1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/Hashing.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/Analysis/AliasAnalysis.h" 59 #include "llvm/Analysis/AssumptionCache.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/BlockFrequencyInfo.h" 62 #include "llvm/Analysis/CodeMetrics.h" 63 #include "llvm/Analysis/DemandedBits.h" 64 #include "llvm/Analysis/GlobalsModRef.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Analysis/VectorUtils.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/DiagnosticInfo.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/IR/Verifier.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/BranchProbability.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/Scalar.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Transforms/Vectorize.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> TinyTripCountVectorThreshold( 123 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 124 cl::desc("Don't vectorize loops with a constant " 125 "trip count that is smaller than this " 126 "value.")); 127 128 static cl::opt<bool> MaximizeBandwidth( 129 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 130 cl::desc("Maximize bandwidth when selecting vectorization factor which " 131 "will be determined by the smallest type in loop.")); 132 133 static cl::opt<bool> EnableInterleavedMemAccesses( 134 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 135 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 136 137 /// Maximum factor for an interleaved memory access. 138 static cl::opt<unsigned> MaxInterleaveGroupFactor( 139 "max-interleave-group-factor", cl::Hidden, 140 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 141 cl::init(8)); 142 143 /// We don't interleave loops with a known constant trip count below this 144 /// number. 145 static const unsigned TinyTripCountInterleaveThreshold = 128; 146 147 static cl::opt<unsigned> ForceTargetNumScalarRegs( 148 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of scalar registers.")); 150 151 static cl::opt<unsigned> ForceTargetNumVectorRegs( 152 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's number of vector registers.")); 154 155 /// Maximum vectorization interleave count. 156 static const unsigned MaxInterleaveFactor = 16; 157 158 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 159 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's max interleave factor for " 161 "scalar loops.")); 162 163 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 164 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's max interleave factor for " 166 "vectorized loops.")); 167 168 static cl::opt<unsigned> ForceTargetInstructionCost( 169 "force-target-instruction-cost", cl::init(0), cl::Hidden, 170 cl::desc("A flag that overrides the target's expected cost for " 171 "an instruction to a single constant value. Mostly " 172 "useful for getting consistent testing.")); 173 174 static cl::opt<unsigned> SmallLoopCost( 175 "small-loop-cost", cl::init(20), cl::Hidden, 176 cl::desc( 177 "The cost of a loop that is considered 'small' by the interleaver.")); 178 179 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 180 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 181 cl::desc("Enable the use of the block frequency analysis to access PGO " 182 "heuristics minimizing code growth in cold regions and being more " 183 "aggressive in hot regions.")); 184 185 // Runtime interleave loops for load/store throughput. 186 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 187 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 188 cl::desc( 189 "Enable runtime interleaving until load/store ports are saturated")); 190 191 /// The number of stores in a loop that are allowed to need predication. 192 static cl::opt<unsigned> NumberOfStoresToPredicate( 193 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 194 cl::desc("Max number of stores to be predicated behind an if.")); 195 196 static cl::opt<bool> EnableIndVarRegisterHeur( 197 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 198 cl::desc("Count the induction variable only once when interleaving")); 199 200 static cl::opt<bool> EnableCondStoresVectorization( 201 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 202 cl::desc("Enable if predication of stores during vectorization.")); 203 204 static cl::opt<unsigned> MaxNestedScalarReductionIC( 205 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 206 cl::desc("The maximum interleave count to use when interleaving a scalar " 207 "reduction in a nested loop.")); 208 209 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 210 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 211 cl::desc("The maximum allowed number of runtime memory checks with a " 212 "vectorize(enable) pragma.")); 213 214 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 215 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed.")); 217 218 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 219 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 220 cl::desc("The maximum number of SCEV checks allowed with a " 221 "vectorize(enable) pragma")); 222 223 namespace { 224 225 // Forward declarations. 226 class LoopVectorizeHints; 227 class LoopVectorizationLegality; 228 class LoopVectorizationCostModel; 229 class LoopVectorizationRequirements; 230 231 /// \brief This modifies LoopAccessReport to initialize message with 232 /// loop-vectorizer-specific part. 233 class VectorizationReport : public LoopAccessReport { 234 public: 235 VectorizationReport(Instruction *I = nullptr) 236 : LoopAccessReport("loop not vectorized: ", I) {} 237 238 /// \brief This allows promotion of the loop-access analysis report into the 239 /// loop-vectorizer report. It modifies the message to add the 240 /// loop-vectorizer-specific part of the message. 241 explicit VectorizationReport(const LoopAccessReport &R) 242 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 243 R.getInstr()) {} 244 }; 245 246 /// A helper function for converting Scalar types to vector types. 247 /// If the incoming type is void, we return void. If the VF is 1, we return 248 /// the scalar type. 249 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 250 if (Scalar->isVoidTy() || VF == 1) 251 return Scalar; 252 return VectorType::get(Scalar, VF); 253 } 254 255 /// A helper function that returns GEP instruction and knows to skip a 256 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 257 /// pointee types of the 'bitcast' have the same size. 258 /// For example: 259 /// bitcast double** %var to i64* - can be skipped 260 /// bitcast double** %var to i8* - can not 261 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 262 263 if (isa<GetElementPtrInst>(Ptr)) 264 return cast<GetElementPtrInst>(Ptr); 265 266 if (isa<BitCastInst>(Ptr) && 267 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 268 Type *BitcastTy = Ptr->getType(); 269 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 270 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 271 return nullptr; 272 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 273 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 274 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 275 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 276 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 277 } 278 return nullptr; 279 } 280 281 /// InnerLoopVectorizer vectorizes loops which contain only one basic 282 /// block to a specified vectorization factor (VF). 283 /// This class performs the widening of scalars into vectors, or multiple 284 /// scalars. This class also implements the following features: 285 /// * It inserts an epilogue loop for handling loops that don't have iteration 286 /// counts that are known to be a multiple of the vectorization factor. 287 /// * It handles the code generation for reduction variables. 288 /// * Scalarization (implementation using scalars) of un-vectorizable 289 /// instructions. 290 /// InnerLoopVectorizer does not perform any vectorization-legality 291 /// checks, and relies on the caller to check for the different legality 292 /// aspects. The InnerLoopVectorizer relies on the 293 /// LoopVectorizationLegality class to provide information about the induction 294 /// and reduction variables that were found to a given vectorization factor. 295 class InnerLoopVectorizer { 296 public: 297 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 298 LoopInfo *LI, DominatorTree *DT, 299 const TargetLibraryInfo *TLI, 300 const TargetTransformInfo *TTI, AssumptionCache *AC, 301 unsigned VecWidth, unsigned UnrollFactor) 302 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 303 AC(AC), VF(VecWidth), UF(UnrollFactor), 304 Builder(PSE.getSE()->getContext()), Induction(nullptr), 305 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 306 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 307 308 // Perform the actual loop widening (vectorization). 309 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 310 // can be validly truncated to. The cost model has assumed this truncation 311 // will happen when vectorizing. 312 void vectorize(LoopVectorizationLegality *L, 313 const MapVector<Instruction *, uint64_t> &MinimumBitWidths) { 314 MinBWs = &MinimumBitWidths; 315 Legal = L; 316 // Create a new empty loop. Unlink the old loop and connect the new one. 317 createEmptyLoop(); 318 // Widen each instruction in the old loop to a new one in the new loop. 319 // Use the Legality module to find the induction and reduction variables. 320 vectorizeLoop(); 321 } 322 323 // Return true if any runtime check is added. 324 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 325 326 virtual ~InnerLoopVectorizer() {} 327 328 protected: 329 /// A small list of PHINodes. 330 typedef SmallVector<PHINode *, 4> PhiVector; 331 /// When we unroll loops we have multiple vector values for each scalar. 332 /// This data structure holds the unrolled and vectorized values that 333 /// originated from one scalar instruction. 334 typedef SmallVector<Value *, 2> VectorParts; 335 336 // When we if-convert we need to create edge masks. We have to cache values 337 // so that we don't end up with exponential recursion/IR. 338 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 339 EdgeMaskCache; 340 341 /// Create an empty loop, based on the loop ranges of the old loop. 342 void createEmptyLoop(); 343 344 /// Set up the values of the IVs correctly when exiting the vector loop. 345 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 346 Value *CountRoundDown, Value *EndValue, 347 BasicBlock *MiddleBlock); 348 349 /// Create a new induction variable inside L. 350 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 351 Value *Step, Instruction *DL); 352 /// Copy and widen the instructions from the old loop. 353 virtual void vectorizeLoop(); 354 355 /// Fix a first-order recurrence. This is the second phase of vectorizing 356 /// this phi node. 357 void fixFirstOrderRecurrence(PHINode *Phi); 358 359 /// \brief The Loop exit block may have single value PHI nodes where the 360 /// incoming value is 'Undef'. While vectorizing we only handled real values 361 /// that were defined inside the loop. Here we fix the 'undef case'. 362 /// See PR14725. 363 void fixLCSSAPHIs(); 364 365 /// Shrinks vector element sizes based on information in "MinBWs". 366 void truncateToMinimalBitwidths(); 367 368 /// A helper function that computes the predicate of the block BB, assuming 369 /// that the header block of the loop is set to True. It returns the *entry* 370 /// mask for the block BB. 371 VectorParts createBlockInMask(BasicBlock *BB); 372 /// A helper function that computes the predicate of the edge between SRC 373 /// and DST. 374 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 375 376 /// A helper function to vectorize a single BB within the innermost loop. 377 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 378 379 /// Vectorize a single PHINode in a block. This method handles the induction 380 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 381 /// arbitrary length vectors. 382 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 383 unsigned VF, PhiVector *PV); 384 385 /// Insert the new loop to the loop hierarchy and pass manager 386 /// and update the analysis passes. 387 void updateAnalysis(); 388 389 /// This instruction is un-vectorizable. Implement it as a sequence 390 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 391 /// scalarized instruction behind an if block predicated on the control 392 /// dependence of the instruction. 393 virtual void scalarizeInstruction(Instruction *Instr, 394 bool IfPredicateStore = false); 395 396 /// Vectorize Load and Store instructions, 397 virtual void vectorizeMemoryInstruction(Instruction *Instr); 398 399 /// Create a broadcast instruction. This method generates a broadcast 400 /// instruction (shuffle) for loop invariant values and for the induction 401 /// value. If this is the induction variable then we extend it to N, N+1, ... 402 /// this is needed because each iteration in the loop corresponds to a SIMD 403 /// element. 404 virtual Value *getBroadcastInstrs(Value *V); 405 406 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 407 /// to each vector element of Val. The sequence starts at StartIndex. 408 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 409 410 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 411 /// to each vector element of Val. The sequence starts at StartIndex. 412 /// Step is a SCEV. In order to get StepValue it takes the existing value 413 /// from SCEV or creates a new using SCEVExpander. 414 virtual Value *getStepVector(Value *Val, int StartIdx, const SCEV *Step); 415 416 /// Create a vector induction variable based on an existing scalar one. 417 /// Currently only works for integer induction variables with a constant 418 /// step. 419 /// If TruncType is provided, instead of widening the original IV, we 420 /// widen a version of the IV truncated to TruncType. 421 void widenInductionVariable(const InductionDescriptor &II, VectorParts &Entry, 422 IntegerType *TruncType = nullptr); 423 424 /// When we go over instructions in the basic block we rely on previous 425 /// values within the current basic block or on loop invariant values. 426 /// When we widen (vectorize) values we place them in the map. If the values 427 /// are not within the map, they have to be loop invariant, so we simply 428 /// broadcast them into a vector. 429 VectorParts &getVectorValue(Value *V); 430 431 /// Try to vectorize the interleaved access group that \p Instr belongs to. 432 void vectorizeInterleaveGroup(Instruction *Instr); 433 434 /// Generate a shuffle sequence that will reverse the vector Vec. 435 virtual Value *reverseVector(Value *Vec); 436 437 /// Returns (and creates if needed) the original loop trip count. 438 Value *getOrCreateTripCount(Loop *NewLoop); 439 440 /// Returns (and creates if needed) the trip count of the widened loop. 441 Value *getOrCreateVectorTripCount(Loop *NewLoop); 442 443 /// Emit a bypass check to see if the trip count would overflow, or we 444 /// wouldn't have enough iterations to execute one vector loop. 445 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 446 /// Emit a bypass check to see if the vector trip count is nonzero. 447 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 448 /// Emit a bypass check to see if all of the SCEV assumptions we've 449 /// had to make are correct. 450 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 451 /// Emit bypass checks to check any memory assumptions we may have made. 452 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 453 454 /// Add additional metadata to \p To that was not present on \p Orig. 455 /// 456 /// Currently this is used to add the noalias annotations based on the 457 /// inserted memchecks. Use this for instructions that are *cloned* into the 458 /// vector loop. 459 void addNewMetadata(Instruction *To, const Instruction *Orig); 460 461 /// Add metadata from one instruction to another. 462 /// 463 /// This includes both the original MDs from \p From and additional ones (\see 464 /// addNewMetadata). Use this for *newly created* instructions in the vector 465 /// loop. 466 void addMetadata(Instruction *To, const Instruction *From); 467 468 /// \brief Similar to the previous function but it adds the metadata to a 469 /// vector of instructions. 470 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 471 472 /// This is a helper class that holds the vectorizer state. It maps scalar 473 /// instructions to vector instructions. When the code is 'unrolled' then 474 /// then a single scalar value is mapped to multiple vector parts. The parts 475 /// are stored in the VectorPart type. 476 struct ValueMap { 477 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 478 /// are mapped. 479 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 480 481 /// \return True if 'Key' is saved in the Value Map. 482 bool has(Value *Key) const { return MapStorage.count(Key); } 483 484 /// Initializes a new entry in the map. Sets all of the vector parts to the 485 /// save value in 'Val'. 486 /// \return A reference to a vector with splat values. 487 VectorParts &splat(Value *Key, Value *Val) { 488 VectorParts &Entry = MapStorage[Key]; 489 Entry.assign(UF, Val); 490 return Entry; 491 } 492 493 ///\return A reference to the value that is stored at 'Key'. 494 VectorParts &get(Value *Key) { 495 VectorParts &Entry = MapStorage[Key]; 496 if (Entry.empty()) 497 Entry.resize(UF); 498 assert(Entry.size() == UF); 499 return Entry; 500 } 501 502 private: 503 /// The unroll factor. Each entry in the map stores this number of vector 504 /// elements. 505 unsigned UF; 506 507 /// Map storage. We use std::map and not DenseMap because insertions to a 508 /// dense map invalidates its iterators. 509 std::map<Value *, VectorParts> MapStorage; 510 }; 511 512 /// The original loop. 513 Loop *OrigLoop; 514 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 515 /// dynamic knowledge to simplify SCEV expressions and converts them to a 516 /// more usable form. 517 PredicatedScalarEvolution &PSE; 518 /// Loop Info. 519 LoopInfo *LI; 520 /// Dominator Tree. 521 DominatorTree *DT; 522 /// Alias Analysis. 523 AliasAnalysis *AA; 524 /// Target Library Info. 525 const TargetLibraryInfo *TLI; 526 /// Target Transform Info. 527 const TargetTransformInfo *TTI; 528 /// Assumption Cache. 529 AssumptionCache *AC; 530 531 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 532 /// used. 533 /// 534 /// This is currently only used to add no-alias metadata based on the 535 /// memchecks. The actually versioning is performed manually. 536 std::unique_ptr<LoopVersioning> LVer; 537 538 /// The vectorization SIMD factor to use. Each vector will have this many 539 /// vector elements. 540 unsigned VF; 541 542 protected: 543 /// The vectorization unroll factor to use. Each scalar is vectorized to this 544 /// many different vector instructions. 545 unsigned UF; 546 547 /// The builder that we use 548 IRBuilder<> Builder; 549 550 // --- Vectorization state --- 551 552 /// The vector-loop preheader. 553 BasicBlock *LoopVectorPreHeader; 554 /// The scalar-loop preheader. 555 BasicBlock *LoopScalarPreHeader; 556 /// Middle Block between the vector and the scalar. 557 BasicBlock *LoopMiddleBlock; 558 /// The ExitBlock of the scalar loop. 559 BasicBlock *LoopExitBlock; 560 /// The vector loop body. 561 BasicBlock *LoopVectorBody; 562 /// The scalar loop body. 563 BasicBlock *LoopScalarBody; 564 /// A list of all bypass blocks. The first block is the entry of the loop. 565 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 566 567 /// The new Induction variable which was added to the new block. 568 PHINode *Induction; 569 /// The induction variable of the old basic block. 570 PHINode *OldInduction; 571 /// Maps scalars to widened vectors. 572 ValueMap WidenMap; 573 /// Store instructions that should be predicated, as a pair 574 /// <StoreInst, Predicate> 575 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores; 576 EdgeMaskCache MaskCache; 577 /// Trip count of the original loop. 578 Value *TripCount; 579 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 580 Value *VectorTripCount; 581 582 /// Map of scalar integer values to the smallest bitwidth they can be legally 583 /// represented as. The vector equivalents of these values should be truncated 584 /// to this type. 585 const MapVector<Instruction *, uint64_t> *MinBWs; 586 LoopVectorizationLegality *Legal; 587 588 // Record whether runtime checks are added. 589 bool AddedSafetyChecks; 590 }; 591 592 class InnerLoopUnroller : public InnerLoopVectorizer { 593 public: 594 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 595 LoopInfo *LI, DominatorTree *DT, 596 const TargetLibraryInfo *TLI, 597 const TargetTransformInfo *TTI, AssumptionCache *AC, 598 unsigned UnrollFactor) 599 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 600 UnrollFactor) {} 601 602 private: 603 void scalarizeInstruction(Instruction *Instr, 604 bool IfPredicateStore = false) override; 605 void vectorizeMemoryInstruction(Instruction *Instr) override; 606 Value *getBroadcastInstrs(Value *V) override; 607 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 608 Value *getStepVector(Value *Val, int StartIdx, const SCEV *StepSCEV) override; 609 Value *reverseVector(Value *Vec) override; 610 }; 611 612 /// \brief Look for a meaningful debug location on the instruction or it's 613 /// operands. 614 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 615 if (!I) 616 return I; 617 618 DebugLoc Empty; 619 if (I->getDebugLoc() != Empty) 620 return I; 621 622 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 623 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 624 if (OpInst->getDebugLoc() != Empty) 625 return OpInst; 626 } 627 628 return I; 629 } 630 631 /// \brief Set the debug location in the builder using the debug location in the 632 /// instruction. 633 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 634 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 635 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 636 else 637 B.SetCurrentDebugLocation(DebugLoc()); 638 } 639 640 #ifndef NDEBUG 641 /// \return string containing a file name and a line # for the given loop. 642 static std::string getDebugLocString(const Loop *L) { 643 std::string Result; 644 if (L) { 645 raw_string_ostream OS(Result); 646 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 647 LoopDbgLoc.print(OS); 648 else 649 // Just print the module name. 650 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 651 OS.flush(); 652 } 653 return Result; 654 } 655 #endif 656 657 /// \brief Propagate known metadata from one instruction to another. 658 static void propagateMetadata(Instruction *To, const Instruction *From) { 659 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 660 From->getAllMetadataOtherThanDebugLoc(Metadata); 661 662 for (auto M : Metadata) { 663 unsigned Kind = M.first; 664 665 // These are safe to transfer (this is safe for TBAA, even when we 666 // if-convert, because should that metadata have had a control dependency 667 // on the condition, and thus actually aliased with some other 668 // non-speculated memory access when the condition was false, this would be 669 // caught by the runtime overlap checks). 670 if (Kind != LLVMContext::MD_tbaa && Kind != LLVMContext::MD_alias_scope && 671 Kind != LLVMContext::MD_noalias && Kind != LLVMContext::MD_fpmath && 672 Kind != LLVMContext::MD_nontemporal) 673 continue; 674 675 To->setMetadata(Kind, M.second); 676 } 677 } 678 679 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 680 const Instruction *Orig) { 681 // If the loop was versioned with memchecks, add the corresponding no-alias 682 // metadata. 683 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 684 LVer->annotateInstWithNoAlias(To, Orig); 685 } 686 687 void InnerLoopVectorizer::addMetadata(Instruction *To, 688 const Instruction *From) { 689 propagateMetadata(To, From); 690 addNewMetadata(To, From); 691 } 692 693 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 694 const Instruction *From) { 695 for (Value *V : To) 696 if (Instruction *I = dyn_cast<Instruction>(V)) 697 addMetadata(I, From); 698 } 699 700 /// \brief The group of interleaved loads/stores sharing the same stride and 701 /// close to each other. 702 /// 703 /// Each member in this group has an index starting from 0, and the largest 704 /// index should be less than interleaved factor, which is equal to the absolute 705 /// value of the access's stride. 706 /// 707 /// E.g. An interleaved load group of factor 4: 708 /// for (unsigned i = 0; i < 1024; i+=4) { 709 /// a = A[i]; // Member of index 0 710 /// b = A[i+1]; // Member of index 1 711 /// d = A[i+3]; // Member of index 3 712 /// ... 713 /// } 714 /// 715 /// An interleaved store group of factor 4: 716 /// for (unsigned i = 0; i < 1024; i+=4) { 717 /// ... 718 /// A[i] = a; // Member of index 0 719 /// A[i+1] = b; // Member of index 1 720 /// A[i+2] = c; // Member of index 2 721 /// A[i+3] = d; // Member of index 3 722 /// } 723 /// 724 /// Note: the interleaved load group could have gaps (missing members), but 725 /// the interleaved store group doesn't allow gaps. 726 class InterleaveGroup { 727 public: 728 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 729 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 730 assert(Align && "The alignment should be non-zero"); 731 732 Factor = std::abs(Stride); 733 assert(Factor > 1 && "Invalid interleave factor"); 734 735 Reverse = Stride < 0; 736 Members[0] = Instr; 737 } 738 739 bool isReverse() const { return Reverse; } 740 unsigned getFactor() const { return Factor; } 741 unsigned getAlignment() const { return Align; } 742 unsigned getNumMembers() const { return Members.size(); } 743 744 /// \brief Try to insert a new member \p Instr with index \p Index and 745 /// alignment \p NewAlign. The index is related to the leader and it could be 746 /// negative if it is the new leader. 747 /// 748 /// \returns false if the instruction doesn't belong to the group. 749 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 750 assert(NewAlign && "The new member's alignment should be non-zero"); 751 752 int Key = Index + SmallestKey; 753 754 // Skip if there is already a member with the same index. 755 if (Members.count(Key)) 756 return false; 757 758 if (Key > LargestKey) { 759 // The largest index is always less than the interleave factor. 760 if (Index >= static_cast<int>(Factor)) 761 return false; 762 763 LargestKey = Key; 764 } else if (Key < SmallestKey) { 765 // The largest index is always less than the interleave factor. 766 if (LargestKey - Key >= static_cast<int>(Factor)) 767 return false; 768 769 SmallestKey = Key; 770 } 771 772 // It's always safe to select the minimum alignment. 773 Align = std::min(Align, NewAlign); 774 Members[Key] = Instr; 775 return true; 776 } 777 778 /// \brief Get the member with the given index \p Index 779 /// 780 /// \returns nullptr if contains no such member. 781 Instruction *getMember(unsigned Index) const { 782 int Key = SmallestKey + Index; 783 if (!Members.count(Key)) 784 return nullptr; 785 786 return Members.find(Key)->second; 787 } 788 789 /// \brief Get the index for the given member. Unlike the key in the member 790 /// map, the index starts from 0. 791 unsigned getIndex(Instruction *Instr) const { 792 for (auto I : Members) 793 if (I.second == Instr) 794 return I.first - SmallestKey; 795 796 llvm_unreachable("InterleaveGroup contains no such member"); 797 } 798 799 Instruction *getInsertPos() const { return InsertPos; } 800 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 801 802 private: 803 unsigned Factor; // Interleave Factor. 804 bool Reverse; 805 unsigned Align; 806 DenseMap<int, Instruction *> Members; 807 int SmallestKey; 808 int LargestKey; 809 810 // To avoid breaking dependences, vectorized instructions of an interleave 811 // group should be inserted at either the first load or the last store in 812 // program order. 813 // 814 // E.g. %even = load i32 // Insert Position 815 // %add = add i32 %even // Use of %even 816 // %odd = load i32 817 // 818 // store i32 %even 819 // %odd = add i32 // Def of %odd 820 // store i32 %odd // Insert Position 821 Instruction *InsertPos; 822 }; 823 824 /// \brief Drive the analysis of interleaved memory accesses in the loop. 825 /// 826 /// Use this class to analyze interleaved accesses only when we can vectorize 827 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 828 /// on interleaved accesses is unsafe. 829 /// 830 /// The analysis collects interleave groups and records the relationships 831 /// between the member and the group in a map. 832 class InterleavedAccessInfo { 833 public: 834 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 835 DominatorTree *DT, LoopInfo *LI) 836 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 837 RequiresScalarEpilogue(false) {} 838 839 ~InterleavedAccessInfo() { 840 SmallSet<InterleaveGroup *, 4> DelSet; 841 // Avoid releasing a pointer twice. 842 for (auto &I : InterleaveGroupMap) 843 DelSet.insert(I.second); 844 for (auto *Ptr : DelSet) 845 delete Ptr; 846 } 847 848 /// \brief Analyze the interleaved accesses and collect them in interleave 849 /// groups. Substitute symbolic strides using \p Strides. 850 void analyzeInterleaving(const ValueToValueMap &Strides); 851 852 /// \brief Check if \p Instr belongs to any interleave group. 853 bool isInterleaved(Instruction *Instr) const { 854 return InterleaveGroupMap.count(Instr); 855 } 856 857 /// \brief Return the maximum interleave factor of all interleaved groups. 858 unsigned getMaxInterleaveFactor() const { 859 unsigned MaxFactor = 1; 860 for (auto &Entry : InterleaveGroupMap) 861 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 862 return MaxFactor; 863 } 864 865 /// \brief Get the interleave group that \p Instr belongs to. 866 /// 867 /// \returns nullptr if doesn't have such group. 868 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 869 if (InterleaveGroupMap.count(Instr)) 870 return InterleaveGroupMap.find(Instr)->second; 871 return nullptr; 872 } 873 874 /// \brief Returns true if an interleaved group that may access memory 875 /// out-of-bounds requires a scalar epilogue iteration for correctness. 876 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 877 878 /// \brief Initialize the LoopAccessInfo used for dependence checking. 879 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 880 881 private: 882 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 883 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 884 /// The interleaved access analysis can also add new predicates (for example 885 /// by versioning strides of pointers). 886 PredicatedScalarEvolution &PSE; 887 Loop *TheLoop; 888 DominatorTree *DT; 889 LoopInfo *LI; 890 const LoopAccessInfo *LAI; 891 892 /// True if the loop may contain non-reversed interleaved groups with 893 /// out-of-bounds accesses. We ensure we don't speculatively access memory 894 /// out-of-bounds by executing at least one scalar epilogue iteration. 895 bool RequiresScalarEpilogue; 896 897 /// Holds the relationships between the members and the interleave group. 898 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 899 900 /// Holds dependences among the memory accesses in the loop. It maps a source 901 /// access to a set of dependent sink accesses. 902 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 903 904 /// \brief The descriptor for a strided memory access. 905 struct StrideDescriptor { 906 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 907 unsigned Align) 908 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 909 910 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 911 912 int Stride; // The access's stride. It is negative for a reverse access. 913 const SCEV *Scev; // The scalar expression of this access 914 unsigned Size; // The size of the memory object. 915 unsigned Align; // The alignment of this access. 916 }; 917 918 /// \brief A type for holding instructions and their stride descriptors. 919 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 920 921 /// \brief Create a new interleave group with the given instruction \p Instr, 922 /// stride \p Stride and alignment \p Align. 923 /// 924 /// \returns the newly created interleave group. 925 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 926 unsigned Align) { 927 assert(!InterleaveGroupMap.count(Instr) && 928 "Already in an interleaved access group"); 929 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 930 return InterleaveGroupMap[Instr]; 931 } 932 933 /// \brief Release the group and remove all the relationships. 934 void releaseGroup(InterleaveGroup *Group) { 935 for (unsigned i = 0; i < Group->getFactor(); i++) 936 if (Instruction *Member = Group->getMember(i)) 937 InterleaveGroupMap.erase(Member); 938 939 delete Group; 940 } 941 942 /// \brief Collect all the accesses with a constant stride in program order. 943 void collectConstStridedAccesses( 944 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 945 const ValueToValueMap &Strides); 946 947 /// \brief Returns true if \p Stride is allowed in an interleaved group. 948 static bool isStrided(int Stride) { 949 unsigned Factor = std::abs(Stride); 950 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 951 } 952 953 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 954 bool areDependencesValid() const { 955 return LAI && LAI->getDepChecker().getDependences(); 956 } 957 958 /// \brief Returns true if memory accesses \p B and \p A can be reordered, if 959 /// necessary, when constructing interleaved groups. 960 /// 961 /// \p B must precede \p A in program order. We return false if reordering is 962 /// not necessary or is prevented because \p B and \p A may be dependent. 963 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *B, 964 StrideEntry *A) const { 965 966 // Code motion for interleaved accesses can potentially hoist strided loads 967 // and sink strided stores. The code below checks the legality of the 968 // following two conditions: 969 // 970 // 1. Potentially moving a strided load (A) before any store (B) that 971 // precedes A, or 972 // 973 // 2. Potentially moving a strided store (B) after any load or store (A) 974 // that B precedes. 975 // 976 // It's legal to reorder B and A if we know there isn't a dependence from B 977 // to A. Note that this determination is conservative since some 978 // dependences could potentially be reordered safely. 979 980 // B is potentially the source of a dependence. 981 auto *Src = B->first; 982 auto SrcDes = B->second; 983 984 // A is potentially the sink of a dependence. 985 auto *Sink = A->first; 986 auto SinkDes = A->second; 987 988 // Code motion for interleaved accesses can't violate WAR dependences. 989 // Thus, reordering is legal if the source isn't a write. 990 if (!Src->mayWriteToMemory()) 991 return true; 992 993 // At least one of the accesses must be strided. 994 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 995 return true; 996 997 // If dependence information is not available from LoopAccessInfo, 998 // conservatively assume the instructions can't be reordered. 999 if (!areDependencesValid()) 1000 return false; 1001 1002 // If we know there is a dependence from source to sink, assume the 1003 // instructions can't be reordered. Otherwise, reordering is legal. 1004 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1005 } 1006 1007 /// \brief Collect the dependences from LoopAccessInfo. 1008 /// 1009 /// We process the dependences once during the interleaved access analysis to 1010 /// enable constant-time dependence queries. 1011 void collectDependences() { 1012 if (!areDependencesValid()) 1013 return; 1014 auto *Deps = LAI->getDepChecker().getDependences(); 1015 for (auto Dep : *Deps) 1016 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1017 } 1018 }; 1019 1020 /// Utility class for getting and setting loop vectorizer hints in the form 1021 /// of loop metadata. 1022 /// This class keeps a number of loop annotations locally (as member variables) 1023 /// and can, upon request, write them back as metadata on the loop. It will 1024 /// initially scan the loop for existing metadata, and will update the local 1025 /// values based on information in the loop. 1026 /// We cannot write all values to metadata, as the mere presence of some info, 1027 /// for example 'force', means a decision has been made. So, we need to be 1028 /// careful NOT to add them if the user hasn't specifically asked so. 1029 class LoopVectorizeHints { 1030 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1031 1032 /// Hint - associates name and validation with the hint value. 1033 struct Hint { 1034 const char *Name; 1035 unsigned Value; // This may have to change for non-numeric values. 1036 HintKind Kind; 1037 1038 Hint(const char *Name, unsigned Value, HintKind Kind) 1039 : Name(Name), Value(Value), Kind(Kind) {} 1040 1041 bool validate(unsigned Val) { 1042 switch (Kind) { 1043 case HK_WIDTH: 1044 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1045 case HK_UNROLL: 1046 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1047 case HK_FORCE: 1048 return (Val <= 1); 1049 } 1050 return false; 1051 } 1052 }; 1053 1054 /// Vectorization width. 1055 Hint Width; 1056 /// Vectorization interleave factor. 1057 Hint Interleave; 1058 /// Vectorization forced 1059 Hint Force; 1060 1061 /// Return the loop metadata prefix. 1062 static StringRef Prefix() { return "llvm.loop."; } 1063 1064 /// True if there is any unsafe math in the loop. 1065 bool PotentiallyUnsafe; 1066 1067 public: 1068 enum ForceKind { 1069 FK_Undefined = -1, ///< Not selected. 1070 FK_Disabled = 0, ///< Forcing disabled. 1071 FK_Enabled = 1, ///< Forcing enabled. 1072 }; 1073 1074 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1075 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1076 HK_WIDTH), 1077 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1078 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1079 PotentiallyUnsafe(false), TheLoop(L) { 1080 // Populate values with existing loop metadata. 1081 getHintsFromMetadata(); 1082 1083 // force-vector-interleave overrides DisableInterleaving. 1084 if (VectorizerParams::isInterleaveForced()) 1085 Interleave.Value = VectorizerParams::VectorizationInterleave; 1086 1087 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1088 << "LV: Interleaving disabled by the pass manager\n"); 1089 } 1090 1091 /// Mark the loop L as already vectorized by setting the width to 1. 1092 void setAlreadyVectorized() { 1093 Width.Value = Interleave.Value = 1; 1094 Hint Hints[] = {Width, Interleave}; 1095 writeHintsToMetadata(Hints); 1096 } 1097 1098 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1099 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1100 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1101 emitOptimizationRemarkAnalysis(F->getContext(), 1102 vectorizeAnalysisPassName(), *F, 1103 L->getStartLoc(), emitRemark()); 1104 return false; 1105 } 1106 1107 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1108 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1109 emitOptimizationRemarkAnalysis(F->getContext(), 1110 vectorizeAnalysisPassName(), *F, 1111 L->getStartLoc(), emitRemark()); 1112 return false; 1113 } 1114 1115 if (getWidth() == 1 && getInterleave() == 1) { 1116 // FIXME: Add a separate metadata to indicate when the loop has already 1117 // been vectorized instead of setting width and count to 1. 1118 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1119 // FIXME: Add interleave.disable metadata. This will allow 1120 // vectorize.disable to be used without disabling the pass and errors 1121 // to differentiate between disabled vectorization and a width of 1. 1122 emitOptimizationRemarkAnalysis( 1123 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1124 "loop not vectorized: vectorization and interleaving are explicitly " 1125 "disabled, or vectorize width and interleave count are both set to " 1126 "1"); 1127 return false; 1128 } 1129 1130 return true; 1131 } 1132 1133 /// Dumps all the hint information. 1134 std::string emitRemark() const { 1135 VectorizationReport R; 1136 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1137 R << "vectorization is explicitly disabled"; 1138 else { 1139 R << "use -Rpass-analysis=loop-vectorize for more info"; 1140 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1141 R << " (Force=true"; 1142 if (Width.Value != 0) 1143 R << ", Vector Width=" << Width.Value; 1144 if (Interleave.Value != 0) 1145 R << ", Interleave Count=" << Interleave.Value; 1146 R << ")"; 1147 } 1148 } 1149 1150 return R.str(); 1151 } 1152 1153 unsigned getWidth() const { return Width.Value; } 1154 unsigned getInterleave() const { return Interleave.Value; } 1155 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1156 const char *vectorizeAnalysisPassName() const { 1157 // If hints are provided that don't disable vectorization use the 1158 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1159 if (getWidth() == 1) 1160 return LV_NAME; 1161 if (getForce() == LoopVectorizeHints::FK_Disabled) 1162 return LV_NAME; 1163 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1164 return LV_NAME; 1165 return DiagnosticInfo::AlwaysPrint; 1166 } 1167 1168 bool allowReordering() const { 1169 // When enabling loop hints are provided we allow the vectorizer to change 1170 // the order of operations that is given by the scalar loop. This is not 1171 // enabled by default because can be unsafe or inefficient. For example, 1172 // reordering floating-point operations will change the way round-off 1173 // error accumulates in the loop. 1174 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1175 } 1176 1177 bool isPotentiallyUnsafe() const { 1178 // Avoid FP vectorization if the target is unsure about proper support. 1179 // This may be related to the SIMD unit in the target not handling 1180 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1181 // Otherwise, a sequence of vectorized loops, even without reduction, 1182 // could lead to different end results on the destination vectors. 1183 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1184 } 1185 1186 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1187 1188 private: 1189 /// Find hints specified in the loop metadata and update local values. 1190 void getHintsFromMetadata() { 1191 MDNode *LoopID = TheLoop->getLoopID(); 1192 if (!LoopID) 1193 return; 1194 1195 // First operand should refer to the loop id itself. 1196 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1197 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1198 1199 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1200 const MDString *S = nullptr; 1201 SmallVector<Metadata *, 4> Args; 1202 1203 // The expected hint is either a MDString or a MDNode with the first 1204 // operand a MDString. 1205 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1206 if (!MD || MD->getNumOperands() == 0) 1207 continue; 1208 S = dyn_cast<MDString>(MD->getOperand(0)); 1209 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1210 Args.push_back(MD->getOperand(i)); 1211 } else { 1212 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1213 assert(Args.size() == 0 && "too many arguments for MDString"); 1214 } 1215 1216 if (!S) 1217 continue; 1218 1219 // Check if the hint starts with the loop metadata prefix. 1220 StringRef Name = S->getString(); 1221 if (Args.size() == 1) 1222 setHint(Name, Args[0]); 1223 } 1224 } 1225 1226 /// Checks string hint with one operand and set value if valid. 1227 void setHint(StringRef Name, Metadata *Arg) { 1228 if (!Name.startswith(Prefix())) 1229 return; 1230 Name = Name.substr(Prefix().size(), StringRef::npos); 1231 1232 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1233 if (!C) 1234 return; 1235 unsigned Val = C->getZExtValue(); 1236 1237 Hint *Hints[] = {&Width, &Interleave, &Force}; 1238 for (auto H : Hints) { 1239 if (Name == H->Name) { 1240 if (H->validate(Val)) 1241 H->Value = Val; 1242 else 1243 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1244 break; 1245 } 1246 } 1247 } 1248 1249 /// Create a new hint from name / value pair. 1250 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1251 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1252 Metadata *MDs[] = {MDString::get(Context, Name), 1253 ConstantAsMetadata::get( 1254 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1255 return MDNode::get(Context, MDs); 1256 } 1257 1258 /// Matches metadata with hint name. 1259 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1260 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1261 if (!Name) 1262 return false; 1263 1264 for (auto H : HintTypes) 1265 if (Name->getString().endswith(H.Name)) 1266 return true; 1267 return false; 1268 } 1269 1270 /// Sets current hints into loop metadata, keeping other values intact. 1271 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1272 if (HintTypes.size() == 0) 1273 return; 1274 1275 // Reserve the first element to LoopID (see below). 1276 SmallVector<Metadata *, 4> MDs(1); 1277 // If the loop already has metadata, then ignore the existing operands. 1278 MDNode *LoopID = TheLoop->getLoopID(); 1279 if (LoopID) { 1280 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1281 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1282 // If node in update list, ignore old value. 1283 if (!matchesHintMetadataName(Node, HintTypes)) 1284 MDs.push_back(Node); 1285 } 1286 } 1287 1288 // Now, add the missing hints. 1289 for (auto H : HintTypes) 1290 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1291 1292 // Replace current metadata node with new one. 1293 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1294 MDNode *NewLoopID = MDNode::get(Context, MDs); 1295 // Set operand 0 to refer to the loop id itself. 1296 NewLoopID->replaceOperandWith(0, NewLoopID); 1297 1298 TheLoop->setLoopID(NewLoopID); 1299 } 1300 1301 /// The loop these hints belong to. 1302 const Loop *TheLoop; 1303 }; 1304 1305 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1306 const LoopVectorizeHints &Hints, 1307 const LoopAccessReport &Message) { 1308 const char *Name = Hints.vectorizeAnalysisPassName(); 1309 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1310 } 1311 1312 static void emitMissedWarning(Function *F, Loop *L, 1313 const LoopVectorizeHints &LH) { 1314 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1315 LH.emitRemark()); 1316 1317 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1318 if (LH.getWidth() != 1) 1319 emitLoopVectorizeWarning( 1320 F->getContext(), *F, L->getStartLoc(), 1321 "failed explicitly specified loop vectorization"); 1322 else if (LH.getInterleave() != 1) 1323 emitLoopInterleaveWarning( 1324 F->getContext(), *F, L->getStartLoc(), 1325 "failed explicitly specified loop interleaving"); 1326 } 1327 } 1328 1329 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1330 /// to what vectorization factor. 1331 /// This class does not look at the profitability of vectorization, only the 1332 /// legality. This class has two main kinds of checks: 1333 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1334 /// will change the order of memory accesses in a way that will change the 1335 /// correctness of the program. 1336 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1337 /// checks for a number of different conditions, such as the availability of a 1338 /// single induction variable, that all types are supported and vectorize-able, 1339 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1340 /// This class is also used by InnerLoopVectorizer for identifying 1341 /// induction variable and the different reduction variables. 1342 class LoopVectorizationLegality { 1343 public: 1344 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1345 DominatorTree *DT, TargetLibraryInfo *TLI, 1346 AliasAnalysis *AA, Function *F, 1347 const TargetTransformInfo *TTI, 1348 LoopAccessAnalysis *LAA, LoopInfo *LI, 1349 LoopVectorizationRequirements *R, 1350 LoopVectorizeHints *H) 1351 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1352 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), 1353 InterleaveInfo(PSE, L, DT, LI), Induction(nullptr), 1354 WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R), 1355 Hints(H) {} 1356 1357 /// ReductionList contains the reduction descriptors for all 1358 /// of the reductions that were found in the loop. 1359 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1360 1361 /// InductionList saves induction variables and maps them to the 1362 /// induction descriptor. 1363 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1364 1365 /// RecurrenceSet contains the phi nodes that are recurrences other than 1366 /// inductions and reductions. 1367 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1368 1369 /// Returns true if it is legal to vectorize this loop. 1370 /// This does not mean that it is profitable to vectorize this 1371 /// loop, only that it is legal to do so. 1372 bool canVectorize(); 1373 1374 /// Returns the Induction variable. 1375 PHINode *getInduction() { return Induction; } 1376 1377 /// Returns the reduction variables found in the loop. 1378 ReductionList *getReductionVars() { return &Reductions; } 1379 1380 /// Returns the induction variables found in the loop. 1381 InductionList *getInductionVars() { return &Inductions; } 1382 1383 /// Return the first-order recurrences found in the loop. 1384 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1385 1386 /// Returns the widest induction type. 1387 Type *getWidestInductionType() { return WidestIndTy; } 1388 1389 /// Returns True if V is an induction variable in this loop. 1390 bool isInductionVariable(const Value *V); 1391 1392 /// Returns True if PN is a reduction variable in this loop. 1393 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1394 1395 /// Returns True if Phi is a first-order recurrence in this loop. 1396 bool isFirstOrderRecurrence(const PHINode *Phi); 1397 1398 /// Return true if the block BB needs to be predicated in order for the loop 1399 /// to be vectorized. 1400 bool blockNeedsPredication(BasicBlock *BB); 1401 1402 /// Check if this pointer is consecutive when vectorizing. This happens 1403 /// when the last index of the GEP is the induction variable, or that the 1404 /// pointer itself is an induction variable. 1405 /// This check allows us to vectorize A[idx] into a wide load/store. 1406 /// Returns: 1407 /// 0 - Stride is unknown or non-consecutive. 1408 /// 1 - Address is consecutive. 1409 /// -1 - Address is consecutive, and decreasing. 1410 int isConsecutivePtr(Value *Ptr); 1411 1412 /// Returns true if the value V is uniform within the loop. 1413 bool isUniform(Value *V); 1414 1415 /// Returns true if this instruction will remain scalar after vectorization. 1416 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1417 1418 /// Returns the information that we collected about runtime memory check. 1419 const RuntimePointerChecking *getRuntimePointerChecking() const { 1420 return LAI->getRuntimePointerChecking(); 1421 } 1422 1423 const LoopAccessInfo *getLAI() const { return LAI; } 1424 1425 /// \brief Check if \p Instr belongs to any interleaved access group. 1426 bool isAccessInterleaved(Instruction *Instr) { 1427 return InterleaveInfo.isInterleaved(Instr); 1428 } 1429 1430 /// \brief Return the maximum interleave factor of all interleaved groups. 1431 unsigned getMaxInterleaveFactor() const { 1432 return InterleaveInfo.getMaxInterleaveFactor(); 1433 } 1434 1435 /// \brief Get the interleaved access group that \p Instr belongs to. 1436 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1437 return InterleaveInfo.getInterleaveGroup(Instr); 1438 } 1439 1440 /// \brief Returns true if an interleaved group requires a scalar iteration 1441 /// to handle accesses with gaps. 1442 bool requiresScalarEpilogue() const { 1443 return InterleaveInfo.requiresScalarEpilogue(); 1444 } 1445 1446 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1447 1448 bool hasStride(Value *V) { return LAI->hasStride(V); } 1449 1450 /// Returns true if the target machine supports masked store operation 1451 /// for the given \p DataType and kind of access to \p Ptr. 1452 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1453 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1454 } 1455 /// Returns true if the target machine supports masked load operation 1456 /// for the given \p DataType and kind of access to \p Ptr. 1457 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1458 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1459 } 1460 /// Returns true if the target machine supports masked scatter operation 1461 /// for the given \p DataType. 1462 bool isLegalMaskedScatter(Type *DataType) { 1463 return TTI->isLegalMaskedScatter(DataType); 1464 } 1465 /// Returns true if the target machine supports masked gather operation 1466 /// for the given \p DataType. 1467 bool isLegalMaskedGather(Type *DataType) { 1468 return TTI->isLegalMaskedGather(DataType); 1469 } 1470 1471 /// Returns true if vector representation of the instruction \p I 1472 /// requires mask. 1473 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1474 unsigned getNumStores() const { return LAI->getNumStores(); } 1475 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1476 unsigned getNumPredStores() const { return NumPredStores; } 1477 1478 private: 1479 /// Check if a single basic block loop is vectorizable. 1480 /// At this point we know that this is a loop with a constant trip count 1481 /// and we only need to check individual instructions. 1482 bool canVectorizeInstrs(); 1483 1484 /// When we vectorize loops we may change the order in which 1485 /// we read and write from memory. This method checks if it is 1486 /// legal to vectorize the code, considering only memory constrains. 1487 /// Returns true if the loop is vectorizable 1488 bool canVectorizeMemory(); 1489 1490 /// Return true if we can vectorize this loop using the IF-conversion 1491 /// transformation. 1492 bool canVectorizeWithIfConvert(); 1493 1494 /// Collect the variables that need to stay uniform after vectorization. 1495 void collectLoopUniforms(); 1496 1497 /// Return true if all of the instructions in the block can be speculatively 1498 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1499 /// and we know that we can read from them without segfault. 1500 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1501 1502 /// Updates the vectorization state by adding \p Phi to the inductions list. 1503 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1504 /// better choice for the main induction than the existing one. 1505 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1506 SmallPtrSetImpl<Value *> &AllowedExit); 1507 1508 /// Report an analysis message to assist the user in diagnosing loops that are 1509 /// not vectorized. These are handled as LoopAccessReport rather than 1510 /// VectorizationReport because the << operator of VectorizationReport returns 1511 /// LoopAccessReport. 1512 void emitAnalysis(const LoopAccessReport &Message) const { 1513 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1514 } 1515 1516 /// \brief If an access has a symbolic strides, this maps the pointer value to 1517 /// the stride symbol. 1518 const ValueToValueMap *getSymbolicStrides() { 1519 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1520 // it's collected. This happens from canVectorizeWithIfConvert, when the 1521 // pointer is checked to reference consecutive elements suitable for a 1522 // masked access. 1523 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1524 } 1525 1526 unsigned NumPredStores; 1527 1528 /// The loop that we evaluate. 1529 Loop *TheLoop; 1530 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1531 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1532 /// of existing SCEV assumptions. The analysis will also add a minimal set 1533 /// of new predicates if this is required to enable vectorization and 1534 /// unrolling. 1535 PredicatedScalarEvolution &PSE; 1536 /// Target Library Info. 1537 TargetLibraryInfo *TLI; 1538 /// Parent function 1539 Function *TheFunction; 1540 /// Target Transform Info 1541 const TargetTransformInfo *TTI; 1542 /// Dominator Tree. 1543 DominatorTree *DT; 1544 // LoopAccess analysis. 1545 LoopAccessAnalysis *LAA; 1546 // And the loop-accesses info corresponding to this loop. This pointer is 1547 // null until canVectorizeMemory sets it up. 1548 const LoopAccessInfo *LAI; 1549 1550 /// The interleave access information contains groups of interleaved accesses 1551 /// with the same stride and close to each other. 1552 InterleavedAccessInfo InterleaveInfo; 1553 1554 // --- vectorization state --- // 1555 1556 /// Holds the integer induction variable. This is the counter of the 1557 /// loop. 1558 PHINode *Induction; 1559 /// Holds the reduction variables. 1560 ReductionList Reductions; 1561 /// Holds all of the induction variables that we found in the loop. 1562 /// Notice that inductions don't need to start at zero and that induction 1563 /// variables can be pointers. 1564 InductionList Inductions; 1565 /// Holds the phi nodes that are first-order recurrences. 1566 RecurrenceSet FirstOrderRecurrences; 1567 /// Holds the widest induction type encountered. 1568 Type *WidestIndTy; 1569 1570 /// Allowed outside users. This holds the induction and reduction 1571 /// vars which can be accessed from outside the loop. 1572 SmallPtrSet<Value *, 4> AllowedExit; 1573 /// This set holds the variables which are known to be uniform after 1574 /// vectorization. 1575 SmallPtrSet<Instruction *, 4> Uniforms; 1576 1577 /// Can we assume the absence of NaNs. 1578 bool HasFunNoNaNAttr; 1579 1580 /// Vectorization requirements that will go through late-evaluation. 1581 LoopVectorizationRequirements *Requirements; 1582 1583 /// Used to emit an analysis of any legality issues. 1584 LoopVectorizeHints *Hints; 1585 1586 /// While vectorizing these instructions we have to generate a 1587 /// call to the appropriate masked intrinsic 1588 SmallPtrSet<const Instruction *, 8> MaskedOp; 1589 }; 1590 1591 /// LoopVectorizationCostModel - estimates the expected speedups due to 1592 /// vectorization. 1593 /// In many cases vectorization is not profitable. This can happen because of 1594 /// a number of reasons. In this class we mainly attempt to predict the 1595 /// expected speedup/slowdowns due to the supported instruction set. We use the 1596 /// TargetTransformInfo to query the different backends for the cost of 1597 /// different operations. 1598 class LoopVectorizationCostModel { 1599 public: 1600 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1601 LoopInfo *LI, LoopVectorizationLegality *Legal, 1602 const TargetTransformInfo &TTI, 1603 const TargetLibraryInfo *TLI, DemandedBits *DB, 1604 AssumptionCache *AC, const Function *F, 1605 const LoopVectorizeHints *Hints) 1606 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1607 AC(AC), TheFunction(F), Hints(Hints) {} 1608 1609 /// Information about vectorization costs 1610 struct VectorizationFactor { 1611 unsigned Width; // Vector width with best cost 1612 unsigned Cost; // Cost of the loop with that width 1613 }; 1614 /// \return The most profitable vectorization factor and the cost of that VF. 1615 /// This method checks every power of two up to VF. If UserVF is not ZERO 1616 /// then this vectorization factor will be selected if vectorization is 1617 /// possible. 1618 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1619 1620 /// \return The size (in bits) of the smallest and widest types in the code 1621 /// that needs to be vectorized. We ignore values that remain scalar such as 1622 /// 64 bit loop indices. 1623 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1624 1625 /// \return The desired interleave count. 1626 /// If interleave count has been specified by metadata it will be returned. 1627 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1628 /// are the selected vectorization factor and the cost of the selected VF. 1629 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1630 unsigned LoopCost); 1631 1632 /// \return The most profitable unroll factor. 1633 /// This method finds the best unroll-factor based on register pressure and 1634 /// other parameters. VF and LoopCost are the selected vectorization factor 1635 /// and the cost of the selected VF. 1636 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1637 unsigned LoopCost); 1638 1639 /// \brief A struct that represents some properties of the register usage 1640 /// of a loop. 1641 struct RegisterUsage { 1642 /// Holds the number of loop invariant values that are used in the loop. 1643 unsigned LoopInvariantRegs; 1644 /// Holds the maximum number of concurrent live intervals in the loop. 1645 unsigned MaxLocalUsers; 1646 /// Holds the number of instructions in the loop. 1647 unsigned NumInstructions; 1648 }; 1649 1650 /// \return Returns information about the register usages of the loop for the 1651 /// given vectorization factors. 1652 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1653 1654 /// Collect values we want to ignore in the cost model. 1655 void collectValuesToIgnore(); 1656 1657 private: 1658 /// The vectorization cost is a combination of the cost itself and a boolean 1659 /// indicating whether any of the contributing operations will actually 1660 /// operate on 1661 /// vector values after type legalization in the backend. If this latter value 1662 /// is 1663 /// false, then all operations will be scalarized (i.e. no vectorization has 1664 /// actually taken place). 1665 typedef std::pair<unsigned, bool> VectorizationCostTy; 1666 1667 /// Returns the expected execution cost. The unit of the cost does 1668 /// not matter because we use the 'cost' units to compare different 1669 /// vector widths. The cost that is returned is *not* normalized by 1670 /// the factor width. 1671 VectorizationCostTy expectedCost(unsigned VF); 1672 1673 /// Returns the execution time cost of an instruction for a given vector 1674 /// width. Vector width of one means scalar. 1675 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1676 1677 /// The cost-computation logic from getInstructionCost which provides 1678 /// the vector type as an output parameter. 1679 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1680 1681 /// Returns whether the instruction is a load or store and will be a emitted 1682 /// as a vector operation. 1683 bool isConsecutiveLoadOrStore(Instruction *I); 1684 1685 /// Report an analysis message to assist the user in diagnosing loops that are 1686 /// not vectorized. These are handled as LoopAccessReport rather than 1687 /// VectorizationReport because the << operator of VectorizationReport returns 1688 /// LoopAccessReport. 1689 void emitAnalysis(const LoopAccessReport &Message) const { 1690 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1691 } 1692 1693 public: 1694 /// Map of scalar integer values to the smallest bitwidth they can be legally 1695 /// represented as. The vector equivalents of these values should be truncated 1696 /// to this type. 1697 MapVector<Instruction *, uint64_t> MinBWs; 1698 1699 /// The loop that we evaluate. 1700 Loop *TheLoop; 1701 /// Predicated scalar evolution analysis. 1702 PredicatedScalarEvolution &PSE; 1703 /// Loop Info analysis. 1704 LoopInfo *LI; 1705 /// Vectorization legality. 1706 LoopVectorizationLegality *Legal; 1707 /// Vector target information. 1708 const TargetTransformInfo &TTI; 1709 /// Target Library Info. 1710 const TargetLibraryInfo *TLI; 1711 /// Demanded bits analysis. 1712 DemandedBits *DB; 1713 /// Assumption cache. 1714 AssumptionCache *AC; 1715 const Function *TheFunction; 1716 /// Loop Vectorize Hint. 1717 const LoopVectorizeHints *Hints; 1718 /// Values to ignore in the cost model. 1719 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1720 /// Values to ignore in the cost model when VF > 1. 1721 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1722 }; 1723 1724 /// \brief This holds vectorization requirements that must be verified late in 1725 /// the process. The requirements are set by legalize and costmodel. Once 1726 /// vectorization has been determined to be possible and profitable the 1727 /// requirements can be verified by looking for metadata or compiler options. 1728 /// For example, some loops require FP commutativity which is only allowed if 1729 /// vectorization is explicitly specified or if the fast-math compiler option 1730 /// has been provided. 1731 /// Late evaluation of these requirements allows helpful diagnostics to be 1732 /// composed that tells the user what need to be done to vectorize the loop. For 1733 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1734 /// evaluation should be used only when diagnostics can generated that can be 1735 /// followed by a non-expert user. 1736 class LoopVectorizationRequirements { 1737 public: 1738 LoopVectorizationRequirements() 1739 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1740 1741 void addUnsafeAlgebraInst(Instruction *I) { 1742 // First unsafe algebra instruction. 1743 if (!UnsafeAlgebraInst) 1744 UnsafeAlgebraInst = I; 1745 } 1746 1747 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1748 1749 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1750 const char *Name = Hints.vectorizeAnalysisPassName(); 1751 bool Failed = false; 1752 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1753 emitOptimizationRemarkAnalysisFPCommute( 1754 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1755 VectorizationReport() << "cannot prove it is safe to reorder " 1756 "floating-point operations"); 1757 Failed = true; 1758 } 1759 1760 // Test if runtime memcheck thresholds are exceeded. 1761 bool PragmaThresholdReached = 1762 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1763 bool ThresholdReached = 1764 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1765 if ((ThresholdReached && !Hints.allowReordering()) || 1766 PragmaThresholdReached) { 1767 emitOptimizationRemarkAnalysisAliasing( 1768 F->getContext(), Name, *F, L->getStartLoc(), 1769 VectorizationReport() 1770 << "cannot prove it is safe to reorder memory operations"); 1771 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1772 Failed = true; 1773 } 1774 1775 return Failed; 1776 } 1777 1778 private: 1779 unsigned NumRuntimePointerChecks; 1780 Instruction *UnsafeAlgebraInst; 1781 }; 1782 1783 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1784 if (L.empty()) 1785 return V.push_back(&L); 1786 1787 for (Loop *InnerL : L) 1788 addInnerLoop(*InnerL, V); 1789 } 1790 1791 /// The LoopVectorize Pass. 1792 struct LoopVectorize : public FunctionPass { 1793 /// Pass identification, replacement for typeid 1794 static char ID; 1795 1796 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1797 : FunctionPass(ID), DisableUnrolling(NoUnrolling), 1798 AlwaysVectorize(AlwaysVectorize) { 1799 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1800 } 1801 1802 ScalarEvolution *SE; 1803 LoopInfo *LI; 1804 TargetTransformInfo *TTI; 1805 DominatorTree *DT; 1806 BlockFrequencyInfo *BFI; 1807 TargetLibraryInfo *TLI; 1808 DemandedBits *DB; 1809 AliasAnalysis *AA; 1810 AssumptionCache *AC; 1811 LoopAccessAnalysis *LAA; 1812 bool DisableUnrolling; 1813 bool AlwaysVectorize; 1814 1815 BlockFrequency ColdEntryFreq; 1816 1817 bool runOnFunction(Function &F) override { 1818 if (skipFunction(F)) 1819 return false; 1820 1821 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1822 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1823 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1824 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1825 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1826 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1827 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1828 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1829 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1830 LAA = &getAnalysis<LoopAccessAnalysis>(); 1831 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1832 1833 // Compute some weights outside of the loop over the loops. Compute this 1834 // using a BranchProbability to re-use its scaling math. 1835 const BranchProbability ColdProb(1, 5); // 20% 1836 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1837 1838 // Don't attempt if 1839 // 1. the target claims to have no vector registers, and 1840 // 2. interleaving won't help ILP. 1841 // 1842 // The second condition is necessary because, even if the target has no 1843 // vector registers, loop vectorization may still enable scalar 1844 // interleaving. 1845 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1846 return false; 1847 1848 // Build up a worklist of inner-loops to vectorize. This is necessary as 1849 // the act of vectorizing or partially unrolling a loop creates new loops 1850 // and can invalidate iterators across the loops. 1851 SmallVector<Loop *, 8> Worklist; 1852 1853 for (Loop *L : *LI) 1854 addInnerLoop(*L, Worklist); 1855 1856 LoopsAnalyzed += Worklist.size(); 1857 1858 // Now walk the identified inner loops. 1859 bool Changed = false; 1860 while (!Worklist.empty()) 1861 Changed |= processLoop(Worklist.pop_back_val()); 1862 1863 // Process each loop nest in the function. 1864 return Changed; 1865 } 1866 1867 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1868 SmallVector<Metadata *, 4> MDs; 1869 // Reserve first location for self reference to the LoopID metadata node. 1870 MDs.push_back(nullptr); 1871 bool IsUnrollMetadata = false; 1872 MDNode *LoopID = L->getLoopID(); 1873 if (LoopID) { 1874 // First find existing loop unrolling disable metadata. 1875 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1876 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1877 if (MD) { 1878 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1879 IsUnrollMetadata = 1880 S && S->getString().startswith("llvm.loop.unroll.disable"); 1881 } 1882 MDs.push_back(LoopID->getOperand(i)); 1883 } 1884 } 1885 1886 if (!IsUnrollMetadata) { 1887 // Add runtime unroll disable metadata. 1888 LLVMContext &Context = L->getHeader()->getContext(); 1889 SmallVector<Metadata *, 1> DisableOperands; 1890 DisableOperands.push_back( 1891 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1892 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1893 MDs.push_back(DisableNode); 1894 MDNode *NewLoopID = MDNode::get(Context, MDs); 1895 // Set operand 0 to refer to the loop id itself. 1896 NewLoopID->replaceOperandWith(0, NewLoopID); 1897 L->setLoopID(NewLoopID); 1898 } 1899 } 1900 1901 bool processLoop(Loop *L) { 1902 assert(L->empty() && "Only process inner loops."); 1903 1904 #ifndef NDEBUG 1905 const std::string DebugLocStr = getDebugLocString(L); 1906 #endif /* NDEBUG */ 1907 1908 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1909 << L->getHeader()->getParent()->getName() << "\" from " 1910 << DebugLocStr << "\n"); 1911 1912 LoopVectorizeHints Hints(L, DisableUnrolling); 1913 1914 DEBUG(dbgs() << "LV: Loop hints:" 1915 << " force=" 1916 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1917 ? "disabled" 1918 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1919 ? "enabled" 1920 : "?")) 1921 << " width=" << Hints.getWidth() 1922 << " unroll=" << Hints.getInterleave() << "\n"); 1923 1924 // Function containing loop 1925 Function *F = L->getHeader()->getParent(); 1926 1927 // Looking at the diagnostic output is the only way to determine if a loop 1928 // was vectorized (other than looking at the IR or machine code), so it 1929 // is important to generate an optimization remark for each loop. Most of 1930 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1931 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1932 // less verbose reporting vectorized loops and unvectorized loops that may 1933 // benefit from vectorization, respectively. 1934 1935 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1936 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1937 return false; 1938 } 1939 1940 // Check the loop for a trip count threshold: 1941 // do not vectorize loops with a tiny trip count. 1942 const unsigned TC = SE->getSmallConstantTripCount(L); 1943 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1944 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1945 << "This loop is not worth vectorizing."); 1946 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1947 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1948 else { 1949 DEBUG(dbgs() << "\n"); 1950 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1951 << "vectorization is not beneficial " 1952 "and is not explicitly forced"); 1953 return false; 1954 } 1955 } 1956 1957 PredicatedScalarEvolution PSE(*SE, *L); 1958 1959 // Check if it is legal to vectorize the loop. 1960 LoopVectorizationRequirements Requirements; 1961 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, LI, 1962 &Requirements, &Hints); 1963 if (!LVL.canVectorize()) { 1964 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1965 emitMissedWarning(F, L, Hints); 1966 return false; 1967 } 1968 1969 // Use the cost model. 1970 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F, 1971 &Hints); 1972 CM.collectValuesToIgnore(); 1973 1974 // Check the function attributes to find out if this function should be 1975 // optimized for size. 1976 bool OptForSize = 1977 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 1978 1979 // Compute the weighted frequency of this loop being executed and see if it 1980 // is less than 20% of the function entry baseline frequency. Note that we 1981 // always have a canonical loop here because we think we *can* vectorize. 1982 // FIXME: This is hidden behind a flag due to pervasive problems with 1983 // exactly what block frequency models. 1984 if (LoopVectorizeWithBlockFrequency) { 1985 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1986 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1987 LoopEntryFreq < ColdEntryFreq) 1988 OptForSize = true; 1989 } 1990 1991 // Check the function attributes to see if implicit floats are allowed. 1992 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1993 // an integer loop and the vector instructions selected are purely integer 1994 // vector instructions? 1995 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1996 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1997 "attribute is used.\n"); 1998 emitAnalysisDiag( 1999 F, L, Hints, 2000 VectorizationReport() 2001 << "loop not vectorized due to NoImplicitFloat attribute"); 2002 emitMissedWarning(F, L, Hints); 2003 return false; 2004 } 2005 2006 // Check if the target supports potentially unsafe FP vectorization. 2007 // FIXME: Add a check for the type of safety issue (denormal, signaling) 2008 // for the target we're vectorizing for, to make sure none of the 2009 // additional fp-math flags can help. 2010 if (Hints.isPotentiallyUnsafe() && 2011 TTI->isFPVectorizationPotentiallyUnsafe()) { 2012 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 2013 emitAnalysisDiag(F, L, Hints, 2014 VectorizationReport() 2015 << "loop not vectorized due to unsafe FP support."); 2016 emitMissedWarning(F, L, Hints); 2017 return false; 2018 } 2019 2020 // Select the optimal vectorization factor. 2021 const LoopVectorizationCostModel::VectorizationFactor VF = 2022 CM.selectVectorizationFactor(OptForSize); 2023 2024 // Select the interleave count. 2025 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 2026 2027 // Get user interleave count. 2028 unsigned UserIC = Hints.getInterleave(); 2029 2030 // Identify the diagnostic messages that should be produced. 2031 std::string VecDiagMsg, IntDiagMsg; 2032 bool VectorizeLoop = true, InterleaveLoop = true; 2033 2034 if (Requirements.doesNotMeet(F, L, Hints)) { 2035 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 2036 "requirements.\n"); 2037 emitMissedWarning(F, L, Hints); 2038 return false; 2039 } 2040 2041 if (VF.Width == 1) { 2042 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 2043 VecDiagMsg = 2044 "the cost-model indicates that vectorization is not beneficial"; 2045 VectorizeLoop = false; 2046 } 2047 2048 if (IC == 1 && UserIC <= 1) { 2049 // Tell the user interleaving is not beneficial. 2050 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 2051 IntDiagMsg = 2052 "the cost-model indicates that interleaving is not beneficial"; 2053 InterleaveLoop = false; 2054 if (UserIC == 1) 2055 IntDiagMsg += 2056 " and is explicitly disabled or interleave count is set to 1"; 2057 } else if (IC > 1 && UserIC == 1) { 2058 // Tell the user interleaving is beneficial, but it explicitly disabled. 2059 DEBUG(dbgs() 2060 << "LV: Interleaving is beneficial but is explicitly disabled."); 2061 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 2062 "but is explicitly disabled or interleave count is set to 1"; 2063 InterleaveLoop = false; 2064 } 2065 2066 // Override IC if user provided an interleave count. 2067 IC = UserIC > 0 ? UserIC : IC; 2068 2069 // Emit diagnostic messages, if any. 2070 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 2071 if (!VectorizeLoop && !InterleaveLoop) { 2072 // Do not vectorize or interleaving the loop. 2073 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2074 L->getStartLoc(), VecDiagMsg); 2075 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2076 L->getStartLoc(), IntDiagMsg); 2077 return false; 2078 } else if (!VectorizeLoop && InterleaveLoop) { 2079 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2080 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2081 L->getStartLoc(), VecDiagMsg); 2082 } else if (VectorizeLoop && !InterleaveLoop) { 2083 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2084 << DebugLocStr << '\n'); 2085 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2086 L->getStartLoc(), IntDiagMsg); 2087 } else if (VectorizeLoop && InterleaveLoop) { 2088 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2089 << DebugLocStr << '\n'); 2090 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2091 } 2092 2093 if (!VectorizeLoop) { 2094 assert(IC > 1 && "interleave count should not be 1 or 0"); 2095 // If we decided that it is not legal to vectorize the loop, then 2096 // interleave it. 2097 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 2098 Unroller.vectorize(&LVL, CM.MinBWs); 2099 2100 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2101 Twine("interleaved loop (interleaved count: ") + 2102 Twine(IC) + ")"); 2103 } else { 2104 // If we decided that it is *legal* to vectorize the loop, then do it. 2105 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2106 LB.vectorize(&LVL, CM.MinBWs); 2107 ++LoopsVectorized; 2108 2109 // Add metadata to disable runtime unrolling a scalar loop when there are 2110 // no runtime checks about strides and memory. A scalar loop that is 2111 // rarely used is not worth unrolling. 2112 if (!LB.areSafetyChecksAdded()) 2113 AddRuntimeUnrollDisableMetaData(L); 2114 2115 // Report the vectorization decision. 2116 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2117 Twine("vectorized loop (vectorization width: ") + 2118 Twine(VF.Width) + ", interleaved count: " + 2119 Twine(IC) + ")"); 2120 } 2121 2122 // Mark the loop as already vectorized to avoid vectorizing again. 2123 Hints.setAlreadyVectorized(); 2124 2125 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2126 return true; 2127 } 2128 2129 void getAnalysisUsage(AnalysisUsage &AU) const override { 2130 AU.addRequired<AssumptionCacheTracker>(); 2131 AU.addRequiredID(LoopSimplifyID); 2132 AU.addRequiredID(LCSSAID); 2133 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2134 AU.addRequired<DominatorTreeWrapperPass>(); 2135 AU.addRequired<LoopInfoWrapperPass>(); 2136 AU.addRequired<ScalarEvolutionWrapperPass>(); 2137 AU.addRequired<TargetTransformInfoWrapperPass>(); 2138 AU.addRequired<AAResultsWrapperPass>(); 2139 AU.addRequired<LoopAccessAnalysis>(); 2140 AU.addRequired<DemandedBitsWrapperPass>(); 2141 AU.addPreserved<LoopInfoWrapperPass>(); 2142 AU.addPreserved<DominatorTreeWrapperPass>(); 2143 AU.addPreserved<BasicAAWrapperPass>(); 2144 AU.addPreserved<GlobalsAAWrapperPass>(); 2145 } 2146 }; 2147 2148 } // end anonymous namespace 2149 2150 //===----------------------------------------------------------------------===// 2151 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2152 // LoopVectorizationCostModel. 2153 //===----------------------------------------------------------------------===// 2154 2155 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2156 // We need to place the broadcast of invariant variables outside the loop. 2157 Instruction *Instr = dyn_cast<Instruction>(V); 2158 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2159 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2160 2161 // Place the code for broadcasting invariant variables in the new preheader. 2162 IRBuilder<>::InsertPointGuard Guard(Builder); 2163 if (Invariant) 2164 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2165 2166 // Broadcast the scalar into all locations in the vector. 2167 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2168 2169 return Shuf; 2170 } 2171 2172 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2173 const SCEV *StepSCEV) { 2174 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2175 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2176 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 2177 &*Builder.GetInsertPoint()); 2178 return getStepVector(Val, StartIdx, StepValue); 2179 } 2180 2181 void InnerLoopVectorizer::widenInductionVariable(const InductionDescriptor &II, 2182 VectorParts &Entry, 2183 IntegerType *TruncType) { 2184 Value *Start = II.getStartValue(); 2185 ConstantInt *Step = II.getConstIntStepValue(); 2186 assert(Step && "Can not widen an IV with a non-constant step"); 2187 2188 // Construct the initial value of the vector IV in the vector loop preheader 2189 auto CurrIP = Builder.saveIP(); 2190 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2191 if (TruncType) { 2192 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2193 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2194 } 2195 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2196 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2197 Builder.restoreIP(CurrIP); 2198 2199 Value *SplatVF = 2200 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2201 VF * Step->getSExtValue())); 2202 // We may need to add the step a number of times, depending on the unroll 2203 // factor. The last of those goes into the PHI. 2204 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2205 &*LoopVectorBody->getFirstInsertionPt()); 2206 Value *LastInduction = VecInd; 2207 for (unsigned Part = 0; Part < UF; ++Part) { 2208 Entry[Part] = LastInduction; 2209 LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add"); 2210 } 2211 2212 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2213 VecInd->addIncoming(LastInduction, LoopVectorBody); 2214 } 2215 2216 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2217 Value *Step) { 2218 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2219 assert(Val->getType()->getScalarType()->isIntegerTy() && 2220 "Elem must be an integer"); 2221 assert(Step->getType() == Val->getType()->getScalarType() && 2222 "Step has wrong type"); 2223 // Create the types. 2224 Type *ITy = Val->getType()->getScalarType(); 2225 VectorType *Ty = cast<VectorType>(Val->getType()); 2226 int VLen = Ty->getNumElements(); 2227 SmallVector<Constant *, 8> Indices; 2228 2229 // Create a vector of consecutive numbers from zero to VF. 2230 for (int i = 0; i < VLen; ++i) 2231 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2232 2233 // Add the consecutive indices to the vector value. 2234 Constant *Cv = ConstantVector::get(Indices); 2235 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2236 Step = Builder.CreateVectorSplat(VLen, Step); 2237 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2238 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2239 // which can be found from the original scalar operations. 2240 Step = Builder.CreateMul(Cv, Step); 2241 return Builder.CreateAdd(Val, Step, "induction"); 2242 } 2243 2244 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2245 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2246 auto *SE = PSE.getSE(); 2247 // Make sure that the pointer does not point to structs. 2248 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2249 return 0; 2250 2251 // If this value is a pointer induction variable, we know it is consecutive. 2252 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2253 if (Phi && Inductions.count(Phi)) { 2254 InductionDescriptor II = Inductions[Phi]; 2255 return II.getConsecutiveDirection(); 2256 } 2257 2258 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2259 if (!Gep) 2260 return 0; 2261 2262 unsigned NumOperands = Gep->getNumOperands(); 2263 Value *GpPtr = Gep->getPointerOperand(); 2264 // If this GEP value is a consecutive pointer induction variable and all of 2265 // the indices are constant, then we know it is consecutive. 2266 Phi = dyn_cast<PHINode>(GpPtr); 2267 if (Phi && Inductions.count(Phi)) { 2268 2269 // Make sure that the pointer does not point to structs. 2270 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2271 if (GepPtrType->getElementType()->isAggregateType()) 2272 return 0; 2273 2274 // Make sure that all of the index operands are loop invariant. 2275 for (unsigned i = 1; i < NumOperands; ++i) 2276 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2277 return 0; 2278 2279 InductionDescriptor II = Inductions[Phi]; 2280 return II.getConsecutiveDirection(); 2281 } 2282 2283 unsigned InductionOperand = getGEPInductionOperand(Gep); 2284 2285 // Check that all of the gep indices are uniform except for our induction 2286 // operand. 2287 for (unsigned i = 0; i != NumOperands; ++i) 2288 if (i != InductionOperand && 2289 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2290 return 0; 2291 2292 // We can emit wide load/stores only if the last non-zero index is the 2293 // induction variable. 2294 const SCEV *Last = nullptr; 2295 if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep)) 2296 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2297 else { 2298 // Because of the multiplication by a stride we can have a s/zext cast. 2299 // We are going to replace this stride by 1 so the cast is safe to ignore. 2300 // 2301 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2302 // %0 = trunc i64 %indvars.iv to i32 2303 // %mul = mul i32 %0, %Stride1 2304 // %idxprom = zext i32 %mul to i64 << Safe cast. 2305 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2306 // 2307 Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(), 2308 Gep->getOperand(InductionOperand), Gep); 2309 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2310 Last = 2311 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2312 ? C->getOperand() 2313 : Last; 2314 } 2315 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2316 const SCEV *Step = AR->getStepRecurrence(*SE); 2317 2318 // The memory is consecutive because the last index is consecutive 2319 // and all other indices are loop invariant. 2320 if (Step->isOne()) 2321 return 1; 2322 if (Step->isAllOnesValue()) 2323 return -1; 2324 } 2325 2326 return 0; 2327 } 2328 2329 bool LoopVectorizationLegality::isUniform(Value *V) { 2330 return LAI->isUniform(V); 2331 } 2332 2333 InnerLoopVectorizer::VectorParts & 2334 InnerLoopVectorizer::getVectorValue(Value *V) { 2335 assert(V != Induction && "The new induction variable should not be used."); 2336 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2337 2338 // If we have a stride that is replaced by one, do it here. 2339 if (Legal->hasStride(V)) 2340 V = ConstantInt::get(V->getType(), 1); 2341 2342 // If we have this scalar in the map, return it. 2343 if (WidenMap.has(V)) 2344 return WidenMap.get(V); 2345 2346 // If this scalar is unknown, assume that it is a constant or that it is 2347 // loop invariant. Broadcast V and save the value for future uses. 2348 Value *B = getBroadcastInstrs(V); 2349 return WidenMap.splat(V, B); 2350 } 2351 2352 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2353 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2354 SmallVector<Constant *, 8> ShuffleMask; 2355 for (unsigned i = 0; i < VF; ++i) 2356 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2357 2358 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2359 ConstantVector::get(ShuffleMask), 2360 "reverse"); 2361 } 2362 2363 // Get a mask to interleave \p NumVec vectors into a wide vector. 2364 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2365 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2366 // <0, 4, 1, 5, 2, 6, 3, 7> 2367 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2368 unsigned NumVec) { 2369 SmallVector<Constant *, 16> Mask; 2370 for (unsigned i = 0; i < VF; i++) 2371 for (unsigned j = 0; j < NumVec; j++) 2372 Mask.push_back(Builder.getInt32(j * VF + i)); 2373 2374 return ConstantVector::get(Mask); 2375 } 2376 2377 // Get the strided mask starting from index \p Start. 2378 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2379 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2380 unsigned Stride, unsigned VF) { 2381 SmallVector<Constant *, 16> Mask; 2382 for (unsigned i = 0; i < VF; i++) 2383 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2384 2385 return ConstantVector::get(Mask); 2386 } 2387 2388 // Get a mask of two parts: The first part consists of sequential integers 2389 // starting from 0, The second part consists of UNDEFs. 2390 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2391 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2392 unsigned NumUndef) { 2393 SmallVector<Constant *, 16> Mask; 2394 for (unsigned i = 0; i < NumInt; i++) 2395 Mask.push_back(Builder.getInt32(i)); 2396 2397 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2398 for (unsigned i = 0; i < NumUndef; i++) 2399 Mask.push_back(Undef); 2400 2401 return ConstantVector::get(Mask); 2402 } 2403 2404 // Concatenate two vectors with the same element type. The 2nd vector should 2405 // not have more elements than the 1st vector. If the 2nd vector has less 2406 // elements, extend it with UNDEFs. 2407 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2408 Value *V2) { 2409 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2410 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2411 assert(VecTy1 && VecTy2 && 2412 VecTy1->getScalarType() == VecTy2->getScalarType() && 2413 "Expect two vectors with the same element type"); 2414 2415 unsigned NumElts1 = VecTy1->getNumElements(); 2416 unsigned NumElts2 = VecTy2->getNumElements(); 2417 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2418 2419 if (NumElts1 > NumElts2) { 2420 // Extend with UNDEFs. 2421 Constant *ExtMask = 2422 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2423 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2424 } 2425 2426 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2427 return Builder.CreateShuffleVector(V1, V2, Mask); 2428 } 2429 2430 // Concatenate vectors in the given list. All vectors have the same type. 2431 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2432 ArrayRef<Value *> InputList) { 2433 unsigned NumVec = InputList.size(); 2434 assert(NumVec > 1 && "Should be at least two vectors"); 2435 2436 SmallVector<Value *, 8> ResList; 2437 ResList.append(InputList.begin(), InputList.end()); 2438 do { 2439 SmallVector<Value *, 8> TmpList; 2440 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2441 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2442 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2443 "Only the last vector may have a different type"); 2444 2445 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2446 } 2447 2448 // Push the last vector if the total number of vectors is odd. 2449 if (NumVec % 2 != 0) 2450 TmpList.push_back(ResList[NumVec - 1]); 2451 2452 ResList = TmpList; 2453 NumVec = ResList.size(); 2454 } while (NumVec > 1); 2455 2456 return ResList[0]; 2457 } 2458 2459 // Try to vectorize the interleave group that \p Instr belongs to. 2460 // 2461 // E.g. Translate following interleaved load group (factor = 3): 2462 // for (i = 0; i < N; i+=3) { 2463 // R = Pic[i]; // Member of index 0 2464 // G = Pic[i+1]; // Member of index 1 2465 // B = Pic[i+2]; // Member of index 2 2466 // ... // do something to R, G, B 2467 // } 2468 // To: 2469 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2470 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2471 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2472 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2473 // 2474 // Or translate following interleaved store group (factor = 3): 2475 // for (i = 0; i < N; i+=3) { 2476 // ... do something to R, G, B 2477 // Pic[i] = R; // Member of index 0 2478 // Pic[i+1] = G; // Member of index 1 2479 // Pic[i+2] = B; // Member of index 2 2480 // } 2481 // To: 2482 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2483 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2484 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2485 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2486 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2487 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2488 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2489 assert(Group && "Fail to get an interleaved access group."); 2490 2491 // Skip if current instruction is not the insert position. 2492 if (Instr != Group->getInsertPos()) 2493 return; 2494 2495 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2496 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2497 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2498 2499 // Prepare for the vector type of the interleaved load/store. 2500 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2501 unsigned InterleaveFactor = Group->getFactor(); 2502 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2503 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2504 2505 // Prepare for the new pointers. 2506 setDebugLocFromInst(Builder, Ptr); 2507 VectorParts &PtrParts = getVectorValue(Ptr); 2508 SmallVector<Value *, 2> NewPtrs; 2509 unsigned Index = Group->getIndex(Instr); 2510 for (unsigned Part = 0; Part < UF; Part++) { 2511 // Extract the pointer for current instruction from the pointer vector. A 2512 // reverse access uses the pointer in the last lane. 2513 Value *NewPtr = Builder.CreateExtractElement( 2514 PtrParts[Part], 2515 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2516 2517 // Notice current instruction could be any index. Need to adjust the address 2518 // to the member of index 0. 2519 // 2520 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2521 // b = A[i]; // Member of index 0 2522 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2523 // 2524 // E.g. A[i+1] = a; // Member of index 1 2525 // A[i] = b; // Member of index 0 2526 // A[i+2] = c; // Member of index 2 (Current instruction) 2527 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2528 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2529 2530 // Cast to the vector pointer type. 2531 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2532 } 2533 2534 setDebugLocFromInst(Builder, Instr); 2535 Value *UndefVec = UndefValue::get(VecTy); 2536 2537 // Vectorize the interleaved load group. 2538 if (LI) { 2539 for (unsigned Part = 0; Part < UF; Part++) { 2540 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2541 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2542 2543 for (unsigned i = 0; i < InterleaveFactor; i++) { 2544 Instruction *Member = Group->getMember(i); 2545 2546 // Skip the gaps in the group. 2547 if (!Member) 2548 continue; 2549 2550 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2551 Value *StridedVec = Builder.CreateShuffleVector( 2552 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2553 2554 // If this member has different type, cast the result type. 2555 if (Member->getType() != ScalarTy) { 2556 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2557 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2558 } 2559 2560 VectorParts &Entry = WidenMap.get(Member); 2561 Entry[Part] = 2562 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2563 } 2564 2565 addMetadata(NewLoadInstr, Instr); 2566 } 2567 return; 2568 } 2569 2570 // The sub vector type for current instruction. 2571 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2572 2573 // Vectorize the interleaved store group. 2574 for (unsigned Part = 0; Part < UF; Part++) { 2575 // Collect the stored vector from each member. 2576 SmallVector<Value *, 4> StoredVecs; 2577 for (unsigned i = 0; i < InterleaveFactor; i++) { 2578 // Interleaved store group doesn't allow a gap, so each index has a member 2579 Instruction *Member = Group->getMember(i); 2580 assert(Member && "Fail to get a member from an interleaved store group"); 2581 2582 Value *StoredVec = 2583 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2584 if (Group->isReverse()) 2585 StoredVec = reverseVector(StoredVec); 2586 2587 // If this member has different type, cast it to an unified type. 2588 if (StoredVec->getType() != SubVT) 2589 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2590 2591 StoredVecs.push_back(StoredVec); 2592 } 2593 2594 // Concatenate all vectors into a wide vector. 2595 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2596 2597 // Interleave the elements in the wide vector. 2598 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2599 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2600 "interleaved.vec"); 2601 2602 Instruction *NewStoreInstr = 2603 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2604 addMetadata(NewStoreInstr, Instr); 2605 } 2606 } 2607 2608 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2609 // Attempt to issue a wide load. 2610 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2611 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2612 2613 assert((LI || SI) && "Invalid Load/Store instruction"); 2614 2615 // Try to vectorize the interleave group if this access is interleaved. 2616 if (Legal->isAccessInterleaved(Instr)) 2617 return vectorizeInterleaveGroup(Instr); 2618 2619 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2620 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2621 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2622 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2623 // An alignment of 0 means target abi alignment. We need to use the scalar's 2624 // target abi alignment in such a case. 2625 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2626 if (!Alignment) 2627 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2628 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2629 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2630 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2631 2632 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2633 !Legal->isMaskRequired(SI)) 2634 return scalarizeInstruction(Instr, true); 2635 2636 if (ScalarAllocatedSize != VectorElementSize) 2637 return scalarizeInstruction(Instr); 2638 2639 // If the pointer is loop invariant scalarize the load. 2640 if (LI && Legal->isUniform(Ptr)) 2641 return scalarizeInstruction(Instr); 2642 2643 // If the pointer is non-consecutive and gather/scatter is not supported 2644 // scalarize the instruction. 2645 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2646 bool Reverse = ConsecutiveStride < 0; 2647 bool CreateGatherScatter = 2648 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2649 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2650 2651 if (!ConsecutiveStride && !CreateGatherScatter) 2652 return scalarizeInstruction(Instr); 2653 2654 Constant *Zero = Builder.getInt32(0); 2655 VectorParts &Entry = WidenMap.get(Instr); 2656 VectorParts VectorGep; 2657 2658 // Handle consecutive loads/stores. 2659 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2660 if (ConsecutiveStride) { 2661 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2662 setDebugLocFromInst(Builder, Gep); 2663 Value *PtrOperand = Gep->getPointerOperand(); 2664 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2665 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2666 2667 // Create the new GEP with the new induction variable. 2668 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2669 Gep2->setOperand(0, FirstBasePtr); 2670 Gep2->setName("gep.indvar.base"); 2671 Ptr = Builder.Insert(Gep2); 2672 } else if (Gep) { 2673 setDebugLocFromInst(Builder, Gep); 2674 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2675 OrigLoop) && 2676 "Base ptr must be invariant"); 2677 // The last index does not have to be the induction. It can be 2678 // consecutive and be a function of the index. For example A[I+1]; 2679 unsigned NumOperands = Gep->getNumOperands(); 2680 unsigned InductionOperand = getGEPInductionOperand(Gep); 2681 // Create the new GEP with the new induction variable. 2682 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2683 2684 for (unsigned i = 0; i < NumOperands; ++i) { 2685 Value *GepOperand = Gep->getOperand(i); 2686 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2687 2688 // Update last index or loop invariant instruction anchored in loop. 2689 if (i == InductionOperand || 2690 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2691 assert((i == InductionOperand || 2692 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2693 OrigLoop)) && 2694 "Must be last index or loop invariant"); 2695 2696 VectorParts &GEPParts = getVectorValue(GepOperand); 2697 Value *Index = GEPParts[0]; 2698 Index = Builder.CreateExtractElement(Index, Zero); 2699 Gep2->setOperand(i, Index); 2700 Gep2->setName("gep.indvar.idx"); 2701 } 2702 } 2703 Ptr = Builder.Insert(Gep2); 2704 } else { // No GEP 2705 // Use the induction element ptr. 2706 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2707 setDebugLocFromInst(Builder, Ptr); 2708 VectorParts &PtrVal = getVectorValue(Ptr); 2709 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2710 } 2711 } else { 2712 // At this point we should vector version of GEP for Gather or Scatter 2713 assert(CreateGatherScatter && "The instruction should be scalarized"); 2714 if (Gep) { 2715 SmallVector<VectorParts, 4> OpsV; 2716 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2717 // base or index of GEP scalar 2718 for (Value *Op : Gep->operands()) { 2719 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2720 OpsV.push_back(VectorParts(UF, Op)); 2721 else 2722 OpsV.push_back(getVectorValue(Op)); 2723 } 2724 2725 for (unsigned Part = 0; Part < UF; ++Part) { 2726 SmallVector<Value *, 4> Ops; 2727 Value *GEPBasePtr = OpsV[0][Part]; 2728 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2729 Ops.push_back(OpsV[i][Part]); 2730 Value *NewGep = 2731 Builder.CreateGEP(nullptr, GEPBasePtr, Ops, "VectorGep"); 2732 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2733 NewGep = 2734 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2735 VectorGep.push_back(NewGep); 2736 } 2737 } else 2738 VectorGep = getVectorValue(Ptr); 2739 } 2740 2741 VectorParts Mask = createBlockInMask(Instr->getParent()); 2742 // Handle Stores: 2743 if (SI) { 2744 assert(!Legal->isUniform(SI->getPointerOperand()) && 2745 "We do not allow storing to uniform addresses"); 2746 setDebugLocFromInst(Builder, SI); 2747 // We don't want to update the value in the map as it might be used in 2748 // another expression. So don't use a reference type for "StoredVal". 2749 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2750 2751 for (unsigned Part = 0; Part < UF; ++Part) { 2752 Instruction *NewSI = nullptr; 2753 if (CreateGatherScatter) { 2754 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2755 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2756 Alignment, MaskPart); 2757 } else { 2758 // Calculate the pointer for the specific unroll-part. 2759 Value *PartPtr = 2760 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2761 2762 if (Reverse) { 2763 // If we store to reverse consecutive memory locations, then we need 2764 // to reverse the order of elements in the stored value. 2765 StoredVal[Part] = reverseVector(StoredVal[Part]); 2766 // If the address is consecutive but reversed, then the 2767 // wide store needs to start at the last vector element. 2768 PartPtr = 2769 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2770 PartPtr = 2771 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2772 Mask[Part] = reverseVector(Mask[Part]); 2773 } 2774 2775 Value *VecPtr = 2776 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2777 2778 if (Legal->isMaskRequired(SI)) 2779 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2780 Mask[Part]); 2781 else 2782 NewSI = 2783 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2784 } 2785 addMetadata(NewSI, SI); 2786 } 2787 return; 2788 } 2789 2790 // Handle loads. 2791 assert(LI && "Must have a load instruction"); 2792 setDebugLocFromInst(Builder, LI); 2793 for (unsigned Part = 0; Part < UF; ++Part) { 2794 Instruction *NewLI; 2795 if (CreateGatherScatter) { 2796 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2797 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2798 0, "wide.masked.gather"); 2799 Entry[Part] = NewLI; 2800 } else { 2801 // Calculate the pointer for the specific unroll-part. 2802 Value *PartPtr = 2803 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2804 2805 if (Reverse) { 2806 // If the address is consecutive but reversed, then the 2807 // wide load needs to start at the last vector element. 2808 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2809 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2810 Mask[Part] = reverseVector(Mask[Part]); 2811 } 2812 2813 Value *VecPtr = 2814 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2815 if (Legal->isMaskRequired(LI)) 2816 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2817 UndefValue::get(DataTy), 2818 "wide.masked.load"); 2819 else 2820 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2821 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2822 } 2823 addMetadata(NewLI, LI); 2824 } 2825 } 2826 2827 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2828 bool IfPredicateStore) { 2829 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2830 // Holds vector parameters or scalars, in case of uniform vals. 2831 SmallVector<VectorParts, 4> Params; 2832 2833 setDebugLocFromInst(Builder, Instr); 2834 2835 // Find all of the vectorized parameters. 2836 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2837 Value *SrcOp = Instr->getOperand(op); 2838 2839 // If we are accessing the old induction variable, use the new one. 2840 if (SrcOp == OldInduction) { 2841 Params.push_back(getVectorValue(SrcOp)); 2842 continue; 2843 } 2844 2845 // Try using previously calculated values. 2846 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2847 2848 // If the src is an instruction that appeared earlier in the basic block, 2849 // then it should already be vectorized. 2850 if (SrcInst && OrigLoop->contains(SrcInst)) { 2851 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2852 // The parameter is a vector value from earlier. 2853 Params.push_back(WidenMap.get(SrcInst)); 2854 } else { 2855 // The parameter is a scalar from outside the loop. Maybe even a constant. 2856 VectorParts Scalars; 2857 Scalars.append(UF, SrcOp); 2858 Params.push_back(Scalars); 2859 } 2860 } 2861 2862 assert(Params.size() == Instr->getNumOperands() && 2863 "Invalid number of operands"); 2864 2865 // Does this instruction return a value ? 2866 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2867 2868 Value *UndefVec = 2869 IsVoidRetTy ? nullptr 2870 : UndefValue::get(VectorType::get(Instr->getType(), VF)); 2871 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2872 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2873 2874 VectorParts Cond; 2875 if (IfPredicateStore) { 2876 assert(Instr->getParent()->getSinglePredecessor() && 2877 "Only support single predecessor blocks"); 2878 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2879 Instr->getParent()); 2880 } 2881 2882 // For each vector unroll 'part': 2883 for (unsigned Part = 0; Part < UF; ++Part) { 2884 // For each scalar that we create: 2885 for (unsigned Width = 0; Width < VF; ++Width) { 2886 2887 // Start if-block. 2888 Value *Cmp = nullptr; 2889 if (IfPredicateStore) { 2890 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2891 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2892 ConstantInt::get(Cmp->getType(), 1)); 2893 } 2894 2895 Instruction *Cloned = Instr->clone(); 2896 if (!IsVoidRetTy) 2897 Cloned->setName(Instr->getName() + ".cloned"); 2898 // Replace the operands of the cloned instructions with extracted scalars. 2899 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2900 Value *Op = Params[op][Part]; 2901 // Param is a vector. Need to extract the right lane. 2902 if (Op->getType()->isVectorTy()) 2903 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2904 Cloned->setOperand(op, Op); 2905 } 2906 addNewMetadata(Cloned, Instr); 2907 2908 // Place the cloned scalar in the new loop. 2909 Builder.Insert(Cloned); 2910 2911 // If we just cloned a new assumption, add it the assumption cache. 2912 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2913 if (II->getIntrinsicID() == Intrinsic::assume) 2914 AC->registerAssumption(II); 2915 2916 // If the original scalar returns a value we need to place it in a vector 2917 // so that future users will be able to use it. 2918 if (!IsVoidRetTy) 2919 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2920 Builder.getInt32(Width)); 2921 // End if-block. 2922 if (IfPredicateStore) 2923 PredicatedStores.push_back( 2924 std::make_pair(cast<StoreInst>(Cloned), Cmp)); 2925 } 2926 } 2927 } 2928 2929 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2930 Value *End, Value *Step, 2931 Instruction *DL) { 2932 BasicBlock *Header = L->getHeader(); 2933 BasicBlock *Latch = L->getLoopLatch(); 2934 // As we're just creating this loop, it's possible no latch exists 2935 // yet. If so, use the header as this will be a single block loop. 2936 if (!Latch) 2937 Latch = Header; 2938 2939 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2940 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2941 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2942 2943 Builder.SetInsertPoint(Latch->getTerminator()); 2944 2945 // Create i+1 and fill the PHINode. 2946 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2947 Induction->addIncoming(Start, L->getLoopPreheader()); 2948 Induction->addIncoming(Next, Latch); 2949 // Create the compare. 2950 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2951 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2952 2953 // Now we have two terminators. Remove the old one from the block. 2954 Latch->getTerminator()->eraseFromParent(); 2955 2956 return Induction; 2957 } 2958 2959 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2960 if (TripCount) 2961 return TripCount; 2962 2963 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2964 // Find the loop boundaries. 2965 ScalarEvolution *SE = PSE.getSE(); 2966 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2967 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2968 "Invalid loop count"); 2969 2970 Type *IdxTy = Legal->getWidestInductionType(); 2971 2972 // The exit count might have the type of i64 while the phi is i32. This can 2973 // happen if we have an induction variable that is sign extended before the 2974 // compare. The only way that we get a backedge taken count is that the 2975 // induction variable was signed and as such will not overflow. In such a case 2976 // truncation is legal. 2977 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2978 IdxTy->getPrimitiveSizeInBits()) 2979 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2980 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2981 2982 // Get the total trip count from the count by adding 1. 2983 const SCEV *ExitCount = SE->getAddExpr( 2984 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2985 2986 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2987 2988 // Expand the trip count and place the new instructions in the preheader. 2989 // Notice that the pre-header does not change, only the loop body. 2990 SCEVExpander Exp(*SE, DL, "induction"); 2991 2992 // Count holds the overall loop count (N). 2993 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2994 L->getLoopPreheader()->getTerminator()); 2995 2996 if (TripCount->getType()->isPointerTy()) 2997 TripCount = 2998 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2999 L->getLoopPreheader()->getTerminator()); 3000 3001 return TripCount; 3002 } 3003 3004 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3005 if (VectorTripCount) 3006 return VectorTripCount; 3007 3008 Value *TC = getOrCreateTripCount(L); 3009 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3010 3011 // Now we need to generate the expression for the part of the loop that the 3012 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3013 // iterations are not required for correctness, or N - Step, otherwise. Step 3014 // is equal to the vectorization factor (number of SIMD elements) times the 3015 // unroll factor (number of SIMD instructions). 3016 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3017 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3018 3019 // If there is a non-reversed interleaved group that may speculatively access 3020 // memory out-of-bounds, we need to ensure that there will be at least one 3021 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3022 // the trip count, we set the remainder to be equal to the step. If the step 3023 // does not evenly divide the trip count, no adjustment is necessary since 3024 // there will already be scalar iterations. Note that the minimum iterations 3025 // check ensures that N >= Step. 3026 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3027 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3028 R = Builder.CreateSelect(IsZero, Step, R); 3029 } 3030 3031 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3032 3033 return VectorTripCount; 3034 } 3035 3036 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3037 BasicBlock *Bypass) { 3038 Value *Count = getOrCreateTripCount(L); 3039 BasicBlock *BB = L->getLoopPreheader(); 3040 IRBuilder<> Builder(BB->getTerminator()); 3041 3042 // Generate code to check that the loop's trip count that we computed by 3043 // adding one to the backedge-taken count will not overflow. 3044 Value *CheckMinIters = Builder.CreateICmpULT( 3045 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3046 3047 BasicBlock *NewBB = 3048 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3049 // Update dominator tree immediately if the generated block is a 3050 // LoopBypassBlock because SCEV expansions to generate loop bypass 3051 // checks may query it before the current function is finished. 3052 DT->addNewBlock(NewBB, BB); 3053 if (L->getParentLoop()) 3054 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3055 ReplaceInstWithInst(BB->getTerminator(), 3056 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3057 LoopBypassBlocks.push_back(BB); 3058 } 3059 3060 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3061 BasicBlock *Bypass) { 3062 Value *TC = getOrCreateVectorTripCount(L); 3063 BasicBlock *BB = L->getLoopPreheader(); 3064 IRBuilder<> Builder(BB->getTerminator()); 3065 3066 // Now, compare the new count to zero. If it is zero skip the vector loop and 3067 // jump to the scalar loop. 3068 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3069 "cmp.zero"); 3070 3071 // Generate code to check that the loop's trip count that we computed by 3072 // adding one to the backedge-taken count will not overflow. 3073 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3074 // Update dominator tree immediately if the generated block is a 3075 // LoopBypassBlock because SCEV expansions to generate loop bypass 3076 // checks may query it before the current function is finished. 3077 DT->addNewBlock(NewBB, BB); 3078 if (L->getParentLoop()) 3079 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3080 ReplaceInstWithInst(BB->getTerminator(), 3081 BranchInst::Create(Bypass, NewBB, Cmp)); 3082 LoopBypassBlocks.push_back(BB); 3083 } 3084 3085 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3086 BasicBlock *BB = L->getLoopPreheader(); 3087 3088 // Generate the code to check that the SCEV assumptions that we made. 3089 // We want the new basic block to start at the first instruction in a 3090 // sequence of instructions that form a check. 3091 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3092 "scev.check"); 3093 Value *SCEVCheck = 3094 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3095 3096 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3097 if (C->isZero()) 3098 return; 3099 3100 // Create a new block containing the stride check. 3101 BB->setName("vector.scevcheck"); 3102 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3103 // Update dominator tree immediately if the generated block is a 3104 // LoopBypassBlock because SCEV expansions to generate loop bypass 3105 // checks may query it before the current function is finished. 3106 DT->addNewBlock(NewBB, BB); 3107 if (L->getParentLoop()) 3108 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3109 ReplaceInstWithInst(BB->getTerminator(), 3110 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3111 LoopBypassBlocks.push_back(BB); 3112 AddedSafetyChecks = true; 3113 } 3114 3115 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3116 BasicBlock *BB = L->getLoopPreheader(); 3117 3118 // Generate the code that checks in runtime if arrays overlap. We put the 3119 // checks into a separate block to make the more common case of few elements 3120 // faster. 3121 Instruction *FirstCheckInst; 3122 Instruction *MemRuntimeCheck; 3123 std::tie(FirstCheckInst, MemRuntimeCheck) = 3124 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3125 if (!MemRuntimeCheck) 3126 return; 3127 3128 // Create a new block containing the memory check. 3129 BB->setName("vector.memcheck"); 3130 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3131 // Update dominator tree immediately if the generated block is a 3132 // LoopBypassBlock because SCEV expansions to generate loop bypass 3133 // checks may query it before the current function is finished. 3134 DT->addNewBlock(NewBB, BB); 3135 if (L->getParentLoop()) 3136 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3137 ReplaceInstWithInst(BB->getTerminator(), 3138 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3139 LoopBypassBlocks.push_back(BB); 3140 AddedSafetyChecks = true; 3141 3142 // We currently don't use LoopVersioning for the actual loop cloning but we 3143 // still use it to add the noalias metadata. 3144 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3145 PSE.getSE()); 3146 LVer->prepareNoAliasMetadata(); 3147 } 3148 3149 void InnerLoopVectorizer::createEmptyLoop() { 3150 /* 3151 In this function we generate a new loop. The new loop will contain 3152 the vectorized instructions while the old loop will continue to run the 3153 scalar remainder. 3154 3155 [ ] <-- loop iteration number check. 3156 / | 3157 / v 3158 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3159 | / | 3160 | / v 3161 || [ ] <-- vector pre header. 3162 |/ | 3163 | v 3164 | [ ] \ 3165 | [ ]_| <-- vector loop. 3166 | | 3167 | v 3168 | -[ ] <--- middle-block. 3169 | / | 3170 | / v 3171 -|- >[ ] <--- new preheader. 3172 | | 3173 | v 3174 | [ ] \ 3175 | [ ]_| <-- old scalar loop to handle remainder. 3176 \ | 3177 \ v 3178 >[ ] <-- exit block. 3179 ... 3180 */ 3181 3182 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3183 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3184 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3185 assert(VectorPH && "Invalid loop structure"); 3186 assert(ExitBlock && "Must have an exit block"); 3187 3188 // Some loops have a single integer induction variable, while other loops 3189 // don't. One example is c++ iterators that often have multiple pointer 3190 // induction variables. In the code below we also support a case where we 3191 // don't have a single induction variable. 3192 // 3193 // We try to obtain an induction variable from the original loop as hard 3194 // as possible. However if we don't find one that: 3195 // - is an integer 3196 // - counts from zero, stepping by one 3197 // - is the size of the widest induction variable type 3198 // then we create a new one. 3199 OldInduction = Legal->getInduction(); 3200 Type *IdxTy = Legal->getWidestInductionType(); 3201 3202 // Split the single block loop into the two loop structure described above. 3203 BasicBlock *VecBody = 3204 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3205 BasicBlock *MiddleBlock = 3206 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3207 BasicBlock *ScalarPH = 3208 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3209 3210 // Create and register the new vector loop. 3211 Loop *Lp = new Loop(); 3212 Loop *ParentLoop = OrigLoop->getParentLoop(); 3213 3214 // Insert the new loop into the loop nest and register the new basic blocks 3215 // before calling any utilities such as SCEV that require valid LoopInfo. 3216 if (ParentLoop) { 3217 ParentLoop->addChildLoop(Lp); 3218 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3219 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3220 } else { 3221 LI->addTopLevelLoop(Lp); 3222 } 3223 Lp->addBasicBlockToLoop(VecBody, *LI); 3224 3225 // Find the loop boundaries. 3226 Value *Count = getOrCreateTripCount(Lp); 3227 3228 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3229 3230 // We need to test whether the backedge-taken count is uint##_max. Adding one 3231 // to it will cause overflow and an incorrect loop trip count in the vector 3232 // body. In case of overflow we want to directly jump to the scalar remainder 3233 // loop. 3234 emitMinimumIterationCountCheck(Lp, ScalarPH); 3235 // Now, compare the new count to zero. If it is zero skip the vector loop and 3236 // jump to the scalar loop. 3237 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3238 // Generate the code to check any assumptions that we've made for SCEV 3239 // expressions. 3240 emitSCEVChecks(Lp, ScalarPH); 3241 3242 // Generate the code that checks in runtime if arrays overlap. We put the 3243 // checks into a separate block to make the more common case of few elements 3244 // faster. 3245 emitMemRuntimeChecks(Lp, ScalarPH); 3246 3247 // Generate the induction variable. 3248 // The loop step is equal to the vectorization factor (num of SIMD elements) 3249 // times the unroll factor (num of SIMD instructions). 3250 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3251 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3252 Induction = 3253 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3254 getDebugLocFromInstOrOperands(OldInduction)); 3255 3256 // We are going to resume the execution of the scalar loop. 3257 // Go over all of the induction variables that we found and fix the 3258 // PHIs that are left in the scalar version of the loop. 3259 // The starting values of PHI nodes depend on the counter of the last 3260 // iteration in the vectorized loop. 3261 // If we come from a bypass edge then we need to start from the original 3262 // start value. 3263 3264 // This variable saves the new starting index for the scalar loop. It is used 3265 // to test if there are any tail iterations left once the vector loop has 3266 // completed. 3267 LoopVectorizationLegality::InductionList::iterator I, E; 3268 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3269 for (I = List->begin(), E = List->end(); I != E; ++I) { 3270 PHINode *OrigPhi = I->first; 3271 InductionDescriptor II = I->second; 3272 3273 // Create phi nodes to merge from the backedge-taken check block. 3274 PHINode *BCResumeVal = PHINode::Create( 3275 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3276 Value *EndValue; 3277 if (OrigPhi == OldInduction) { 3278 // We know what the end value is. 3279 EndValue = CountRoundDown; 3280 } else { 3281 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3282 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3283 II.getStep()->getType(), "cast.crd"); 3284 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3285 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3286 EndValue->setName("ind.end"); 3287 } 3288 3289 // The new PHI merges the original incoming value, in case of a bypass, 3290 // or the value at the end of the vectorized loop. 3291 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3292 3293 // Fix up external users of the induction variable. 3294 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3295 3296 // Fix the scalar body counter (PHI node). 3297 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3298 3299 // The old induction's phi node in the scalar body needs the truncated 3300 // value. 3301 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3302 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3303 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3304 } 3305 3306 // Add a check in the middle block to see if we have completed 3307 // all of the iterations in the first vector loop. 3308 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3309 Value *CmpN = 3310 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3311 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3312 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3313 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3314 3315 // Get ready to start creating new instructions into the vectorized body. 3316 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3317 3318 // Save the state. 3319 LoopVectorPreHeader = Lp->getLoopPreheader(); 3320 LoopScalarPreHeader = ScalarPH; 3321 LoopMiddleBlock = MiddleBlock; 3322 LoopExitBlock = ExitBlock; 3323 LoopVectorBody = VecBody; 3324 LoopScalarBody = OldBasicBlock; 3325 3326 // Keep all loop hints from the original loop on the vector loop (we'll 3327 // replace the vectorizer-specific hints below). 3328 if (MDNode *LID = OrigLoop->getLoopID()) 3329 Lp->setLoopID(LID); 3330 3331 LoopVectorizeHints Hints(Lp, true); 3332 Hints.setAlreadyVectorized(); 3333 } 3334 3335 // Fix up external users of the induction variable. At this point, we are 3336 // in LCSSA form, with all external PHIs that use the IV having one input value, 3337 // coming from the remainder loop. We need those PHIs to also have a correct 3338 // value for the IV when arriving directly from the middle block. 3339 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3340 const InductionDescriptor &II, 3341 Value *CountRoundDown, Value *EndValue, 3342 BasicBlock *MiddleBlock) { 3343 // There are two kinds of external IV usages - those that use the value 3344 // computed in the last iteration (the PHI) and those that use the penultimate 3345 // value (the value that feeds into the phi from the loop latch). 3346 // We allow both, but they, obviously, have different values. 3347 3348 // We only expect at most one of each kind of user. This is because LCSSA will 3349 // canonicalize the users to a single PHI node per exit block, and we 3350 // currently only vectorize loops with a single exit. 3351 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3352 3353 // An external user of the last iteration's value should see the value that 3354 // the remainder loop uses to initialize its own IV. 3355 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3356 for (User *U : PostInc->users()) { 3357 Instruction *UI = cast<Instruction>(U); 3358 if (!OrigLoop->contains(UI)) { 3359 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3360 // One corner case we have to handle is two IVs "chasing" each-other, 3361 // that is %IV2 = phi [...], [ %IV1, %latch ] 3362 // In this case, if IV1 has an external use, we need to avoid adding both 3363 // "last value of IV1" and "penultimate value of IV2". Since we don't know 3364 // which IV will be handled first, check we haven't handled this user yet. 3365 PHINode *User = cast<PHINode>(UI); 3366 if (User->getBasicBlockIndex(MiddleBlock) == -1) 3367 User->addIncoming(EndValue, MiddleBlock); 3368 break; 3369 } 3370 } 3371 3372 // An external user of the penultimate value need to see EndValue - Step. 3373 // The simplest way to get this is to recompute it from the constituent SCEVs, 3374 // that is Start + (Step * (CRD - 1)). 3375 for (User *U : OrigPhi->users()) { 3376 Instruction *UI = cast<Instruction>(U); 3377 if (!OrigLoop->contains(UI)) { 3378 const DataLayout &DL = 3379 OrigLoop->getHeader()->getModule()->getDataLayout(); 3380 3381 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3382 PHINode *User = cast<PHINode>(UI); 3383 // As above, check we haven't already handled this user. 3384 if (User->getBasicBlockIndex(MiddleBlock) != -1) 3385 break; 3386 3387 IRBuilder<> B(MiddleBlock->getTerminator()); 3388 Value *CountMinusOne = B.CreateSub( 3389 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3390 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3391 "cast.cmo"); 3392 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3393 Escape->setName("ind.escape"); 3394 User->addIncoming(Escape, MiddleBlock); 3395 break; 3396 } 3397 } 3398 } 3399 3400 namespace { 3401 struct CSEDenseMapInfo { 3402 static bool canHandle(Instruction *I) { 3403 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3404 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3405 } 3406 static inline Instruction *getEmptyKey() { 3407 return DenseMapInfo<Instruction *>::getEmptyKey(); 3408 } 3409 static inline Instruction *getTombstoneKey() { 3410 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3411 } 3412 static unsigned getHashValue(Instruction *I) { 3413 assert(canHandle(I) && "Unknown instruction!"); 3414 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3415 I->value_op_end())); 3416 } 3417 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3418 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3419 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3420 return LHS == RHS; 3421 return LHS->isIdenticalTo(RHS); 3422 } 3423 }; 3424 } 3425 3426 ///\brief Perform cse of induction variable instructions. 3427 static void cse(BasicBlock *BB) { 3428 // Perform simple cse. 3429 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3430 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3431 Instruction *In = &*I++; 3432 3433 if (!CSEDenseMapInfo::canHandle(In)) 3434 continue; 3435 3436 // Check if we can replace this instruction with any of the 3437 // visited instructions. 3438 if (Instruction *V = CSEMap.lookup(In)) { 3439 In->replaceAllUsesWith(V); 3440 In->eraseFromParent(); 3441 continue; 3442 } 3443 3444 CSEMap[In] = In; 3445 } 3446 } 3447 3448 /// \brief Adds a 'fast' flag to floating point operations. 3449 static Value *addFastMathFlag(Value *V) { 3450 if (isa<FPMathOperator>(V)) { 3451 FastMathFlags Flags; 3452 Flags.setUnsafeAlgebra(); 3453 cast<Instruction>(V)->setFastMathFlags(Flags); 3454 } 3455 return V; 3456 } 3457 3458 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3459 /// the result needs to be inserted and/or extracted from vectors. 3460 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3461 const TargetTransformInfo &TTI) { 3462 if (Ty->isVoidTy()) 3463 return 0; 3464 3465 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3466 unsigned Cost = 0; 3467 3468 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3469 if (Insert) 3470 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3471 if (Extract) 3472 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3473 } 3474 3475 return Cost; 3476 } 3477 3478 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3479 // Return the cost of the instruction, including scalarization overhead if it's 3480 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3481 // i.e. either vector version isn't available, or is too expensive. 3482 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3483 const TargetTransformInfo &TTI, 3484 const TargetLibraryInfo *TLI, 3485 bool &NeedToScalarize) { 3486 Function *F = CI->getCalledFunction(); 3487 StringRef FnName = CI->getCalledFunction()->getName(); 3488 Type *ScalarRetTy = CI->getType(); 3489 SmallVector<Type *, 4> Tys, ScalarTys; 3490 for (auto &ArgOp : CI->arg_operands()) 3491 ScalarTys.push_back(ArgOp->getType()); 3492 3493 // Estimate cost of scalarized vector call. The source operands are assumed 3494 // to be vectors, so we need to extract individual elements from there, 3495 // execute VF scalar calls, and then gather the result into the vector return 3496 // value. 3497 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3498 if (VF == 1) 3499 return ScalarCallCost; 3500 3501 // Compute corresponding vector type for return value and arguments. 3502 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3503 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3504 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3505 3506 // Compute costs of unpacking argument values for the scalar calls and 3507 // packing the return values to a vector. 3508 unsigned ScalarizationCost = 3509 getScalarizationOverhead(RetTy, true, false, TTI); 3510 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3511 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3512 3513 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3514 3515 // If we can't emit a vector call for this function, then the currently found 3516 // cost is the cost we need to return. 3517 NeedToScalarize = true; 3518 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3519 return Cost; 3520 3521 // If the corresponding vector cost is cheaper, return its cost. 3522 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3523 if (VectorCallCost < Cost) { 3524 NeedToScalarize = false; 3525 return VectorCallCost; 3526 } 3527 return Cost; 3528 } 3529 3530 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3531 // factor VF. Return the cost of the instruction, including scalarization 3532 // overhead if it's needed. 3533 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3534 const TargetTransformInfo &TTI, 3535 const TargetLibraryInfo *TLI) { 3536 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3537 assert(ID && "Expected intrinsic call!"); 3538 3539 Type *RetTy = ToVectorTy(CI->getType(), VF); 3540 SmallVector<Type *, 4> Tys; 3541 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3542 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3543 3544 FastMathFlags FMF; 3545 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3546 FMF = FPMO->getFastMathFlags(); 3547 3548 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3549 } 3550 3551 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3552 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3553 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3554 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3555 } 3556 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3557 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3558 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3559 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3560 } 3561 3562 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3563 // For every instruction `I` in MinBWs, truncate the operands, create a 3564 // truncated version of `I` and reextend its result. InstCombine runs 3565 // later and will remove any ext/trunc pairs. 3566 // 3567 SmallPtrSet<Value *, 4> Erased; 3568 for (const auto &KV : *MinBWs) { 3569 VectorParts &Parts = WidenMap.get(KV.first); 3570 for (Value *&I : Parts) { 3571 if (Erased.count(I) || I->use_empty()) 3572 continue; 3573 Type *OriginalTy = I->getType(); 3574 Type *ScalarTruncatedTy = 3575 IntegerType::get(OriginalTy->getContext(), KV.second); 3576 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3577 OriginalTy->getVectorNumElements()); 3578 if (TruncatedTy == OriginalTy) 3579 continue; 3580 3581 if (!isa<Instruction>(I)) 3582 continue; 3583 3584 IRBuilder<> B(cast<Instruction>(I)); 3585 auto ShrinkOperand = [&](Value *V) -> Value * { 3586 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3587 if (ZI->getSrcTy() == TruncatedTy) 3588 return ZI->getOperand(0); 3589 return B.CreateZExtOrTrunc(V, TruncatedTy); 3590 }; 3591 3592 // The actual instruction modification depends on the instruction type, 3593 // unfortunately. 3594 Value *NewI = nullptr; 3595 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3596 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3597 ShrinkOperand(BO->getOperand(1))); 3598 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3599 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3600 NewI = 3601 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3602 ShrinkOperand(CI->getOperand(1))); 3603 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3604 NewI = B.CreateSelect(SI->getCondition(), 3605 ShrinkOperand(SI->getTrueValue()), 3606 ShrinkOperand(SI->getFalseValue())); 3607 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3608 switch (CI->getOpcode()) { 3609 default: 3610 llvm_unreachable("Unhandled cast!"); 3611 case Instruction::Trunc: 3612 NewI = ShrinkOperand(CI->getOperand(0)); 3613 break; 3614 case Instruction::SExt: 3615 NewI = B.CreateSExtOrTrunc( 3616 CI->getOperand(0), 3617 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3618 break; 3619 case Instruction::ZExt: 3620 NewI = B.CreateZExtOrTrunc( 3621 CI->getOperand(0), 3622 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3623 break; 3624 } 3625 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3626 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3627 auto *O0 = B.CreateZExtOrTrunc( 3628 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3629 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3630 auto *O1 = B.CreateZExtOrTrunc( 3631 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3632 3633 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3634 } else if (isa<LoadInst>(I)) { 3635 // Don't do anything with the operands, just extend the result. 3636 continue; 3637 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3638 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3639 auto *O0 = B.CreateZExtOrTrunc( 3640 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3641 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3642 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3643 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3644 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3645 auto *O0 = B.CreateZExtOrTrunc( 3646 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3647 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3648 } else { 3649 llvm_unreachable("Unhandled instruction type!"); 3650 } 3651 3652 // Lastly, extend the result. 3653 NewI->takeName(cast<Instruction>(I)); 3654 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3655 I->replaceAllUsesWith(Res); 3656 cast<Instruction>(I)->eraseFromParent(); 3657 Erased.insert(I); 3658 I = Res; 3659 } 3660 } 3661 3662 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3663 for (const auto &KV : *MinBWs) { 3664 VectorParts &Parts = WidenMap.get(KV.first); 3665 for (Value *&I : Parts) { 3666 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3667 if (Inst && Inst->use_empty()) { 3668 Value *NewI = Inst->getOperand(0); 3669 Inst->eraseFromParent(); 3670 I = NewI; 3671 } 3672 } 3673 } 3674 } 3675 3676 void InnerLoopVectorizer::vectorizeLoop() { 3677 //===------------------------------------------------===// 3678 // 3679 // Notice: any optimization or new instruction that go 3680 // into the code below should be also be implemented in 3681 // the cost-model. 3682 // 3683 //===------------------------------------------------===// 3684 Constant *Zero = Builder.getInt32(0); 3685 3686 // In order to support recurrences we need to be able to vectorize Phi nodes. 3687 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3688 // we create a new vector PHI node with no incoming edges. We use this value 3689 // when we vectorize all of the instructions that use the PHI. Next, after 3690 // all of the instructions in the block are complete we add the new incoming 3691 // edges to the PHI. At this point all of the instructions in the basic block 3692 // are vectorized, so we can use them to construct the PHI. 3693 PhiVector PHIsToFix; 3694 3695 // Scan the loop in a topological order to ensure that defs are vectorized 3696 // before users. 3697 LoopBlocksDFS DFS(OrigLoop); 3698 DFS.perform(LI); 3699 3700 // Vectorize all of the blocks in the original loop. 3701 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 3702 bb != be; ++bb) 3703 vectorizeBlockInLoop(*bb, &PHIsToFix); 3704 3705 // Insert truncates and extends for any truncated instructions as hints to 3706 // InstCombine. 3707 if (VF > 1) 3708 truncateToMinimalBitwidths(); 3709 3710 // At this point every instruction in the original loop is widened to a 3711 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3712 // nodes are currently empty because we did not want to introduce cycles. 3713 // This is the second stage of vectorizing recurrences. 3714 for (PHINode *Phi : PHIsToFix) { 3715 assert(Phi && "Unable to recover vectorized PHI"); 3716 3717 // Handle first-order recurrences that need to be fixed. 3718 if (Legal->isFirstOrderRecurrence(Phi)) { 3719 fixFirstOrderRecurrence(Phi); 3720 continue; 3721 } 3722 3723 // If the phi node is not a first-order recurrence, it must be a reduction. 3724 // Get it's reduction variable descriptor. 3725 assert(Legal->isReductionVariable(Phi) && 3726 "Unable to find the reduction variable"); 3727 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3728 3729 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3730 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3731 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3732 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3733 RdxDesc.getMinMaxRecurrenceKind(); 3734 setDebugLocFromInst(Builder, ReductionStartValue); 3735 3736 // We need to generate a reduction vector from the incoming scalar. 3737 // To do so, we need to generate the 'identity' vector and override 3738 // one of the elements with the incoming scalar reduction. We need 3739 // to do it in the vector-loop preheader. 3740 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3741 3742 // This is the vector-clone of the value that leaves the loop. 3743 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3744 Type *VecTy = VectorExit[0]->getType(); 3745 3746 // Find the reduction identity variable. Zero for addition, or, xor, 3747 // one for multiplication, -1 for And. 3748 Value *Identity; 3749 Value *VectorStart; 3750 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3751 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3752 // MinMax reduction have the start value as their identify. 3753 if (VF == 1) { 3754 VectorStart = Identity = ReductionStartValue; 3755 } else { 3756 VectorStart = Identity = 3757 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3758 } 3759 } else { 3760 // Handle other reduction kinds: 3761 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3762 RK, VecTy->getScalarType()); 3763 if (VF == 1) { 3764 Identity = Iden; 3765 // This vector is the Identity vector where the first element is the 3766 // incoming scalar reduction. 3767 VectorStart = ReductionStartValue; 3768 } else { 3769 Identity = ConstantVector::getSplat(VF, Iden); 3770 3771 // This vector is the Identity vector where the first element is the 3772 // incoming scalar reduction. 3773 VectorStart = 3774 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3775 } 3776 } 3777 3778 // Fix the vector-loop phi. 3779 3780 // Reductions do not have to start at zero. They can start with 3781 // any loop invariant values. 3782 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3783 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3784 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3785 VectorParts &Val = getVectorValue(LoopVal); 3786 for (unsigned part = 0; part < UF; ++part) { 3787 // Make sure to add the reduction stat value only to the 3788 // first unroll part. 3789 Value *StartVal = (part == 0) ? VectorStart : Identity; 3790 cast<PHINode>(VecRdxPhi[part]) 3791 ->addIncoming(StartVal, LoopVectorPreHeader); 3792 cast<PHINode>(VecRdxPhi[part]) 3793 ->addIncoming(Val[part], LoopVectorBody); 3794 } 3795 3796 // Before each round, move the insertion point right between 3797 // the PHIs and the values we are going to write. 3798 // This allows us to write both PHINodes and the extractelement 3799 // instructions. 3800 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3801 3802 VectorParts RdxParts = getVectorValue(LoopExitInst); 3803 setDebugLocFromInst(Builder, LoopExitInst); 3804 3805 // If the vector reduction can be performed in a smaller type, we truncate 3806 // then extend the loop exit value to enable InstCombine to evaluate the 3807 // entire expression in the smaller type. 3808 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3809 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3810 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3811 for (unsigned part = 0; part < UF; ++part) { 3812 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3813 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3814 : Builder.CreateZExt(Trunc, VecTy); 3815 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3816 UI != RdxParts[part]->user_end();) 3817 if (*UI != Trunc) { 3818 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3819 RdxParts[part] = Extnd; 3820 } else { 3821 ++UI; 3822 } 3823 } 3824 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3825 for (unsigned part = 0; part < UF; ++part) 3826 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3827 } 3828 3829 // Reduce all of the unrolled parts into a single vector. 3830 Value *ReducedPartRdx = RdxParts[0]; 3831 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3832 setDebugLocFromInst(Builder, ReducedPartRdx); 3833 for (unsigned part = 1; part < UF; ++part) { 3834 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3835 // Floating point operations had to be 'fast' to enable the reduction. 3836 ReducedPartRdx = addFastMathFlag( 3837 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3838 ReducedPartRdx, "bin.rdx")); 3839 else 3840 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3841 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3842 } 3843 3844 if (VF > 1) { 3845 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3846 // and vector ops, reducing the set of values being computed by half each 3847 // round. 3848 assert(isPowerOf2_32(VF) && 3849 "Reduction emission only supported for pow2 vectors!"); 3850 Value *TmpVec = ReducedPartRdx; 3851 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3852 for (unsigned i = VF; i != 1; i >>= 1) { 3853 // Move the upper half of the vector to the lower half. 3854 for (unsigned j = 0; j != i / 2; ++j) 3855 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3856 3857 // Fill the rest of the mask with undef. 3858 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3859 UndefValue::get(Builder.getInt32Ty())); 3860 3861 Value *Shuf = Builder.CreateShuffleVector( 3862 TmpVec, UndefValue::get(TmpVec->getType()), 3863 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3864 3865 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3866 // Floating point operations had to be 'fast' to enable the reduction. 3867 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3868 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3869 else 3870 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3871 TmpVec, Shuf); 3872 } 3873 3874 // The result is in the first element of the vector. 3875 ReducedPartRdx = 3876 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3877 3878 // If the reduction can be performed in a smaller type, we need to extend 3879 // the reduction to the wider type before we branch to the original loop. 3880 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3881 ReducedPartRdx = 3882 RdxDesc.isSigned() 3883 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3884 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3885 } 3886 3887 // Create a phi node that merges control-flow from the backedge-taken check 3888 // block and the middle block. 3889 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3890 LoopScalarPreHeader->getTerminator()); 3891 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3892 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3893 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3894 3895 // Now, we need to fix the users of the reduction variable 3896 // inside and outside of the scalar remainder loop. 3897 // We know that the loop is in LCSSA form. We need to update the 3898 // PHI nodes in the exit blocks. 3899 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3900 LEE = LoopExitBlock->end(); 3901 LEI != LEE; ++LEI) { 3902 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3903 if (!LCSSAPhi) 3904 break; 3905 3906 // All PHINodes need to have a single entry edge, or two if 3907 // we already fixed them. 3908 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3909 3910 // We found our reduction value exit-PHI. Update it with the 3911 // incoming bypass edge. 3912 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3913 // Add an edge coming from the bypass. 3914 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3915 break; 3916 } 3917 } // end of the LCSSA phi scan. 3918 3919 // Fix the scalar loop reduction variable with the incoming reduction sum 3920 // from the vector body and from the backedge value. 3921 int IncomingEdgeBlockIdx = 3922 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3923 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3924 // Pick the other block. 3925 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3926 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3927 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3928 } // end of for each Phi in PHIsToFix. 3929 3930 fixLCSSAPHIs(); 3931 3932 // Make sure DomTree is updated. 3933 updateAnalysis(); 3934 3935 // Predicate any stores. 3936 for (auto KV : PredicatedStores) { 3937 BasicBlock::iterator I(KV.first); 3938 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3939 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3940 /*BranchWeights=*/nullptr, DT, LI); 3941 I->moveBefore(T); 3942 I->getParent()->setName("pred.store.if"); 3943 BB->setName("pred.store.continue"); 3944 } 3945 DEBUG(DT->verifyDomTree()); 3946 // Remove redundant induction instructions. 3947 cse(LoopVectorBody); 3948 } 3949 3950 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3951 3952 // This is the second phase of vectorizing first-order recurrences. An 3953 // overview of the transformation is described below. Suppose we have the 3954 // following loop. 3955 // 3956 // for (int i = 0; i < n; ++i) 3957 // b[i] = a[i] - a[i - 1]; 3958 // 3959 // There is a first-order recurrence on "a". For this loop, the shorthand 3960 // scalar IR looks like: 3961 // 3962 // scalar.ph: 3963 // s_init = a[-1] 3964 // br scalar.body 3965 // 3966 // scalar.body: 3967 // i = phi [0, scalar.ph], [i+1, scalar.body] 3968 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3969 // s2 = a[i] 3970 // b[i] = s2 - s1 3971 // br cond, scalar.body, ... 3972 // 3973 // In this example, s1 is a recurrence because it's value depends on the 3974 // previous iteration. In the first phase of vectorization, we created a 3975 // temporary value for s1. We now complete the vectorization and produce the 3976 // shorthand vector IR shown below (for VF = 4, UF = 1). 3977 // 3978 // vector.ph: 3979 // v_init = vector(..., ..., ..., a[-1]) 3980 // br vector.body 3981 // 3982 // vector.body 3983 // i = phi [0, vector.ph], [i+4, vector.body] 3984 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3985 // v2 = a[i, i+1, i+2, i+3]; 3986 // v3 = vector(v1(3), v2(0, 1, 2)) 3987 // b[i, i+1, i+2, i+3] = v2 - v3 3988 // br cond, vector.body, middle.block 3989 // 3990 // middle.block: 3991 // x = v2(3) 3992 // br scalar.ph 3993 // 3994 // scalar.ph: 3995 // s_init = phi [x, middle.block], [a[-1], otherwise] 3996 // br scalar.body 3997 // 3998 // After execution completes the vector loop, we extract the next value of 3999 // the recurrence (x) to use as the initial value in the scalar loop. 4000 4001 // Get the original loop preheader and single loop latch. 4002 auto *Preheader = OrigLoop->getLoopPreheader(); 4003 auto *Latch = OrigLoop->getLoopLatch(); 4004 4005 // Get the initial and previous values of the scalar recurrence. 4006 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4007 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4008 4009 // Create a vector from the initial value. 4010 auto *VectorInit = ScalarInit; 4011 if (VF > 1) { 4012 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4013 VectorInit = Builder.CreateInsertElement( 4014 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4015 Builder.getInt32(VF - 1), "vector.recur.init"); 4016 } 4017 4018 // We constructed a temporary phi node in the first phase of vectorization. 4019 // This phi node will eventually be deleted. 4020 auto &PhiParts = getVectorValue(Phi); 4021 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4022 4023 // Create a phi node for the new recurrence. The current value will either be 4024 // the initial value inserted into a vector or loop-varying vector value. 4025 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4026 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4027 4028 // Get the vectorized previous value. We ensured the previous values was an 4029 // instruction when detecting the recurrence. 4030 auto &PreviousParts = getVectorValue(Previous); 4031 4032 // Set the insertion point to be after this instruction. We ensured the 4033 // previous value dominated all uses of the phi when detecting the 4034 // recurrence. 4035 Builder.SetInsertPoint( 4036 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4037 4038 // We will construct a vector for the recurrence by combining the values for 4039 // the current and previous iterations. This is the required shuffle mask. 4040 SmallVector<Constant *, 8> ShuffleMask(VF); 4041 ShuffleMask[0] = Builder.getInt32(VF - 1); 4042 for (unsigned I = 1; I < VF; ++I) 4043 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4044 4045 // The vector from which to take the initial value for the current iteration 4046 // (actual or unrolled). Initially, this is the vector phi node. 4047 Value *Incoming = VecPhi; 4048 4049 // Shuffle the current and previous vector and update the vector parts. 4050 for (unsigned Part = 0; Part < UF; ++Part) { 4051 auto *Shuffle = 4052 VF > 1 4053 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4054 ConstantVector::get(ShuffleMask)) 4055 : Incoming; 4056 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4057 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4058 PhiParts[Part] = Shuffle; 4059 Incoming = PreviousParts[Part]; 4060 } 4061 4062 // Fix the latch value of the new recurrence in the vector loop. 4063 VecPhi->addIncoming(Incoming, 4064 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4065 4066 // Extract the last vector element in the middle block. This will be the 4067 // initial value for the recurrence when jumping to the scalar loop. 4068 auto *Extract = Incoming; 4069 if (VF > 1) { 4070 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4071 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4072 "vector.recur.extract"); 4073 } 4074 4075 // Fix the initial value of the original recurrence in the scalar loop. 4076 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4077 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4078 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4079 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4080 Start->addIncoming(Incoming, BB); 4081 } 4082 4083 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4084 Phi->setName("scalar.recur"); 4085 4086 // Finally, fix users of the recurrence outside the loop. The users will need 4087 // either the last value of the scalar recurrence or the last value of the 4088 // vector recurrence we extracted in the middle block. Since the loop is in 4089 // LCSSA form, we just need to find the phi node for the original scalar 4090 // recurrence in the exit block, and then add an edge for the middle block. 4091 for (auto &I : *LoopExitBlock) { 4092 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4093 if (!LCSSAPhi) 4094 break; 4095 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4096 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4097 break; 4098 } 4099 } 4100 } 4101 4102 void InnerLoopVectorizer::fixLCSSAPHIs() { 4103 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4104 LEE = LoopExitBlock->end(); 4105 LEI != LEE; ++LEI) { 4106 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4107 if (!LCSSAPhi) 4108 break; 4109 if (LCSSAPhi->getNumIncomingValues() == 1) 4110 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4111 LoopMiddleBlock); 4112 } 4113 } 4114 4115 InnerLoopVectorizer::VectorParts 4116 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4117 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 4118 "Invalid edge"); 4119 4120 // Look for cached value. 4121 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4122 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4123 if (ECEntryIt != MaskCache.end()) 4124 return ECEntryIt->second; 4125 4126 VectorParts SrcMask = createBlockInMask(Src); 4127 4128 // The terminator has to be a branch inst! 4129 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4130 assert(BI && "Unexpected terminator found"); 4131 4132 if (BI->isConditional()) { 4133 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4134 4135 if (BI->getSuccessor(0) != Dst) 4136 for (unsigned part = 0; part < UF; ++part) 4137 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4138 4139 for (unsigned part = 0; part < UF; ++part) 4140 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4141 4142 MaskCache[Edge] = EdgeMask; 4143 return EdgeMask; 4144 } 4145 4146 MaskCache[Edge] = SrcMask; 4147 return SrcMask; 4148 } 4149 4150 InnerLoopVectorizer::VectorParts 4151 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4152 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4153 4154 // Loop incoming mask is all-one. 4155 if (OrigLoop->getHeader() == BB) { 4156 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4157 return getVectorValue(C); 4158 } 4159 4160 // This is the block mask. We OR all incoming edges, and with zero. 4161 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4162 VectorParts BlockMask = getVectorValue(Zero); 4163 4164 // For each pred: 4165 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4166 VectorParts EM = createEdgeMask(*it, BB); 4167 for (unsigned part = 0; part < UF; ++part) 4168 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4169 } 4170 4171 return BlockMask; 4172 } 4173 4174 void InnerLoopVectorizer::widenPHIInstruction( 4175 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 4176 unsigned VF, PhiVector *PV) { 4177 PHINode *P = cast<PHINode>(PN); 4178 // Handle recurrences. 4179 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4180 for (unsigned part = 0; part < UF; ++part) { 4181 // This is phase one of vectorizing PHIs. 4182 Type *VecTy = 4183 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4184 Entry[part] = PHINode::Create( 4185 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4186 } 4187 PV->push_back(P); 4188 return; 4189 } 4190 4191 setDebugLocFromInst(Builder, P); 4192 // Check for PHI nodes that are lowered to vector selects. 4193 if (P->getParent() != OrigLoop->getHeader()) { 4194 // We know that all PHIs in non-header blocks are converted into 4195 // selects, so we don't have to worry about the insertion order and we 4196 // can just use the builder. 4197 // At this point we generate the predication tree. There may be 4198 // duplications since this is a simple recursive scan, but future 4199 // optimizations will clean it up. 4200 4201 unsigned NumIncoming = P->getNumIncomingValues(); 4202 4203 // Generate a sequence of selects of the form: 4204 // SELECT(Mask3, In3, 4205 // SELECT(Mask2, In2, 4206 // ( ...))) 4207 for (unsigned In = 0; In < NumIncoming; In++) { 4208 VectorParts Cond = 4209 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4210 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4211 4212 for (unsigned part = 0; part < UF; ++part) { 4213 // We might have single edge PHIs (blocks) - use an identity 4214 // 'select' for the first PHI operand. 4215 if (In == 0) 4216 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4217 else 4218 // Select between the current value and the previous incoming edge 4219 // based on the incoming mask. 4220 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4221 "predphi"); 4222 } 4223 } 4224 return; 4225 } 4226 4227 // This PHINode must be an induction variable. 4228 // Make sure that we know about it. 4229 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4230 4231 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4232 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4233 4234 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4235 // which can be found from the original scalar operations. 4236 switch (II.getKind()) { 4237 case InductionDescriptor::IK_NoInduction: 4238 llvm_unreachable("Unknown induction"); 4239 case InductionDescriptor::IK_IntInduction: { 4240 assert(P->getType() == II.getStartValue()->getType() && "Types must match"); 4241 if (VF == 1 || P->getType() != Induction->getType() || 4242 !II.getConstIntStepValue()) { 4243 Value *V = Induction; 4244 // Handle other induction variables that are now based on the 4245 // canonical one. 4246 if (P != OldInduction) { 4247 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4248 V = II.transform(Builder, V, PSE.getSE(), DL); 4249 V->setName("offset.idx"); 4250 } 4251 Value *Broadcasted = getBroadcastInstrs(V); 4252 // After broadcasting the induction variable we need to make the vector 4253 // consecutive by adding 0, 1, 2, etc. 4254 for (unsigned part = 0; part < UF; ++part) 4255 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStep()); 4256 } else { 4257 // Instead of re-creating the vector IV by splatting the scalar IV 4258 // in each iteration, we can make a new independent vector IV. 4259 widenInductionVariable(II, Entry); 4260 } 4261 return; 4262 } 4263 case InductionDescriptor::IK_PtrInduction: 4264 // Handle the pointer induction variable case. 4265 assert(P->getType()->isPointerTy() && "Unexpected type."); 4266 // This is the normalized GEP that starts counting at zero. 4267 Value *PtrInd = Induction; 4268 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4269 // This is the vector of results. Notice that we don't generate 4270 // vector geps because scalar geps result in better code. 4271 for (unsigned part = 0; part < UF; ++part) { 4272 if (VF == 1) { 4273 int EltIndex = part; 4274 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4275 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4276 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4277 SclrGep->setName("next.gep"); 4278 Entry[part] = SclrGep; 4279 continue; 4280 } 4281 4282 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4283 for (unsigned int i = 0; i < VF; ++i) { 4284 int EltIndex = i + part * VF; 4285 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4286 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4287 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4288 SclrGep->setName("next.gep"); 4289 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4290 Builder.getInt32(i), "insert.gep"); 4291 } 4292 Entry[part] = VecVal; 4293 } 4294 return; 4295 } 4296 } 4297 4298 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4299 // For each instruction in the old loop. 4300 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4301 VectorParts &Entry = WidenMap.get(&*it); 4302 4303 switch (it->getOpcode()) { 4304 case Instruction::Br: 4305 // Nothing to do for PHIs and BR, since we already took care of the 4306 // loop control flow instructions. 4307 continue; 4308 case Instruction::PHI: { 4309 // Vectorize PHINodes. 4310 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4311 continue; 4312 } // End of PHI. 4313 4314 case Instruction::Add: 4315 case Instruction::FAdd: 4316 case Instruction::Sub: 4317 case Instruction::FSub: 4318 case Instruction::Mul: 4319 case Instruction::FMul: 4320 case Instruction::UDiv: 4321 case Instruction::SDiv: 4322 case Instruction::FDiv: 4323 case Instruction::URem: 4324 case Instruction::SRem: 4325 case Instruction::FRem: 4326 case Instruction::Shl: 4327 case Instruction::LShr: 4328 case Instruction::AShr: 4329 case Instruction::And: 4330 case Instruction::Or: 4331 case Instruction::Xor: { 4332 // Just widen binops. 4333 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4334 setDebugLocFromInst(Builder, BinOp); 4335 VectorParts &A = getVectorValue(it->getOperand(0)); 4336 VectorParts &B = getVectorValue(it->getOperand(1)); 4337 4338 // Use this vector value for all users of the original instruction. 4339 for (unsigned Part = 0; Part < UF; ++Part) { 4340 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4341 4342 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4343 VecOp->copyIRFlags(BinOp); 4344 4345 Entry[Part] = V; 4346 } 4347 4348 addMetadata(Entry, &*it); 4349 break; 4350 } 4351 case Instruction::Select: { 4352 // Widen selects. 4353 // If the selector is loop invariant we can create a select 4354 // instruction with a scalar condition. Otherwise, use vector-select. 4355 auto *SE = PSE.getSE(); 4356 bool InvariantCond = 4357 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4358 setDebugLocFromInst(Builder, &*it); 4359 4360 // The condition can be loop invariant but still defined inside the 4361 // loop. This means that we can't just use the original 'cond' value. 4362 // We have to take the 'vectorized' value and pick the first lane. 4363 // Instcombine will make this a no-op. 4364 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4365 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4366 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4367 4368 Value *ScalarCond = 4369 (VF == 1) 4370 ? Cond[0] 4371 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4372 4373 for (unsigned Part = 0; Part < UF; ++Part) { 4374 Entry[Part] = Builder.CreateSelect( 4375 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4376 } 4377 4378 addMetadata(Entry, &*it); 4379 break; 4380 } 4381 4382 case Instruction::ICmp: 4383 case Instruction::FCmp: { 4384 // Widen compares. Generate vector compares. 4385 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4386 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4387 setDebugLocFromInst(Builder, &*it); 4388 VectorParts &A = getVectorValue(it->getOperand(0)); 4389 VectorParts &B = getVectorValue(it->getOperand(1)); 4390 for (unsigned Part = 0; Part < UF; ++Part) { 4391 Value *C = nullptr; 4392 if (FCmp) { 4393 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4394 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4395 } else { 4396 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4397 } 4398 Entry[Part] = C; 4399 } 4400 4401 addMetadata(Entry, &*it); 4402 break; 4403 } 4404 4405 case Instruction::Store: 4406 case Instruction::Load: 4407 vectorizeMemoryInstruction(&*it); 4408 break; 4409 case Instruction::ZExt: 4410 case Instruction::SExt: 4411 case Instruction::FPToUI: 4412 case Instruction::FPToSI: 4413 case Instruction::FPExt: 4414 case Instruction::PtrToInt: 4415 case Instruction::IntToPtr: 4416 case Instruction::SIToFP: 4417 case Instruction::UIToFP: 4418 case Instruction::Trunc: 4419 case Instruction::FPTrunc: 4420 case Instruction::BitCast: { 4421 CastInst *CI = dyn_cast<CastInst>(it); 4422 setDebugLocFromInst(Builder, &*it); 4423 /// Optimize the special case where the source is a constant integer 4424 /// induction variable. Notice that we can only optimize the 'trunc' case 4425 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4426 /// c. other casts depend on pointer size. 4427 4428 if (CI->getOperand(0) == OldInduction && 4429 it->getOpcode() == Instruction::Trunc) { 4430 InductionDescriptor II = 4431 Legal->getInductionVars()->lookup(OldInduction); 4432 if (auto StepValue = II.getConstIntStepValue()) { 4433 IntegerType *TruncType = cast<IntegerType>(CI->getType()); 4434 if (VF == 1) { 4435 StepValue = 4436 ConstantInt::getSigned(TruncType, StepValue->getSExtValue()); 4437 Value *ScalarCast = 4438 Builder.CreateCast(CI->getOpcode(), Induction, CI->getType()); 4439 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4440 for (unsigned Part = 0; Part < UF; ++Part) 4441 Entry[Part] = getStepVector(Broadcasted, VF * Part, StepValue); 4442 } else { 4443 // Truncating a vector induction variable on each iteration 4444 // may be expensive. Instead, truncate the initial value, and create 4445 // a new, truncated, vector IV based on that. 4446 widenInductionVariable(II, Entry, TruncType); 4447 } 4448 addMetadata(Entry, &*it); 4449 break; 4450 } 4451 } 4452 /// Vectorize casts. 4453 Type *DestTy = 4454 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4455 4456 VectorParts &A = getVectorValue(it->getOperand(0)); 4457 for (unsigned Part = 0; Part < UF; ++Part) 4458 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4459 addMetadata(Entry, &*it); 4460 break; 4461 } 4462 4463 case Instruction::Call: { 4464 // Ignore dbg intrinsics. 4465 if (isa<DbgInfoIntrinsic>(it)) 4466 break; 4467 setDebugLocFromInst(Builder, &*it); 4468 4469 Module *M = BB->getParent()->getParent(); 4470 CallInst *CI = cast<CallInst>(it); 4471 4472 StringRef FnName = CI->getCalledFunction()->getName(); 4473 Function *F = CI->getCalledFunction(); 4474 Type *RetTy = ToVectorTy(CI->getType(), VF); 4475 SmallVector<Type *, 4> Tys; 4476 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4477 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4478 4479 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4480 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4481 ID == Intrinsic::lifetime_start)) { 4482 scalarizeInstruction(&*it); 4483 break; 4484 } 4485 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4486 // version of the instruction. 4487 // Is it beneficial to perform intrinsic call compared to lib call? 4488 bool NeedToScalarize; 4489 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4490 bool UseVectorIntrinsic = 4491 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4492 if (!UseVectorIntrinsic && NeedToScalarize) { 4493 scalarizeInstruction(&*it); 4494 break; 4495 } 4496 4497 for (unsigned Part = 0; Part < UF; ++Part) { 4498 SmallVector<Value *, 4> Args; 4499 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4500 Value *Arg = CI->getArgOperand(i); 4501 // Some intrinsics have a scalar argument - don't replace it with a 4502 // vector. 4503 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4504 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4505 Arg = VectorArg[Part]; 4506 } 4507 Args.push_back(Arg); 4508 } 4509 4510 Function *VectorF; 4511 if (UseVectorIntrinsic) { 4512 // Use vector version of the intrinsic. 4513 Type *TysForDecl[] = {CI->getType()}; 4514 if (VF > 1) 4515 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4516 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4517 } else { 4518 // Use vector version of the library call. 4519 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4520 assert(!VFnName.empty() && "Vector function name is empty."); 4521 VectorF = M->getFunction(VFnName); 4522 if (!VectorF) { 4523 // Generate a declaration 4524 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4525 VectorF = 4526 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4527 VectorF->copyAttributesFrom(F); 4528 } 4529 } 4530 assert(VectorF && "Can't create vector function."); 4531 4532 SmallVector<OperandBundleDef, 1> OpBundles; 4533 CI->getOperandBundlesAsDefs(OpBundles); 4534 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4535 4536 if (isa<FPMathOperator>(V)) 4537 V->copyFastMathFlags(CI); 4538 4539 Entry[Part] = V; 4540 } 4541 4542 addMetadata(Entry, &*it); 4543 break; 4544 } 4545 4546 default: 4547 // All other instructions are unsupported. Scalarize them. 4548 scalarizeInstruction(&*it); 4549 break; 4550 } // end of switch. 4551 } // end of for_each instr. 4552 } 4553 4554 void InnerLoopVectorizer::updateAnalysis() { 4555 // Forget the original basic block. 4556 PSE.getSE()->forgetLoop(OrigLoop); 4557 4558 // Update the dominator tree information. 4559 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4560 "Entry does not dominate exit."); 4561 4562 // We don't predicate stores by this point, so the vector body should be a 4563 // single loop. 4564 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4565 4566 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4567 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4568 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4569 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4570 4571 DEBUG(DT->verifyDomTree()); 4572 } 4573 4574 /// \brief Check whether it is safe to if-convert this phi node. 4575 /// 4576 /// Phi nodes with constant expressions that can trap are not safe to if 4577 /// convert. 4578 static bool canIfConvertPHINodes(BasicBlock *BB) { 4579 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4580 PHINode *Phi = dyn_cast<PHINode>(I); 4581 if (!Phi) 4582 return true; 4583 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4584 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4585 if (C->canTrap()) 4586 return false; 4587 } 4588 return true; 4589 } 4590 4591 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4592 if (!EnableIfConversion) { 4593 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4594 return false; 4595 } 4596 4597 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4598 4599 // A list of pointers that we can safely read and write to. 4600 SmallPtrSet<Value *, 8> SafePointes; 4601 4602 // Collect safe addresses. 4603 for (Loop::block_iterator BI = TheLoop->block_begin(), 4604 BE = TheLoop->block_end(); 4605 BI != BE; ++BI) { 4606 BasicBlock *BB = *BI; 4607 4608 if (blockNeedsPredication(BB)) 4609 continue; 4610 4611 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4612 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4613 SafePointes.insert(LI->getPointerOperand()); 4614 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4615 SafePointes.insert(SI->getPointerOperand()); 4616 } 4617 } 4618 4619 // Collect the blocks that need predication. 4620 BasicBlock *Header = TheLoop->getHeader(); 4621 for (Loop::block_iterator BI = TheLoop->block_begin(), 4622 BE = TheLoop->block_end(); 4623 BI != BE; ++BI) { 4624 BasicBlock *BB = *BI; 4625 4626 // We don't support switch statements inside loops. 4627 if (!isa<BranchInst>(BB->getTerminator())) { 4628 emitAnalysis(VectorizationReport(BB->getTerminator()) 4629 << "loop contains a switch statement"); 4630 return false; 4631 } 4632 4633 // We must be able to predicate all blocks that need to be predicated. 4634 if (blockNeedsPredication(BB)) { 4635 if (!blockCanBePredicated(BB, SafePointes)) { 4636 emitAnalysis(VectorizationReport(BB->getTerminator()) 4637 << "control flow cannot be substituted for a select"); 4638 return false; 4639 } 4640 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4641 emitAnalysis(VectorizationReport(BB->getTerminator()) 4642 << "control flow cannot be substituted for a select"); 4643 return false; 4644 } 4645 } 4646 4647 // We can if-convert this loop. 4648 return true; 4649 } 4650 4651 bool LoopVectorizationLegality::canVectorize() { 4652 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4653 // be canonicalized. 4654 if (!TheLoop->getLoopPreheader()) { 4655 emitAnalysis(VectorizationReport() 4656 << "loop control flow is not understood by vectorizer"); 4657 return false; 4658 } 4659 4660 // We can only vectorize innermost loops. 4661 if (!TheLoop->empty()) { 4662 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4663 return false; 4664 } 4665 4666 // We must have a single backedge. 4667 if (TheLoop->getNumBackEdges() != 1) { 4668 emitAnalysis(VectorizationReport() 4669 << "loop control flow is not understood by vectorizer"); 4670 return false; 4671 } 4672 4673 // We must have a single exiting block. 4674 if (!TheLoop->getExitingBlock()) { 4675 emitAnalysis(VectorizationReport() 4676 << "loop control flow is not understood by vectorizer"); 4677 return false; 4678 } 4679 4680 // We only handle bottom-tested loops, i.e. loop in which the condition is 4681 // checked at the end of each iteration. With that we can assume that all 4682 // instructions in the loop are executed the same number of times. 4683 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4684 emitAnalysis(VectorizationReport() 4685 << "loop control flow is not understood by vectorizer"); 4686 return false; 4687 } 4688 4689 // We need to have a loop header. 4690 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4691 << '\n'); 4692 4693 // Check if we can if-convert non-single-bb loops. 4694 unsigned NumBlocks = TheLoop->getNumBlocks(); 4695 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4696 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4697 return false; 4698 } 4699 4700 // ScalarEvolution needs to be able to find the exit count. 4701 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4702 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4703 emitAnalysis(VectorizationReport() 4704 << "could not determine number of loop iterations"); 4705 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4706 return false; 4707 } 4708 4709 // Check if we can vectorize the instructions and CFG in this loop. 4710 if (!canVectorizeInstrs()) { 4711 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4712 return false; 4713 } 4714 4715 // Go over each instruction and look at memory deps. 4716 if (!canVectorizeMemory()) { 4717 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4718 return false; 4719 } 4720 4721 // Collect all of the variables that remain uniform after vectorization. 4722 collectLoopUniforms(); 4723 4724 DEBUG(dbgs() << "LV: We can vectorize this loop" 4725 << (LAI->getRuntimePointerChecking()->Need 4726 ? " (with a runtime bound check)" 4727 : "") 4728 << "!\n"); 4729 4730 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4731 4732 // If an override option has been passed in for interleaved accesses, use it. 4733 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4734 UseInterleaved = EnableInterleavedMemAccesses; 4735 4736 // Analyze interleaved memory accesses. 4737 if (UseInterleaved) 4738 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4739 4740 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4741 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4742 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4743 4744 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4745 emitAnalysis(VectorizationReport() 4746 << "Too many SCEV assumptions need to be made and checked " 4747 << "at runtime"); 4748 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4749 return false; 4750 } 4751 4752 // Okay! We can vectorize. At this point we don't have any other mem analysis 4753 // which may limit our maximum vectorization factor, so just return true with 4754 // no restrictions. 4755 return true; 4756 } 4757 4758 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4759 if (Ty->isPointerTy()) 4760 return DL.getIntPtrType(Ty); 4761 4762 // It is possible that char's or short's overflow when we ask for the loop's 4763 // trip count, work around this by changing the type size. 4764 if (Ty->getScalarSizeInBits() < 32) 4765 return Type::getInt32Ty(Ty->getContext()); 4766 4767 return Ty; 4768 } 4769 4770 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4771 Ty0 = convertPointerToIntegerType(DL, Ty0); 4772 Ty1 = convertPointerToIntegerType(DL, Ty1); 4773 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4774 return Ty0; 4775 return Ty1; 4776 } 4777 4778 /// \brief Check that the instruction has outside loop users and is not an 4779 /// identified reduction variable. 4780 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4781 SmallPtrSetImpl<Value *> &AllowedExit) { 4782 // Reduction and Induction instructions are allowed to have exit users. All 4783 // other instructions must not have external users. 4784 if (!AllowedExit.count(Inst)) 4785 // Check that all of the users of the loop are inside the BB. 4786 for (User *U : Inst->users()) { 4787 Instruction *UI = cast<Instruction>(U); 4788 // This user may be a reduction exit value. 4789 if (!TheLoop->contains(UI)) { 4790 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4791 return true; 4792 } 4793 } 4794 return false; 4795 } 4796 4797 void LoopVectorizationLegality::addInductionPhi( 4798 PHINode *Phi, const InductionDescriptor &ID, 4799 SmallPtrSetImpl<Value *> &AllowedExit) { 4800 Inductions[Phi] = ID; 4801 Type *PhiTy = Phi->getType(); 4802 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4803 4804 // Get the widest type. 4805 if (!WidestIndTy) 4806 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4807 else 4808 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4809 4810 // Int inductions are special because we only allow one IV. 4811 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4812 ID.getConstIntStepValue() && 4813 ID.getConstIntStepValue()->isOne() && 4814 isa<Constant>(ID.getStartValue()) && 4815 cast<Constant>(ID.getStartValue())->isNullValue()) { 4816 4817 // Use the phi node with the widest type as induction. Use the last 4818 // one if there are multiple (no good reason for doing this other 4819 // than it is expedient). We've checked that it begins at zero and 4820 // steps by one, so this is a canonical induction variable. 4821 if (!Induction || PhiTy == WidestIndTy) 4822 Induction = Phi; 4823 } 4824 4825 // Both the PHI node itself, and the "post-increment" value feeding 4826 // back into the PHI node may have external users. 4827 AllowedExit.insert(Phi); 4828 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 4829 4830 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4831 return; 4832 } 4833 4834 bool LoopVectorizationLegality::canVectorizeInstrs() { 4835 BasicBlock *Header = TheLoop->getHeader(); 4836 4837 // Look for the attribute signaling the absence of NaNs. 4838 Function &F = *Header->getParent(); 4839 HasFunNoNaNAttr = 4840 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4841 4842 // For each block in the loop. 4843 for (Loop::block_iterator bb = TheLoop->block_begin(), 4844 be = TheLoop->block_end(); 4845 bb != be; ++bb) { 4846 4847 // Scan the instructions in the block and look for hazards. 4848 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4849 ++it) { 4850 4851 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4852 Type *PhiTy = Phi->getType(); 4853 // Check that this PHI type is allowed. 4854 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 4855 !PhiTy->isPointerTy()) { 4856 emitAnalysis(VectorizationReport(&*it) 4857 << "loop control flow is not understood by vectorizer"); 4858 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4859 return false; 4860 } 4861 4862 // If this PHINode is not in the header block, then we know that we 4863 // can convert it to select during if-conversion. No need to check if 4864 // the PHIs in this block are induction or reduction variables. 4865 if (*bb != Header) { 4866 // Check that this instruction has no outside users or is an 4867 // identified reduction value with an outside user. 4868 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4869 continue; 4870 emitAnalysis(VectorizationReport(&*it) 4871 << "value could not be identified as " 4872 "an induction or reduction variable"); 4873 return false; 4874 } 4875 4876 // We only allow if-converted PHIs with exactly two incoming values. 4877 if (Phi->getNumIncomingValues() != 2) { 4878 emitAnalysis(VectorizationReport(&*it) 4879 << "control flow not understood by vectorizer"); 4880 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4881 return false; 4882 } 4883 4884 RecurrenceDescriptor RedDes; 4885 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4886 if (RedDes.hasUnsafeAlgebra()) 4887 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4888 AllowedExit.insert(RedDes.getLoopExitInstr()); 4889 Reductions[Phi] = RedDes; 4890 continue; 4891 } 4892 4893 InductionDescriptor ID; 4894 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { 4895 addInductionPhi(Phi, ID, AllowedExit); 4896 continue; 4897 } 4898 4899 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4900 FirstOrderRecurrences.insert(Phi); 4901 continue; 4902 } 4903 4904 // As a last resort, coerce the PHI to a AddRec expression 4905 // and re-try classifying it a an induction PHI. 4906 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { 4907 addInductionPhi(Phi, ID, AllowedExit); 4908 continue; 4909 } 4910 4911 emitAnalysis(VectorizationReport(&*it) 4912 << "value that could not be identified as " 4913 "reduction is used outside the loop"); 4914 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 4915 return false; 4916 } // end of PHI handling 4917 4918 // We handle calls that: 4919 // * Are debug info intrinsics. 4920 // * Have a mapping to an IR intrinsic. 4921 // * Have a vector version available. 4922 CallInst *CI = dyn_cast<CallInst>(it); 4923 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 4924 !isa<DbgInfoIntrinsic>(CI) && 4925 !(CI->getCalledFunction() && TLI && 4926 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4927 emitAnalysis(VectorizationReport(&*it) 4928 << "call instruction cannot be vectorized"); 4929 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4930 return false; 4931 } 4932 4933 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4934 // second argument is the same (i.e. loop invariant) 4935 if (CI && hasVectorInstrinsicScalarOpd( 4936 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4937 auto *SE = PSE.getSE(); 4938 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4939 emitAnalysis(VectorizationReport(&*it) 4940 << "intrinsic instruction cannot be vectorized"); 4941 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4942 return false; 4943 } 4944 } 4945 4946 // Check that the instruction return type is vectorizable. 4947 // Also, we can't vectorize extractelement instructions. 4948 if ((!VectorType::isValidElementType(it->getType()) && 4949 !it->getType()->isVoidTy()) || 4950 isa<ExtractElementInst>(it)) { 4951 emitAnalysis(VectorizationReport(&*it) 4952 << "instruction return type cannot be vectorized"); 4953 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4954 return false; 4955 } 4956 4957 // Check that the stored type is vectorizable. 4958 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4959 Type *T = ST->getValueOperand()->getType(); 4960 if (!VectorType::isValidElementType(T)) { 4961 emitAnalysis(VectorizationReport(ST) 4962 << "store instruction cannot be vectorized"); 4963 return false; 4964 } 4965 4966 // FP instructions can allow unsafe algebra, thus vectorizable by 4967 // non-IEEE-754 compliant SIMD units. 4968 // This applies to floating-point math operations and calls, not memory 4969 // operations, shuffles, or casts, as they don't change precision or 4970 // semantics. 4971 } else if (it->getType()->isFloatingPointTy() && 4972 (CI || it->isBinaryOp()) && !it->hasUnsafeAlgebra()) { 4973 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4974 Hints->setPotentiallyUnsafe(); 4975 } 4976 4977 // Reduction instructions are allowed to have exit users. 4978 // All other instructions must not have external users. 4979 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4980 emitAnalysis(VectorizationReport(&*it) 4981 << "value cannot be used outside the loop"); 4982 return false; 4983 } 4984 4985 } // next instr. 4986 } 4987 4988 if (!Induction) { 4989 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4990 if (Inductions.empty()) { 4991 emitAnalysis(VectorizationReport() 4992 << "loop induction variable could not be identified"); 4993 return false; 4994 } 4995 } 4996 4997 // Now we know the widest induction type, check if our found induction 4998 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4999 // will create another. 5000 if (Induction && WidestIndTy != Induction->getType()) 5001 Induction = nullptr; 5002 5003 return true; 5004 } 5005 5006 void LoopVectorizationLegality::collectLoopUniforms() { 5007 // We now know that the loop is vectorizable! 5008 // Collect variables that will remain uniform after vectorization. 5009 std::vector<Value *> Worklist; 5010 BasicBlock *Latch = TheLoop->getLoopLatch(); 5011 5012 // Start with the conditional branch and walk up the block. 5013 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 5014 5015 // Also add all consecutive pointer values; these values will be uniform 5016 // after vectorization (and subsequent cleanup) and, until revectorization is 5017 // supported, all dependencies must also be uniform. 5018 for (Loop::block_iterator B = TheLoop->block_begin(), 5019 BE = TheLoop->block_end(); 5020 B != BE; ++B) 5021 for (Instruction &I : **B) 5022 if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) 5023 Worklist.insert(Worklist.end(), I.op_begin(), I.op_end()); 5024 5025 while (!Worklist.empty()) { 5026 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 5027 Worklist.pop_back(); 5028 5029 // Look at instructions inside this loop. 5030 // Stop when reaching PHI nodes. 5031 // TODO: we need to follow values all over the loop, not only in this block. 5032 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 5033 continue; 5034 5035 // This is a known uniform. 5036 Uniforms.insert(I); 5037 5038 // Insert all operands. 5039 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 5040 } 5041 } 5042 5043 bool LoopVectorizationLegality::canVectorizeMemory() { 5044 LAI = &LAA->getInfo(TheLoop); 5045 InterleaveInfo.setLAI(LAI); 5046 auto &OptionalReport = LAI->getReport(); 5047 if (OptionalReport) 5048 emitAnalysis(VectorizationReport(*OptionalReport)); 5049 if (!LAI->canVectorizeMemory()) 5050 return false; 5051 5052 if (LAI->hasStoreToLoopInvariantAddress()) { 5053 emitAnalysis( 5054 VectorizationReport() 5055 << "write to a loop invariant address could not be vectorized"); 5056 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5057 return false; 5058 } 5059 5060 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5061 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 5062 5063 return true; 5064 } 5065 5066 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5067 Value *In0 = const_cast<Value *>(V); 5068 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5069 if (!PN) 5070 return false; 5071 5072 return Inductions.count(PN); 5073 } 5074 5075 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5076 return FirstOrderRecurrences.count(Phi); 5077 } 5078 5079 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5080 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5081 } 5082 5083 bool LoopVectorizationLegality::blockCanBePredicated( 5084 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5085 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5086 5087 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5088 // Check that we don't have a constant expression that can trap as operand. 5089 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5090 OI != OE; ++OI) { 5091 if (Constant *C = dyn_cast<Constant>(*OI)) 5092 if (C->canTrap()) 5093 return false; 5094 } 5095 // We might be able to hoist the load. 5096 if (it->mayReadFromMemory()) { 5097 LoadInst *LI = dyn_cast<LoadInst>(it); 5098 if (!LI) 5099 return false; 5100 if (!SafePtrs.count(LI->getPointerOperand())) { 5101 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5102 isLegalMaskedGather(LI->getType())) { 5103 MaskedOp.insert(LI); 5104 continue; 5105 } 5106 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5107 if (IsAnnotatedParallel) 5108 continue; 5109 return false; 5110 } 5111 } 5112 5113 // We don't predicate stores at the moment. 5114 if (it->mayWriteToMemory()) { 5115 StoreInst *SI = dyn_cast<StoreInst>(it); 5116 // We only support predication of stores in basic blocks with one 5117 // predecessor. 5118 if (!SI) 5119 return false; 5120 5121 // Build a masked store if it is legal for the target. 5122 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5123 SI->getPointerOperand()) || 5124 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5125 MaskedOp.insert(SI); 5126 continue; 5127 } 5128 5129 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5130 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5131 5132 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5133 !isSinglePredecessor) 5134 return false; 5135 } 5136 if (it->mayThrow()) 5137 return false; 5138 5139 // The instructions below can trap. 5140 switch (it->getOpcode()) { 5141 default: 5142 continue; 5143 case Instruction::UDiv: 5144 case Instruction::SDiv: 5145 case Instruction::URem: 5146 case Instruction::SRem: 5147 return false; 5148 } 5149 } 5150 5151 return true; 5152 } 5153 5154 void InterleavedAccessInfo::collectConstStridedAccesses( 5155 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 5156 const ValueToValueMap &Strides) { 5157 // Holds load/store instructions in program order. 5158 SmallVector<Instruction *, 16> AccessList; 5159 5160 // Since it's desired that the load/store instructions be maintained in 5161 // "program order" for the interleaved access analysis, we have to visit the 5162 // blocks in the loop in reverse postorder (i.e., in a topological order). 5163 // Such an ordering will ensure that any load/store that may be executed 5164 // before a second load/store will precede the second load/store in the 5165 // AccessList. 5166 LoopBlocksDFS DFS(TheLoop); 5167 DFS.perform(LI); 5168 for (LoopBlocksDFS::RPOIterator I = DFS.beginRPO(), E = DFS.endRPO(); I != E; 5169 ++I) { 5170 BasicBlock *BB = *I; 5171 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5172 5173 for (auto &I : *BB) { 5174 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 5175 continue; 5176 // FIXME: Currently we can't handle mixed accesses and predicated accesses 5177 if (IsPred) 5178 return; 5179 5180 AccessList.push_back(&I); 5181 } 5182 } 5183 5184 if (AccessList.empty()) 5185 return; 5186 5187 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5188 for (auto I : AccessList) { 5189 LoadInst *LI = dyn_cast<LoadInst>(I); 5190 StoreInst *SI = dyn_cast<StoreInst>(I); 5191 5192 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 5193 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5194 5195 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5196 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5197 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5198 5199 // An alignment of 0 means target ABI alignment. 5200 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5201 if (!Align) 5202 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5203 5204 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 5205 } 5206 } 5207 5208 // Analyze interleaved accesses and collect them into interleaved load and 5209 // store groups. 5210 // 5211 // When generating code for an interleaved load group, we effectively hoist all 5212 // loads in the group to the location of the first load in program order. When 5213 // generating code for an interleaved store group, we sink all stores to the 5214 // location of the last store. This code motion can change the order of load 5215 // and store instructions and may break dependences. 5216 // 5217 // The code generation strategy mentioned above ensures that we won't violate 5218 // any write-after-read (WAR) dependences. 5219 // 5220 // E.g., for the WAR dependence: a = A[i]; // (1) 5221 // A[i] = b; // (2) 5222 // 5223 // The store group of (2) is always inserted at or below (2), and the load 5224 // group of (1) is always inserted at or above (1). Thus, the instructions will 5225 // never be reordered. All other dependences are checked to ensure the 5226 // correctness of the instruction reordering. 5227 // 5228 // The algorithm visits all memory accesses in the loop in bottom-up program 5229 // order. Program order is established by traversing the blocks in the loop in 5230 // reverse postorder when collecting the accesses. 5231 // 5232 // We visit the memory accesses in bottom-up order because it can simplify the 5233 // construction of store groups in the presence of write-after-write (WAW) 5234 // dependences. 5235 // 5236 // E.g., for the WAW dependence: A[i] = a; // (1) 5237 // A[i] = b; // (2) 5238 // A[i + 1] = c; // (3) 5239 // 5240 // We will first create a store group with (3) and (2). (1) can't be added to 5241 // this group because it and (2) are dependent. However, (1) can be grouped 5242 // with other accesses that may precede it in program order. Note that a 5243 // bottom-up order does not imply that WAW dependences should not be checked. 5244 void InterleavedAccessInfo::analyzeInterleaving( 5245 const ValueToValueMap &Strides) { 5246 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5247 5248 // Holds all the stride accesses. 5249 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5250 collectConstStridedAccesses(StrideAccesses, Strides); 5251 5252 if (StrideAccesses.empty()) 5253 return; 5254 5255 // Collect the dependences in the loop. 5256 collectDependences(); 5257 5258 // Holds all interleaved store groups temporarily. 5259 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5260 // Holds all interleaved load groups temporarily. 5261 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5262 5263 // Search the load-load/write-write pair B-A in bottom-up order and try to 5264 // insert B into the interleave group of A according to 3 rules: 5265 // 1. A and B have the same stride. 5266 // 2. A and B have the same memory object size. 5267 // 3. B belongs to the group according to the distance. 5268 for (auto AI = StrideAccesses.rbegin(), E = StrideAccesses.rend(); AI != E; 5269 ++AI) { 5270 Instruction *A = AI->first; 5271 StrideDescriptor DesA = AI->second; 5272 5273 // Initialize a group for A if it has an allowable stride. Even if we don't 5274 // create a group for A, we continue with the bottom-up algorithm to ensure 5275 // we don't break any of A's dependences. 5276 InterleaveGroup *Group = nullptr; 5277 if (isStrided(DesA.Stride)) { 5278 Group = getInterleaveGroup(A); 5279 if (!Group) { 5280 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5281 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5282 } 5283 if (A->mayWriteToMemory()) 5284 StoreGroups.insert(Group); 5285 else 5286 LoadGroups.insert(Group); 5287 } 5288 5289 for (auto BI = std::next(AI); BI != E; ++BI) { 5290 Instruction *B = BI->first; 5291 StrideDescriptor DesB = BI->second; 5292 5293 // Our code motion strategy implies that we can't have dependences 5294 // between accesses in an interleaved group and other accesses located 5295 // between the first and last member of the group. Note that this also 5296 // means that a group can't have more than one member at a given offset. 5297 // The accesses in a group can have dependences with other accesses, but 5298 // we must ensure we don't extend the boundaries of the group such that 5299 // we encompass those dependent accesses. 5300 // 5301 // For example, assume we have the sequence of accesses shown below in a 5302 // stride-2 loop: 5303 // 5304 // (1, 2) is a group | A[i] = a; // (1) 5305 // | A[i-1] = b; // (2) | 5306 // A[i-3] = c; // (3) 5307 // A[i] = d; // (4) | (2, 4) is not a group 5308 // 5309 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5310 // but not with (4). If we did, the dependent access (3) would be within 5311 // the boundaries of the (2, 4) group. 5312 if (!canReorderMemAccessesForInterleavedGroups(&*BI, &*AI)) { 5313 5314 // If a dependence exists and B is already in a group, we know that B 5315 // must be a store since B precedes A and WAR dependences are allowed. 5316 // Thus, B would be sunk below A. We release B's group to prevent this 5317 // illegal code motion. B will then be free to form another group with 5318 // instructions that precede it. 5319 if (isInterleaved(B)) { 5320 InterleaveGroup *StoreGroup = getInterleaveGroup(B); 5321 StoreGroups.remove(StoreGroup); 5322 releaseGroup(StoreGroup); 5323 } 5324 5325 // If a dependence exists and B is not already in a group (or it was 5326 // and we just released it), A might be hoisted above B (if A is a 5327 // load) or another store might be sunk below B (if A is a store). In 5328 // either case, we can't add additional instructions to A's group. A 5329 // will only form a group with instructions that it precedes. 5330 break; 5331 } 5332 5333 // At this point, we've checked for illegal code motion. If either A or B 5334 // isn't strided, there's nothing left to do. 5335 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5336 continue; 5337 5338 // Ignore if B is already in a group or B is a different memory operation. 5339 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5340 continue; 5341 5342 // Check the rule 1 and 2. 5343 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5344 continue; 5345 5346 // Calculate the distance and prepare for the rule 3. 5347 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5348 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5349 if (!DistToA) 5350 continue; 5351 5352 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5353 5354 // Skip if the distance is not multiple of size as they are not in the 5355 // same group. 5356 if (DistanceToA % static_cast<int>(DesA.Size)) 5357 continue; 5358 5359 // The index of B is the index of A plus the related index to A. 5360 int IndexB = 5361 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5362 5363 // Try to insert B into the group. 5364 if (Group->insertMember(B, IndexB, DesB.Align)) { 5365 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5366 << " into the interleave group with" << *A << '\n'); 5367 InterleaveGroupMap[B] = Group; 5368 5369 // Set the first load in program order as the insert position. 5370 if (B->mayReadFromMemory()) 5371 Group->setInsertPos(B); 5372 } 5373 } // Iteration on instruction B 5374 } // Iteration on instruction A 5375 5376 // Remove interleaved store groups with gaps. 5377 for (InterleaveGroup *Group : StoreGroups) 5378 if (Group->getNumMembers() != Group->getFactor()) 5379 releaseGroup(Group); 5380 5381 // If there is a non-reversed interleaved load group with gaps, we will need 5382 // to execute at least one scalar epilogue iteration. This will ensure that 5383 // we don't speculatively access memory out-of-bounds. Note that we only need 5384 // to look for a member at index factor - 1, since every group must have a 5385 // member at index zero. 5386 for (InterleaveGroup *Group : LoadGroups) 5387 if (!Group->getMember(Group->getFactor() - 1)) { 5388 if (Group->isReverse()) { 5389 releaseGroup(Group); 5390 } else { 5391 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5392 RequiresScalarEpilogue = true; 5393 } 5394 } 5395 } 5396 5397 LoopVectorizationCostModel::VectorizationFactor 5398 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5399 // Width 1 means no vectorize 5400 VectorizationFactor Factor = {1U, 0U}; 5401 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5402 emitAnalysis( 5403 VectorizationReport() 5404 << "runtime pointer checks needed. Enable vectorization of this " 5405 "loop with '#pragma clang loop vectorize(enable)' when " 5406 "compiling with -Os/-Oz"); 5407 DEBUG(dbgs() 5408 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5409 return Factor; 5410 } 5411 5412 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5413 emitAnalysis( 5414 VectorizationReport() 5415 << "store that is conditionally executed prevents vectorization"); 5416 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5417 return Factor; 5418 } 5419 5420 // Find the trip count. 5421 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5422 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5423 5424 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5425 unsigned SmallestType, WidestType; 5426 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5427 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5428 unsigned MaxSafeDepDist = -1U; 5429 5430 // Get the maximum safe dependence distance in bits computed by LAA. If the 5431 // loop contains any interleaved accesses, we divide the dependence distance 5432 // by the maximum interleave factor of all interleaved groups. Note that 5433 // although the division ensures correctness, this is a fairly conservative 5434 // computation because the maximum distance computed by LAA may not involve 5435 // any of the interleaved accesses. 5436 if (Legal->getMaxSafeDepDistBytes() != -1U) 5437 MaxSafeDepDist = 5438 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5439 5440 WidestRegister = 5441 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5442 unsigned MaxVectorSize = WidestRegister / WidestType; 5443 5444 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5445 << WidestType << " bits.\n"); 5446 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5447 << " bits.\n"); 5448 5449 if (MaxVectorSize == 0) { 5450 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5451 MaxVectorSize = 1; 5452 } 5453 5454 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5455 " into one vector!"); 5456 5457 unsigned VF = MaxVectorSize; 5458 if (MaximizeBandwidth && !OptForSize) { 5459 // Collect all viable vectorization factors. 5460 SmallVector<unsigned, 8> VFs; 5461 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5462 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5463 VFs.push_back(VS); 5464 5465 // For each VF calculate its register usage. 5466 auto RUs = calculateRegisterUsage(VFs); 5467 5468 // Select the largest VF which doesn't require more registers than existing 5469 // ones. 5470 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5471 for (int i = RUs.size() - 1; i >= 0; --i) { 5472 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5473 VF = VFs[i]; 5474 break; 5475 } 5476 } 5477 } 5478 5479 // If we optimize the program for size, avoid creating the tail loop. 5480 if (OptForSize) { 5481 // If we are unable to calculate the trip count then don't try to vectorize. 5482 if (TC < 2) { 5483 emitAnalysis( 5484 VectorizationReport() 5485 << "unable to calculate the loop count due to complex control flow"); 5486 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5487 return Factor; 5488 } 5489 5490 // Find the maximum SIMD width that can fit within the trip count. 5491 VF = TC % MaxVectorSize; 5492 5493 if (VF == 0) 5494 VF = MaxVectorSize; 5495 else { 5496 // If the trip count that we found modulo the vectorization factor is not 5497 // zero then we require a tail. 5498 emitAnalysis(VectorizationReport() 5499 << "cannot optimize for size and vectorize at the " 5500 "same time. Enable vectorization of this loop " 5501 "with '#pragma clang loop vectorize(enable)' " 5502 "when compiling with -Os/-Oz"); 5503 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5504 return Factor; 5505 } 5506 } 5507 5508 int UserVF = Hints->getWidth(); 5509 if (UserVF != 0) { 5510 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5511 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5512 5513 Factor.Width = UserVF; 5514 return Factor; 5515 } 5516 5517 float Cost = expectedCost(1).first; 5518 #ifndef NDEBUG 5519 const float ScalarCost = Cost; 5520 #endif /* NDEBUG */ 5521 unsigned Width = 1; 5522 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5523 5524 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5525 // Ignore scalar width, because the user explicitly wants vectorization. 5526 if (ForceVectorization && VF > 1) { 5527 Width = 2; 5528 Cost = expectedCost(Width).first / (float)Width; 5529 } 5530 5531 for (unsigned i = 2; i <= VF; i *= 2) { 5532 // Notice that the vector loop needs to be executed less times, so 5533 // we need to divide the cost of the vector loops by the width of 5534 // the vector elements. 5535 VectorizationCostTy C = expectedCost(i); 5536 float VectorCost = C.first / (float)i; 5537 DEBUG(dbgs() << "LV: Vector loop of width " << i 5538 << " costs: " << (int)VectorCost << ".\n"); 5539 if (!C.second && !ForceVectorization) { 5540 DEBUG( 5541 dbgs() << "LV: Not considering vector loop of width " << i 5542 << " because it will not generate any vector instructions.\n"); 5543 continue; 5544 } 5545 if (VectorCost < Cost) { 5546 Cost = VectorCost; 5547 Width = i; 5548 } 5549 } 5550 5551 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5552 << "LV: Vectorization seems to be not beneficial, " 5553 << "but was forced by a user.\n"); 5554 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5555 Factor.Width = Width; 5556 Factor.Cost = Width * Cost; 5557 return Factor; 5558 } 5559 5560 std::pair<unsigned, unsigned> 5561 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5562 unsigned MinWidth = -1U; 5563 unsigned MaxWidth = 8; 5564 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5565 5566 // For each block. 5567 for (Loop::block_iterator bb = TheLoop->block_begin(), 5568 be = TheLoop->block_end(); 5569 bb != be; ++bb) { 5570 BasicBlock *BB = *bb; 5571 5572 // For each instruction in the loop. 5573 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5574 Type *T = it->getType(); 5575 5576 // Skip ignored values. 5577 if (ValuesToIgnore.count(&*it)) 5578 continue; 5579 5580 // Only examine Loads, Stores and PHINodes. 5581 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5582 continue; 5583 5584 // Examine PHI nodes that are reduction variables. Update the type to 5585 // account for the recurrence type. 5586 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5587 if (!Legal->isReductionVariable(PN)) 5588 continue; 5589 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5590 T = RdxDesc.getRecurrenceType(); 5591 } 5592 5593 // Examine the stored values. 5594 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5595 T = ST->getValueOperand()->getType(); 5596 5597 // Ignore loaded pointer types and stored pointer types that are not 5598 // consecutive. However, we do want to take consecutive stores/loads of 5599 // pointer vectors into account. 5600 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5601 continue; 5602 5603 MinWidth = std::min(MinWidth, 5604 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5605 MaxWidth = std::max(MaxWidth, 5606 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5607 } 5608 } 5609 5610 return {MinWidth, MaxWidth}; 5611 } 5612 5613 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5614 unsigned VF, 5615 unsigned LoopCost) { 5616 5617 // -- The interleave heuristics -- 5618 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5619 // There are many micro-architectural considerations that we can't predict 5620 // at this level. For example, frontend pressure (on decode or fetch) due to 5621 // code size, or the number and capabilities of the execution ports. 5622 // 5623 // We use the following heuristics to select the interleave count: 5624 // 1. If the code has reductions, then we interleave to break the cross 5625 // iteration dependency. 5626 // 2. If the loop is really small, then we interleave to reduce the loop 5627 // overhead. 5628 // 3. We don't interleave if we think that we will spill registers to memory 5629 // due to the increased register pressure. 5630 5631 // When we optimize for size, we don't interleave. 5632 if (OptForSize) 5633 return 1; 5634 5635 // We used the distance for the interleave count. 5636 if (Legal->getMaxSafeDepDistBytes() != -1U) 5637 return 1; 5638 5639 // Do not interleave loops with a relatively small trip count. 5640 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5641 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5642 return 1; 5643 5644 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5645 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5646 << " registers\n"); 5647 5648 if (VF == 1) { 5649 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5650 TargetNumRegisters = ForceTargetNumScalarRegs; 5651 } else { 5652 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5653 TargetNumRegisters = ForceTargetNumVectorRegs; 5654 } 5655 5656 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5657 // We divide by these constants so assume that we have at least one 5658 // instruction that uses at least one register. 5659 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5660 R.NumInstructions = std::max(R.NumInstructions, 1U); 5661 5662 // We calculate the interleave count using the following formula. 5663 // Subtract the number of loop invariants from the number of available 5664 // registers. These registers are used by all of the interleaved instances. 5665 // Next, divide the remaining registers by the number of registers that is 5666 // required by the loop, in order to estimate how many parallel instances 5667 // fit without causing spills. All of this is rounded down if necessary to be 5668 // a power of two. We want power of two interleave count to simplify any 5669 // addressing operations or alignment considerations. 5670 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5671 R.MaxLocalUsers); 5672 5673 // Don't count the induction variable as interleaved. 5674 if (EnableIndVarRegisterHeur) 5675 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5676 std::max(1U, (R.MaxLocalUsers - 1))); 5677 5678 // Clamp the interleave ranges to reasonable counts. 5679 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5680 5681 // Check if the user has overridden the max. 5682 if (VF == 1) { 5683 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5684 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5685 } else { 5686 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5687 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5688 } 5689 5690 // If we did not calculate the cost for VF (because the user selected the VF) 5691 // then we calculate the cost of VF here. 5692 if (LoopCost == 0) 5693 LoopCost = expectedCost(VF).first; 5694 5695 // Clamp the calculated IC to be between the 1 and the max interleave count 5696 // that the target allows. 5697 if (IC > MaxInterleaveCount) 5698 IC = MaxInterleaveCount; 5699 else if (IC < 1) 5700 IC = 1; 5701 5702 // Interleave if we vectorized this loop and there is a reduction that could 5703 // benefit from interleaving. 5704 if (VF > 1 && Legal->getReductionVars()->size()) { 5705 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5706 return IC; 5707 } 5708 5709 // Note that if we've already vectorized the loop we will have done the 5710 // runtime check and so interleaving won't require further checks. 5711 bool InterleavingRequiresRuntimePointerCheck = 5712 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5713 5714 // We want to interleave small loops in order to reduce the loop overhead and 5715 // potentially expose ILP opportunities. 5716 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5717 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5718 // We assume that the cost overhead is 1 and we use the cost model 5719 // to estimate the cost of the loop and interleave until the cost of the 5720 // loop overhead is about 5% of the cost of the loop. 5721 unsigned SmallIC = 5722 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5723 5724 // Interleave until store/load ports (estimated by max interleave count) are 5725 // saturated. 5726 unsigned NumStores = Legal->getNumStores(); 5727 unsigned NumLoads = Legal->getNumLoads(); 5728 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5729 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5730 5731 // If we have a scalar reduction (vector reductions are already dealt with 5732 // by this point), we can increase the critical path length if the loop 5733 // we're interleaving is inside another loop. Limit, by default to 2, so the 5734 // critical path only gets increased by one reduction operation. 5735 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 5736 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5737 SmallIC = std::min(SmallIC, F); 5738 StoresIC = std::min(StoresIC, F); 5739 LoadsIC = std::min(LoadsIC, F); 5740 } 5741 5742 if (EnableLoadStoreRuntimeInterleave && 5743 std::max(StoresIC, LoadsIC) > SmallIC) { 5744 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5745 return std::max(StoresIC, LoadsIC); 5746 } 5747 5748 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5749 return SmallIC; 5750 } 5751 5752 // Interleave if this is a large loop (small loops are already dealt with by 5753 // this point) that could benefit from interleaving. 5754 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5755 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5756 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5757 return IC; 5758 } 5759 5760 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5761 return 1; 5762 } 5763 5764 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5765 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5766 // This function calculates the register usage by measuring the highest number 5767 // of values that are alive at a single location. Obviously, this is a very 5768 // rough estimation. We scan the loop in a topological order in order and 5769 // assign a number to each instruction. We use RPO to ensure that defs are 5770 // met before their users. We assume that each instruction that has in-loop 5771 // users starts an interval. We record every time that an in-loop value is 5772 // used, so we have a list of the first and last occurrences of each 5773 // instruction. Next, we transpose this data structure into a multi map that 5774 // holds the list of intervals that *end* at a specific location. This multi 5775 // map allows us to perform a linear search. We scan the instructions linearly 5776 // and record each time that a new interval starts, by placing it in a set. 5777 // If we find this value in the multi-map then we remove it from the set. 5778 // The max register usage is the maximum size of the set. 5779 // We also search for instructions that are defined outside the loop, but are 5780 // used inside the loop. We need this number separately from the max-interval 5781 // usage number because when we unroll, loop-invariant values do not take 5782 // more register. 5783 LoopBlocksDFS DFS(TheLoop); 5784 DFS.perform(LI); 5785 5786 RegisterUsage RU; 5787 RU.NumInstructions = 0; 5788 5789 // Each 'key' in the map opens a new interval. The values 5790 // of the map are the index of the 'last seen' usage of the 5791 // instruction that is the key. 5792 typedef DenseMap<Instruction *, unsigned> IntervalMap; 5793 // Maps instruction to its index. 5794 DenseMap<unsigned, Instruction *> IdxToInstr; 5795 // Marks the end of each interval. 5796 IntervalMap EndPoint; 5797 // Saves the list of instruction indices that are used in the loop. 5798 SmallSet<Instruction *, 8> Ends; 5799 // Saves the list of values that are used in the loop but are 5800 // defined outside the loop, such as arguments and constants. 5801 SmallPtrSet<Value *, 8> LoopInvariants; 5802 5803 unsigned Index = 0; 5804 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 5805 bb != be; ++bb) { 5806 RU.NumInstructions += (*bb)->size(); 5807 for (Instruction &I : **bb) { 5808 IdxToInstr[Index++] = &I; 5809 5810 // Save the end location of each USE. 5811 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5812 Value *U = I.getOperand(i); 5813 Instruction *Instr = dyn_cast<Instruction>(U); 5814 5815 // Ignore non-instruction values such as arguments, constants, etc. 5816 if (!Instr) 5817 continue; 5818 5819 // If this instruction is outside the loop then record it and continue. 5820 if (!TheLoop->contains(Instr)) { 5821 LoopInvariants.insert(Instr); 5822 continue; 5823 } 5824 5825 // Overwrite previous end points. 5826 EndPoint[Instr] = Index; 5827 Ends.insert(Instr); 5828 } 5829 } 5830 } 5831 5832 // Saves the list of intervals that end with the index in 'key'. 5833 typedef SmallVector<Instruction *, 2> InstrList; 5834 DenseMap<unsigned, InstrList> TransposeEnds; 5835 5836 // Transpose the EndPoints to a list of values that end at each index. 5837 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); it != e; 5838 ++it) 5839 TransposeEnds[it->second].push_back(it->first); 5840 5841 SmallSet<Instruction *, 8> OpenIntervals; 5842 5843 // Get the size of the widest register. 5844 unsigned MaxSafeDepDist = -1U; 5845 if (Legal->getMaxSafeDepDistBytes() != -1U) 5846 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5847 unsigned WidestRegister = 5848 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5849 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5850 5851 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5852 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5853 5854 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5855 5856 // A lambda that gets the register usage for the given type and VF. 5857 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5858 if (Ty->isTokenTy()) 5859 return 0U; 5860 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5861 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5862 }; 5863 5864 for (unsigned int i = 0; i < Index; ++i) { 5865 Instruction *I = IdxToInstr[i]; 5866 // Ignore instructions that are never used within the loop. 5867 if (!Ends.count(I)) 5868 continue; 5869 5870 // Remove all of the instructions that end at this location. 5871 InstrList &List = TransposeEnds[i]; 5872 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5873 OpenIntervals.erase(List[j]); 5874 5875 // Skip ignored values. 5876 if (ValuesToIgnore.count(I)) 5877 continue; 5878 5879 // For each VF find the maximum usage of registers. 5880 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5881 if (VFs[j] == 1) { 5882 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5883 continue; 5884 } 5885 5886 // Count the number of live intervals. 5887 unsigned RegUsage = 0; 5888 for (auto Inst : OpenIntervals) { 5889 // Skip ignored values for VF > 1. 5890 if (VecValuesToIgnore.count(Inst)) 5891 continue; 5892 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5893 } 5894 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5895 } 5896 5897 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5898 << OpenIntervals.size() << '\n'); 5899 5900 // Add the current instruction to the list of open intervals. 5901 OpenIntervals.insert(I); 5902 } 5903 5904 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5905 unsigned Invariant = 0; 5906 if (VFs[i] == 1) 5907 Invariant = LoopInvariants.size(); 5908 else { 5909 for (auto Inst : LoopInvariants) 5910 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5911 } 5912 5913 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5914 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5915 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5916 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5917 5918 RU.LoopInvariantRegs = Invariant; 5919 RU.MaxLocalUsers = MaxUsages[i]; 5920 RUs[i] = RU; 5921 } 5922 5923 return RUs; 5924 } 5925 5926 LoopVectorizationCostModel::VectorizationCostTy 5927 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5928 VectorizationCostTy Cost; 5929 5930 // For each block. 5931 for (Loop::block_iterator bb = TheLoop->block_begin(), 5932 be = TheLoop->block_end(); 5933 bb != be; ++bb) { 5934 VectorizationCostTy BlockCost; 5935 BasicBlock *BB = *bb; 5936 5937 // For each instruction in the old loop. 5938 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5939 // Skip dbg intrinsics. 5940 if (isa<DbgInfoIntrinsic>(it)) 5941 continue; 5942 5943 // Skip ignored values. 5944 if (ValuesToIgnore.count(&*it)) 5945 continue; 5946 5947 VectorizationCostTy C = getInstructionCost(&*it, VF); 5948 5949 // Check if we should override the cost. 5950 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5951 C.first = ForceTargetInstructionCost; 5952 5953 BlockCost.first += C.first; 5954 BlockCost.second |= C.second; 5955 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5956 << VF << " For instruction: " << *it << '\n'); 5957 } 5958 5959 // We assume that if-converted blocks have a 50% chance of being executed. 5960 // When the code is scalar then some of the blocks are avoided due to CF. 5961 // When the code is vectorized we execute all code paths. 5962 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5963 BlockCost.first /= 2; 5964 5965 Cost.first += BlockCost.first; 5966 Cost.second |= BlockCost.second; 5967 } 5968 5969 return Cost; 5970 } 5971 5972 /// \brief Check if the load/store instruction \p I may be translated into 5973 /// gather/scatter during vectorization. 5974 /// 5975 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5976 /// instruction. We need it to retrieve data type. 5977 /// Using gather/scatter is possible when it is supported by target. 5978 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5979 LoopVectorizationLegality *Legal) { 5980 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5981 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5982 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5983 } 5984 5985 /// \brief Check whether the address computation for a non-consecutive memory 5986 /// access looks like an unlikely candidate for being merged into the indexing 5987 /// mode. 5988 /// 5989 /// We look for a GEP which has one index that is an induction variable and all 5990 /// other indices are loop invariant. If the stride of this access is also 5991 /// within a small bound we decide that this address computation can likely be 5992 /// merged into the addressing mode. 5993 /// In all other cases, we identify the address computation as complex. 5994 static bool isLikelyComplexAddressComputation(Value *Ptr, 5995 LoopVectorizationLegality *Legal, 5996 ScalarEvolution *SE, 5997 const Loop *TheLoop) { 5998 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5999 if (!Gep) 6000 return true; 6001 6002 // We are looking for a gep with all loop invariant indices except for one 6003 // which should be an induction variable. 6004 unsigned NumOperands = Gep->getNumOperands(); 6005 for (unsigned i = 1; i < NumOperands; ++i) { 6006 Value *Opd = Gep->getOperand(i); 6007 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6008 !Legal->isInductionVariable(Opd)) 6009 return true; 6010 } 6011 6012 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 6013 // can likely be merged into the address computation. 6014 unsigned MaxMergeDistance = 64; 6015 6016 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 6017 if (!AddRec) 6018 return true; 6019 6020 // Check the step is constant. 6021 const SCEV *Step = AddRec->getStepRecurrence(*SE); 6022 // Calculate the pointer stride and check if it is consecutive. 6023 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 6024 if (!C) 6025 return true; 6026 6027 const APInt &APStepVal = C->getAPInt(); 6028 6029 // Huge step value - give up. 6030 if (APStepVal.getBitWidth() > 64) 6031 return true; 6032 6033 int64_t StepVal = APStepVal.getSExtValue(); 6034 6035 return StepVal > MaxMergeDistance; 6036 } 6037 6038 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6039 return Legal->hasStride(I->getOperand(0)) || 6040 Legal->hasStride(I->getOperand(1)); 6041 } 6042 6043 LoopVectorizationCostModel::VectorizationCostTy 6044 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6045 // If we know that this instruction will remain uniform, check the cost of 6046 // the scalar version. 6047 if (Legal->isUniformAfterVectorization(I)) 6048 VF = 1; 6049 6050 Type *VectorTy; 6051 unsigned C = getInstructionCost(I, VF, VectorTy); 6052 6053 bool TypeNotScalarized = 6054 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6055 return VectorizationCostTy(C, TypeNotScalarized); 6056 } 6057 6058 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6059 unsigned VF, 6060 Type *&VectorTy) { 6061 Type *RetTy = I->getType(); 6062 if (VF > 1 && MinBWs.count(I)) 6063 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6064 VectorTy = ToVectorTy(RetTy, VF); 6065 auto SE = PSE.getSE(); 6066 6067 // TODO: We need to estimate the cost of intrinsic calls. 6068 switch (I->getOpcode()) { 6069 case Instruction::GetElementPtr: 6070 // We mark this instruction as zero-cost because the cost of GEPs in 6071 // vectorized code depends on whether the corresponding memory instruction 6072 // is scalarized or not. Therefore, we handle GEPs with the memory 6073 // instruction cost. 6074 return 0; 6075 case Instruction::Br: { 6076 return TTI.getCFInstrCost(I->getOpcode()); 6077 } 6078 case Instruction::PHI: { 6079 auto *Phi = cast<PHINode>(I); 6080 6081 // First-order recurrences are replaced by vector shuffles inside the loop. 6082 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6083 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6084 VectorTy, VF - 1, VectorTy); 6085 6086 // TODO: IF-converted IFs become selects. 6087 return 0; 6088 } 6089 case Instruction::Add: 6090 case Instruction::FAdd: 6091 case Instruction::Sub: 6092 case Instruction::FSub: 6093 case Instruction::Mul: 6094 case Instruction::FMul: 6095 case Instruction::UDiv: 6096 case Instruction::SDiv: 6097 case Instruction::FDiv: 6098 case Instruction::URem: 6099 case Instruction::SRem: 6100 case Instruction::FRem: 6101 case Instruction::Shl: 6102 case Instruction::LShr: 6103 case Instruction::AShr: 6104 case Instruction::And: 6105 case Instruction::Or: 6106 case Instruction::Xor: { 6107 // Since we will replace the stride by 1 the multiplication should go away. 6108 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6109 return 0; 6110 // Certain instructions can be cheaper to vectorize if they have a constant 6111 // second vector operand. One example of this are shifts on x86. 6112 TargetTransformInfo::OperandValueKind Op1VK = 6113 TargetTransformInfo::OK_AnyValue; 6114 TargetTransformInfo::OperandValueKind Op2VK = 6115 TargetTransformInfo::OK_AnyValue; 6116 TargetTransformInfo::OperandValueProperties Op1VP = 6117 TargetTransformInfo::OP_None; 6118 TargetTransformInfo::OperandValueProperties Op2VP = 6119 TargetTransformInfo::OP_None; 6120 Value *Op2 = I->getOperand(1); 6121 6122 // Check for a splat of a constant or for a non uniform vector of constants. 6123 if (isa<ConstantInt>(Op2)) { 6124 ConstantInt *CInt = cast<ConstantInt>(Op2); 6125 if (CInt && CInt->getValue().isPowerOf2()) 6126 Op2VP = TargetTransformInfo::OP_PowerOf2; 6127 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6128 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6129 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6130 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6131 if (SplatValue) { 6132 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6133 if (CInt && CInt->getValue().isPowerOf2()) 6134 Op2VP = TargetTransformInfo::OP_PowerOf2; 6135 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6136 } 6137 } 6138 6139 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6140 Op1VP, Op2VP); 6141 } 6142 case Instruction::Select: { 6143 SelectInst *SI = cast<SelectInst>(I); 6144 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6145 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6146 Type *CondTy = SI->getCondition()->getType(); 6147 if (!ScalarCond) 6148 CondTy = VectorType::get(CondTy, VF); 6149 6150 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6151 } 6152 case Instruction::ICmp: 6153 case Instruction::FCmp: { 6154 Type *ValTy = I->getOperand(0)->getType(); 6155 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6156 auto It = MinBWs.find(Op0AsInstruction); 6157 if (VF > 1 && It != MinBWs.end()) 6158 ValTy = IntegerType::get(ValTy->getContext(), It->second); 6159 VectorTy = ToVectorTy(ValTy, VF); 6160 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6161 } 6162 case Instruction::Store: 6163 case Instruction::Load: { 6164 StoreInst *SI = dyn_cast<StoreInst>(I); 6165 LoadInst *LI = dyn_cast<LoadInst>(I); 6166 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6167 VectorTy = ToVectorTy(ValTy, VF); 6168 6169 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6170 unsigned AS = 6171 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6172 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 6173 // We add the cost of address computation here instead of with the gep 6174 // instruction because only here we know whether the operation is 6175 // scalarized. 6176 if (VF == 1) 6177 return TTI.getAddressComputationCost(VectorTy) + 6178 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6179 6180 if (LI && Legal->isUniform(Ptr)) { 6181 // Scalar load + broadcast 6182 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6183 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6184 Alignment, AS); 6185 return Cost + 6186 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6187 } 6188 6189 // For an interleaved access, calculate the total cost of the whole 6190 // interleave group. 6191 if (Legal->isAccessInterleaved(I)) { 6192 auto Group = Legal->getInterleavedAccessGroup(I); 6193 assert(Group && "Fail to get an interleaved access group."); 6194 6195 // Only calculate the cost once at the insert position. 6196 if (Group->getInsertPos() != I) 6197 return 0; 6198 6199 unsigned InterleaveFactor = Group->getFactor(); 6200 Type *WideVecTy = 6201 VectorType::get(VectorTy->getVectorElementType(), 6202 VectorTy->getVectorNumElements() * InterleaveFactor); 6203 6204 // Holds the indices of existing members in an interleaved load group. 6205 // An interleaved store group doesn't need this as it doesn't allow gaps. 6206 SmallVector<unsigned, 4> Indices; 6207 if (LI) { 6208 for (unsigned i = 0; i < InterleaveFactor; i++) 6209 if (Group->getMember(i)) 6210 Indices.push_back(i); 6211 } 6212 6213 // Calculate the cost of the whole interleaved group. 6214 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6215 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6216 Group->getAlignment(), AS); 6217 6218 if (Group->isReverse()) 6219 Cost += 6220 Group->getNumMembers() * 6221 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6222 6223 // FIXME: The interleaved load group with a huge gap could be even more 6224 // expensive than scalar operations. Then we could ignore such group and 6225 // use scalar operations instead. 6226 return Cost; 6227 } 6228 6229 // Scalarized loads/stores. 6230 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6231 bool UseGatherOrScatter = 6232 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); 6233 6234 bool Reverse = ConsecutiveStride < 0; 6235 const DataLayout &DL = I->getModule()->getDataLayout(); 6236 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 6237 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 6238 if ((!ConsecutiveStride && !UseGatherOrScatter) || 6239 ScalarAllocatedSize != VectorElementSize) { 6240 bool IsComplexComputation = 6241 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6242 unsigned Cost = 0; 6243 // The cost of extracting from the value vector and pointer vector. 6244 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6245 for (unsigned i = 0; i < VF; ++i) { 6246 // The cost of extracting the pointer operand. 6247 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6248 // In case of STORE, the cost of ExtractElement from the vector. 6249 // In case of LOAD, the cost of InsertElement into the returned 6250 // vector. 6251 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6252 : Instruction::InsertElement, 6253 VectorTy, i); 6254 } 6255 6256 // The cost of the scalar loads/stores. 6257 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6258 Cost += VF * 6259 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6260 Alignment, AS); 6261 return Cost; 6262 } 6263 6264 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6265 if (UseGatherOrScatter) { 6266 assert(ConsecutiveStride == 0 && 6267 "Gather/Scatter are not used for consecutive stride"); 6268 return Cost + 6269 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6270 Legal->isMaskRequired(I), Alignment); 6271 } 6272 // Wide load/stores. 6273 if (Legal->isMaskRequired(I)) 6274 Cost += 6275 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6276 else 6277 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6278 6279 if (Reverse) 6280 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6281 return Cost; 6282 } 6283 case Instruction::ZExt: 6284 case Instruction::SExt: 6285 case Instruction::FPToUI: 6286 case Instruction::FPToSI: 6287 case Instruction::FPExt: 6288 case Instruction::PtrToInt: 6289 case Instruction::IntToPtr: 6290 case Instruction::SIToFP: 6291 case Instruction::UIToFP: 6292 case Instruction::Trunc: 6293 case Instruction::FPTrunc: 6294 case Instruction::BitCast: { 6295 // We optimize the truncation of induction variable. 6296 // The cost of these is the same as the scalar operation. 6297 if (I->getOpcode() == Instruction::Trunc && 6298 Legal->isInductionVariable(I->getOperand(0))) 6299 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6300 I->getOperand(0)->getType()); 6301 6302 Type *SrcScalarTy = I->getOperand(0)->getType(); 6303 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6304 if (VF > 1 && MinBWs.count(I)) { 6305 // This cast is going to be shrunk. This may remove the cast or it might 6306 // turn it into slightly different cast. For example, if MinBW == 16, 6307 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6308 // 6309 // Calculate the modified src and dest types. 6310 Type *MinVecTy = VectorTy; 6311 if (I->getOpcode() == Instruction::Trunc) { 6312 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6313 VectorTy = 6314 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6315 } else if (I->getOpcode() == Instruction::ZExt || 6316 I->getOpcode() == Instruction::SExt) { 6317 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6318 VectorTy = 6319 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6320 } 6321 } 6322 6323 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6324 } 6325 case Instruction::Call: { 6326 bool NeedToScalarize; 6327 CallInst *CI = cast<CallInst>(I); 6328 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6329 if (getVectorIntrinsicIDForCall(CI, TLI)) 6330 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6331 return CallCost; 6332 } 6333 default: { 6334 // We are scalarizing the instruction. Return the cost of the scalar 6335 // instruction, plus the cost of insert and extract into vector 6336 // elements, times the vector width. 6337 unsigned Cost = 0; 6338 6339 if (!RetTy->isVoidTy() && VF != 1) { 6340 unsigned InsCost = 6341 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); 6342 unsigned ExtCost = 6343 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); 6344 6345 // The cost of inserting the results plus extracting each one of the 6346 // operands. 6347 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6348 } 6349 6350 // The cost of executing VF copies of the scalar instruction. This opcode 6351 // is unknown. Assume that it is the same as 'mul'. 6352 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6353 return Cost; 6354 } 6355 } // end of switch. 6356 } 6357 6358 char LoopVectorize::ID = 0; 6359 static const char lv_name[] = "Loop Vectorization"; 6360 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6361 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6362 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6363 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6364 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6365 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6366 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6367 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6368 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6369 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6370 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6371 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6372 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6373 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6374 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6375 6376 namespace llvm { 6377 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6378 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6379 } 6380 } 6381 6382 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6383 // Check for a store. 6384 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6385 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6386 6387 // Check for a load. 6388 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6389 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6390 6391 return false; 6392 } 6393 6394 void LoopVectorizationCostModel::collectValuesToIgnore() { 6395 // Ignore ephemeral values. 6396 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6397 6398 // Ignore type-promoting instructions we identified during reduction 6399 // detection. 6400 for (auto &Reduction : *Legal->getReductionVars()) { 6401 RecurrenceDescriptor &RedDes = Reduction.second; 6402 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6403 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6404 } 6405 6406 // Ignore induction phis that are only used in either GetElementPtr or ICmp 6407 // instruction to exit loop. Induction variables usually have large types and 6408 // can have big impact when estimating register usage. 6409 // This is for when VF > 1. 6410 for (auto &Induction : *Legal->getInductionVars()) { 6411 auto *PN = Induction.first; 6412 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 6413 6414 // Check that the PHI is only used by the induction increment (UpdateV) or 6415 // by GEPs. Then check that UpdateV is only used by a compare instruction or 6416 // the loop header PHI. 6417 // FIXME: Need precise def-use analysis to determine if this instruction 6418 // variable will be vectorized. 6419 if (std::all_of(PN->user_begin(), PN->user_end(), 6420 [&](const User *U) -> bool { 6421 return U == UpdateV || isa<GetElementPtrInst>(U); 6422 }) && 6423 std::all_of(UpdateV->user_begin(), UpdateV->user_end(), 6424 [&](const User *U) -> bool { 6425 return U == PN || isa<ICmpInst>(U); 6426 })) { 6427 VecValuesToIgnore.insert(PN); 6428 VecValuesToIgnore.insert(UpdateV); 6429 } 6430 } 6431 6432 // Ignore instructions that will not be vectorized. 6433 // This is for when VF > 1. 6434 for (auto bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; 6435 ++bb) { 6436 for (auto &Inst : **bb) { 6437 switch (Inst.getOpcode()) 6438 case Instruction::GetElementPtr: { 6439 // Ignore GEP if its last operand is an induction variable so that it is 6440 // a consecutive load/store and won't be vectorized as scatter/gather 6441 // pattern. 6442 6443 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst); 6444 unsigned NumOperands = Gep->getNumOperands(); 6445 unsigned InductionOperand = getGEPInductionOperand(Gep); 6446 bool GepToIgnore = true; 6447 6448 // Check that all of the gep indices are uniform except for the 6449 // induction operand. 6450 for (unsigned i = 0; i != NumOperands; ++i) { 6451 if (i != InductionOperand && 6452 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 6453 TheLoop)) { 6454 GepToIgnore = false; 6455 break; 6456 } 6457 } 6458 6459 if (GepToIgnore) 6460 VecValuesToIgnore.insert(&Inst); 6461 break; 6462 } 6463 } 6464 } 6465 } 6466 6467 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6468 bool IfPredicateStore) { 6469 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6470 // Holds vector parameters or scalars, in case of uniform vals. 6471 SmallVector<VectorParts, 4> Params; 6472 6473 setDebugLocFromInst(Builder, Instr); 6474 6475 // Find all of the vectorized parameters. 6476 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6477 Value *SrcOp = Instr->getOperand(op); 6478 6479 // If we are accessing the old induction variable, use the new one. 6480 if (SrcOp == OldInduction) { 6481 Params.push_back(getVectorValue(SrcOp)); 6482 continue; 6483 } 6484 6485 // Try using previously calculated values. 6486 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6487 6488 // If the src is an instruction that appeared earlier in the basic block 6489 // then it should already be vectorized. 6490 if (SrcInst && OrigLoop->contains(SrcInst)) { 6491 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6492 // The parameter is a vector value from earlier. 6493 Params.push_back(WidenMap.get(SrcInst)); 6494 } else { 6495 // The parameter is a scalar from outside the loop. Maybe even a constant. 6496 VectorParts Scalars; 6497 Scalars.append(UF, SrcOp); 6498 Params.push_back(Scalars); 6499 } 6500 } 6501 6502 assert(Params.size() == Instr->getNumOperands() && 6503 "Invalid number of operands"); 6504 6505 // Does this instruction return a value ? 6506 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6507 6508 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); 6509 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6510 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6511 6512 VectorParts Cond; 6513 if (IfPredicateStore) { 6514 assert(Instr->getParent()->getSinglePredecessor() && 6515 "Only support single predecessor blocks"); 6516 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6517 Instr->getParent()); 6518 } 6519 6520 // For each vector unroll 'part': 6521 for (unsigned Part = 0; Part < UF; ++Part) { 6522 // For each scalar that we create: 6523 6524 // Start an "if (pred) a[i] = ..." block. 6525 Value *Cmp = nullptr; 6526 if (IfPredicateStore) { 6527 if (Cond[Part]->getType()->isVectorTy()) 6528 Cond[Part] = 6529 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6530 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6531 ConstantInt::get(Cond[Part]->getType(), 1)); 6532 } 6533 6534 Instruction *Cloned = Instr->clone(); 6535 if (!IsVoidRetTy) 6536 Cloned->setName(Instr->getName() + ".cloned"); 6537 // Replace the operands of the cloned instructions with extracted scalars. 6538 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6539 Value *Op = Params[op][Part]; 6540 Cloned->setOperand(op, Op); 6541 } 6542 6543 // Place the cloned scalar in the new loop. 6544 Builder.Insert(Cloned); 6545 6546 // If we just cloned a new assumption, add it the assumption cache. 6547 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6548 if (II->getIntrinsicID() == Intrinsic::assume) 6549 AC->registerAssumption(II); 6550 6551 // If the original scalar returns a value we need to place it in a vector 6552 // so that future users will be able to use it. 6553 if (!IsVoidRetTy) 6554 VecResults[Part] = Cloned; 6555 6556 // End if-block. 6557 if (IfPredicateStore) 6558 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp)); 6559 } 6560 } 6561 6562 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6563 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6564 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6565 6566 return scalarizeInstruction(Instr, IfPredicateStore); 6567 } 6568 6569 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6570 6571 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6572 6573 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, 6574 const SCEV *StepSCEV) { 6575 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 6576 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 6577 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 6578 &*Builder.GetInsertPoint()); 6579 return getStepVector(Val, StartIdx, StepValue); 6580 } 6581 6582 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6583 // When unrolling and the VF is 1, we only need to add a simple scalar. 6584 Type *ITy = Val->getType(); 6585 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6586 Constant *C = ConstantInt::get(ITy, StartIdx); 6587 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6588 } 6589