1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/User.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/IR/Verifier.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/BranchProbability.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/LoopSimplify.h" 96 #include "llvm/Transforms/Utils/LoopUtils.h" 97 #include "llvm/Transforms/Utils/LoopVersioning.h" 98 #include "llvm/Transforms/Vectorize.h" 99 #include <algorithm> 100 #include <map> 101 #include <tuple> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define LV_NAME "loop-vectorize" 107 #define DEBUG_TYPE LV_NAME 108 109 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 110 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 111 112 static cl::opt<bool> 113 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 114 cl::desc("Enable if-conversion during vectorization.")); 115 116 /// We don't vectorize loops with a known constant trip count below this number. 117 static cl::opt<unsigned> TinyTripCountVectorThreshold( 118 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 119 cl::desc("Don't vectorize loops with a constant " 120 "trip count that is smaller than this " 121 "value.")); 122 123 static cl::opt<bool> MaximizeBandwidth( 124 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 125 cl::desc("Maximize bandwidth when selecting vectorization factor which " 126 "will be determined by the smallest type in loop.")); 127 128 static cl::opt<bool> EnableInterleavedMemAccesses( 129 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 130 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 131 132 /// Maximum factor for an interleaved memory access. 133 static cl::opt<unsigned> MaxInterleaveGroupFactor( 134 "max-interleave-group-factor", cl::Hidden, 135 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 136 cl::init(8)); 137 138 /// We don't interleave loops with a known constant trip count below this 139 /// number. 140 static const unsigned TinyTripCountInterleaveThreshold = 128; 141 142 static cl::opt<unsigned> ForceTargetNumScalarRegs( 143 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 144 cl::desc("A flag that overrides the target's number of scalar registers.")); 145 146 static cl::opt<unsigned> ForceTargetNumVectorRegs( 147 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 148 cl::desc("A flag that overrides the target's number of vector registers.")); 149 150 /// Maximum vectorization interleave count. 151 static const unsigned MaxInterleaveFactor = 16; 152 153 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 154 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 155 cl::desc("A flag that overrides the target's max interleave factor for " 156 "scalar loops.")); 157 158 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 159 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's max interleave factor for " 161 "vectorized loops.")); 162 163 static cl::opt<unsigned> ForceTargetInstructionCost( 164 "force-target-instruction-cost", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's expected cost for " 166 "an instruction to a single constant value. Mostly " 167 "useful for getting consistent testing.")); 168 169 static cl::opt<unsigned> SmallLoopCost( 170 "small-loop-cost", cl::init(20), cl::Hidden, 171 cl::desc( 172 "The cost of a loop that is considered 'small' by the interleaver.")); 173 174 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 175 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 176 cl::desc("Enable the use of the block frequency analysis to access PGO " 177 "heuristics minimizing code growth in cold regions and being more " 178 "aggressive in hot regions.")); 179 180 // Runtime interleave loops for load/store throughput. 181 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 182 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 183 cl::desc( 184 "Enable runtime interleaving until load/store ports are saturated")); 185 186 /// The number of stores in a loop that are allowed to need predication. 187 static cl::opt<unsigned> NumberOfStoresToPredicate( 188 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 189 cl::desc("Max number of stores to be predicated behind an if.")); 190 191 static cl::opt<bool> EnableIndVarRegisterHeur( 192 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 193 cl::desc("Count the induction variable only once when interleaving")); 194 195 static cl::opt<bool> EnableCondStoresVectorization( 196 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 197 cl::desc("Enable if predication of stores during vectorization.")); 198 199 static cl::opt<unsigned> MaxNestedScalarReductionIC( 200 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 201 cl::desc("The maximum interleave count to use when interleaving a scalar " 202 "reduction in a nested loop.")); 203 204 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 205 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 206 cl::desc("The maximum allowed number of runtime memory checks with a " 207 "vectorize(enable) pragma.")); 208 209 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 210 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 211 cl::desc("The maximum number of SCEV checks allowed.")); 212 213 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 214 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 215 cl::desc("The maximum number of SCEV checks allowed with a " 216 "vectorize(enable) pragma")); 217 218 /// Create an analysis remark that explains why vectorization failed 219 /// 220 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 221 /// RemarkName is the identifier for the remark. If \p I is passed it is an 222 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 223 /// the location of the remark. \return the remark object that can be 224 /// streamed to. 225 static OptimizationRemarkAnalysis 226 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 227 Instruction *I = nullptr) { 228 Value *CodeRegion = TheLoop->getHeader(); 229 DebugLoc DL = TheLoop->getStartLoc(); 230 231 if (I) { 232 CodeRegion = I->getParent(); 233 // If there is no debug location attached to the instruction, revert back to 234 // using the loop's. 235 if (I->getDebugLoc()) 236 DL = I->getDebugLoc(); 237 } 238 239 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 240 R << "loop not vectorized: "; 241 return R; 242 } 243 244 namespace { 245 246 // Forward declarations. 247 class LoopVectorizeHints; 248 class LoopVectorizationLegality; 249 class LoopVectorizationCostModel; 250 class LoopVectorizationRequirements; 251 252 /// Returns true if the given loop body has a cycle, excluding the loop 253 /// itself. 254 static bool hasCyclesInLoopBody(const Loop &L) { 255 if (!L.empty()) 256 return true; 257 258 for (const auto &SCC : 259 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 260 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 261 if (SCC.size() > 1) { 262 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 263 DEBUG(L.dump()); 264 return true; 265 } 266 } 267 return false; 268 } 269 270 /// \brief This modifies LoopAccessReport to initialize message with 271 /// loop-vectorizer-specific part. 272 class VectorizationReport : public LoopAccessReport { 273 public: 274 VectorizationReport(Instruction *I = nullptr) 275 : LoopAccessReport("loop not vectorized: ", I) {} 276 277 /// \brief This allows promotion of the loop-access analysis report into the 278 /// loop-vectorizer report. It modifies the message to add the 279 /// loop-vectorizer-specific part of the message. 280 explicit VectorizationReport(const LoopAccessReport &R) 281 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 282 R.getInstr()) {} 283 }; 284 285 /// A helper function for converting Scalar types to vector types. 286 /// If the incoming type is void, we return void. If the VF is 1, we return 287 /// the scalar type. 288 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 289 if (Scalar->isVoidTy() || VF == 1) 290 return Scalar; 291 return VectorType::get(Scalar, VF); 292 } 293 294 /// A helper function that returns GEP instruction and knows to skip a 295 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 296 /// pointee types of the 'bitcast' have the same size. 297 /// For example: 298 /// bitcast double** %var to i64* - can be skipped 299 /// bitcast double** %var to i8* - can not 300 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 301 302 if (isa<GetElementPtrInst>(Ptr)) 303 return cast<GetElementPtrInst>(Ptr); 304 305 if (isa<BitCastInst>(Ptr) && 306 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 307 Type *BitcastTy = Ptr->getType(); 308 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 309 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 310 return nullptr; 311 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 312 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 313 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 314 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 315 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 316 } 317 return nullptr; 318 } 319 320 // FIXME: The following helper functions have multiple implementations 321 // in the project. They can be effectively organized in a common Load/Store 322 // utilities unit. 323 324 /// A helper function that returns the pointer operand of a load or store 325 /// instruction. 326 static Value *getPointerOperand(Value *I) { 327 if (auto *LI = dyn_cast<LoadInst>(I)) 328 return LI->getPointerOperand(); 329 if (auto *SI = dyn_cast<StoreInst>(I)) 330 return SI->getPointerOperand(); 331 return nullptr; 332 } 333 334 /// A helper function that returns the type of loaded or stored value. 335 static Type *getMemInstValueType(Value *I) { 336 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 337 "Expected Load or Store instruction"); 338 if (auto *LI = dyn_cast<LoadInst>(I)) 339 return LI->getType(); 340 return cast<StoreInst>(I)->getValueOperand()->getType(); 341 } 342 343 /// A helper function that returns the alignment of load or store instruction. 344 static unsigned getMemInstAlignment(Value *I) { 345 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 346 "Expected Load or Store instruction"); 347 if (auto *LI = dyn_cast<LoadInst>(I)) 348 return LI->getAlignment(); 349 return cast<StoreInst>(I)->getAlignment(); 350 } 351 352 /// A helper function that returns the address space of the pointer operand of 353 /// load or store instruction. 354 static unsigned getMemInstAddressSpace(Value *I) { 355 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 356 "Expected Load or Store instruction"); 357 if (auto *LI = dyn_cast<LoadInst>(I)) 358 return LI->getPointerAddressSpace(); 359 return cast<StoreInst>(I)->getPointerAddressSpace(); 360 } 361 362 /// A helper function that returns true if the given type is irregular. The 363 /// type is irregular if its allocated size doesn't equal the store size of an 364 /// element of the corresponding vector type at the given vectorization factor. 365 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 366 367 // Determine if an array of VF elements of type Ty is "bitcast compatible" 368 // with a <VF x Ty> vector. 369 if (VF > 1) { 370 auto *VectorTy = VectorType::get(Ty, VF); 371 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 372 } 373 374 // If the vectorization factor is one, we just check if an array of type Ty 375 // requires padding between elements. 376 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 377 } 378 379 /// A helper function that returns the reciprocal of the block probability of 380 /// predicated blocks. If we return X, we are assuming the predicated block 381 /// will execute once for for every X iterations of the loop header. 382 /// 383 /// TODO: We should use actual block probability here, if available. Currently, 384 /// we always assume predicated blocks have a 50% chance of executing. 385 static unsigned getReciprocalPredBlockProb() { return 2; } 386 387 /// InnerLoopVectorizer vectorizes loops which contain only one basic 388 /// block to a specified vectorization factor (VF). 389 /// This class performs the widening of scalars into vectors, or multiple 390 /// scalars. This class also implements the following features: 391 /// * It inserts an epilogue loop for handling loops that don't have iteration 392 /// counts that are known to be a multiple of the vectorization factor. 393 /// * It handles the code generation for reduction variables. 394 /// * Scalarization (implementation using scalars) of un-vectorizable 395 /// instructions. 396 /// InnerLoopVectorizer does not perform any vectorization-legality 397 /// checks, and relies on the caller to check for the different legality 398 /// aspects. The InnerLoopVectorizer relies on the 399 /// LoopVectorizationLegality class to provide information about the induction 400 /// and reduction variables that were found to a given vectorization factor. 401 class InnerLoopVectorizer { 402 public: 403 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 404 LoopInfo *LI, DominatorTree *DT, 405 const TargetLibraryInfo *TLI, 406 const TargetTransformInfo *TTI, AssumptionCache *AC, 407 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 408 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 409 LoopVectorizationCostModel *CM) 410 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 411 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 412 Builder(PSE.getSE()->getContext()), Induction(nullptr), 413 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 414 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 415 AddedSafetyChecks(false) {} 416 417 // Perform the actual loop widening (vectorization). 418 void vectorize() { 419 // Create a new empty loop. Unlink the old loop and connect the new one. 420 createEmptyLoop(); 421 // Widen each instruction in the old loop to a new one in the new loop. 422 vectorizeLoop(); 423 } 424 425 // Return true if any runtime check is added. 426 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 427 428 virtual ~InnerLoopVectorizer() {} 429 430 protected: 431 /// A small list of PHINodes. 432 typedef SmallVector<PHINode *, 4> PhiVector; 433 434 /// A type for vectorized values in the new loop. Each value from the 435 /// original loop, when vectorized, is represented by UF vector values in the 436 /// new unrolled loop, where UF is the unroll factor. 437 typedef SmallVector<Value *, 2> VectorParts; 438 439 /// A type for scalarized values in the new loop. Each value from the 440 /// original loop, when scalarized, is represented by UF x VF scalar values 441 /// in the new unrolled loop, where UF is the unroll factor and VF is the 442 /// vectorization factor. 443 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 444 445 // When we if-convert we need to create edge masks. We have to cache values 446 // so that we don't end up with exponential recursion/IR. 447 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 448 EdgeMaskCache; 449 450 /// Create an empty loop, based on the loop ranges of the old loop. 451 void createEmptyLoop(); 452 453 /// Set up the values of the IVs correctly when exiting the vector loop. 454 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 455 Value *CountRoundDown, Value *EndValue, 456 BasicBlock *MiddleBlock); 457 458 /// Create a new induction variable inside L. 459 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 460 Value *Step, Instruction *DL); 461 /// Copy and widen the instructions from the old loop. 462 virtual void vectorizeLoop(); 463 464 /// Fix a first-order recurrence. This is the second phase of vectorizing 465 /// this phi node. 466 void fixFirstOrderRecurrence(PHINode *Phi); 467 468 /// \brief The Loop exit block may have single value PHI nodes where the 469 /// incoming value is 'Undef'. While vectorizing we only handled real values 470 /// that were defined inside the loop. Here we fix the 'undef case'. 471 /// See PR14725. 472 void fixLCSSAPHIs(); 473 474 /// Iteratively sink the scalarized operands of a predicated instruction into 475 /// the block that was created for it. 476 void sinkScalarOperands(Instruction *PredInst); 477 478 /// Predicate conditional instructions that require predication on their 479 /// respective conditions. 480 void predicateInstructions(); 481 482 /// Collect the instructions from the original loop that would be trivially 483 /// dead in the vectorized loop if generated. 484 void collectTriviallyDeadInstructions(); 485 486 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 487 /// represented as. 488 void truncateToMinimalBitwidths(); 489 490 /// A helper function that computes the predicate of the block BB, assuming 491 /// that the header block of the loop is set to True. It returns the *entry* 492 /// mask for the block BB. 493 VectorParts createBlockInMask(BasicBlock *BB); 494 /// A helper function that computes the predicate of the edge between SRC 495 /// and DST. 496 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 497 498 /// A helper function to vectorize a single BB within the innermost loop. 499 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 500 501 /// Vectorize a single PHINode in a block. This method handles the induction 502 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 503 /// arbitrary length vectors. 504 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF, 505 PhiVector *PV); 506 507 /// Insert the new loop to the loop hierarchy and pass manager 508 /// and update the analysis passes. 509 void updateAnalysis(); 510 511 /// This instruction is un-vectorizable. Implement it as a sequence 512 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 513 /// scalarized instruction behind an if block predicated on the control 514 /// dependence of the instruction. 515 virtual void scalarizeInstruction(Instruction *Instr, 516 bool IfPredicateInstr = false); 517 518 /// Vectorize Load and Store instructions, 519 virtual void vectorizeMemoryInstruction(Instruction *Instr); 520 521 /// Create a broadcast instruction. This method generates a broadcast 522 /// instruction (shuffle) for loop invariant values and for the induction 523 /// value. If this is the induction variable then we extend it to N, N+1, ... 524 /// this is needed because each iteration in the loop corresponds to a SIMD 525 /// element. 526 virtual Value *getBroadcastInstrs(Value *V); 527 528 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 529 /// to each vector element of Val. The sequence starts at StartIndex. 530 /// \p Opcode is relevant for FP induction variable. 531 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 532 Instruction::BinaryOps Opcode = 533 Instruction::BinaryOpsEnd); 534 535 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 536 /// variable on which to base the steps, \p Step is the size of the step, and 537 /// \p EntryVal is the value from the original loop that maps to the steps. 538 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 539 /// can be a truncate instruction). 540 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 541 542 /// Create a vector induction phi node based on an existing scalar one. \p 543 /// EntryVal is the value from the original loop that maps to the vector phi 544 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 545 /// truncate instruction, instead of widening the original IV, we widen a 546 /// version of the IV truncated to \p EntryVal's type. 547 void createVectorIntInductionPHI(const InductionDescriptor &II, Value *Step, 548 Instruction *EntryVal); 549 550 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 551 /// induction variable will first be truncated to the corresponding type. 552 void widenIntInduction(PHINode *IV, TruncInst *Trunc = nullptr); 553 554 /// Returns true if an instruction \p I should be scalarized instead of 555 /// vectorized for the chosen vectorization factor. 556 bool shouldScalarizeInstruction(Instruction *I) const; 557 558 /// Returns true if we should generate a scalar version of \p IV. 559 bool needsScalarInduction(Instruction *IV) const; 560 561 /// Return a constant reference to the VectorParts corresponding to \p V from 562 /// the original loop. If the value has already been vectorized, the 563 /// corresponding vector entry in VectorLoopValueMap is returned. If, 564 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 565 /// new vector values on-demand by inserting the scalar values into vectors 566 /// with an insertelement sequence. If the value has been neither vectorized 567 /// nor scalarized, it must be loop invariant, so we simply broadcast the 568 /// value into vectors. 569 const VectorParts &getVectorValue(Value *V); 570 571 /// Return a value in the new loop corresponding to \p V from the original 572 /// loop at unroll index \p Part and vector index \p Lane. If the value has 573 /// been vectorized but not scalarized, the necessary extractelement 574 /// instruction will be generated. 575 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 576 577 /// Try to vectorize the interleaved access group that \p Instr belongs to. 578 void vectorizeInterleaveGroup(Instruction *Instr); 579 580 /// Generate a shuffle sequence that will reverse the vector Vec. 581 virtual Value *reverseVector(Value *Vec); 582 583 /// Returns (and creates if needed) the original loop trip count. 584 Value *getOrCreateTripCount(Loop *NewLoop); 585 586 /// Returns (and creates if needed) the trip count of the widened loop. 587 Value *getOrCreateVectorTripCount(Loop *NewLoop); 588 589 /// Emit a bypass check to see if the trip count would overflow, or we 590 /// wouldn't have enough iterations to execute one vector loop. 591 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 592 /// Emit a bypass check to see if the vector trip count is nonzero. 593 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 594 /// Emit a bypass check to see if all of the SCEV assumptions we've 595 /// had to make are correct. 596 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 597 /// Emit bypass checks to check any memory assumptions we may have made. 598 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 599 600 /// Add additional metadata to \p To that was not present on \p Orig. 601 /// 602 /// Currently this is used to add the noalias annotations based on the 603 /// inserted memchecks. Use this for instructions that are *cloned* into the 604 /// vector loop. 605 void addNewMetadata(Instruction *To, const Instruction *Orig); 606 607 /// Add metadata from one instruction to another. 608 /// 609 /// This includes both the original MDs from \p From and additional ones (\see 610 /// addNewMetadata). Use this for *newly created* instructions in the vector 611 /// loop. 612 void addMetadata(Instruction *To, Instruction *From); 613 614 /// \brief Similar to the previous function but it adds the metadata to a 615 /// vector of instructions. 616 void addMetadata(ArrayRef<Value *> To, Instruction *From); 617 618 /// \brief Set the debug location in the builder using the debug location in 619 /// the instruction. 620 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 621 622 /// This is a helper class for maintaining vectorization state. It's used for 623 /// mapping values from the original loop to their corresponding values in 624 /// the new loop. Two mappings are maintained: one for vectorized values and 625 /// one for scalarized values. Vectorized values are represented with UF 626 /// vector values in the new loop, and scalarized values are represented with 627 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 628 /// vectorization factors, respectively. 629 /// 630 /// Entries can be added to either map with initVector and initScalar, which 631 /// initialize and return a constant reference to the new entry. If a 632 /// non-constant reference to a vector entry is required, getVector can be 633 /// used to retrieve a mutable entry. We currently directly modify the mapped 634 /// values during "fix-up" operations that occur once the first phase of 635 /// widening is complete. These operations include type truncation and the 636 /// second phase of recurrence widening. 637 /// 638 /// Otherwise, entries from either map should be accessed using the 639 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 640 /// getVectorValue and getScalarValue coordinate to generate a vector or 641 /// scalar value on-demand if one is not yet available. When vectorizing a 642 /// loop, we visit the definition of an instruction before its uses. When 643 /// visiting the definition, we either vectorize or scalarize the 644 /// instruction, creating an entry for it in the corresponding map. (In some 645 /// cases, such as induction variables, we will create both vector and scalar 646 /// entries.) Then, as we encounter uses of the definition, we derive values 647 /// for each scalar or vector use unless such a value is already available. 648 /// For example, if we scalarize a definition and one of its uses is vector, 649 /// we build the required vector on-demand with an insertelement sequence 650 /// when visiting the use. Otherwise, if the use is scalar, we can use the 651 /// existing scalar definition. 652 struct ValueMap { 653 654 /// Construct an empty map with the given unroll and vectorization factors. 655 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 656 : UF(UnrollFactor), VF(VecWidth) { 657 // The unroll and vectorization factors are only used in asserts builds 658 // to verify map entries are sized appropriately. 659 (void)UF; 660 (void)VF; 661 } 662 663 /// \return True if the map has a vector entry for \p Key. 664 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 665 666 /// \return True if the map has a scalar entry for \p Key. 667 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 668 669 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 670 /// constant reference to the new vector map entry. The given key should 671 /// not already be in the map, and the given VectorParts should be 672 /// correctly sized for the current unroll factor. 673 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 674 assert(!hasVector(Key) && "Vector entry already initialized"); 675 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 676 VectorMapStorage[Key] = Entry; 677 return VectorMapStorage[Key]; 678 } 679 680 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 681 /// constant reference to the new scalar map entry. The given key should 682 /// not already be in the map, and the given ScalarParts should be 683 /// correctly sized for the current unroll and vectorization factors. 684 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 685 assert(!hasScalar(Key) && "Scalar entry already initialized"); 686 assert(Entry.size() == UF && 687 all_of(make_range(Entry.begin(), Entry.end()), 688 [&](const SmallVectorImpl<Value *> &Values) -> bool { 689 return Values.size() == VF; 690 }) && 691 "ScalarParts has wrong dimensions"); 692 ScalarMapStorage[Key] = Entry; 693 return ScalarMapStorage[Key]; 694 } 695 696 /// \return A reference to the vector map entry corresponding to \p Key. 697 /// The key should already be in the map. This function should only be used 698 /// when it's necessary to update values that have already been vectorized. 699 /// This is the case for "fix-up" operations including type truncation and 700 /// the second phase of recurrence vectorization. If a non-const reference 701 /// isn't required, getVectorValue should be used instead. 702 VectorParts &getVector(Value *Key) { 703 assert(hasVector(Key) && "Vector entry not initialized"); 704 return VectorMapStorage.find(Key)->second; 705 } 706 707 /// Retrieve an entry from the vector or scalar maps. The preferred way to 708 /// access an existing mapped entry is with getVectorValue or 709 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 710 /// moved inside ValueMap, we have to declare them as friends. 711 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 712 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 713 unsigned Lane); 714 715 private: 716 /// The unroll factor. Each entry in the vector map contains UF vector 717 /// values. 718 unsigned UF; 719 720 /// The vectorization factor. Each entry in the scalar map contains UF x VF 721 /// scalar values. 722 unsigned VF; 723 724 /// The vector and scalar map storage. We use std::map and not DenseMap 725 /// because insertions to DenseMap invalidate its iterators. 726 std::map<Value *, VectorParts> VectorMapStorage; 727 std::map<Value *, ScalarParts> ScalarMapStorage; 728 }; 729 730 /// The original loop. 731 Loop *OrigLoop; 732 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 733 /// dynamic knowledge to simplify SCEV expressions and converts them to a 734 /// more usable form. 735 PredicatedScalarEvolution &PSE; 736 /// Loop Info. 737 LoopInfo *LI; 738 /// Dominator Tree. 739 DominatorTree *DT; 740 /// Alias Analysis. 741 AliasAnalysis *AA; 742 /// Target Library Info. 743 const TargetLibraryInfo *TLI; 744 /// Target Transform Info. 745 const TargetTransformInfo *TTI; 746 /// Assumption Cache. 747 AssumptionCache *AC; 748 /// Interface to emit optimization remarks. 749 OptimizationRemarkEmitter *ORE; 750 751 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 752 /// used. 753 /// 754 /// This is currently only used to add no-alias metadata based on the 755 /// memchecks. The actually versioning is performed manually. 756 std::unique_ptr<LoopVersioning> LVer; 757 758 /// The vectorization SIMD factor to use. Each vector will have this many 759 /// vector elements. 760 unsigned VF; 761 762 protected: 763 /// The vectorization unroll factor to use. Each scalar is vectorized to this 764 /// many different vector instructions. 765 unsigned UF; 766 767 /// The builder that we use 768 IRBuilder<> Builder; 769 770 // --- Vectorization state --- 771 772 /// The vector-loop preheader. 773 BasicBlock *LoopVectorPreHeader; 774 /// The scalar-loop preheader. 775 BasicBlock *LoopScalarPreHeader; 776 /// Middle Block between the vector and the scalar. 777 BasicBlock *LoopMiddleBlock; 778 /// The ExitBlock of the scalar loop. 779 BasicBlock *LoopExitBlock; 780 /// The vector loop body. 781 BasicBlock *LoopVectorBody; 782 /// The scalar loop body. 783 BasicBlock *LoopScalarBody; 784 /// A list of all bypass blocks. The first block is the entry of the loop. 785 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 786 787 /// The new Induction variable which was added to the new block. 788 PHINode *Induction; 789 /// The induction variable of the old basic block. 790 PHINode *OldInduction; 791 792 /// Maps values from the original loop to their corresponding values in the 793 /// vectorized loop. A key value can map to either vector values, scalar 794 /// values or both kinds of values, depending on whether the key was 795 /// vectorized and scalarized. 796 ValueMap VectorLoopValueMap; 797 798 /// Store instructions that should be predicated, as a pair 799 /// <StoreInst, Predicate> 800 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 801 EdgeMaskCache MaskCache; 802 /// Trip count of the original loop. 803 Value *TripCount; 804 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 805 Value *VectorTripCount; 806 807 /// The legality analysis. 808 LoopVectorizationLegality *Legal; 809 810 /// The profitablity analysis. 811 LoopVectorizationCostModel *Cost; 812 813 // Record whether runtime checks are added. 814 bool AddedSafetyChecks; 815 816 // Holds instructions from the original loop whose counterparts in the 817 // vectorized loop would be trivially dead if generated. For example, 818 // original induction update instructions can become dead because we 819 // separately emit induction "steps" when generating code for the new loop. 820 // Similarly, we create a new latch condition when setting up the structure 821 // of the new loop, so the old one can become dead. 822 SmallPtrSet<Instruction *, 4> DeadInstructions; 823 824 // Holds the end values for each induction variable. We save the end values 825 // so we can later fix-up the external users of the induction variables. 826 DenseMap<PHINode *, Value *> IVEndValues; 827 }; 828 829 class InnerLoopUnroller : public InnerLoopVectorizer { 830 public: 831 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 832 LoopInfo *LI, DominatorTree *DT, 833 const TargetLibraryInfo *TLI, 834 const TargetTransformInfo *TTI, AssumptionCache *AC, 835 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 836 LoopVectorizationLegality *LVL, 837 LoopVectorizationCostModel *CM) 838 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 839 UnrollFactor, LVL, CM) {} 840 841 private: 842 void scalarizeInstruction(Instruction *Instr, 843 bool IfPredicateInstr = false) override; 844 void vectorizeMemoryInstruction(Instruction *Instr) override; 845 Value *getBroadcastInstrs(Value *V) override; 846 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 847 Instruction::BinaryOps Opcode = 848 Instruction::BinaryOpsEnd) override; 849 Value *reverseVector(Value *Vec) override; 850 }; 851 852 /// \brief Look for a meaningful debug location on the instruction or it's 853 /// operands. 854 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 855 if (!I) 856 return I; 857 858 DebugLoc Empty; 859 if (I->getDebugLoc() != Empty) 860 return I; 861 862 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 863 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 864 if (OpInst->getDebugLoc() != Empty) 865 return OpInst; 866 } 867 868 return I; 869 } 870 871 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 872 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 873 const DILocation *DIL = Inst->getDebugLoc(); 874 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 875 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 876 else 877 B.SetCurrentDebugLocation(DIL); 878 } else 879 B.SetCurrentDebugLocation(DebugLoc()); 880 } 881 882 #ifndef NDEBUG 883 /// \return string containing a file name and a line # for the given loop. 884 static std::string getDebugLocString(const Loop *L) { 885 std::string Result; 886 if (L) { 887 raw_string_ostream OS(Result); 888 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 889 LoopDbgLoc.print(OS); 890 else 891 // Just print the module name. 892 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 893 OS.flush(); 894 } 895 return Result; 896 } 897 #endif 898 899 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 900 const Instruction *Orig) { 901 // If the loop was versioned with memchecks, add the corresponding no-alias 902 // metadata. 903 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 904 LVer->annotateInstWithNoAlias(To, Orig); 905 } 906 907 void InnerLoopVectorizer::addMetadata(Instruction *To, 908 Instruction *From) { 909 propagateMetadata(To, From); 910 addNewMetadata(To, From); 911 } 912 913 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 914 Instruction *From) { 915 for (Value *V : To) { 916 if (Instruction *I = dyn_cast<Instruction>(V)) 917 addMetadata(I, From); 918 } 919 } 920 921 /// \brief The group of interleaved loads/stores sharing the same stride and 922 /// close to each other. 923 /// 924 /// Each member in this group has an index starting from 0, and the largest 925 /// index should be less than interleaved factor, which is equal to the absolute 926 /// value of the access's stride. 927 /// 928 /// E.g. An interleaved load group of factor 4: 929 /// for (unsigned i = 0; i < 1024; i+=4) { 930 /// a = A[i]; // Member of index 0 931 /// b = A[i+1]; // Member of index 1 932 /// d = A[i+3]; // Member of index 3 933 /// ... 934 /// } 935 /// 936 /// An interleaved store group of factor 4: 937 /// for (unsigned i = 0; i < 1024; i+=4) { 938 /// ... 939 /// A[i] = a; // Member of index 0 940 /// A[i+1] = b; // Member of index 1 941 /// A[i+2] = c; // Member of index 2 942 /// A[i+3] = d; // Member of index 3 943 /// } 944 /// 945 /// Note: the interleaved load group could have gaps (missing members), but 946 /// the interleaved store group doesn't allow gaps. 947 class InterleaveGroup { 948 public: 949 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 950 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 951 assert(Align && "The alignment should be non-zero"); 952 953 Factor = std::abs(Stride); 954 assert(Factor > 1 && "Invalid interleave factor"); 955 956 Reverse = Stride < 0; 957 Members[0] = Instr; 958 } 959 960 bool isReverse() const { return Reverse; } 961 unsigned getFactor() const { return Factor; } 962 unsigned getAlignment() const { return Align; } 963 unsigned getNumMembers() const { return Members.size(); } 964 965 /// \brief Try to insert a new member \p Instr with index \p Index and 966 /// alignment \p NewAlign. The index is related to the leader and it could be 967 /// negative if it is the new leader. 968 /// 969 /// \returns false if the instruction doesn't belong to the group. 970 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 971 assert(NewAlign && "The new member's alignment should be non-zero"); 972 973 int Key = Index + SmallestKey; 974 975 // Skip if there is already a member with the same index. 976 if (Members.count(Key)) 977 return false; 978 979 if (Key > LargestKey) { 980 // The largest index is always less than the interleave factor. 981 if (Index >= static_cast<int>(Factor)) 982 return false; 983 984 LargestKey = Key; 985 } else if (Key < SmallestKey) { 986 // The largest index is always less than the interleave factor. 987 if (LargestKey - Key >= static_cast<int>(Factor)) 988 return false; 989 990 SmallestKey = Key; 991 } 992 993 // It's always safe to select the minimum alignment. 994 Align = std::min(Align, NewAlign); 995 Members[Key] = Instr; 996 return true; 997 } 998 999 /// \brief Get the member with the given index \p Index 1000 /// 1001 /// \returns nullptr if contains no such member. 1002 Instruction *getMember(unsigned Index) const { 1003 int Key = SmallestKey + Index; 1004 if (!Members.count(Key)) 1005 return nullptr; 1006 1007 return Members.find(Key)->second; 1008 } 1009 1010 /// \brief Get the index for the given member. Unlike the key in the member 1011 /// map, the index starts from 0. 1012 unsigned getIndex(Instruction *Instr) const { 1013 for (auto I : Members) 1014 if (I.second == Instr) 1015 return I.first - SmallestKey; 1016 1017 llvm_unreachable("InterleaveGroup contains no such member"); 1018 } 1019 1020 Instruction *getInsertPos() const { return InsertPos; } 1021 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 1022 1023 private: 1024 unsigned Factor; // Interleave Factor. 1025 bool Reverse; 1026 unsigned Align; 1027 DenseMap<int, Instruction *> Members; 1028 int SmallestKey; 1029 int LargestKey; 1030 1031 // To avoid breaking dependences, vectorized instructions of an interleave 1032 // group should be inserted at either the first load or the last store in 1033 // program order. 1034 // 1035 // E.g. %even = load i32 // Insert Position 1036 // %add = add i32 %even // Use of %even 1037 // %odd = load i32 1038 // 1039 // store i32 %even 1040 // %odd = add i32 // Def of %odd 1041 // store i32 %odd // Insert Position 1042 Instruction *InsertPos; 1043 }; 1044 1045 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1046 /// 1047 /// Use this class to analyze interleaved accesses only when we can vectorize 1048 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1049 /// on interleaved accesses is unsafe. 1050 /// 1051 /// The analysis collects interleave groups and records the relationships 1052 /// between the member and the group in a map. 1053 class InterleavedAccessInfo { 1054 public: 1055 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1056 DominatorTree *DT, LoopInfo *LI) 1057 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1058 RequiresScalarEpilogue(false) {} 1059 1060 ~InterleavedAccessInfo() { 1061 SmallSet<InterleaveGroup *, 4> DelSet; 1062 // Avoid releasing a pointer twice. 1063 for (auto &I : InterleaveGroupMap) 1064 DelSet.insert(I.second); 1065 for (auto *Ptr : DelSet) 1066 delete Ptr; 1067 } 1068 1069 /// \brief Analyze the interleaved accesses and collect them in interleave 1070 /// groups. Substitute symbolic strides using \p Strides. 1071 void analyzeInterleaving(const ValueToValueMap &Strides); 1072 1073 /// \brief Check if \p Instr belongs to any interleave group. 1074 bool isInterleaved(Instruction *Instr) const { 1075 return InterleaveGroupMap.count(Instr); 1076 } 1077 1078 /// \brief Return the maximum interleave factor of all interleaved groups. 1079 unsigned getMaxInterleaveFactor() const { 1080 unsigned MaxFactor = 1; 1081 for (auto &Entry : InterleaveGroupMap) 1082 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1083 return MaxFactor; 1084 } 1085 1086 /// \brief Get the interleave group that \p Instr belongs to. 1087 /// 1088 /// \returns nullptr if doesn't have such group. 1089 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1090 if (InterleaveGroupMap.count(Instr)) 1091 return InterleaveGroupMap.find(Instr)->second; 1092 return nullptr; 1093 } 1094 1095 /// \brief Returns true if an interleaved group that may access memory 1096 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1097 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1098 1099 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1100 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1101 1102 private: 1103 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1104 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1105 /// The interleaved access analysis can also add new predicates (for example 1106 /// by versioning strides of pointers). 1107 PredicatedScalarEvolution &PSE; 1108 Loop *TheLoop; 1109 DominatorTree *DT; 1110 LoopInfo *LI; 1111 const LoopAccessInfo *LAI; 1112 1113 /// True if the loop may contain non-reversed interleaved groups with 1114 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1115 /// out-of-bounds by executing at least one scalar epilogue iteration. 1116 bool RequiresScalarEpilogue; 1117 1118 /// Holds the relationships between the members and the interleave group. 1119 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1120 1121 /// Holds dependences among the memory accesses in the loop. It maps a source 1122 /// access to a set of dependent sink accesses. 1123 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1124 1125 /// \brief The descriptor for a strided memory access. 1126 struct StrideDescriptor { 1127 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1128 unsigned Align) 1129 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1130 1131 StrideDescriptor() = default; 1132 1133 // The access's stride. It is negative for a reverse access. 1134 int64_t Stride = 0; 1135 const SCEV *Scev = nullptr; // The scalar expression of this access 1136 uint64_t Size = 0; // The size of the memory object. 1137 unsigned Align = 0; // The alignment of this access. 1138 }; 1139 1140 /// \brief A type for holding instructions and their stride descriptors. 1141 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1142 1143 /// \brief Create a new interleave group with the given instruction \p Instr, 1144 /// stride \p Stride and alignment \p Align. 1145 /// 1146 /// \returns the newly created interleave group. 1147 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1148 unsigned Align) { 1149 assert(!InterleaveGroupMap.count(Instr) && 1150 "Already in an interleaved access group"); 1151 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1152 return InterleaveGroupMap[Instr]; 1153 } 1154 1155 /// \brief Release the group and remove all the relationships. 1156 void releaseGroup(InterleaveGroup *Group) { 1157 for (unsigned i = 0; i < Group->getFactor(); i++) 1158 if (Instruction *Member = Group->getMember(i)) 1159 InterleaveGroupMap.erase(Member); 1160 1161 delete Group; 1162 } 1163 1164 /// \brief Collect all the accesses with a constant stride in program order. 1165 void collectConstStrideAccesses( 1166 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1167 const ValueToValueMap &Strides); 1168 1169 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1170 static bool isStrided(int Stride) { 1171 unsigned Factor = std::abs(Stride); 1172 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1173 } 1174 1175 /// \brief Returns true if \p BB is a predicated block. 1176 bool isPredicated(BasicBlock *BB) const { 1177 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1178 } 1179 1180 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1181 bool areDependencesValid() const { 1182 return LAI && LAI->getDepChecker().getDependences(); 1183 } 1184 1185 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1186 /// necessary, when constructing interleaved groups. 1187 /// 1188 /// \p A must precede \p B in program order. We return false if reordering is 1189 /// not necessary or is prevented because \p A and \p B may be dependent. 1190 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1191 StrideEntry *B) const { 1192 1193 // Code motion for interleaved accesses can potentially hoist strided loads 1194 // and sink strided stores. The code below checks the legality of the 1195 // following two conditions: 1196 // 1197 // 1. Potentially moving a strided load (B) before any store (A) that 1198 // precedes B, or 1199 // 1200 // 2. Potentially moving a strided store (A) after any load or store (B) 1201 // that A precedes. 1202 // 1203 // It's legal to reorder A and B if we know there isn't a dependence from A 1204 // to B. Note that this determination is conservative since some 1205 // dependences could potentially be reordered safely. 1206 1207 // A is potentially the source of a dependence. 1208 auto *Src = A->first; 1209 auto SrcDes = A->second; 1210 1211 // B is potentially the sink of a dependence. 1212 auto *Sink = B->first; 1213 auto SinkDes = B->second; 1214 1215 // Code motion for interleaved accesses can't violate WAR dependences. 1216 // Thus, reordering is legal if the source isn't a write. 1217 if (!Src->mayWriteToMemory()) 1218 return true; 1219 1220 // At least one of the accesses must be strided. 1221 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1222 return true; 1223 1224 // If dependence information is not available from LoopAccessInfo, 1225 // conservatively assume the instructions can't be reordered. 1226 if (!areDependencesValid()) 1227 return false; 1228 1229 // If we know there is a dependence from source to sink, assume the 1230 // instructions can't be reordered. Otherwise, reordering is legal. 1231 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1232 } 1233 1234 /// \brief Collect the dependences from LoopAccessInfo. 1235 /// 1236 /// We process the dependences once during the interleaved access analysis to 1237 /// enable constant-time dependence queries. 1238 void collectDependences() { 1239 if (!areDependencesValid()) 1240 return; 1241 auto *Deps = LAI->getDepChecker().getDependences(); 1242 for (auto Dep : *Deps) 1243 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1244 } 1245 }; 1246 1247 /// Utility class for getting and setting loop vectorizer hints in the form 1248 /// of loop metadata. 1249 /// This class keeps a number of loop annotations locally (as member variables) 1250 /// and can, upon request, write them back as metadata on the loop. It will 1251 /// initially scan the loop for existing metadata, and will update the local 1252 /// values based on information in the loop. 1253 /// We cannot write all values to metadata, as the mere presence of some info, 1254 /// for example 'force', means a decision has been made. So, we need to be 1255 /// careful NOT to add them if the user hasn't specifically asked so. 1256 class LoopVectorizeHints { 1257 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1258 1259 /// Hint - associates name and validation with the hint value. 1260 struct Hint { 1261 const char *Name; 1262 unsigned Value; // This may have to change for non-numeric values. 1263 HintKind Kind; 1264 1265 Hint(const char *Name, unsigned Value, HintKind Kind) 1266 : Name(Name), Value(Value), Kind(Kind) {} 1267 1268 bool validate(unsigned Val) { 1269 switch (Kind) { 1270 case HK_WIDTH: 1271 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1272 case HK_UNROLL: 1273 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1274 case HK_FORCE: 1275 return (Val <= 1); 1276 } 1277 return false; 1278 } 1279 }; 1280 1281 /// Vectorization width. 1282 Hint Width; 1283 /// Vectorization interleave factor. 1284 Hint Interleave; 1285 /// Vectorization forced 1286 Hint Force; 1287 1288 /// Return the loop metadata prefix. 1289 static StringRef Prefix() { return "llvm.loop."; } 1290 1291 /// True if there is any unsafe math in the loop. 1292 bool PotentiallyUnsafe; 1293 1294 public: 1295 enum ForceKind { 1296 FK_Undefined = -1, ///< Not selected. 1297 FK_Disabled = 0, ///< Forcing disabled. 1298 FK_Enabled = 1, ///< Forcing enabled. 1299 }; 1300 1301 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1302 OptimizationRemarkEmitter &ORE) 1303 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1304 HK_WIDTH), 1305 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1306 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1307 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1308 // Populate values with existing loop metadata. 1309 getHintsFromMetadata(); 1310 1311 // force-vector-interleave overrides DisableInterleaving. 1312 if (VectorizerParams::isInterleaveForced()) 1313 Interleave.Value = VectorizerParams::VectorizationInterleave; 1314 1315 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1316 << "LV: Interleaving disabled by the pass manager\n"); 1317 } 1318 1319 /// Mark the loop L as already vectorized by setting the width to 1. 1320 void setAlreadyVectorized() { 1321 Width.Value = Interleave.Value = 1; 1322 Hint Hints[] = {Width, Interleave}; 1323 writeHintsToMetadata(Hints); 1324 } 1325 1326 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1327 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1328 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1329 emitRemarkWithHints(); 1330 return false; 1331 } 1332 1333 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1334 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1335 emitRemarkWithHints(); 1336 return false; 1337 } 1338 1339 if (getWidth() == 1 && getInterleave() == 1) { 1340 // FIXME: Add a separate metadata to indicate when the loop has already 1341 // been vectorized instead of setting width and count to 1. 1342 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1343 // FIXME: Add interleave.disable metadata. This will allow 1344 // vectorize.disable to be used without disabling the pass and errors 1345 // to differentiate between disabled vectorization and a width of 1. 1346 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1347 "AllDisabled", L->getStartLoc(), 1348 L->getHeader()) 1349 << "loop not vectorized: vectorization and interleaving are " 1350 "explicitly disabled, or vectorize width and interleave " 1351 "count are both set to 1"); 1352 return false; 1353 } 1354 1355 return true; 1356 } 1357 1358 /// Dumps all the hint information. 1359 void emitRemarkWithHints() const { 1360 using namespace ore; 1361 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1362 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1363 TheLoop->getStartLoc(), 1364 TheLoop->getHeader()) 1365 << "loop not vectorized: vectorization is explicitly disabled"); 1366 else { 1367 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1368 TheLoop->getStartLoc(), TheLoop->getHeader()); 1369 R << "loop not vectorized"; 1370 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1371 R << " (Force=" << NV("Force", true); 1372 if (Width.Value != 0) 1373 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1374 if (Interleave.Value != 0) 1375 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1376 R << ")"; 1377 } 1378 ORE.emit(R); 1379 } 1380 } 1381 1382 unsigned getWidth() const { return Width.Value; } 1383 unsigned getInterleave() const { return Interleave.Value; } 1384 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1385 1386 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1387 /// pass name to force the frontend to print the diagnostic. 1388 const char *vectorizeAnalysisPassName() const { 1389 if (getWidth() == 1) 1390 return LV_NAME; 1391 if (getForce() == LoopVectorizeHints::FK_Disabled) 1392 return LV_NAME; 1393 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1394 return LV_NAME; 1395 return OptimizationRemarkAnalysis::AlwaysPrint; 1396 } 1397 1398 bool allowReordering() const { 1399 // When enabling loop hints are provided we allow the vectorizer to change 1400 // the order of operations that is given by the scalar loop. This is not 1401 // enabled by default because can be unsafe or inefficient. For example, 1402 // reordering floating-point operations will change the way round-off 1403 // error accumulates in the loop. 1404 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1405 } 1406 1407 bool isPotentiallyUnsafe() const { 1408 // Avoid FP vectorization if the target is unsure about proper support. 1409 // This may be related to the SIMD unit in the target not handling 1410 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1411 // Otherwise, a sequence of vectorized loops, even without reduction, 1412 // could lead to different end results on the destination vectors. 1413 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1414 } 1415 1416 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1417 1418 private: 1419 /// Find hints specified in the loop metadata and update local values. 1420 void getHintsFromMetadata() { 1421 MDNode *LoopID = TheLoop->getLoopID(); 1422 if (!LoopID) 1423 return; 1424 1425 // First operand should refer to the loop id itself. 1426 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1427 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1428 1429 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1430 const MDString *S = nullptr; 1431 SmallVector<Metadata *, 4> Args; 1432 1433 // The expected hint is either a MDString or a MDNode with the first 1434 // operand a MDString. 1435 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1436 if (!MD || MD->getNumOperands() == 0) 1437 continue; 1438 S = dyn_cast<MDString>(MD->getOperand(0)); 1439 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1440 Args.push_back(MD->getOperand(i)); 1441 } else { 1442 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1443 assert(Args.size() == 0 && "too many arguments for MDString"); 1444 } 1445 1446 if (!S) 1447 continue; 1448 1449 // Check if the hint starts with the loop metadata prefix. 1450 StringRef Name = S->getString(); 1451 if (Args.size() == 1) 1452 setHint(Name, Args[0]); 1453 } 1454 } 1455 1456 /// Checks string hint with one operand and set value if valid. 1457 void setHint(StringRef Name, Metadata *Arg) { 1458 if (!Name.startswith(Prefix())) 1459 return; 1460 Name = Name.substr(Prefix().size(), StringRef::npos); 1461 1462 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1463 if (!C) 1464 return; 1465 unsigned Val = C->getZExtValue(); 1466 1467 Hint *Hints[] = {&Width, &Interleave, &Force}; 1468 for (auto H : Hints) { 1469 if (Name == H->Name) { 1470 if (H->validate(Val)) 1471 H->Value = Val; 1472 else 1473 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1474 break; 1475 } 1476 } 1477 } 1478 1479 /// Create a new hint from name / value pair. 1480 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1481 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1482 Metadata *MDs[] = {MDString::get(Context, Name), 1483 ConstantAsMetadata::get( 1484 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1485 return MDNode::get(Context, MDs); 1486 } 1487 1488 /// Matches metadata with hint name. 1489 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1490 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1491 if (!Name) 1492 return false; 1493 1494 for (auto H : HintTypes) 1495 if (Name->getString().endswith(H.Name)) 1496 return true; 1497 return false; 1498 } 1499 1500 /// Sets current hints into loop metadata, keeping other values intact. 1501 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1502 if (HintTypes.size() == 0) 1503 return; 1504 1505 // Reserve the first element to LoopID (see below). 1506 SmallVector<Metadata *, 4> MDs(1); 1507 // If the loop already has metadata, then ignore the existing operands. 1508 MDNode *LoopID = TheLoop->getLoopID(); 1509 if (LoopID) { 1510 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1511 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1512 // If node in update list, ignore old value. 1513 if (!matchesHintMetadataName(Node, HintTypes)) 1514 MDs.push_back(Node); 1515 } 1516 } 1517 1518 // Now, add the missing hints. 1519 for (auto H : HintTypes) 1520 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1521 1522 // Replace current metadata node with new one. 1523 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1524 MDNode *NewLoopID = MDNode::get(Context, MDs); 1525 // Set operand 0 to refer to the loop id itself. 1526 NewLoopID->replaceOperandWith(0, NewLoopID); 1527 1528 TheLoop->setLoopID(NewLoopID); 1529 } 1530 1531 /// The loop these hints belong to. 1532 const Loop *TheLoop; 1533 1534 /// Interface to emit optimization remarks. 1535 OptimizationRemarkEmitter &ORE; 1536 }; 1537 1538 static void emitAnalysisDiag(const Loop *TheLoop, 1539 const LoopVectorizeHints &Hints, 1540 OptimizationRemarkEmitter &ORE, 1541 const LoopAccessReport &Message) { 1542 const char *Name = Hints.vectorizeAnalysisPassName(); 1543 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1544 } 1545 1546 static void emitMissedWarning(Function *F, Loop *L, 1547 const LoopVectorizeHints &LH, 1548 OptimizationRemarkEmitter *ORE) { 1549 LH.emitRemarkWithHints(); 1550 1551 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1552 if (LH.getWidth() != 1) 1553 ORE->emit(DiagnosticInfoOptimizationFailure( 1554 DEBUG_TYPE, "FailedRequestedVectorization", 1555 L->getStartLoc(), L->getHeader()) 1556 << "loop not vectorized: " 1557 << "failed explicitly specified loop vectorization"); 1558 else if (LH.getInterleave() != 1) 1559 ORE->emit(DiagnosticInfoOptimizationFailure( 1560 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1561 L->getHeader()) 1562 << "loop not interleaved: " 1563 << "failed explicitly specified loop interleaving"); 1564 } 1565 } 1566 1567 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1568 /// to what vectorization factor. 1569 /// This class does not look at the profitability of vectorization, only the 1570 /// legality. This class has two main kinds of checks: 1571 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1572 /// will change the order of memory accesses in a way that will change the 1573 /// correctness of the program. 1574 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1575 /// checks for a number of different conditions, such as the availability of a 1576 /// single induction variable, that all types are supported and vectorize-able, 1577 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1578 /// This class is also used by InnerLoopVectorizer for identifying 1579 /// induction variable and the different reduction variables. 1580 class LoopVectorizationLegality { 1581 public: 1582 LoopVectorizationLegality( 1583 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1584 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1585 const TargetTransformInfo *TTI, 1586 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1587 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1588 LoopVectorizeHints *H) 1589 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1590 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1591 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1592 Requirements(R), Hints(H) {} 1593 1594 /// ReductionList contains the reduction descriptors for all 1595 /// of the reductions that were found in the loop. 1596 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1597 1598 /// InductionList saves induction variables and maps them to the 1599 /// induction descriptor. 1600 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1601 1602 /// RecurrenceSet contains the phi nodes that are recurrences other than 1603 /// inductions and reductions. 1604 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1605 1606 /// Returns true if it is legal to vectorize this loop. 1607 /// This does not mean that it is profitable to vectorize this 1608 /// loop, only that it is legal to do so. 1609 bool canVectorize(); 1610 1611 /// Returns the primary induction variable. 1612 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1613 1614 /// Returns the reduction variables found in the loop. 1615 ReductionList *getReductionVars() { return &Reductions; } 1616 1617 /// Returns the induction variables found in the loop. 1618 InductionList *getInductionVars() { return &Inductions; } 1619 1620 /// Return the first-order recurrences found in the loop. 1621 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1622 1623 /// Returns the widest induction type. 1624 Type *getWidestInductionType() { return WidestIndTy; } 1625 1626 /// Returns True if V is an induction variable in this loop. 1627 bool isInductionVariable(const Value *V); 1628 1629 /// Returns True if PN is a reduction variable in this loop. 1630 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1631 1632 /// Returns True if Phi is a first-order recurrence in this loop. 1633 bool isFirstOrderRecurrence(const PHINode *Phi); 1634 1635 /// Return true if the block BB needs to be predicated in order for the loop 1636 /// to be vectorized. 1637 bool blockNeedsPredication(BasicBlock *BB); 1638 1639 /// Check if this pointer is consecutive when vectorizing. This happens 1640 /// when the last index of the GEP is the induction variable, or that the 1641 /// pointer itself is an induction variable. 1642 /// This check allows us to vectorize A[idx] into a wide load/store. 1643 /// Returns: 1644 /// 0 - Stride is unknown or non-consecutive. 1645 /// 1 - Address is consecutive. 1646 /// -1 - Address is consecutive, and decreasing. 1647 int isConsecutivePtr(Value *Ptr); 1648 1649 /// Returns true if the value V is uniform within the loop. 1650 bool isUniform(Value *V); 1651 1652 /// Returns the information that we collected about runtime memory check. 1653 const RuntimePointerChecking *getRuntimePointerChecking() const { 1654 return LAI->getRuntimePointerChecking(); 1655 } 1656 1657 const LoopAccessInfo *getLAI() const { return LAI; } 1658 1659 /// \brief Check if \p Instr belongs to any interleaved access group. 1660 bool isAccessInterleaved(Instruction *Instr) { 1661 return InterleaveInfo.isInterleaved(Instr); 1662 } 1663 1664 /// \brief Return the maximum interleave factor of all interleaved groups. 1665 unsigned getMaxInterleaveFactor() const { 1666 return InterleaveInfo.getMaxInterleaveFactor(); 1667 } 1668 1669 /// \brief Get the interleaved access group that \p Instr belongs to. 1670 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1671 return InterleaveInfo.getInterleaveGroup(Instr); 1672 } 1673 1674 /// \brief Returns true if an interleaved group requires a scalar iteration 1675 /// to handle accesses with gaps. 1676 bool requiresScalarEpilogue() const { 1677 return InterleaveInfo.requiresScalarEpilogue(); 1678 } 1679 1680 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1681 1682 bool hasStride(Value *V) { return LAI->hasStride(V); } 1683 1684 /// Returns true if the target machine supports masked store operation 1685 /// for the given \p DataType and kind of access to \p Ptr. 1686 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1687 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1688 } 1689 /// Returns true if the target machine supports masked load operation 1690 /// for the given \p DataType and kind of access to \p Ptr. 1691 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1692 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1693 } 1694 /// Returns true if the target machine supports masked scatter operation 1695 /// for the given \p DataType. 1696 bool isLegalMaskedScatter(Type *DataType) { 1697 return TTI->isLegalMaskedScatter(DataType); 1698 } 1699 /// Returns true if the target machine supports masked gather operation 1700 /// for the given \p DataType. 1701 bool isLegalMaskedGather(Type *DataType) { 1702 return TTI->isLegalMaskedGather(DataType); 1703 } 1704 /// Returns true if the target machine can represent \p V as a masked gather 1705 /// or scatter operation. 1706 bool isLegalGatherOrScatter(Value *V) { 1707 auto *LI = dyn_cast<LoadInst>(V); 1708 auto *SI = dyn_cast<StoreInst>(V); 1709 if (!LI && !SI) 1710 return false; 1711 auto *Ptr = getPointerOperand(V); 1712 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1713 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1714 } 1715 1716 /// Returns true if vector representation of the instruction \p I 1717 /// requires mask. 1718 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1719 unsigned getNumStores() const { return LAI->getNumStores(); } 1720 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1721 unsigned getNumPredStores() const { return NumPredStores; } 1722 1723 /// Returns true if \p I is an instruction that will be scalarized with 1724 /// predication. Such instructions include conditional stores and 1725 /// instructions that may divide by zero. 1726 bool isScalarWithPredication(Instruction *I); 1727 1728 /// Returns true if \p I is a memory instruction with consecutive memory 1729 /// access that can be widened. 1730 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1731 1732 private: 1733 /// Check if a single basic block loop is vectorizable. 1734 /// At this point we know that this is a loop with a constant trip count 1735 /// and we only need to check individual instructions. 1736 bool canVectorizeInstrs(); 1737 1738 /// When we vectorize loops we may change the order in which 1739 /// we read and write from memory. This method checks if it is 1740 /// legal to vectorize the code, considering only memory constrains. 1741 /// Returns true if the loop is vectorizable 1742 bool canVectorizeMemory(); 1743 1744 /// Return true if we can vectorize this loop using the IF-conversion 1745 /// transformation. 1746 bool canVectorizeWithIfConvert(); 1747 1748 /// Return true if all of the instructions in the block can be speculatively 1749 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1750 /// and we know that we can read from them without segfault. 1751 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1752 1753 /// Updates the vectorization state by adding \p Phi to the inductions list. 1754 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1755 /// better choice for the main induction than the existing one. 1756 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1757 SmallPtrSetImpl<Value *> &AllowedExit); 1758 1759 /// Report an analysis message to assist the user in diagnosing loops that are 1760 /// not vectorized. These are handled as LoopAccessReport rather than 1761 /// VectorizationReport because the << operator of VectorizationReport returns 1762 /// LoopAccessReport. 1763 void emitAnalysis(const LoopAccessReport &Message) const { 1764 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1765 } 1766 1767 /// Create an analysis remark that explains why vectorization failed 1768 /// 1769 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1770 /// an instruction that prevents vectorization. Otherwise the loop is used 1771 /// for the location of the remark. \return the remark object that can be 1772 /// streamed to. 1773 OptimizationRemarkAnalysis 1774 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1775 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1776 RemarkName, TheLoop, I); 1777 } 1778 1779 /// \brief If an access has a symbolic strides, this maps the pointer value to 1780 /// the stride symbol. 1781 const ValueToValueMap *getSymbolicStrides() { 1782 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1783 // it's collected. This happens from canVectorizeWithIfConvert, when the 1784 // pointer is checked to reference consecutive elements suitable for a 1785 // masked access. 1786 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1787 } 1788 1789 unsigned NumPredStores; 1790 1791 /// The loop that we evaluate. 1792 Loop *TheLoop; 1793 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1794 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1795 /// of existing SCEV assumptions. The analysis will also add a minimal set 1796 /// of new predicates if this is required to enable vectorization and 1797 /// unrolling. 1798 PredicatedScalarEvolution &PSE; 1799 /// Target Library Info. 1800 TargetLibraryInfo *TLI; 1801 /// Target Transform Info 1802 const TargetTransformInfo *TTI; 1803 /// Dominator Tree. 1804 DominatorTree *DT; 1805 // LoopAccess analysis. 1806 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1807 // And the loop-accesses info corresponding to this loop. This pointer is 1808 // null until canVectorizeMemory sets it up. 1809 const LoopAccessInfo *LAI; 1810 /// Interface to emit optimization remarks. 1811 OptimizationRemarkEmitter *ORE; 1812 1813 /// The interleave access information contains groups of interleaved accesses 1814 /// with the same stride and close to each other. 1815 InterleavedAccessInfo InterleaveInfo; 1816 1817 // --- vectorization state --- // 1818 1819 /// Holds the primary induction variable. This is the counter of the 1820 /// loop. 1821 PHINode *PrimaryInduction; 1822 /// Holds the reduction variables. 1823 ReductionList Reductions; 1824 /// Holds all of the induction variables that we found in the loop. 1825 /// Notice that inductions don't need to start at zero and that induction 1826 /// variables can be pointers. 1827 InductionList Inductions; 1828 /// Holds the phi nodes that are first-order recurrences. 1829 RecurrenceSet FirstOrderRecurrences; 1830 /// Holds the widest induction type encountered. 1831 Type *WidestIndTy; 1832 1833 /// Allowed outside users. This holds the induction and reduction 1834 /// vars which can be accessed from outside the loop. 1835 SmallPtrSet<Value *, 4> AllowedExit; 1836 1837 /// Can we assume the absence of NaNs. 1838 bool HasFunNoNaNAttr; 1839 1840 /// Vectorization requirements that will go through late-evaluation. 1841 LoopVectorizationRequirements *Requirements; 1842 1843 /// Used to emit an analysis of any legality issues. 1844 LoopVectorizeHints *Hints; 1845 1846 /// While vectorizing these instructions we have to generate a 1847 /// call to the appropriate masked intrinsic 1848 SmallPtrSet<const Instruction *, 8> MaskedOp; 1849 }; 1850 1851 /// LoopVectorizationCostModel - estimates the expected speedups due to 1852 /// vectorization. 1853 /// In many cases vectorization is not profitable. This can happen because of 1854 /// a number of reasons. In this class we mainly attempt to predict the 1855 /// expected speedup/slowdowns due to the supported instruction set. We use the 1856 /// TargetTransformInfo to query the different backends for the cost of 1857 /// different operations. 1858 class LoopVectorizationCostModel { 1859 public: 1860 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1861 LoopInfo *LI, LoopVectorizationLegality *Legal, 1862 const TargetTransformInfo &TTI, 1863 const TargetLibraryInfo *TLI, DemandedBits *DB, 1864 AssumptionCache *AC, 1865 OptimizationRemarkEmitter *ORE, const Function *F, 1866 const LoopVectorizeHints *Hints) 1867 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1868 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1869 1870 /// Information about vectorization costs 1871 struct VectorizationFactor { 1872 unsigned Width; // Vector width with best cost 1873 unsigned Cost; // Cost of the loop with that width 1874 }; 1875 /// \return The most profitable vectorization factor and the cost of that VF. 1876 /// This method checks every power of two up to VF. If UserVF is not ZERO 1877 /// then this vectorization factor will be selected if vectorization is 1878 /// possible. 1879 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1880 1881 /// \return The size (in bits) of the smallest and widest types in the code 1882 /// that needs to be vectorized. We ignore values that remain scalar such as 1883 /// 64 bit loop indices. 1884 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1885 1886 /// \return The desired interleave count. 1887 /// If interleave count has been specified by metadata it will be returned. 1888 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1889 /// are the selected vectorization factor and the cost of the selected VF. 1890 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1891 unsigned LoopCost); 1892 1893 /// Memory access instruction may be vectorized in more than one way. 1894 /// Form of instruction after vectorization depends on cost. 1895 /// This function takes cost-based decisions for Load/Store instructions 1896 /// and collects them in a map. This decisions map is used for building 1897 /// the lists of loop-uniform and loop-scalar instructions. 1898 /// The calculated cost is saved with widening decision in order to 1899 /// avoid redundant calculations. 1900 void setCostBasedWideningDecision(unsigned VF); 1901 1902 /// \brief A struct that represents some properties of the register usage 1903 /// of a loop. 1904 struct RegisterUsage { 1905 /// Holds the number of loop invariant values that are used in the loop. 1906 unsigned LoopInvariantRegs; 1907 /// Holds the maximum number of concurrent live intervals in the loop. 1908 unsigned MaxLocalUsers; 1909 /// Holds the number of instructions in the loop. 1910 unsigned NumInstructions; 1911 }; 1912 1913 /// \return Returns information about the register usages of the loop for the 1914 /// given vectorization factors. 1915 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1916 1917 /// Collect values we want to ignore in the cost model. 1918 void collectValuesToIgnore(); 1919 1920 /// \returns The smallest bitwidth each instruction can be represented with. 1921 /// The vector equivalents of these instructions should be truncated to this 1922 /// type. 1923 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1924 return MinBWs; 1925 } 1926 1927 /// \returns True if it is more profitable to scalarize instruction \p I for 1928 /// vectorization factor \p VF. 1929 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1930 auto Scalars = InstsToScalarize.find(VF); 1931 assert(Scalars != InstsToScalarize.end() && 1932 "VF not yet analyzed for scalarization profitability"); 1933 return Scalars->second.count(I); 1934 } 1935 1936 /// Returns true if \p I is known to be uniform after vectorization. 1937 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1938 if (VF == 1) 1939 return true; 1940 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1941 auto UniformsPerVF = Uniforms.find(VF); 1942 return UniformsPerVF->second.count(I); 1943 } 1944 1945 /// Returns true if \p I is known to be scalar after vectorization. 1946 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1947 if (VF == 1) 1948 return true; 1949 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1950 auto ScalarsPerVF = Scalars.find(VF); 1951 return ScalarsPerVF->second.count(I); 1952 } 1953 1954 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1955 /// for vectorization factor \p VF. 1956 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1957 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1958 !isScalarAfterVectorization(I, VF); 1959 } 1960 1961 /// Decision that was taken during cost calculation for memory instruction. 1962 enum InstWidening { 1963 CM_Unknown, 1964 CM_Widen, 1965 CM_Interleave, 1966 CM_GatherScatter, 1967 CM_Scalarize 1968 }; 1969 1970 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1971 /// instruction \p I and vector width \p VF. 1972 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1973 unsigned Cost) { 1974 assert(VF >= 2 && "Expected VF >=2"); 1975 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1976 } 1977 1978 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1979 /// interleaving group \p Grp and vector width \p VF. 1980 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1981 InstWidening W, unsigned Cost) { 1982 assert(VF >= 2 && "Expected VF >=2"); 1983 /// Broadcast this decicion to all instructions inside the group. 1984 /// But the cost will be assigned to one instruction only. 1985 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1986 if (auto *I = Grp->getMember(i)) { 1987 if (Grp->getInsertPos() == I) 1988 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1989 else 1990 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1991 } 1992 } 1993 } 1994 1995 /// Return the cost model decision for the given instruction \p I and vector 1996 /// width \p VF. Return CM_Unknown if this instruction did not pass 1997 /// through the cost modeling. 1998 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1999 assert(VF >= 2 && "Expected VF >=2"); 2000 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2001 auto Itr = WideningDecisions.find(InstOnVF); 2002 if (Itr == WideningDecisions.end()) 2003 return CM_Unknown; 2004 return Itr->second.first; 2005 } 2006 2007 /// Return the vectorization cost for the given instruction \p I and vector 2008 /// width \p VF. 2009 unsigned getWideningCost(Instruction *I, unsigned VF) { 2010 assert(VF >= 2 && "Expected VF >=2"); 2011 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2012 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2013 return WideningDecisions[InstOnVF].second; 2014 } 2015 2016 /// Return True if instruction \p I is an optimizable truncate whose operand 2017 /// is an induction variable. Such a truncate will be removed by adding a new 2018 /// induction variable with the destination type. 2019 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2020 2021 // If the instruction is not a truncate, return false. 2022 auto *Trunc = dyn_cast<TruncInst>(I); 2023 if (!Trunc) 2024 return false; 2025 2026 // Get the source and destination types of the truncate. 2027 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2028 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2029 2030 // If the truncate is free for the given types, return false. Replacing a 2031 // free truncate with an induction variable would add an induction variable 2032 // update instruction to each iteration of the loop. We exclude from this 2033 // check the primary induction variable since it will need an update 2034 // instruction regardless. 2035 Value *Op = Trunc->getOperand(0); 2036 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2037 return false; 2038 2039 // If the truncated value is not an induction variable, return false. 2040 return Legal->isInductionVariable(Op); 2041 } 2042 2043 private: 2044 /// The vectorization cost is a combination of the cost itself and a boolean 2045 /// indicating whether any of the contributing operations will actually 2046 /// operate on 2047 /// vector values after type legalization in the backend. If this latter value 2048 /// is 2049 /// false, then all operations will be scalarized (i.e. no vectorization has 2050 /// actually taken place). 2051 typedef std::pair<unsigned, bool> VectorizationCostTy; 2052 2053 /// Returns the expected execution cost. The unit of the cost does 2054 /// not matter because we use the 'cost' units to compare different 2055 /// vector widths. The cost that is returned is *not* normalized by 2056 /// the factor width. 2057 VectorizationCostTy expectedCost(unsigned VF); 2058 2059 /// Returns the execution time cost of an instruction for a given vector 2060 /// width. Vector width of one means scalar. 2061 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2062 2063 /// The cost-computation logic from getInstructionCost which provides 2064 /// the vector type as an output parameter. 2065 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2066 2067 /// Calculate vectorization cost of memory instruction \p I. 2068 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2069 2070 /// The cost computation for scalarized memory instruction. 2071 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2072 2073 /// The cost computation for interleaving group of memory instructions. 2074 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2075 2076 /// The cost computation for Gather/Scatter instruction. 2077 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2078 2079 /// The cost computation for widening instruction \p I with consecutive 2080 /// memory access. 2081 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2082 2083 /// The cost calculation for Load instruction \p I with uniform pointer - 2084 /// scalar load + broadcast. 2085 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2086 2087 /// Returns whether the instruction is a load or store and will be a emitted 2088 /// as a vector operation. 2089 bool isConsecutiveLoadOrStore(Instruction *I); 2090 2091 /// Create an analysis remark that explains why vectorization failed 2092 /// 2093 /// \p RemarkName is the identifier for the remark. \return the remark object 2094 /// that can be streamed to. 2095 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2096 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2097 RemarkName, TheLoop); 2098 } 2099 2100 /// Map of scalar integer values to the smallest bitwidth they can be legally 2101 /// represented as. The vector equivalents of these values should be truncated 2102 /// to this type. 2103 MapVector<Instruction *, uint64_t> MinBWs; 2104 2105 /// A type representing the costs for instructions if they were to be 2106 /// scalarized rather than vectorized. The entries are Instruction-Cost 2107 /// pairs. 2108 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2109 2110 /// A map holding scalar costs for different vectorization factors. The 2111 /// presence of a cost for an instruction in the mapping indicates that the 2112 /// instruction will be scalarized when vectorizing with the associated 2113 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2114 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2115 2116 /// Holds the instructions known to be uniform after vectorization. 2117 /// The data is collected per VF. 2118 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2119 2120 /// Holds the instructions known to be scalar after vectorization. 2121 /// The data is collected per VF. 2122 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2123 2124 /// Returns the expected difference in cost from scalarizing the expression 2125 /// feeding a predicated instruction \p PredInst. The instructions to 2126 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2127 /// non-negative return value implies the expression will be scalarized. 2128 /// Currently, only single-use chains are considered for scalarization. 2129 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2130 unsigned VF); 2131 2132 /// Collects the instructions to scalarize for each predicated instruction in 2133 /// the loop. 2134 void collectInstsToScalarize(unsigned VF); 2135 2136 /// Collect the instructions that are uniform after vectorization. An 2137 /// instruction is uniform if we represent it with a single scalar value in 2138 /// the vectorized loop corresponding to each vector iteration. Examples of 2139 /// uniform instructions include pointer operands of consecutive or 2140 /// interleaved memory accesses. Note that although uniformity implies an 2141 /// instruction will be scalar, the reverse is not true. In general, a 2142 /// scalarized instruction will be represented by VF scalar values in the 2143 /// vectorized loop, each corresponding to an iteration of the original 2144 /// scalar loop. 2145 void collectLoopUniforms(unsigned VF); 2146 2147 /// Collect the instructions that are scalar after vectorization. An 2148 /// instruction is scalar if it is known to be uniform or will be scalarized 2149 /// during vectorization. Non-uniform scalarized instructions will be 2150 /// represented by VF values in the vectorized loop, each corresponding to an 2151 /// iteration of the original scalar loop. 2152 void collectLoopScalars(unsigned VF); 2153 2154 /// Collect Uniform and Scalar values for the given \p VF. 2155 /// The sets depend on CM decision for Load/Store instructions 2156 /// that may be vectorized as interleave, gather-scatter or scalarized. 2157 void collectUniformsAndScalars(unsigned VF) { 2158 // Do the analysis once. 2159 if (VF == 1 || Uniforms.count(VF)) 2160 return; 2161 setCostBasedWideningDecision(VF); 2162 collectLoopUniforms(VF); 2163 collectLoopScalars(VF); 2164 } 2165 2166 /// Keeps cost model vectorization decision and cost for instructions. 2167 /// Right now it is used for memory instructions only. 2168 typedef DenseMap<std::pair<Instruction *, unsigned>, 2169 std::pair<InstWidening, unsigned>> 2170 DecisionList; 2171 2172 DecisionList WideningDecisions; 2173 2174 public: 2175 /// The loop that we evaluate. 2176 Loop *TheLoop; 2177 /// Predicated scalar evolution analysis. 2178 PredicatedScalarEvolution &PSE; 2179 /// Loop Info analysis. 2180 LoopInfo *LI; 2181 /// Vectorization legality. 2182 LoopVectorizationLegality *Legal; 2183 /// Vector target information. 2184 const TargetTransformInfo &TTI; 2185 /// Target Library Info. 2186 const TargetLibraryInfo *TLI; 2187 /// Demanded bits analysis. 2188 DemandedBits *DB; 2189 /// Assumption cache. 2190 AssumptionCache *AC; 2191 /// Interface to emit optimization remarks. 2192 OptimizationRemarkEmitter *ORE; 2193 2194 const Function *TheFunction; 2195 /// Loop Vectorize Hint. 2196 const LoopVectorizeHints *Hints; 2197 /// Values to ignore in the cost model. 2198 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2199 /// Values to ignore in the cost model when VF > 1. 2200 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2201 }; 2202 2203 /// \brief This holds vectorization requirements that must be verified late in 2204 /// the process. The requirements are set by legalize and costmodel. Once 2205 /// vectorization has been determined to be possible and profitable the 2206 /// requirements can be verified by looking for metadata or compiler options. 2207 /// For example, some loops require FP commutativity which is only allowed if 2208 /// vectorization is explicitly specified or if the fast-math compiler option 2209 /// has been provided. 2210 /// Late evaluation of these requirements allows helpful diagnostics to be 2211 /// composed that tells the user what need to be done to vectorize the loop. For 2212 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2213 /// evaluation should be used only when diagnostics can generated that can be 2214 /// followed by a non-expert user. 2215 class LoopVectorizationRequirements { 2216 public: 2217 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2218 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2219 2220 void addUnsafeAlgebraInst(Instruction *I) { 2221 // First unsafe algebra instruction. 2222 if (!UnsafeAlgebraInst) 2223 UnsafeAlgebraInst = I; 2224 } 2225 2226 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2227 2228 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2229 const char *PassName = Hints.vectorizeAnalysisPassName(); 2230 bool Failed = false; 2231 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2232 ORE.emit( 2233 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2234 UnsafeAlgebraInst->getDebugLoc(), 2235 UnsafeAlgebraInst->getParent()) 2236 << "loop not vectorized: cannot prove it is safe to reorder " 2237 "floating-point operations"); 2238 Failed = true; 2239 } 2240 2241 // Test if runtime memcheck thresholds are exceeded. 2242 bool PragmaThresholdReached = 2243 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2244 bool ThresholdReached = 2245 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2246 if ((ThresholdReached && !Hints.allowReordering()) || 2247 PragmaThresholdReached) { 2248 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2249 L->getStartLoc(), 2250 L->getHeader()) 2251 << "loop not vectorized: cannot prove it is safe to reorder " 2252 "memory operations"); 2253 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2254 Failed = true; 2255 } 2256 2257 return Failed; 2258 } 2259 2260 private: 2261 unsigned NumRuntimePointerChecks; 2262 Instruction *UnsafeAlgebraInst; 2263 2264 /// Interface to emit optimization remarks. 2265 OptimizationRemarkEmitter &ORE; 2266 }; 2267 2268 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2269 if (L.empty()) { 2270 if (!hasCyclesInLoopBody(L)) 2271 V.push_back(&L); 2272 return; 2273 } 2274 for (Loop *InnerL : L) 2275 addAcyclicInnerLoop(*InnerL, V); 2276 } 2277 2278 /// The LoopVectorize Pass. 2279 struct LoopVectorize : public FunctionPass { 2280 /// Pass identification, replacement for typeid 2281 static char ID; 2282 2283 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2284 : FunctionPass(ID) { 2285 Impl.DisableUnrolling = NoUnrolling; 2286 Impl.AlwaysVectorize = AlwaysVectorize; 2287 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2288 } 2289 2290 LoopVectorizePass Impl; 2291 2292 bool runOnFunction(Function &F) override { 2293 if (skipFunction(F)) 2294 return false; 2295 2296 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2297 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2298 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2299 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2300 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2301 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2302 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2303 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2304 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2305 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2306 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2307 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2308 2309 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2310 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2311 2312 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2313 GetLAA, *ORE); 2314 } 2315 2316 void getAnalysisUsage(AnalysisUsage &AU) const override { 2317 AU.addRequired<AssumptionCacheTracker>(); 2318 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2319 AU.addRequired<DominatorTreeWrapperPass>(); 2320 AU.addRequired<LoopInfoWrapperPass>(); 2321 AU.addRequired<ScalarEvolutionWrapperPass>(); 2322 AU.addRequired<TargetTransformInfoWrapperPass>(); 2323 AU.addRequired<AAResultsWrapperPass>(); 2324 AU.addRequired<LoopAccessLegacyAnalysis>(); 2325 AU.addRequired<DemandedBitsWrapperPass>(); 2326 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2327 AU.addPreserved<LoopInfoWrapperPass>(); 2328 AU.addPreserved<DominatorTreeWrapperPass>(); 2329 AU.addPreserved<BasicAAWrapperPass>(); 2330 AU.addPreserved<GlobalsAAWrapperPass>(); 2331 } 2332 }; 2333 2334 } // end anonymous namespace 2335 2336 //===----------------------------------------------------------------------===// 2337 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2338 // LoopVectorizationCostModel. 2339 //===----------------------------------------------------------------------===// 2340 2341 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2342 // We need to place the broadcast of invariant variables outside the loop. 2343 Instruction *Instr = dyn_cast<Instruction>(V); 2344 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2345 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2346 2347 // Place the code for broadcasting invariant variables in the new preheader. 2348 IRBuilder<>::InsertPointGuard Guard(Builder); 2349 if (Invariant) 2350 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2351 2352 // Broadcast the scalar into all locations in the vector. 2353 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2354 2355 return Shuf; 2356 } 2357 2358 void InnerLoopVectorizer::createVectorIntInductionPHI( 2359 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2360 Value *Start = II.getStartValue(); 2361 assert(Step->getType()->isIntegerTy() && 2362 "Cannot widen an IV having a step with a non-integer type"); 2363 2364 // Construct the initial value of the vector IV in the vector loop preheader 2365 auto CurrIP = Builder.saveIP(); 2366 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2367 if (isa<TruncInst>(EntryVal)) { 2368 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2369 Step = Builder.CreateTrunc(Step, TruncType); 2370 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2371 } 2372 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2373 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2374 2375 // Create a vector splat to use in the induction update. 2376 // 2377 // FIXME: If the step is non-constant, we create the vector splat with 2378 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2379 // handle a constant vector splat. 2380 auto *ConstVF = ConstantInt::getSigned(Step->getType(), VF); 2381 auto *Mul = Builder.CreateMul(Step, ConstVF); 2382 Value *SplatVF = isa<Constant>(Mul) 2383 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2384 : Builder.CreateVectorSplat(VF, Mul); 2385 Builder.restoreIP(CurrIP); 2386 2387 // We may need to add the step a number of times, depending on the unroll 2388 // factor. The last of those goes into the PHI. 2389 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2390 &*LoopVectorBody->getFirstInsertionPt()); 2391 Instruction *LastInduction = VecInd; 2392 VectorParts Entry(UF); 2393 for (unsigned Part = 0; Part < UF; ++Part) { 2394 Entry[Part] = LastInduction; 2395 LastInduction = cast<Instruction>( 2396 Builder.CreateAdd(LastInduction, SplatVF, "step.add")); 2397 } 2398 VectorLoopValueMap.initVector(EntryVal, Entry); 2399 if (isa<TruncInst>(EntryVal)) 2400 addMetadata(Entry, EntryVal); 2401 2402 // Move the last step to the end of the latch block. This ensures consistent 2403 // placement of all induction updates. 2404 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2405 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2406 auto *ICmp = cast<Instruction>(Br->getCondition()); 2407 LastInduction->moveBefore(ICmp); 2408 LastInduction->setName("vec.ind.next"); 2409 2410 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2411 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2412 } 2413 2414 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2415 return Cost->isScalarAfterVectorization(I, VF) || 2416 Cost->isProfitableToScalarize(I, VF); 2417 } 2418 2419 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2420 if (shouldScalarizeInstruction(IV)) 2421 return true; 2422 auto isScalarInst = [&](User *U) -> bool { 2423 auto *I = cast<Instruction>(U); 2424 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2425 }; 2426 return any_of(IV->users(), isScalarInst); 2427 } 2428 2429 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) { 2430 2431 auto II = Legal->getInductionVars()->find(IV); 2432 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2433 2434 auto ID = II->second; 2435 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2436 2437 // The scalar value to broadcast. This will be derived from the canonical 2438 // induction variable. 2439 Value *ScalarIV = nullptr; 2440 2441 // The value from the original loop to which we are mapping the new induction 2442 // variable. 2443 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2444 2445 // True if we have vectorized the induction variable. 2446 auto VectorizedIV = false; 2447 2448 // Determine if we want a scalar version of the induction variable. This is 2449 // true if the induction variable itself is not widened, or if it has at 2450 // least one user in the loop that is not widened. 2451 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2452 2453 // Generate code for the induction step. Note that induction steps are 2454 // required to be loop-invariant 2455 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2456 "Induction step should be loop invariant"); 2457 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2458 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2459 Value *Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2460 LoopVectorPreHeader->getTerminator()); 2461 2462 // Try to create a new independent vector induction variable. If we can't 2463 // create the phi node, we will splat the scalar induction variable in each 2464 // loop iteration. 2465 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2466 createVectorIntInductionPHI(ID, Step, EntryVal); 2467 VectorizedIV = true; 2468 } 2469 2470 // If we haven't yet vectorized the induction variable, or if we will create 2471 // a scalar one, we need to define the scalar induction variable and step 2472 // values. If we were given a truncation type, truncate the canonical 2473 // induction variable and step. Otherwise, derive these values from the 2474 // induction descriptor. 2475 if (!VectorizedIV || NeedsScalarIV) { 2476 if (Trunc) { 2477 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2478 assert(Step->getType()->isIntegerTy() && 2479 "Truncation requires an integer step"); 2480 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2481 Step = Builder.CreateTrunc(Step, TruncType); 2482 } else { 2483 ScalarIV = Induction; 2484 if (IV != OldInduction) { 2485 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2486 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2487 ScalarIV->setName("offset.idx"); 2488 } 2489 } 2490 } 2491 2492 // If we haven't yet vectorized the induction variable, splat the scalar 2493 // induction variable, and build the necessary step vectors. 2494 if (!VectorizedIV) { 2495 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2496 VectorParts Entry(UF); 2497 for (unsigned Part = 0; Part < UF; ++Part) 2498 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2499 VectorLoopValueMap.initVector(EntryVal, Entry); 2500 if (Trunc) 2501 addMetadata(Entry, Trunc); 2502 } 2503 2504 // If an induction variable is only used for counting loop iterations or 2505 // calculating addresses, it doesn't need to be widened. Create scalar steps 2506 // that can be used by instructions we will later scalarize. Note that the 2507 // addition of the scalar steps will not increase the number of instructions 2508 // in the loop in the common case prior to InstCombine. We will be trading 2509 // one vector extract for each scalar step. 2510 if (NeedsScalarIV) 2511 buildScalarSteps(ScalarIV, Step, EntryVal); 2512 } 2513 2514 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2515 Instruction::BinaryOps BinOp) { 2516 // Create and check the types. 2517 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2518 int VLen = Val->getType()->getVectorNumElements(); 2519 2520 Type *STy = Val->getType()->getScalarType(); 2521 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2522 "Induction Step must be an integer or FP"); 2523 assert(Step->getType() == STy && "Step has wrong type"); 2524 2525 SmallVector<Constant *, 8> Indices; 2526 2527 if (STy->isIntegerTy()) { 2528 // Create a vector of consecutive numbers from zero to VF. 2529 for (int i = 0; i < VLen; ++i) 2530 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2531 2532 // Add the consecutive indices to the vector value. 2533 Constant *Cv = ConstantVector::get(Indices); 2534 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2535 Step = Builder.CreateVectorSplat(VLen, Step); 2536 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2537 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2538 // which can be found from the original scalar operations. 2539 Step = Builder.CreateMul(Cv, Step); 2540 return Builder.CreateAdd(Val, Step, "induction"); 2541 } 2542 2543 // Floating point induction. 2544 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2545 "Binary Opcode should be specified for FP induction"); 2546 // Create a vector of consecutive numbers from zero to VF. 2547 for (int i = 0; i < VLen; ++i) 2548 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2549 2550 // Add the consecutive indices to the vector value. 2551 Constant *Cv = ConstantVector::get(Indices); 2552 2553 Step = Builder.CreateVectorSplat(VLen, Step); 2554 2555 // Floating point operations had to be 'fast' to enable the induction. 2556 FastMathFlags Flags; 2557 Flags.setUnsafeAlgebra(); 2558 2559 Value *MulOp = Builder.CreateFMul(Cv, Step); 2560 if (isa<Instruction>(MulOp)) 2561 // Have to check, MulOp may be a constant 2562 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2563 2564 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2565 if (isa<Instruction>(BOp)) 2566 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2567 return BOp; 2568 } 2569 2570 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2571 Value *EntryVal) { 2572 2573 // We shouldn't have to build scalar steps if we aren't vectorizing. 2574 assert(VF > 1 && "VF should be greater than one"); 2575 2576 // Get the value type and ensure it and the step have the same integer type. 2577 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2578 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2579 "Val and Step should have the same integer type"); 2580 2581 // Determine the number of scalars we need to generate for each unroll 2582 // iteration. If EntryVal is uniform, we only need to generate the first 2583 // lane. Otherwise, we generate all VF values. 2584 unsigned Lanes = 2585 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2586 2587 // Compute the scalar steps and save the results in VectorLoopValueMap. 2588 ScalarParts Entry(UF); 2589 for (unsigned Part = 0; Part < UF; ++Part) { 2590 Entry[Part].resize(VF); 2591 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2592 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane); 2593 auto *Mul = Builder.CreateMul(StartIdx, Step); 2594 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2595 Entry[Part][Lane] = Add; 2596 } 2597 } 2598 VectorLoopValueMap.initScalar(EntryVal, Entry); 2599 } 2600 2601 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2602 2603 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2604 ValueToValueMap(); 2605 2606 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2607 if (Stride == 1 || Stride == -1) 2608 return Stride; 2609 return 0; 2610 } 2611 2612 bool LoopVectorizationLegality::isUniform(Value *V) { 2613 return LAI->isUniform(V); 2614 } 2615 2616 const InnerLoopVectorizer::VectorParts & 2617 InnerLoopVectorizer::getVectorValue(Value *V) { 2618 assert(V != Induction && "The new induction variable should not be used."); 2619 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2620 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2621 2622 // If we have a stride that is replaced by one, do it here. 2623 if (Legal->hasStride(V)) 2624 V = ConstantInt::get(V->getType(), 1); 2625 2626 // If we have this scalar in the map, return it. 2627 if (VectorLoopValueMap.hasVector(V)) 2628 return VectorLoopValueMap.VectorMapStorage[V]; 2629 2630 // If the value has not been vectorized, check if it has been scalarized 2631 // instead. If it has been scalarized, and we actually need the value in 2632 // vector form, we will construct the vector values on demand. 2633 if (VectorLoopValueMap.hasScalar(V)) { 2634 2635 // Initialize a new vector map entry. 2636 VectorParts Entry(UF); 2637 2638 // If we've scalarized a value, that value should be an instruction. 2639 auto *I = cast<Instruction>(V); 2640 2641 // If we aren't vectorizing, we can just copy the scalar map values over to 2642 // the vector map. 2643 if (VF == 1) { 2644 for (unsigned Part = 0; Part < UF; ++Part) 2645 Entry[Part] = getScalarValue(V, Part, 0); 2646 return VectorLoopValueMap.initVector(V, Entry); 2647 } 2648 2649 // Get the last scalar instruction we generated for V. If the value is 2650 // known to be uniform after vectorization, this corresponds to lane zero 2651 // of the last unroll iteration. Otherwise, the last instruction is the one 2652 // we created for the last vector lane of the last unroll iteration. 2653 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2654 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2655 2656 // Set the insert point after the last scalarized instruction. This ensures 2657 // the insertelement sequence will directly follow the scalar definitions. 2658 auto OldIP = Builder.saveIP(); 2659 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2660 Builder.SetInsertPoint(&*NewIP); 2661 2662 // However, if we are vectorizing, we need to construct the vector values. 2663 // If the value is known to be uniform after vectorization, we can just 2664 // broadcast the scalar value corresponding to lane zero for each unroll 2665 // iteration. Otherwise, we construct the vector values using insertelement 2666 // instructions. Since the resulting vectors are stored in 2667 // VectorLoopValueMap, we will only generate the insertelements once. 2668 for (unsigned Part = 0; Part < UF; ++Part) { 2669 Value *VectorValue = nullptr; 2670 if (Cost->isUniformAfterVectorization(I, VF)) { 2671 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2672 } else { 2673 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2674 for (unsigned Lane = 0; Lane < VF; ++Lane) 2675 VectorValue = Builder.CreateInsertElement( 2676 VectorValue, getScalarValue(V, Part, Lane), 2677 Builder.getInt32(Lane)); 2678 } 2679 Entry[Part] = VectorValue; 2680 } 2681 Builder.restoreIP(OldIP); 2682 return VectorLoopValueMap.initVector(V, Entry); 2683 } 2684 2685 // If this scalar is unknown, assume that it is a constant or that it is 2686 // loop invariant. Broadcast V and save the value for future uses. 2687 Value *B = getBroadcastInstrs(V); 2688 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2689 } 2690 2691 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2692 unsigned Lane) { 2693 2694 // If the value is not an instruction contained in the loop, it should 2695 // already be scalar. 2696 if (OrigLoop->isLoopInvariant(V)) 2697 return V; 2698 2699 assert(Lane > 0 ? 2700 !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2701 : true && "Uniform values only have lane zero"); 2702 2703 // If the value from the original loop has not been vectorized, it is 2704 // represented by UF x VF scalar values in the new loop. Return the requested 2705 // scalar value. 2706 if (VectorLoopValueMap.hasScalar(V)) 2707 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2708 2709 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2710 // for the given unroll part. If this entry is not a vector type (i.e., the 2711 // vectorization factor is one), there is no need to generate an 2712 // extractelement instruction. 2713 auto *U = getVectorValue(V)[Part]; 2714 if (!U->getType()->isVectorTy()) { 2715 assert(VF == 1 && "Value not scalarized has non-vector type"); 2716 return U; 2717 } 2718 2719 // Otherwise, the value from the original loop has been vectorized and is 2720 // represented by UF vector values. Extract and return the requested scalar 2721 // value from the appropriate vector lane. 2722 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2723 } 2724 2725 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2726 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2727 SmallVector<Constant *, 8> ShuffleMask; 2728 for (unsigned i = 0; i < VF; ++i) 2729 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2730 2731 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2732 ConstantVector::get(ShuffleMask), 2733 "reverse"); 2734 } 2735 2736 // Try to vectorize the interleave group that \p Instr belongs to. 2737 // 2738 // E.g. Translate following interleaved load group (factor = 3): 2739 // for (i = 0; i < N; i+=3) { 2740 // R = Pic[i]; // Member of index 0 2741 // G = Pic[i+1]; // Member of index 1 2742 // B = Pic[i+2]; // Member of index 2 2743 // ... // do something to R, G, B 2744 // } 2745 // To: 2746 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2747 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2748 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2749 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2750 // 2751 // Or translate following interleaved store group (factor = 3): 2752 // for (i = 0; i < N; i+=3) { 2753 // ... do something to R, G, B 2754 // Pic[i] = R; // Member of index 0 2755 // Pic[i+1] = G; // Member of index 1 2756 // Pic[i+2] = B; // Member of index 2 2757 // } 2758 // To: 2759 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2760 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2761 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2762 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2763 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2764 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2765 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2766 assert(Group && "Fail to get an interleaved access group."); 2767 2768 // Skip if current instruction is not the insert position. 2769 if (Instr != Group->getInsertPos()) 2770 return; 2771 2772 Value *Ptr = getPointerOperand(Instr); 2773 2774 // Prepare for the vector type of the interleaved load/store. 2775 Type *ScalarTy = getMemInstValueType(Instr); 2776 unsigned InterleaveFactor = Group->getFactor(); 2777 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2778 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2779 2780 // Prepare for the new pointers. 2781 setDebugLocFromInst(Builder, Ptr); 2782 SmallVector<Value *, 2> NewPtrs; 2783 unsigned Index = Group->getIndex(Instr); 2784 2785 // If the group is reverse, adjust the index to refer to the last vector lane 2786 // instead of the first. We adjust the index from the first vector lane, 2787 // rather than directly getting the pointer for lane VF - 1, because the 2788 // pointer operand of the interleaved access is supposed to be uniform. For 2789 // uniform instructions, we're only required to generate a value for the 2790 // first vector lane in each unroll iteration. 2791 if (Group->isReverse()) 2792 Index += (VF - 1) * Group->getFactor(); 2793 2794 for (unsigned Part = 0; Part < UF; Part++) { 2795 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2796 2797 // Notice current instruction could be any index. Need to adjust the address 2798 // to the member of index 0. 2799 // 2800 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2801 // b = A[i]; // Member of index 0 2802 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2803 // 2804 // E.g. A[i+1] = a; // Member of index 1 2805 // A[i] = b; // Member of index 0 2806 // A[i+2] = c; // Member of index 2 (Current instruction) 2807 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2808 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2809 2810 // Cast to the vector pointer type. 2811 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2812 } 2813 2814 setDebugLocFromInst(Builder, Instr); 2815 Value *UndefVec = UndefValue::get(VecTy); 2816 2817 // Vectorize the interleaved load group. 2818 if (isa<LoadInst>(Instr)) { 2819 2820 // For each unroll part, create a wide load for the group. 2821 SmallVector<Value *, 2> NewLoads; 2822 for (unsigned Part = 0; Part < UF; Part++) { 2823 auto *NewLoad = Builder.CreateAlignedLoad( 2824 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2825 addMetadata(NewLoad, Instr); 2826 NewLoads.push_back(NewLoad); 2827 } 2828 2829 // For each member in the group, shuffle out the appropriate data from the 2830 // wide loads. 2831 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2832 Instruction *Member = Group->getMember(I); 2833 2834 // Skip the gaps in the group. 2835 if (!Member) 2836 continue; 2837 2838 VectorParts Entry(UF); 2839 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2840 for (unsigned Part = 0; Part < UF; Part++) { 2841 Value *StridedVec = Builder.CreateShuffleVector( 2842 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2843 2844 // If this member has different type, cast the result type. 2845 if (Member->getType() != ScalarTy) { 2846 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2847 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2848 } 2849 2850 Entry[Part] = 2851 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2852 } 2853 VectorLoopValueMap.initVector(Member, Entry); 2854 } 2855 return; 2856 } 2857 2858 // The sub vector type for current instruction. 2859 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2860 2861 // Vectorize the interleaved store group. 2862 for (unsigned Part = 0; Part < UF; Part++) { 2863 // Collect the stored vector from each member. 2864 SmallVector<Value *, 4> StoredVecs; 2865 for (unsigned i = 0; i < InterleaveFactor; i++) { 2866 // Interleaved store group doesn't allow a gap, so each index has a member 2867 Instruction *Member = Group->getMember(i); 2868 assert(Member && "Fail to get a member from an interleaved store group"); 2869 2870 Value *StoredVec = 2871 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2872 if (Group->isReverse()) 2873 StoredVec = reverseVector(StoredVec); 2874 2875 // If this member has different type, cast it to an unified type. 2876 if (StoredVec->getType() != SubVT) 2877 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2878 2879 StoredVecs.push_back(StoredVec); 2880 } 2881 2882 // Concatenate all vectors into a wide vector. 2883 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2884 2885 // Interleave the elements in the wide vector. 2886 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2887 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2888 "interleaved.vec"); 2889 2890 Instruction *NewStoreInstr = 2891 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2892 addMetadata(NewStoreInstr, Instr); 2893 } 2894 } 2895 2896 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2897 // Attempt to issue a wide load. 2898 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2899 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2900 2901 assert((LI || SI) && "Invalid Load/Store instruction"); 2902 2903 LoopVectorizationCostModel::InstWidening Decision = 2904 Cost->getWideningDecision(Instr, VF); 2905 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2906 "CM decision should be taken at this point"); 2907 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2908 return vectorizeInterleaveGroup(Instr); 2909 2910 Type *ScalarDataTy = getMemInstValueType(Instr); 2911 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2912 Value *Ptr = getPointerOperand(Instr); 2913 unsigned Alignment = getMemInstAlignment(Instr); 2914 // An alignment of 0 means target abi alignment. We need to use the scalar's 2915 // target abi alignment in such a case. 2916 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2917 if (!Alignment) 2918 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2919 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2920 2921 // Scalarize the memory instruction if necessary. 2922 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2923 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2924 2925 // Determine if the pointer operand of the access is either consecutive or 2926 // reverse consecutive. 2927 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2928 bool Reverse = ConsecutiveStride < 0; 2929 bool CreateGatherScatter = 2930 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2931 2932 VectorParts VectorGep; 2933 2934 // Handle consecutive loads/stores. 2935 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2936 if (ConsecutiveStride) { 2937 if (Gep) { 2938 unsigned NumOperands = Gep->getNumOperands(); 2939 #ifndef NDEBUG 2940 // The original GEP that identified as a consecutive memory access 2941 // should have only one loop-variant operand. 2942 unsigned NumOfLoopVariantOps = 0; 2943 for (unsigned i = 0; i < NumOperands; ++i) 2944 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 2945 OrigLoop)) 2946 NumOfLoopVariantOps++; 2947 assert(NumOfLoopVariantOps == 1 && 2948 "Consecutive GEP should have only one loop-variant operand"); 2949 #endif 2950 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2951 Gep2->setName("gep.indvar"); 2952 2953 // A new GEP is created for a 0-lane value of the first unroll iteration. 2954 // The GEPs for the rest of the unroll iterations are computed below as an 2955 // offset from this GEP. 2956 for (unsigned i = 0; i < NumOperands; ++i) 2957 // We can apply getScalarValue() for all GEP indices. It returns an 2958 // original value for loop-invariant operand and 0-lane for consecutive 2959 // operand. 2960 Gep2->setOperand(i, getScalarValue(Gep->getOperand(i), 2961 0, /* First unroll iteration */ 2962 0 /* 0-lane of the vector */ )); 2963 setDebugLocFromInst(Builder, Gep); 2964 Ptr = Builder.Insert(Gep2); 2965 2966 } else { // No GEP 2967 setDebugLocFromInst(Builder, Ptr); 2968 Ptr = getScalarValue(Ptr, 0, 0); 2969 } 2970 } else { 2971 // At this point we should vector version of GEP for Gather or Scatter 2972 assert(CreateGatherScatter && "The instruction should be scalarized"); 2973 if (Gep) { 2974 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2975 // and each index that's defined inside the loop, even if it is 2976 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2977 // scalar. 2978 SmallVector<VectorParts, 4> OpsV; 2979 for (Value *Op : Gep->operands()) { 2980 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2981 if (SrcInst && OrigLoop->contains(SrcInst)) 2982 OpsV.push_back(getVectorValue(Op)); 2983 else 2984 OpsV.push_back(VectorParts(UF, Op)); 2985 } 2986 for (unsigned Part = 0; Part < UF; ++Part) { 2987 SmallVector<Value *, 4> Ops; 2988 Value *GEPBasePtr = OpsV[0][Part]; 2989 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2990 Ops.push_back(OpsV[i][Part]); 2991 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2992 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2993 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2994 2995 NewGep = 2996 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2997 VectorGep.push_back(NewGep); 2998 } 2999 } else 3000 VectorGep = getVectorValue(Ptr); 3001 } 3002 3003 VectorParts Mask = createBlockInMask(Instr->getParent()); 3004 // Handle Stores: 3005 if (SI) { 3006 assert(!Legal->isUniform(SI->getPointerOperand()) && 3007 "We do not allow storing to uniform addresses"); 3008 setDebugLocFromInst(Builder, SI); 3009 // We don't want to update the value in the map as it might be used in 3010 // another expression. So don't use a reference type for "StoredVal". 3011 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 3012 3013 for (unsigned Part = 0; Part < UF; ++Part) { 3014 Instruction *NewSI = nullptr; 3015 if (CreateGatherScatter) { 3016 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3017 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 3018 Alignment, MaskPart); 3019 } else { 3020 // Calculate the pointer for the specific unroll-part. 3021 Value *PartPtr = 3022 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3023 3024 if (Reverse) { 3025 // If we store to reverse consecutive memory locations, then we need 3026 // to reverse the order of elements in the stored value. 3027 StoredVal[Part] = reverseVector(StoredVal[Part]); 3028 // If the address is consecutive but reversed, then the 3029 // wide store needs to start at the last vector element. 3030 PartPtr = 3031 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3032 PartPtr = 3033 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3034 Mask[Part] = reverseVector(Mask[Part]); 3035 } 3036 3037 Value *VecPtr = 3038 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3039 3040 if (Legal->isMaskRequired(SI)) 3041 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 3042 Mask[Part]); 3043 else 3044 NewSI = 3045 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 3046 } 3047 addMetadata(NewSI, SI); 3048 } 3049 return; 3050 } 3051 3052 // Handle loads. 3053 assert(LI && "Must have a load instruction"); 3054 setDebugLocFromInst(Builder, LI); 3055 VectorParts Entry(UF); 3056 for (unsigned Part = 0; Part < UF; ++Part) { 3057 Instruction *NewLI; 3058 if (CreateGatherScatter) { 3059 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3060 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 3061 0, "wide.masked.gather"); 3062 Entry[Part] = NewLI; 3063 } else { 3064 // Calculate the pointer for the specific unroll-part. 3065 Value *PartPtr = 3066 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3067 3068 if (Reverse) { 3069 // If the address is consecutive but reversed, then the 3070 // wide load needs to start at the last vector element. 3071 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3072 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3073 Mask[Part] = reverseVector(Mask[Part]); 3074 } 3075 3076 Value *VecPtr = 3077 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3078 if (Legal->isMaskRequired(LI)) 3079 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3080 UndefValue::get(DataTy), 3081 "wide.masked.load"); 3082 else 3083 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3084 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3085 } 3086 addMetadata(NewLI, LI); 3087 } 3088 VectorLoopValueMap.initVector(Instr, Entry); 3089 } 3090 3091 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3092 bool IfPredicateInstr) { 3093 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3094 DEBUG(dbgs() << "LV: Scalarizing" 3095 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3096 << '\n'); 3097 // Holds vector parameters or scalars, in case of uniform vals. 3098 SmallVector<VectorParts, 4> Params; 3099 3100 setDebugLocFromInst(Builder, Instr); 3101 3102 // Does this instruction return a value ? 3103 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3104 3105 // Initialize a new scalar map entry. 3106 ScalarParts Entry(UF); 3107 3108 VectorParts Cond; 3109 if (IfPredicateInstr) 3110 Cond = createBlockInMask(Instr->getParent()); 3111 3112 // Determine the number of scalars we need to generate for each unroll 3113 // iteration. If the instruction is uniform, we only need to generate the 3114 // first lane. Otherwise, we generate all VF values. 3115 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3116 3117 // For each vector unroll 'part': 3118 for (unsigned Part = 0; Part < UF; ++Part) { 3119 Entry[Part].resize(VF); 3120 // For each scalar that we create: 3121 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3122 3123 // Start if-block. 3124 Value *Cmp = nullptr; 3125 if (IfPredicateInstr) { 3126 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Lane)); 3127 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3128 ConstantInt::get(Cmp->getType(), 1)); 3129 } 3130 3131 Instruction *Cloned = Instr->clone(); 3132 if (!IsVoidRetTy) 3133 Cloned->setName(Instr->getName() + ".cloned"); 3134 3135 // Replace the operands of the cloned instructions with their scalar 3136 // equivalents in the new loop. 3137 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3138 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3139 Cloned->setOperand(op, NewOp); 3140 } 3141 addNewMetadata(Cloned, Instr); 3142 3143 // Place the cloned scalar in the new loop. 3144 Builder.Insert(Cloned); 3145 3146 // Add the cloned scalar to the scalar map entry. 3147 Entry[Part][Lane] = Cloned; 3148 3149 // If we just cloned a new assumption, add it the assumption cache. 3150 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3151 if (II->getIntrinsicID() == Intrinsic::assume) 3152 AC->registerAssumption(II); 3153 3154 // End if-block. 3155 if (IfPredicateInstr) 3156 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3157 } 3158 } 3159 VectorLoopValueMap.initScalar(Instr, Entry); 3160 } 3161 3162 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3163 Value *End, Value *Step, 3164 Instruction *DL) { 3165 BasicBlock *Header = L->getHeader(); 3166 BasicBlock *Latch = L->getLoopLatch(); 3167 // As we're just creating this loop, it's possible no latch exists 3168 // yet. If so, use the header as this will be a single block loop. 3169 if (!Latch) 3170 Latch = Header; 3171 3172 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3173 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3174 setDebugLocFromInst(Builder, OldInst); 3175 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3176 3177 Builder.SetInsertPoint(Latch->getTerminator()); 3178 setDebugLocFromInst(Builder, OldInst); 3179 3180 // Create i+1 and fill the PHINode. 3181 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3182 Induction->addIncoming(Start, L->getLoopPreheader()); 3183 Induction->addIncoming(Next, Latch); 3184 // Create the compare. 3185 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3186 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3187 3188 // Now we have two terminators. Remove the old one from the block. 3189 Latch->getTerminator()->eraseFromParent(); 3190 3191 return Induction; 3192 } 3193 3194 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3195 if (TripCount) 3196 return TripCount; 3197 3198 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3199 // Find the loop boundaries. 3200 ScalarEvolution *SE = PSE.getSE(); 3201 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3202 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3203 "Invalid loop count"); 3204 3205 Type *IdxTy = Legal->getWidestInductionType(); 3206 3207 // The exit count might have the type of i64 while the phi is i32. This can 3208 // happen if we have an induction variable that is sign extended before the 3209 // compare. The only way that we get a backedge taken count is that the 3210 // induction variable was signed and as such will not overflow. In such a case 3211 // truncation is legal. 3212 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3213 IdxTy->getPrimitiveSizeInBits()) 3214 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3215 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3216 3217 // Get the total trip count from the count by adding 1. 3218 const SCEV *ExitCount = SE->getAddExpr( 3219 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3220 3221 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3222 3223 // Expand the trip count and place the new instructions in the preheader. 3224 // Notice that the pre-header does not change, only the loop body. 3225 SCEVExpander Exp(*SE, DL, "induction"); 3226 3227 // Count holds the overall loop count (N). 3228 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3229 L->getLoopPreheader()->getTerminator()); 3230 3231 if (TripCount->getType()->isPointerTy()) 3232 TripCount = 3233 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3234 L->getLoopPreheader()->getTerminator()); 3235 3236 return TripCount; 3237 } 3238 3239 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3240 if (VectorTripCount) 3241 return VectorTripCount; 3242 3243 Value *TC = getOrCreateTripCount(L); 3244 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3245 3246 // Now we need to generate the expression for the part of the loop that the 3247 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3248 // iterations are not required for correctness, or N - Step, otherwise. Step 3249 // is equal to the vectorization factor (number of SIMD elements) times the 3250 // unroll factor (number of SIMD instructions). 3251 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3252 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3253 3254 // If there is a non-reversed interleaved group that may speculatively access 3255 // memory out-of-bounds, we need to ensure that there will be at least one 3256 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3257 // the trip count, we set the remainder to be equal to the step. If the step 3258 // does not evenly divide the trip count, no adjustment is necessary since 3259 // there will already be scalar iterations. Note that the minimum iterations 3260 // check ensures that N >= Step. 3261 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3262 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3263 R = Builder.CreateSelect(IsZero, Step, R); 3264 } 3265 3266 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3267 3268 return VectorTripCount; 3269 } 3270 3271 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3272 BasicBlock *Bypass) { 3273 Value *Count = getOrCreateTripCount(L); 3274 BasicBlock *BB = L->getLoopPreheader(); 3275 IRBuilder<> Builder(BB->getTerminator()); 3276 3277 // Generate code to check that the loop's trip count that we computed by 3278 // adding one to the backedge-taken count will not overflow. 3279 Value *CheckMinIters = Builder.CreateICmpULT( 3280 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3281 3282 BasicBlock *NewBB = 3283 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3284 // Update dominator tree immediately if the generated block is a 3285 // LoopBypassBlock because SCEV expansions to generate loop bypass 3286 // checks may query it before the current function is finished. 3287 DT->addNewBlock(NewBB, BB); 3288 if (L->getParentLoop()) 3289 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3290 ReplaceInstWithInst(BB->getTerminator(), 3291 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3292 LoopBypassBlocks.push_back(BB); 3293 } 3294 3295 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3296 BasicBlock *Bypass) { 3297 Value *TC = getOrCreateVectorTripCount(L); 3298 BasicBlock *BB = L->getLoopPreheader(); 3299 IRBuilder<> Builder(BB->getTerminator()); 3300 3301 // Now, compare the new count to zero. If it is zero skip the vector loop and 3302 // jump to the scalar loop. 3303 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3304 "cmp.zero"); 3305 3306 // Generate code to check that the loop's trip count that we computed by 3307 // adding one to the backedge-taken count will not overflow. 3308 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3309 // Update dominator tree immediately if the generated block is a 3310 // LoopBypassBlock because SCEV expansions to generate loop bypass 3311 // checks may query it before the current function is finished. 3312 DT->addNewBlock(NewBB, BB); 3313 if (L->getParentLoop()) 3314 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3315 ReplaceInstWithInst(BB->getTerminator(), 3316 BranchInst::Create(Bypass, NewBB, Cmp)); 3317 LoopBypassBlocks.push_back(BB); 3318 } 3319 3320 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3321 BasicBlock *BB = L->getLoopPreheader(); 3322 3323 // Generate the code to check that the SCEV assumptions that we made. 3324 // We want the new basic block to start at the first instruction in a 3325 // sequence of instructions that form a check. 3326 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3327 "scev.check"); 3328 Value *SCEVCheck = 3329 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3330 3331 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3332 if (C->isZero()) 3333 return; 3334 3335 // Create a new block containing the stride check. 3336 BB->setName("vector.scevcheck"); 3337 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3338 // Update dominator tree immediately if the generated block is a 3339 // LoopBypassBlock because SCEV expansions to generate loop bypass 3340 // checks may query it before the current function is finished. 3341 DT->addNewBlock(NewBB, BB); 3342 if (L->getParentLoop()) 3343 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3344 ReplaceInstWithInst(BB->getTerminator(), 3345 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3346 LoopBypassBlocks.push_back(BB); 3347 AddedSafetyChecks = true; 3348 } 3349 3350 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3351 BasicBlock *BB = L->getLoopPreheader(); 3352 3353 // Generate the code that checks in runtime if arrays overlap. We put the 3354 // checks into a separate block to make the more common case of few elements 3355 // faster. 3356 Instruction *FirstCheckInst; 3357 Instruction *MemRuntimeCheck; 3358 std::tie(FirstCheckInst, MemRuntimeCheck) = 3359 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3360 if (!MemRuntimeCheck) 3361 return; 3362 3363 // Create a new block containing the memory check. 3364 BB->setName("vector.memcheck"); 3365 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3366 // Update dominator tree immediately if the generated block is a 3367 // LoopBypassBlock because SCEV expansions to generate loop bypass 3368 // checks may query it before the current function is finished. 3369 DT->addNewBlock(NewBB, BB); 3370 if (L->getParentLoop()) 3371 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3372 ReplaceInstWithInst(BB->getTerminator(), 3373 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3374 LoopBypassBlocks.push_back(BB); 3375 AddedSafetyChecks = true; 3376 3377 // We currently don't use LoopVersioning for the actual loop cloning but we 3378 // still use it to add the noalias metadata. 3379 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3380 PSE.getSE()); 3381 LVer->prepareNoAliasMetadata(); 3382 } 3383 3384 void InnerLoopVectorizer::createEmptyLoop() { 3385 /* 3386 In this function we generate a new loop. The new loop will contain 3387 the vectorized instructions while the old loop will continue to run the 3388 scalar remainder. 3389 3390 [ ] <-- loop iteration number check. 3391 / | 3392 / v 3393 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3394 | / | 3395 | / v 3396 || [ ] <-- vector pre header. 3397 |/ | 3398 | v 3399 | [ ] \ 3400 | [ ]_| <-- vector loop. 3401 | | 3402 | v 3403 | -[ ] <--- middle-block. 3404 | / | 3405 | / v 3406 -|- >[ ] <--- new preheader. 3407 | | 3408 | v 3409 | [ ] \ 3410 | [ ]_| <-- old scalar loop to handle remainder. 3411 \ | 3412 \ v 3413 >[ ] <-- exit block. 3414 ... 3415 */ 3416 3417 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3418 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3419 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3420 assert(VectorPH && "Invalid loop structure"); 3421 assert(ExitBlock && "Must have an exit block"); 3422 3423 // Some loops have a single integer induction variable, while other loops 3424 // don't. One example is c++ iterators that often have multiple pointer 3425 // induction variables. In the code below we also support a case where we 3426 // don't have a single induction variable. 3427 // 3428 // We try to obtain an induction variable from the original loop as hard 3429 // as possible. However if we don't find one that: 3430 // - is an integer 3431 // - counts from zero, stepping by one 3432 // - is the size of the widest induction variable type 3433 // then we create a new one. 3434 OldInduction = Legal->getPrimaryInduction(); 3435 Type *IdxTy = Legal->getWidestInductionType(); 3436 3437 // Split the single block loop into the two loop structure described above. 3438 BasicBlock *VecBody = 3439 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3440 BasicBlock *MiddleBlock = 3441 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3442 BasicBlock *ScalarPH = 3443 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3444 3445 // Create and register the new vector loop. 3446 Loop *Lp = new Loop(); 3447 Loop *ParentLoop = OrigLoop->getParentLoop(); 3448 3449 // Insert the new loop into the loop nest and register the new basic blocks 3450 // before calling any utilities such as SCEV that require valid LoopInfo. 3451 if (ParentLoop) { 3452 ParentLoop->addChildLoop(Lp); 3453 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3454 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3455 } else { 3456 LI->addTopLevelLoop(Lp); 3457 } 3458 Lp->addBasicBlockToLoop(VecBody, *LI); 3459 3460 // Find the loop boundaries. 3461 Value *Count = getOrCreateTripCount(Lp); 3462 3463 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3464 3465 // We need to test whether the backedge-taken count is uint##_max. Adding one 3466 // to it will cause overflow and an incorrect loop trip count in the vector 3467 // body. In case of overflow we want to directly jump to the scalar remainder 3468 // loop. 3469 emitMinimumIterationCountCheck(Lp, ScalarPH); 3470 // Now, compare the new count to zero. If it is zero skip the vector loop and 3471 // jump to the scalar loop. 3472 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3473 // Generate the code to check any assumptions that we've made for SCEV 3474 // expressions. 3475 emitSCEVChecks(Lp, ScalarPH); 3476 3477 // Generate the code that checks in runtime if arrays overlap. We put the 3478 // checks into a separate block to make the more common case of few elements 3479 // faster. 3480 emitMemRuntimeChecks(Lp, ScalarPH); 3481 3482 // Generate the induction variable. 3483 // The loop step is equal to the vectorization factor (num of SIMD elements) 3484 // times the unroll factor (num of SIMD instructions). 3485 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3486 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3487 Induction = 3488 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3489 getDebugLocFromInstOrOperands(OldInduction)); 3490 3491 // We are going to resume the execution of the scalar loop. 3492 // Go over all of the induction variables that we found and fix the 3493 // PHIs that are left in the scalar version of the loop. 3494 // The starting values of PHI nodes depend on the counter of the last 3495 // iteration in the vectorized loop. 3496 // If we come from a bypass edge then we need to start from the original 3497 // start value. 3498 3499 // This variable saves the new starting index for the scalar loop. It is used 3500 // to test if there are any tail iterations left once the vector loop has 3501 // completed. 3502 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3503 for (auto &InductionEntry : *List) { 3504 PHINode *OrigPhi = InductionEntry.first; 3505 InductionDescriptor II = InductionEntry.second; 3506 3507 // Create phi nodes to merge from the backedge-taken check block. 3508 PHINode *BCResumeVal = PHINode::Create( 3509 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3510 Value *&EndValue = IVEndValues[OrigPhi]; 3511 if (OrigPhi == OldInduction) { 3512 // We know what the end value is. 3513 EndValue = CountRoundDown; 3514 } else { 3515 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3516 Type *StepType = II.getStep()->getType(); 3517 Instruction::CastOps CastOp = 3518 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3519 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3520 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3521 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3522 EndValue->setName("ind.end"); 3523 } 3524 3525 // The new PHI merges the original incoming value, in case of a bypass, 3526 // or the value at the end of the vectorized loop. 3527 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3528 3529 // Fix the scalar body counter (PHI node). 3530 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3531 3532 // The old induction's phi node in the scalar body needs the truncated 3533 // value. 3534 for (BasicBlock *BB : LoopBypassBlocks) 3535 BCResumeVal->addIncoming(II.getStartValue(), BB); 3536 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3537 } 3538 3539 // Add a check in the middle block to see if we have completed 3540 // all of the iterations in the first vector loop. 3541 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3542 Value *CmpN = 3543 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3544 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3545 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3546 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3547 3548 // Get ready to start creating new instructions into the vectorized body. 3549 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3550 3551 // Save the state. 3552 LoopVectorPreHeader = Lp->getLoopPreheader(); 3553 LoopScalarPreHeader = ScalarPH; 3554 LoopMiddleBlock = MiddleBlock; 3555 LoopExitBlock = ExitBlock; 3556 LoopVectorBody = VecBody; 3557 LoopScalarBody = OldBasicBlock; 3558 3559 // Keep all loop hints from the original loop on the vector loop (we'll 3560 // replace the vectorizer-specific hints below). 3561 if (MDNode *LID = OrigLoop->getLoopID()) 3562 Lp->setLoopID(LID); 3563 3564 LoopVectorizeHints Hints(Lp, true, *ORE); 3565 Hints.setAlreadyVectorized(); 3566 } 3567 3568 // Fix up external users of the induction variable. At this point, we are 3569 // in LCSSA form, with all external PHIs that use the IV having one input value, 3570 // coming from the remainder loop. We need those PHIs to also have a correct 3571 // value for the IV when arriving directly from the middle block. 3572 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3573 const InductionDescriptor &II, 3574 Value *CountRoundDown, Value *EndValue, 3575 BasicBlock *MiddleBlock) { 3576 // There are two kinds of external IV usages - those that use the value 3577 // computed in the last iteration (the PHI) and those that use the penultimate 3578 // value (the value that feeds into the phi from the loop latch). 3579 // We allow both, but they, obviously, have different values. 3580 3581 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3582 3583 DenseMap<Value *, Value *> MissingVals; 3584 3585 // An external user of the last iteration's value should see the value that 3586 // the remainder loop uses to initialize its own IV. 3587 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3588 for (User *U : PostInc->users()) { 3589 Instruction *UI = cast<Instruction>(U); 3590 if (!OrigLoop->contains(UI)) { 3591 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3592 MissingVals[UI] = EndValue; 3593 } 3594 } 3595 3596 // An external user of the penultimate value need to see EndValue - Step. 3597 // The simplest way to get this is to recompute it from the constituent SCEVs, 3598 // that is Start + (Step * (CRD - 1)). 3599 for (User *U : OrigPhi->users()) { 3600 auto *UI = cast<Instruction>(U); 3601 if (!OrigLoop->contains(UI)) { 3602 const DataLayout &DL = 3603 OrigLoop->getHeader()->getModule()->getDataLayout(); 3604 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3605 3606 IRBuilder<> B(MiddleBlock->getTerminator()); 3607 Value *CountMinusOne = B.CreateSub( 3608 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3609 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3610 "cast.cmo"); 3611 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3612 Escape->setName("ind.escape"); 3613 MissingVals[UI] = Escape; 3614 } 3615 } 3616 3617 for (auto &I : MissingVals) { 3618 PHINode *PHI = cast<PHINode>(I.first); 3619 // One corner case we have to handle is two IVs "chasing" each-other, 3620 // that is %IV2 = phi [...], [ %IV1, %latch ] 3621 // In this case, if IV1 has an external use, we need to avoid adding both 3622 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3623 // don't already have an incoming value for the middle block. 3624 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3625 PHI->addIncoming(I.second, MiddleBlock); 3626 } 3627 } 3628 3629 namespace { 3630 struct CSEDenseMapInfo { 3631 static bool canHandle(Instruction *I) { 3632 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3633 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3634 } 3635 static inline Instruction *getEmptyKey() { 3636 return DenseMapInfo<Instruction *>::getEmptyKey(); 3637 } 3638 static inline Instruction *getTombstoneKey() { 3639 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3640 } 3641 static unsigned getHashValue(Instruction *I) { 3642 assert(canHandle(I) && "Unknown instruction!"); 3643 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3644 I->value_op_end())); 3645 } 3646 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3647 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3648 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3649 return LHS == RHS; 3650 return LHS->isIdenticalTo(RHS); 3651 } 3652 }; 3653 } 3654 3655 ///\brief Perform cse of induction variable instructions. 3656 static void cse(BasicBlock *BB) { 3657 // Perform simple cse. 3658 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3659 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3660 Instruction *In = &*I++; 3661 3662 if (!CSEDenseMapInfo::canHandle(In)) 3663 continue; 3664 3665 // Check if we can replace this instruction with any of the 3666 // visited instructions. 3667 if (Instruction *V = CSEMap.lookup(In)) { 3668 In->replaceAllUsesWith(V); 3669 In->eraseFromParent(); 3670 continue; 3671 } 3672 3673 CSEMap[In] = In; 3674 } 3675 } 3676 3677 /// \brief Adds a 'fast' flag to floating point operations. 3678 static Value *addFastMathFlag(Value *V) { 3679 if (isa<FPMathOperator>(V)) { 3680 FastMathFlags Flags; 3681 Flags.setUnsafeAlgebra(); 3682 cast<Instruction>(V)->setFastMathFlags(Flags); 3683 } 3684 return V; 3685 } 3686 3687 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3688 /// convenience wrapper for the type-based getScalarizationOverhead API. 3689 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3690 const TargetTransformInfo &TTI) { 3691 if (VF == 1) 3692 return 0; 3693 3694 unsigned Cost = 0; 3695 Type *RetTy = ToVectorTy(I->getType(), VF); 3696 if (!RetTy->isVoidTy()) 3697 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3698 3699 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3700 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3701 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3702 } else { 3703 SmallVector<const Value *, 4> Operands(I->operand_values()); 3704 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3705 } 3706 3707 return Cost; 3708 } 3709 3710 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3711 // Return the cost of the instruction, including scalarization overhead if it's 3712 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3713 // i.e. either vector version isn't available, or is too expensive. 3714 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3715 const TargetTransformInfo &TTI, 3716 const TargetLibraryInfo *TLI, 3717 bool &NeedToScalarize) { 3718 Function *F = CI->getCalledFunction(); 3719 StringRef FnName = CI->getCalledFunction()->getName(); 3720 Type *ScalarRetTy = CI->getType(); 3721 SmallVector<Type *, 4> Tys, ScalarTys; 3722 for (auto &ArgOp : CI->arg_operands()) 3723 ScalarTys.push_back(ArgOp->getType()); 3724 3725 // Estimate cost of scalarized vector call. The source operands are assumed 3726 // to be vectors, so we need to extract individual elements from there, 3727 // execute VF scalar calls, and then gather the result into the vector return 3728 // value. 3729 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3730 if (VF == 1) 3731 return ScalarCallCost; 3732 3733 // Compute corresponding vector type for return value and arguments. 3734 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3735 for (Type *ScalarTy : ScalarTys) 3736 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3737 3738 // Compute costs of unpacking argument values for the scalar calls and 3739 // packing the return values to a vector. 3740 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3741 3742 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3743 3744 // If we can't emit a vector call for this function, then the currently found 3745 // cost is the cost we need to return. 3746 NeedToScalarize = true; 3747 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3748 return Cost; 3749 3750 // If the corresponding vector cost is cheaper, return its cost. 3751 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3752 if (VectorCallCost < Cost) { 3753 NeedToScalarize = false; 3754 return VectorCallCost; 3755 } 3756 return Cost; 3757 } 3758 3759 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3760 // factor VF. Return the cost of the instruction, including scalarization 3761 // overhead if it's needed. 3762 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3763 const TargetTransformInfo &TTI, 3764 const TargetLibraryInfo *TLI) { 3765 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3766 assert(ID && "Expected intrinsic call!"); 3767 3768 Type *RetTy = ToVectorTy(CI->getType(), VF); 3769 SmallVector<Type *, 4> Tys; 3770 for (Value *ArgOperand : CI->arg_operands()) 3771 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3772 3773 FastMathFlags FMF; 3774 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3775 FMF = FPMO->getFastMathFlags(); 3776 3777 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3778 } 3779 3780 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3781 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3782 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3783 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3784 } 3785 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3786 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3787 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3788 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3789 } 3790 3791 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3792 // For every instruction `I` in MinBWs, truncate the operands, create a 3793 // truncated version of `I` and reextend its result. InstCombine runs 3794 // later and will remove any ext/trunc pairs. 3795 // 3796 SmallPtrSet<Value *, 4> Erased; 3797 for (const auto &KV : Cost->getMinimalBitwidths()) { 3798 // If the value wasn't vectorized, we must maintain the original scalar 3799 // type. The absence of the value from VectorLoopValueMap indicates that it 3800 // wasn't vectorized. 3801 if (!VectorLoopValueMap.hasVector(KV.first)) 3802 continue; 3803 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3804 for (Value *&I : Parts) { 3805 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3806 continue; 3807 Type *OriginalTy = I->getType(); 3808 Type *ScalarTruncatedTy = 3809 IntegerType::get(OriginalTy->getContext(), KV.second); 3810 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3811 OriginalTy->getVectorNumElements()); 3812 if (TruncatedTy == OriginalTy) 3813 continue; 3814 3815 IRBuilder<> B(cast<Instruction>(I)); 3816 auto ShrinkOperand = [&](Value *V) -> Value * { 3817 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3818 if (ZI->getSrcTy() == TruncatedTy) 3819 return ZI->getOperand(0); 3820 return B.CreateZExtOrTrunc(V, TruncatedTy); 3821 }; 3822 3823 // The actual instruction modification depends on the instruction type, 3824 // unfortunately. 3825 Value *NewI = nullptr; 3826 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3827 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3828 ShrinkOperand(BO->getOperand(1))); 3829 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3830 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3831 NewI = 3832 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3833 ShrinkOperand(CI->getOperand(1))); 3834 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3835 NewI = B.CreateSelect(SI->getCondition(), 3836 ShrinkOperand(SI->getTrueValue()), 3837 ShrinkOperand(SI->getFalseValue())); 3838 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3839 switch (CI->getOpcode()) { 3840 default: 3841 llvm_unreachable("Unhandled cast!"); 3842 case Instruction::Trunc: 3843 NewI = ShrinkOperand(CI->getOperand(0)); 3844 break; 3845 case Instruction::SExt: 3846 NewI = B.CreateSExtOrTrunc( 3847 CI->getOperand(0), 3848 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3849 break; 3850 case Instruction::ZExt: 3851 NewI = B.CreateZExtOrTrunc( 3852 CI->getOperand(0), 3853 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3854 break; 3855 } 3856 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3857 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3858 auto *O0 = B.CreateZExtOrTrunc( 3859 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3860 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3861 auto *O1 = B.CreateZExtOrTrunc( 3862 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3863 3864 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3865 } else if (isa<LoadInst>(I)) { 3866 // Don't do anything with the operands, just extend the result. 3867 continue; 3868 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3869 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3870 auto *O0 = B.CreateZExtOrTrunc( 3871 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3872 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3873 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3874 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3875 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3876 auto *O0 = B.CreateZExtOrTrunc( 3877 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3878 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3879 } else { 3880 llvm_unreachable("Unhandled instruction type!"); 3881 } 3882 3883 // Lastly, extend the result. 3884 NewI->takeName(cast<Instruction>(I)); 3885 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3886 I->replaceAllUsesWith(Res); 3887 cast<Instruction>(I)->eraseFromParent(); 3888 Erased.insert(I); 3889 I = Res; 3890 } 3891 } 3892 3893 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3894 for (const auto &KV : Cost->getMinimalBitwidths()) { 3895 // If the value wasn't vectorized, we must maintain the original scalar 3896 // type. The absence of the value from VectorLoopValueMap indicates that it 3897 // wasn't vectorized. 3898 if (!VectorLoopValueMap.hasVector(KV.first)) 3899 continue; 3900 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3901 for (Value *&I : Parts) { 3902 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3903 if (Inst && Inst->use_empty()) { 3904 Value *NewI = Inst->getOperand(0); 3905 Inst->eraseFromParent(); 3906 I = NewI; 3907 } 3908 } 3909 } 3910 } 3911 3912 void InnerLoopVectorizer::vectorizeLoop() { 3913 //===------------------------------------------------===// 3914 // 3915 // Notice: any optimization or new instruction that go 3916 // into the code below should be also be implemented in 3917 // the cost-model. 3918 // 3919 //===------------------------------------------------===// 3920 Constant *Zero = Builder.getInt32(0); 3921 3922 // In order to support recurrences we need to be able to vectorize Phi nodes. 3923 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3924 // we create a new vector PHI node with no incoming edges. We use this value 3925 // when we vectorize all of the instructions that use the PHI. Next, after 3926 // all of the instructions in the block are complete we add the new incoming 3927 // edges to the PHI. At this point all of the instructions in the basic block 3928 // are vectorized, so we can use them to construct the PHI. 3929 PhiVector PHIsToFix; 3930 3931 // Collect instructions from the original loop that will become trivially 3932 // dead in the vectorized loop. We don't need to vectorize these 3933 // instructions. 3934 collectTriviallyDeadInstructions(); 3935 3936 // Scan the loop in a topological order to ensure that defs are vectorized 3937 // before users. 3938 LoopBlocksDFS DFS(OrigLoop); 3939 DFS.perform(LI); 3940 3941 // Vectorize all of the blocks in the original loop. 3942 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3943 vectorizeBlockInLoop(BB, &PHIsToFix); 3944 3945 // Insert truncates and extends for any truncated instructions as hints to 3946 // InstCombine. 3947 if (VF > 1) 3948 truncateToMinimalBitwidths(); 3949 3950 // At this point every instruction in the original loop is widened to a 3951 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3952 // nodes are currently empty because we did not want to introduce cycles. 3953 // This is the second stage of vectorizing recurrences. 3954 for (PHINode *Phi : PHIsToFix) { 3955 assert(Phi && "Unable to recover vectorized PHI"); 3956 3957 // Handle first-order recurrences that need to be fixed. 3958 if (Legal->isFirstOrderRecurrence(Phi)) { 3959 fixFirstOrderRecurrence(Phi); 3960 continue; 3961 } 3962 3963 // If the phi node is not a first-order recurrence, it must be a reduction. 3964 // Get it's reduction variable descriptor. 3965 assert(Legal->isReductionVariable(Phi) && 3966 "Unable to find the reduction variable"); 3967 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3968 3969 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3970 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3971 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3972 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3973 RdxDesc.getMinMaxRecurrenceKind(); 3974 setDebugLocFromInst(Builder, ReductionStartValue); 3975 3976 // We need to generate a reduction vector from the incoming scalar. 3977 // To do so, we need to generate the 'identity' vector and override 3978 // one of the elements with the incoming scalar reduction. We need 3979 // to do it in the vector-loop preheader. 3980 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3981 3982 // This is the vector-clone of the value that leaves the loop. 3983 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 3984 Type *VecTy = VectorExit[0]->getType(); 3985 3986 // Find the reduction identity variable. Zero for addition, or, xor, 3987 // one for multiplication, -1 for And. 3988 Value *Identity; 3989 Value *VectorStart; 3990 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3991 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3992 // MinMax reduction have the start value as their identify. 3993 if (VF == 1) { 3994 VectorStart = Identity = ReductionStartValue; 3995 } else { 3996 VectorStart = Identity = 3997 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3998 } 3999 } else { 4000 // Handle other reduction kinds: 4001 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4002 RK, VecTy->getScalarType()); 4003 if (VF == 1) { 4004 Identity = Iden; 4005 // This vector is the Identity vector where the first element is the 4006 // incoming scalar reduction. 4007 VectorStart = ReductionStartValue; 4008 } else { 4009 Identity = ConstantVector::getSplat(VF, Iden); 4010 4011 // This vector is the Identity vector where the first element is the 4012 // incoming scalar reduction. 4013 VectorStart = 4014 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4015 } 4016 } 4017 4018 // Fix the vector-loop phi. 4019 4020 // Reductions do not have to start at zero. They can start with 4021 // any loop invariant values. 4022 const VectorParts &VecRdxPhi = getVectorValue(Phi); 4023 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4024 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4025 const VectorParts &Val = getVectorValue(LoopVal); 4026 for (unsigned part = 0; part < UF; ++part) { 4027 // Make sure to add the reduction stat value only to the 4028 // first unroll part. 4029 Value *StartVal = (part == 0) ? VectorStart : Identity; 4030 cast<PHINode>(VecRdxPhi[part]) 4031 ->addIncoming(StartVal, LoopVectorPreHeader); 4032 cast<PHINode>(VecRdxPhi[part]) 4033 ->addIncoming(Val[part], LoopVectorBody); 4034 } 4035 4036 // Before each round, move the insertion point right between 4037 // the PHIs and the values we are going to write. 4038 // This allows us to write both PHINodes and the extractelement 4039 // instructions. 4040 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4041 4042 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 4043 setDebugLocFromInst(Builder, LoopExitInst); 4044 4045 // If the vector reduction can be performed in a smaller type, we truncate 4046 // then extend the loop exit value to enable InstCombine to evaluate the 4047 // entire expression in the smaller type. 4048 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4049 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4050 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4051 for (unsigned part = 0; part < UF; ++part) { 4052 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4053 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4054 : Builder.CreateZExt(Trunc, VecTy); 4055 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4056 UI != RdxParts[part]->user_end();) 4057 if (*UI != Trunc) { 4058 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4059 RdxParts[part] = Extnd; 4060 } else { 4061 ++UI; 4062 } 4063 } 4064 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4065 for (unsigned part = 0; part < UF; ++part) 4066 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4067 } 4068 4069 // Reduce all of the unrolled parts into a single vector. 4070 Value *ReducedPartRdx = RdxParts[0]; 4071 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4072 setDebugLocFromInst(Builder, ReducedPartRdx); 4073 for (unsigned part = 1; part < UF; ++part) { 4074 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4075 // Floating point operations had to be 'fast' to enable the reduction. 4076 ReducedPartRdx = addFastMathFlag( 4077 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4078 ReducedPartRdx, "bin.rdx")); 4079 else 4080 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4081 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4082 } 4083 4084 if (VF > 1) { 4085 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 4086 // and vector ops, reducing the set of values being computed by half each 4087 // round. 4088 assert(isPowerOf2_32(VF) && 4089 "Reduction emission only supported for pow2 vectors!"); 4090 Value *TmpVec = ReducedPartRdx; 4091 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 4092 for (unsigned i = VF; i != 1; i >>= 1) { 4093 // Move the upper half of the vector to the lower half. 4094 for (unsigned j = 0; j != i / 2; ++j) 4095 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 4096 4097 // Fill the rest of the mask with undef. 4098 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 4099 UndefValue::get(Builder.getInt32Ty())); 4100 4101 Value *Shuf = Builder.CreateShuffleVector( 4102 TmpVec, UndefValue::get(TmpVec->getType()), 4103 ConstantVector::get(ShuffleMask), "rdx.shuf"); 4104 4105 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4106 // Floating point operations had to be 'fast' to enable the reduction. 4107 TmpVec = addFastMathFlag(Builder.CreateBinOp( 4108 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 4109 else 4110 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4111 TmpVec, Shuf); 4112 } 4113 4114 // The result is in the first element of the vector. 4115 ReducedPartRdx = 4116 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4117 4118 // If the reduction can be performed in a smaller type, we need to extend 4119 // the reduction to the wider type before we branch to the original loop. 4120 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4121 ReducedPartRdx = 4122 RdxDesc.isSigned() 4123 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4124 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4125 } 4126 4127 // Create a phi node that merges control-flow from the backedge-taken check 4128 // block and the middle block. 4129 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4130 LoopScalarPreHeader->getTerminator()); 4131 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4132 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4133 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4134 4135 // Now, we need to fix the users of the reduction variable 4136 // inside and outside of the scalar remainder loop. 4137 // We know that the loop is in LCSSA form. We need to update the 4138 // PHI nodes in the exit blocks. 4139 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4140 LEE = LoopExitBlock->end(); 4141 LEI != LEE; ++LEI) { 4142 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4143 if (!LCSSAPhi) 4144 break; 4145 4146 // All PHINodes need to have a single entry edge, or two if 4147 // we already fixed them. 4148 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4149 4150 // We found a reduction value exit-PHI. Update it with the 4151 // incoming bypass edge. 4152 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4153 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4154 } // end of the LCSSA phi scan. 4155 4156 // Fix the scalar loop reduction variable with the incoming reduction sum 4157 // from the vector body and from the backedge value. 4158 int IncomingEdgeBlockIdx = 4159 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4160 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4161 // Pick the other block. 4162 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4163 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4164 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4165 } // end of for each Phi in PHIsToFix. 4166 4167 // Update the dominator tree. 4168 // 4169 // FIXME: After creating the structure of the new loop, the dominator tree is 4170 // no longer up-to-date, and it remains that way until we update it 4171 // here. An out-of-date dominator tree is problematic for SCEV, 4172 // because SCEVExpander uses it to guide code generation. The 4173 // vectorizer use SCEVExpanders in several places. Instead, we should 4174 // keep the dominator tree up-to-date as we go. 4175 updateAnalysis(); 4176 4177 // Fix-up external users of the induction variables. 4178 for (auto &Entry : *Legal->getInductionVars()) 4179 fixupIVUsers(Entry.first, Entry.second, 4180 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4181 IVEndValues[Entry.first], LoopMiddleBlock); 4182 4183 fixLCSSAPHIs(); 4184 predicateInstructions(); 4185 4186 // Remove redundant induction instructions. 4187 cse(LoopVectorBody); 4188 } 4189 4190 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4191 4192 // This is the second phase of vectorizing first-order recurrences. An 4193 // overview of the transformation is described below. Suppose we have the 4194 // following loop. 4195 // 4196 // for (int i = 0; i < n; ++i) 4197 // b[i] = a[i] - a[i - 1]; 4198 // 4199 // There is a first-order recurrence on "a". For this loop, the shorthand 4200 // scalar IR looks like: 4201 // 4202 // scalar.ph: 4203 // s_init = a[-1] 4204 // br scalar.body 4205 // 4206 // scalar.body: 4207 // i = phi [0, scalar.ph], [i+1, scalar.body] 4208 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4209 // s2 = a[i] 4210 // b[i] = s2 - s1 4211 // br cond, scalar.body, ... 4212 // 4213 // In this example, s1 is a recurrence because it's value depends on the 4214 // previous iteration. In the first phase of vectorization, we created a 4215 // temporary value for s1. We now complete the vectorization and produce the 4216 // shorthand vector IR shown below (for VF = 4, UF = 1). 4217 // 4218 // vector.ph: 4219 // v_init = vector(..., ..., ..., a[-1]) 4220 // br vector.body 4221 // 4222 // vector.body 4223 // i = phi [0, vector.ph], [i+4, vector.body] 4224 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4225 // v2 = a[i, i+1, i+2, i+3]; 4226 // v3 = vector(v1(3), v2(0, 1, 2)) 4227 // b[i, i+1, i+2, i+3] = v2 - v3 4228 // br cond, vector.body, middle.block 4229 // 4230 // middle.block: 4231 // x = v2(3) 4232 // br scalar.ph 4233 // 4234 // scalar.ph: 4235 // s_init = phi [x, middle.block], [a[-1], otherwise] 4236 // br scalar.body 4237 // 4238 // After execution completes the vector loop, we extract the next value of 4239 // the recurrence (x) to use as the initial value in the scalar loop. 4240 4241 // Get the original loop preheader and single loop latch. 4242 auto *Preheader = OrigLoop->getLoopPreheader(); 4243 auto *Latch = OrigLoop->getLoopLatch(); 4244 4245 // Get the initial and previous values of the scalar recurrence. 4246 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4247 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4248 4249 // Create a vector from the initial value. 4250 auto *VectorInit = ScalarInit; 4251 if (VF > 1) { 4252 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4253 VectorInit = Builder.CreateInsertElement( 4254 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4255 Builder.getInt32(VF - 1), "vector.recur.init"); 4256 } 4257 4258 // We constructed a temporary phi node in the first phase of vectorization. 4259 // This phi node will eventually be deleted. 4260 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4261 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4262 4263 // Create a phi node for the new recurrence. The current value will either be 4264 // the initial value inserted into a vector or loop-varying vector value. 4265 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4266 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4267 4268 // Get the vectorized previous value. We ensured the previous values was an 4269 // instruction when detecting the recurrence. 4270 auto &PreviousParts = getVectorValue(Previous); 4271 4272 // Set the insertion point to be after this instruction. We ensured the 4273 // previous value dominated all uses of the phi when detecting the 4274 // recurrence. 4275 Builder.SetInsertPoint( 4276 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4277 4278 // We will construct a vector for the recurrence by combining the values for 4279 // the current and previous iterations. This is the required shuffle mask. 4280 SmallVector<Constant *, 8> ShuffleMask(VF); 4281 ShuffleMask[0] = Builder.getInt32(VF - 1); 4282 for (unsigned I = 1; I < VF; ++I) 4283 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4284 4285 // The vector from which to take the initial value for the current iteration 4286 // (actual or unrolled). Initially, this is the vector phi node. 4287 Value *Incoming = VecPhi; 4288 4289 // Shuffle the current and previous vector and update the vector parts. 4290 for (unsigned Part = 0; Part < UF; ++Part) { 4291 auto *Shuffle = 4292 VF > 1 4293 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4294 ConstantVector::get(ShuffleMask)) 4295 : Incoming; 4296 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4297 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4298 PhiParts[Part] = Shuffle; 4299 Incoming = PreviousParts[Part]; 4300 } 4301 4302 // Fix the latch value of the new recurrence in the vector loop. 4303 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4304 4305 // Extract the last vector element in the middle block. This will be the 4306 // initial value for the recurrence when jumping to the scalar loop. 4307 auto *Extract = Incoming; 4308 if (VF > 1) { 4309 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4310 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4311 "vector.recur.extract"); 4312 } 4313 4314 // Fix the initial value of the original recurrence in the scalar loop. 4315 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4316 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4317 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4318 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4319 Start->addIncoming(Incoming, BB); 4320 } 4321 4322 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4323 Phi->setName("scalar.recur"); 4324 4325 // Finally, fix users of the recurrence outside the loop. The users will need 4326 // either the last value of the scalar recurrence or the last value of the 4327 // vector recurrence we extracted in the middle block. Since the loop is in 4328 // LCSSA form, we just need to find the phi node for the original scalar 4329 // recurrence in the exit block, and then add an edge for the middle block. 4330 for (auto &I : *LoopExitBlock) { 4331 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4332 if (!LCSSAPhi) 4333 break; 4334 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4335 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4336 break; 4337 } 4338 } 4339 } 4340 4341 void InnerLoopVectorizer::fixLCSSAPHIs() { 4342 for (Instruction &LEI : *LoopExitBlock) { 4343 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4344 if (!LCSSAPhi) 4345 break; 4346 if (LCSSAPhi->getNumIncomingValues() == 1) 4347 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4348 LoopMiddleBlock); 4349 } 4350 } 4351 4352 void InnerLoopVectorizer::collectTriviallyDeadInstructions() { 4353 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4354 4355 // We create new control-flow for the vectorized loop, so the original 4356 // condition will be dead after vectorization if it's only used by the 4357 // branch. 4358 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4359 if (Cmp && Cmp->hasOneUse()) 4360 DeadInstructions.insert(Cmp); 4361 4362 // We create new "steps" for induction variable updates to which the original 4363 // induction variables map. An original update instruction will be dead if 4364 // all its users except the induction variable are dead. 4365 for (auto &Induction : *Legal->getInductionVars()) { 4366 PHINode *Ind = Induction.first; 4367 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4368 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4369 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4370 })) 4371 DeadInstructions.insert(IndUpdate); 4372 } 4373 } 4374 4375 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4376 4377 // The basic block and loop containing the predicated instruction. 4378 auto *PredBB = PredInst->getParent(); 4379 auto *VectorLoop = LI->getLoopFor(PredBB); 4380 4381 // Initialize a worklist with the operands of the predicated instruction. 4382 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4383 4384 // Holds instructions that we need to analyze again. An instruction may be 4385 // reanalyzed if we don't yet know if we can sink it or not. 4386 SmallVector<Instruction *, 8> InstsToReanalyze; 4387 4388 // Returns true if a given use occurs in the predicated block. Phi nodes use 4389 // their operands in their corresponding predecessor blocks. 4390 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4391 auto *I = cast<Instruction>(U.getUser()); 4392 BasicBlock *BB = I->getParent(); 4393 if (auto *Phi = dyn_cast<PHINode>(I)) 4394 BB = Phi->getIncomingBlock( 4395 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4396 return BB == PredBB; 4397 }; 4398 4399 // Iteratively sink the scalarized operands of the predicated instruction 4400 // into the block we created for it. When an instruction is sunk, it's 4401 // operands are then added to the worklist. The algorithm ends after one pass 4402 // through the worklist doesn't sink a single instruction. 4403 bool Changed; 4404 do { 4405 4406 // Add the instructions that need to be reanalyzed to the worklist, and 4407 // reset the changed indicator. 4408 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4409 InstsToReanalyze.clear(); 4410 Changed = false; 4411 4412 while (!Worklist.empty()) { 4413 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4414 4415 // We can't sink an instruction if it is a phi node, is already in the 4416 // predicated block, is not in the loop, or may have side effects. 4417 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4418 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4419 continue; 4420 4421 // It's legal to sink the instruction if all its uses occur in the 4422 // predicated block. Otherwise, there's nothing to do yet, and we may 4423 // need to reanalyze the instruction. 4424 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4425 InstsToReanalyze.push_back(I); 4426 continue; 4427 } 4428 4429 // Move the instruction to the beginning of the predicated block, and add 4430 // it's operands to the worklist. 4431 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4432 Worklist.insert(I->op_begin(), I->op_end()); 4433 4434 // The sinking may have enabled other instructions to be sunk, so we will 4435 // need to iterate. 4436 Changed = true; 4437 } 4438 } while (Changed); 4439 } 4440 4441 void InnerLoopVectorizer::predicateInstructions() { 4442 4443 // For each instruction I marked for predication on value C, split I into its 4444 // own basic block to form an if-then construct over C. Since I may be fed by 4445 // an extractelement instruction or other scalar operand, we try to 4446 // iteratively sink its scalar operands into the predicated block. If I feeds 4447 // an insertelement instruction, we try to move this instruction into the 4448 // predicated block as well. For non-void types, a phi node will be created 4449 // for the resulting value (either vector or scalar). 4450 // 4451 // So for some predicated instruction, e.g. the conditional sdiv in: 4452 // 4453 // for.body: 4454 // ... 4455 // %add = add nsw i32 %mul, %0 4456 // %cmp5 = icmp sgt i32 %2, 7 4457 // br i1 %cmp5, label %if.then, label %if.end 4458 // 4459 // if.then: 4460 // %div = sdiv i32 %0, %1 4461 // br label %if.end 4462 // 4463 // if.end: 4464 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4465 // 4466 // the sdiv at this point is scalarized and if-converted using a select. 4467 // The inactive elements in the vector are not used, but the predicated 4468 // instruction is still executed for all vector elements, essentially: 4469 // 4470 // vector.body: 4471 // ... 4472 // %17 = add nsw <2 x i32> %16, %wide.load 4473 // %29 = extractelement <2 x i32> %wide.load, i32 0 4474 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4475 // %31 = sdiv i32 %29, %30 4476 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4477 // %35 = extractelement <2 x i32> %wide.load, i32 1 4478 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4479 // %37 = sdiv i32 %35, %36 4480 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4481 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4482 // 4483 // Predication will now re-introduce the original control flow to avoid false 4484 // side-effects by the sdiv instructions on the inactive elements, yielding 4485 // (after cleanup): 4486 // 4487 // vector.body: 4488 // ... 4489 // %5 = add nsw <2 x i32> %4, %wide.load 4490 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4491 // %9 = extractelement <2 x i1> %8, i32 0 4492 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4493 // 4494 // pred.sdiv.if: 4495 // %10 = extractelement <2 x i32> %wide.load, i32 0 4496 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4497 // %12 = sdiv i32 %10, %11 4498 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4499 // br label %pred.sdiv.continue 4500 // 4501 // pred.sdiv.continue: 4502 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4503 // %15 = extractelement <2 x i1> %8, i32 1 4504 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4505 // 4506 // pred.sdiv.if54: 4507 // %16 = extractelement <2 x i32> %wide.load, i32 1 4508 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4509 // %18 = sdiv i32 %16, %17 4510 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4511 // br label %pred.sdiv.continue55 4512 // 4513 // pred.sdiv.continue55: 4514 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4515 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4516 4517 for (auto KV : PredicatedInstructions) { 4518 BasicBlock::iterator I(KV.first); 4519 BasicBlock *Head = I->getParent(); 4520 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4521 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4522 /*BranchWeights=*/nullptr, DT, LI); 4523 I->moveBefore(T); 4524 sinkScalarOperands(&*I); 4525 4526 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4527 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4528 4529 // If the instruction is non-void create a Phi node at reconvergence point. 4530 if (!I->getType()->isVoidTy()) { 4531 Value *IncomingTrue = nullptr; 4532 Value *IncomingFalse = nullptr; 4533 4534 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4535 // If the predicated instruction is feeding an insert-element, move it 4536 // into the Then block; Phi node will be created for the vector. 4537 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4538 IEI->moveBefore(T); 4539 IncomingTrue = IEI; // the new vector with the inserted element. 4540 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4541 } else { 4542 // Phi node will be created for the scalar predicated instruction. 4543 IncomingTrue = &*I; 4544 IncomingFalse = UndefValue::get(I->getType()); 4545 } 4546 4547 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4548 assert(PostDom && "Then block has multiple successors"); 4549 PHINode *Phi = 4550 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4551 IncomingTrue->replaceAllUsesWith(Phi); 4552 Phi->addIncoming(IncomingFalse, Head); 4553 Phi->addIncoming(IncomingTrue, I->getParent()); 4554 } 4555 } 4556 4557 DEBUG(DT->verifyDomTree()); 4558 } 4559 4560 InnerLoopVectorizer::VectorParts 4561 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4562 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4563 4564 // Look for cached value. 4565 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4566 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4567 if (ECEntryIt != MaskCache.end()) 4568 return ECEntryIt->second; 4569 4570 VectorParts SrcMask = createBlockInMask(Src); 4571 4572 // The terminator has to be a branch inst! 4573 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4574 assert(BI && "Unexpected terminator found"); 4575 4576 if (BI->isConditional()) { 4577 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4578 4579 if (BI->getSuccessor(0) != Dst) 4580 for (unsigned part = 0; part < UF; ++part) 4581 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4582 4583 for (unsigned part = 0; part < UF; ++part) 4584 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4585 4586 MaskCache[Edge] = EdgeMask; 4587 return EdgeMask; 4588 } 4589 4590 MaskCache[Edge] = SrcMask; 4591 return SrcMask; 4592 } 4593 4594 InnerLoopVectorizer::VectorParts 4595 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4596 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4597 4598 // Loop incoming mask is all-one. 4599 if (OrigLoop->getHeader() == BB) { 4600 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4601 return getVectorValue(C); 4602 } 4603 4604 // This is the block mask. We OR all incoming edges, and with zero. 4605 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4606 VectorParts BlockMask = getVectorValue(Zero); 4607 4608 // For each pred: 4609 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4610 VectorParts EM = createEdgeMask(*it, BB); 4611 for (unsigned part = 0; part < UF; ++part) 4612 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4613 } 4614 4615 return BlockMask; 4616 } 4617 4618 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4619 unsigned VF, PhiVector *PV) { 4620 PHINode *P = cast<PHINode>(PN); 4621 // Handle recurrences. 4622 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4623 VectorParts Entry(UF); 4624 for (unsigned part = 0; part < UF; ++part) { 4625 // This is phase one of vectorizing PHIs. 4626 Type *VecTy = 4627 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4628 Entry[part] = PHINode::Create( 4629 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4630 } 4631 VectorLoopValueMap.initVector(P, Entry); 4632 PV->push_back(P); 4633 return; 4634 } 4635 4636 setDebugLocFromInst(Builder, P); 4637 // Check for PHI nodes that are lowered to vector selects. 4638 if (P->getParent() != OrigLoop->getHeader()) { 4639 // We know that all PHIs in non-header blocks are converted into 4640 // selects, so we don't have to worry about the insertion order and we 4641 // can just use the builder. 4642 // At this point we generate the predication tree. There may be 4643 // duplications since this is a simple recursive scan, but future 4644 // optimizations will clean it up. 4645 4646 unsigned NumIncoming = P->getNumIncomingValues(); 4647 4648 // Generate a sequence of selects of the form: 4649 // SELECT(Mask3, In3, 4650 // SELECT(Mask2, In2, 4651 // ( ...))) 4652 VectorParts Entry(UF); 4653 for (unsigned In = 0; In < NumIncoming; In++) { 4654 VectorParts Cond = 4655 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4656 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4657 4658 for (unsigned part = 0; part < UF; ++part) { 4659 // We might have single edge PHIs (blocks) - use an identity 4660 // 'select' for the first PHI operand. 4661 if (In == 0) 4662 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4663 else 4664 // Select between the current value and the previous incoming edge 4665 // based on the incoming mask. 4666 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4667 "predphi"); 4668 } 4669 } 4670 VectorLoopValueMap.initVector(P, Entry); 4671 return; 4672 } 4673 4674 // This PHINode must be an induction variable. 4675 // Make sure that we know about it. 4676 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4677 4678 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4679 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4680 4681 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4682 // which can be found from the original scalar operations. 4683 switch (II.getKind()) { 4684 case InductionDescriptor::IK_NoInduction: 4685 llvm_unreachable("Unknown induction"); 4686 case InductionDescriptor::IK_IntInduction: 4687 return widenIntInduction(P); 4688 case InductionDescriptor::IK_PtrInduction: { 4689 // Handle the pointer induction variable case. 4690 assert(P->getType()->isPointerTy() && "Unexpected type."); 4691 // This is the normalized GEP that starts counting at zero. 4692 Value *PtrInd = Induction; 4693 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4694 // Determine the number of scalars we need to generate for each unroll 4695 // iteration. If the instruction is uniform, we only need to generate the 4696 // first lane. Otherwise, we generate all VF values. 4697 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4698 // These are the scalar results. Notice that we don't generate vector GEPs 4699 // because scalar GEPs result in better code. 4700 ScalarParts Entry(UF); 4701 for (unsigned Part = 0; Part < UF; ++Part) { 4702 Entry[Part].resize(VF); 4703 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4704 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4705 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4706 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4707 SclrGep->setName("next.gep"); 4708 Entry[Part][Lane] = SclrGep; 4709 } 4710 } 4711 VectorLoopValueMap.initScalar(P, Entry); 4712 return; 4713 } 4714 case InductionDescriptor::IK_FpInduction: { 4715 assert(P->getType() == II.getStartValue()->getType() && 4716 "Types must match"); 4717 // Handle other induction variables that are now based on the 4718 // canonical one. 4719 assert(P != OldInduction && "Primary induction can be integer only"); 4720 4721 Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType()); 4722 V = II.transform(Builder, V, PSE.getSE(), DL); 4723 V->setName("fp.offset.idx"); 4724 4725 // Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal 4726 4727 Value *Broadcasted = getBroadcastInstrs(V); 4728 // After broadcasting the induction variable we need to make the vector 4729 // consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc. 4730 Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue(); 4731 VectorParts Entry(UF); 4732 for (unsigned part = 0; part < UF; ++part) 4733 Entry[part] = getStepVector(Broadcasted, VF * part, StepVal, 4734 II.getInductionOpcode()); 4735 VectorLoopValueMap.initVector(P, Entry); 4736 return; 4737 } 4738 } 4739 } 4740 4741 /// A helper function for checking whether an integer division-related 4742 /// instruction may divide by zero (in which case it must be predicated if 4743 /// executed conditionally in the scalar code). 4744 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4745 /// Non-zero divisors that are non compile-time constants will not be 4746 /// converted into multiplication, so we will still end up scalarizing 4747 /// the division, but can do so w/o predication. 4748 static bool mayDivideByZero(Instruction &I) { 4749 assert((I.getOpcode() == Instruction::UDiv || 4750 I.getOpcode() == Instruction::SDiv || 4751 I.getOpcode() == Instruction::URem || 4752 I.getOpcode() == Instruction::SRem) && 4753 "Unexpected instruction"); 4754 Value *Divisor = I.getOperand(1); 4755 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4756 return !CInt || CInt->isZero(); 4757 } 4758 4759 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4760 // For each instruction in the old loop. 4761 for (Instruction &I : *BB) { 4762 4763 // If the instruction will become trivially dead when vectorized, we don't 4764 // need to generate it. 4765 if (DeadInstructions.count(&I)) 4766 continue; 4767 4768 // Scalarize instructions that should remain scalar after vectorization. 4769 if (VF > 1 && 4770 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || 4771 isa<DbgInfoIntrinsic>(&I)) && 4772 shouldScalarizeInstruction(&I)) { 4773 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4774 continue; 4775 } 4776 4777 switch (I.getOpcode()) { 4778 case Instruction::Br: 4779 // Nothing to do for PHIs and BR, since we already took care of the 4780 // loop control flow instructions. 4781 continue; 4782 case Instruction::PHI: { 4783 // Vectorize PHINodes. 4784 widenPHIInstruction(&I, UF, VF, PV); 4785 continue; 4786 } // End of PHI. 4787 4788 case Instruction::UDiv: 4789 case Instruction::SDiv: 4790 case Instruction::SRem: 4791 case Instruction::URem: 4792 // Scalarize with predication if this instruction may divide by zero and 4793 // block execution is conditional, otherwise fallthrough. 4794 if (Legal->isScalarWithPredication(&I)) { 4795 scalarizeInstruction(&I, true); 4796 continue; 4797 } 4798 case Instruction::Add: 4799 case Instruction::FAdd: 4800 case Instruction::Sub: 4801 case Instruction::FSub: 4802 case Instruction::Mul: 4803 case Instruction::FMul: 4804 case Instruction::FDiv: 4805 case Instruction::FRem: 4806 case Instruction::Shl: 4807 case Instruction::LShr: 4808 case Instruction::AShr: 4809 case Instruction::And: 4810 case Instruction::Or: 4811 case Instruction::Xor: { 4812 // Just widen binops. 4813 auto *BinOp = cast<BinaryOperator>(&I); 4814 setDebugLocFromInst(Builder, BinOp); 4815 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4816 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4817 4818 // Use this vector value for all users of the original instruction. 4819 VectorParts Entry(UF); 4820 for (unsigned Part = 0; Part < UF; ++Part) { 4821 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4822 4823 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4824 VecOp->copyIRFlags(BinOp); 4825 4826 Entry[Part] = V; 4827 } 4828 4829 VectorLoopValueMap.initVector(&I, Entry); 4830 addMetadata(Entry, BinOp); 4831 break; 4832 } 4833 case Instruction::Select: { 4834 // Widen selects. 4835 // If the selector is loop invariant we can create a select 4836 // instruction with a scalar condition. Otherwise, use vector-select. 4837 auto *SE = PSE.getSE(); 4838 bool InvariantCond = 4839 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4840 setDebugLocFromInst(Builder, &I); 4841 4842 // The condition can be loop invariant but still defined inside the 4843 // loop. This means that we can't just use the original 'cond' value. 4844 // We have to take the 'vectorized' value and pick the first lane. 4845 // Instcombine will make this a no-op. 4846 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4847 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4848 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4849 4850 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4851 4852 VectorParts Entry(UF); 4853 for (unsigned Part = 0; Part < UF; ++Part) { 4854 Entry[Part] = Builder.CreateSelect( 4855 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4856 } 4857 4858 VectorLoopValueMap.initVector(&I, Entry); 4859 addMetadata(Entry, &I); 4860 break; 4861 } 4862 4863 case Instruction::ICmp: 4864 case Instruction::FCmp: { 4865 // Widen compares. Generate vector compares. 4866 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4867 auto *Cmp = dyn_cast<CmpInst>(&I); 4868 setDebugLocFromInst(Builder, Cmp); 4869 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4870 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4871 VectorParts Entry(UF); 4872 for (unsigned Part = 0; Part < UF; ++Part) { 4873 Value *C = nullptr; 4874 if (FCmp) { 4875 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4876 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4877 } else { 4878 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4879 } 4880 Entry[Part] = C; 4881 } 4882 4883 VectorLoopValueMap.initVector(&I, Entry); 4884 addMetadata(Entry, &I); 4885 break; 4886 } 4887 4888 case Instruction::Store: 4889 case Instruction::Load: 4890 vectorizeMemoryInstruction(&I); 4891 break; 4892 case Instruction::ZExt: 4893 case Instruction::SExt: 4894 case Instruction::FPToUI: 4895 case Instruction::FPToSI: 4896 case Instruction::FPExt: 4897 case Instruction::PtrToInt: 4898 case Instruction::IntToPtr: 4899 case Instruction::SIToFP: 4900 case Instruction::UIToFP: 4901 case Instruction::Trunc: 4902 case Instruction::FPTrunc: 4903 case Instruction::BitCast: { 4904 auto *CI = dyn_cast<CastInst>(&I); 4905 setDebugLocFromInst(Builder, CI); 4906 4907 // Optimize the special case where the source is a constant integer 4908 // induction variable. Notice that we can only optimize the 'trunc' case 4909 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4910 // (c) other casts depend on pointer size. 4911 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4912 widenIntInduction(cast<PHINode>(CI->getOperand(0)), 4913 cast<TruncInst>(CI)); 4914 break; 4915 } 4916 4917 /// Vectorize casts. 4918 Type *DestTy = 4919 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4920 4921 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4922 VectorParts Entry(UF); 4923 for (unsigned Part = 0; Part < UF; ++Part) 4924 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4925 VectorLoopValueMap.initVector(&I, Entry); 4926 addMetadata(Entry, &I); 4927 break; 4928 } 4929 4930 case Instruction::Call: { 4931 // Ignore dbg intrinsics. 4932 if (isa<DbgInfoIntrinsic>(I)) 4933 break; 4934 setDebugLocFromInst(Builder, &I); 4935 4936 Module *M = BB->getParent()->getParent(); 4937 auto *CI = cast<CallInst>(&I); 4938 4939 StringRef FnName = CI->getCalledFunction()->getName(); 4940 Function *F = CI->getCalledFunction(); 4941 Type *RetTy = ToVectorTy(CI->getType(), VF); 4942 SmallVector<Type *, 4> Tys; 4943 for (Value *ArgOperand : CI->arg_operands()) 4944 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4945 4946 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4947 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4948 ID == Intrinsic::lifetime_start)) { 4949 scalarizeInstruction(&I); 4950 break; 4951 } 4952 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4953 // version of the instruction. 4954 // Is it beneficial to perform intrinsic call compared to lib call? 4955 bool NeedToScalarize; 4956 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4957 bool UseVectorIntrinsic = 4958 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4959 if (!UseVectorIntrinsic && NeedToScalarize) { 4960 scalarizeInstruction(&I); 4961 break; 4962 } 4963 4964 VectorParts Entry(UF); 4965 for (unsigned Part = 0; Part < UF; ++Part) { 4966 SmallVector<Value *, 4> Args; 4967 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4968 Value *Arg = CI->getArgOperand(i); 4969 // Some intrinsics have a scalar argument - don't replace it with a 4970 // vector. 4971 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4972 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4973 Arg = VectorArg[Part]; 4974 } 4975 Args.push_back(Arg); 4976 } 4977 4978 Function *VectorF; 4979 if (UseVectorIntrinsic) { 4980 // Use vector version of the intrinsic. 4981 Type *TysForDecl[] = {CI->getType()}; 4982 if (VF > 1) 4983 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4984 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4985 } else { 4986 // Use vector version of the library call. 4987 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4988 assert(!VFnName.empty() && "Vector function name is empty."); 4989 VectorF = M->getFunction(VFnName); 4990 if (!VectorF) { 4991 // Generate a declaration 4992 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4993 VectorF = 4994 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4995 VectorF->copyAttributesFrom(F); 4996 } 4997 } 4998 assert(VectorF && "Can't create vector function."); 4999 5000 SmallVector<OperandBundleDef, 1> OpBundles; 5001 CI->getOperandBundlesAsDefs(OpBundles); 5002 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5003 5004 if (isa<FPMathOperator>(V)) 5005 V->copyFastMathFlags(CI); 5006 5007 Entry[Part] = V; 5008 } 5009 5010 VectorLoopValueMap.initVector(&I, Entry); 5011 addMetadata(Entry, &I); 5012 break; 5013 } 5014 5015 default: 5016 // All other instructions are unsupported. Scalarize them. 5017 scalarizeInstruction(&I); 5018 break; 5019 } // end of switch. 5020 } // end of for_each instr. 5021 } 5022 5023 void InnerLoopVectorizer::updateAnalysis() { 5024 // Forget the original basic block. 5025 PSE.getSE()->forgetLoop(OrigLoop); 5026 5027 // Update the dominator tree information. 5028 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5029 "Entry does not dominate exit."); 5030 5031 // We don't predicate stores by this point, so the vector body should be a 5032 // single loop. 5033 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 5034 5035 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 5036 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5037 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5038 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5039 5040 DEBUG(DT->verifyDomTree()); 5041 } 5042 5043 /// \brief Check whether it is safe to if-convert this phi node. 5044 /// 5045 /// Phi nodes with constant expressions that can trap are not safe to if 5046 /// convert. 5047 static bool canIfConvertPHINodes(BasicBlock *BB) { 5048 for (Instruction &I : *BB) { 5049 auto *Phi = dyn_cast<PHINode>(&I); 5050 if (!Phi) 5051 return true; 5052 for (Value *V : Phi->incoming_values()) 5053 if (auto *C = dyn_cast<Constant>(V)) 5054 if (C->canTrap()) 5055 return false; 5056 } 5057 return true; 5058 } 5059 5060 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5061 if (!EnableIfConversion) { 5062 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5063 << "if-conversion is disabled"); 5064 return false; 5065 } 5066 5067 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5068 5069 // A list of pointers that we can safely read and write to. 5070 SmallPtrSet<Value *, 8> SafePointes; 5071 5072 // Collect safe addresses. 5073 for (BasicBlock *BB : TheLoop->blocks()) { 5074 if (blockNeedsPredication(BB)) 5075 continue; 5076 5077 for (Instruction &I : *BB) 5078 if (auto *Ptr = getPointerOperand(&I)) 5079 SafePointes.insert(Ptr); 5080 } 5081 5082 // Collect the blocks that need predication. 5083 BasicBlock *Header = TheLoop->getHeader(); 5084 for (BasicBlock *BB : TheLoop->blocks()) { 5085 // We don't support switch statements inside loops. 5086 if (!isa<BranchInst>(BB->getTerminator())) { 5087 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5088 << "loop contains a switch statement"); 5089 return false; 5090 } 5091 5092 // We must be able to predicate all blocks that need to be predicated. 5093 if (blockNeedsPredication(BB)) { 5094 if (!blockCanBePredicated(BB, SafePointes)) { 5095 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5096 << "control flow cannot be substituted for a select"); 5097 return false; 5098 } 5099 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5100 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5101 << "control flow cannot be substituted for a select"); 5102 return false; 5103 } 5104 } 5105 5106 // We can if-convert this loop. 5107 return true; 5108 } 5109 5110 bool LoopVectorizationLegality::canVectorize() { 5111 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5112 // be canonicalized. 5113 if (!TheLoop->getLoopPreheader()) { 5114 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5115 << "loop control flow is not understood by vectorizer"); 5116 return false; 5117 } 5118 5119 // FIXME: The code is currently dead, since the loop gets sent to 5120 // LoopVectorizationLegality is already an innermost loop. 5121 // 5122 // We can only vectorize innermost loops. 5123 if (!TheLoop->empty()) { 5124 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5125 << "loop is not the innermost loop"); 5126 return false; 5127 } 5128 5129 // We must have a single backedge. 5130 if (TheLoop->getNumBackEdges() != 1) { 5131 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5132 << "loop control flow is not understood by vectorizer"); 5133 return false; 5134 } 5135 5136 // We must have a single exiting block. 5137 if (!TheLoop->getExitingBlock()) { 5138 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5139 << "loop control flow is not understood by vectorizer"); 5140 return false; 5141 } 5142 5143 // We only handle bottom-tested loops, i.e. loop in which the condition is 5144 // checked at the end of each iteration. With that we can assume that all 5145 // instructions in the loop are executed the same number of times. 5146 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5147 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5148 << "loop control flow is not understood by vectorizer"); 5149 return false; 5150 } 5151 5152 // We need to have a loop header. 5153 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5154 << '\n'); 5155 5156 // Check if we can if-convert non-single-bb loops. 5157 unsigned NumBlocks = TheLoop->getNumBlocks(); 5158 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5159 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5160 return false; 5161 } 5162 5163 // ScalarEvolution needs to be able to find the exit count. 5164 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5165 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5166 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5167 << "could not determine number of loop iterations"); 5168 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5169 return false; 5170 } 5171 5172 // Check if we can vectorize the instructions and CFG in this loop. 5173 if (!canVectorizeInstrs()) { 5174 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5175 return false; 5176 } 5177 5178 // Go over each instruction and look at memory deps. 5179 if (!canVectorizeMemory()) { 5180 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5181 return false; 5182 } 5183 5184 DEBUG(dbgs() << "LV: We can vectorize this loop" 5185 << (LAI->getRuntimePointerChecking()->Need 5186 ? " (with a runtime bound check)" 5187 : "") 5188 << "!\n"); 5189 5190 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5191 5192 // If an override option has been passed in for interleaved accesses, use it. 5193 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5194 UseInterleaved = EnableInterleavedMemAccesses; 5195 5196 // Analyze interleaved memory accesses. 5197 if (UseInterleaved) 5198 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5199 5200 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5201 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5202 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5203 5204 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5205 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5206 << "Too many SCEV assumptions need to be made and checked " 5207 << "at runtime"); 5208 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5209 return false; 5210 } 5211 5212 // Okay! We can vectorize. At this point we don't have any other mem analysis 5213 // which may limit our maximum vectorization factor, so just return true with 5214 // no restrictions. 5215 return true; 5216 } 5217 5218 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5219 if (Ty->isPointerTy()) 5220 return DL.getIntPtrType(Ty); 5221 5222 // It is possible that char's or short's overflow when we ask for the loop's 5223 // trip count, work around this by changing the type size. 5224 if (Ty->getScalarSizeInBits() < 32) 5225 return Type::getInt32Ty(Ty->getContext()); 5226 5227 return Ty; 5228 } 5229 5230 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5231 Ty0 = convertPointerToIntegerType(DL, Ty0); 5232 Ty1 = convertPointerToIntegerType(DL, Ty1); 5233 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5234 return Ty0; 5235 return Ty1; 5236 } 5237 5238 /// \brief Check that the instruction has outside loop users and is not an 5239 /// identified reduction variable. 5240 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5241 SmallPtrSetImpl<Value *> &AllowedExit) { 5242 // Reduction and Induction instructions are allowed to have exit users. All 5243 // other instructions must not have external users. 5244 if (!AllowedExit.count(Inst)) 5245 // Check that all of the users of the loop are inside the BB. 5246 for (User *U : Inst->users()) { 5247 Instruction *UI = cast<Instruction>(U); 5248 // This user may be a reduction exit value. 5249 if (!TheLoop->contains(UI)) { 5250 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5251 return true; 5252 } 5253 } 5254 return false; 5255 } 5256 5257 void LoopVectorizationLegality::addInductionPhi( 5258 PHINode *Phi, const InductionDescriptor &ID, 5259 SmallPtrSetImpl<Value *> &AllowedExit) { 5260 Inductions[Phi] = ID; 5261 Type *PhiTy = Phi->getType(); 5262 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5263 5264 // Get the widest type. 5265 if (!PhiTy->isFloatingPointTy()) { 5266 if (!WidestIndTy) 5267 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5268 else 5269 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5270 } 5271 5272 // Int inductions are special because we only allow one IV. 5273 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5274 ID.getConstIntStepValue() && 5275 ID.getConstIntStepValue()->isOne() && 5276 isa<Constant>(ID.getStartValue()) && 5277 cast<Constant>(ID.getStartValue())->isNullValue()) { 5278 5279 // Use the phi node with the widest type as induction. Use the last 5280 // one if there are multiple (no good reason for doing this other 5281 // than it is expedient). We've checked that it begins at zero and 5282 // steps by one, so this is a canonical induction variable. 5283 if (!PrimaryInduction || PhiTy == WidestIndTy) 5284 PrimaryInduction = Phi; 5285 } 5286 5287 // Both the PHI node itself, and the "post-increment" value feeding 5288 // back into the PHI node may have external users. 5289 AllowedExit.insert(Phi); 5290 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5291 5292 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5293 return; 5294 } 5295 5296 bool LoopVectorizationLegality::canVectorizeInstrs() { 5297 BasicBlock *Header = TheLoop->getHeader(); 5298 5299 // Look for the attribute signaling the absence of NaNs. 5300 Function &F = *Header->getParent(); 5301 HasFunNoNaNAttr = 5302 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5303 5304 // For each block in the loop. 5305 for (BasicBlock *BB : TheLoop->blocks()) { 5306 // Scan the instructions in the block and look for hazards. 5307 for (Instruction &I : *BB) { 5308 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5309 Type *PhiTy = Phi->getType(); 5310 // Check that this PHI type is allowed. 5311 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5312 !PhiTy->isPointerTy()) { 5313 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5314 << "loop control flow is not understood by vectorizer"); 5315 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5316 return false; 5317 } 5318 5319 // If this PHINode is not in the header block, then we know that we 5320 // can convert it to select during if-conversion. No need to check if 5321 // the PHIs in this block are induction or reduction variables. 5322 if (BB != Header) { 5323 // Check that this instruction has no outside users or is an 5324 // identified reduction value with an outside user. 5325 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5326 continue; 5327 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5328 << "value could not be identified as " 5329 "an induction or reduction variable"); 5330 return false; 5331 } 5332 5333 // We only allow if-converted PHIs with exactly two incoming values. 5334 if (Phi->getNumIncomingValues() != 2) { 5335 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5336 << "control flow not understood by vectorizer"); 5337 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5338 return false; 5339 } 5340 5341 RecurrenceDescriptor RedDes; 5342 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5343 if (RedDes.hasUnsafeAlgebra()) 5344 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5345 AllowedExit.insert(RedDes.getLoopExitInstr()); 5346 Reductions[Phi] = RedDes; 5347 continue; 5348 } 5349 5350 InductionDescriptor ID; 5351 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5352 addInductionPhi(Phi, ID, AllowedExit); 5353 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5354 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5355 continue; 5356 } 5357 5358 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5359 FirstOrderRecurrences.insert(Phi); 5360 continue; 5361 } 5362 5363 // As a last resort, coerce the PHI to a AddRec expression 5364 // and re-try classifying it a an induction PHI. 5365 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5366 addInductionPhi(Phi, ID, AllowedExit); 5367 continue; 5368 } 5369 5370 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5371 << "value that could not be identified as " 5372 "reduction is used outside the loop"); 5373 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5374 return false; 5375 } // end of PHI handling 5376 5377 // We handle calls that: 5378 // * Are debug info intrinsics. 5379 // * Have a mapping to an IR intrinsic. 5380 // * Have a vector version available. 5381 auto *CI = dyn_cast<CallInst>(&I); 5382 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5383 !isa<DbgInfoIntrinsic>(CI) && 5384 !(CI->getCalledFunction() && TLI && 5385 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5386 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5387 << "call instruction cannot be vectorized"); 5388 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5389 return false; 5390 } 5391 5392 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5393 // second argument is the same (i.e. loop invariant) 5394 if (CI && hasVectorInstrinsicScalarOpd( 5395 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5396 auto *SE = PSE.getSE(); 5397 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5398 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5399 << "intrinsic instruction cannot be vectorized"); 5400 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5401 return false; 5402 } 5403 } 5404 5405 // Check that the instruction return type is vectorizable. 5406 // Also, we can't vectorize extractelement instructions. 5407 if ((!VectorType::isValidElementType(I.getType()) && 5408 !I.getType()->isVoidTy()) || 5409 isa<ExtractElementInst>(I)) { 5410 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5411 << "instruction return type cannot be vectorized"); 5412 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5413 return false; 5414 } 5415 5416 // Check that the stored type is vectorizable. 5417 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5418 Type *T = ST->getValueOperand()->getType(); 5419 if (!VectorType::isValidElementType(T)) { 5420 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5421 << "store instruction cannot be vectorized"); 5422 return false; 5423 } 5424 5425 // FP instructions can allow unsafe algebra, thus vectorizable by 5426 // non-IEEE-754 compliant SIMD units. 5427 // This applies to floating-point math operations and calls, not memory 5428 // operations, shuffles, or casts, as they don't change precision or 5429 // semantics. 5430 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5431 !I.hasUnsafeAlgebra()) { 5432 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5433 Hints->setPotentiallyUnsafe(); 5434 } 5435 5436 // Reduction instructions are allowed to have exit users. 5437 // All other instructions must not have external users. 5438 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5439 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5440 << "value cannot be used outside the loop"); 5441 return false; 5442 } 5443 5444 } // next instr. 5445 } 5446 5447 if (!PrimaryInduction) { 5448 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5449 if (Inductions.empty()) { 5450 ORE->emit(createMissedAnalysis("NoInductionVariable") 5451 << "loop induction variable could not be identified"); 5452 return false; 5453 } 5454 } 5455 5456 // Now we know the widest induction type, check if our found induction 5457 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5458 // will create another. 5459 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5460 PrimaryInduction = nullptr; 5461 5462 return true; 5463 } 5464 5465 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5466 5467 // We should not collect Scalars more than once per VF. Right now, 5468 // this function is called from collectUniformsAndScalars(), which 5469 // already does this check. Collecting Scalars for VF=1 does not make any 5470 // sense. 5471 5472 assert(VF >= 2 && !Scalars.count(VF) && 5473 "This function should not be visited twice for the same VF"); 5474 5475 // If an instruction is uniform after vectorization, it will remain scalar. 5476 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5477 5478 // Collect the getelementptr instructions that will not be vectorized. A 5479 // getelementptr instruction is only vectorized if it is used for a legal 5480 // gather or scatter operation. 5481 for (auto *BB : TheLoop->blocks()) 5482 for (auto &I : *BB) { 5483 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5484 Scalars[VF].insert(GEP); 5485 continue; 5486 } 5487 auto *Ptr = getPointerOperand(&I); 5488 if (!Ptr) 5489 continue; 5490 auto *GEP = getGEPInstruction(Ptr); 5491 if (GEP && getWideningDecision(&I, VF) == CM_GatherScatter) 5492 Scalars[VF].erase(GEP); 5493 } 5494 5495 // An induction variable will remain scalar if all users of the induction 5496 // variable and induction variable update remain scalar. 5497 auto *Latch = TheLoop->getLoopLatch(); 5498 for (auto &Induction : *Legal->getInductionVars()) { 5499 auto *Ind = Induction.first; 5500 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5501 5502 // Determine if all users of the induction variable are scalar after 5503 // vectorization. 5504 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5505 auto *I = cast<Instruction>(U); 5506 return I == IndUpdate || !TheLoop->contains(I) || Scalars[VF].count(I); 5507 }); 5508 if (!ScalarInd) 5509 continue; 5510 5511 // Determine if all users of the induction variable update instruction are 5512 // scalar after vectorization. 5513 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5514 auto *I = cast<Instruction>(U); 5515 return I == Ind || !TheLoop->contains(I) || Scalars[VF].count(I); 5516 }); 5517 if (!ScalarIndUpdate) 5518 continue; 5519 5520 // The induction variable and its update instruction will remain scalar. 5521 Scalars[VF].insert(Ind); 5522 Scalars[VF].insert(IndUpdate); 5523 } 5524 } 5525 5526 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5527 if (!blockNeedsPredication(I->getParent())) 5528 return false; 5529 switch(I->getOpcode()) { 5530 default: 5531 break; 5532 case Instruction::Store: 5533 return !isMaskRequired(I); 5534 case Instruction::UDiv: 5535 case Instruction::SDiv: 5536 case Instruction::SRem: 5537 case Instruction::URem: 5538 return mayDivideByZero(*I); 5539 } 5540 return false; 5541 } 5542 5543 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5544 unsigned VF) { 5545 // Get and ensure we have a valid memory instruction. 5546 LoadInst *LI = dyn_cast<LoadInst>(I); 5547 StoreInst *SI = dyn_cast<StoreInst>(I); 5548 assert((LI || SI) && "Invalid memory instruction"); 5549 5550 auto *Ptr = getPointerOperand(I); 5551 5552 // In order to be widened, the pointer should be consecutive, first of all. 5553 if (!isConsecutivePtr(Ptr)) 5554 return false; 5555 5556 // If the instruction is a store located in a predicated block, it will be 5557 // scalarized. 5558 if (isScalarWithPredication(I)) 5559 return false; 5560 5561 // If the instruction's allocated size doesn't equal it's type size, it 5562 // requires padding and will be scalarized. 5563 auto &DL = I->getModule()->getDataLayout(); 5564 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5565 if (hasIrregularType(ScalarTy, DL, VF)) 5566 return false; 5567 5568 return true; 5569 } 5570 5571 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5572 5573 // We should not collect Uniforms more than once per VF. Right now, 5574 // this function is called from collectUniformsAndScalars(), which 5575 // already does this check. Collecting Uniforms for VF=1 does not make any 5576 // sense. 5577 5578 assert(VF >= 2 && !Uniforms.count(VF) && 5579 "This function should not be visited twice for the same VF"); 5580 5581 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5582 // not analyze again. Uniforms.count(VF) will return 1. 5583 Uniforms[VF].clear(); 5584 5585 // We now know that the loop is vectorizable! 5586 // Collect instructions inside the loop that will remain uniform after 5587 // vectorization. 5588 5589 // Global values, params and instructions outside of current loop are out of 5590 // scope. 5591 auto isOutOfScope = [&](Value *V) -> bool { 5592 Instruction *I = dyn_cast<Instruction>(V); 5593 return (!I || !TheLoop->contains(I)); 5594 }; 5595 5596 SetVector<Instruction *> Worklist; 5597 BasicBlock *Latch = TheLoop->getLoopLatch(); 5598 5599 // Start with the conditional branch. If the branch condition is an 5600 // instruction contained in the loop that is only used by the branch, it is 5601 // uniform. 5602 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5603 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5604 Worklist.insert(Cmp); 5605 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5606 } 5607 5608 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5609 // are pointers that are treated like consecutive pointers during 5610 // vectorization. The pointer operands of interleaved accesses are an 5611 // example. 5612 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5613 5614 // Holds pointer operands of instructions that are possibly non-uniform. 5615 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5616 5617 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5618 InstWidening WideningDecision = getWideningDecision(I, VF); 5619 assert(WideningDecision != CM_Unknown && 5620 "Widening decision should be ready at this moment"); 5621 5622 return (WideningDecision == CM_Widen || 5623 WideningDecision == CM_Interleave); 5624 }; 5625 // Iterate over the instructions in the loop, and collect all 5626 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5627 // that a consecutive-like pointer operand will be scalarized, we collect it 5628 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5629 // getelementptr instruction can be used by both vectorized and scalarized 5630 // memory instructions. For example, if a loop loads and stores from the same 5631 // location, but the store is conditional, the store will be scalarized, and 5632 // the getelementptr won't remain uniform. 5633 for (auto *BB : TheLoop->blocks()) 5634 for (auto &I : *BB) { 5635 5636 // If there's no pointer operand, there's nothing to do. 5637 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5638 if (!Ptr) 5639 continue; 5640 5641 // True if all users of Ptr are memory accesses that have Ptr as their 5642 // pointer operand. 5643 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5644 return getPointerOperand(U) == Ptr; 5645 }); 5646 5647 // Ensure the memory instruction will not be scalarized or used by 5648 // gather/scatter, making its pointer operand non-uniform. If the pointer 5649 // operand is used by any instruction other than a memory access, we 5650 // conservatively assume the pointer operand may be non-uniform. 5651 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5652 PossibleNonUniformPtrs.insert(Ptr); 5653 5654 // If the memory instruction will be vectorized and its pointer operand 5655 // is consecutive-like, or interleaving - the pointer operand should 5656 // remain uniform. 5657 else 5658 ConsecutiveLikePtrs.insert(Ptr); 5659 } 5660 5661 // Add to the Worklist all consecutive and consecutive-like pointers that 5662 // aren't also identified as possibly non-uniform. 5663 for (auto *V : ConsecutiveLikePtrs) 5664 if (!PossibleNonUniformPtrs.count(V)) { 5665 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5666 Worklist.insert(V); 5667 } 5668 5669 // Expand Worklist in topological order: whenever a new instruction 5670 // is added , its users should be either already inside Worklist, or 5671 // out of scope. It ensures a uniform instruction will only be used 5672 // by uniform instructions or out of scope instructions. 5673 unsigned idx = 0; 5674 while (idx != Worklist.size()) { 5675 Instruction *I = Worklist[idx++]; 5676 5677 for (auto OV : I->operand_values()) { 5678 if (isOutOfScope(OV)) 5679 continue; 5680 auto *OI = cast<Instruction>(OV); 5681 if (all_of(OI->users(), [&](User *U) -> bool { 5682 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 5683 })) { 5684 Worklist.insert(OI); 5685 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5686 } 5687 } 5688 } 5689 5690 // Returns true if Ptr is the pointer operand of a memory access instruction 5691 // I, and I is known to not require scalarization. 5692 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5693 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5694 }; 5695 5696 // For an instruction to be added into Worklist above, all its users inside 5697 // the loop should also be in Worklist. However, this condition cannot be 5698 // true for phi nodes that form a cyclic dependence. We must process phi 5699 // nodes separately. An induction variable will remain uniform if all users 5700 // of the induction variable and induction variable update remain uniform. 5701 // The code below handles both pointer and non-pointer induction variables. 5702 for (auto &Induction : *Legal->getInductionVars()) { 5703 auto *Ind = Induction.first; 5704 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5705 5706 // Determine if all users of the induction variable are uniform after 5707 // vectorization. 5708 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5709 auto *I = cast<Instruction>(U); 5710 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5711 isVectorizedMemAccessUse(I, Ind); 5712 }); 5713 if (!UniformInd) 5714 continue; 5715 5716 // Determine if all users of the induction variable update instruction are 5717 // uniform after vectorization. 5718 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5719 auto *I = cast<Instruction>(U); 5720 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5721 isVectorizedMemAccessUse(I, IndUpdate); 5722 }); 5723 if (!UniformIndUpdate) 5724 continue; 5725 5726 // The induction variable and its update instruction will remain uniform. 5727 Worklist.insert(Ind); 5728 Worklist.insert(IndUpdate); 5729 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5730 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5731 } 5732 5733 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5734 } 5735 5736 bool LoopVectorizationLegality::canVectorizeMemory() { 5737 LAI = &(*GetLAA)(*TheLoop); 5738 InterleaveInfo.setLAI(LAI); 5739 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5740 if (LAR) { 5741 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5742 "loop not vectorized: ", *LAR); 5743 ORE->emit(VR); 5744 } 5745 if (!LAI->canVectorizeMemory()) 5746 return false; 5747 5748 if (LAI->hasStoreToLoopInvariantAddress()) { 5749 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5750 << "write to a loop invariant address could not be vectorized"); 5751 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5752 return false; 5753 } 5754 5755 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5756 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5757 5758 return true; 5759 } 5760 5761 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5762 Value *In0 = const_cast<Value *>(V); 5763 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5764 if (!PN) 5765 return false; 5766 5767 return Inductions.count(PN); 5768 } 5769 5770 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5771 return FirstOrderRecurrences.count(Phi); 5772 } 5773 5774 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5775 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5776 } 5777 5778 bool LoopVectorizationLegality::blockCanBePredicated( 5779 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5780 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5781 5782 for (Instruction &I : *BB) { 5783 // Check that we don't have a constant expression that can trap as operand. 5784 for (Value *Operand : I.operands()) { 5785 if (auto *C = dyn_cast<Constant>(Operand)) 5786 if (C->canTrap()) 5787 return false; 5788 } 5789 // We might be able to hoist the load. 5790 if (I.mayReadFromMemory()) { 5791 auto *LI = dyn_cast<LoadInst>(&I); 5792 if (!LI) 5793 return false; 5794 if (!SafePtrs.count(LI->getPointerOperand())) { 5795 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5796 isLegalMaskedGather(LI->getType())) { 5797 MaskedOp.insert(LI); 5798 continue; 5799 } 5800 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5801 if (IsAnnotatedParallel) 5802 continue; 5803 return false; 5804 } 5805 } 5806 5807 if (I.mayWriteToMemory()) { 5808 auto *SI = dyn_cast<StoreInst>(&I); 5809 // We only support predication of stores in basic blocks with one 5810 // predecessor. 5811 if (!SI) 5812 return false; 5813 5814 // Build a masked store if it is legal for the target. 5815 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5816 SI->getPointerOperand()) || 5817 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5818 MaskedOp.insert(SI); 5819 continue; 5820 } 5821 5822 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5823 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5824 5825 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5826 !isSinglePredecessor) 5827 return false; 5828 } 5829 if (I.mayThrow()) 5830 return false; 5831 } 5832 5833 return true; 5834 } 5835 5836 void InterleavedAccessInfo::collectConstStrideAccesses( 5837 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5838 const ValueToValueMap &Strides) { 5839 5840 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5841 5842 // Since it's desired that the load/store instructions be maintained in 5843 // "program order" for the interleaved access analysis, we have to visit the 5844 // blocks in the loop in reverse postorder (i.e., in a topological order). 5845 // Such an ordering will ensure that any load/store that may be executed 5846 // before a second load/store will precede the second load/store in 5847 // AccessStrideInfo. 5848 LoopBlocksDFS DFS(TheLoop); 5849 DFS.perform(LI); 5850 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5851 for (auto &I : *BB) { 5852 auto *LI = dyn_cast<LoadInst>(&I); 5853 auto *SI = dyn_cast<StoreInst>(&I); 5854 if (!LI && !SI) 5855 continue; 5856 5857 Value *Ptr = getPointerOperand(&I); 5858 // We don't check wrapping here because we don't know yet if Ptr will be 5859 // part of a full group or a group with gaps. Checking wrapping for all 5860 // pointers (even those that end up in groups with no gaps) will be overly 5861 // conservative. For full groups, wrapping should be ok since if we would 5862 // wrap around the address space we would do a memory access at nullptr 5863 // even without the transformation. The wrapping checks are therefore 5864 // deferred until after we've formed the interleaved groups. 5865 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5866 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5867 5868 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5869 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5870 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5871 5872 // An alignment of 0 means target ABI alignment. 5873 unsigned Align = getMemInstAlignment(&I); 5874 if (!Align) 5875 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5876 5877 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5878 } 5879 } 5880 5881 // Analyze interleaved accesses and collect them into interleaved load and 5882 // store groups. 5883 // 5884 // When generating code for an interleaved load group, we effectively hoist all 5885 // loads in the group to the location of the first load in program order. When 5886 // generating code for an interleaved store group, we sink all stores to the 5887 // location of the last store. This code motion can change the order of load 5888 // and store instructions and may break dependences. 5889 // 5890 // The code generation strategy mentioned above ensures that we won't violate 5891 // any write-after-read (WAR) dependences. 5892 // 5893 // E.g., for the WAR dependence: a = A[i]; // (1) 5894 // A[i] = b; // (2) 5895 // 5896 // The store group of (2) is always inserted at or below (2), and the load 5897 // group of (1) is always inserted at or above (1). Thus, the instructions will 5898 // never be reordered. All other dependences are checked to ensure the 5899 // correctness of the instruction reordering. 5900 // 5901 // The algorithm visits all memory accesses in the loop in bottom-up program 5902 // order. Program order is established by traversing the blocks in the loop in 5903 // reverse postorder when collecting the accesses. 5904 // 5905 // We visit the memory accesses in bottom-up order because it can simplify the 5906 // construction of store groups in the presence of write-after-write (WAW) 5907 // dependences. 5908 // 5909 // E.g., for the WAW dependence: A[i] = a; // (1) 5910 // A[i] = b; // (2) 5911 // A[i + 1] = c; // (3) 5912 // 5913 // We will first create a store group with (3) and (2). (1) can't be added to 5914 // this group because it and (2) are dependent. However, (1) can be grouped 5915 // with other accesses that may precede it in program order. Note that a 5916 // bottom-up order does not imply that WAW dependences should not be checked. 5917 void InterleavedAccessInfo::analyzeInterleaving( 5918 const ValueToValueMap &Strides) { 5919 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5920 5921 // Holds all accesses with a constant stride. 5922 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5923 collectConstStrideAccesses(AccessStrideInfo, Strides); 5924 5925 if (AccessStrideInfo.empty()) 5926 return; 5927 5928 // Collect the dependences in the loop. 5929 collectDependences(); 5930 5931 // Holds all interleaved store groups temporarily. 5932 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5933 // Holds all interleaved load groups temporarily. 5934 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5935 5936 // Search in bottom-up program order for pairs of accesses (A and B) that can 5937 // form interleaved load or store groups. In the algorithm below, access A 5938 // precedes access B in program order. We initialize a group for B in the 5939 // outer loop of the algorithm, and then in the inner loop, we attempt to 5940 // insert each A into B's group if: 5941 // 5942 // 1. A and B have the same stride, 5943 // 2. A and B have the same memory object size, and 5944 // 3. A belongs in B's group according to its distance from B. 5945 // 5946 // Special care is taken to ensure group formation will not break any 5947 // dependences. 5948 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5949 BI != E; ++BI) { 5950 Instruction *B = BI->first; 5951 StrideDescriptor DesB = BI->second; 5952 5953 // Initialize a group for B if it has an allowable stride. Even if we don't 5954 // create a group for B, we continue with the bottom-up algorithm to ensure 5955 // we don't break any of B's dependences. 5956 InterleaveGroup *Group = nullptr; 5957 if (isStrided(DesB.Stride)) { 5958 Group = getInterleaveGroup(B); 5959 if (!Group) { 5960 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5961 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5962 } 5963 if (B->mayWriteToMemory()) 5964 StoreGroups.insert(Group); 5965 else 5966 LoadGroups.insert(Group); 5967 } 5968 5969 for (auto AI = std::next(BI); AI != E; ++AI) { 5970 Instruction *A = AI->first; 5971 StrideDescriptor DesA = AI->second; 5972 5973 // Our code motion strategy implies that we can't have dependences 5974 // between accesses in an interleaved group and other accesses located 5975 // between the first and last member of the group. Note that this also 5976 // means that a group can't have more than one member at a given offset. 5977 // The accesses in a group can have dependences with other accesses, but 5978 // we must ensure we don't extend the boundaries of the group such that 5979 // we encompass those dependent accesses. 5980 // 5981 // For example, assume we have the sequence of accesses shown below in a 5982 // stride-2 loop: 5983 // 5984 // (1, 2) is a group | A[i] = a; // (1) 5985 // | A[i-1] = b; // (2) | 5986 // A[i-3] = c; // (3) 5987 // A[i] = d; // (4) | (2, 4) is not a group 5988 // 5989 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5990 // but not with (4). If we did, the dependent access (3) would be within 5991 // the boundaries of the (2, 4) group. 5992 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5993 5994 // If a dependence exists and A is already in a group, we know that A 5995 // must be a store since A precedes B and WAR dependences are allowed. 5996 // Thus, A would be sunk below B. We release A's group to prevent this 5997 // illegal code motion. A will then be free to form another group with 5998 // instructions that precede it. 5999 if (isInterleaved(A)) { 6000 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6001 StoreGroups.remove(StoreGroup); 6002 releaseGroup(StoreGroup); 6003 } 6004 6005 // If a dependence exists and A is not already in a group (or it was 6006 // and we just released it), B might be hoisted above A (if B is a 6007 // load) or another store might be sunk below A (if B is a store). In 6008 // either case, we can't add additional instructions to B's group. B 6009 // will only form a group with instructions that it precedes. 6010 break; 6011 } 6012 6013 // At this point, we've checked for illegal code motion. If either A or B 6014 // isn't strided, there's nothing left to do. 6015 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6016 continue; 6017 6018 // Ignore A if it's already in a group or isn't the same kind of memory 6019 // operation as B. 6020 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6021 continue; 6022 6023 // Check rules 1 and 2. Ignore A if its stride or size is different from 6024 // that of B. 6025 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6026 continue; 6027 6028 // Calculate the distance from A to B. 6029 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6030 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6031 if (!DistToB) 6032 continue; 6033 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6034 6035 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6036 // size. 6037 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6038 continue; 6039 6040 // Ignore A if either A or B is in a predicated block. Although we 6041 // currently prevent group formation for predicated accesses, we may be 6042 // able to relax this limitation in the future once we handle more 6043 // complicated blocks. 6044 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6045 continue; 6046 6047 // The index of A is the index of B plus A's distance to B in multiples 6048 // of the size. 6049 int IndexA = 6050 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6051 6052 // Try to insert A into B's group. 6053 if (Group->insertMember(A, IndexA, DesA.Align)) { 6054 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6055 << " into the interleave group with" << *B << '\n'); 6056 InterleaveGroupMap[A] = Group; 6057 6058 // Set the first load in program order as the insert position. 6059 if (A->mayReadFromMemory()) 6060 Group->setInsertPos(A); 6061 } 6062 } // Iteration over A accesses. 6063 } // Iteration over B accesses. 6064 6065 // Remove interleaved store groups with gaps. 6066 for (InterleaveGroup *Group : StoreGroups) 6067 if (Group->getNumMembers() != Group->getFactor()) 6068 releaseGroup(Group); 6069 6070 // Remove interleaved groups with gaps (currently only loads) whose memory 6071 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6072 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6073 // not check wrapping (see documentation there). 6074 // FORNOW we use Assume=false; 6075 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6076 // of runtime SCEV assumptions checks (thereby potentially failing to 6077 // vectorize altogether). 6078 // Additional optional optimizations: 6079 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6080 // wrap then we can deduce that all pointers in the group don't wrap. 6081 // This means that we can forcefully peel the loop in order to only have to 6082 // check the first pointer for no-wrap. When we'll change to use Assume=true 6083 // we'll only need at most one runtime check per interleaved group. 6084 // 6085 for (InterleaveGroup *Group : LoadGroups) { 6086 6087 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6088 // load would wrap around the address space we would do a memory access at 6089 // nullptr even without the transformation. 6090 if (Group->getNumMembers() == Group->getFactor()) 6091 continue; 6092 6093 // Case 2: If first and last members of the group don't wrap this implies 6094 // that all the pointers in the group don't wrap. 6095 // So we check only group member 0 (which is always guaranteed to exist), 6096 // and group member Factor - 1; If the latter doesn't exist we rely on 6097 // peeling (if it is a non-reveresed accsess -- see Case 3). 6098 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6099 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6100 /*ShouldCheckWrap=*/true)) { 6101 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6102 "first group member potentially pointer-wrapping.\n"); 6103 releaseGroup(Group); 6104 continue; 6105 } 6106 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6107 if (LastMember) { 6108 Value *LastMemberPtr = getPointerOperand(LastMember); 6109 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6110 /*ShouldCheckWrap=*/true)) { 6111 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6112 "last group member potentially pointer-wrapping.\n"); 6113 releaseGroup(Group); 6114 } 6115 } else { 6116 // Case 3: A non-reversed interleaved load group with gaps: We need 6117 // to execute at least one scalar epilogue iteration. This will ensure 6118 // we don't speculatively access memory out-of-bounds. We only need 6119 // to look for a member at index factor - 1, since every group must have 6120 // a member at index zero. 6121 if (Group->isReverse()) { 6122 releaseGroup(Group); 6123 continue; 6124 } 6125 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6126 RequiresScalarEpilogue = true; 6127 } 6128 } 6129 } 6130 6131 LoopVectorizationCostModel::VectorizationFactor 6132 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 6133 // Width 1 means no vectorize 6134 VectorizationFactor Factor = {1U, 0U}; 6135 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 6136 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6137 << "runtime pointer checks needed. Enable vectorization of this " 6138 "loop with '#pragma clang loop vectorize(enable)' when " 6139 "compiling with -Os/-Oz"); 6140 DEBUG(dbgs() 6141 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6142 return Factor; 6143 } 6144 6145 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6146 ORE->emit(createMissedAnalysis("ConditionalStore") 6147 << "store that is conditionally executed prevents vectorization"); 6148 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6149 return Factor; 6150 } 6151 6152 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6153 unsigned SmallestType, WidestType; 6154 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6155 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6156 unsigned MaxSafeDepDist = -1U; 6157 6158 // Get the maximum safe dependence distance in bits computed by LAA. If the 6159 // loop contains any interleaved accesses, we divide the dependence distance 6160 // by the maximum interleave factor of all interleaved groups. Note that 6161 // although the division ensures correctness, this is a fairly conservative 6162 // computation because the maximum distance computed by LAA may not involve 6163 // any of the interleaved accesses. 6164 if (Legal->getMaxSafeDepDistBytes() != -1U) 6165 MaxSafeDepDist = 6166 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6167 6168 WidestRegister = 6169 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6170 unsigned MaxVectorSize = WidestRegister / WidestType; 6171 6172 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6173 << WidestType << " bits.\n"); 6174 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6175 << " bits.\n"); 6176 6177 if (MaxVectorSize == 0) { 6178 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6179 MaxVectorSize = 1; 6180 } 6181 6182 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6183 " into one vector!"); 6184 6185 unsigned VF = MaxVectorSize; 6186 if (MaximizeBandwidth && !OptForSize) { 6187 // Collect all viable vectorization factors. 6188 SmallVector<unsigned, 8> VFs; 6189 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6190 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6191 VFs.push_back(VS); 6192 6193 // For each VF calculate its register usage. 6194 auto RUs = calculateRegisterUsage(VFs); 6195 6196 // Select the largest VF which doesn't require more registers than existing 6197 // ones. 6198 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6199 for (int i = RUs.size() - 1; i >= 0; --i) { 6200 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6201 VF = VFs[i]; 6202 break; 6203 } 6204 } 6205 } 6206 6207 // If we optimize the program for size, avoid creating the tail loop. 6208 if (OptForSize) { 6209 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6210 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6211 6212 // If we don't know the precise trip count, don't try to vectorize. 6213 if (TC < 2) { 6214 ORE->emit( 6215 createMissedAnalysis("UnknownLoopCountComplexCFG") 6216 << "unable to calculate the loop count due to complex control flow"); 6217 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6218 return Factor; 6219 } 6220 6221 // Find the maximum SIMD width that can fit within the trip count. 6222 VF = TC % MaxVectorSize; 6223 6224 if (VF == 0) 6225 VF = MaxVectorSize; 6226 else { 6227 // If the trip count that we found modulo the vectorization factor is not 6228 // zero then we require a tail. 6229 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6230 << "cannot optimize for size and vectorize at the " 6231 "same time. Enable vectorization of this loop " 6232 "with '#pragma clang loop vectorize(enable)' " 6233 "when compiling with -Os/-Oz"); 6234 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6235 return Factor; 6236 } 6237 } 6238 6239 int UserVF = Hints->getWidth(); 6240 if (UserVF != 0) { 6241 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6242 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6243 6244 Factor.Width = UserVF; 6245 6246 collectUniformsAndScalars(UserVF); 6247 collectInstsToScalarize(UserVF); 6248 return Factor; 6249 } 6250 6251 float Cost = expectedCost(1).first; 6252 #ifndef NDEBUG 6253 const float ScalarCost = Cost; 6254 #endif /* NDEBUG */ 6255 unsigned Width = 1; 6256 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6257 6258 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6259 // Ignore scalar width, because the user explicitly wants vectorization. 6260 if (ForceVectorization && VF > 1) { 6261 Width = 2; 6262 Cost = expectedCost(Width).first / (float)Width; 6263 } 6264 6265 for (unsigned i = 2; i <= VF; i *= 2) { 6266 // Notice that the vector loop needs to be executed less times, so 6267 // we need to divide the cost of the vector loops by the width of 6268 // the vector elements. 6269 VectorizationCostTy C = expectedCost(i); 6270 float VectorCost = C.first / (float)i; 6271 DEBUG(dbgs() << "LV: Vector loop of width " << i 6272 << " costs: " << (int)VectorCost << ".\n"); 6273 if (!C.second && !ForceVectorization) { 6274 DEBUG( 6275 dbgs() << "LV: Not considering vector loop of width " << i 6276 << " because it will not generate any vector instructions.\n"); 6277 continue; 6278 } 6279 if (VectorCost < Cost) { 6280 Cost = VectorCost; 6281 Width = i; 6282 } 6283 } 6284 6285 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6286 << "LV: Vectorization seems to be not beneficial, " 6287 << "but was forced by a user.\n"); 6288 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6289 Factor.Width = Width; 6290 Factor.Cost = Width * Cost; 6291 return Factor; 6292 } 6293 6294 std::pair<unsigned, unsigned> 6295 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6296 unsigned MinWidth = -1U; 6297 unsigned MaxWidth = 8; 6298 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6299 6300 // For each block. 6301 for (BasicBlock *BB : TheLoop->blocks()) { 6302 // For each instruction in the loop. 6303 for (Instruction &I : *BB) { 6304 Type *T = I.getType(); 6305 6306 // Skip ignored values. 6307 if (ValuesToIgnore.count(&I)) 6308 continue; 6309 6310 // Only examine Loads, Stores and PHINodes. 6311 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6312 continue; 6313 6314 // Examine PHI nodes that are reduction variables. Update the type to 6315 // account for the recurrence type. 6316 if (auto *PN = dyn_cast<PHINode>(&I)) { 6317 if (!Legal->isReductionVariable(PN)) 6318 continue; 6319 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6320 T = RdxDesc.getRecurrenceType(); 6321 } 6322 6323 // Examine the stored values. 6324 if (auto *ST = dyn_cast<StoreInst>(&I)) 6325 T = ST->getValueOperand()->getType(); 6326 6327 // Ignore loaded pointer types and stored pointer types that are not 6328 // consecutive. However, we do want to take consecutive stores/loads of 6329 // pointer vectors into account. 6330 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 6331 continue; 6332 6333 MinWidth = std::min(MinWidth, 6334 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6335 MaxWidth = std::max(MaxWidth, 6336 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6337 } 6338 } 6339 6340 return {MinWidth, MaxWidth}; 6341 } 6342 6343 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6344 unsigned VF, 6345 unsigned LoopCost) { 6346 6347 // -- The interleave heuristics -- 6348 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6349 // There are many micro-architectural considerations that we can't predict 6350 // at this level. For example, frontend pressure (on decode or fetch) due to 6351 // code size, or the number and capabilities of the execution ports. 6352 // 6353 // We use the following heuristics to select the interleave count: 6354 // 1. If the code has reductions, then we interleave to break the cross 6355 // iteration dependency. 6356 // 2. If the loop is really small, then we interleave to reduce the loop 6357 // overhead. 6358 // 3. We don't interleave if we think that we will spill registers to memory 6359 // due to the increased register pressure. 6360 6361 // When we optimize for size, we don't interleave. 6362 if (OptForSize) 6363 return 1; 6364 6365 // We used the distance for the interleave count. 6366 if (Legal->getMaxSafeDepDistBytes() != -1U) 6367 return 1; 6368 6369 // Do not interleave loops with a relatively small trip count. 6370 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6371 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6372 return 1; 6373 6374 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6375 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6376 << " registers\n"); 6377 6378 if (VF == 1) { 6379 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6380 TargetNumRegisters = ForceTargetNumScalarRegs; 6381 } else { 6382 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6383 TargetNumRegisters = ForceTargetNumVectorRegs; 6384 } 6385 6386 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6387 // We divide by these constants so assume that we have at least one 6388 // instruction that uses at least one register. 6389 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6390 R.NumInstructions = std::max(R.NumInstructions, 1U); 6391 6392 // We calculate the interleave count using the following formula. 6393 // Subtract the number of loop invariants from the number of available 6394 // registers. These registers are used by all of the interleaved instances. 6395 // Next, divide the remaining registers by the number of registers that is 6396 // required by the loop, in order to estimate how many parallel instances 6397 // fit without causing spills. All of this is rounded down if necessary to be 6398 // a power of two. We want power of two interleave count to simplify any 6399 // addressing operations or alignment considerations. 6400 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6401 R.MaxLocalUsers); 6402 6403 // Don't count the induction variable as interleaved. 6404 if (EnableIndVarRegisterHeur) 6405 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6406 std::max(1U, (R.MaxLocalUsers - 1))); 6407 6408 // Clamp the interleave ranges to reasonable counts. 6409 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6410 6411 // Check if the user has overridden the max. 6412 if (VF == 1) { 6413 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6414 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6415 } else { 6416 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6417 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6418 } 6419 6420 // If we did not calculate the cost for VF (because the user selected the VF) 6421 // then we calculate the cost of VF here. 6422 if (LoopCost == 0) 6423 LoopCost = expectedCost(VF).first; 6424 6425 // Clamp the calculated IC to be between the 1 and the max interleave count 6426 // that the target allows. 6427 if (IC > MaxInterleaveCount) 6428 IC = MaxInterleaveCount; 6429 else if (IC < 1) 6430 IC = 1; 6431 6432 // Interleave if we vectorized this loop and there is a reduction that could 6433 // benefit from interleaving. 6434 if (VF > 1 && Legal->getReductionVars()->size()) { 6435 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6436 return IC; 6437 } 6438 6439 // Note that if we've already vectorized the loop we will have done the 6440 // runtime check and so interleaving won't require further checks. 6441 bool InterleavingRequiresRuntimePointerCheck = 6442 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6443 6444 // We want to interleave small loops in order to reduce the loop overhead and 6445 // potentially expose ILP opportunities. 6446 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6447 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6448 // We assume that the cost overhead is 1 and we use the cost model 6449 // to estimate the cost of the loop and interleave until the cost of the 6450 // loop overhead is about 5% of the cost of the loop. 6451 unsigned SmallIC = 6452 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6453 6454 // Interleave until store/load ports (estimated by max interleave count) are 6455 // saturated. 6456 unsigned NumStores = Legal->getNumStores(); 6457 unsigned NumLoads = Legal->getNumLoads(); 6458 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6459 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6460 6461 // If we have a scalar reduction (vector reductions are already dealt with 6462 // by this point), we can increase the critical path length if the loop 6463 // we're interleaving is inside another loop. Limit, by default to 2, so the 6464 // critical path only gets increased by one reduction operation. 6465 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6466 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6467 SmallIC = std::min(SmallIC, F); 6468 StoresIC = std::min(StoresIC, F); 6469 LoadsIC = std::min(LoadsIC, F); 6470 } 6471 6472 if (EnableLoadStoreRuntimeInterleave && 6473 std::max(StoresIC, LoadsIC) > SmallIC) { 6474 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6475 return std::max(StoresIC, LoadsIC); 6476 } 6477 6478 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6479 return SmallIC; 6480 } 6481 6482 // Interleave if this is a large loop (small loops are already dealt with by 6483 // this point) that could benefit from interleaving. 6484 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6485 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6486 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6487 return IC; 6488 } 6489 6490 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6491 return 1; 6492 } 6493 6494 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6495 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6496 // This function calculates the register usage by measuring the highest number 6497 // of values that are alive at a single location. Obviously, this is a very 6498 // rough estimation. We scan the loop in a topological order in order and 6499 // assign a number to each instruction. We use RPO to ensure that defs are 6500 // met before their users. We assume that each instruction that has in-loop 6501 // users starts an interval. We record every time that an in-loop value is 6502 // used, so we have a list of the first and last occurrences of each 6503 // instruction. Next, we transpose this data structure into a multi map that 6504 // holds the list of intervals that *end* at a specific location. This multi 6505 // map allows us to perform a linear search. We scan the instructions linearly 6506 // and record each time that a new interval starts, by placing it in a set. 6507 // If we find this value in the multi-map then we remove it from the set. 6508 // The max register usage is the maximum size of the set. 6509 // We also search for instructions that are defined outside the loop, but are 6510 // used inside the loop. We need this number separately from the max-interval 6511 // usage number because when we unroll, loop-invariant values do not take 6512 // more register. 6513 LoopBlocksDFS DFS(TheLoop); 6514 DFS.perform(LI); 6515 6516 RegisterUsage RU; 6517 RU.NumInstructions = 0; 6518 6519 // Each 'key' in the map opens a new interval. The values 6520 // of the map are the index of the 'last seen' usage of the 6521 // instruction that is the key. 6522 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6523 // Maps instruction to its index. 6524 DenseMap<unsigned, Instruction *> IdxToInstr; 6525 // Marks the end of each interval. 6526 IntervalMap EndPoint; 6527 // Saves the list of instruction indices that are used in the loop. 6528 SmallSet<Instruction *, 8> Ends; 6529 // Saves the list of values that are used in the loop but are 6530 // defined outside the loop, such as arguments and constants. 6531 SmallPtrSet<Value *, 8> LoopInvariants; 6532 6533 unsigned Index = 0; 6534 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6535 RU.NumInstructions += BB->size(); 6536 for (Instruction &I : *BB) { 6537 IdxToInstr[Index++] = &I; 6538 6539 // Save the end location of each USE. 6540 for (Value *U : I.operands()) { 6541 auto *Instr = dyn_cast<Instruction>(U); 6542 6543 // Ignore non-instruction values such as arguments, constants, etc. 6544 if (!Instr) 6545 continue; 6546 6547 // If this instruction is outside the loop then record it and continue. 6548 if (!TheLoop->contains(Instr)) { 6549 LoopInvariants.insert(Instr); 6550 continue; 6551 } 6552 6553 // Overwrite previous end points. 6554 EndPoint[Instr] = Index; 6555 Ends.insert(Instr); 6556 } 6557 } 6558 } 6559 6560 // Saves the list of intervals that end with the index in 'key'. 6561 typedef SmallVector<Instruction *, 2> InstrList; 6562 DenseMap<unsigned, InstrList> TransposeEnds; 6563 6564 // Transpose the EndPoints to a list of values that end at each index. 6565 for (auto &Interval : EndPoint) 6566 TransposeEnds[Interval.second].push_back(Interval.first); 6567 6568 SmallSet<Instruction *, 8> OpenIntervals; 6569 6570 // Get the size of the widest register. 6571 unsigned MaxSafeDepDist = -1U; 6572 if (Legal->getMaxSafeDepDistBytes() != -1U) 6573 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6574 unsigned WidestRegister = 6575 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6576 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6577 6578 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6579 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6580 6581 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6582 6583 // A lambda that gets the register usage for the given type and VF. 6584 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6585 if (Ty->isTokenTy()) 6586 return 0U; 6587 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6588 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6589 }; 6590 6591 for (unsigned int i = 0; i < Index; ++i) { 6592 Instruction *I = IdxToInstr[i]; 6593 6594 // Remove all of the instructions that end at this location. 6595 InstrList &List = TransposeEnds[i]; 6596 for (Instruction *ToRemove : List) 6597 OpenIntervals.erase(ToRemove); 6598 6599 // Ignore instructions that are never used within the loop. 6600 if (!Ends.count(I)) 6601 continue; 6602 6603 // Skip ignored values. 6604 if (ValuesToIgnore.count(I)) 6605 continue; 6606 6607 // For each VF find the maximum usage of registers. 6608 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6609 if (VFs[j] == 1) { 6610 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6611 continue; 6612 } 6613 collectUniformsAndScalars(VFs[j]); 6614 // Count the number of live intervals. 6615 unsigned RegUsage = 0; 6616 for (auto Inst : OpenIntervals) { 6617 // Skip ignored values for VF > 1. 6618 if (VecValuesToIgnore.count(Inst) || 6619 isScalarAfterVectorization(Inst, VFs[j])) 6620 continue; 6621 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6622 } 6623 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6624 } 6625 6626 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6627 << OpenIntervals.size() << '\n'); 6628 6629 // Add the current instruction to the list of open intervals. 6630 OpenIntervals.insert(I); 6631 } 6632 6633 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6634 unsigned Invariant = 0; 6635 if (VFs[i] == 1) 6636 Invariant = LoopInvariants.size(); 6637 else { 6638 for (auto Inst : LoopInvariants) 6639 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6640 } 6641 6642 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6643 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6644 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6645 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6646 6647 RU.LoopInvariantRegs = Invariant; 6648 RU.MaxLocalUsers = MaxUsages[i]; 6649 RUs[i] = RU; 6650 } 6651 6652 return RUs; 6653 } 6654 6655 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6656 6657 // If we aren't vectorizing the loop, or if we've already collected the 6658 // instructions to scalarize, there's nothing to do. Collection may already 6659 // have occurred if we have a user-selected VF and are now computing the 6660 // expected cost for interleaving. 6661 if (VF < 2 || InstsToScalarize.count(VF)) 6662 return; 6663 6664 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6665 // not profitable to scalarize any instructions, the presence of VF in the 6666 // map will indicate that we've analyzed it already. 6667 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6668 6669 // Find all the instructions that are scalar with predication in the loop and 6670 // determine if it would be better to not if-convert the blocks they are in. 6671 // If so, we also record the instructions to scalarize. 6672 for (BasicBlock *BB : TheLoop->blocks()) { 6673 if (!Legal->blockNeedsPredication(BB)) 6674 continue; 6675 for (Instruction &I : *BB) 6676 if (Legal->isScalarWithPredication(&I)) { 6677 ScalarCostsTy ScalarCosts; 6678 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6679 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6680 } 6681 } 6682 } 6683 6684 int LoopVectorizationCostModel::computePredInstDiscount( 6685 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6686 unsigned VF) { 6687 6688 assert(!isUniformAfterVectorization(PredInst, VF) && 6689 "Instruction marked uniform-after-vectorization will be predicated"); 6690 6691 // Initialize the discount to zero, meaning that the scalar version and the 6692 // vector version cost the same. 6693 int Discount = 0; 6694 6695 // Holds instructions to analyze. The instructions we visit are mapped in 6696 // ScalarCosts. Those instructions are the ones that would be scalarized if 6697 // we find that the scalar version costs less. 6698 SmallVector<Instruction *, 8> Worklist; 6699 6700 // Returns true if the given instruction can be scalarized. 6701 auto canBeScalarized = [&](Instruction *I) -> bool { 6702 6703 // We only attempt to scalarize instructions forming a single-use chain 6704 // from the original predicated block that would otherwise be vectorized. 6705 // Although not strictly necessary, we give up on instructions we know will 6706 // already be scalar to avoid traversing chains that are unlikely to be 6707 // beneficial. 6708 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6709 isScalarAfterVectorization(I, VF)) 6710 return false; 6711 6712 // If the instruction is scalar with predication, it will be analyzed 6713 // separately. We ignore it within the context of PredInst. 6714 if (Legal->isScalarWithPredication(I)) 6715 return false; 6716 6717 // If any of the instruction's operands are uniform after vectorization, 6718 // the instruction cannot be scalarized. This prevents, for example, a 6719 // masked load from being scalarized. 6720 // 6721 // We assume we will only emit a value for lane zero of an instruction 6722 // marked uniform after vectorization, rather than VF identical values. 6723 // Thus, if we scalarize an instruction that uses a uniform, we would 6724 // create uses of values corresponding to the lanes we aren't emitting code 6725 // for. This behavior can be changed by allowing getScalarValue to clone 6726 // the lane zero values for uniforms rather than asserting. 6727 for (Use &U : I->operands()) 6728 if (auto *J = dyn_cast<Instruction>(U.get())) 6729 if (isUniformAfterVectorization(J, VF)) 6730 return false; 6731 6732 // Otherwise, we can scalarize the instruction. 6733 return true; 6734 }; 6735 6736 // Returns true if an operand that cannot be scalarized must be extracted 6737 // from a vector. We will account for this scalarization overhead below. Note 6738 // that the non-void predicated instructions are placed in their own blocks, 6739 // and their return values are inserted into vectors. Thus, an extract would 6740 // still be required. 6741 auto needsExtract = [&](Instruction *I) -> bool { 6742 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6743 }; 6744 6745 // Compute the expected cost discount from scalarizing the entire expression 6746 // feeding the predicated instruction. We currently only consider expressions 6747 // that are single-use instruction chains. 6748 Worklist.push_back(PredInst); 6749 while (!Worklist.empty()) { 6750 Instruction *I = Worklist.pop_back_val(); 6751 6752 // If we've already analyzed the instruction, there's nothing to do. 6753 if (ScalarCosts.count(I)) 6754 continue; 6755 6756 // Compute the cost of the vector instruction. Note that this cost already 6757 // includes the scalarization overhead of the predicated instruction. 6758 unsigned VectorCost = getInstructionCost(I, VF).first; 6759 6760 // Compute the cost of the scalarized instruction. This cost is the cost of 6761 // the instruction as if it wasn't if-converted and instead remained in the 6762 // predicated block. We will scale this cost by block probability after 6763 // computing the scalarization overhead. 6764 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6765 6766 // Compute the scalarization overhead of needed insertelement instructions 6767 // and phi nodes. 6768 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6769 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6770 true, false); 6771 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6772 } 6773 6774 // Compute the scalarization overhead of needed extractelement 6775 // instructions. For each of the instruction's operands, if the operand can 6776 // be scalarized, add it to the worklist; otherwise, account for the 6777 // overhead. 6778 for (Use &U : I->operands()) 6779 if (auto *J = dyn_cast<Instruction>(U.get())) { 6780 assert(VectorType::isValidElementType(J->getType()) && 6781 "Instruction has non-scalar type"); 6782 if (canBeScalarized(J)) 6783 Worklist.push_back(J); 6784 else if (needsExtract(J)) 6785 ScalarCost += TTI.getScalarizationOverhead( 6786 ToVectorTy(J->getType(),VF), false, true); 6787 } 6788 6789 // Scale the total scalar cost by block probability. 6790 ScalarCost /= getReciprocalPredBlockProb(); 6791 6792 // Compute the discount. A non-negative discount means the vector version 6793 // of the instruction costs more, and scalarizing would be beneficial. 6794 Discount += VectorCost - ScalarCost; 6795 ScalarCosts[I] = ScalarCost; 6796 } 6797 6798 return Discount; 6799 } 6800 6801 LoopVectorizationCostModel::VectorizationCostTy 6802 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6803 VectorizationCostTy Cost; 6804 6805 // Collect Uniform and Scalar instructions after vectorization with VF. 6806 collectUniformsAndScalars(VF); 6807 6808 // Collect the instructions (and their associated costs) that will be more 6809 // profitable to scalarize. 6810 collectInstsToScalarize(VF); 6811 6812 // For each block. 6813 for (BasicBlock *BB : TheLoop->blocks()) { 6814 VectorizationCostTy BlockCost; 6815 6816 // For each instruction in the old loop. 6817 for (Instruction &I : *BB) { 6818 // Skip dbg intrinsics. 6819 if (isa<DbgInfoIntrinsic>(I)) 6820 continue; 6821 6822 // Skip ignored values. 6823 if (ValuesToIgnore.count(&I)) 6824 continue; 6825 6826 VectorizationCostTy C = getInstructionCost(&I, VF); 6827 6828 // Check if we should override the cost. 6829 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6830 C.first = ForceTargetInstructionCost; 6831 6832 BlockCost.first += C.first; 6833 BlockCost.second |= C.second; 6834 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6835 << VF << " For instruction: " << I << '\n'); 6836 } 6837 6838 // If we are vectorizing a predicated block, it will have been 6839 // if-converted. This means that the block's instructions (aside from 6840 // stores and instructions that may divide by zero) will now be 6841 // unconditionally executed. For the scalar case, we may not always execute 6842 // the predicated block. Thus, scale the block's cost by the probability of 6843 // executing it. 6844 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6845 BlockCost.first /= getReciprocalPredBlockProb(); 6846 6847 Cost.first += BlockCost.first; 6848 Cost.second |= BlockCost.second; 6849 } 6850 6851 return Cost; 6852 } 6853 6854 /// \brief Gets Address Access SCEV after verifying that the access pattern 6855 /// is loop invariant except the induction variable dependence. 6856 /// 6857 /// This SCEV can be sent to the Target in order to estimate the address 6858 /// calculation cost. 6859 static const SCEV *getAddressAccessSCEV( 6860 Value *Ptr, 6861 LoopVectorizationLegality *Legal, 6862 ScalarEvolution *SE, 6863 const Loop *TheLoop) { 6864 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6865 if (!Gep) 6866 return nullptr; 6867 6868 // We are looking for a gep with all loop invariant indices except for one 6869 // which should be an induction variable. 6870 unsigned NumOperands = Gep->getNumOperands(); 6871 for (unsigned i = 1; i < NumOperands; ++i) { 6872 Value *Opd = Gep->getOperand(i); 6873 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6874 !Legal->isInductionVariable(Opd)) 6875 return nullptr; 6876 } 6877 6878 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6879 return SE->getSCEV(Ptr); 6880 } 6881 6882 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6883 return Legal->hasStride(I->getOperand(0)) || 6884 Legal->hasStride(I->getOperand(1)); 6885 } 6886 6887 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6888 unsigned VF) { 6889 Type *ValTy = getMemInstValueType(I); 6890 auto SE = PSE.getSE(); 6891 6892 unsigned Alignment = getMemInstAlignment(I); 6893 unsigned AS = getMemInstAddressSpace(I); 6894 Value *Ptr = getPointerOperand(I); 6895 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6896 6897 // Figure out whether the access is strided and get the stride value 6898 // if it's known in compile time 6899 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 6900 6901 // Get the cost of the scalar memory instruction and address computation. 6902 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6903 6904 Cost += VF * 6905 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6906 AS); 6907 6908 // Get the overhead of the extractelement and insertelement instructions 6909 // we might create due to scalarization. 6910 Cost += getScalarizationOverhead(I, VF, TTI); 6911 6912 // If we have a predicated store, it may not be executed for each vector 6913 // lane. Scale the cost by the probability of executing the predicated 6914 // block. 6915 if (Legal->isScalarWithPredication(I)) 6916 Cost /= getReciprocalPredBlockProb(); 6917 6918 return Cost; 6919 } 6920 6921 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6922 unsigned VF) { 6923 Type *ValTy = getMemInstValueType(I); 6924 Type *VectorTy = ToVectorTy(ValTy, VF); 6925 unsigned Alignment = getMemInstAlignment(I); 6926 Value *Ptr = getPointerOperand(I); 6927 unsigned AS = getMemInstAddressSpace(I); 6928 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6929 6930 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6931 "Stride should be 1 or -1 for consecutive memory access"); 6932 unsigned Cost = 0; 6933 if (Legal->isMaskRequired(I)) 6934 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6935 else 6936 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6937 6938 bool Reverse = ConsecutiveStride < 0; 6939 if (Reverse) 6940 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6941 return Cost; 6942 } 6943 6944 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6945 unsigned VF) { 6946 LoadInst *LI = cast<LoadInst>(I); 6947 Type *ValTy = LI->getType(); 6948 Type *VectorTy = ToVectorTy(ValTy, VF); 6949 unsigned Alignment = LI->getAlignment(); 6950 unsigned AS = LI->getPointerAddressSpace(); 6951 6952 return TTI.getAddressComputationCost(ValTy) + 6953 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6954 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6955 } 6956 6957 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6958 unsigned VF) { 6959 Type *ValTy = getMemInstValueType(I); 6960 Type *VectorTy = ToVectorTy(ValTy, VF); 6961 unsigned Alignment = getMemInstAlignment(I); 6962 Value *Ptr = getPointerOperand(I); 6963 6964 return TTI.getAddressComputationCost(VectorTy) + 6965 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6966 Legal->isMaskRequired(I), Alignment); 6967 } 6968 6969 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6970 unsigned VF) { 6971 Type *ValTy = getMemInstValueType(I); 6972 Type *VectorTy = ToVectorTy(ValTy, VF); 6973 unsigned AS = getMemInstAddressSpace(I); 6974 6975 auto Group = Legal->getInterleavedAccessGroup(I); 6976 assert(Group && "Fail to get an interleaved access group."); 6977 6978 unsigned InterleaveFactor = Group->getFactor(); 6979 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6980 6981 // Holds the indices of existing members in an interleaved load group. 6982 // An interleaved store group doesn't need this as it doesn't allow gaps. 6983 SmallVector<unsigned, 4> Indices; 6984 if (isa<LoadInst>(I)) { 6985 for (unsigned i = 0; i < InterleaveFactor; i++) 6986 if (Group->getMember(i)) 6987 Indices.push_back(i); 6988 } 6989 6990 // Calculate the cost of the whole interleaved group. 6991 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 6992 Group->getFactor(), Indices, 6993 Group->getAlignment(), AS); 6994 6995 if (Group->isReverse()) 6996 Cost += Group->getNumMembers() * 6997 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6998 return Cost; 6999 } 7000 7001 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7002 unsigned VF) { 7003 7004 // Calculate scalar cost only. Vectorization cost should be ready at this 7005 // moment. 7006 if (VF == 1) { 7007 Type *ValTy = getMemInstValueType(I); 7008 unsigned Alignment = getMemInstAlignment(I); 7009 unsigned AS = getMemInstAlignment(I); 7010 7011 return TTI.getAddressComputationCost(ValTy) + 7012 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS); 7013 } 7014 return getWideningCost(I, VF); 7015 } 7016 7017 LoopVectorizationCostModel::VectorizationCostTy 7018 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7019 // If we know that this instruction will remain uniform, check the cost of 7020 // the scalar version. 7021 if (isUniformAfterVectorization(I, VF)) 7022 VF = 1; 7023 7024 if (VF > 1 && isProfitableToScalarize(I, VF)) 7025 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7026 7027 Type *VectorTy; 7028 unsigned C = getInstructionCost(I, VF, VectorTy); 7029 7030 bool TypeNotScalarized = 7031 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 7032 return VectorizationCostTy(C, TypeNotScalarized); 7033 } 7034 7035 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7036 if (VF == 1) 7037 return; 7038 for (BasicBlock *BB : TheLoop->blocks()) { 7039 // For each instruction in the old loop. 7040 for (Instruction &I : *BB) { 7041 Value *Ptr = getPointerOperand(&I); 7042 if (!Ptr) 7043 continue; 7044 7045 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7046 // Scalar load + broadcast 7047 unsigned Cost = getUniformMemOpCost(&I, VF); 7048 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7049 continue; 7050 } 7051 7052 // We assume that widening is the best solution when possible. 7053 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7054 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7055 setWideningDecision(&I, VF, CM_Widen, Cost); 7056 continue; 7057 } 7058 7059 // Choose between Interleaving, Gather/Scatter or Scalarization. 7060 unsigned InterleaveCost = UINT_MAX; 7061 unsigned NumAccesses = 1; 7062 if (Legal->isAccessInterleaved(&I)) { 7063 auto Group = Legal->getInterleavedAccessGroup(&I); 7064 assert(Group && "Fail to get an interleaved access group."); 7065 7066 // Make one decision for the whole group. 7067 if (getWideningDecision(&I, VF) != CM_Unknown) 7068 continue; 7069 7070 NumAccesses = Group->getNumMembers(); 7071 InterleaveCost = getInterleaveGroupCost(&I, VF); 7072 } 7073 7074 unsigned GatherScatterCost = 7075 Legal->isLegalGatherOrScatter(&I) 7076 ? getGatherScatterCost(&I, VF) * NumAccesses 7077 : UINT_MAX; 7078 7079 unsigned ScalarizationCost = 7080 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7081 7082 // Choose better solution for the current VF, 7083 // write down this decision and use it during vectorization. 7084 unsigned Cost; 7085 InstWidening Decision; 7086 if (InterleaveCost <= GatherScatterCost && 7087 InterleaveCost < ScalarizationCost) { 7088 Decision = CM_Interleave; 7089 Cost = InterleaveCost; 7090 } else if (GatherScatterCost < ScalarizationCost) { 7091 Decision = CM_GatherScatter; 7092 Cost = GatherScatterCost; 7093 } else { 7094 Decision = CM_Scalarize; 7095 Cost = ScalarizationCost; 7096 } 7097 // If the instructions belongs to an interleave group, the whole group 7098 // receives the same decision. The whole group receives the cost, but 7099 // the cost will actually be assigned to one instruction. 7100 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7101 setWideningDecision(Group, VF, Decision, Cost); 7102 else 7103 setWideningDecision(&I, VF, Decision, Cost); 7104 } 7105 } 7106 } 7107 7108 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7109 unsigned VF, 7110 Type *&VectorTy) { 7111 Type *RetTy = I->getType(); 7112 if (canTruncateToMinimalBitwidth(I, VF)) 7113 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7114 VectorTy = ToVectorTy(RetTy, VF); 7115 auto SE = PSE.getSE(); 7116 7117 // TODO: We need to estimate the cost of intrinsic calls. 7118 switch (I->getOpcode()) { 7119 case Instruction::GetElementPtr: 7120 // We mark this instruction as zero-cost because the cost of GEPs in 7121 // vectorized code depends on whether the corresponding memory instruction 7122 // is scalarized or not. Therefore, we handle GEPs with the memory 7123 // instruction cost. 7124 return 0; 7125 case Instruction::Br: { 7126 return TTI.getCFInstrCost(I->getOpcode()); 7127 } 7128 case Instruction::PHI: { 7129 auto *Phi = cast<PHINode>(I); 7130 7131 // First-order recurrences are replaced by vector shuffles inside the loop. 7132 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7133 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7134 VectorTy, VF - 1, VectorTy); 7135 7136 // TODO: IF-converted IFs become selects. 7137 return 0; 7138 } 7139 case Instruction::UDiv: 7140 case Instruction::SDiv: 7141 case Instruction::URem: 7142 case Instruction::SRem: 7143 // If we have a predicated instruction, it may not be executed for each 7144 // vector lane. Get the scalarization cost and scale this amount by the 7145 // probability of executing the predicated block. If the instruction is not 7146 // predicated, we fall through to the next case. 7147 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7148 unsigned Cost = 0; 7149 7150 // These instructions have a non-void type, so account for the phi nodes 7151 // that we will create. This cost is likely to be zero. The phi node 7152 // cost, if any, should be scaled by the block probability because it 7153 // models a copy at the end of each predicated block. 7154 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7155 7156 // The cost of the non-predicated instruction. 7157 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7158 7159 // The cost of insertelement and extractelement instructions needed for 7160 // scalarization. 7161 Cost += getScalarizationOverhead(I, VF, TTI); 7162 7163 // Scale the cost by the probability of executing the predicated blocks. 7164 // This assumes the predicated block for each vector lane is equally 7165 // likely. 7166 return Cost / getReciprocalPredBlockProb(); 7167 } 7168 case Instruction::Add: 7169 case Instruction::FAdd: 7170 case Instruction::Sub: 7171 case Instruction::FSub: 7172 case Instruction::Mul: 7173 case Instruction::FMul: 7174 case Instruction::FDiv: 7175 case Instruction::FRem: 7176 case Instruction::Shl: 7177 case Instruction::LShr: 7178 case Instruction::AShr: 7179 case Instruction::And: 7180 case Instruction::Or: 7181 case Instruction::Xor: { 7182 // Since we will replace the stride by 1 the multiplication should go away. 7183 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7184 return 0; 7185 // Certain instructions can be cheaper to vectorize if they have a constant 7186 // second vector operand. One example of this are shifts on x86. 7187 TargetTransformInfo::OperandValueKind Op1VK = 7188 TargetTransformInfo::OK_AnyValue; 7189 TargetTransformInfo::OperandValueKind Op2VK = 7190 TargetTransformInfo::OK_AnyValue; 7191 TargetTransformInfo::OperandValueProperties Op1VP = 7192 TargetTransformInfo::OP_None; 7193 TargetTransformInfo::OperandValueProperties Op2VP = 7194 TargetTransformInfo::OP_None; 7195 Value *Op2 = I->getOperand(1); 7196 7197 // Check for a splat or for a non uniform vector of constants. 7198 if (isa<ConstantInt>(Op2)) { 7199 ConstantInt *CInt = cast<ConstantInt>(Op2); 7200 if (CInt && CInt->getValue().isPowerOf2()) 7201 Op2VP = TargetTransformInfo::OP_PowerOf2; 7202 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7203 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7204 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7205 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7206 if (SplatValue) { 7207 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7208 if (CInt && CInt->getValue().isPowerOf2()) 7209 Op2VP = TargetTransformInfo::OP_PowerOf2; 7210 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7211 } 7212 } else if (Legal->isUniform(Op2)) { 7213 Op2VK = TargetTransformInfo::OK_UniformValue; 7214 } 7215 SmallVector<const Value *, 4> Operands(I->operand_values()); 7216 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7217 Op2VK, Op1VP, Op2VP, Operands); 7218 } 7219 case Instruction::Select: { 7220 SelectInst *SI = cast<SelectInst>(I); 7221 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7222 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7223 Type *CondTy = SI->getCondition()->getType(); 7224 if (!ScalarCond) 7225 CondTy = VectorType::get(CondTy, VF); 7226 7227 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 7228 } 7229 case Instruction::ICmp: 7230 case Instruction::FCmp: { 7231 Type *ValTy = I->getOperand(0)->getType(); 7232 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7233 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7234 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7235 VectorTy = ToVectorTy(ValTy, VF); 7236 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 7237 } 7238 case Instruction::Store: 7239 case Instruction::Load: { 7240 VectorTy = ToVectorTy(getMemInstValueType(I), VF); 7241 return getMemoryInstructionCost(I, VF); 7242 } 7243 case Instruction::ZExt: 7244 case Instruction::SExt: 7245 case Instruction::FPToUI: 7246 case Instruction::FPToSI: 7247 case Instruction::FPExt: 7248 case Instruction::PtrToInt: 7249 case Instruction::IntToPtr: 7250 case Instruction::SIToFP: 7251 case Instruction::UIToFP: 7252 case Instruction::Trunc: 7253 case Instruction::FPTrunc: 7254 case Instruction::BitCast: { 7255 // We optimize the truncation of induction variables having constant 7256 // integer steps. The cost of these truncations is the same as the scalar 7257 // operation. 7258 if (isOptimizableIVTruncate(I, VF)) { 7259 auto *Trunc = cast<TruncInst>(I); 7260 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7261 Trunc->getSrcTy()); 7262 } 7263 7264 Type *SrcScalarTy = I->getOperand(0)->getType(); 7265 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7266 if (canTruncateToMinimalBitwidth(I, VF)) { 7267 // This cast is going to be shrunk. This may remove the cast or it might 7268 // turn it into slightly different cast. For example, if MinBW == 16, 7269 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7270 // 7271 // Calculate the modified src and dest types. 7272 Type *MinVecTy = VectorTy; 7273 if (I->getOpcode() == Instruction::Trunc) { 7274 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7275 VectorTy = 7276 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7277 } else if (I->getOpcode() == Instruction::ZExt || 7278 I->getOpcode() == Instruction::SExt) { 7279 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7280 VectorTy = 7281 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7282 } 7283 } 7284 7285 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 7286 } 7287 case Instruction::Call: { 7288 bool NeedToScalarize; 7289 CallInst *CI = cast<CallInst>(I); 7290 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7291 if (getVectorIntrinsicIDForCall(CI, TLI)) 7292 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7293 return CallCost; 7294 } 7295 default: 7296 // The cost of executing VF copies of the scalar instruction. This opcode 7297 // is unknown. Assume that it is the same as 'mul'. 7298 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7299 getScalarizationOverhead(I, VF, TTI); 7300 } // end of switch. 7301 } 7302 7303 char LoopVectorize::ID = 0; 7304 static const char lv_name[] = "Loop Vectorization"; 7305 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7306 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7307 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7308 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7309 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7310 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7311 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7312 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7313 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7314 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7315 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7316 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7317 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7318 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7319 7320 namespace llvm { 7321 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7322 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7323 } 7324 } 7325 7326 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7327 7328 // Check if the pointer operand of a load or store instruction is 7329 // consecutive. 7330 if (auto *Ptr = getPointerOperand(Inst)) 7331 return Legal->isConsecutivePtr(Ptr); 7332 return false; 7333 } 7334 7335 void LoopVectorizationCostModel::collectValuesToIgnore() { 7336 // Ignore ephemeral values. 7337 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7338 7339 // Ignore type-promoting instructions we identified during reduction 7340 // detection. 7341 for (auto &Reduction : *Legal->getReductionVars()) { 7342 RecurrenceDescriptor &RedDes = Reduction.second; 7343 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7344 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7345 } 7346 } 7347 7348 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 7349 bool IfPredicateInstr) { 7350 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 7351 // Holds vector parameters or scalars, in case of uniform vals. 7352 SmallVector<VectorParts, 4> Params; 7353 7354 setDebugLocFromInst(Builder, Instr); 7355 7356 // Does this instruction return a value ? 7357 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 7358 7359 // Initialize a new scalar map entry. 7360 ScalarParts Entry(UF); 7361 7362 VectorParts Cond; 7363 if (IfPredicateInstr) 7364 Cond = createBlockInMask(Instr->getParent()); 7365 7366 // For each vector unroll 'part': 7367 for (unsigned Part = 0; Part < UF; ++Part) { 7368 Entry[Part].resize(1); 7369 // For each scalar that we create: 7370 7371 // Start an "if (pred) a[i] = ..." block. 7372 Value *Cmp = nullptr; 7373 if (IfPredicateInstr) { 7374 if (Cond[Part]->getType()->isVectorTy()) 7375 Cond[Part] = 7376 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 7377 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 7378 ConstantInt::get(Cond[Part]->getType(), 1)); 7379 } 7380 7381 Instruction *Cloned = Instr->clone(); 7382 if (!IsVoidRetTy) 7383 Cloned->setName(Instr->getName() + ".cloned"); 7384 7385 // Replace the operands of the cloned instructions with their scalar 7386 // equivalents in the new loop. 7387 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 7388 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0); 7389 Cloned->setOperand(op, NewOp); 7390 } 7391 7392 // Place the cloned scalar in the new loop. 7393 Builder.Insert(Cloned); 7394 7395 // Add the cloned scalar to the scalar map entry. 7396 Entry[Part][0] = Cloned; 7397 7398 // If we just cloned a new assumption, add it the assumption cache. 7399 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 7400 if (II->getIntrinsicID() == Intrinsic::assume) 7401 AC->registerAssumption(II); 7402 7403 // End if-block. 7404 if (IfPredicateInstr) 7405 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 7406 } 7407 VectorLoopValueMap.initScalar(Instr, Entry); 7408 } 7409 7410 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7411 auto *SI = dyn_cast<StoreInst>(Instr); 7412 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7413 7414 return scalarizeInstruction(Instr, IfPredicateInstr); 7415 } 7416 7417 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7418 7419 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7420 7421 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7422 Instruction::BinaryOps BinOp) { 7423 // When unrolling and the VF is 1, we only need to add a simple scalar. 7424 Type *Ty = Val->getType(); 7425 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7426 7427 if (Ty->isFloatingPointTy()) { 7428 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7429 7430 // Floating point operations had to be 'fast' to enable the unrolling. 7431 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7432 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7433 } 7434 Constant *C = ConstantInt::get(Ty, StartIdx); 7435 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7436 } 7437 7438 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7439 SmallVector<Metadata *, 4> MDs; 7440 // Reserve first location for self reference to the LoopID metadata node. 7441 MDs.push_back(nullptr); 7442 bool IsUnrollMetadata = false; 7443 MDNode *LoopID = L->getLoopID(); 7444 if (LoopID) { 7445 // First find existing loop unrolling disable metadata. 7446 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7447 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7448 if (MD) { 7449 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7450 IsUnrollMetadata = 7451 S && S->getString().startswith("llvm.loop.unroll.disable"); 7452 } 7453 MDs.push_back(LoopID->getOperand(i)); 7454 } 7455 } 7456 7457 if (!IsUnrollMetadata) { 7458 // Add runtime unroll disable metadata. 7459 LLVMContext &Context = L->getHeader()->getContext(); 7460 SmallVector<Metadata *, 1> DisableOperands; 7461 DisableOperands.push_back( 7462 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7463 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7464 MDs.push_back(DisableNode); 7465 MDNode *NewLoopID = MDNode::get(Context, MDs); 7466 // Set operand 0 to refer to the loop id itself. 7467 NewLoopID->replaceOperandWith(0, NewLoopID); 7468 L->setLoopID(NewLoopID); 7469 } 7470 } 7471 7472 bool LoopVectorizePass::processLoop(Loop *L) { 7473 assert(L->empty() && "Only process inner loops."); 7474 7475 #ifndef NDEBUG 7476 const std::string DebugLocStr = getDebugLocString(L); 7477 #endif /* NDEBUG */ 7478 7479 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7480 << L->getHeader()->getParent()->getName() << "\" from " 7481 << DebugLocStr << "\n"); 7482 7483 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7484 7485 DEBUG(dbgs() << "LV: Loop hints:" 7486 << " force=" 7487 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7488 ? "disabled" 7489 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7490 ? "enabled" 7491 : "?")) 7492 << " width=" << Hints.getWidth() 7493 << " unroll=" << Hints.getInterleave() << "\n"); 7494 7495 // Function containing loop 7496 Function *F = L->getHeader()->getParent(); 7497 7498 // Looking at the diagnostic output is the only way to determine if a loop 7499 // was vectorized (other than looking at the IR or machine code), so it 7500 // is important to generate an optimization remark for each loop. Most of 7501 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7502 // generated as OptimizationRemark and OptimizationRemarkMissed are 7503 // less verbose reporting vectorized loops and unvectorized loops that may 7504 // benefit from vectorization, respectively. 7505 7506 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7507 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7508 return false; 7509 } 7510 7511 // Check the loop for a trip count threshold: 7512 // do not vectorize loops with a tiny trip count. 7513 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7514 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7515 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7516 << "This loop is not worth vectorizing."); 7517 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7518 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7519 else { 7520 DEBUG(dbgs() << "\n"); 7521 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7522 "NotBeneficial", L) 7523 << "vectorization is not beneficial " 7524 "and is not explicitly forced"); 7525 return false; 7526 } 7527 } 7528 7529 PredicatedScalarEvolution PSE(*SE, *L); 7530 7531 // Check if it is legal to vectorize the loop. 7532 LoopVectorizationRequirements Requirements(*ORE); 7533 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7534 &Requirements, &Hints); 7535 if (!LVL.canVectorize()) { 7536 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7537 emitMissedWarning(F, L, Hints, ORE); 7538 return false; 7539 } 7540 7541 // Use the cost model. 7542 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7543 &Hints); 7544 CM.collectValuesToIgnore(); 7545 7546 // Check the function attributes to find out if this function should be 7547 // optimized for size. 7548 bool OptForSize = 7549 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7550 7551 // Compute the weighted frequency of this loop being executed and see if it 7552 // is less than 20% of the function entry baseline frequency. Note that we 7553 // always have a canonical loop here because we think we *can* vectorize. 7554 // FIXME: This is hidden behind a flag due to pervasive problems with 7555 // exactly what block frequency models. 7556 if (LoopVectorizeWithBlockFrequency) { 7557 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7558 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7559 LoopEntryFreq < ColdEntryFreq) 7560 OptForSize = true; 7561 } 7562 7563 // Check the function attributes to see if implicit floats are allowed. 7564 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7565 // an integer loop and the vector instructions selected are purely integer 7566 // vector instructions? 7567 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7568 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7569 "attribute is used.\n"); 7570 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7571 "NoImplicitFloat", L) 7572 << "loop not vectorized due to NoImplicitFloat attribute"); 7573 emitMissedWarning(F, L, Hints, ORE); 7574 return false; 7575 } 7576 7577 // Check if the target supports potentially unsafe FP vectorization. 7578 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7579 // for the target we're vectorizing for, to make sure none of the 7580 // additional fp-math flags can help. 7581 if (Hints.isPotentiallyUnsafe() && 7582 TTI->isFPVectorizationPotentiallyUnsafe()) { 7583 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7584 ORE->emit( 7585 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7586 << "loop not vectorized due to unsafe FP support."); 7587 emitMissedWarning(F, L, Hints, ORE); 7588 return false; 7589 } 7590 7591 // Select the optimal vectorization factor. 7592 const LoopVectorizationCostModel::VectorizationFactor VF = 7593 CM.selectVectorizationFactor(OptForSize); 7594 7595 // Select the interleave count. 7596 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7597 7598 // Get user interleave count. 7599 unsigned UserIC = Hints.getInterleave(); 7600 7601 // Identify the diagnostic messages that should be produced. 7602 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7603 bool VectorizeLoop = true, InterleaveLoop = true; 7604 if (Requirements.doesNotMeet(F, L, Hints)) { 7605 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7606 "requirements.\n"); 7607 emitMissedWarning(F, L, Hints, ORE); 7608 return false; 7609 } 7610 7611 if (VF.Width == 1) { 7612 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7613 VecDiagMsg = std::make_pair( 7614 "VectorizationNotBeneficial", 7615 "the cost-model indicates that vectorization is not beneficial"); 7616 VectorizeLoop = false; 7617 } 7618 7619 if (IC == 1 && UserIC <= 1) { 7620 // Tell the user interleaving is not beneficial. 7621 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7622 IntDiagMsg = std::make_pair( 7623 "InterleavingNotBeneficial", 7624 "the cost-model indicates that interleaving is not beneficial"); 7625 InterleaveLoop = false; 7626 if (UserIC == 1) { 7627 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7628 IntDiagMsg.second += 7629 " and is explicitly disabled or interleave count is set to 1"; 7630 } 7631 } else if (IC > 1 && UserIC == 1) { 7632 // Tell the user interleaving is beneficial, but it explicitly disabled. 7633 DEBUG(dbgs() 7634 << "LV: Interleaving is beneficial but is explicitly disabled."); 7635 IntDiagMsg = std::make_pair( 7636 "InterleavingBeneficialButDisabled", 7637 "the cost-model indicates that interleaving is beneficial " 7638 "but is explicitly disabled or interleave count is set to 1"); 7639 InterleaveLoop = false; 7640 } 7641 7642 // Override IC if user provided an interleave count. 7643 IC = UserIC > 0 ? UserIC : IC; 7644 7645 // Emit diagnostic messages, if any. 7646 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7647 if (!VectorizeLoop && !InterleaveLoop) { 7648 // Do not vectorize or interleaving the loop. 7649 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7650 L->getStartLoc(), L->getHeader()) 7651 << VecDiagMsg.second); 7652 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7653 L->getStartLoc(), L->getHeader()) 7654 << IntDiagMsg.second); 7655 return false; 7656 } else if (!VectorizeLoop && InterleaveLoop) { 7657 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7658 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7659 L->getStartLoc(), L->getHeader()) 7660 << VecDiagMsg.second); 7661 } else if (VectorizeLoop && !InterleaveLoop) { 7662 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7663 << DebugLocStr << '\n'); 7664 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7665 L->getStartLoc(), L->getHeader()) 7666 << IntDiagMsg.second); 7667 } else if (VectorizeLoop && InterleaveLoop) { 7668 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7669 << DebugLocStr << '\n'); 7670 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7671 } 7672 7673 using namespace ore; 7674 if (!VectorizeLoop) { 7675 assert(IC > 1 && "interleave count should not be 1 or 0"); 7676 // If we decided that it is not legal to vectorize the loop, then 7677 // interleave it. 7678 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7679 &CM); 7680 Unroller.vectorize(); 7681 7682 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7683 L->getHeader()) 7684 << "interleaved loop (interleaved count: " 7685 << NV("InterleaveCount", IC) << ")"); 7686 } else { 7687 // If we decided that it is *legal* to vectorize the loop, then do it. 7688 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7689 &LVL, &CM); 7690 LB.vectorize(); 7691 ++LoopsVectorized; 7692 7693 // Add metadata to disable runtime unrolling a scalar loop when there are 7694 // no runtime checks about strides and memory. A scalar loop that is 7695 // rarely used is not worth unrolling. 7696 if (!LB.areSafetyChecksAdded()) 7697 AddRuntimeUnrollDisableMetaData(L); 7698 7699 // Report the vectorization decision. 7700 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7701 L->getHeader()) 7702 << "vectorized loop (vectorization width: " 7703 << NV("VectorizationFactor", VF.Width) 7704 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7705 } 7706 7707 // Mark the loop as already vectorized to avoid vectorizing again. 7708 Hints.setAlreadyVectorized(); 7709 7710 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7711 return true; 7712 } 7713 7714 bool LoopVectorizePass::runImpl( 7715 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7716 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7717 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7718 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7719 OptimizationRemarkEmitter &ORE_) { 7720 7721 SE = &SE_; 7722 LI = &LI_; 7723 TTI = &TTI_; 7724 DT = &DT_; 7725 BFI = &BFI_; 7726 TLI = TLI_; 7727 AA = &AA_; 7728 AC = &AC_; 7729 GetLAA = &GetLAA_; 7730 DB = &DB_; 7731 ORE = &ORE_; 7732 7733 // Compute some weights outside of the loop over the loops. Compute this 7734 // using a BranchProbability to re-use its scaling math. 7735 const BranchProbability ColdProb(1, 5); // 20% 7736 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7737 7738 // Don't attempt if 7739 // 1. the target claims to have no vector registers, and 7740 // 2. interleaving won't help ILP. 7741 // 7742 // The second condition is necessary because, even if the target has no 7743 // vector registers, loop vectorization may still enable scalar 7744 // interleaving. 7745 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7746 return false; 7747 7748 bool Changed = false; 7749 7750 // The vectorizer requires loops to be in simplified form. 7751 // Since simplification may add new inner loops, it has to run before the 7752 // legality and profitability checks. This means running the loop vectorizer 7753 // will simplify all loops, regardless of whether anything end up being 7754 // vectorized. 7755 for (auto &L : *LI) 7756 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7757 7758 // Build up a worklist of inner-loops to vectorize. This is necessary as 7759 // the act of vectorizing or partially unrolling a loop creates new loops 7760 // and can invalidate iterators across the loops. 7761 SmallVector<Loop *, 8> Worklist; 7762 7763 for (Loop *L : *LI) 7764 addAcyclicInnerLoop(*L, Worklist); 7765 7766 LoopsAnalyzed += Worklist.size(); 7767 7768 // Now walk the identified inner loops. 7769 while (!Worklist.empty()) { 7770 Loop *L = Worklist.pop_back_val(); 7771 7772 // For the inner loops we actually process, form LCSSA to simplify the 7773 // transform. 7774 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7775 7776 Changed |= processLoop(L); 7777 } 7778 7779 // Process each loop nest in the function. 7780 return Changed; 7781 7782 } 7783 7784 7785 PreservedAnalyses LoopVectorizePass::run(Function &F, 7786 FunctionAnalysisManager &AM) { 7787 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7788 auto &LI = AM.getResult<LoopAnalysis>(F); 7789 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7790 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7791 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7792 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7793 auto &AA = AM.getResult<AAManager>(F); 7794 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7795 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7796 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7797 7798 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7799 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7800 [&](Loop &L) -> const LoopAccessInfo & { 7801 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 7802 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7803 }; 7804 bool Changed = 7805 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7806 if (!Changed) 7807 return PreservedAnalyses::all(); 7808 PreservedAnalyses PA; 7809 PA.preserve<LoopAnalysis>(); 7810 PA.preserve<DominatorTreeAnalysis>(); 7811 PA.preserve<BasicAA>(); 7812 PA.preserve<GlobalsAA>(); 7813 return PA; 7814 } 7815