev analysis to use. 406 ScalarEvolution *SE; 407 /// Loop Info. 408 LoopInfo *LI; 409 /// Dominator Tree. 410 DominatorTree *DT; 411 /// Data Layout. 412 const DataLayout *DL; 413 /// Target Library Info. 414 const TargetLibraryInfo *TLI; 415 416 /// The vectorization SIMD factor to use. Each vector will have this many 417 /// vector elements. 418 unsigned VF; 419 420 protected: 421 /// The vectorization unroll factor to use. Each scalar is vectorized to this 422 /// many different vector instructions. 423 unsigned UF; 424 425 /// The builder that we use 426 IRBuilder<> Builder; 427 428 // --- Vectorization state --- 429 430 /// The vector-loop preheader. 431 BasicBlock *LoopVectorPreHeader; 432 /// The scalar-loop preheader. 433 BasicBlock *LoopScalarPreHeader; 434 /// Middle Block between the vector and the scalar. 435 BasicBlock *LoopMiddleBlock; 436 ///The ExitBlock of the scalar loop. 437 BasicBlock *LoopExitBlock; 438 ///The vector loop body. 439 SmallVector<BasicBlock *, 4> LoopVectorBody; 440 ///The scalar loop body. 441 BasicBlock *LoopScalarBody; 442 /// A list of all bypass blocks. The first block is the entry of the loop. 443 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 444 445 /// The new Induction variable which was added to the new block. 446 PHINode *Induction; 447 /// The induction variable of the old basic block. 448 PHINode *OldInduction; 449 /// Holds the extended (to the widest induction type) start index. 450 Value *ExtendedIdx; 451 /// Maps scalars to widened vectors. 452 ValueMap WidenMap; 453 EdgeMaskCache MaskCache; 454 455 LoopVectorizationLegality *Legal; 456 }; 457 458 class InnerLoopUnroller : public InnerLoopVectorizer { 459 public: 460 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 461 DominatorTree *DT, const DataLayout *DL, 462 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 463 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 464 465 private: 466 void scalarizeInstruction(Instruction *Instr, 467 bool IfPredicateStore = false) override; 468 void vectorizeMemoryInstruction(Instruction *Instr) override; 469 Value *getBroadcastInstrs(Value *V) override; 470 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 471 Value *reverseVector(Value *Vec) override; 472 }; 473 474 /// \brief Look for a meaningful debug location on the instruction or it's 475 /// operands. 476 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 477 if (!I) 478 return I; 479 480 DebugLoc Empty; 481 if (I->getDebugLoc() != Empty) 482 return I; 483 484 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 485 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 486 if (OpInst->getDebugLoc() != Empty) 487 return OpInst; 488 } 489 490 return I; 491 } 492 493 /// \brief Set the debug location in the builder using the debug location in the 494 /// instruction. 495 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 496 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 497 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 498 else 499 B.SetCurrentDebugLocation(DebugLoc()); 500 } 501 502 #ifndef NDEBUG 503 /// \return string containing a file name and a line # for the given loop. 504 static std::string getDebugLocString(const Loop *L) { 505 if (!L) 506 return std::string(); 507 508 string_ostream OS; 509 const DebugLoc LoopDbgLoc = L->getStartLoc(); 510 if (!LoopDbgLoc.isUnknown()) 511 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 512 else 513 // Just print the module name. 514 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 515 return OS.str(); 516 } 517 #endif 518 519 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 520 /// to what vectorization factor. 521 /// This class does not look at the profitability of vectorization, only the 522 /// legality. This class has two main kinds of checks: 523 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 524 /// will change the order of memory accesses in a way that will change the 525 /// correctness of the program. 526 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 527 /// checks for a number of different conditions, such as the availability of a 528 /// single induction variable, that all types are supported and vectorize-able, 529 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 530 /// This class is also used by InnerLoopVectorizer for identifying 531 /// induction variable and the different reduction variables. 532 class LoopVectorizationLegality { 533 public: 534 unsigned NumLoads; 535 unsigned NumStores; 536 unsigned NumPredStores; 537 538 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 539 DominatorTree *DT, TargetLibraryInfo *TLI, 540 Function *F) 541 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 542 DT(DT), TLI(TLI), TheFunction(F), Induction(nullptr), 543 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 544 } 545 546 /// This enum represents the kinds of reductions that we support. 547 enum ReductionKind { 548 RK_NoReduction, ///< Not a reduction. 549 RK_IntegerAdd, ///< Sum of integers. 550 RK_IntegerMult, ///< Product of integers. 551 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 552 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 553 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 554 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 555 RK_FloatAdd, ///< Sum of floats. 556 RK_FloatMult, ///< Product of floats. 557 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 558 }; 559 560 /// This enum represents the kinds of inductions that we support. 561 enum InductionKind { 562 IK_NoInduction, ///< Not an induction variable. 563 IK_IntInduction, ///< Integer induction variable. Step = 1. 564 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 565 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 566 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 567 }; 568 569 // This enum represents the kind of minmax reduction. 570 enum MinMaxReductionKind { 571 MRK_Invalid, 572 MRK_UIntMin, 573 MRK_UIntMax, 574 MRK_SIntMin, 575 MRK_SIntMax, 576 MRK_FloatMin, 577 MRK_FloatMax 578 }; 579 580 /// This struct holds information about reduction variables. 581 struct ReductionDescriptor { 582 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 583 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 584 585 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 586 MinMaxReductionKind MK) 587 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 588 589 // The starting value of the reduction. 590 // It does not have to be zero! 591 TrackingVH<Value> StartValue; 592 // The instruction who's value is used outside the loop. 593 Instruction *LoopExitInstr; 594 // The kind of the reduction. 595 ReductionKind Kind; 596 // If this a min/max reduction the kind of reduction. 597 MinMaxReductionKind MinMaxKind; 598 }; 599 600 /// This POD struct holds information about a potential reduction operation. 601 struct ReductionInstDesc { 602 ReductionInstDesc(bool IsRedux, Instruction *I) : 603 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 604 605 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 606 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 607 608 // Is this instruction a reduction candidate. 609 bool IsReduction; 610 // The last instruction in a min/max pattern (select of the select(icmp()) 611 // pattern), or the current reduction instruction otherwise. 612 Instruction *PatternLastInst; 613 // If this is a min/max pattern the comparison predicate. 614 MinMaxReductionKind MinMaxKind; 615 }; 616 617 /// This struct holds information about the memory runtime legality 618 /// check that a group of pointers do not overlap. 619 struct RuntimePointerCheck { 620 RuntimePointerCheck() : Need(false) {} 621 622 /// Reset the state of the pointer runtime information. 623 void reset() { 624 Need = false; 625 Pointers.clear(); 626 Starts.clear(); 627 Ends.clear(); 628 IsWritePtr.clear(); 629 DependencySetId.clear(); 630 } 631 632 /// Insert a pointer and calculate the start and end SCEVs. 633 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 634 unsigned DepSetId, ValueToValueMap &Strides); 635 636 /// This flag indicates if we need to add the runtime check. 637 bool Need; 638 /// Holds the pointers that we need to check. 639 SmallVector<TrackingVH<Value>, 2> Pointers; 640 /// Holds the pointer value at the beginning of the loop. 641 SmallVector<const SCEV*, 2> Starts; 642 /// Holds the pointer value at the end of the loop. 643 SmallVector<const SCEV*, 2> Ends; 644 /// Holds the information if this pointer is used for writing to memory. 645 SmallVector<bool, 2> IsWritePtr; 646 /// Holds the id of the set of pointers that could be dependent because of a 647 /// shared underlying object. 648 SmallVector<unsigned, 2> DependencySetId; 649 }; 650 651 /// A struct for saving information about induction variables. 652 struct InductionInfo { 653 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 654 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 655 /// Start value. 656 TrackingVH<Value> StartValue; 657 /// Induction kind. 658 InductionKind IK; 659 }; 660 661 /// ReductionList contains the reduction descriptors for all 662 /// of the reductions that were found in the loop. 663 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 664 665 /// InductionList saves induction variables and maps them to the 666 /// induction descriptor. 667 typedef MapVector<PHINode*, InductionInfo> InductionList; 668 669 /// Returns true if it is legal to vectorize this loop. 670 /// This does not mean that it is profitable to vectorize this 671 /// loop, only that it is legal to do so. 672 bool canVectorize(); 673 674 /// Returns the Induction variable. 675 PHINode *getInduction() { return Induction; } 676 677 /// Returns the reduction variables found in the loop. 678 ReductionList *getReductionVars() { return &Reductions; } 679 680 /// Returns the induction variables found in the loop. 681 InductionList *getInductionVars() { return &Inductions; } 682 683 /// Returns the widest induction type. 684 Type *getWidestInductionType() { return WidestIndTy; } 685 686 /// Returns True if V is an induction variable in this loop. 687 bool isInductionVariable(const Value *V); 688 689 /// Return true if the block BB needs to be predicated in order for the loop 690 /// to be vectorized. 691 bool blockNeedsPredication(BasicBlock *BB); 692 693 /// Check if this pointer is consecutive when vectorizing. This happens 694 /// when the last index of the GEP is the induction variable, or that the 695 /// pointer itself is an induction variable. 696 /// This check allows us to vectorize A[idx] into a wide load/store. 697 /// Returns: 698 /// 0 - Stride is unknown or non-consecutive. 699 /// 1 - Address is consecutive. 700 /// -1 - Address is consecutive, and decreasing. 701 int isConsecutivePtr(Value *Ptr); 702 703 /// Returns true if the value V is uniform within the loop. 704 bool isUniform(Value *V); 705 706 /// Returns true if this instruction will remain scalar after vectorization. 707 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 708 709 /// Returns the information that we collected about runtime memory check. 710 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 711 712 /// This function returns the identity element (or neutral element) for 713 /// the operation K. 714 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 715 716 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 717 718 bool hasStride(Value *V) { return StrideSet.count(V); } 719 bool mustCheckStrides() { return !StrideSet.empty(); } 720 SmallPtrSet<Value *, 8>::iterator strides_begin() { 721 return StrideSet.begin(); 722 } 723 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 724 725 private: 726 /// Check if a single basic block loop is vectorizable. 727 /// At this point we know that this is a loop with a constant trip count 728 /// and we only need to check individual instructions. 729 bool canVectorizeInstrs(); 730 731 /// When we vectorize loops we may change the order in which 732 /// we read and write from memory. This method checks if it is 733 /// legal to vectorize the code, considering only memory constrains. 734 /// Returns true if the loop is vectorizable 735 bool canVectorizeMemory(); 736 737 /// Return true if we can vectorize this loop using the IF-conversion 738 /// transformation. 739 bool canVectorizeWithIfConvert(); 740 741 /// Collect the variables that need to stay uniform after vectorization. 742 void collectLoopUniforms(); 743 744 /// Return true if all of the instructions in the block can be speculatively 745 /// executed. \p SafePtrs is a list of addresses that are known to be legal 746 /// and we know that we can read from them without segfault. 747 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 748 749 /// Returns True, if 'Phi' is the kind of reduction variable for type 750 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 751 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 752 /// Returns a struct describing if the instruction 'I' can be a reduction 753 /// variable of type 'Kind'. If the reduction is a min/max pattern of 754 /// select(icmp()) this function advances the instruction pointer 'I' from the 755 /// compare instruction to the select instruction and stores this pointer in 756 /// 'PatternLastInst' member of the returned struct. 757 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 758 ReductionInstDesc &Desc); 759 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 760 /// pattern corresponding to a min(X, Y) or max(X, Y). 761 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 762 ReductionInstDesc &Prev); 763 /// Returns the induction kind of Phi. This function may return NoInduction 764 /// if the PHI is not an induction variable. 765 InductionKind isInductionVariable(PHINode *Phi); 766 767 /// \brief Collect memory access with loop invariant strides. 768 /// 769 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 770 /// invariant. 771 void collectStridedAcccess(Value *LoadOrStoreInst); 772 773 /// Report an analysis message to assist the user in diagnosing loops that are 774 /// not vectorized. 775 void emitAnalysis(Report &Message) { 776 DebugLoc DL = TheLoop->getStartLoc(); 777 if (Instruction *I = Message.getInstr()) 778 DL = I->getDebugLoc(); 779 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 780 *TheFunction, DL, Message.str()); 781 } 782 783 /// The loop that we evaluate. 784 Loop *TheLoop; 785 /// Scev analysis. 786 ScalarEvolution *SE; 787 /// DataLayout analysis. 788 const DataLayout *DL; 789 /// Dominators. 790 DominatorTree *DT; 791 /// Target Library Info. 792 TargetLibraryInfo *TLI; 793 /// Parent function 794 Function *TheFunction; 795 796 // --- vectorization state --- // 797 798 /// Holds the integer induction variable. This is the counter of the 799 /// loop. 800 PHINode *Induction; 801 /// Holds the reduction variables. 802 ReductionList Reductions; 803 /// Holds all of the induction variables that we found in the loop. 804 /// Notice that inductions don't need to start at zero and that induction 805 /// variables can be pointers. 806 InductionList Inductions; 807 /// Holds the widest induction type encountered. 808 Type *WidestIndTy; 809 810 /// Allowed outside users. This holds the reduction 811 /// vars which can be accessed from outside the loop. 812 SmallPtrSet<Value*, 4> AllowedExit; 813 /// This set holds the variables which are known to be uniform after 814 /// vectorization. 815 SmallPtrSet<Instruction*, 4> Uniforms; 816 /// We need to check that all of the pointers in this list are disjoint 817 /// at runtime. 818 RuntimePointerCheck PtrRtCheck; 819 /// Can we assume the absence of NaNs. 820 bool HasFunNoNaNAttr; 821 822 unsigned MaxSafeDepDistBytes; 823 824 ValueToValueMap Strides; 825 SmallPtrSet<Value *, 8> StrideSet; 826 }; 827 828 /// LoopVectorizationCostModel - estimates the expected speedups due to 829 /// vectorization. 830 /// In many cases vectorization is not profitable. This can happen because of 831 /// a number of reasons. In this class we mainly attempt to predict the 832 /// expected speedup/slowdowns due to the supported instruction set. We use the 833 /// TargetTransformInfo to query the different backends for the cost of 834 /// different operations. 835 class LoopVectorizationCostModel { 836 public: 837 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 838 LoopVectorizationLegality *Legal, 839 const TargetTransformInfo &TTI, 840 const DataLayout *DL, const TargetLibraryInfo *TLI) 841 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 842 843 /// Information about vectorization costs 844 struct VectorizationFactor { 845 unsigned Width; // Vector width with best cost 846 unsigned Cost; // Cost of the loop with that width 847 }; 848 /// \return The most profitable vectorization factor and the cost of that VF. 849 /// This method checks every power of two up to VF. If UserVF is not ZERO 850 /// then this vectorization factor will be selected if vectorization is 851 /// possible. 852 VectorizationFactor selectVectorizationFactor(bool OptForSize, 853 unsigned UserVF, 854 bool ForceVectorization); 855 856 /// \return The size (in bits) of the widest type in the code that 857 /// needs to be vectorized. We ignore values that remain scalar such as 858 /// 64 bit loop indices. 859 unsigned getWidestType(); 860 861 /// \return The most profitable unroll factor. 862 /// If UserUF is non-zero then this method finds the best unroll-factor 863 /// based on register pressure and other parameters. 864 /// VF and LoopCost are the selected vectorization factor and the cost of the 865 /// selected VF. 866 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 867 unsigned LoopCost); 868 869 /// \brief A struct that represents some properties of the register usage 870 /// of a loop. 871 struct RegisterUsage { 872 /// Holds the number of loop invariant values that are used in the loop. 873 unsigned LoopInvariantRegs; 874 /// Holds the maximum number of concurrent live intervals in the loop. 875 unsigned MaxLocalUsers; 876 /// Holds the number of instructions in the loop. 877 unsigned NumInstructions; 878 }; 879 880 /// \return information about the register usage of the loop. 881 RegisterUsage calculateRegisterUsage(); 882 883 private: 884 /// Returns the expected execution cost. The unit of the cost does 885 /// not matter because we use the 'cost' units to compare different 886 /// vector widths. The cost that is returned is *not* normalized by 887 /// the factor width. 888 unsigned expectedCost(unsigned VF); 889 890 /// Returns the execution time cost of an instruction for a given vector 891 /// width. Vector width of one means scalar. 892 unsigned getInstructionCost(Instruction *I, unsigned VF); 893 894 /// A helper function for converting Scalar types to vector types. 895 /// If the incoming type is void, we return void. If the VF is 1, we return 896 /// the scalar type. 897 static Type* ToVectorTy(Type *Scalar, unsigned VF); 898 899 /// Returns whether the instruction is a load or store and will be a emitted 900 /// as a vector operation. 901 bool isConsecutiveLoadOrStore(Instruction *I); 902 903 /// The loop that we evaluate. 904 Loop *TheLoop; 905 /// Scev analysis. 906 ScalarEvolution *SE; 907 /// Loop Info analysis. 908 LoopInfo *LI; 909 /// Vectorization legality. 910 LoopVectorizationLegality *Legal; 911 /// Vector target information. 912 const TargetTransformInfo &TTI; 913 /// Target data layout information. 914 const DataLayout *DL; 915 /// Target Library Info. 916 const TargetLibraryInfo *TLI; 917 }; 918 919 /// Utility class for getting and setting loop vectorizer hints in the form 920 /// of loop metadata. 921 class LoopVectorizeHints { 922 public: 923 enum ForceKind { 924 FK_Undefined = -1, ///< Not selected. 925 FK_Disabled = 0, ///< Forcing disabled. 926 FK_Enabled = 1, ///< Forcing enabled. 927 }; 928 929 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 930 : Width(VectorizationFactor), 931 Unroll(DisableUnrolling), 932 Force(FK_Undefined), 933 LoopID(L->getLoopID()) { 934 getHints(L); 935 // force-vector-unroll overrides DisableUnrolling. 936 if (VectorizationUnroll.getNumOccurrences() > 0) 937 Unroll = VectorizationUnroll; 938 939 DEBUG(if (DisableUnrolling && Unroll == 1) dbgs() 940 << "LV: Unrolling disabled by the pass manager\n"); 941 } 942 943 /// Return the loop vectorizer metadata prefix. 944 static StringRef Prefix() { return "llvm.loop.vectorize."; } 945 946 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const { 947 SmallVector<Value*, 2> Vals; 948 Vals.push_back(MDString::get(Context, Name)); 949 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 950 return MDNode::get(Context, Vals); 951 } 952 953 /// Mark the loop L as already vectorized by setting the width to 1. 954 void setAlreadyVectorized(Loop *L) { 955 LLVMContext &Context = L->getHeader()->getContext(); 956 957 Width = 1; 958 959 // Create a new loop id with one more operand for the already_vectorized 960 // hint. If the loop already has a loop id then copy the existing operands. 961 SmallVector<Value*, 4> Vals(1); 962 if (LoopID) 963 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 964 Vals.push_back(LoopID->getOperand(i)); 965 966 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 967 Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1)); 968 969 MDNode *NewLoopID = MDNode::get(Context, Vals); 970 // Set operand 0 to refer to the loop id itself. 971 NewLoopID->replaceOperandWith(0, NewLoopID); 972 973 L->setLoopID(NewLoopID); 974 if (LoopID) 975 LoopID->replaceAllUsesWith(NewLoopID); 976 977 LoopID = NewLoopID; 978 } 979 980 std::string emitRemark() const { 981 Report R; 982 R << "vectorization "; 983 switch (Force) { 984 case LoopVectorizeHints::FK_Disabled: 985 R << "is explicitly disabled"; 986 break; 987 case LoopVectorizeHints::FK_Enabled: 988 R << "is explicitly enabled"; 989 if (Width != 0 && Unroll != 0) 990 R << " with width " << Width << " and interleave count " << Unroll; 991 else if (Width != 0) 992 R << " with width " << Width; 993 else if (Unroll != 0) 994 R << " with interleave count " << Unroll; 995 break; 996 case LoopVectorizeHints::FK_Undefined: 997 R << "was not specified"; 998 break; 999 } 1000 return R.str(); 1001 } 1002 1003 unsigned getWidth() const { return Width; } 1004 unsigned getUnroll() const { return Unroll; } 1005 enum ForceKind getForce() const { return Force; } 1006 MDNode *getLoopID() const { return LoopID; } 1007 1008 private: 1009 /// Find hints specified in the loop metadata. 1010 void getHints(const Loop *L) { 1011 if (!LoopID) 1012 return; 1013 1014 // First operand should refer to the loop id itself. 1015 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1016 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1017 1018 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1019 const MDString *S = nullptr; 1020 SmallVector<Value*, 4> Args; 1021 1022 // The expected hint is either a MDString or a MDNode with the first 1023 // operand a MDString. 1024 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1025 if (!MD || MD->getNumOperands() == 0) 1026 continue; 1027 S = dyn_cast<MDString>(MD->getOperand(0)); 1028 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1029 Args.push_back(MD->getOperand(i)); 1030 } else { 1031 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1032 assert(Args.size() == 0 && "too many arguments for MDString"); 1033 } 1034 1035 if (!S) 1036 continue; 1037 1038 // Check if the hint starts with the vectorizer prefix. 1039 StringRef Hint = S->getString(); 1040 if (!Hint.startswith(Prefix())) 1041 continue; 1042 // Remove the prefix. 1043 Hint = Hint.substr(Prefix().size(), StringRef::npos); 1044 1045 if (Args.size() == 1) 1046 getHint(Hint, Args[0]); 1047 } 1048 } 1049 1050 // Check string hint with one operand. 1051 void getHint(StringRef Hint, Value *Arg) { 1052 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 1053 if (!C) return; 1054 unsigned Val = C->getZExtValue(); 1055 1056 if (Hint == "width") { 1057 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 1058 Width = Val; 1059 else 1060 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 1061 } else if (Hint == "unroll") { 1062 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 1063 Unroll = Val; 1064 else 1065 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 1066 } else if (Hint == "enable") { 1067 if (C->getBitWidth() == 1) 1068 Force = Val == 1 ? LoopVectorizeHints::FK_Enabled 1069 : LoopVectorizeHints::FK_Disabled; 1070 else 1071 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n"); 1072 } else { 1073 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 1074 } 1075 } 1076 1077 /// Vectorization width. 1078 unsigned Width; 1079 /// Vectorization unroll factor. 1080 unsigned Unroll; 1081 /// Vectorization forced 1082 enum ForceKind Force; 1083 1084 MDNode *LoopID; 1085 }; 1086 1087 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1088 if (L.empty()) 1089 return V.push_back(&L); 1090 1091 for (Loop *InnerL : L) 1092 addInnerLoop(*InnerL, V); 1093 } 1094 1095 /// The LoopVectorize Pass. 1096 struct LoopVectorize : public FunctionPass { 1097 /// Pass identification, replacement for typeid 1098 static char ID; 1099 1100 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1101 : FunctionPass(ID), 1102 DisableUnrolling(NoUnrolling), 1103 AlwaysVectorize(AlwaysVectorize) { 1104 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1105 } 1106 1107 ScalarEvolution *SE; 1108 const DataLayout *DL; 1109 LoopInfo *LI; 1110 TargetTransformInfo *TTI; 1111 DominatorTree *DT; 1112 BlockFrequencyInfo *BFI; 1113 TargetLibraryInfo *TLI; 1114 bool DisableUnrolling; 1115 bool AlwaysVectorize; 1116 1117 BlockFrequency ColdEntryFreq; 1118 1119 bool runOnFunction(Function &F) override { 1120 SE = &getAnalysis<ScalarEvolution>(); 1121 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1122 DL = DLP ? &DLP->getDataLayout() : nullptr; 1123 LI = &getAnalysis<LoopInfo>(); 1124 TTI = &getAnalysis<TargetTransformInfo>(); 1125 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1126 BFI = &getAnalysis<BlockFrequencyInfo>(); 1127 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1128 1129 // Compute some weights outside of the loop over the loops. Compute this 1130 // using a BranchProbability to re-use its scaling math. 1131 const BranchProbability ColdProb(1, 5); // 20% 1132 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1133 1134 // If the target claims to have no vector registers don't attempt 1135 // vectorization. 1136 if (!TTI->getNumberOfRegisters(true)) 1137 return false; 1138 1139 if (!DL) { 1140 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1141 << ": Missing data layout\n"); 1142 return false; 1143 } 1144 1145 // Build up a worklist of inner-loops to vectorize. This is necessary as 1146 // the act of vectorizing or partially unrolling a loop creates new loops 1147 // and can invalidate iterators across the loops. 1148 SmallVector<Loop *, 8> Worklist; 1149 1150 for (Loop *L : *LI) 1151 addInnerLoop(*L, Worklist); 1152 1153 LoopsAnalyzed += Worklist.size(); 1154 1155 // Now walk the identified inner loops. 1156 bool Changed = false; 1157 while (!Worklist.empty()) 1158 Changed |= processLoop(Worklist.pop_back_val()); 1159 1160 // Process each loop nest in the function. 1161 return Changed; 1162 } 1163 1164 bool processLoop(Loop *L) { 1165 assert(L->empty() && "Only process inner loops."); 1166 1167 #ifndef NDEBUG 1168 const std::string DebugLocStr = getDebugLocString(L); 1169 #endif /* NDEBUG */ 1170 1171 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1172 << L->getHeader()->getParent()->getName() << "\" from " 1173 << DebugLocStr << "\n"); 1174 1175 LoopVectorizeHints Hints(L, DisableUnrolling); 1176 1177 DEBUG(dbgs() << "LV: Loop hints:" 1178 << " force=" 1179 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1180 ? "disabled" 1181 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1182 ? "enabled" 1183 : "?")) << " width=" << Hints.getWidth() 1184 << " unroll=" << Hints.getUnroll() << "\n"); 1185 1186 // Function containing loop 1187 Function *F = L->getHeader()->getParent(); 1188 1189 // Looking at the diagnostic output is the only way to determine if a loop 1190 // was vectorized (other than looking at the IR or machine code), so it 1191 // is important to generate an optimization remark for each loop. Most of 1192 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1193 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1194 // less verbose reporting vectorized loops and unvectorized loops that may 1195 // benefit from vectorization, respectively. 1196 1197 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1198 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1199 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1200 L->getStartLoc(), Hints.emitRemark()); 1201 return false; 1202 } 1203 1204 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1205 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1206 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1207 L->getStartLoc(), Hints.emitRemark()); 1208 return false; 1209 } 1210 1211 if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) { 1212 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1213 emitOptimizationRemarkAnalysis( 1214 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1215 "loop not vectorized: vector width and interleave count are " 1216 "explicitly set to 1"); 1217 return false; 1218 } 1219 1220 // Check the loop for a trip count threshold: 1221 // do not vectorize loops with a tiny trip count. 1222 BasicBlock *Latch = L->getLoopLatch(); 1223 const unsigned TC = SE->getSmallConstantTripCount(L, Latch); 1224 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1225 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1226 << "This loop is not worth vectorizing."); 1227 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1228 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1229 else { 1230 DEBUG(dbgs() << "\n"); 1231 emitOptimizationRemarkAnalysis( 1232 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1233 "vectorization is not beneficial and is not explicitly forced"); 1234 return false; 1235 } 1236 } 1237 1238 // Check if it is legal to vectorize the loop. 1239 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, F); 1240 if (!LVL.canVectorize()) { 1241 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1242 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1243 L->getStartLoc(), Hints.emitRemark()); 1244 return false; 1245 } 1246 1247 // Use the cost model. 1248 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 1249 1250 // Check the function attributes to find out if this function should be 1251 // optimized for size. 1252 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1253 F->hasFnAttribute(Attribute::OptimizeForSize); 1254 1255 // Compute the weighted frequency of this loop being executed and see if it 1256 // is less than 20% of the function entry baseline frequency. Note that we 1257 // always have a canonical loop here because we think we *can* vectoriez. 1258 // FIXME: This is hidden behind a flag due to pervasive problems with 1259 // exactly what block frequency models. 1260 if (LoopVectorizeWithBlockFrequency) { 1261 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1262 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1263 LoopEntryFreq < ColdEntryFreq) 1264 OptForSize = true; 1265 } 1266 1267 // Check the function attributes to see if implicit floats are allowed.a 1268 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1269 // an integer loop and the vector instructions selected are purely integer 1270 // vector instructions? 1271 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1272 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1273 "attribute is used.\n"); 1274 emitOptimizationRemarkAnalysis( 1275 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1276 "loop not vectorized due to NoImplicitFloat attribute"); 1277 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1278 L->getStartLoc(), Hints.emitRemark()); 1279 return false; 1280 } 1281 1282 // Select the optimal vectorization factor. 1283 const LoopVectorizationCostModel::VectorizationFactor VF = 1284 CM.selectVectorizationFactor(OptForSize, Hints.getWidth(), 1285 Hints.getForce() == 1286 LoopVectorizeHints::FK_Enabled); 1287 1288 // Select the unroll factor. 1289 const unsigned UF = 1290 CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost); 1291 1292 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1293 << DebugLocStr << '\n'); 1294 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1295 1296 if (VF.Width == 1) { 1297 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1298 1299 if (UF == 1) { 1300 emitOptimizationRemarkAnalysis( 1301 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1302 "not beneficial to vectorize and user disabled interleaving"); 1303 return false; 1304 } 1305 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1306 1307 // Report the unrolling decision. 1308 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1309 Twine("unrolled with interleaving factor " + 1310 Twine(UF) + 1311 " (vectorization not beneficial)")); 1312 1313 // We decided not to vectorize, but we may want to unroll. 1314 1315 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1316 Unroller.vectorize(&LVL); 1317 } else { 1318 // If we decided that it is *legal* to vectorize the loop then do it. 1319 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1320 LB.vectorize(&LVL); 1321 ++LoopsVectorized; 1322 1323 // Report the vectorization decision. 1324 emitOptimizationRemark( 1325 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1326 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1327 ", unrolling interleave factor: " + Twine(UF) + ")"); 1328 } 1329 1330 // Mark the loop as already vectorized to avoid vectorizing again. 1331 Hints.setAlreadyVectorized(L); 1332 1333 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1334 return true; 1335 } 1336 1337 void getAnalysisUsage(AnalysisUsage &AU) const override { 1338 AU.addRequiredID(LoopSimplifyID); 1339 AU.addRequiredID(LCSSAID); 1340 AU.addRequired<BlockFrequencyInfo>(); 1341 AU.addRequired<DominatorTreeWrapperPass>(); 1342 AU.addRequired<LoopInfo>(); 1343 AU.addRequired<ScalarEvolution>(); 1344 AU.addRequired<TargetTransformInfo>(); 1345 AU.addPreserved<LoopInfo>(); 1346 AU.addPreserved<DominatorTreeWrapperPass>(); 1347 } 1348 1349 }; 1350 1351 } // end anonymous namespace 1352 1353 //===----------------------------------------------------------------------===// 1354 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1355 // LoopVectorizationCostModel. 1356 //===----------------------------------------------------------------------===// 1357 1358 static Value *stripIntegerCast(Value *V) { 1359 if (CastInst *CI = dyn_cast<CastInst>(V)) 1360 if (CI->getOperand(0)->getType()->isIntegerTy()) 1361 return CI->getOperand(0); 1362 return V; 1363 } 1364 1365 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1366 /// 1367 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1368 /// \p Ptr. 1369 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1370 ValueToValueMap &PtrToStride, 1371 Value *Ptr, Value *OrigPtr = nullptr) { 1372 1373 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1374 1375 // If there is an entry in the map return the SCEV of the pointer with the 1376 // symbolic stride replaced by one. 1377 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1378 if (SI != PtrToStride.end()) { 1379 Value *StrideVal = SI->second; 1380 1381 // Strip casts. 1382 StrideVal = stripIntegerCast(StrideVal); 1383 1384 // Replace symbolic stride by one. 1385 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1386 ValueToValueMap RewriteMap; 1387 RewriteMap[StrideVal] = One; 1388 1389 const SCEV *ByOne = 1390 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1391 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1392 << "\n"); 1393 return ByOne; 1394 } 1395 1396 // Otherwise, just return the SCEV of the original pointer. 1397 return SE->getSCEV(Ptr); 1398 } 1399 1400 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1401 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1402 ValueToValueMap &Strides) { 1403 // Get the stride replaced scev. 1404 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1405 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1406 assert(AR && "Invalid addrec expression"); 1407 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1408 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1409 Pointers.push_back(Ptr); 1410 Starts.push_back(AR->getStart()); 1411 Ends.push_back(ScEnd); 1412 IsWritePtr.push_back(WritePtr); 1413 DependencySetId.push_back(DepSetId); 1414 } 1415 1416 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1417 // We need to place the broadcast of invariant variables outside the loop. 1418 Instruction *Instr = dyn_cast<Instruction>(V); 1419 bool NewInstr = 1420 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1421 Instr->getParent()) != LoopVectorBody.end()); 1422 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1423 1424 // Place the code for broadcasting invariant variables in the new preheader. 1425 IRBuilder<>::InsertPointGuard Guard(Builder); 1426 if (Invariant) 1427 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1428 1429 // Broadcast the scalar into all locations in the vector. 1430 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1431 1432 return Shuf; 1433 } 1434 1435 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1436 bool Negate) { 1437 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1438 assert(Val->getType()->getScalarType()->isIntegerTy() && 1439 "Elem must be an integer"); 1440 // Create the types. 1441 Type *ITy = Val->getType()->getScalarType(); 1442 VectorType *Ty = cast<VectorType>(Val->getType()); 1443 int VLen = Ty->getNumElements(); 1444 SmallVector<Constant*, 8> Indices; 1445 1446 // Create a vector of consecutive numbers from zero to VF. 1447 for (int i = 0; i < VLen; ++i) { 1448 int64_t Idx = Negate ? (-i) : i; 1449 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1450 } 1451 1452 // Add the consecutive indices to the vector value. 1453 Constant *Cv = ConstantVector::get(Indices); 1454 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1455 return Builder.CreateAdd(Val, Cv, "induction"); 1456 } 1457 1458 /// \brief Find the operand of the GEP that should be checked for consecutive 1459 /// stores. This ignores trailing indices that have no effect on the final 1460 /// pointer. 1461 static unsigned getGEPInductionOperand(const DataLayout *DL, 1462 const GetElementPtrInst *Gep) { 1463 unsigned LastOperand = Gep->getNumOperands() - 1; 1464 unsigned GEPAllocSize = DL->getTypeAllocSize( 1465 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1466 1467 // Walk backwards and try to peel off zeros. 1468 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1469 // Find the type we're currently indexing into. 1470 gep_type_iterator GEPTI = gep_type_begin(Gep); 1471 std::advance(GEPTI, LastOperand - 1); 1472 1473 // If it's a type with the same allocation size as the result of the GEP we 1474 // can peel off the zero index. 1475 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1476 break; 1477 --LastOperand; 1478 } 1479 1480 return LastOperand; 1481 } 1482 1483 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1484 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1485 // Make sure that the pointer does not point to structs. 1486 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1487 return 0; 1488 1489 // If this value is a pointer induction variable we know it is consecutive. 1490 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1491 if (Phi && Inductions.count(Phi)) { 1492 InductionInfo II = Inductions[Phi]; 1493 if (IK_PtrInduction == II.IK) 1494 return 1; 1495 else if (IK_ReversePtrInduction == II.IK) 1496 return -1; 1497 } 1498 1499 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1500 if (!Gep) 1501 return 0; 1502 1503 unsigned NumOperands = Gep->getNumOperands(); 1504 Value *GpPtr = Gep->getPointerOperand(); 1505 // If this GEP value is a consecutive pointer induction variable and all of 1506 // the indices are constant then we know it is consecutive. We can 1507 Phi = dyn_cast<PHINode>(GpPtr); 1508 if (Phi && Inductions.count(Phi)) { 1509 1510 // Make sure that the pointer does not point to structs. 1511 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1512 if (GepPtrType->getElementType()->isAggregateType()) 1513 return 0; 1514 1515 // Make sure that all of the index operands are loop invariant. 1516 for (unsigned i = 1; i < NumOperands; ++i) 1517 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1518 return 0; 1519 1520 InductionInfo II = Inductions[Phi]; 1521 if (IK_PtrInduction == II.IK) 1522 return 1; 1523 else if (IK_ReversePtrInduction == II.IK) 1524 return -1; 1525 } 1526 1527 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1528 1529 // Check that all of the gep indices are uniform except for our induction 1530 // operand. 1531 for (unsigned i = 0; i != NumOperands; ++i) 1532 if (i != InductionOperand && 1533 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1534 return 0; 1535 1536 // We can emit wide load/stores only if the last non-zero index is the 1537 // induction variable. 1538 const SCEV *Last = nullptr; 1539 if (!Strides.count(Gep)) 1540 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1541 else { 1542 // Because of the multiplication by a stride we can have a s/zext cast. 1543 // We are going to replace this stride by 1 so the cast is safe to ignore. 1544 // 1545 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1546 // %0 = trunc i64 %indvars.iv to i32 1547 // %mul = mul i32 %0, %Stride1 1548 // %idxprom = zext i32 %mul to i64 << Safe cast. 1549 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1550 // 1551 Last = replaceSymbolicStrideSCEV(SE, Strides, 1552 Gep->getOperand(InductionOperand), Gep); 1553 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1554 Last = 1555 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1556 ? C->getOperand() 1557 : Last; 1558 } 1559 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1560 const SCEV *Step = AR->getStepRecurrence(*SE); 1561 1562 // The memory is consecutive because the last index is consecutive 1563 // and all other indices are loop invariant. 1564 if (Step->isOne()) 1565 return 1; 1566 if (Step->isAllOnesValue()) 1567 return -1; 1568 } 1569 1570 return 0; 1571 } 1572 1573 bool LoopVectorizationLegality::isUniform(Value *V) { 1574 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1575 } 1576 1577 InnerLoopVectorizer::VectorParts& 1578 InnerLoopVectorizer::getVectorValue(Value *V) { 1579 assert(V != Induction && "The new induction variable should not be used."); 1580 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1581 1582 // If we have a stride that is replaced by one, do it here. 1583 if (Legal->hasStride(V)) 1584 V = ConstantInt::get(V->getType(), 1); 1585 1586 // If we have this scalar in the map, return it. 1587 if (WidenMap.has(V)) 1588 return WidenMap.get(V); 1589 1590 // If this scalar is unknown, assume that it is a constant or that it is 1591 // loop invariant. Broadcast V and save the value for future uses. 1592 Value *B = getBroadcastInstrs(V); 1593 return WidenMap.splat(V, B); 1594 } 1595 1596 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1597 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1598 SmallVector<Constant*, 8> ShuffleMask; 1599 for (unsigned i = 0; i < VF; ++i) 1600 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1601 1602 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1603 ConstantVector::get(ShuffleMask), 1604 "reverse"); 1605 } 1606 1607 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1608 // Attempt to issue a wide load. 1609 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1610 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1611 1612 assert((LI || SI) && "Invalid Load/Store instruction"); 1613 1614 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1615 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1616 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1617 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1618 // An alignment of 0 means target abi alignment. We need to use the scalar's 1619 // target abi alignment in such a case. 1620 if (!Alignment) 1621 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1622 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1623 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1624 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1625 1626 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1627 return scalarizeInstruction(Instr, true); 1628 1629 if (ScalarAllocatedSize != VectorElementSize) 1630 return scalarizeInstruction(Instr); 1631 1632 // If the pointer is loop invariant or if it is non-consecutive, 1633 // scalarize the load. 1634 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1635 bool Reverse = ConsecutiveStride < 0; 1636 bool UniformLoad = LI && Legal->isUniform(Ptr); 1637 if (!ConsecutiveStride || UniformLoad) 1638 return scalarizeInstruction(Instr); 1639 1640 Constant *Zero = Builder.getInt32(0); 1641 VectorParts &Entry = WidenMap.get(Instr); 1642 1643 // Handle consecutive loads/stores. 1644 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1645 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1646 setDebugLocFromInst(Builder, Gep); 1647 Value *PtrOperand = Gep->getPointerOperand(); 1648 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1649 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1650 1651 // Create the new GEP with the new induction variable. 1652 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1653 Gep2->setOperand(0, FirstBasePtr); 1654 Gep2->setName("gep.indvar.base"); 1655 Ptr = Builder.Insert(Gep2); 1656 } else if (Gep) { 1657 setDebugLocFromInst(Builder, Gep); 1658 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1659 OrigLoop) && "Base ptr must be invariant"); 1660 1661 // The last index does not have to be the induction. It can be 1662 // consecutive and be a function of the index. For example A[I+1]; 1663 unsigned NumOperands = Gep->getNumOperands(); 1664 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1665 // Create the new GEP with the new induction variable. 1666 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1667 1668 for (unsigned i = 0; i < NumOperands; ++i) { 1669 Value *GepOperand = Gep->getOperand(i); 1670 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1671 1672 // Update last index or loop invariant instruction anchored in loop. 1673 if (i == InductionOperand || 1674 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1675 assert((i == InductionOperand || 1676 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1677 "Must be last index or loop invariant"); 1678 1679 VectorParts &GEPParts = getVectorValue(GepOperand); 1680 Value *Index = GEPParts[0]; 1681 Index = Builder.CreateExtractElement(Index, Zero); 1682 Gep2->setOperand(i, Index); 1683 Gep2->setName("gep.indvar.idx"); 1684 } 1685 } 1686 Ptr = Builder.Insert(Gep2); 1687 } else { 1688 // Use the induction element ptr. 1689 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1690 setDebugLocFromInst(Builder, Ptr); 1691 VectorParts &PtrVal = getVectorValue(Ptr); 1692 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1693 } 1694 1695 // Handle Stores: 1696 if (SI) { 1697 assert(!Legal->isUniform(SI->getPointerOperand()) && 1698 "We do not allow storing to uniform addresses"); 1699 setDebugLocFromInst(Builder, SI); 1700 // We don't want to update the value in the map as it might be used in 1701 // another expression. So don't use a reference type for "StoredVal". 1702 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1703 1704 for (unsigned Part = 0; Part < UF; ++Part) { 1705 // Calculate the pointer for the specific unroll-part. 1706 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1707 1708 if (Reverse) { 1709 // If we store to reverse consecutive memory locations then we need 1710 // to reverse the order of elements in the stored value. 1711 StoredVal[Part] = reverseVector(StoredVal[Part]); 1712 // If the address is consecutive but reversed, then the 1713 // wide store needs to start at the last vector element. 1714 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1715 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1716 } 1717 1718 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1719 DataTy->getPointerTo(AddressSpace)); 1720 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1721 } 1722 return; 1723 } 1724 1725 // Handle loads. 1726 assert(LI && "Must have a load instruction"); 1727 setDebugLocFromInst(Builder, LI); 1728 for (unsigned Part = 0; Part < UF; ++Part) { 1729 // Calculate the pointer for the specific unroll-part. 1730 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1731 1732 if (Reverse) { 1733 // If the address is consecutive but reversed, then the 1734 // wide store needs to start at the last vector element. 1735 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1736 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1737 } 1738 1739 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1740 DataTy->getPointerTo(AddressSpace)); 1741 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1742 cast<LoadInst>(LI)->setAlignment(Alignment); 1743 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1744 } 1745 } 1746 1747 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1748 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1749 // Holds vector parameters or scalars, in case of uniform vals. 1750 SmallVector<VectorParts, 4> Params; 1751 1752 setDebugLocFromInst(Builder, Instr); 1753 1754 // Find all of the vectorized parameters. 1755 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1756 Value *SrcOp = Instr->getOperand(op); 1757 1758 // If we are accessing the old induction variable, use the new one. 1759 if (SrcOp == OldInduction) { 1760 Params.push_back(getVectorValue(SrcOp)); 1761 continue; 1762 } 1763 1764 // Try using previously calculated values. 1765 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1766 1767 // If the src is an instruction that appeared earlier in the basic block 1768 // then it should already be vectorized. 1769 if (SrcInst && OrigLoop->contains(SrcInst)) { 1770 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1771 // The parameter is a vector value from earlier. 1772 Params.push_back(WidenMap.get(SrcInst)); 1773 } else { 1774 // The parameter is a scalar from outside the loop. Maybe even a constant. 1775 VectorParts Scalars; 1776 Scalars.append(UF, SrcOp); 1777 Params.push_back(Scalars); 1778 } 1779 } 1780 1781 assert(Params.size() == Instr->getNumOperands() && 1782 "Invalid number of operands"); 1783 1784 // Does this instruction return a value ? 1785 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1786 1787 Value *UndefVec = IsVoidRetTy ? nullptr : 1788 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1789 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1790 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1791 1792 Instruction *InsertPt = Builder.GetInsertPoint(); 1793 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1794 BasicBlock *CondBlock = nullptr; 1795 1796 VectorParts Cond; 1797 Loop *VectorLp = nullptr; 1798 if (IfPredicateStore) { 1799 assert(Instr->getParent()->getSinglePredecessor() && 1800 "Only support single predecessor blocks"); 1801 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1802 Instr->getParent()); 1803 VectorLp = LI->getLoopFor(IfBlock); 1804 assert(VectorLp && "Must have a loop for this block"); 1805 } 1806 1807 // For each vector unroll 'part': 1808 for (unsigned Part = 0; Part < UF; ++Part) { 1809 // For each scalar that we create: 1810 for (unsigned Width = 0; Width < VF; ++Width) { 1811 1812 // Start if-block. 1813 Value *Cmp = nullptr; 1814 if (IfPredicateStore) { 1815 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1816 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1817 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1818 LoopVectorBody.push_back(CondBlock); 1819 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1820 // Update Builder with newly created basic block. 1821 Builder.SetInsertPoint(InsertPt); 1822 } 1823 1824 Instruction *Cloned = Instr->clone(); 1825 if (!IsVoidRetTy) 1826 Cloned->setName(Instr->getName() + ".cloned"); 1827 // Replace the operands of the cloned instructions with extracted scalars. 1828 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1829 Value *Op = Params[op][Part]; 1830 // Param is a vector. Need to extract the right lane. 1831 if (Op->getType()->isVectorTy()) 1832 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1833 Cloned->setOperand(op, Op); 1834 } 1835 1836 // Place the cloned scalar in the new loop. 1837 Builder.Insert(Cloned); 1838 1839 // If the original scalar returns a value we need to place it in a vector 1840 // so that future users will be able to use it. 1841 if (!IsVoidRetTy) 1842 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1843 Builder.getInt32(Width)); 1844 // End if-block. 1845 if (IfPredicateStore) { 1846 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1847 LoopVectorBody.push_back(NewIfBlock); 1848 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 1849 Builder.SetInsertPoint(InsertPt); 1850 Instruction *OldBr = IfBlock->getTerminator(); 1851 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1852 OldBr->eraseFromParent(); 1853 IfBlock = NewIfBlock; 1854 } 1855 } 1856 } 1857 } 1858 1859 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1860 Instruction *Loc) { 1861 if (FirstInst) 1862 return FirstInst; 1863 if (Instruction *I = dyn_cast<Instruction>(V)) 1864 return I->getParent() == Loc->getParent() ? I : nullptr; 1865 return nullptr; 1866 } 1867 1868 std::pair<Instruction *, Instruction *> 1869 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1870 Instruction *tnullptr = nullptr; 1871 if (!Legal->mustCheckStrides()) 1872 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1873 1874 IRBuilder<> ChkBuilder(Loc); 1875 1876 // Emit checks. 1877 Value *Check = nullptr; 1878 Instruction *FirstInst = nullptr; 1879 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1880 SE = Legal->strides_end(); 1881 SI != SE; ++SI) { 1882 Value *Ptr = stripIntegerCast(*SI); 1883 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1884 "stride.chk"); 1885 // Store the first instruction we create. 1886 FirstInst = getFirstInst(FirstInst, C, Loc); 1887 if (Check) 1888 Check = ChkBuilder.CreateOr(Check, C); 1889 else 1890 Check = C; 1891 } 1892 1893 // We have to do this trickery because the IRBuilder might fold the check to a 1894 // constant expression in which case there is no Instruction anchored in a 1895 // the block. 1896 LLVMContext &Ctx = Loc->getContext(); 1897 Instruction *TheCheck = 1898 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1899 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1900 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1901 1902 return std::make_pair(FirstInst, TheCheck); 1903 } 1904 1905 std::pair<Instruction *, Instruction *> 1906 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 1907 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1908 Legal->getRuntimePointerCheck(); 1909 1910 Instruction *tnullptr = nullptr; 1911 if (!PtrRtCheck->Need) 1912 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1913 1914 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1915 SmallVector<TrackingVH<Value> , 2> Starts; 1916 SmallVector<TrackingVH<Value> , 2> Ends; 1917 1918 LLVMContext &Ctx = Loc->getContext(); 1919 SCEVExpander Exp(*SE, "induction"); 1920 Instruction *FirstInst = nullptr; 1921 1922 for (unsigned i = 0; i < NumPointers; ++i) { 1923 Value *Ptr = PtrRtCheck->Pointers[i]; 1924 const SCEV *Sc = SE->getSCEV(Ptr); 1925 1926 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1927 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1928 *Ptr <<"\n"); 1929 Starts.push_back(Ptr); 1930 Ends.push_back(Ptr); 1931 } else { 1932 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1933 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1934 1935 // Use this type for pointer arithmetic. 1936 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1937 1938 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1939 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1940 Starts.push_back(Start); 1941 Ends.push_back(End); 1942 } 1943 } 1944 1945 IRBuilder<> ChkBuilder(Loc); 1946 // Our instructions might fold to a constant. 1947 Value *MemoryRuntimeCheck = nullptr; 1948 for (unsigned i = 0; i < NumPointers; ++i) { 1949 for (unsigned j = i+1; j < NumPointers; ++j) { 1950 // No need to check if two readonly pointers intersect. 1951 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1952 continue; 1953 1954 // Only need to check pointers between two different dependency sets. 1955 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1956 continue; 1957 1958 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1959 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1960 1961 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1962 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1963 "Trying to bounds check pointers with different address spaces"); 1964 1965 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1966 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1967 1968 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1969 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1970 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1971 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1972 1973 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1974 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1975 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1976 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1977 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1978 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1979 if (MemoryRuntimeCheck) { 1980 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1981 "conflict.rdx"); 1982 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1983 } 1984 MemoryRuntimeCheck = IsConflict; 1985 } 1986 } 1987 1988 // We have to do this trickery because the IRBuilder might fold the check to a 1989 // constant expression in which case there is no Instruction anchored in a 1990 // the block. 1991 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1992 ConstantInt::getTrue(Ctx)); 1993 ChkBuilder.Insert(Check, "memcheck.conflict"); 1994 FirstInst = getFirstInst(FirstInst, Check, Loc); 1995 return std::make_pair(FirstInst, Check); 1996 } 1997 1998 void InnerLoopVectorizer::createEmptyLoop() { 1999 /* 2000 In this function we generate a new loop. The new loop will contain 2001 the vectorized instructions while the old loop will continue to run the 2002 scalar remainder. 2003 2004 [ ] <-- Back-edge taken count overflow check. 2005 / | 2006 / v 2007 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2008 | / | 2009 | / v 2010 || [ ] <-- vector pre header. 2011 || | 2012 || v 2013 || [ ] \ 2014 || [ ]_| <-- vector loop. 2015 || | 2016 | \ v 2017 | >[ ] <--- middle-block. 2018 | / | 2019 | / v 2020 -|- >[ ] <--- new preheader. 2021 | | 2022 | v 2023 | [ ] \ 2024 | [ ]_| <-- old scalar loop to handle remainder. 2025 \ | 2026 \ v 2027 >[ ] <-- exit block. 2028 ... 2029 */ 2030 2031 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2032 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2033 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2034 assert(BypassBlock && "Invalid loop structure"); 2035 assert(ExitBlock && "Must have an exit block"); 2036 2037 // Some loops have a single integer induction variable, while other loops 2038 // don't. One example is c++ iterators that often have multiple pointer 2039 // induction variables. In the code below we also support a case where we 2040 // don't have a single induction variable. 2041 OldInduction = Legal->getInduction(); 2042 Type *IdxTy = Legal->getWidestInductionType(); 2043 2044 // Find the loop boundaries. 2045 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2046 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2047 2048 // The exit count might have the type of i64 while the phi is i32. This can 2049 // happen if we have an induction variable that is sign extended before the 2050 // compare. The only way that we get a backedge taken count is that the 2051 // induction variable was signed and as such will not overflow. In such a case 2052 // truncation is legal. 2053 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2054 IdxTy->getPrimitiveSizeInBits()) 2055 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2056 2057 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2058 // Get the total trip count from the count by adding 1. 2059 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2060 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2061 2062 // Expand the trip count and place the new instructions in the preheader. 2063 // Notice that the pre-header does not change, only the loop body. 2064 SCEVExpander Exp(*SE, "induction"); 2065 2066 // We need to test whether the backedge-taken count is uint##_max. Adding one 2067 // to it will cause overflow and an incorrect loop trip count in the vector 2068 // body. In case of overflow we want to directly jump to the scalar remainder 2069 // loop. 2070 Value *BackedgeCount = 2071 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2072 BypassBlock->getTerminator()); 2073 if (BackedgeCount->getType()->isPointerTy()) 2074 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2075 "backedge.ptrcnt.to.int", 2076 BypassBlock->getTerminator()); 2077 Instruction *CheckBCOverflow = 2078 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2079 Constant::getAllOnesValue(BackedgeCount->getType()), 2080 "backedge.overflow", BypassBlock->getTerminator()); 2081 2082 // The loop index does not have to start at Zero. Find the original start 2083 // value from the induction PHI node. If we don't have an induction variable 2084 // then we know that it starts at zero. 2085 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2086 Value *StartIdx = ExtendedIdx = OldInduction ? 2087 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2088 IdxTy): 2089 ConstantInt::get(IdxTy, 0); 2090 2091 // We need an instruction to anchor the overflow check on. StartIdx needs to 2092 // be defined before the overflow check branch. Because the scalar preheader 2093 // is going to merge the start index and so the overflow branch block needs to 2094 // contain a definition of the start index. 2095 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2096 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2097 BypassBlock->getTerminator()); 2098 2099 // Count holds the overall loop count (N). 2100 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2101 BypassBlock->getTerminator()); 2102 2103 LoopBypassBlocks.push_back(BypassBlock); 2104 2105 // Split the single block loop into the two loop structure described above. 2106 BasicBlock *VectorPH = 2107 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2108 BasicBlock *VecBody = 2109 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2110 BasicBlock *MiddleBlock = 2111 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2112 BasicBlock *ScalarPH = 2113 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2114 2115 // Create and register the new vector loop. 2116 Loop* Lp = new Loop(); 2117 Loop *ParentLoop = OrigLoop->getParentLoop(); 2118 2119 // Insert the new loop into the loop nest and register the new basic blocks 2120 // before calling any utilities such as SCEV that require valid LoopInfo. 2121 if (ParentLoop) { 2122 ParentLoop->addChildLoop(Lp); 2123 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2124 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2125 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2126 } else { 2127 LI->addTopLevelLoop(Lp); 2128 } 2129 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2130 2131 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2132 // inside the loop. 2133 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2134 2135 // Generate the induction variable. 2136 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2137 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2138 // The loop step is equal to the vectorization factor (num of SIMD elements) 2139 // times the unroll factor (num of SIMD instructions). 2140 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2141 2142 // This is the IR builder that we use to add all of the logic for bypassing 2143 // the new vector loop. 2144 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2145 setDebugLocFromInst(BypassBuilder, 2146 getDebugLocFromInstOrOperands(OldInduction)); 2147 2148 // We may need to extend the index in case there is a type mismatch. 2149 // We know that the count starts at zero and does not overflow. 2150 if (Count->getType() != IdxTy) { 2151 // The exit count can be of pointer type. Convert it to the correct 2152 // integer type. 2153 if (ExitCount->getType()->isPointerTy()) 2154 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2155 else 2156 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2157 } 2158 2159 // Add the start index to the loop count to get the new end index. 2160 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2161 2162 // Now we need to generate the expression for N - (N % VF), which is 2163 // the part that the vectorized body will execute. 2164 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2165 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2166 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2167 "end.idx.rnd.down"); 2168 2169 // Now, compare the new count to zero. If it is zero skip the vector loop and 2170 // jump to the scalar loop. 2171 Value *Cmp = 2172 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2173 2174 BasicBlock *LastBypassBlock = BypassBlock; 2175 2176 // Generate code to check that the loops trip count that we computed by adding 2177 // one to the backedge-taken count will not overflow. 2178 { 2179 auto PastOverflowCheck = 2180 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2181 BasicBlock *CheckBlock = 2182 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2183 if (ParentLoop) 2184 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2185 LoopBypassBlocks.push_back(CheckBlock); 2186 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2187 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2188 OldTerm->eraseFromParent(); 2189 LastBypassBlock = CheckBlock; 2190 } 2191 2192 // Generate the code to check that the strides we assumed to be one are really 2193 // one. We want the new basic block to start at the first instruction in a 2194 // sequence of instructions that form a check. 2195 Instruction *StrideCheck; 2196 Instruction *FirstCheckInst; 2197 std::tie(FirstCheckInst, StrideCheck) = 2198 addStrideCheck(LastBypassBlock->getTerminator()); 2199 if (StrideCheck) { 2200 // Create a new block containing the stride check. 2201 BasicBlock *CheckBlock = 2202 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2203 if (ParentLoop) 2204 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2205 LoopBypassBlocks.push_back(CheckBlock); 2206 2207 // Replace the branch into the memory check block with a conditional branch 2208 // for the "few elements case". 2209 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2210 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2211 OldTerm->eraseFromParent(); 2212 2213 Cmp = StrideCheck; 2214 LastBypassBlock = CheckBlock; 2215 } 2216 2217 // Generate the code that checks in runtime if arrays overlap. We put the 2218 // checks into a separate block to make the more common case of few elements 2219 // faster. 2220 Instruction *MemRuntimeCheck; 2221 std::tie(FirstCheckInst, MemRuntimeCheck) = 2222 addRuntimeCheck(LastBypassBlock->getTerminator()); 2223 if (MemRuntimeCheck) { 2224 // Create a new block containing the memory check. 2225 BasicBlock *CheckBlock = 2226 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2227 if (ParentLoop) 2228 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2229 LoopBypassBlocks.push_back(CheckBlock); 2230 2231 // Replace the branch into the memory check block with a conditional branch 2232 // for the "few elements case". 2233 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2234 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2235 OldTerm->eraseFromParent(); 2236 2237 Cmp = MemRuntimeCheck; 2238 LastBypassBlock = CheckBlock; 2239 } 2240 2241 LastBypassBlock->getTerminator()->eraseFromParent(); 2242 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2243 LastBypassBlock); 2244 2245 // We are going to resume the execution of the scalar loop. 2246 // Go over all of the induction variables that we found and fix the 2247 // PHIs that are left in the scalar version of the loop. 2248 // The starting values of PHI nodes depend on the counter of the last 2249 // iteration in the vectorized loop. 2250 // If we come from a bypass edge then we need to start from the original 2251 // start value. 2252 2253 // This variable saves the new starting index for the scalar loop. 2254 PHINode *ResumeIndex = nullptr; 2255 LoopVectorizationLegality::InductionList::iterator I, E; 2256 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2257 // Set builder to point to last bypass block. 2258 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2259 for (I = List->begin(), E = List->end(); I != E; ++I) { 2260 PHINode *OrigPhi = I->first; 2261 LoopVectorizationLegality::InductionInfo II = I->second; 2262 2263 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2264 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2265 MiddleBlock->getTerminator()); 2266 // We might have extended the type of the induction variable but we need a 2267 // truncated version for the scalar loop. 2268 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2269 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2270 MiddleBlock->getTerminator()) : nullptr; 2271 2272 // Create phi nodes to merge from the backedge-taken check block. 2273 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2274 ScalarPH->getTerminator()); 2275 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2276 2277 PHINode *BCTruncResumeVal = nullptr; 2278 if (OrigPhi == OldInduction) { 2279 BCTruncResumeVal = 2280 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2281 ScalarPH->getTerminator()); 2282 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2283 } 2284 2285 Value *EndValue = nullptr; 2286 switch (II.IK) { 2287 case LoopVectorizationLegality::IK_NoInduction: 2288 llvm_unreachable("Unknown induction"); 2289 case LoopVectorizationLegality::IK_IntInduction: { 2290 // Handle the integer induction counter. 2291 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2292 2293 // We have the canonical induction variable. 2294 if (OrigPhi == OldInduction) { 2295 // Create a truncated version of the resume value for the scalar loop, 2296 // we might have promoted the type to a larger width. 2297 EndValue = 2298 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2299 // The new PHI merges the original incoming value, in case of a bypass, 2300 // or the value at the end of the vectorized loop. 2301 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2302 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2303 TruncResumeVal->addIncoming(EndValue, VecBody); 2304 2305 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2306 2307 // We know what the end value is. 2308 EndValue = IdxEndRoundDown; 2309 // We also know which PHI node holds it. 2310 ResumeIndex = ResumeVal; 2311 break; 2312 } 2313 2314 // Not the canonical induction variable - add the vector loop count to the 2315 // start value. 2316 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2317 II.StartValue->getType(), 2318 "cast.crd"); 2319 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2320 break; 2321 } 2322 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2323 // Convert the CountRoundDown variable to the PHI size. 2324 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2325 II.StartValue->getType(), 2326 "cast.crd"); 2327 // Handle reverse integer induction counter. 2328 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2329 break; 2330 } 2331 case LoopVectorizationLegality::IK_PtrInduction: { 2332 // For pointer induction variables, calculate the offset using 2333 // the end index. 2334 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2335 "ptr.ind.end"); 2336 break; 2337 } 2338 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2339 // The value at the end of the loop for the reverse pointer is calculated 2340 // by creating a GEP with a negative index starting from the start value. 2341 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2342 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2343 "rev.ind.end"); 2344 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2345 "rev.ptr.ind.end"); 2346 break; 2347 } 2348 }// end of case 2349 2350 // The new PHI merges the original incoming value, in case of a bypass, 2351 // or the value at the end of the vectorized loop. 2352 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2353 if (OrigPhi == OldInduction) 2354 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2355 else 2356 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2357 } 2358 ResumeVal->addIncoming(EndValue, VecBody); 2359 2360 // Fix the scalar body counter (PHI node). 2361 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2362 2363 // The old induction's phi node in the scalar body needs the truncated 2364 // value. 2365 if (OrigPhi == OldInduction) { 2366 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2367 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2368 } else { 2369 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2370 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2371 } 2372 } 2373 2374 // If we are generating a new induction variable then we also need to 2375 // generate the code that calculates the exit value. This value is not 2376 // simply the end of the counter because we may skip the vectorized body 2377 // in case of a runtime check. 2378 if (!OldInduction){ 2379 assert(!ResumeIndex && "Unexpected resume value found"); 2380 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2381 MiddleBlock->getTerminator()); 2382 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2383 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2384 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2385 } 2386 2387 // Make sure that we found the index where scalar loop needs to continue. 2388 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2389 "Invalid resume Index"); 2390 2391 // Add a check in the middle block to see if we have completed 2392 // all of the iterations in the first vector loop. 2393 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2394 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2395 ResumeIndex, "cmp.n", 2396 MiddleBlock->getTerminator()); 2397 2398 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2399 // Remove the old terminator. 2400 MiddleBlock->getTerminator()->eraseFromParent(); 2401 2402 // Create i+1 and fill the PHINode. 2403 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2404 Induction->addIncoming(StartIdx, VectorPH); 2405 Induction->addIncoming(NextIdx, VecBody); 2406 // Create the compare. 2407 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2408 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2409 2410 // Now we have two terminators. Remove the old one from the block. 2411 VecBody->getTerminator()->eraseFromParent(); 2412 2413 // Get ready to start creating new instructions into the vectorized body. 2414 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2415 2416 // Save the state. 2417 LoopVectorPreHeader = VectorPH; 2418 LoopScalarPreHeader = ScalarPH; 2419 LoopMiddleBlock = MiddleBlock; 2420 LoopExitBlock = ExitBlock; 2421 LoopVectorBody.push_back(VecBody); 2422 LoopScalarBody = OldBasicBlock; 2423 2424 LoopVectorizeHints Hints(Lp, true); 2425 Hints.setAlreadyVectorized(Lp); 2426 } 2427 2428 /// This function returns the identity element (or neutral element) for 2429 /// the operation K. 2430 Constant* 2431 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2432 switch (K) { 2433 case RK_IntegerXor: 2434 case RK_IntegerAdd: 2435 case RK_IntegerOr: 2436 // Adding, Xoring, Oring zero to a number does not change it. 2437 return ConstantInt::get(Tp, 0); 2438 case RK_IntegerMult: 2439 // Multiplying a number by 1 does not change it. 2440 return ConstantInt::get(Tp, 1); 2441 case RK_IntegerAnd: 2442 // AND-ing a number with an all-1 value does not change it. 2443 return ConstantInt::get(Tp, -1, true); 2444 case RK_FloatMult: 2445 // Multiplying a number by 1 does not change it. 2446 return ConstantFP::get(Tp, 1.0L); 2447 case RK_FloatAdd: 2448 // Adding zero to a number does not change it. 2449 return ConstantFP::get(Tp, 0.0L); 2450 default: 2451 llvm_unreachable("Unknown reduction kind"); 2452 } 2453 } 2454 2455 /// This function translates the reduction kind to an LLVM binary operator. 2456 static unsigned 2457 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2458 switch (Kind) { 2459 case LoopVectorizationLegality::RK_IntegerAdd: 2460 return Instruction::Add; 2461 case LoopVectorizationLegality::RK_IntegerMult: 2462 return Instruction::Mul; 2463 case LoopVectorizationLegality::RK_IntegerOr: 2464 return Instruction::Or; 2465 case LoopVectorizationLegality::RK_IntegerAnd: 2466 return Instruction::And; 2467 case LoopVectorizationLegality::RK_IntegerXor: 2468 return Instruction::Xor; 2469 case LoopVectorizationLegality::RK_FloatMult: 2470 return Instruction::FMul; 2471 case LoopVectorizationLegality::RK_FloatAdd: 2472 return Instruction::FAdd; 2473 case LoopVectorizationLegality::RK_IntegerMinMax: 2474 return Instruction::ICmp; 2475 case LoopVectorizationLegality::RK_FloatMinMax: 2476 return Instruction::FCmp; 2477 default: 2478 llvm_unreachable("Unknown reduction operation"); 2479 } 2480 } 2481 2482 Value *createMinMaxOp(IRBuilder<> &Builder, 2483 LoopVectorizationLegality::MinMaxReductionKind RK, 2484 Value *Left, 2485 Value *Right) { 2486 CmpInst::Predicate P = CmpInst::ICMP_NE; 2487 switch (RK) { 2488 default: 2489 llvm_unreachable("Unknown min/max reduction kind"); 2490 case LoopVectorizationLegality::MRK_UIntMin: 2491 P = CmpInst::ICMP_ULT; 2492 break; 2493 case LoopVectorizationLegality::MRK_UIntMax: 2494 P = CmpInst::ICMP_UGT; 2495 break; 2496 case LoopVectorizationLegality::MRK_SIntMin: 2497 P = CmpInst::ICMP_SLT; 2498 break; 2499 case LoopVectorizationLegality::MRK_SIntMax: 2500 P = CmpInst::ICMP_SGT; 2501 break; 2502 case LoopVectorizationLegality::MRK_FloatMin: 2503 P = CmpInst::FCMP_OLT; 2504 break; 2505 case LoopVectorizationLegality::MRK_FloatMax: 2506 P = CmpInst::FCMP_OGT; 2507 break; 2508 } 2509 2510 Value *Cmp; 2511 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2512 RK == LoopVectorizationLegality::MRK_FloatMax) 2513 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2514 else 2515 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2516 2517 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2518 return Select; 2519 } 2520 2521 namespace { 2522 struct CSEDenseMapInfo { 2523 static bool canHandle(Instruction *I) { 2524 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2525 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2526 } 2527 static inline Instruction *getEmptyKey() { 2528 return DenseMapInfo<Instruction *>::getEmptyKey(); 2529 } 2530 static inline Instruction *getTombstoneKey() { 2531 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2532 } 2533 static unsigned getHashValue(Instruction *I) { 2534 assert(canHandle(I) && "Unknown instruction!"); 2535 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2536 I->value_op_end())); 2537 } 2538 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2539 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2540 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2541 return LHS == RHS; 2542 return LHS->isIdenticalTo(RHS); 2543 } 2544 }; 2545 } 2546 2547 /// \brief Check whether this block is a predicated block. 2548 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2549 /// = ...; " blocks. We start with one vectorized basic block. For every 2550 /// conditional block we split this vectorized block. Therefore, every second 2551 /// block will be a predicated one. 2552 static bool isPredicatedBlock(unsigned BlockNum) { 2553 return BlockNum % 2; 2554 } 2555 2556 ///\brief Perform cse of induction variable instructions. 2557 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2558 // Perform simple cse. 2559 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2560 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2561 BasicBlock *BB = BBs[i]; 2562 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2563 Instruction *In = I++; 2564 2565 if (!CSEDenseMapInfo::canHandle(In)) 2566 continue; 2567 2568 // Check if we can replace this instruction with any of the 2569 // visited instructions. 2570 if (Instruction *V = CSEMap.lookup(In)) { 2571 In->replaceAllUsesWith(V); 2572 In->eraseFromParent(); 2573 continue; 2574 } 2575 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2576 // ...;" blocks for predicated stores. Every second block is a predicated 2577 // block. 2578 if (isPredicatedBlock(i)) 2579 continue; 2580 2581 CSEMap[In] = In; 2582 } 2583 } 2584 } 2585 2586 /// \brief Adds a 'fast' flag to floating point operations. 2587 static Value *addFastMathFlag(Value *V) { 2588 if (isa<FPMathOperator>(V)){ 2589 FastMathFlags Flags; 2590 Flags.setUnsafeAlgebra(); 2591 cast<Instruction>(V)->setFastMathFlags(Flags); 2592 } 2593 return V; 2594 } 2595 2596 void InnerLoopVectorizer::vectorizeLoop() { 2597 //===------------------------------------------------===// 2598 // 2599 // Notice: any optimization or new instruction that go 2600 // into the code below should be also be implemented in 2601 // the cost-model. 2602 // 2603 //===------------------------------------------------===// 2604 Constant *Zero = Builder.getInt32(0); 2605 2606 // In order to support reduction variables we need to be able to vectorize 2607 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2608 // stages. First, we create a new vector PHI node with no incoming edges. 2609 // We use this value when we vectorize all of the instructions that use the 2610 // PHI. Next, after all of the instructions in the block are complete we 2611 // add the new incoming edges to the PHI. At this point all of the 2612 // instructions in the basic block are vectorized, so we can use them to 2613 // construct the PHI. 2614 PhiVector RdxPHIsToFix; 2615 2616 // Scan the loop in a topological order to ensure that defs are vectorized 2617 // before users. 2618 LoopBlocksDFS DFS(OrigLoop); 2619 DFS.perform(LI); 2620 2621 // Vectorize all of the blocks in the original loop. 2622 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2623 be = DFS.endRPO(); bb != be; ++bb) 2624 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2625 2626 // At this point every instruction in the original loop is widened to 2627 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2628 // that we vectorized. The PHI nodes are currently empty because we did 2629 // not want to introduce cycles. Notice that the remaining PHI nodes 2630 // that we need to fix are reduction variables. 2631 2632 // Create the 'reduced' values for each of the induction vars. 2633 // The reduced values are the vector values that we scalarize and combine 2634 // after the loop is finished. 2635 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2636 it != e; ++it) { 2637 PHINode *RdxPhi = *it; 2638 assert(RdxPhi && "Unable to recover vectorized PHI"); 2639 2640 // Find the reduction variable descriptor. 2641 assert(Legal->getReductionVars()->count(RdxPhi) && 2642 "Unable to find the reduction variable"); 2643 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2644 (*Legal->getReductionVars())[RdxPhi]; 2645 2646 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2647 2648 // We need to generate a reduction vector from the incoming scalar. 2649 // To do so, we need to generate the 'identity' vector and override 2650 // one of the elements with the incoming scalar reduction. We need 2651 // to do it in the vector-loop preheader. 2652 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2653 2654 // This is the vector-clone of the value that leaves the loop. 2655 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2656 Type *VecTy = VectorExit[0]->getType(); 2657 2658 // Find the reduction identity variable. Zero for addition, or, xor, 2659 // one for multiplication, -1 for And. 2660 Value *Identity; 2661 Value *VectorStart; 2662 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2663 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2664 // MinMax reduction have the start value as their identify. 2665 if (VF == 1) { 2666 VectorStart = Identity = RdxDesc.StartValue; 2667 } else { 2668 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2669 RdxDesc.StartValue, 2670 "minmax.ident"); 2671 } 2672 } else { 2673 // Handle other reduction kinds: 2674 Constant *Iden = 2675 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2676 VecTy->getScalarType()); 2677 if (VF == 1) { 2678 Identity = Iden; 2679 // This vector is the Identity vector where the first element is the 2680 // incoming scalar reduction. 2681 VectorStart = RdxDesc.StartValue; 2682 } else { 2683 Identity = ConstantVector::getSplat(VF, Iden); 2684 2685 // This vector is the Identity vector where the first element is the 2686 // incoming scalar reduction. 2687 VectorStart = Builder.CreateInsertElement(Identity, 2688 RdxDesc.StartValue, Zero); 2689 } 2690 } 2691 2692 // Fix the vector-loop phi. 2693 // We created the induction variable so we know that the 2694 // preheader is the first entry. 2695 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2696 2697 // Reductions do not have to start at zero. They can start with 2698 // any loop invariant values. 2699 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2700 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2701 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2702 VectorParts &Val = getVectorValue(LoopVal); 2703 for (unsigned part = 0; part < UF; ++part) { 2704 // Make sure to add the reduction stat value only to the 2705 // first unroll part. 2706 Value *StartVal = (part == 0) ? VectorStart : Identity; 2707 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2708 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2709 LoopVectorBody.back()); 2710 } 2711 2712 // Before each round, move the insertion point right between 2713 // the PHIs and the values we are going to write. 2714 // This allows us to write both PHINodes and the extractelement 2715 // instructions. 2716 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2717 2718 VectorParts RdxParts; 2719 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2720 for (unsigned part = 0; part < UF; ++part) { 2721 // This PHINode contains the vectorized reduction variable, or 2722 // the initial value vector, if we bypass the vector loop. 2723 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2724 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2725 Value *StartVal = (part == 0) ? VectorStart : Identity; 2726 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2727 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2728 NewPhi->addIncoming(RdxExitVal[part], 2729 LoopVectorBody.back()); 2730 RdxParts.push_back(NewPhi); 2731 } 2732 2733 // Reduce all of the unrolled parts into a single vector. 2734 Value *ReducedPartRdx = RdxParts[0]; 2735 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2736 setDebugLocFromInst(Builder, ReducedPartRdx); 2737 for (unsigned part = 1; part < UF; ++part) { 2738 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2739 // Floating point operations had to be 'fast' to enable the reduction. 2740 ReducedPartRdx = addFastMathFlag( 2741 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2742 ReducedPartRdx, "bin.rdx")); 2743 else 2744 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2745 ReducedPartRdx, RdxParts[part]); 2746 } 2747 2748 if (VF > 1) { 2749 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2750 // and vector ops, reducing the set of values being computed by half each 2751 // round. 2752 assert(isPowerOf2_32(VF) && 2753 "Reduction emission only supported for pow2 vectors!"); 2754 Value *TmpVec = ReducedPartRdx; 2755 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2756 for (unsigned i = VF; i != 1; i >>= 1) { 2757 // Move the upper half of the vector to the lower half. 2758 for (unsigned j = 0; j != i/2; ++j) 2759 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2760 2761 // Fill the rest of the mask with undef. 2762 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2763 UndefValue::get(Builder.getInt32Ty())); 2764 2765 Value *Shuf = 2766 Builder.CreateShuffleVector(TmpVec, 2767 UndefValue::get(TmpVec->getType()), 2768 ConstantVector::get(ShuffleMask), 2769 "rdx.shuf"); 2770 2771 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2772 // Floating point operations had to be 'fast' to enable the reduction. 2773 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2774 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2775 else 2776 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2777 } 2778 2779 // The result is in the first element of the vector. 2780 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2781 Builder.getInt32(0)); 2782 } 2783 2784 // Create a phi node that merges control-flow from the backedge-taken check 2785 // block and the middle block. 2786 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2787 LoopScalarPreHeader->getTerminator()); 2788 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2789 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2790 2791 // Now, we need to fix the users of the reduction variable 2792 // inside and outside of the scalar remainder loop. 2793 // We know that the loop is in LCSSA form. We need to update the 2794 // PHI nodes in the exit blocks. 2795 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2796 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2797 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2798 if (!LCSSAPhi) break; 2799 2800 // All PHINodes need to have a single entry edge, or two if 2801 // we already fixed them. 2802 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2803 2804 // We found our reduction value exit-PHI. Update it with the 2805 // incoming bypass edge. 2806 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2807 // Add an edge coming from the bypass. 2808 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2809 break; 2810 } 2811 }// end of the LCSSA phi scan. 2812 2813 // Fix the scalar loop reduction variable with the incoming reduction sum 2814 // from the vector body and from the backedge value. 2815 int IncomingEdgeBlockIdx = 2816 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2817 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2818 // Pick the other block. 2819 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2820 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2821 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2822 }// end of for each redux variable. 2823 2824 fixLCSSAPHIs(); 2825 2826 // Remove redundant induction instructions. 2827 cse(LoopVectorBody); 2828 } 2829 2830 void InnerLoopVectorizer::fixLCSSAPHIs() { 2831 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2832 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2833 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2834 if (!LCSSAPhi) break; 2835 if (LCSSAPhi->getNumIncomingValues() == 1) 2836 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2837 LoopMiddleBlock); 2838 } 2839 } 2840 2841 InnerLoopVectorizer::VectorParts 2842 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2843 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2844 "Invalid edge"); 2845 2846 // Look for cached value. 2847 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2848 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2849 if (ECEntryIt != MaskCache.end()) 2850 return ECEntryIt->second; 2851 2852 VectorParts SrcMask = createBlockInMask(Src); 2853 2854 // The terminator has to be a branch inst! 2855 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2856 assert(BI && "Unexpected terminator found"); 2857 2858 if (BI->isConditional()) { 2859 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2860 2861 if (BI->getSuccessor(0) != Dst) 2862 for (unsigned part = 0; part < UF; ++part) 2863 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2864 2865 for (unsigned part = 0; part < UF; ++part) 2866 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2867 2868 MaskCache[Edge] = EdgeMask; 2869 return EdgeMask; 2870 } 2871 2872 MaskCache[Edge] = SrcMask; 2873 return SrcMask; 2874 } 2875 2876 InnerLoopVectorizer::VectorParts 2877 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2878 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2879 2880 // Loop incoming mask is all-one. 2881 if (OrigLoop->getHeader() == BB) { 2882 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2883 return getVectorValue(C); 2884 } 2885 2886 // This is the block mask. We OR all incoming edges, and with zero. 2887 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2888 VectorParts BlockMask = getVectorValue(Zero); 2889 2890 // For each pred: 2891 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2892 VectorParts EM = createEdgeMask(*it, BB); 2893 for (unsigned part = 0; part < UF; ++part) 2894 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2895 } 2896 2897 return BlockMask; 2898 } 2899 2900 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2901 InnerLoopVectorizer::VectorParts &Entry, 2902 unsigned UF, unsigned VF, PhiVector *PV) { 2903 PHINode* P = cast<PHINode>(PN); 2904 // Handle reduction variables: 2905 if (Legal->getReductionVars()->count(P)) { 2906 for (unsigned part = 0; part < UF; ++part) { 2907 // This is phase one of vectorizing PHIs. 2908 Type *VecTy = (VF == 1) ? PN->getType() : 2909 VectorType::get(PN->getType(), VF); 2910 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2911 LoopVectorBody.back()-> getFirstInsertionPt()); 2912 } 2913 PV->push_back(P); 2914 return; 2915 } 2916 2917 setDebugLocFromInst(Builder, P); 2918 // Check for PHI nodes that are lowered to vector selects. 2919 if (P->getParent() != OrigLoop->getHeader()) { 2920 // We know that all PHIs in non-header blocks are converted into 2921 // selects, so we don't have to worry about the insertion order and we 2922 // can just use the builder. 2923 // At this point we generate the predication tree. There may be 2924 // duplications since this is a simple recursive scan, but future 2925 // optimizations will clean it up. 2926 2927 unsigned NumIncoming = P->getNumIncomingValues(); 2928 2929 // Generate a sequence of selects of the form: 2930 // SELECT(Mask3, In3, 2931 // SELECT(Mask2, In2, 2932 // ( ...))) 2933 for (unsigned In = 0; In < NumIncoming; In++) { 2934 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2935 P->getParent()); 2936 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2937 2938 for (unsigned part = 0; part < UF; ++part) { 2939 // We might have single edge PHIs (blocks) - use an identity 2940 // 'select' for the first PHI operand. 2941 if (In == 0) 2942 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2943 In0[part]); 2944 else 2945 // Select between the current value and the previous incoming edge 2946 // based on the incoming mask. 2947 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2948 Entry[part], "predphi"); 2949 } 2950 } 2951 return; 2952 } 2953 2954 // This PHINode must be an induction variable. 2955 // Make sure that we know about it. 2956 assert(Legal->getInductionVars()->count(P) && 2957 "Not an induction variable"); 2958 2959 LoopVectorizationLegality::InductionInfo II = 2960 Legal->getInductionVars()->lookup(P); 2961 2962 switch (II.IK) { 2963 case LoopVectorizationLegality::IK_NoInduction: 2964 llvm_unreachable("Unknown induction"); 2965 case LoopVectorizationLegality::IK_IntInduction: { 2966 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2967 Type *PhiTy = P->getType(); 2968 Value *Broadcasted; 2969 if (P == OldInduction) { 2970 // Handle the canonical induction variable. We might have had to 2971 // extend the type. 2972 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2973 } else { 2974 // Handle other induction variables that are now based on the 2975 // canonical one. 2976 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2977 "normalized.idx"); 2978 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2979 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2980 "offset.idx"); 2981 } 2982 Broadcasted = getBroadcastInstrs(Broadcasted); 2983 // After broadcasting the induction variable we need to make the vector 2984 // consecutive by adding 0, 1, 2, etc. 2985 for (unsigned part = 0; part < UF; ++part) 2986 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 2987 return; 2988 } 2989 case LoopVectorizationLegality::IK_ReverseIntInduction: 2990 case LoopVectorizationLegality::IK_PtrInduction: 2991 case LoopVectorizationLegality::IK_ReversePtrInduction: 2992 // Handle reverse integer and pointer inductions. 2993 Value *StartIdx = ExtendedIdx; 2994 // This is the normalized GEP that starts counting at zero. 2995 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 2996 "normalized.idx"); 2997 2998 // Handle the reverse integer induction variable case. 2999 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3000 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3001 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3002 "resize.norm.idx"); 3003 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3004 "reverse.idx"); 3005 3006 // This is a new value so do not hoist it out. 3007 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3008 // After broadcasting the induction variable we need to make the 3009 // vector consecutive by adding ... -3, -2, -1, 0. 3010 for (unsigned part = 0; part < UF; ++part) 3011 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3012 true); 3013 return; 3014 } 3015 3016 // Handle the pointer induction variable case. 3017 assert(P->getType()->isPointerTy() && "Unexpected type."); 3018 3019 // Is this a reverse induction ptr or a consecutive induction ptr. 3020 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3021 II.IK); 3022 3023 // This is the vector of results. Notice that we don't generate 3024 // vector geps because scalar geps result in better code. 3025 for (unsigned part = 0; part < UF; ++part) { 3026 if (VF == 1) { 3027 int EltIndex = (part) * (Reverse ? -1 : 1); 3028 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3029 Value *GlobalIdx; 3030 if (Reverse) 3031 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3032 else 3033 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3034 3035 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3036 "next.gep"); 3037 Entry[part] = SclrGep; 3038 continue; 3039 } 3040 3041 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3042 for (unsigned int i = 0; i < VF; ++i) { 3043 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3044 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3045 Value *GlobalIdx; 3046 if (!Reverse) 3047 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3048 else 3049 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3050 3051 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3052 "next.gep"); 3053 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3054 Builder.getInt32(i), 3055 "insert.gep"); 3056 } 3057 Entry[part] = VecVal; 3058 } 3059 return; 3060 } 3061 } 3062 3063 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3064 // For each instruction in the old loop. 3065 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3066 VectorParts &Entry = WidenMap.get(it); 3067 switch (it->getOpcode()) { 3068 case Instruction::Br: 3069 // Nothing to do for PHIs and BR, since we already took care of the 3070 // loop control flow instructions. 3071 continue; 3072 case Instruction::PHI:{ 3073 // Vectorize PHINodes. 3074 widenPHIInstruction(it, Entry, UF, VF, PV); 3075 continue; 3076 }// End of PHI. 3077 3078 case Instruction::Add: 3079 case Instruction::FAdd: 3080 case Instruction::Sub: 3081 case Instruction::FSub: 3082 case Instruction::Mul: 3083 case Instruction::FMul: 3084 case Instruction::UDiv: 3085 case Instruction::SDiv: 3086 case Instruction::FDiv: 3087 case Instruction::URem: 3088 case Instruction::SRem: 3089 case Instruction::FRem: 3090 case Instruction::Shl: 3091 case Instruction::LShr: 3092 case Instruction::AShr: 3093 case Instruction::And: 3094 case Instruction::Or: 3095 case Instruction::Xor: { 3096 // Just widen binops. 3097 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3098 setDebugLocFromInst(Builder, BinOp); 3099 VectorParts &A = getVectorValue(it->getOperand(0)); 3100 VectorParts &B = getVectorValue(it->getOperand(1)); 3101 3102 // Use this vector value for all users of the original instruction. 3103 for (unsigned Part = 0; Part < UF; ++Part) { 3104 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3105 3106 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 3107 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 3108 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 3109 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 3110 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 3111 } 3112 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 3113 VecOp->setIsExact(BinOp->isExact()); 3114 3115 // Copy the fast-math flags. 3116 if (VecOp && isa<FPMathOperator>(V)) 3117 VecOp->setFastMathFlags(it->getFastMathFlags()); 3118 3119 Entry[Part] = V; 3120 } 3121 break; 3122 } 3123 case Instruction::Select: { 3124 // Widen selects. 3125 // If the selector is loop invariant we can create a select 3126 // instruction with a scalar condition. Otherwise, use vector-select. 3127 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3128 OrigLoop); 3129 setDebugLocFromInst(Builder, it); 3130 3131 // The condition can be loop invariant but still defined inside the 3132 // loop. This means that we can't just use the original 'cond' value. 3133 // We have to take the 'vectorized' value and pick the first lane. 3134 // Instcombine will make this a no-op. 3135 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3136 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3137 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3138 3139 Value *ScalarCond = (VF == 1) ? Cond[0] : 3140 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3141 3142 for (unsigned Part = 0; Part < UF; ++Part) { 3143 Entry[Part] = Builder.CreateSelect( 3144 InvariantCond ? ScalarCond : Cond[Part], 3145 Op0[Part], 3146 Op1[Part]); 3147 } 3148 break; 3149 } 3150 3151 case Instruction::ICmp: 3152 case Instruction::FCmp: { 3153 // Widen compares. Generate vector compares. 3154 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3155 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3156 setDebugLocFromInst(Builder, it); 3157 VectorParts &A = getVectorValue(it->getOperand(0)); 3158 VectorParts &B = getVectorValue(it->getOperand(1)); 3159 for (unsigned Part = 0; Part < UF; ++Part) { 3160 Value *C = nullptr; 3161 if (FCmp) 3162 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3163 else 3164 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3165 Entry[Part] = C; 3166 } 3167 break; 3168 } 3169 3170 case Instruction::Store: 3171 case Instruction::Load: 3172 vectorizeMemoryInstruction(it); 3173 break; 3174 case Instruction::ZExt: 3175 case Instruction::SExt: 3176 case Instruction::FPToUI: 3177 case Instruction::FPToSI: 3178 case Instruction::FPExt: 3179 case Instruction::PtrToInt: 3180 case Instruction::IntToPtr: 3181 case Instruction::SIToFP: 3182 case Instruction::UIToFP: 3183 case Instruction::Trunc: 3184 case Instruction::FPTrunc: 3185 case Instruction::BitCast: { 3186 CastInst *CI = dyn_cast<CastInst>(it); 3187 setDebugLocFromInst(Builder, it); 3188 /// Optimize the special case where the source is the induction 3189 /// variable. Notice that we can only optimize the 'trunc' case 3190 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3191 /// c. other casts depend on pointer size. 3192 if (CI->getOperand(0) == OldInduction && 3193 it->getOpcode() == Instruction::Trunc) { 3194 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3195 CI->getType()); 3196 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3197 for (unsigned Part = 0; Part < UF; ++Part) 3198 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3199 break; 3200 } 3201 /// Vectorize casts. 3202 Type *DestTy = (VF == 1) ? CI->getType() : 3203 VectorType::get(CI->getType(), VF); 3204 3205 VectorParts &A = getVectorValue(it->getOperand(0)); 3206 for (unsigned Part = 0; Part < UF; ++Part) 3207 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3208 break; 3209 } 3210 3211 case Instruction::Call: { 3212 // Ignore dbg intrinsics. 3213 if (isa<DbgInfoIntrinsic>(it)) 3214 break; 3215 setDebugLocFromInst(Builder, it); 3216 3217 Module *M = BB->getParent()->getParent(); 3218 CallInst *CI = cast<CallInst>(it); 3219 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3220 assert(ID && "Not an intrinsic call!"); 3221 switch (ID) { 3222 case Intrinsic::lifetime_end: 3223 case Intrinsic::lifetime_start: 3224 scalarizeInstruction(it); 3225 break; 3226 default: 3227 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3228 for (unsigned Part = 0; Part < UF; ++Part) { 3229 SmallVector<Value *, 4> Args; 3230 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3231 if (HasScalarOpd && i == 1) { 3232 Args.push_back(CI->getArgOperand(i)); 3233 continue; 3234 } 3235 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3236 Args.push_back(Arg[Part]); 3237 } 3238 Type *Tys[] = {CI->getType()}; 3239 if (VF > 1) 3240 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3241 3242 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3243 Entry[Part] = Builder.CreateCall(F, Args); 3244 } 3245 break; 3246 } 3247 break; 3248 } 3249 3250 default: 3251 // All other instructions are unsupported. Scalarize them. 3252 scalarizeInstruction(it); 3253 break; 3254 }// end of switch. 3255 }// end of for_each instr. 3256 } 3257 3258 void InnerLoopVectorizer::updateAnalysis() { 3259 // Forget the original basic block. 3260 SE->forgetLoop(OrigLoop); 3261 3262 // Update the dominator tree information. 3263 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3264 "Entry does not dominate exit."); 3265 3266 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3267 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3268 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3269 3270 // Due to if predication of stores we might create a sequence of "if(pred) 3271 // a[i] = ...; " blocks. 3272 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3273 if (i == 0) 3274 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3275 else if (isPredicatedBlock(i)) { 3276 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3277 } else { 3278 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3279 } 3280 } 3281 3282 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3283 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3284 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3285 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3286 3287 DEBUG(DT->verifyDomTree()); 3288 } 3289 3290 /// \brief Check whether it is safe to if-convert this phi node. 3291 /// 3292 /// Phi nodes with constant expressions that can trap are not safe to if 3293 /// convert. 3294 static bool canIfConvertPHINodes(BasicBlock *BB) { 3295 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3296 PHINode *Phi = dyn_cast<PHINode>(I); 3297 if (!Phi) 3298 return true; 3299 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3300 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3301 if (C->canTrap()) 3302 return false; 3303 } 3304 return true; 3305 } 3306 3307 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3308 if (!EnableIfConversion) { 3309 emitAnalysis(Report() << "if-conversion is disabled"); 3310 return false; 3311 } 3312 3313 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3314 3315 // A list of pointers that we can safely read and write to. 3316 SmallPtrSet<Value *, 8> SafePointes; 3317 3318 // Collect safe addresses. 3319 for (Loop::block_iterator BI = TheLoop->block_begin(), 3320 BE = TheLoop->block_end(); BI != BE; ++BI) { 3321 BasicBlock *BB = *BI; 3322 3323 if (blockNeedsPredication(BB)) 3324 continue; 3325 3326 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3327 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3328 SafePointes.insert(LI->getPointerOperand()); 3329 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3330 SafePointes.insert(SI->getPointerOperand()); 3331 } 3332 } 3333 3334 // Collect the blocks that need predication. 3335 BasicBlock *Header = TheLoop->getHeader(); 3336 for (Loop::block_iterator BI = TheLoop->block_begin(), 3337 BE = TheLoop->block_end(); BI != BE; ++BI) { 3338 BasicBlock *BB = *BI; 3339 3340 // We don't support switch statements inside loops. 3341 if (!isa<BranchInst>(BB->getTerminator())) { 3342 emitAnalysis(Report(BB->getTerminator()) 3343 << "loop contains a switch statement"); 3344 return false; 3345 } 3346 3347 // We must be able to predicate all blocks that need to be predicated. 3348 if (blockNeedsPredication(BB)) { 3349 if (!blockCanBePredicated(BB, SafePointes)) { 3350 emitAnalysis(Report(BB->getTerminator()) 3351 << "control flow cannot be substituted for a select"); 3352 return false; 3353 } 3354 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3355 emitAnalysis(Report(BB->getTerminator()) 3356 << "control flow cannot be substituted for a select"); 3357 return false; 3358 } 3359 } 3360 3361 // We can if-convert this loop. 3362 return true; 3363 } 3364 3365 bool LoopVectorizationLegality::canVectorize() { 3366 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3367 // be canonicalized. 3368 if (!TheLoop->getLoopPreheader()) { 3369 emitAnalysis( 3370 Report() << "loop control flow is not understood by vectorizer"); 3371 return false; 3372 } 3373 3374 // We can only vectorize innermost loops. 3375 if (TheLoop->getSubLoopsVector().size()) { 3376 emitAnalysis(Report() << "loop is not the innermost loop"); 3377 return false; 3378 } 3379 3380 // We must have a single backedge. 3381 if (TheLoop->getNumBackEdges() != 1) { 3382 emitAnalysis( 3383 Report() << "loop control flow is not understood by vectorizer"); 3384 return false; 3385 } 3386 3387 // We must have a single exiting block. 3388 if (!TheLoop->getExitingBlock()) { 3389 emitAnalysis( 3390 Report() << "loop control flow is not understood by vectorizer"); 3391 return false; 3392 } 3393 3394 // We need to have a loop header. 3395 DEBUG(dbgs() << "LV: Found a loop: " << 3396 TheLoop->getHeader()->getName() << '\n'); 3397 3398 // Check if we can if-convert non-single-bb loops. 3399 unsigned NumBlocks = TheLoop->getNumBlocks(); 3400 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3401 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3402 return false; 3403 } 3404 3405 // ScalarEvolution needs to be able to find the exit count. 3406 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3407 if (ExitCount == SE->getCouldNotCompute()) { 3408 emitAnalysis(Report() << "could not determine number of loop iterations"); 3409 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3410 return false; 3411 } 3412 3413 // Check if we can vectorize the instructions and CFG in this loop. 3414 if (!canVectorizeInstrs()) { 3415 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3416 return false; 3417 } 3418 3419 // Go over each instruction and look at memory deps. 3420 if (!canVectorizeMemory()) { 3421 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3422 return false; 3423 } 3424 3425 // Collect all of the variables that remain uniform after vectorization. 3426 collectLoopUniforms(); 3427 3428 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3429 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3430 <<"!\n"); 3431 3432 // Okay! We can vectorize. At this point we don't have any other mem analysis 3433 // which may limit our maximum vectorization factor, so just return true with 3434 // no restrictions. 3435 return true; 3436 } 3437 3438 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3439 if (Ty->isPointerTy()) 3440 return DL.getIntPtrType(Ty); 3441 3442 // It is possible that char's or short's overflow when we ask for the loop's 3443 // trip count, work around this by changing the type size. 3444 if (Ty->getScalarSizeInBits() < 32) 3445 return Type::getInt32Ty(Ty->getContext()); 3446 3447 return Ty; 3448 } 3449 3450 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3451 Ty0 = convertPointerToIntegerType(DL, Ty0); 3452 Ty1 = convertPointerToIntegerType(DL, Ty1); 3453 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3454 return Ty0; 3455 return Ty1; 3456 } 3457 3458 /// \brief Check that the instruction has outside loop users and is not an 3459 /// identified reduction variable. 3460 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3461 SmallPtrSet<Value *, 4> &Reductions) { 3462 // Reduction instructions are allowed to have exit users. All other 3463 // instructions must not have external users. 3464 if (!Reductions.count(Inst)) 3465 //Check that all of the users of the loop are inside the BB. 3466 for (User *U : Inst->users()) { 3467 Instruction *UI = cast<Instruction>(U); 3468 // This user may be a reduction exit value. 3469 if (!TheLoop->contains(UI)) { 3470 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3471 return true; 3472 } 3473 } 3474 return false; 3475 } 3476 3477 bool LoopVectorizationLegality::canVectorizeInstrs() { 3478 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3479 BasicBlock *Header = TheLoop->getHeader(); 3480 3481 // Look for the attribute signaling the absence of NaNs. 3482 Function &F = *Header->getParent(); 3483 if (F.hasFnAttribute("no-nans-fp-math")) 3484 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3485 AttributeSet::FunctionIndex, 3486 "no-nans-fp-math").getValueAsString() == "true"; 3487 3488 // For each block in the loop. 3489 for (Loop::block_iterator bb = TheLoop->block_begin(), 3490 be = TheLoop->block_end(); bb != be; ++bb) { 3491 3492 // Scan the instructions in the block and look for hazards. 3493 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3494 ++it) { 3495 3496 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3497 Type *PhiTy = Phi->getType(); 3498 // Check that this PHI type is allowed. 3499 if (!PhiTy->isIntegerTy() && 3500 !PhiTy->isFloatingPointTy() && 3501 !PhiTy->isPointerTy()) { 3502 emitAnalysis(Report(it) 3503 << "loop control flow is not understood by vectorizer"); 3504 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3505 return false; 3506 } 3507 3508 // If this PHINode is not in the header block, then we know that we 3509 // can convert it to select during if-conversion. No need to check if 3510 // the PHIs in this block are induction or reduction variables. 3511 if (*bb != Header) { 3512 // Check that this instruction has no outside users or is an 3513 // identified reduction value with an outside user. 3514 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3515 continue; 3516 emitAnalysis(Report(it) << "value that could not be identified as " 3517 "reduction is used outside the loop"); 3518 return false; 3519 } 3520 3521 // We only allow if-converted PHIs with more than two incoming values. 3522 if (Phi->getNumIncomingValues() != 2) { 3523 emitAnalysis(Report(it) 3524 << "control flow not understood by vectorizer"); 3525 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3526 return false; 3527 } 3528 3529 // This is the value coming from the preheader. 3530 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3531 // Check if this is an induction variable. 3532 InductionKind IK = isInductionVariable(Phi); 3533 3534 if (IK_NoInduction != IK) { 3535 // Get the widest type. 3536 if (!WidestIndTy) 3537 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3538 else 3539 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3540 3541 // Int inductions are special because we only allow one IV. 3542 if (IK == IK_IntInduction) { 3543 // Use the phi node with the widest type as induction. Use the last 3544 // one if there are multiple (no good reason for doing this other 3545 // than it is expedient). 3546 if (!Induction || PhiTy == WidestIndTy) 3547 Induction = Phi; 3548 } 3549 3550 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3551 Inductions[Phi] = InductionInfo(StartValue, IK); 3552 3553 // Until we explicitly handle the case of an induction variable with 3554 // an outside loop user we have to give up vectorizing this loop. 3555 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3556 emitAnalysis(Report(it) << "use of induction value outside of the " 3557 "loop is not handled by vectorizer"); 3558 return false; 3559 } 3560 3561 continue; 3562 } 3563 3564 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3565 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3566 continue; 3567 } 3568 if (AddReductionVar(Phi, RK_IntegerMult)) { 3569 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3570 continue; 3571 } 3572 if (AddReductionVar(Phi, RK_IntegerOr)) { 3573 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3574 continue; 3575 } 3576 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3577 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3578 continue; 3579 } 3580 if (AddReductionVar(Phi, RK_IntegerXor)) { 3581 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3582 continue; 3583 } 3584 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3585 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3586 continue; 3587 } 3588 if (AddReductionVar(Phi, RK_FloatMult)) { 3589 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3590 continue; 3591 } 3592 if (AddReductionVar(Phi, RK_FloatAdd)) { 3593 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3594 continue; 3595 } 3596 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3597 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3598 "\n"); 3599 continue; 3600 } 3601 3602 emitAnalysis(Report(it) << "unvectorizable operation"); 3603 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3604 return false; 3605 }// end of PHI handling 3606 3607 // We still don't handle functions. However, we can ignore dbg intrinsic 3608 // calls and we do handle certain intrinsic and libm functions. 3609 CallInst *CI = dyn_cast<CallInst>(it); 3610 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3611 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3612 DEBUG(dbgs() << "LV: Found a call site.\n"); 3613 return false; 3614 } 3615 3616 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3617 // second argument is the same (i.e. loop invariant) 3618 if (CI && 3619 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3620 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3621 emitAnalysis(Report(it) 3622 << "intrinsic instruction cannot be vectorized"); 3623 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3624 return false; 3625 } 3626 } 3627 3628 // Check that the instruction return type is vectorizable. 3629 // Also, we can't vectorize extractelement instructions. 3630 if ((!VectorType::isValidElementType(it->getType()) && 3631 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3632 emitAnalysis(Report(it) 3633 << "instruction return type cannot be vectorized"); 3634 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3635 return false; 3636 } 3637 3638 // Check that the stored type is vectorizable. 3639 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3640 Type *T = ST->getValueOperand()->getType(); 3641 if (!VectorType::isValidElementType(T)) { 3642 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3643 return false; 3644 } 3645 if (EnableMemAccessVersioning) 3646 collectStridedAcccess(ST); 3647 } 3648 3649 if (EnableMemAccessVersioning) 3650 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3651 collectStridedAcccess(LI); 3652 3653 // Reduction instructions are allowed to have exit users. 3654 // All other instructions must not have external users. 3655 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3656 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3657 return false; 3658 } 3659 3660 } // next instr. 3661 3662 } 3663 3664 if (!Induction) { 3665 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3666 if (Inductions.empty()) { 3667 emitAnalysis(Report() 3668 << "loop induction variable could not be identified"); 3669 return false; 3670 } 3671 } 3672 3673 return true; 3674 } 3675 3676 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3677 /// return the induction operand of the gep pointer. 3678 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3679 const DataLayout *DL, Loop *Lp) { 3680 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3681 if (!GEP) 3682 return Ptr; 3683 3684 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3685 3686 // Check that all of the gep indices are uniform except for our induction 3687 // operand. 3688 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3689 if (i != InductionOperand && 3690 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3691 return Ptr; 3692 return GEP->getOperand(InductionOperand); 3693 } 3694 3695 ///\brief Look for a cast use of the passed value. 3696 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3697 Value *UniqueCast = nullptr; 3698 for (User *U : Ptr->users()) { 3699 CastInst *CI = dyn_cast<CastInst>(U); 3700 if (CI && CI->getType() == Ty) { 3701 if (!UniqueCast) 3702 UniqueCast = CI; 3703 else 3704 return nullptr; 3705 } 3706 } 3707 return UniqueCast; 3708 } 3709 3710 ///\brief Get the stride of a pointer access in a loop. 3711 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3712 /// pointer to the Value, or null otherwise. 3713 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3714 const DataLayout *DL, Loop *Lp) { 3715 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3716 if (!PtrTy || PtrTy->isAggregateType()) 3717 return nullptr; 3718 3719 // Try to remove a gep instruction to make the pointer (actually index at this 3720 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3721 // pointer, otherwise, we are analyzing the index. 3722 Value *OrigPtr = Ptr; 3723 3724 // The size of the pointer access. 3725 int64_t PtrAccessSize = 1; 3726 3727 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3728 const SCEV *V = SE->getSCEV(Ptr); 3729 3730 if (Ptr != OrigPtr) 3731 // Strip off casts. 3732 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3733 V = C->getOperand(); 3734 3735 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3736 if (!S) 3737 return nullptr; 3738 3739 V = S->getStepRecurrence(*SE); 3740 if (!V) 3741 return nullptr; 3742 3743 // Strip off the size of access multiplication if we are still analyzing the 3744 // pointer. 3745 if (OrigPtr == Ptr) { 3746 DL->getTypeAllocSize(PtrTy->getElementType()); 3747 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3748 if (M->getOperand(0)->getSCEVType() != scConstant) 3749 return nullptr; 3750 3751 const APInt &APStepVal = 3752 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3753 3754 // Huge step value - give up. 3755 if (APStepVal.getBitWidth() > 64) 3756 return nullptr; 3757 3758 int64_t StepVal = APStepVal.getSExtValue(); 3759 if (PtrAccessSize != StepVal) 3760 return nullptr; 3761 V = M->getOperand(1); 3762 } 3763 } 3764 3765 // Strip off casts. 3766 Type *StripedOffRecurrenceCast = nullptr; 3767 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3768 StripedOffRecurrenceCast = C->getType(); 3769 V = C->getOperand(); 3770 } 3771 3772 // Look for the loop invariant symbolic value. 3773 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3774 if (!U) 3775 return nullptr; 3776 3777 Value *Stride = U->getValue(); 3778 if (!Lp->isLoopInvariant(Stride)) 3779 return nullptr; 3780 3781 // If we have stripped off the recurrence cast we have to make sure that we 3782 // return the value that is used in this loop so that we can replace it later. 3783 if (StripedOffRecurrenceCast) 3784 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3785 3786 return Stride; 3787 } 3788 3789 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3790 Value *Ptr = nullptr; 3791 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3792 Ptr = LI->getPointerOperand(); 3793 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3794 Ptr = SI->getPointerOperand(); 3795 else 3796 return; 3797 3798 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3799 if (!Stride) 3800 return; 3801 3802 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3803 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3804 Strides[Ptr] = Stride; 3805 StrideSet.insert(Stride); 3806 } 3807 3808 void LoopVectorizationLegality::collectLoopUniforms() { 3809 // We now know that the loop is vectorizable! 3810 // Collect variables that will remain uniform after vectorization. 3811 std::vector<Value*> Worklist; 3812 BasicBlock *Latch = TheLoop->getLoopLatch(); 3813 3814 // Start with the conditional branch and walk up the block. 3815 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3816 3817 // Also add all consecutive pointer values; these values will be uniform 3818 // after vectorization (and subsequent cleanup) and, until revectorization is 3819 // supported, all dependencies must also be uniform. 3820 for (Loop::block_iterator B = TheLoop->block_begin(), 3821 BE = TheLoop->block_end(); B != BE; ++B) 3822 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3823 I != IE; ++I) 3824 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3825 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3826 3827 while (Worklist.size()) { 3828 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3829 Worklist.pop_back(); 3830 3831 // Look at instructions inside this loop. 3832 // Stop when reaching PHI nodes. 3833 // TODO: we need to follow values all over the loop, not only in this block. 3834 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3835 continue; 3836 3837 // This is a known uniform. 3838 Uniforms.insert(I); 3839 3840 // Insert all operands. 3841 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3842 } 3843 } 3844 3845 namespace { 3846 /// \brief Analyses memory accesses in a loop. 3847 /// 3848 /// Checks whether run time pointer checks are needed and builds sets for data 3849 /// dependence checking. 3850 class AccessAnalysis { 3851 public: 3852 /// \brief Read or write access location. 3853 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3854 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3855 3856 /// \brief Set of potential dependent memory accesses. 3857 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3858 3859 AccessAnalysis(const DataLayout *Dl, DepCandidates &DA) : 3860 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 3861 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 3862 3863 /// \brief Register a load and whether it is only read from. 3864 void addLoad(Value *Ptr, bool IsReadOnly) { 3865 Accesses.insert(MemAccessInfo(Ptr, false)); 3866 if (IsReadOnly) 3867 ReadOnlyPtr.insert(Ptr); 3868 } 3869 3870 /// \brief Register a store. 3871 void addStore(Value *Ptr) { 3872 Accesses.insert(MemAccessInfo(Ptr, true)); 3873 } 3874 3875 /// \brief Check whether we can check the pointers at runtime for 3876 /// non-intersection. 3877 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3878 unsigned &NumComparisons, ScalarEvolution *SE, 3879 Loop *TheLoop, ValueToValueMap &Strides, 3880 bool ShouldCheckStride = false); 3881 3882 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3883 /// and builds sets of dependent accesses. 3884 void buildDependenceSets() { 3885 // Process read-write pointers first. 3886 processMemAccesses(false); 3887 // Next, process read pointers. 3888 processMemAccesses(true); 3889 } 3890 3891 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3892 3893 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3894 void resetDepChecks() { CheckDeps.clear(); } 3895 3896 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3897 3898 private: 3899 typedef SetVector<MemAccessInfo> PtrAccessSet; 3900 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 3901 3902 /// \brief Go over all memory access or only the deferred ones if 3903 /// \p UseDeferred is true and check whether runtime pointer checks are needed 3904 /// and build sets of dependency check candidates. 3905 void processMemAccesses(bool UseDeferred); 3906 3907 /// Set of all accesses. 3908 PtrAccessSet Accesses; 3909 3910 /// Set of access to check after all writes have been processed. 3911 PtrAccessSet DeferredAccesses; 3912 3913 /// Map of pointers to last access encountered. 3914 UnderlyingObjToAccessMap ObjToLastAccess; 3915 3916 /// Set of accesses that need a further dependence check. 3917 MemAccessInfoSet CheckDeps; 3918 3919 /// Set of pointers that are read only. 3920 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3921 3922 /// Set of underlying objects already written to. 3923 SmallPtrSet<Value*, 16> WriteObjects; 3924 3925 const DataLayout *DL; 3926 3927 /// Sets of potentially dependent accesses - members of one set share an 3928 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 3929 /// dependence check. 3930 DepCandidates &DepCands; 3931 3932 bool AreAllWritesIdentified; 3933 bool AreAllReadsIdentified; 3934 bool IsRTCheckNeeded; 3935 }; 3936 3937 } // end anonymous namespace 3938 3939 /// \brief Check whether a pointer can participate in a runtime bounds check. 3940 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 3941 Value *Ptr) { 3942 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 3943 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3944 if (!AR) 3945 return false; 3946 3947 return AR->isAffine(); 3948 } 3949 3950 /// \brief Check the stride of the pointer and ensure that it does not wrap in 3951 /// the address space. 3952 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 3953 const Loop *Lp, ValueToValueMap &StridesMap); 3954 3955 bool AccessAnalysis::canCheckPtrAtRT( 3956 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3957 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 3958 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 3959 // Find pointers with computable bounds. We are going to use this information 3960 // to place a runtime bound check. 3961 unsigned NumReadPtrChecks = 0; 3962 unsigned NumWritePtrChecks = 0; 3963 bool CanDoRT = true; 3964 3965 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 3966 // We assign consecutive id to access from different dependence sets. 3967 // Accesses within the same set don't need a runtime check. 3968 unsigned RunningDepId = 1; 3969 DenseMap<Value *, unsigned> DepSetId; 3970 3971 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 3972 AI != AE; ++AI) { 3973 const MemAccessInfo &Access = *AI; 3974 Value *Ptr = Access.getPointer(); 3975 bool IsWrite = Access.getInt(); 3976 3977 // Just add write checks if we have both. 3978 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true))) 3979 continue; 3980 3981 if (IsWrite) 3982 ++NumWritePtrChecks; 3983 else 3984 ++NumReadPtrChecks; 3985 3986 if (hasComputableBounds(SE, StridesMap, Ptr) && 3987 // When we run after a failing dependency check we have to make sure we 3988 // don't have wrapping pointers. 3989 (!ShouldCheckStride || 3990 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 3991 // The id of the dependence set. 3992 unsigned DepId; 3993 3994 if (IsDepCheckNeeded) { 3995 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 3996 unsigned &LeaderId = DepSetId[Leader]; 3997 if (!LeaderId) 3998 LeaderId = RunningDepId++; 3999 DepId = LeaderId; 4000 } else 4001 // Each access has its own dependence set. 4002 DepId = RunningDepId++; 4003 4004 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap); 4005 4006 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4007 } else { 4008 CanDoRT = false; 4009 } 4010 } 4011 4012 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4013 NumComparisons = 0; // Only one dependence set. 4014 else { 4015 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 4016 NumWritePtrChecks - 1)); 4017 } 4018 4019 // If the pointers that we would use for the bounds comparison have different 4020 // address spaces, assume the values aren't directly comparable, so we can't 4021 // use them for the runtime check. We also have to assume they could 4022 // overlap. In the future there should be metadata for whether address spaces 4023 // are disjoint. 4024 unsigned NumPointers = RtCheck.Pointers.size(); 4025 for (unsigned i = 0; i < NumPointers; ++i) { 4026 for (unsigned j = i + 1; j < NumPointers; ++j) { 4027 // Only need to check pointers between two different dependency sets. 4028 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4029 continue; 4030 4031 Value *PtrI = RtCheck.Pointers[i]; 4032 Value *PtrJ = RtCheck.Pointers[j]; 4033 4034 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4035 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4036 if (ASi != ASj) { 4037 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4038 " different address spaces\n"); 4039 return false; 4040 } 4041 } 4042 } 4043 4044 return CanDoRT; 4045 } 4046 4047 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 4048 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 4049 } 4050 4051 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 4052 // We process the set twice: first we process read-write pointers, last we 4053 // process read-only pointers. This allows us to skip dependence tests for 4054 // read-only pointers. 4055 4056 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4057 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 4058 const MemAccessInfo &Access = *AI; 4059 Value *Ptr = Access.getPointer(); 4060 bool IsWrite = Access.getInt(); 4061 4062 DepCands.insert(Access); 4063 4064 // Memorize read-only pointers for later processing and skip them in the 4065 // first round (they need to be checked after we have seen all write 4066 // pointers). Note: we also mark pointer that are not consecutive as 4067 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 4068 // second check for "!IsWrite". 4069 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4070 if (!UseDeferred && IsReadOnlyPtr) { 4071 DeferredAccesses.insert(Access); 4072 continue; 4073 } 4074 4075 bool NeedDepCheck = false; 4076 // Check whether there is the possibility of dependency because of 4077 // underlying objects being the same. 4078 typedef SmallVector<Value*, 16> ValueVector; 4079 ValueVector TempObjects; 4080 GetUnderlyingObjects(Ptr, TempObjects, DL); 4081 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 4082 UI != UE; ++UI) { 4083 Value *UnderlyingObj = *UI; 4084 4085 // If this is a write then it needs to be an identified object. If this a 4086 // read and all writes (so far) are identified function scope objects we 4087 // don't need an identified underlying object but only an Argument (the 4088 // next write is going to invalidate this assumption if it is 4089 // unidentified). 4090 // This is a micro-optimization for the case where all writes are 4091 // identified and we have one argument pointer. 4092 // Otherwise, we do need a runtime check. 4093 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 4094 (!IsWrite && (!AreAllWritesIdentified || 4095 !isa<Argument>(UnderlyingObj)) && 4096 !isIdentifiedObject(UnderlyingObj))) { 4097 DEBUG(dbgs() << "LV: Found an unidentified " << 4098 (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj << 4099 "\n"); 4100 IsRTCheckNeeded = (IsRTCheckNeeded || 4101 !isIdentifiedObject(UnderlyingObj) || 4102 !AreAllReadsIdentified); 4103 4104 if (IsWrite) 4105 AreAllWritesIdentified = false; 4106 if (!IsWrite) 4107 AreAllReadsIdentified = false; 4108 } 4109 4110 // If this is a write - check other reads and writes for conflicts. If 4111 // this is a read only check other writes for conflicts (but only if there 4112 // is no other write to the ptr - this is an optimization to catch "a[i] = 4113 // a[i] + " without having to do a dependence check). 4114 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 4115 NeedDepCheck = true; 4116 4117 if (IsWrite) 4118 WriteObjects.insert(UnderlyingObj); 4119 4120 // Create sets of pointers connected by shared underlying objects. 4121 UnderlyingObjToAccessMap::iterator Prev = 4122 ObjToLastAccess.find(UnderlyingObj); 4123 if (Prev != ObjToLastAccess.end()) 4124 DepCands.unionSets(Access, Prev->second); 4125 4126 ObjToLastAccess[UnderlyingObj] = Access; 4127 } 4128 4129 if (NeedDepCheck) 4130 CheckDeps.insert(Access); 4131 } 4132 } 4133 4134 namespace { 4135 /// \brief Checks memory dependences among accesses to the same underlying 4136 /// object to determine whether there vectorization is legal or not (and at 4137 /// which vectorization factor). 4138 /// 4139 /// This class works under the assumption that we already checked that memory 4140 /// locations with different underlying pointers are "must-not alias". 4141 /// We use the ScalarEvolution framework to symbolically evalutate access 4142 /// functions pairs. Since we currently don't restructure the loop we can rely 4143 /// on the program order of memory accesses to determine their safety. 4144 /// At the moment we will only deem accesses as safe for: 4145 /// * A negative constant distance assuming program order. 4146 /// 4147 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4148 /// a[i] = tmp; y = a[i]; 4149 /// 4150 /// The latter case is safe because later checks guarantuee that there can't 4151 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4152 /// the same variable: a header phi can only be an induction or a reduction, a 4153 /// reduction can't have a memory sink, an induction can't have a memory 4154 /// source). This is important and must not be violated (or we have to 4155 /// resort to checking for cycles through memory). 4156 /// 4157 /// * A positive constant distance assuming program order that is bigger 4158 /// than the biggest memory access. 4159 /// 4160 /// tmp = a[i] OR b[i] = x 4161 /// a[i+2] = tmp y = b[i+2]; 4162 /// 4163 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4164 /// 4165 /// * Zero distances and all accesses have the same size. 4166 /// 4167 class MemoryDepChecker { 4168 public: 4169 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4170 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4171 4172 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4173 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4174 ShouldRetryWithRuntimeCheck(false) {} 4175 4176 /// \brief Register the location (instructions are given increasing numbers) 4177 /// of a write access. 4178 void addAccess(StoreInst *SI) { 4179 Value *Ptr = SI->getPointerOperand(); 4180 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4181 InstMap.push_back(SI); 4182 ++AccessIdx; 4183 } 4184 4185 /// \brief Register the location (instructions are given increasing numbers) 4186 /// of a write access. 4187 void addAccess(LoadInst *LI) { 4188 Value *Ptr = LI->getPointerOperand(); 4189 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4190 InstMap.push_back(LI); 4191 ++AccessIdx; 4192 } 4193 4194 /// \brief Check whether the dependencies between the accesses are safe. 4195 /// 4196 /// Only checks sets with elements in \p CheckDeps. 4197 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4198 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4199 4200 /// \brief The maximum number of bytes of a vector register we can vectorize 4201 /// the accesses safely with. 4202 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4203 4204 /// \brief In same cases when the dependency check fails we can still 4205 /// vectorize the loop with a dynamic array access check. 4206 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4207 4208 private: 4209 ScalarEvolution *SE; 4210 const DataLayout *DL; 4211 const Loop *InnermostLoop; 4212 4213 /// \brief Maps access locations (ptr, read/write) to program order. 4214 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4215 4216 /// \brief Memory access instructions in program order. 4217 SmallVector<Instruction *, 16> InstMap; 4218 4219 /// \brief The program order index to be used for the next instruction. 4220 unsigned AccessIdx; 4221 4222 // We can access this many bytes in parallel safely. 4223 unsigned MaxSafeDepDistBytes; 4224 4225 /// \brief If we see a non-constant dependence distance we can still try to 4226 /// vectorize this loop with runtime checks. 4227 bool ShouldRetryWithRuntimeCheck; 4228 4229 /// \brief Check whether there is a plausible dependence between the two 4230 /// accesses. 4231 /// 4232 /// Access \p A must happen before \p B in program order. The two indices 4233 /// identify the index into the program order map. 4234 /// 4235 /// This function checks whether there is a plausible dependence (or the 4236 /// absence of such can't be proved) between the two accesses. If there is a 4237 /// plausible dependence but the dependence distance is bigger than one 4238 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4239 /// distance is smaller than any other distance encountered so far). 4240 /// Otherwise, this function returns true signaling a possible dependence. 4241 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4242 const MemAccessInfo &B, unsigned BIdx, 4243 ValueToValueMap &Strides); 4244 4245 /// \brief Check whether the data dependence could prevent store-load 4246 /// forwarding. 4247 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4248 }; 4249 4250 } // end anonymous namespace 4251 4252 static bool isInBoundsGep(Value *Ptr) { 4253 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4254 return GEP->isInBounds(); 4255 return false; 4256 } 4257 4258 /// \brief Check whether the access through \p Ptr has a constant stride. 4259 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4260 const Loop *Lp, ValueToValueMap &StridesMap) { 4261 const Type *Ty = Ptr->getType(); 4262 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4263 4264 // Make sure that the pointer does not point to aggregate types. 4265 const PointerType *PtrTy = cast<PointerType>(Ty); 4266 if (PtrTy->getElementType()->isAggregateType()) { 4267 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4268 "\n"); 4269 return 0; 4270 } 4271 4272 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4273 4274 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4275 if (!AR) { 4276 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4277 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4278 return 0; 4279 } 4280 4281 // The accesss function must stride over the innermost loop. 4282 if (Lp != AR->getLoop()) { 4283 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4284 *Ptr << " SCEV: " << *PtrScev << "\n"); 4285 } 4286 4287 // The address calculation must not wrap. Otherwise, a dependence could be 4288 // inverted. 4289 // An inbounds getelementptr that is a AddRec with a unit stride 4290 // cannot wrap per definition. The unit stride requirement is checked later. 4291 // An getelementptr without an inbounds attribute and unit stride would have 4292 // to access the pointer value "0" which is undefined behavior in address 4293 // space 0, therefore we can also vectorize this case. 4294 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4295 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4296 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4297 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4298 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4299 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4300 return 0; 4301 } 4302 4303 // Check the step is constant. 4304 const SCEV *Step = AR->getStepRecurrence(*SE); 4305 4306 // Calculate the pointer stride and check if it is consecutive. 4307 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4308 if (!C) { 4309 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4310 " SCEV: " << *PtrScev << "\n"); 4311 return 0; 4312 } 4313 4314 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4315 const APInt &APStepVal = C->getValue()->getValue(); 4316 4317 // Huge step value - give up. 4318 if (APStepVal.getBitWidth() > 64) 4319 return 0; 4320 4321 int64_t StepVal = APStepVal.getSExtValue(); 4322 4323 // Strided access. 4324 int64_t Stride = StepVal / Size; 4325 int64_t Rem = StepVal % Size; 4326 if (Rem) 4327 return 0; 4328 4329 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4330 // know we can't "wrap around the address space". In case of address space 4331 // zero we know that this won't happen without triggering undefined behavior. 4332 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4333 Stride != 1 && Stride != -1) 4334 return 0; 4335 4336 return Stride; 4337 } 4338 4339 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4340 unsigned TypeByteSize) { 4341 // If loads occur at a distance that is not a multiple of a feasible vector 4342 // factor store-load forwarding does not take place. 4343 // Positive dependences might cause troubles because vectorizing them might 4344 // prevent store-load forwarding making vectorized code run a lot slower. 4345 // a[i] = a[i-3] ^ a[i-8]; 4346 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4347 // hence on your typical architecture store-load forwarding does not take 4348 // place. Vectorizing in such cases does not make sense. 4349 // Store-load forwarding distance. 4350 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4351 // Maximum vector factor. 4352 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4353 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4354 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4355 4356 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4357 vf *= 2) { 4358 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4359 MaxVFWithoutSLForwardIssues = (vf >>=1); 4360 break; 4361 } 4362 } 4363 4364 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4365 DEBUG(dbgs() << "LV: Distance " << Distance << 4366 " that could cause a store-load forwarding conflict\n"); 4367 return true; 4368 } 4369 4370 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4371 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4372 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4373 return false; 4374 } 4375 4376 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4377 const MemAccessInfo &B, unsigned BIdx, 4378 ValueToValueMap &Strides) { 4379 assert (AIdx < BIdx && "Must pass arguments in program order"); 4380 4381 Value *APtr = A.getPointer(); 4382 Value *BPtr = B.getPointer(); 4383 bool AIsWrite = A.getInt(); 4384 bool BIsWrite = B.getInt(); 4385 4386 // Two reads are independent. 4387 if (!AIsWrite && !BIsWrite) 4388 return false; 4389 4390 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4391 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4392 4393 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4394 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4395 4396 const SCEV *Src = AScev; 4397 const SCEV *Sink = BScev; 4398 4399 // If the induction step is negative we have to invert source and sink of the 4400 // dependence. 4401 if (StrideAPtr < 0) { 4402 //Src = BScev; 4403 //Sink = AScev; 4404 std::swap(APtr, BPtr); 4405 std::swap(Src, Sink); 4406 std::swap(AIsWrite, BIsWrite); 4407 std::swap(AIdx, BIdx); 4408 std::swap(StrideAPtr, StrideBPtr); 4409 } 4410 4411 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4412 4413 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4414 << "(Induction step: " << StrideAPtr << ")\n"); 4415 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4416 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4417 4418 // Need consecutive accesses. We don't want to vectorize 4419 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4420 // the address space. 4421 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4422 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4423 return true; 4424 } 4425 4426 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4427 if (!C) { 4428 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4429 ShouldRetryWithRuntimeCheck = true; 4430 return true; 4431 } 4432 4433 Type *ATy = APtr->getType()->getPointerElementType(); 4434 Type *BTy = BPtr->getType()->getPointerElementType(); 4435 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4436 4437 // Negative distances are not plausible dependencies. 4438 const APInt &Val = C->getValue()->getValue(); 4439 if (Val.isNegative()) { 4440 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4441 if (IsTrueDataDependence && 4442 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4443 ATy != BTy)) 4444 return true; 4445 4446 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4447 return false; 4448 } 4449 4450 // Write to the same location with the same size. 4451 // Could be improved to assert type sizes are the same (i32 == float, etc). 4452 if (Val == 0) { 4453 if (ATy == BTy) 4454 return false; 4455 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4456 return true; 4457 } 4458 4459 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4460 4461 // Positive distance bigger than max vectorization factor. 4462 if (ATy != BTy) { 4463 DEBUG(dbgs() << 4464 "LV: ReadWrite-Write positive dependency with different types\n"); 4465 return false; 4466 } 4467 4468 unsigned Distance = (unsigned) Val.getZExtValue(); 4469 4470 // Bail out early if passed-in parameters make vectorization not feasible. 4471 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4472 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4473 4474 // The distance must be bigger than the size needed for a vectorized version 4475 // of the operation and the size of the vectorized operation must not be 4476 // bigger than the currrent maximum size. 4477 if (Distance < 2*TypeByteSize || 4478 2*TypeByteSize > MaxSafeDepDistBytes || 4479 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4480 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4481 << Val.getSExtValue() << '\n'); 4482 return true; 4483 } 4484 4485 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4486 Distance : MaxSafeDepDistBytes; 4487 4488 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4489 if (IsTrueDataDependence && 4490 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4491 return true; 4492 4493 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4494 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4495 4496 return false; 4497 } 4498 4499 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4500 MemAccessInfoSet &CheckDeps, 4501 ValueToValueMap &Strides) { 4502 4503 MaxSafeDepDistBytes = -1U; 4504 while (!CheckDeps.empty()) { 4505 MemAccessInfo CurAccess = *CheckDeps.begin(); 4506 4507 // Get the relevant memory access set. 4508 EquivalenceClasses<MemAccessInfo>::iterator I = 4509 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4510 4511 // Check accesses within this set. 4512 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4513 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4514 4515 // Check every access pair. 4516 while (AI != AE) { 4517 CheckDeps.erase(*AI); 4518 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4519 while (OI != AE) { 4520 // Check every accessing instruction pair in program order. 4521 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4522 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4523 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4524 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4525 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4526 return false; 4527 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4528 return false; 4529 } 4530 ++OI; 4531 } 4532 AI++; 4533 } 4534 } 4535 return true; 4536 } 4537 4538 bool LoopVectorizationLegality::canVectorizeMemory() { 4539 4540 typedef SmallVector<Value*, 16> ValueVector; 4541 typedef SmallPtrSet<Value*, 16> ValueSet; 4542 4543 // Holds the Load and Store *instructions*. 4544 ValueVector Loads; 4545 ValueVector Stores; 4546 4547 // Holds all the different accesses in the loop. 4548 unsigned NumReads = 0; 4549 unsigned NumReadWrites = 0; 4550 4551 PtrRtCheck.Pointers.clear(); 4552 PtrRtCheck.Need = false; 4553 4554 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4555 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4556 4557 // For each block. 4558 for (Loop::block_iterator bb = TheLoop->block_begin(), 4559 be = TheLoop->block_end(); bb != be; ++bb) { 4560 4561 // Scan the BB and collect legal loads and stores. 4562 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4563 ++it) { 4564 4565 // If this is a load, save it. If this instruction can read from memory 4566 // but is not a load, then we quit. Notice that we don't handle function 4567 // calls that read or write. 4568 if (it->mayReadFromMemory()) { 4569 // Many math library functions read the rounding mode. We will only 4570 // vectorize a loop if it contains known function calls that don't set 4571 // the flag. Therefore, it is safe to ignore this read from memory. 4572 CallInst *Call = dyn_cast<CallInst>(it); 4573 if (Call && getIntrinsicIDForCall(Call, TLI)) 4574 continue; 4575 4576 LoadInst *Ld = dyn_cast<LoadInst>(it); 4577 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4578 emitAnalysis(Report(Ld) 4579 << "read with atomic ordering or volatile read"); 4580 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4581 return false; 4582 } 4583 NumLoads++; 4584 Loads.push_back(Ld); 4585 DepChecker.addAccess(Ld); 4586 continue; 4587 } 4588 4589 // Save 'store' instructions. Abort if other instructions write to memory. 4590 if (it->mayWriteToMemory()) { 4591 StoreInst *St = dyn_cast<StoreInst>(it); 4592 if (!St) { 4593 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4594 return false; 4595 } 4596 if (!St->isSimple() && !IsAnnotatedParallel) { 4597 emitAnalysis(Report(St) 4598 << "write with atomic ordering or volatile write"); 4599 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4600 return false; 4601 } 4602 NumStores++; 4603 Stores.push_back(St); 4604 DepChecker.addAccess(St); 4605 } 4606 } // Next instr. 4607 } // Next block. 4608 4609 // Now we have two lists that hold the loads and the stores. 4610 // Next, we find the pointers that they use. 4611 4612 // Check if we see any stores. If there are no stores, then we don't 4613 // care if the pointers are *restrict*. 4614 if (!Stores.size()) { 4615 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4616 return true; 4617 } 4618 4619 AccessAnalysis::DepCandidates DependentAccesses; 4620 AccessAnalysis Accesses(DL, DependentAccesses); 4621 4622 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4623 // multiple times on the same object. If the ptr is accessed twice, once 4624 // for read and once for write, it will only appear once (on the write 4625 // list). This is okay, since we are going to check for conflicts between 4626 // writes and between reads and writes, but not between reads and reads. 4627 ValueSet Seen; 4628 4629 ValueVector::iterator I, IE; 4630 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4631 StoreInst *ST = cast<StoreInst>(*I); 4632 Value* Ptr = ST->getPointerOperand(); 4633 4634 if (isUniform(Ptr)) { 4635 emitAnalysis( 4636 Report(ST) 4637 << "write to a loop invariant address could not be vectorized"); 4638 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4639 return false; 4640 } 4641 4642 // If we did *not* see this pointer before, insert it to the read-write 4643 // list. At this phase it is only a 'write' list. 4644 if (Seen.insert(Ptr)) { 4645 ++NumReadWrites; 4646 Accesses.addStore(Ptr); 4647 } 4648 } 4649 4650 if (IsAnnotatedParallel) { 4651 DEBUG(dbgs() 4652 << "LV: A loop annotated parallel, ignore memory dependency " 4653 << "checks.\n"); 4654 return true; 4655 } 4656 4657 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4658 LoadInst *LD = cast<LoadInst>(*I); 4659 Value* Ptr = LD->getPointerOperand(); 4660 // If we did *not* see this pointer before, insert it to the 4661 // read list. If we *did* see it before, then it is already in 4662 // the read-write list. This allows us to vectorize expressions 4663 // such as A[i] += x; Because the address of A[i] is a read-write 4664 // pointer. This only works if the index of A[i] is consecutive. 4665 // If the address of i is unknown (for example A[B[i]]) then we may 4666 // read a few words, modify, and write a few words, and some of the 4667 // words may be written to the same address. 4668 bool IsReadOnlyPtr = false; 4669 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4670 ++NumReads; 4671 IsReadOnlyPtr = true; 4672 } 4673 Accesses.addLoad(Ptr, IsReadOnlyPtr); 4674 } 4675 4676 // If we write (or read-write) to a single destination and there are no 4677 // other reads in this loop then is it safe to vectorize. 4678 if (NumReadWrites == 1 && NumReads == 0) { 4679 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4680 return true; 4681 } 4682 4683 // Build dependence sets and check whether we need a runtime pointer bounds 4684 // check. 4685 Accesses.buildDependenceSets(); 4686 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4687 4688 // Find pointers with computable bounds. We are going to use this information 4689 // to place a runtime bound check. 4690 unsigned NumComparisons = 0; 4691 bool CanDoRT = false; 4692 if (NeedRTCheck) 4693 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4694 Strides); 4695 4696 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4697 " pointer comparisons.\n"); 4698 4699 // If we only have one set of dependences to check pointers among we don't 4700 // need a runtime check. 4701 if (NumComparisons == 0 && NeedRTCheck) 4702 NeedRTCheck = false; 4703 4704 // Check that we did not collect too many pointers or found an unsizeable 4705 // pointer. 4706 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4707 PtrRtCheck.reset(); 4708 CanDoRT = false; 4709 } 4710 4711 if (CanDoRT) { 4712 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4713 } 4714 4715 if (NeedRTCheck && !CanDoRT) { 4716 emitAnalysis(Report() << "cannot identify array bounds"); 4717 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4718 "the array bounds.\n"); 4719 PtrRtCheck.reset(); 4720 return false; 4721 } 4722 4723 PtrRtCheck.Need = NeedRTCheck; 4724 4725 bool CanVecMem = true; 4726 if (Accesses.isDependencyCheckNeeded()) { 4727 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4728 CanVecMem = DepChecker.areDepsSafe( 4729 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4730 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4731 4732 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4733 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4734 NeedRTCheck = true; 4735 4736 // Clear the dependency checks. We assume they are not needed. 4737 Accesses.resetDepChecks(); 4738 4739 PtrRtCheck.reset(); 4740 PtrRtCheck.Need = true; 4741 4742 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4743 TheLoop, Strides, true); 4744 // Check that we did not collect too many pointers or found an unsizeable 4745 // pointer. 4746 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4747 if (!CanDoRT && NumComparisons > 0) 4748 emitAnalysis(Report() 4749 << "cannot check memory dependencies at runtime"); 4750 else 4751 emitAnalysis(Report() 4752 << NumComparisons << " exceeds limit of " 4753 << RuntimeMemoryCheckThreshold 4754 << " dependent memory operations checked at runtime"); 4755 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4756 PtrRtCheck.reset(); 4757 return false; 4758 } 4759 4760 CanVecMem = true; 4761 } 4762 } 4763 4764 if (!CanVecMem) 4765 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4766 4767 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4768 " need a runtime memory check.\n"); 4769 4770 return CanVecMem; 4771 } 4772 4773 static bool hasMultipleUsesOf(Instruction *I, 4774 SmallPtrSet<Instruction *, 8> &Insts) { 4775 unsigned NumUses = 0; 4776 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4777 if (Insts.count(dyn_cast<Instruction>(*Use))) 4778 ++NumUses; 4779 if (NumUses > 1) 4780 return true; 4781 } 4782 4783 return false; 4784 } 4785 4786 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 4787 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4788 if (!Set.count(dyn_cast<Instruction>(*Use))) 4789 return false; 4790 return true; 4791 } 4792 4793 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4794 ReductionKind Kind) { 4795 if (Phi->getNumIncomingValues() != 2) 4796 return false; 4797 4798 // Reduction variables are only found in the loop header block. 4799 if (Phi->getParent() != TheLoop->getHeader()) 4800 return false; 4801 4802 // Obtain the reduction start value from the value that comes from the loop 4803 // preheader. 4804 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4805 4806 // ExitInstruction is the single value which is used outside the loop. 4807 // We only allow for a single reduction value to be used outside the loop. 4808 // This includes users of the reduction, variables (which form a cycle 4809 // which ends in the phi node). 4810 Instruction *ExitInstruction = nullptr; 4811 // Indicates that we found a reduction operation in our scan. 4812 bool FoundReduxOp = false; 4813 4814 // We start with the PHI node and scan for all of the users of this 4815 // instruction. All users must be instructions that can be used as reduction 4816 // variables (such as ADD). We must have a single out-of-block user. The cycle 4817 // must include the original PHI. 4818 bool FoundStartPHI = false; 4819 4820 // To recognize min/max patterns formed by a icmp select sequence, we store 4821 // the number of instruction we saw from the recognized min/max pattern, 4822 // to make sure we only see exactly the two instructions. 4823 unsigned NumCmpSelectPatternInst = 0; 4824 ReductionInstDesc ReduxDesc(false, nullptr); 4825 4826 SmallPtrSet<Instruction *, 8> VisitedInsts; 4827 SmallVector<Instruction *, 8> Worklist; 4828 Worklist.push_back(Phi); 4829 VisitedInsts.insert(Phi); 4830 4831 // A value in the reduction can be used: 4832 // - By the reduction: 4833 // - Reduction operation: 4834 // - One use of reduction value (safe). 4835 // - Multiple use of reduction value (not safe). 4836 // - PHI: 4837 // - All uses of the PHI must be the reduction (safe). 4838 // - Otherwise, not safe. 4839 // - By one instruction outside of the loop (safe). 4840 // - By further instructions outside of the loop (not safe). 4841 // - By an instruction that is not part of the reduction (not safe). 4842 // This is either: 4843 // * An instruction type other than PHI or the reduction operation. 4844 // * A PHI in the header other than the initial PHI. 4845 while (!Worklist.empty()) { 4846 Instruction *Cur = Worklist.back(); 4847 Worklist.pop_back(); 4848 4849 // No Users. 4850 // If the instruction has no users then this is a broken chain and can't be 4851 // a reduction variable. 4852 if (Cur->use_empty()) 4853 return false; 4854 4855 bool IsAPhi = isa<PHINode>(Cur); 4856 4857 // A header PHI use other than the original PHI. 4858 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4859 return false; 4860 4861 // Reductions of instructions such as Div, and Sub is only possible if the 4862 // LHS is the reduction variable. 4863 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4864 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4865 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4866 return false; 4867 4868 // Any reduction instruction must be of one of the allowed kinds. 4869 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4870 if (!ReduxDesc.IsReduction) 4871 return false; 4872 4873 // A reduction operation must only have one use of the reduction value. 4874 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4875 hasMultipleUsesOf(Cur, VisitedInsts)) 4876 return false; 4877 4878 // All inputs to a PHI node must be a reduction value. 4879 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4880 return false; 4881 4882 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4883 isa<SelectInst>(Cur))) 4884 ++NumCmpSelectPatternInst; 4885 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4886 isa<SelectInst>(Cur))) 4887 ++NumCmpSelectPatternInst; 4888 4889 // Check whether we found a reduction operator. 4890 FoundReduxOp |= !IsAPhi; 4891 4892 // Process users of current instruction. Push non-PHI nodes after PHI nodes 4893 // onto the stack. This way we are going to have seen all inputs to PHI 4894 // nodes once we get to them. 4895 SmallVector<Instruction *, 8> NonPHIs; 4896 SmallVector<Instruction *, 8> PHIs; 4897 for (User *U : Cur->users()) { 4898 Instruction *UI = cast<Instruction>(U); 4899 4900 // Check if we found the exit user. 4901 BasicBlock *Parent = UI->getParent(); 4902 if (!TheLoop->contains(Parent)) { 4903 // Exit if you find multiple outside users or if the header phi node is 4904 // being used. In this case the user uses the value of the previous 4905 // iteration, in which case we would loose "VF-1" iterations of the 4906 // reduction operation if we vectorize. 4907 if (ExitInstruction != nullptr || Cur == Phi) 4908 return false; 4909 4910 // The instruction used by an outside user must be the last instruction 4911 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4912 // operations on the value. 4913 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4914 return false; 4915 4916 ExitInstruction = Cur; 4917 continue; 4918 } 4919 4920 // Process instructions only once (termination). Each reduction cycle 4921 // value must only be used once, except by phi nodes and min/max 4922 // reductions which are represented as a cmp followed by a select. 4923 ReductionInstDesc IgnoredVal(false, nullptr); 4924 if (VisitedInsts.insert(UI)) { 4925 if (isa<PHINode>(UI)) 4926 PHIs.push_back(UI); 4927 else 4928 NonPHIs.push_back(UI); 4929 } else if (!isa<PHINode>(UI) && 4930 ((!isa<FCmpInst>(UI) && 4931 !isa<ICmpInst>(UI) && 4932 !isa<SelectInst>(UI)) || 4933 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4934 return false; 4935 4936 // Remember that we completed the cycle. 4937 if (UI == Phi) 4938 FoundStartPHI = true; 4939 } 4940 Worklist.append(PHIs.begin(), PHIs.end()); 4941 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4942 } 4943 4944 // This means we have seen one but not the other instruction of the 4945 // pattern or more than just a select and cmp. 4946 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4947 NumCmpSelectPatternInst != 2) 4948 return false; 4949 4950 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4951 return false; 4952 4953 // We found a reduction var if we have reached the original phi node and we 4954 // only have a single instruction with out-of-loop users. 4955 4956 // This instruction is allowed to have out-of-loop users. 4957 AllowedExit.insert(ExitInstruction); 4958 4959 // Save the description of this reduction variable. 4960 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4961 ReduxDesc.MinMaxKind); 4962 Reductions[Phi] = RD; 4963 // We've ended the cycle. This is a reduction variable if we have an 4964 // outside user and it has a binary op. 4965 4966 return true; 4967 } 4968 4969 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4970 /// pattern corresponding to a min(X, Y) or max(X, Y). 4971 LoopVectorizationLegality::ReductionInstDesc 4972 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4973 ReductionInstDesc &Prev) { 4974 4975 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4976 "Expect a select instruction"); 4977 Instruction *Cmp = nullptr; 4978 SelectInst *Select = nullptr; 4979 4980 // We must handle the select(cmp()) as a single instruction. Advance to the 4981 // select. 4982 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4983 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 4984 return ReductionInstDesc(false, I); 4985 return ReductionInstDesc(Select, Prev.MinMaxKind); 4986 } 4987 4988 // Only handle single use cases for now. 4989 if (!(Select = dyn_cast<SelectInst>(I))) 4990 return ReductionInstDesc(false, I); 4991 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4992 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4993 return ReductionInstDesc(false, I); 4994 if (!Cmp->hasOneUse()) 4995 return ReductionInstDesc(false, I); 4996 4997 Value *CmpLeft; 4998 Value *CmpRight; 4999 5000 // Look for a min/max pattern. 5001 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5002 return ReductionInstDesc(Select, MRK_UIntMin); 5003 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5004 return ReductionInstDesc(Select, MRK_UIntMax); 5005 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5006 return ReductionInstDesc(Select, MRK_SIntMax); 5007 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5008 return ReductionInstDesc(Select, MRK_SIntMin); 5009 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5010 return ReductionInstDesc(Select, MRK_FloatMin); 5011 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5012 return ReductionInstDesc(Select, MRK_FloatMax); 5013 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5014 return ReductionInstDesc(Select, MRK_FloatMin); 5015 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5016 return ReductionInstDesc(Select, MRK_FloatMax); 5017 5018 return ReductionInstDesc(false, I); 5019 } 5020 5021 LoopVectorizationLegality::ReductionInstDesc 5022 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5023 ReductionKind Kind, 5024 ReductionInstDesc &Prev) { 5025 bool FP = I->getType()->isFloatingPointTy(); 5026 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 5027 switch (I->getOpcode()) { 5028 default: 5029 return ReductionInstDesc(false, I); 5030 case Instruction::PHI: 5031 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5032 Kind != RK_FloatMinMax)) 5033 return ReductionInstDesc(false, I); 5034 return ReductionInstDesc(I, Prev.MinMaxKind); 5035 case Instruction::Sub: 5036 case Instruction::Add: 5037 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5038 case Instruction::Mul: 5039 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5040 case Instruction::And: 5041 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5042 case Instruction::Or: 5043 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5044 case Instruction::Xor: 5045 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5046 case Instruction::FMul: 5047 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5048 case Instruction::FAdd: 5049 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5050 case Instruction::FCmp: 5051 case Instruction::ICmp: 5052 case Instruction::Select: 5053 if (Kind != RK_IntegerMinMax && 5054 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5055 return ReductionInstDesc(false, I); 5056 return isMinMaxSelectCmpPattern(I, Prev); 5057 } 5058 } 5059 5060 LoopVectorizationLegality::InductionKind 5061 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5062 Type *PhiTy = Phi->getType(); 5063 // We only handle integer and pointer inductions variables. 5064 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5065 return IK_NoInduction; 5066 5067 // Check that the PHI is consecutive. 5068 const SCEV *PhiScev = SE->getSCEV(Phi); 5069 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5070 if (!AR) { 5071 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5072 return IK_NoInduction; 5073 } 5074 const SCEV *Step = AR->getStepRecurrence(*SE); 5075 5076 // Integer inductions need to have a stride of one. 5077 if (PhiTy->isIntegerTy()) { 5078 if (Step->isOne()) 5079 return IK_IntInduction; 5080 if (Step->isAllOnesValue()) 5081 return IK_ReverseIntInduction; 5082 return IK_NoInduction; 5083 } 5084 5085 // Calculate the pointer stride and check if it is consecutive. 5086 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5087 if (!C) 5088 return IK_NoInduction; 5089 5090 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5091 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 5092 if (C->getValue()->equalsInt(Size)) 5093 return IK_PtrInduction; 5094 else if (C->getValue()->equalsInt(0 - Size)) 5095 return IK_ReversePtrInduction; 5096 5097 return IK_NoInduction; 5098 } 5099 5100 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5101 Value *In0 = const_cast<Value*>(V); 5102 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5103 if (!PN) 5104 return false; 5105 5106 return Inductions.count(PN); 5107 } 5108 5109 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5110 assert(TheLoop->contains(BB) && "Unknown block used"); 5111 5112 // Blocks that do not dominate the latch need predication. 5113 BasicBlock* Latch = TheLoop->getLoopLatch(); 5114 return !DT->dominates(BB, Latch); 5115 } 5116 5117 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5118 SmallPtrSet<Value *, 8>& SafePtrs) { 5119 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5120 // We might be able to hoist the load. 5121 if (it->mayReadFromMemory()) { 5122 LoadInst *LI = dyn_cast<LoadInst>(it); 5123 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 5124 return false; 5125 } 5126 5127 // We don't predicate stores at the moment. 5128 if (it->mayWriteToMemory()) { 5129 StoreInst *SI = dyn_cast<StoreInst>(it); 5130 // We only support predication of stores in basic blocks with one 5131 // predecessor. 5132 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 5133 !SafePtrs.count(SI->getPointerOperand()) || 5134 !SI->getParent()->getSinglePredecessor()) 5135 return false; 5136 } 5137 if (it->mayThrow()) 5138 return false; 5139 5140 // Check that we don't have a constant expression that can trap as operand. 5141 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5142 OI != OE; ++OI) { 5143 if (Constant *C = dyn_cast<Constant>(*OI)) 5144 if (C->canTrap()) 5145 return false; 5146 } 5147 5148 // The instructions below can trap. 5149 switch (it->getOpcode()) { 5150 default: continue; 5151 case Instruction::UDiv: 5152 case Instruction::SDiv: 5153 case Instruction::URem: 5154 case Instruction::SRem: 5155 return false; 5156 } 5157 } 5158 5159 return true; 5160 } 5161 5162 LoopVectorizationCostModel::VectorizationFactor 5163 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 5164 unsigned UserVF, 5165 bool ForceVectorization) { 5166 // Width 1 means no vectorize 5167 VectorizationFactor Factor = { 1U, 0U }; 5168 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5169 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5170 return Factor; 5171 } 5172 5173 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5174 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5175 return Factor; 5176 } 5177 5178 // Find the trip count. 5179 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 5180 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5181 5182 unsigned WidestType = getWidestType(); 5183 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5184 unsigned MaxSafeDepDist = -1U; 5185 if (Legal->getMaxSafeDepDistBytes() != -1U) 5186 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5187 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5188 WidestRegister : MaxSafeDepDist); 5189 unsigned MaxVectorSize = WidestRegister / WidestType; 5190 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5191 DEBUG(dbgs() << "LV: The Widest register is: " 5192 << WidestRegister << " bits.\n"); 5193 5194 if (MaxVectorSize == 0) { 5195 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5196 MaxVectorSize = 1; 5197 } 5198 5199 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 5200 " into one vector!"); 5201 5202 unsigned VF = MaxVectorSize; 5203 5204 // If we optimize the program for size, avoid creating the tail loop. 5205 if (OptForSize) { 5206 // If we are unable to calculate the trip count then don't try to vectorize. 5207 if (TC < 2) { 5208 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5209 return Factor; 5210 } 5211 5212 // Find the maximum SIMD width that can fit within the trip count. 5213 VF = TC % MaxVectorSize; 5214 5215 if (VF == 0) 5216 VF = MaxVectorSize; 5217 5218 // If the trip count that we found modulo the vectorization factor is not 5219 // zero then we require a tail. 5220 if (VF < 2) { 5221 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5222 return Factor; 5223 } 5224 } 5225 5226 if (UserVF != 0) { 5227 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5228 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5229 5230 Factor.Width = UserVF; 5231 return Factor; 5232 } 5233 5234 float Cost = expectedCost(1); 5235 #ifndef NDEBUG 5236 const float ScalarCost = Cost; 5237 #endif /* NDEBUG */ 5238 unsigned Width = 1; 5239 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5240 5241 // Ignore scalar width, because the user explicitly wants vectorization. 5242 if (ForceVectorization && VF > 1) { 5243 Width = 2; 5244 Cost = expectedCost(Width) / (float)Width; 5245 } 5246 5247 for (unsigned i=2; i <= VF; i*=2) { 5248 // Notice that the vector loop needs to be executed less times, so 5249 // we need to divide the cost of the vector loops by the width of 5250 // the vector elements. 5251 float VectorCost = expectedCost(i) / (float)i; 5252 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5253 (int)VectorCost << ".\n"); 5254 if (VectorCost < Cost) { 5255 Cost = VectorCost; 5256 Width = i; 5257 } 5258 } 5259 5260 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5261 << "LV: Vectorization seems to be not beneficial, " 5262 << "but was forced by a user.\n"); 5263 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5264 Factor.Width = Width; 5265 Factor.Cost = Width * Cost; 5266 return Factor; 5267 } 5268 5269 unsigned LoopVectorizationCostModel::getWidestType() { 5270 unsigned MaxWidth = 8; 5271 5272 // For each block. 5273 for (Loop::block_iterator bb = TheLoop->block_begin(), 5274 be = TheLoop->block_end(); bb != be; ++bb) { 5275 BasicBlock *BB = *bb; 5276 5277 // For each instruction in the loop. 5278 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5279 Type *T = it->getType(); 5280 5281 // Only examine Loads, Stores and PHINodes. 5282 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5283 continue; 5284 5285 // Examine PHI nodes that are reduction variables. 5286 if (PHINode *PN = dyn_cast<PHINode>(it)) 5287 if (!Legal->getReductionVars()->count(PN)) 5288 continue; 5289 5290 // Examine the stored values. 5291 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5292 T = ST->getValueOperand()->getType(); 5293 5294 // Ignore loaded pointer types and stored pointer types that are not 5295 // consecutive. However, we do want to take consecutive stores/loads of 5296 // pointer vectors into account. 5297 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5298 continue; 5299 5300 MaxWidth = std::max(MaxWidth, 5301 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5302 } 5303 } 5304 5305 return MaxWidth; 5306 } 5307 5308 unsigned 5309 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5310 unsigned UserUF, 5311 unsigned VF, 5312 unsigned LoopCost) { 5313 5314 // -- The unroll heuristics -- 5315 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5316 // There are many micro-architectural considerations that we can't predict 5317 // at this level. For example frontend pressure (on decode or fetch) due to 5318 // code size, or the number and capabilities of the execution ports. 5319 // 5320 // We use the following heuristics to select the unroll factor: 5321 // 1. If the code has reductions the we unroll in order to break the cross 5322 // iteration dependency. 5323 // 2. If the loop is really small then we unroll in order to reduce the loop 5324 // overhead. 5325 // 3. We don't unroll if we think that we will spill registers to memory due 5326 // to the increased register pressure. 5327 5328 // Use the user preference, unless 'auto' is selected. 5329 if (UserUF != 0) 5330 return UserUF; 5331 5332 // When we optimize for size we don't unroll. 5333 if (OptForSize) 5334 return 1; 5335 5336 // We used the distance for the unroll factor. 5337 if (Legal->getMaxSafeDepDistBytes() != -1U) 5338 return 1; 5339 5340 // Do not unroll loops with a relatively small trip count. 5341 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 5342 TheLoop->getLoopLatch()); 5343 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5344 return 1; 5345 5346 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5347 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5348 " registers\n"); 5349 5350 if (VF == 1) { 5351 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5352 TargetNumRegisters = ForceTargetNumScalarRegs; 5353 } else { 5354 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5355 TargetNumRegisters = ForceTargetNumVectorRegs; 5356 } 5357 5358 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5359 // We divide by these constants so assume that we have at least one 5360 // instruction that uses at least one register. 5361 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5362 R.NumInstructions = std::max(R.NumInstructions, 1U); 5363 5364 // We calculate the unroll factor using the following formula. 5365 // Subtract the number of loop invariants from the number of available 5366 // registers. These registers are used by all of the unrolled instances. 5367 // Next, divide the remaining registers by the number of registers that is 5368 // required by the loop, in order to estimate how many parallel instances 5369 // fit without causing spills. All of this is rounded down if necessary to be 5370 // a power of two. We want power of two unroll factors to simplify any 5371 // addressing operations or alignment considerations. 5372 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5373 R.MaxLocalUsers); 5374 5375 // Don't count the induction variable as unrolled. 5376 if (EnableIndVarRegisterHeur) 5377 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5378 std::max(1U, (R.MaxLocalUsers - 1))); 5379 5380 // Clamp the unroll factor ranges to reasonable factors. 5381 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 5382 5383 // Check if the user has overridden the unroll max. 5384 if (VF == 1) { 5385 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0) 5386 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor; 5387 } else { 5388 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0) 5389 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor; 5390 } 5391 5392 // If we did not calculate the cost for VF (because the user selected the VF) 5393 // then we calculate the cost of VF here. 5394 if (LoopCost == 0) 5395 LoopCost = expectedCost(VF); 5396 5397 // Clamp the calculated UF to be between the 1 and the max unroll factor 5398 // that the target allows. 5399 if (UF > MaxUnrollSize) 5400 UF = MaxUnrollSize; 5401 else if (UF < 1) 5402 UF = 1; 5403 5404 // Unroll if we vectorized this loop and there is a reduction that could 5405 // benefit from unrolling. 5406 if (VF > 1 && Legal->getReductionVars()->size()) { 5407 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5408 return UF; 5409 } 5410 5411 // Note that if we've already vectorized the loop we will have done the 5412 // runtime check and so unrolling won't require further checks. 5413 bool UnrollingRequiresRuntimePointerCheck = 5414 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5415 5416 // We want to unroll small loops in order to reduce the loop overhead and 5417 // potentially expose ILP opportunities. 5418 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5419 if (!UnrollingRequiresRuntimePointerCheck && 5420 LoopCost < SmallLoopCost) { 5421 // We assume that the cost overhead is 1 and we use the cost model 5422 // to estimate the cost of the loop and unroll until the cost of the 5423 // loop overhead is about 5% of the cost of the loop. 5424 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5425 5426 // Unroll until store/load ports (estimated by max unroll factor) are 5427 // saturated. 5428 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5429 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5430 5431 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5432 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5433 return std::max(StoresUF, LoadsUF); 5434 } 5435 5436 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5437 return SmallUF; 5438 } 5439 5440 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5441 return 1; 5442 } 5443 5444 LoopVectorizationCostModel::RegisterUsage 5445 LoopVectorizationCostModel::calculateRegisterUsage() { 5446 // This function calculates the register usage by measuring the highest number 5447 // of values that are alive at a single location. Obviously, this is a very 5448 // rough estimation. We scan the loop in a topological order in order and 5449 // assign a number to each instruction. We use RPO to ensure that defs are 5450 // met before their users. We assume that each instruction that has in-loop 5451 // users starts an interval. We record every time that an in-loop value is 5452 // used, so we have a list of the first and last occurrences of each 5453 // instruction. Next, we transpose this data structure into a multi map that 5454 // holds the list of intervals that *end* at a specific location. This multi 5455 // map allows us to perform a linear search. We scan the instructions linearly 5456 // and record each time that a new interval starts, by placing it in a set. 5457 // If we find this value in the multi-map then we remove it from the set. 5458 // The max register usage is the maximum size of the set. 5459 // We also search for instructions that are defined outside the loop, but are 5460 // used inside the loop. We need this number separately from the max-interval 5461 // usage number because when we unroll, loop-invariant values do not take 5462 // more register. 5463 LoopBlocksDFS DFS(TheLoop); 5464 DFS.perform(LI); 5465 5466 RegisterUsage R; 5467 R.NumInstructions = 0; 5468 5469 // Each 'key' in the map opens a new interval. The values 5470 // of the map are the index of the 'last seen' usage of the 5471 // instruction that is the key. 5472 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5473 // Maps instruction to its index. 5474 DenseMap<unsigned, Instruction*> IdxToInstr; 5475 // Marks the end of each interval. 5476 IntervalMap EndPoint; 5477 // Saves the list of instruction indices that are used in the loop. 5478 SmallSet<Instruction*, 8> Ends; 5479 // Saves the list of values that are used in the loop but are 5480 // defined outside the loop, such as arguments and constants. 5481 SmallPtrSet<Value*, 8> LoopInvariants; 5482 5483 unsigned Index = 0; 5484 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5485 be = DFS.endRPO(); bb != be; ++bb) { 5486 R.NumInstructions += (*bb)->size(); 5487 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5488 ++it) { 5489 Instruction *I = it; 5490 IdxToInstr[Index++] = I; 5491 5492 // Save the end location of each USE. 5493 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5494 Value *U = I->getOperand(i); 5495 Instruction *Instr = dyn_cast<Instruction>(U); 5496 5497 // Ignore non-instruction values such as arguments, constants, etc. 5498 if (!Instr) continue; 5499 5500 // If this instruction is outside the loop then record it and continue. 5501 if (!TheLoop->contains(Instr)) { 5502 LoopInvariants.insert(Instr); 5503 continue; 5504 } 5505 5506 // Overwrite previous end points. 5507 EndPoint[Instr] = Index; 5508 Ends.insert(Instr); 5509 } 5510 } 5511 } 5512 5513 // Saves the list of intervals that end with the index in 'key'. 5514 typedef SmallVector<Instruction*, 2> InstrList; 5515 DenseMap<unsigned, InstrList> TransposeEnds; 5516 5517 // Transpose the EndPoints to a list of values that end at each index. 5518 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5519 it != e; ++it) 5520 TransposeEnds[it->second].push_back(it->first); 5521 5522 SmallSet<Instruction*, 8> OpenIntervals; 5523 unsigned MaxUsage = 0; 5524 5525 5526 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5527 for (unsigned int i = 0; i < Index; ++i) { 5528 Instruction *I = IdxToInstr[i]; 5529 // Ignore instructions that are never used within the loop. 5530 if (!Ends.count(I)) continue; 5531 5532 // Remove all of the instructions that end at this location. 5533 InstrList &List = TransposeEnds[i]; 5534 for (unsigned int j=0, e = List.size(); j < e; ++j) 5535 OpenIntervals.erase(List[j]); 5536 5537 // Count the number of live interals. 5538 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5539 5540 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5541 OpenIntervals.size() << '\n'); 5542 5543 // Add the current instruction to the list of open intervals. 5544 OpenIntervals.insert(I); 5545 } 5546 5547 unsigned Invariant = LoopInvariants.size(); 5548 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5549 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5550 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5551 5552 R.LoopInvariantRegs = Invariant; 5553 R.MaxLocalUsers = MaxUsage; 5554 return R; 5555 } 5556 5557 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5558 unsigned Cost = 0; 5559 5560 // For each block. 5561 for (Loop::block_iterator bb = TheLoop->block_begin(), 5562 be = TheLoop->block_end(); bb != be; ++bb) { 5563 unsigned BlockCost = 0; 5564 BasicBlock *BB = *bb; 5565 5566 // For each instruction in the old loop. 5567 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5568 // Skip dbg intrinsics. 5569 if (isa<DbgInfoIntrinsic>(it)) 5570 continue; 5571 5572 unsigned C = getInstructionCost(it, VF); 5573 5574 // Check if we should override the cost. 5575 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5576 C = ForceTargetInstructionCost; 5577 5578 BlockCost += C; 5579 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5580 VF << " For instruction: " << *it << '\n'); 5581 } 5582 5583 // We assume that if-converted blocks have a 50% chance of being executed. 5584 // When the code is scalar then some of the blocks are avoided due to CF. 5585 // When the code is vectorized we execute all code paths. 5586 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5587 BlockCost /= 2; 5588 5589 Cost += BlockCost; 5590 } 5591 5592 return Cost; 5593 } 5594 5595 /// \brief Check whether the address computation for a non-consecutive memory 5596 /// access looks like an unlikely candidate for being merged into the indexing 5597 /// mode. 5598 /// 5599 /// We look for a GEP which has one index that is an induction variable and all 5600 /// other indices are loop invariant. If the stride of this access is also 5601 /// within a small bound we decide that this address computation can likely be 5602 /// merged into the addressing mode. 5603 /// In all other cases, we identify the address computation as complex. 5604 static bool isLikelyComplexAddressComputation(Value *Ptr, 5605 LoopVectorizationLegality *Legal, 5606 ScalarEvolution *SE, 5607 const Loop *TheLoop) { 5608 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5609 if (!Gep) 5610 return true; 5611 5612 // We are looking for a gep with all loop invariant indices except for one 5613 // which should be an induction variable. 5614 unsigned NumOperands = Gep->getNumOperands(); 5615 for (unsigned i = 1; i < NumOperands; ++i) { 5616 Value *Opd = Gep->getOperand(i); 5617 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5618 !Legal->isInductionVariable(Opd)) 5619 return true; 5620 } 5621 5622 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5623 // can likely be merged into the address computation. 5624 unsigned MaxMergeDistance = 64; 5625 5626 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5627 if (!AddRec) 5628 return true; 5629 5630 // Check the step is constant. 5631 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5632 // Calculate the pointer stride and check if it is consecutive. 5633 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5634 if (!C) 5635 return true; 5636 5637 const APInt &APStepVal = C->getValue()->getValue(); 5638 5639 // Huge step value - give up. 5640 if (APStepVal.getBitWidth() > 64) 5641 return true; 5642 5643 int64_t StepVal = APStepVal.getSExtValue(); 5644 5645 return StepVal > MaxMergeDistance; 5646 } 5647 5648 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5649 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5650 return true; 5651 return false; 5652 } 5653 5654 unsigned 5655 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5656 // If we know that this instruction will remain uniform, check the cost of 5657 // the scalar version. 5658 if (Legal->isUniformAfterVectorization(I)) 5659 VF = 1; 5660 5661 Type *RetTy = I->getType(); 5662 Type *VectorTy = ToVectorTy(RetTy, VF); 5663 5664 // TODO: We need to estimate the cost of intrinsic calls. 5665 switch (I->getOpcode()) { 5666 case Instruction::GetElementPtr: 5667 // We mark this instruction as zero-cost because the cost of GEPs in 5668 // vectorized code depends on whether the corresponding memory instruction 5669 // is scalarized or not. Therefore, we handle GEPs with the memory 5670 // instruction cost. 5671 return 0; 5672 case Instruction::Br: { 5673 return TTI.getCFInstrCost(I->getOpcode()); 5674 } 5675 case Instruction::PHI: 5676 //TODO: IF-converted IFs become selects. 5677 return 0; 5678 case Instruction::Add: 5679 case Instruction::FAdd: 5680 case Instruction::Sub: 5681 case Instruction::FSub: 5682 case Instruction::Mul: 5683 case Instruction::FMul: 5684 case Instruction::UDiv: 5685 case Instruction::SDiv: 5686 case Instruction::FDiv: 5687 case Instruction::URem: 5688 case Instruction::SRem: 5689 case Instruction::FRem: 5690 case Instruction::Shl: 5691 case Instruction::LShr: 5692 case Instruction::AShr: 5693 case Instruction::And: 5694 case Instruction::Or: 5695 case Instruction::Xor: { 5696 // Since we will replace the stride by 1 the multiplication should go away. 5697 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5698 return 0; 5699 // Certain instructions can be cheaper to vectorize if they have a constant 5700 // second vector operand. One example of this are shifts on x86. 5701 TargetTransformInfo::OperandValueKind Op1VK = 5702 TargetTransformInfo::OK_AnyValue; 5703 TargetTransformInfo::OperandValueKind Op2VK = 5704 TargetTransformInfo::OK_AnyValue; 5705 Value *Op2 = I->getOperand(1); 5706 5707 // Check for a splat of a constant or for a non uniform vector of constants. 5708 if (isa<ConstantInt>(Op2)) 5709 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5710 else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5711 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5712 if (cast<Constant>(Op2)->getSplatValue() != nullptr) 5713 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5714 } 5715 5716 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 5717 } 5718 case Instruction::Select: { 5719 SelectInst *SI = cast<SelectInst>(I); 5720 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5721 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5722 Type *CondTy = SI->getCondition()->getType(); 5723 if (!ScalarCond) 5724 CondTy = VectorType::get(CondTy, VF); 5725 5726 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5727 } 5728 case Instruction::ICmp: 5729 case Instruction::FCmp: { 5730 Type *ValTy = I->getOperand(0)->getType(); 5731 VectorTy = ToVectorTy(ValTy, VF); 5732 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5733 } 5734 case Instruction::Store: 5735 case Instruction::Load: { 5736 StoreInst *SI = dyn_cast<StoreInst>(I); 5737 LoadInst *LI = dyn_cast<LoadInst>(I); 5738 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5739 LI->getType()); 5740 VectorTy = ToVectorTy(ValTy, VF); 5741 5742 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5743 unsigned AS = SI ? SI->getPointerAddressSpace() : 5744 LI->getPointerAddressSpace(); 5745 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5746 // We add the cost of address computation here instead of with the gep 5747 // instruction because only here we know whether the operation is 5748 // scalarized. 5749 if (VF == 1) 5750 return TTI.getAddressComputationCost(VectorTy) + 5751 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5752 5753 // Scalarized loads/stores. 5754 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5755 bool Reverse = ConsecutiveStride < 0; 5756 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5757 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5758 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5759 bool IsComplexComputation = 5760 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5761 unsigned Cost = 0; 5762 // The cost of extracting from the value vector and pointer vector. 5763 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5764 for (unsigned i = 0; i < VF; ++i) { 5765 // The cost of extracting the pointer operand. 5766 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5767 // In case of STORE, the cost of ExtractElement from the vector. 5768 // In case of LOAD, the cost of InsertElement into the returned 5769 // vector. 5770 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5771 Instruction::InsertElement, 5772 VectorTy, i); 5773 } 5774 5775 // The cost of the scalar loads/stores. 5776 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5777 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5778 Alignment, AS); 5779 return Cost; 5780 } 5781 5782 // Wide load/stores. 5783 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5784 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5785 5786 if (Reverse) 5787 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5788 VectorTy, 0); 5789 return Cost; 5790 } 5791 case Instruction::ZExt: 5792 case Instruction::SExt: 5793 case Instruction::FPToUI: 5794 case Instruction::FPToSI: 5795 case Instruction::FPExt: 5796 case Instruction::PtrToInt: 5797 case Instruction::IntToPtr: 5798 case Instruction::SIToFP: 5799 case Instruction::UIToFP: 5800 case Instruction::Trunc: 5801 case Instruction::FPTrunc: 5802 case Instruction::BitCast: { 5803 // We optimize the truncation of induction variable. 5804 // The cost of these is the same as the scalar operation. 5805 if (I->getOpcode() == Instruction::Trunc && 5806 Legal->isInductionVariable(I->getOperand(0))) 5807 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5808 I->getOperand(0)->getType()); 5809 5810 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5811 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5812 } 5813 case Instruction::Call: { 5814 CallInst *CI = cast<CallInst>(I); 5815 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5816 assert(ID && "Not an intrinsic call!"); 5817 Type *RetTy = ToVectorTy(CI->getType(), VF); 5818 SmallVector<Type*, 4> Tys; 5819 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5820 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5821 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5822 } 5823 default: { 5824 // We are scalarizing the instruction. Return the cost of the scalar 5825 // instruction, plus the cost of insert and extract into vector 5826 // elements, times the vector width. 5827 unsigned Cost = 0; 5828 5829 if (!RetTy->isVoidTy() && VF != 1) { 5830 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5831 VectorTy); 5832 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5833 VectorTy); 5834 5835 // The cost of inserting the results plus extracting each one of the 5836 // operands. 5837 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5838 } 5839 5840 // The cost of executing VF copies of the scalar instruction. This opcode 5841 // is unknown. Assume that it is the same as 'mul'. 5842 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5843 return Cost; 5844 } 5845 }// end of switch. 5846 } 5847 5848 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5849 if (Scalar->isVoidTy() || VF == 1) 5850 return Scalar; 5851 return VectorType::get(Scalar, VF); 5852 } 5853 5854 char LoopVectorize::ID = 0; 5855 static const char lv_name[] = "Loop Vectorization"; 5856 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5857 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5858 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5859 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5860 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5861 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5862 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5863 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5864 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5865 5866 namespace llvm { 5867 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5868 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5869 } 5870 } 5871 5872 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5873 // Check for a store. 5874 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5875 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5876 5877 // Check for a load. 5878 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5879 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5880 5881 return false; 5882 } 5883 5884 5885 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5886 bool IfPredicateStore) { 5887 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5888 // Holds vector parameters or scalars, in case of uniform vals. 5889 SmallVector<VectorParts, 4> Params; 5890 5891 setDebugLocFromInst(Builder, Instr); 5892 5893 // Find all of the vectorized parameters. 5894 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5895 Value *SrcOp = Instr->getOperand(op); 5896 5897 // If we are accessing the old induction variable, use the new one. 5898 if (SrcOp == OldInduction) { 5899 Params.push_back(getVectorValue(SrcOp)); 5900 continue; 5901 } 5902 5903 // Try using previously calculated values. 5904 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5905 5906 // If the src is an instruction that appeared earlier in the basic block 5907 // then it should already be vectorized. 5908 if (SrcInst && OrigLoop->contains(SrcInst)) { 5909 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5910 // The parameter is a vector value from earlier. 5911 Params.push_back(WidenMap.get(SrcInst)); 5912 } else { 5913 // The parameter is a scalar from outside the loop. Maybe even a constant. 5914 VectorParts Scalars; 5915 Scalars.append(UF, SrcOp); 5916 Params.push_back(Scalars); 5917 } 5918 } 5919 5920 assert(Params.size() == Instr->getNumOperands() && 5921 "Invalid number of operands"); 5922 5923 // Does this instruction return a value ? 5924 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5925 5926 Value *UndefVec = IsVoidRetTy ? nullptr : 5927 UndefValue::get(Instr->getType()); 5928 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5929 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5930 5931 Instruction *InsertPt = Builder.GetInsertPoint(); 5932 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5933 BasicBlock *CondBlock = nullptr; 5934 5935 VectorParts Cond; 5936 Loop *VectorLp = nullptr; 5937 if (IfPredicateStore) { 5938 assert(Instr->getParent()->getSinglePredecessor() && 5939 "Only support single predecessor blocks"); 5940 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5941 Instr->getParent()); 5942 VectorLp = LI->getLoopFor(IfBlock); 5943 assert(VectorLp && "Must have a loop for this block"); 5944 } 5945 5946 // For each vector unroll 'part': 5947 for (unsigned Part = 0; Part < UF; ++Part) { 5948 // For each scalar that we create: 5949 5950 // Start an "if (pred) a[i] = ..." block. 5951 Value *Cmp = nullptr; 5952 if (IfPredicateStore) { 5953 if (Cond[Part]->getType()->isVectorTy()) 5954 Cond[Part] = 5955 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5956 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5957 ConstantInt::get(Cond[Part]->getType(), 1)); 5958 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5959 LoopVectorBody.push_back(CondBlock); 5960 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 5961 // Update Builder with newly created basic block. 5962 Builder.SetInsertPoint(InsertPt); 5963 } 5964 5965 Instruction *Cloned = Instr->clone(); 5966 if (!IsVoidRetTy) 5967 Cloned->setName(Instr->getName() + ".cloned"); 5968 // Replace the operands of the cloned instructions with extracted scalars. 5969 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5970 Value *Op = Params[op][Part]; 5971 Cloned->setOperand(op, Op); 5972 } 5973 5974 // Place the cloned scalar in the new loop. 5975 Builder.Insert(Cloned); 5976 5977 // If the original scalar returns a value we need to place it in a vector 5978 // so that future users will be able to use it. 5979 if (!IsVoidRetTy) 5980 VecResults[Part] = Cloned; 5981 5982 // End if-block. 5983 if (IfPredicateStore) { 5984 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5985 LoopVectorBody.push_back(NewIfBlock); 5986 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 5987 Builder.SetInsertPoint(InsertPt); 5988 Instruction *OldBr = IfBlock->getTerminator(); 5989 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5990 OldBr->eraseFromParent(); 5991 IfBlock = NewIfBlock; 5992 } 5993 } 5994 } 5995 5996 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5997 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5998 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5999 6000 return scalarizeInstruction(Instr, IfPredicateStore); 6001 } 6002 6003 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6004 return Vec; 6005 } 6006 6007 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6008 return V; 6009 } 6010 6011 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6012 bool Negate) { 6013 // When unrolling and the VF is 1, we only need to add a simple scalar. 6014 Type *ITy = Val->getType(); 6015 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6016 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6017 return Builder.CreateAdd(Val, C, "induction"); 6018 } 6019