1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/Analysis/AliasAnalysis.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/DemandedBits.h" 66 #include "llvm/Analysis/GlobalsModRef.h" 67 #include "llvm/Analysis/LoopAccessAnalysis.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/LoopIterator.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/TargetTransformInfo.h" 75 #include "llvm/Analysis/ValueTracking.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/DiagnosticInfo.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Module.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/IR/Verifier.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/Scalar.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Analysis/VectorUtils.h" 103 #include "llvm/Transforms/Utils/LoopUtils.h" 104 #include <algorithm> 105 #include <functional> 106 #include <map> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace llvm::PatternMatch; 111 112 #define LV_NAME "loop-vectorize" 113 #define DEBUG_TYPE LV_NAME 114 115 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 116 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 117 118 static cl::opt<bool> 119 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 120 cl::desc("Enable if-conversion during vectorization.")); 121 122 /// We don't vectorize loops with a known constant trip count below this number. 123 static cl::opt<unsigned> 124 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 125 cl::Hidden, 126 cl::desc("Don't vectorize loops with a constant " 127 "trip count that is smaller than this " 128 "value.")); 129 130 static cl::opt<bool> MaximizeBandwidth( 131 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 132 cl::desc("Maximize bandwidth when selecting vectorization factor which " 133 "will be determined by the smallest type in loop.")); 134 135 /// This enables versioning on the strides of symbolically striding memory 136 /// accesses in code like the following. 137 /// for (i = 0; i < N; ++i) 138 /// A[i * Stride1] += B[i * Stride2] ... 139 /// 140 /// Will be roughly translated to 141 /// if (Stride1 == 1 && Stride2 == 1) { 142 /// for (i = 0; i < N; i+=4) 143 /// A[i:i+3] += ... 144 /// } else 145 /// ... 146 static cl::opt<bool> EnableMemAccessVersioning( 147 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 148 cl::desc("Enable symbolic stride memory access versioning")); 149 150 static cl::opt<bool> EnableInterleavedMemAccesses( 151 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 152 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 153 154 /// Maximum factor for an interleaved memory access. 155 static cl::opt<unsigned> MaxInterleaveGroupFactor( 156 "max-interleave-group-factor", cl::Hidden, 157 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 158 cl::init(8)); 159 160 /// We don't interleave loops with a known constant trip count below this 161 /// number. 162 static const unsigned TinyTripCountInterleaveThreshold = 128; 163 164 static cl::opt<unsigned> ForceTargetNumScalarRegs( 165 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's number of scalar registers.")); 167 168 static cl::opt<unsigned> ForceTargetNumVectorRegs( 169 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 170 cl::desc("A flag that overrides the target's number of vector registers.")); 171 172 /// Maximum vectorization interleave count. 173 static const unsigned MaxInterleaveFactor = 16; 174 175 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 176 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's max interleave factor for " 178 "scalar loops.")); 179 180 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 181 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 182 cl::desc("A flag that overrides the target's max interleave factor for " 183 "vectorized loops.")); 184 185 static cl::opt<unsigned> ForceTargetInstructionCost( 186 "force-target-instruction-cost", cl::init(0), cl::Hidden, 187 cl::desc("A flag that overrides the target's expected cost for " 188 "an instruction to a single constant value. Mostly " 189 "useful for getting consistent testing.")); 190 191 static cl::opt<unsigned> SmallLoopCost( 192 "small-loop-cost", cl::init(20), cl::Hidden, 193 cl::desc( 194 "The cost of a loop that is considered 'small' by the interleaver.")); 195 196 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 197 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 198 cl::desc("Enable the use of the block frequency analysis to access PGO " 199 "heuristics minimizing code growth in cold regions and being more " 200 "aggressive in hot regions.")); 201 202 // Runtime interleave loops for load/store throughput. 203 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 204 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 205 cl::desc( 206 "Enable runtime interleaving until load/store ports are saturated")); 207 208 /// The number of stores in a loop that are allowed to need predication. 209 static cl::opt<unsigned> NumberOfStoresToPredicate( 210 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 211 cl::desc("Max number of stores to be predicated behind an if.")); 212 213 static cl::opt<bool> EnableIndVarRegisterHeur( 214 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 215 cl::desc("Count the induction variable only once when interleaving")); 216 217 static cl::opt<bool> EnableCondStoresVectorization( 218 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 219 cl::desc("Enable if predication of stores during vectorization.")); 220 221 static cl::opt<unsigned> MaxNestedScalarReductionIC( 222 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 223 cl::desc("The maximum interleave count to use when interleaving a scalar " 224 "reduction in a nested loop.")); 225 226 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 227 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 228 cl::desc("The maximum allowed number of runtime memory checks with a " 229 "vectorize(enable) pragma.")); 230 231 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 232 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 233 cl::desc("The maximum number of SCEV checks allowed.")); 234 235 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 236 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 237 cl::desc("The maximum number of SCEV checks allowed with a " 238 "vectorize(enable) pragma")); 239 240 namespace { 241 242 // Forward declarations. 243 class LoopVectorizeHints; 244 class LoopVectorizationLegality; 245 class LoopVectorizationCostModel; 246 class LoopVectorizationRequirements; 247 248 /// \brief This modifies LoopAccessReport to initialize message with 249 /// loop-vectorizer-specific part. 250 class VectorizationReport : public LoopAccessReport { 251 public: 252 VectorizationReport(Instruction *I = nullptr) 253 : LoopAccessReport("loop not vectorized: ", I) {} 254 255 /// \brief This allows promotion of the loop-access analysis report into the 256 /// loop-vectorizer report. It modifies the message to add the 257 /// loop-vectorizer-specific part of the message. 258 explicit VectorizationReport(const LoopAccessReport &R) 259 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 260 R.getInstr()) {} 261 }; 262 263 /// A helper function for converting Scalar types to vector types. 264 /// If the incoming type is void, we return void. If the VF is 1, we return 265 /// the scalar type. 266 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 267 if (Scalar->isVoidTy() || VF == 1) 268 return Scalar; 269 return VectorType::get(Scalar, VF); 270 } 271 272 /// A helper function that returns GEP instruction and knows to skip a 273 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 274 /// pointee types of the 'bitcast' have the same size. 275 /// For example: 276 /// bitcast double** %var to i64* - can be skipped 277 /// bitcast double** %var to i8* - can not 278 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 279 280 if (isa<GetElementPtrInst>(Ptr)) 281 return cast<GetElementPtrInst>(Ptr); 282 283 if (isa<BitCastInst>(Ptr) && 284 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 285 Type *BitcastTy = Ptr->getType(); 286 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 287 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 288 return nullptr; 289 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 290 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 291 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 292 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 293 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 294 } 295 return nullptr; 296 } 297 298 /// InnerLoopVectorizer vectorizes loops which contain only one basic 299 /// block to a specified vectorization factor (VF). 300 /// This class performs the widening of scalars into vectors, or multiple 301 /// scalars. This class also implements the following features: 302 /// * It inserts an epilogue loop for handling loops that don't have iteration 303 /// counts that are known to be a multiple of the vectorization factor. 304 /// * It handles the code generation for reduction variables. 305 /// * Scalarization (implementation using scalars) of un-vectorizable 306 /// instructions. 307 /// InnerLoopVectorizer does not perform any vectorization-legality 308 /// checks, and relies on the caller to check for the different legality 309 /// aspects. The InnerLoopVectorizer relies on the 310 /// LoopVectorizationLegality class to provide information about the induction 311 /// and reduction variables that were found to a given vectorization factor. 312 class InnerLoopVectorizer { 313 public: 314 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 315 LoopInfo *LI, DominatorTree *DT, 316 const TargetLibraryInfo *TLI, 317 const TargetTransformInfo *TTI, AssumptionCache *AC, 318 unsigned VecWidth, unsigned UnrollFactor) 319 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 320 AC(AC), VF(VecWidth), UF(UnrollFactor), 321 Builder(PSE.getSE()->getContext()), Induction(nullptr), 322 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 323 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 324 325 // Perform the actual loop widening (vectorization). 326 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 327 // can be validly truncated to. The cost model has assumed this truncation 328 // will happen when vectorizing. 329 void vectorize(LoopVectorizationLegality *L, 330 MapVector<Instruction*,uint64_t> MinimumBitWidths) { 331 MinBWs = MinimumBitWidths; 332 Legal = L; 333 // Create a new empty loop. Unlink the old loop and connect the new one. 334 createEmptyLoop(); 335 // Widen each instruction in the old loop to a new one in the new loop. 336 // Use the Legality module to find the induction and reduction variables. 337 vectorizeLoop(); 338 } 339 340 // Return true if any runtime check is added. 341 bool IsSafetyChecksAdded() { 342 return AddedSafetyChecks; 343 } 344 345 virtual ~InnerLoopVectorizer() {} 346 347 protected: 348 /// A small list of PHINodes. 349 typedef SmallVector<PHINode*, 4> PhiVector; 350 /// When we unroll loops we have multiple vector values for each scalar. 351 /// This data structure holds the unrolled and vectorized values that 352 /// originated from one scalar instruction. 353 typedef SmallVector<Value*, 2> VectorParts; 354 355 // When we if-convert we need to create edge masks. We have to cache values 356 // so that we don't end up with exponential recursion/IR. 357 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 358 VectorParts> EdgeMaskCache; 359 360 /// Create an empty loop, based on the loop ranges of the old loop. 361 void createEmptyLoop(); 362 /// Create a new induction variable inside L. 363 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 364 Value *Step, Instruction *DL); 365 /// Copy and widen the instructions from the old loop. 366 virtual void vectorizeLoop(); 367 368 /// Fix a first-order recurrence. This is the second phase of vectorizing 369 /// this phi node. 370 void fixFirstOrderRecurrence(PHINode *Phi); 371 372 /// \brief The Loop exit block may have single value PHI nodes where the 373 /// incoming value is 'Undef'. While vectorizing we only handled real values 374 /// that were defined inside the loop. Here we fix the 'undef case'. 375 /// See PR14725. 376 void fixLCSSAPHIs(); 377 378 /// Shrinks vector element sizes based on information in "MinBWs". 379 void truncateToMinimalBitwidths(); 380 381 /// A helper function that computes the predicate of the block BB, assuming 382 /// that the header block of the loop is set to True. It returns the *entry* 383 /// mask for the block BB. 384 VectorParts createBlockInMask(BasicBlock *BB); 385 /// A helper function that computes the predicate of the edge between SRC 386 /// and DST. 387 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 388 389 /// A helper function to vectorize a single BB within the innermost loop. 390 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 391 392 /// Vectorize a single PHINode in a block. This method handles the induction 393 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 394 /// arbitrary length vectors. 395 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 396 unsigned UF, unsigned VF, PhiVector *PV); 397 398 /// Insert the new loop to the loop hierarchy and pass manager 399 /// and update the analysis passes. 400 void updateAnalysis(); 401 402 /// This instruction is un-vectorizable. Implement it as a sequence 403 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 404 /// scalarized instruction behind an if block predicated on the control 405 /// dependence of the instruction. 406 virtual void scalarizeInstruction(Instruction *Instr, 407 bool IfPredicateStore=false); 408 409 /// Vectorize Load and Store instructions, 410 virtual void vectorizeMemoryInstruction(Instruction *Instr); 411 412 /// Create a broadcast instruction. This method generates a broadcast 413 /// instruction (shuffle) for loop invariant values and for the induction 414 /// value. If this is the induction variable then we extend it to N, N+1, ... 415 /// this is needed because each iteration in the loop corresponds to a SIMD 416 /// element. 417 virtual Value *getBroadcastInstrs(Value *V); 418 419 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 420 /// to each vector element of Val. The sequence starts at StartIndex. 421 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 422 423 /// When we go over instructions in the basic block we rely on previous 424 /// values within the current basic block or on loop invariant values. 425 /// When we widen (vectorize) values we place them in the map. If the values 426 /// are not within the map, they have to be loop invariant, so we simply 427 /// broadcast them into a vector. 428 VectorParts &getVectorValue(Value *V); 429 430 /// Try to vectorize the interleaved access group that \p Instr belongs to. 431 void vectorizeInterleaveGroup(Instruction *Instr); 432 433 /// Generate a shuffle sequence that will reverse the vector Vec. 434 virtual Value *reverseVector(Value *Vec); 435 436 /// Returns (and creates if needed) the original loop trip count. 437 Value *getOrCreateTripCount(Loop *NewLoop); 438 439 /// Returns (and creates if needed) the trip count of the widened loop. 440 Value *getOrCreateVectorTripCount(Loop *NewLoop); 441 442 /// Emit a bypass check to see if the trip count would overflow, or we 443 /// wouldn't have enough iterations to execute one vector loop. 444 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 445 /// Emit a bypass check to see if the vector trip count is nonzero. 446 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 447 /// Emit a bypass check to see if all of the SCEV assumptions we've 448 /// had to make are correct. 449 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 450 /// Emit bypass checks to check any memory assumptions we may have made. 451 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 452 453 /// Add additional metadata to \p To that was not present on \p Orig. 454 /// 455 /// Currently this is used to add the noalias annotations based on the 456 /// inserted memchecks. Use this for instructions that are *cloned* into the 457 /// vector loop. 458 void addNewMetadata(Instruction *To, const Instruction *Orig); 459 460 /// Add metadata from one instruction to another. 461 /// 462 /// This includes both the original MDs from \p From and additional ones (\see 463 /// addNewMetadata). Use this for *newly created* instructions in the vector 464 /// loop. 465 void addMetadata(Instruction *To, const Instruction *From); 466 467 /// \brief Similar to the previous function but it adds the metadata to a 468 /// vector of instructions. 469 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 470 471 /// This is a helper class that holds the vectorizer state. It maps scalar 472 /// instructions to vector instructions. When the code is 'unrolled' then 473 /// then a single scalar value is mapped to multiple vector parts. The parts 474 /// are stored in the VectorPart type. 475 struct ValueMap { 476 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 477 /// are mapped. 478 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 479 480 /// \return True if 'Key' is saved in the Value Map. 481 bool has(Value *Key) const { return MapStorage.count(Key); } 482 483 /// Initializes a new entry in the map. Sets all of the vector parts to the 484 /// save value in 'Val'. 485 /// \return A reference to a vector with splat values. 486 VectorParts &splat(Value *Key, Value *Val) { 487 VectorParts &Entry = MapStorage[Key]; 488 Entry.assign(UF, Val); 489 return Entry; 490 } 491 492 ///\return A reference to the value that is stored at 'Key'. 493 VectorParts &get(Value *Key) { 494 VectorParts &Entry = MapStorage[Key]; 495 if (Entry.empty()) 496 Entry.resize(UF); 497 assert(Entry.size() == UF); 498 return Entry; 499 } 500 501 private: 502 /// The unroll factor. Each entry in the map stores this number of vector 503 /// elements. 504 unsigned UF; 505 506 /// Map storage. We use std::map and not DenseMap because insertions to a 507 /// dense map invalidates its iterators. 508 std::map<Value *, VectorParts> MapStorage; 509 }; 510 511 /// The original loop. 512 Loop *OrigLoop; 513 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 514 /// dynamic knowledge to simplify SCEV expressions and converts them to a 515 /// more usable form. 516 PredicatedScalarEvolution &PSE; 517 /// Loop Info. 518 LoopInfo *LI; 519 /// Dominator Tree. 520 DominatorTree *DT; 521 /// Alias Analysis. 522 AliasAnalysis *AA; 523 /// Target Library Info. 524 const TargetLibraryInfo *TLI; 525 /// Target Transform Info. 526 const TargetTransformInfo *TTI; 527 /// Assumption Cache. 528 AssumptionCache *AC; 529 530 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 531 /// used. 532 /// 533 /// This is currently only used to add no-alias metadata based on the 534 /// memchecks. The actually versioning is performed manually. 535 std::unique_ptr<LoopVersioning> LVer; 536 537 /// The vectorization SIMD factor to use. Each vector will have this many 538 /// vector elements. 539 unsigned VF; 540 541 protected: 542 /// The vectorization unroll factor to use. Each scalar is vectorized to this 543 /// many different vector instructions. 544 unsigned UF; 545 546 /// The builder that we use 547 IRBuilder<> Builder; 548 549 // --- Vectorization state --- 550 551 /// The vector-loop preheader. 552 BasicBlock *LoopVectorPreHeader; 553 /// The scalar-loop preheader. 554 BasicBlock *LoopScalarPreHeader; 555 /// Middle Block between the vector and the scalar. 556 BasicBlock *LoopMiddleBlock; 557 ///The ExitBlock of the scalar loop. 558 BasicBlock *LoopExitBlock; 559 ///The vector loop body. 560 SmallVector<BasicBlock *, 4> LoopVectorBody; 561 ///The scalar loop body. 562 BasicBlock *LoopScalarBody; 563 /// A list of all bypass blocks. The first block is the entry of the loop. 564 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 565 566 /// The new Induction variable which was added to the new block. 567 PHINode *Induction; 568 /// The induction variable of the old basic block. 569 PHINode *OldInduction; 570 /// Maps scalars to widened vectors. 571 ValueMap WidenMap; 572 /// Store instructions that should be predicated, as a pair 573 /// <StoreInst, Predicate> 574 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores; 575 EdgeMaskCache MaskCache; 576 /// Trip count of the original loop. 577 Value *TripCount; 578 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 579 Value *VectorTripCount; 580 581 /// Map of scalar integer values to the smallest bitwidth they can be legally 582 /// represented as. The vector equivalents of these values should be truncated 583 /// to this type. 584 MapVector<Instruction*,uint64_t> MinBWs; 585 LoopVectorizationLegality *Legal; 586 587 // Record whether runtime check is added. 588 bool AddedSafetyChecks; 589 }; 590 591 class InnerLoopUnroller : public InnerLoopVectorizer { 592 public: 593 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 594 LoopInfo *LI, DominatorTree *DT, 595 const TargetLibraryInfo *TLI, 596 const TargetTransformInfo *TTI, AssumptionCache *AC, 597 unsigned UnrollFactor) 598 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 599 UnrollFactor) {} 600 601 private: 602 void scalarizeInstruction(Instruction *Instr, 603 bool IfPredicateStore = false) override; 604 void vectorizeMemoryInstruction(Instruction *Instr) override; 605 Value *getBroadcastInstrs(Value *V) override; 606 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 607 Value *reverseVector(Value *Vec) override; 608 }; 609 610 /// \brief Look for a meaningful debug location on the instruction or it's 611 /// operands. 612 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 613 if (!I) 614 return I; 615 616 DebugLoc Empty; 617 if (I->getDebugLoc() != Empty) 618 return I; 619 620 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 621 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 622 if (OpInst->getDebugLoc() != Empty) 623 return OpInst; 624 } 625 626 return I; 627 } 628 629 /// \brief Set the debug location in the builder using the debug location in the 630 /// instruction. 631 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 632 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 633 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 634 else 635 B.SetCurrentDebugLocation(DebugLoc()); 636 } 637 638 #ifndef NDEBUG 639 /// \return string containing a file name and a line # for the given loop. 640 static std::string getDebugLocString(const Loop *L) { 641 std::string Result; 642 if (L) { 643 raw_string_ostream OS(Result); 644 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 645 LoopDbgLoc.print(OS); 646 else 647 // Just print the module name. 648 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 649 OS.flush(); 650 } 651 return Result; 652 } 653 #endif 654 655 /// \brief Propagate known metadata from one instruction to another. 656 static void propagateMetadata(Instruction *To, const Instruction *From) { 657 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 658 From->getAllMetadataOtherThanDebugLoc(Metadata); 659 660 for (auto M : Metadata) { 661 unsigned Kind = M.first; 662 663 // These are safe to transfer (this is safe for TBAA, even when we 664 // if-convert, because should that metadata have had a control dependency 665 // on the condition, and thus actually aliased with some other 666 // non-speculated memory access when the condition was false, this would be 667 // caught by the runtime overlap checks). 668 if (Kind != LLVMContext::MD_tbaa && 669 Kind != LLVMContext::MD_alias_scope && 670 Kind != LLVMContext::MD_noalias && 671 Kind != LLVMContext::MD_fpmath && 672 Kind != LLVMContext::MD_nontemporal) 673 continue; 674 675 To->setMetadata(Kind, M.second); 676 } 677 } 678 679 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 680 const Instruction *Orig) { 681 // If the loop was versioned with memchecks, add the corresponding no-alias 682 // metadata. 683 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 684 LVer->annotateInstWithNoAlias(To, Orig); 685 } 686 687 void InnerLoopVectorizer::addMetadata(Instruction *To, 688 const Instruction *From) { 689 propagateMetadata(To, From); 690 addNewMetadata(To, From); 691 } 692 693 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 694 const Instruction *From) { 695 for (Value *V : To) 696 if (Instruction *I = dyn_cast<Instruction>(V)) 697 addMetadata(I, From); 698 } 699 700 /// \brief The group of interleaved loads/stores sharing the same stride and 701 /// close to each other. 702 /// 703 /// Each member in this group has an index starting from 0, and the largest 704 /// index should be less than interleaved factor, which is equal to the absolute 705 /// value of the access's stride. 706 /// 707 /// E.g. An interleaved load group of factor 4: 708 /// for (unsigned i = 0; i < 1024; i+=4) { 709 /// a = A[i]; // Member of index 0 710 /// b = A[i+1]; // Member of index 1 711 /// d = A[i+3]; // Member of index 3 712 /// ... 713 /// } 714 /// 715 /// An interleaved store group of factor 4: 716 /// for (unsigned i = 0; i < 1024; i+=4) { 717 /// ... 718 /// A[i] = a; // Member of index 0 719 /// A[i+1] = b; // Member of index 1 720 /// A[i+2] = c; // Member of index 2 721 /// A[i+3] = d; // Member of index 3 722 /// } 723 /// 724 /// Note: the interleaved load group could have gaps (missing members), but 725 /// the interleaved store group doesn't allow gaps. 726 class InterleaveGroup { 727 public: 728 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 729 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 730 assert(Align && "The alignment should be non-zero"); 731 732 Factor = std::abs(Stride); 733 assert(Factor > 1 && "Invalid interleave factor"); 734 735 Reverse = Stride < 0; 736 Members[0] = Instr; 737 } 738 739 bool isReverse() const { return Reverse; } 740 unsigned getFactor() const { return Factor; } 741 unsigned getAlignment() const { return Align; } 742 unsigned getNumMembers() const { return Members.size(); } 743 744 /// \brief Try to insert a new member \p Instr with index \p Index and 745 /// alignment \p NewAlign. The index is related to the leader and it could be 746 /// negative if it is the new leader. 747 /// 748 /// \returns false if the instruction doesn't belong to the group. 749 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 750 assert(NewAlign && "The new member's alignment should be non-zero"); 751 752 int Key = Index + SmallestKey; 753 754 // Skip if there is already a member with the same index. 755 if (Members.count(Key)) 756 return false; 757 758 if (Key > LargestKey) { 759 // The largest index is always less than the interleave factor. 760 if (Index >= static_cast<int>(Factor)) 761 return false; 762 763 LargestKey = Key; 764 } else if (Key < SmallestKey) { 765 // The largest index is always less than the interleave factor. 766 if (LargestKey - Key >= static_cast<int>(Factor)) 767 return false; 768 769 SmallestKey = Key; 770 } 771 772 // It's always safe to select the minimum alignment. 773 Align = std::min(Align, NewAlign); 774 Members[Key] = Instr; 775 return true; 776 } 777 778 /// \brief Get the member with the given index \p Index 779 /// 780 /// \returns nullptr if contains no such member. 781 Instruction *getMember(unsigned Index) const { 782 int Key = SmallestKey + Index; 783 if (!Members.count(Key)) 784 return nullptr; 785 786 return Members.find(Key)->second; 787 } 788 789 /// \brief Get the index for the given member. Unlike the key in the member 790 /// map, the index starts from 0. 791 unsigned getIndex(Instruction *Instr) const { 792 for (auto I : Members) 793 if (I.second == Instr) 794 return I.first - SmallestKey; 795 796 llvm_unreachable("InterleaveGroup contains no such member"); 797 } 798 799 Instruction *getInsertPos() const { return InsertPos; } 800 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 801 802 private: 803 unsigned Factor; // Interleave Factor. 804 bool Reverse; 805 unsigned Align; 806 DenseMap<int, Instruction *> Members; 807 int SmallestKey; 808 int LargestKey; 809 810 // To avoid breaking dependences, vectorized instructions of an interleave 811 // group should be inserted at either the first load or the last store in 812 // program order. 813 // 814 // E.g. %even = load i32 // Insert Position 815 // %add = add i32 %even // Use of %even 816 // %odd = load i32 817 // 818 // store i32 %even 819 // %odd = add i32 // Def of %odd 820 // store i32 %odd // Insert Position 821 Instruction *InsertPos; 822 }; 823 824 /// \brief Drive the analysis of interleaved memory accesses in the loop. 825 /// 826 /// Use this class to analyze interleaved accesses only when we can vectorize 827 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 828 /// on interleaved accesses is unsafe. 829 /// 830 /// The analysis collects interleave groups and records the relationships 831 /// between the member and the group in a map. 832 class InterleavedAccessInfo { 833 public: 834 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 835 DominatorTree *DT) 836 : PSE(PSE), TheLoop(L), DT(DT), RequiresScalarEpilogue(false) {} 837 838 ~InterleavedAccessInfo() { 839 SmallSet<InterleaveGroup *, 4> DelSet; 840 // Avoid releasing a pointer twice. 841 for (auto &I : InterleaveGroupMap) 842 DelSet.insert(I.second); 843 for (auto *Ptr : DelSet) 844 delete Ptr; 845 } 846 847 /// \brief Analyze the interleaved accesses and collect them in interleave 848 /// groups. Substitute symbolic strides using \p Strides. 849 void analyzeInterleaving(const ValueToValueMap &Strides); 850 851 /// \brief Check if \p Instr belongs to any interleave group. 852 bool isInterleaved(Instruction *Instr) const { 853 return InterleaveGroupMap.count(Instr); 854 } 855 856 /// \brief Get the interleave group that \p Instr belongs to. 857 /// 858 /// \returns nullptr if doesn't have such group. 859 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 860 if (InterleaveGroupMap.count(Instr)) 861 return InterleaveGroupMap.find(Instr)->second; 862 return nullptr; 863 } 864 865 /// \brief Returns true if an interleaved group that may access memory 866 /// out-of-bounds requires a scalar epilogue iteration for correctness. 867 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 868 869 private: 870 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 871 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 872 /// The interleaved access analysis can also add new predicates (for example 873 /// by versioning strides of pointers). 874 PredicatedScalarEvolution &PSE; 875 Loop *TheLoop; 876 DominatorTree *DT; 877 878 /// True if the loop may contain non-reversed interleaved groups with 879 /// out-of-bounds accesses. We ensure we don't speculatively access memory 880 /// out-of-bounds by executing at least one scalar epilogue iteration. 881 bool RequiresScalarEpilogue; 882 883 /// Holds the relationships between the members and the interleave group. 884 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 885 886 /// \brief The descriptor for a strided memory access. 887 struct StrideDescriptor { 888 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 889 unsigned Align) 890 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 891 892 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 893 894 int Stride; // The access's stride. It is negative for a reverse access. 895 const SCEV *Scev; // The scalar expression of this access 896 unsigned Size; // The size of the memory object. 897 unsigned Align; // The alignment of this access. 898 }; 899 900 /// \brief Create a new interleave group with the given instruction \p Instr, 901 /// stride \p Stride and alignment \p Align. 902 /// 903 /// \returns the newly created interleave group. 904 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 905 unsigned Align) { 906 assert(!InterleaveGroupMap.count(Instr) && 907 "Already in an interleaved access group"); 908 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 909 return InterleaveGroupMap[Instr]; 910 } 911 912 /// \brief Release the group and remove all the relationships. 913 void releaseGroup(InterleaveGroup *Group) { 914 for (unsigned i = 0; i < Group->getFactor(); i++) 915 if (Instruction *Member = Group->getMember(i)) 916 InterleaveGroupMap.erase(Member); 917 918 delete Group; 919 } 920 921 /// \brief Collect all the accesses with a constant stride in program order. 922 void collectConstStridedAccesses( 923 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 924 const ValueToValueMap &Strides); 925 }; 926 927 /// Utility class for getting and setting loop vectorizer hints in the form 928 /// of loop metadata. 929 /// This class keeps a number of loop annotations locally (as member variables) 930 /// and can, upon request, write them back as metadata on the loop. It will 931 /// initially scan the loop for existing metadata, and will update the local 932 /// values based on information in the loop. 933 /// We cannot write all values to metadata, as the mere presence of some info, 934 /// for example 'force', means a decision has been made. So, we need to be 935 /// careful NOT to add them if the user hasn't specifically asked so. 936 class LoopVectorizeHints { 937 enum HintKind { 938 HK_WIDTH, 939 HK_UNROLL, 940 HK_FORCE 941 }; 942 943 /// Hint - associates name and validation with the hint value. 944 struct Hint { 945 const char * Name; 946 unsigned Value; // This may have to change for non-numeric values. 947 HintKind Kind; 948 949 Hint(const char * Name, unsigned Value, HintKind Kind) 950 : Name(Name), Value(Value), Kind(Kind) { } 951 952 bool validate(unsigned Val) { 953 switch (Kind) { 954 case HK_WIDTH: 955 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 956 case HK_UNROLL: 957 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 958 case HK_FORCE: 959 return (Val <= 1); 960 } 961 return false; 962 } 963 }; 964 965 /// Vectorization width. 966 Hint Width; 967 /// Vectorization interleave factor. 968 Hint Interleave; 969 /// Vectorization forced 970 Hint Force; 971 972 /// Return the loop metadata prefix. 973 static StringRef Prefix() { return "llvm.loop."; } 974 975 /// True if there is any unsafe math in the loop. 976 bool PotentiallyUnsafe; 977 978 public: 979 enum ForceKind { 980 FK_Undefined = -1, ///< Not selected. 981 FK_Disabled = 0, ///< Forcing disabled. 982 FK_Enabled = 1, ///< Forcing enabled. 983 }; 984 985 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 986 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 987 HK_WIDTH), 988 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 989 Force("vectorize.enable", FK_Undefined, HK_FORCE), 990 PotentiallyUnsafe(false), TheLoop(L) { 991 // Populate values with existing loop metadata. 992 getHintsFromMetadata(); 993 994 // force-vector-interleave overrides DisableInterleaving. 995 if (VectorizerParams::isInterleaveForced()) 996 Interleave.Value = VectorizerParams::VectorizationInterleave; 997 998 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 999 << "LV: Interleaving disabled by the pass manager\n"); 1000 } 1001 1002 /// Mark the loop L as already vectorized by setting the width to 1. 1003 void setAlreadyVectorized() { 1004 Width.Value = Interleave.Value = 1; 1005 Hint Hints[] = {Width, Interleave}; 1006 writeHintsToMetadata(Hints); 1007 } 1008 1009 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1010 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1011 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1012 emitOptimizationRemarkAnalysis(F->getContext(), 1013 vectorizeAnalysisPassName(), *F, 1014 L->getStartLoc(), emitRemark()); 1015 return false; 1016 } 1017 1018 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1019 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1020 emitOptimizationRemarkAnalysis(F->getContext(), 1021 vectorizeAnalysisPassName(), *F, 1022 L->getStartLoc(), emitRemark()); 1023 return false; 1024 } 1025 1026 if (getWidth() == 1 && getInterleave() == 1) { 1027 // FIXME: Add a separate metadata to indicate when the loop has already 1028 // been vectorized instead of setting width and count to 1. 1029 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1030 // FIXME: Add interleave.disable metadata. This will allow 1031 // vectorize.disable to be used without disabling the pass and errors 1032 // to differentiate between disabled vectorization and a width of 1. 1033 emitOptimizationRemarkAnalysis( 1034 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1035 "loop not vectorized: vectorization and interleaving are explicitly " 1036 "disabled, or vectorize width and interleave count are both set to " 1037 "1"); 1038 return false; 1039 } 1040 1041 return true; 1042 } 1043 1044 /// Dumps all the hint information. 1045 std::string emitRemark() const { 1046 VectorizationReport R; 1047 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1048 R << "vectorization is explicitly disabled"; 1049 else { 1050 R << "use -Rpass-analysis=loop-vectorize for more info"; 1051 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1052 R << " (Force=true"; 1053 if (Width.Value != 0) 1054 R << ", Vector Width=" << Width.Value; 1055 if (Interleave.Value != 0) 1056 R << ", Interleave Count=" << Interleave.Value; 1057 R << ")"; 1058 } 1059 } 1060 1061 return R.str(); 1062 } 1063 1064 unsigned getWidth() const { return Width.Value; } 1065 unsigned getInterleave() const { return Interleave.Value; } 1066 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1067 const char *vectorizeAnalysisPassName() const { 1068 // If hints are provided that don't disable vectorization use the 1069 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1070 if (getWidth() == 1) 1071 return LV_NAME; 1072 if (getForce() == LoopVectorizeHints::FK_Disabled) 1073 return LV_NAME; 1074 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1075 return LV_NAME; 1076 return DiagnosticInfo::AlwaysPrint; 1077 } 1078 1079 bool allowReordering() const { 1080 // When enabling loop hints are provided we allow the vectorizer to change 1081 // the order of operations that is given by the scalar loop. This is not 1082 // enabled by default because can be unsafe or inefficient. For example, 1083 // reordering floating-point operations will change the way round-off 1084 // error accumulates in the loop. 1085 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1086 } 1087 1088 bool isPotentiallyUnsafe() const { 1089 // Avoid FP vectorization if the target is unsure about proper support. 1090 // This may be related to the SIMD unit in the target not handling 1091 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1092 // Otherwise, a sequence of vectorized loops, even without reduction, 1093 // could lead to different end results on the destination vectors. 1094 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1095 } 1096 1097 void setPotentiallyUnsafe() { 1098 PotentiallyUnsafe = true; 1099 } 1100 1101 private: 1102 /// Find hints specified in the loop metadata and update local values. 1103 void getHintsFromMetadata() { 1104 MDNode *LoopID = TheLoop->getLoopID(); 1105 if (!LoopID) 1106 return; 1107 1108 // First operand should refer to the loop id itself. 1109 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1110 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1111 1112 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1113 const MDString *S = nullptr; 1114 SmallVector<Metadata *, 4> Args; 1115 1116 // The expected hint is either a MDString or a MDNode with the first 1117 // operand a MDString. 1118 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1119 if (!MD || MD->getNumOperands() == 0) 1120 continue; 1121 S = dyn_cast<MDString>(MD->getOperand(0)); 1122 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1123 Args.push_back(MD->getOperand(i)); 1124 } else { 1125 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1126 assert(Args.size() == 0 && "too many arguments for MDString"); 1127 } 1128 1129 if (!S) 1130 continue; 1131 1132 // Check if the hint starts with the loop metadata prefix. 1133 StringRef Name = S->getString(); 1134 if (Args.size() == 1) 1135 setHint(Name, Args[0]); 1136 } 1137 } 1138 1139 /// Checks string hint with one operand and set value if valid. 1140 void setHint(StringRef Name, Metadata *Arg) { 1141 if (!Name.startswith(Prefix())) 1142 return; 1143 Name = Name.substr(Prefix().size(), StringRef::npos); 1144 1145 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1146 if (!C) return; 1147 unsigned Val = C->getZExtValue(); 1148 1149 Hint *Hints[] = {&Width, &Interleave, &Force}; 1150 for (auto H : Hints) { 1151 if (Name == H->Name) { 1152 if (H->validate(Val)) 1153 H->Value = Val; 1154 else 1155 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1156 break; 1157 } 1158 } 1159 } 1160 1161 /// Create a new hint from name / value pair. 1162 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1163 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1164 Metadata *MDs[] = {MDString::get(Context, Name), 1165 ConstantAsMetadata::get( 1166 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1167 return MDNode::get(Context, MDs); 1168 } 1169 1170 /// Matches metadata with hint name. 1171 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1172 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1173 if (!Name) 1174 return false; 1175 1176 for (auto H : HintTypes) 1177 if (Name->getString().endswith(H.Name)) 1178 return true; 1179 return false; 1180 } 1181 1182 /// Sets current hints into loop metadata, keeping other values intact. 1183 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1184 if (HintTypes.size() == 0) 1185 return; 1186 1187 // Reserve the first element to LoopID (see below). 1188 SmallVector<Metadata *, 4> MDs(1); 1189 // If the loop already has metadata, then ignore the existing operands. 1190 MDNode *LoopID = TheLoop->getLoopID(); 1191 if (LoopID) { 1192 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1193 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1194 // If node in update list, ignore old value. 1195 if (!matchesHintMetadataName(Node, HintTypes)) 1196 MDs.push_back(Node); 1197 } 1198 } 1199 1200 // Now, add the missing hints. 1201 for (auto H : HintTypes) 1202 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1203 1204 // Replace current metadata node with new one. 1205 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1206 MDNode *NewLoopID = MDNode::get(Context, MDs); 1207 // Set operand 0 to refer to the loop id itself. 1208 NewLoopID->replaceOperandWith(0, NewLoopID); 1209 1210 TheLoop->setLoopID(NewLoopID); 1211 } 1212 1213 /// The loop these hints belong to. 1214 const Loop *TheLoop; 1215 }; 1216 1217 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1218 const LoopVectorizeHints &Hints, 1219 const LoopAccessReport &Message) { 1220 const char *Name = Hints.vectorizeAnalysisPassName(); 1221 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1222 } 1223 1224 static void emitMissedWarning(Function *F, Loop *L, 1225 const LoopVectorizeHints &LH) { 1226 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1227 LH.emitRemark()); 1228 1229 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1230 if (LH.getWidth() != 1) 1231 emitLoopVectorizeWarning( 1232 F->getContext(), *F, L->getStartLoc(), 1233 "failed explicitly specified loop vectorization"); 1234 else if (LH.getInterleave() != 1) 1235 emitLoopInterleaveWarning( 1236 F->getContext(), *F, L->getStartLoc(), 1237 "failed explicitly specified loop interleaving"); 1238 } 1239 } 1240 1241 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1242 /// to what vectorization factor. 1243 /// This class does not look at the profitability of vectorization, only the 1244 /// legality. This class has two main kinds of checks: 1245 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1246 /// will change the order of memory accesses in a way that will change the 1247 /// correctness of the program. 1248 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1249 /// checks for a number of different conditions, such as the availability of a 1250 /// single induction variable, that all types are supported and vectorize-able, 1251 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1252 /// This class is also used by InnerLoopVectorizer for identifying 1253 /// induction variable and the different reduction variables. 1254 class LoopVectorizationLegality { 1255 public: 1256 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1257 DominatorTree *DT, TargetLibraryInfo *TLI, 1258 AliasAnalysis *AA, Function *F, 1259 const TargetTransformInfo *TTI, 1260 LoopAccessAnalysis *LAA, 1261 LoopVectorizationRequirements *R, 1262 LoopVectorizeHints *H) 1263 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1264 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1265 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1266 Requirements(R), Hints(H) {} 1267 1268 /// ReductionList contains the reduction descriptors for all 1269 /// of the reductions that were found in the loop. 1270 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1271 1272 /// InductionList saves induction variables and maps them to the 1273 /// induction descriptor. 1274 typedef MapVector<PHINode*, InductionDescriptor> InductionList; 1275 1276 /// RecurrenceSet contains the phi nodes that are recurrences other than 1277 /// inductions and reductions. 1278 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1279 1280 /// Returns true if it is legal to vectorize this loop. 1281 /// This does not mean that it is profitable to vectorize this 1282 /// loop, only that it is legal to do so. 1283 bool canVectorize(); 1284 1285 /// Returns the Induction variable. 1286 PHINode *getInduction() { return Induction; } 1287 1288 /// Returns the reduction variables found in the loop. 1289 ReductionList *getReductionVars() { return &Reductions; } 1290 1291 /// Returns the induction variables found in the loop. 1292 InductionList *getInductionVars() { return &Inductions; } 1293 1294 /// Return the first-order recurrences found in the loop. 1295 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1296 1297 /// Returns the widest induction type. 1298 Type *getWidestInductionType() { return WidestIndTy; } 1299 1300 /// Returns True if V is an induction variable in this loop. 1301 bool isInductionVariable(const Value *V); 1302 1303 /// Returns True if PN is a reduction variable in this loop. 1304 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1305 1306 /// Returns True if Phi is a first-order recurrence in this loop. 1307 bool isFirstOrderRecurrence(const PHINode *Phi); 1308 1309 /// Return true if the block BB needs to be predicated in order for the loop 1310 /// to be vectorized. 1311 bool blockNeedsPredication(BasicBlock *BB); 1312 1313 /// Check if this pointer is consecutive when vectorizing. This happens 1314 /// when the last index of the GEP is the induction variable, or that the 1315 /// pointer itself is an induction variable. 1316 /// This check allows us to vectorize A[idx] into a wide load/store. 1317 /// Returns: 1318 /// 0 - Stride is unknown or non-consecutive. 1319 /// 1 - Address is consecutive. 1320 /// -1 - Address is consecutive, and decreasing. 1321 int isConsecutivePtr(Value *Ptr); 1322 1323 /// Returns true if the value V is uniform within the loop. 1324 bool isUniform(Value *V); 1325 1326 /// Returns true if this instruction will remain scalar after vectorization. 1327 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 1328 1329 /// Returns the information that we collected about runtime memory check. 1330 const RuntimePointerChecking *getRuntimePointerChecking() const { 1331 return LAI->getRuntimePointerChecking(); 1332 } 1333 1334 const LoopAccessInfo *getLAI() const { 1335 return LAI; 1336 } 1337 1338 /// \brief Check if \p Instr belongs to any interleaved access group. 1339 bool isAccessInterleaved(Instruction *Instr) { 1340 return InterleaveInfo.isInterleaved(Instr); 1341 } 1342 1343 /// \brief Get the interleaved access group that \p Instr belongs to. 1344 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1345 return InterleaveInfo.getInterleaveGroup(Instr); 1346 } 1347 1348 /// \brief Returns true if an interleaved group requires a scalar iteration 1349 /// to handle accesses with gaps. 1350 bool requiresScalarEpilogue() const { 1351 return InterleaveInfo.requiresScalarEpilogue(); 1352 } 1353 1354 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1355 1356 bool hasStride(Value *V) { return StrideSet.count(V); } 1357 bool mustCheckStrides() { return !StrideSet.empty(); } 1358 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1359 return StrideSet.begin(); 1360 } 1361 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1362 1363 /// Returns true if the target machine supports masked store operation 1364 /// for the given \p DataType and kind of access to \p Ptr. 1365 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1366 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1367 } 1368 /// Returns true if the target machine supports masked load operation 1369 /// for the given \p DataType and kind of access to \p Ptr. 1370 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1371 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1372 } 1373 /// Returns true if the target machine supports masked scatter operation 1374 /// for the given \p DataType. 1375 bool isLegalMaskedScatter(Type *DataType) { 1376 return TTI->isLegalMaskedScatter(DataType); 1377 } 1378 /// Returns true if the target machine supports masked gather operation 1379 /// for the given \p DataType. 1380 bool isLegalMaskedGather(Type *DataType) { 1381 return TTI->isLegalMaskedGather(DataType); 1382 } 1383 1384 /// Returns true if vector representation of the instruction \p I 1385 /// requires mask. 1386 bool isMaskRequired(const Instruction* I) { 1387 return (MaskedOp.count(I) != 0); 1388 } 1389 unsigned getNumStores() const { 1390 return LAI->getNumStores(); 1391 } 1392 unsigned getNumLoads() const { 1393 return LAI->getNumLoads(); 1394 } 1395 unsigned getNumPredStores() const { 1396 return NumPredStores; 1397 } 1398 private: 1399 /// Check if a single basic block loop is vectorizable. 1400 /// At this point we know that this is a loop with a constant trip count 1401 /// and we only need to check individual instructions. 1402 bool canVectorizeInstrs(); 1403 1404 /// When we vectorize loops we may change the order in which 1405 /// we read and write from memory. This method checks if it is 1406 /// legal to vectorize the code, considering only memory constrains. 1407 /// Returns true if the loop is vectorizable 1408 bool canVectorizeMemory(); 1409 1410 /// Return true if we can vectorize this loop using the IF-conversion 1411 /// transformation. 1412 bool canVectorizeWithIfConvert(); 1413 1414 /// Collect the variables that need to stay uniform after vectorization. 1415 void collectLoopUniforms(); 1416 1417 /// Return true if all of the instructions in the block can be speculatively 1418 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1419 /// and we know that we can read from them without segfault. 1420 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1421 1422 /// \brief Collect memory access with loop invariant strides. 1423 /// 1424 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1425 /// invariant. 1426 void collectStridedAccess(Value *LoadOrStoreInst); 1427 1428 /// Report an analysis message to assist the user in diagnosing loops that are 1429 /// not vectorized. These are handled as LoopAccessReport rather than 1430 /// VectorizationReport because the << operator of VectorizationReport returns 1431 /// LoopAccessReport. 1432 void emitAnalysis(const LoopAccessReport &Message) const { 1433 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1434 } 1435 1436 unsigned NumPredStores; 1437 1438 /// The loop that we evaluate. 1439 Loop *TheLoop; 1440 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1441 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1442 /// of existing SCEV assumptions. The analysis will also add a minimal set 1443 /// of new predicates if this is required to enable vectorization and 1444 /// unrolling. 1445 PredicatedScalarEvolution &PSE; 1446 /// Target Library Info. 1447 TargetLibraryInfo *TLI; 1448 /// Parent function 1449 Function *TheFunction; 1450 /// Target Transform Info 1451 const TargetTransformInfo *TTI; 1452 /// Dominator Tree. 1453 DominatorTree *DT; 1454 // LoopAccess analysis. 1455 LoopAccessAnalysis *LAA; 1456 // And the loop-accesses info corresponding to this loop. This pointer is 1457 // null until canVectorizeMemory sets it up. 1458 const LoopAccessInfo *LAI; 1459 1460 /// The interleave access information contains groups of interleaved accesses 1461 /// with the same stride and close to each other. 1462 InterleavedAccessInfo InterleaveInfo; 1463 1464 // --- vectorization state --- // 1465 1466 /// Holds the integer induction variable. This is the counter of the 1467 /// loop. 1468 PHINode *Induction; 1469 /// Holds the reduction variables. 1470 ReductionList Reductions; 1471 /// Holds all of the induction variables that we found in the loop. 1472 /// Notice that inductions don't need to start at zero and that induction 1473 /// variables can be pointers. 1474 InductionList Inductions; 1475 /// Holds the phi nodes that are first-order recurrences. 1476 RecurrenceSet FirstOrderRecurrences; 1477 /// Holds the widest induction type encountered. 1478 Type *WidestIndTy; 1479 1480 /// Allowed outside users. This holds the reduction 1481 /// vars which can be accessed from outside the loop. 1482 SmallPtrSet<Value*, 4> AllowedExit; 1483 /// This set holds the variables which are known to be uniform after 1484 /// vectorization. 1485 SmallPtrSet<Instruction*, 4> Uniforms; 1486 1487 /// Can we assume the absence of NaNs. 1488 bool HasFunNoNaNAttr; 1489 1490 /// Vectorization requirements that will go through late-evaluation. 1491 LoopVectorizationRequirements *Requirements; 1492 1493 /// Used to emit an analysis of any legality issues. 1494 LoopVectorizeHints *Hints; 1495 1496 ValueToValueMap Strides; 1497 SmallPtrSet<Value *, 8> StrideSet; 1498 1499 /// While vectorizing these instructions we have to generate a 1500 /// call to the appropriate masked intrinsic 1501 SmallPtrSet<const Instruction *, 8> MaskedOp; 1502 }; 1503 1504 /// LoopVectorizationCostModel - estimates the expected speedups due to 1505 /// vectorization. 1506 /// In many cases vectorization is not profitable. This can happen because of 1507 /// a number of reasons. In this class we mainly attempt to predict the 1508 /// expected speedup/slowdowns due to the supported instruction set. We use the 1509 /// TargetTransformInfo to query the different backends for the cost of 1510 /// different operations. 1511 class LoopVectorizationCostModel { 1512 public: 1513 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1514 LoopVectorizationLegality *Legal, 1515 const TargetTransformInfo &TTI, 1516 const TargetLibraryInfo *TLI, 1517 DemandedBits *DB, AssumptionCache *AC, 1518 const Function *F, const LoopVectorizeHints *Hints, 1519 SmallPtrSetImpl<const Value *> &ValuesToIgnore) 1520 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1521 TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {} 1522 1523 /// Information about vectorization costs 1524 struct VectorizationFactor { 1525 unsigned Width; // Vector width with best cost 1526 unsigned Cost; // Cost of the loop with that width 1527 }; 1528 /// \return The most profitable vectorization factor and the cost of that VF. 1529 /// This method checks every power of two up to VF. If UserVF is not ZERO 1530 /// then this vectorization factor will be selected if vectorization is 1531 /// possible. 1532 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1533 1534 /// \return The size (in bits) of the smallest and widest types in the code 1535 /// that needs to be vectorized. We ignore values that remain scalar such as 1536 /// 64 bit loop indices. 1537 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1538 1539 /// \return The desired interleave count. 1540 /// If interleave count has been specified by metadata it will be returned. 1541 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1542 /// are the selected vectorization factor and the cost of the selected VF. 1543 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1544 unsigned LoopCost); 1545 1546 /// \return The most profitable unroll factor. 1547 /// This method finds the best unroll-factor based on register pressure and 1548 /// other parameters. VF and LoopCost are the selected vectorization factor 1549 /// and the cost of the selected VF. 1550 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1551 unsigned LoopCost); 1552 1553 /// \brief A struct that represents some properties of the register usage 1554 /// of a loop. 1555 struct RegisterUsage { 1556 /// Holds the number of loop invariant values that are used in the loop. 1557 unsigned LoopInvariantRegs; 1558 /// Holds the maximum number of concurrent live intervals in the loop. 1559 unsigned MaxLocalUsers; 1560 /// Holds the number of instructions in the loop. 1561 unsigned NumInstructions; 1562 }; 1563 1564 /// \return Returns information about the register usages of the loop for the 1565 /// given vectorization factors. 1566 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1567 1568 private: 1569 /// The vectorization cost is a combination of the cost itself and a boolean 1570 /// indicating whether any of the contributing operations will actually operate on 1571 /// vector values after type legalization in the backend. If this latter value is 1572 /// false, then all operations will be scalarized (i.e. no vectorization has 1573 /// actually taken place). 1574 typedef std::pair<unsigned, bool> VectorizationCostTy; 1575 1576 /// Returns the expected execution cost. The unit of the cost does 1577 /// not matter because we use the 'cost' units to compare different 1578 /// vector widths. The cost that is returned is *not* normalized by 1579 /// the factor width. 1580 VectorizationCostTy expectedCost(unsigned VF); 1581 1582 /// Returns the execution time cost of an instruction for a given vector 1583 /// width. Vector width of one means scalar. 1584 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1585 1586 /// The cost-computation logic from getInstructionCost which provides 1587 /// the vector type as an output parameter. 1588 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1589 1590 /// Returns whether the instruction is a load or store and will be a emitted 1591 /// as a vector operation. 1592 bool isConsecutiveLoadOrStore(Instruction *I); 1593 1594 /// Report an analysis message to assist the user in diagnosing loops that are 1595 /// not vectorized. These are handled as LoopAccessReport rather than 1596 /// VectorizationReport because the << operator of VectorizationReport returns 1597 /// LoopAccessReport. 1598 void emitAnalysis(const LoopAccessReport &Message) const { 1599 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1600 } 1601 1602 public: 1603 /// Map of scalar integer values to the smallest bitwidth they can be legally 1604 /// represented as. The vector equivalents of these values should be truncated 1605 /// to this type. 1606 MapVector<Instruction*,uint64_t> MinBWs; 1607 1608 /// The loop that we evaluate. 1609 Loop *TheLoop; 1610 /// Scev analysis. 1611 ScalarEvolution *SE; 1612 /// Loop Info analysis. 1613 LoopInfo *LI; 1614 /// Vectorization legality. 1615 LoopVectorizationLegality *Legal; 1616 /// Vector target information. 1617 const TargetTransformInfo &TTI; 1618 /// Target Library Info. 1619 const TargetLibraryInfo *TLI; 1620 /// Demanded bits analysis 1621 DemandedBits *DB; 1622 const Function *TheFunction; 1623 // Loop Vectorize Hint. 1624 const LoopVectorizeHints *Hints; 1625 // Values to ignore in the cost model. 1626 const SmallPtrSetImpl<const Value *> &ValuesToIgnore; 1627 }; 1628 1629 /// \brief This holds vectorization requirements that must be verified late in 1630 /// the process. The requirements are set by legalize and costmodel. Once 1631 /// vectorization has been determined to be possible and profitable the 1632 /// requirements can be verified by looking for metadata or compiler options. 1633 /// For example, some loops require FP commutativity which is only allowed if 1634 /// vectorization is explicitly specified or if the fast-math compiler option 1635 /// has been provided. 1636 /// Late evaluation of these requirements allows helpful diagnostics to be 1637 /// composed that tells the user what need to be done to vectorize the loop. For 1638 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1639 /// evaluation should be used only when diagnostics can generated that can be 1640 /// followed by a non-expert user. 1641 class LoopVectorizationRequirements { 1642 public: 1643 LoopVectorizationRequirements() 1644 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1645 1646 void addUnsafeAlgebraInst(Instruction *I) { 1647 // First unsafe algebra instruction. 1648 if (!UnsafeAlgebraInst) 1649 UnsafeAlgebraInst = I; 1650 } 1651 1652 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1653 1654 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1655 const char *Name = Hints.vectorizeAnalysisPassName(); 1656 bool Failed = false; 1657 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1658 emitOptimizationRemarkAnalysisFPCommute( 1659 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1660 VectorizationReport() << "cannot prove it is safe to reorder " 1661 "floating-point operations"); 1662 Failed = true; 1663 } 1664 1665 // Test if runtime memcheck thresholds are exceeded. 1666 bool PragmaThresholdReached = 1667 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1668 bool ThresholdReached = 1669 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1670 if ((ThresholdReached && !Hints.allowReordering()) || 1671 PragmaThresholdReached) { 1672 emitOptimizationRemarkAnalysisAliasing( 1673 F->getContext(), Name, *F, L->getStartLoc(), 1674 VectorizationReport() 1675 << "cannot prove it is safe to reorder memory operations"); 1676 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1677 Failed = true; 1678 } 1679 1680 return Failed; 1681 } 1682 1683 private: 1684 unsigned NumRuntimePointerChecks; 1685 Instruction *UnsafeAlgebraInst; 1686 }; 1687 1688 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1689 if (L.empty()) 1690 return V.push_back(&L); 1691 1692 for (Loop *InnerL : L) 1693 addInnerLoop(*InnerL, V); 1694 } 1695 1696 /// The LoopVectorize Pass. 1697 struct LoopVectorize : public FunctionPass { 1698 /// Pass identification, replacement for typeid 1699 static char ID; 1700 1701 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1702 : FunctionPass(ID), 1703 DisableUnrolling(NoUnrolling), 1704 AlwaysVectorize(AlwaysVectorize) { 1705 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1706 } 1707 1708 ScalarEvolution *SE; 1709 LoopInfo *LI; 1710 TargetTransformInfo *TTI; 1711 DominatorTree *DT; 1712 BlockFrequencyInfo *BFI; 1713 TargetLibraryInfo *TLI; 1714 DemandedBits *DB; 1715 AliasAnalysis *AA; 1716 AssumptionCache *AC; 1717 LoopAccessAnalysis *LAA; 1718 bool DisableUnrolling; 1719 bool AlwaysVectorize; 1720 1721 BlockFrequency ColdEntryFreq; 1722 1723 bool runOnFunction(Function &F) override { 1724 if (skipFunction(F)) 1725 return false; 1726 1727 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1728 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1729 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1730 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1731 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1732 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1733 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1734 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1735 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1736 LAA = &getAnalysis<LoopAccessAnalysis>(); 1737 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1738 1739 // Compute some weights outside of the loop over the loops. Compute this 1740 // using a BranchProbability to re-use its scaling math. 1741 const BranchProbability ColdProb(1, 5); // 20% 1742 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1743 1744 // Don't attempt if 1745 // 1. the target claims to have no vector registers, and 1746 // 2. interleaving won't help ILP. 1747 // 1748 // The second condition is necessary because, even if the target has no 1749 // vector registers, loop vectorization may still enable scalar 1750 // interleaving. 1751 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1752 return false; 1753 1754 // Build up a worklist of inner-loops to vectorize. This is necessary as 1755 // the act of vectorizing or partially unrolling a loop creates new loops 1756 // and can invalidate iterators across the loops. 1757 SmallVector<Loop *, 8> Worklist; 1758 1759 for (Loop *L : *LI) 1760 addInnerLoop(*L, Worklist); 1761 1762 LoopsAnalyzed += Worklist.size(); 1763 1764 // Now walk the identified inner loops. 1765 bool Changed = false; 1766 while (!Worklist.empty()) 1767 Changed |= processLoop(Worklist.pop_back_val()); 1768 1769 // Process each loop nest in the function. 1770 return Changed; 1771 } 1772 1773 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1774 SmallVector<Metadata *, 4> MDs; 1775 // Reserve first location for self reference to the LoopID metadata node. 1776 MDs.push_back(nullptr); 1777 bool IsUnrollMetadata = false; 1778 MDNode *LoopID = L->getLoopID(); 1779 if (LoopID) { 1780 // First find existing loop unrolling disable metadata. 1781 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1782 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1783 if (MD) { 1784 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1785 IsUnrollMetadata = 1786 S && S->getString().startswith("llvm.loop.unroll.disable"); 1787 } 1788 MDs.push_back(LoopID->getOperand(i)); 1789 } 1790 } 1791 1792 if (!IsUnrollMetadata) { 1793 // Add runtime unroll disable metadata. 1794 LLVMContext &Context = L->getHeader()->getContext(); 1795 SmallVector<Metadata *, 1> DisableOperands; 1796 DisableOperands.push_back( 1797 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1798 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1799 MDs.push_back(DisableNode); 1800 MDNode *NewLoopID = MDNode::get(Context, MDs); 1801 // Set operand 0 to refer to the loop id itself. 1802 NewLoopID->replaceOperandWith(0, NewLoopID); 1803 L->setLoopID(NewLoopID); 1804 } 1805 } 1806 1807 bool processLoop(Loop *L) { 1808 assert(L->empty() && "Only process inner loops."); 1809 1810 #ifndef NDEBUG 1811 const std::string DebugLocStr = getDebugLocString(L); 1812 #endif /* NDEBUG */ 1813 1814 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1815 << L->getHeader()->getParent()->getName() << "\" from " 1816 << DebugLocStr << "\n"); 1817 1818 LoopVectorizeHints Hints(L, DisableUnrolling); 1819 1820 DEBUG(dbgs() << "LV: Loop hints:" 1821 << " force=" 1822 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1823 ? "disabled" 1824 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1825 ? "enabled" 1826 : "?")) << " width=" << Hints.getWidth() 1827 << " unroll=" << Hints.getInterleave() << "\n"); 1828 1829 // Function containing loop 1830 Function *F = L->getHeader()->getParent(); 1831 1832 // Looking at the diagnostic output is the only way to determine if a loop 1833 // was vectorized (other than looking at the IR or machine code), so it 1834 // is important to generate an optimization remark for each loop. Most of 1835 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1836 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1837 // less verbose reporting vectorized loops and unvectorized loops that may 1838 // benefit from vectorization, respectively. 1839 1840 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1841 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1842 return false; 1843 } 1844 1845 // Check the loop for a trip count threshold: 1846 // do not vectorize loops with a tiny trip count. 1847 const unsigned TC = SE->getSmallConstantTripCount(L); 1848 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1849 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1850 << "This loop is not worth vectorizing."); 1851 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1852 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1853 else { 1854 DEBUG(dbgs() << "\n"); 1855 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1856 << "vectorization is not beneficial " 1857 "and is not explicitly forced"); 1858 return false; 1859 } 1860 } 1861 1862 PredicatedScalarEvolution PSE(*SE, *L); 1863 1864 // Check if it is legal to vectorize the loop. 1865 LoopVectorizationRequirements Requirements; 1866 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1867 &Requirements, &Hints); 1868 if (!LVL.canVectorize()) { 1869 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1870 emitMissedWarning(F, L, Hints); 1871 return false; 1872 } 1873 1874 // Collect values we want to ignore in the cost model. This includes 1875 // type-promoting instructions we identified during reduction detection. 1876 SmallPtrSet<const Value *, 32> ValuesToIgnore; 1877 CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore); 1878 for (auto &Reduction : *LVL.getReductionVars()) { 1879 RecurrenceDescriptor &RedDes = Reduction.second; 1880 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 1881 ValuesToIgnore.insert(Casts.begin(), Casts.end()); 1882 } 1883 1884 // Use the cost model. 1885 LoopVectorizationCostModel CM(L, PSE.getSE(), LI, &LVL, *TTI, TLI, DB, AC, 1886 F, &Hints, ValuesToIgnore); 1887 1888 // Check the function attributes to find out if this function should be 1889 // optimized for size. 1890 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1891 F->optForSize(); 1892 1893 // Compute the weighted frequency of this loop being executed and see if it 1894 // is less than 20% of the function entry baseline frequency. Note that we 1895 // always have a canonical loop here because we think we *can* vectorize. 1896 // FIXME: This is hidden behind a flag due to pervasive problems with 1897 // exactly what block frequency models. 1898 if (LoopVectorizeWithBlockFrequency) { 1899 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1900 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1901 LoopEntryFreq < ColdEntryFreq) 1902 OptForSize = true; 1903 } 1904 1905 // Check the function attributes to see if implicit floats are allowed. 1906 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1907 // an integer loop and the vector instructions selected are purely integer 1908 // vector instructions? 1909 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1910 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1911 "attribute is used.\n"); 1912 emitAnalysisDiag( 1913 F, L, Hints, 1914 VectorizationReport() 1915 << "loop not vectorized due to NoImplicitFloat attribute"); 1916 emitMissedWarning(F, L, Hints); 1917 return false; 1918 } 1919 1920 // Check if the target supports potentially unsafe FP vectorization. 1921 // FIXME: Add a check for the type of safety issue (denormal, signaling) 1922 // for the target we're vectorizing for, to make sure none of the 1923 // additional fp-math flags can help. 1924 if (Hints.isPotentiallyUnsafe() && 1925 TTI->isFPVectorizationPotentiallyUnsafe()) { 1926 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 1927 emitAnalysisDiag( 1928 F, L, Hints, 1929 VectorizationReport() 1930 << "loop not vectorized due to unsafe FP support."); 1931 emitMissedWarning(F, L, Hints); 1932 return false; 1933 } 1934 1935 // Select the optimal vectorization factor. 1936 const LoopVectorizationCostModel::VectorizationFactor VF = 1937 CM.selectVectorizationFactor(OptForSize); 1938 1939 // Select the interleave count. 1940 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1941 1942 // Get user interleave count. 1943 unsigned UserIC = Hints.getInterleave(); 1944 1945 // Identify the diagnostic messages that should be produced. 1946 std::string VecDiagMsg, IntDiagMsg; 1947 bool VectorizeLoop = true, InterleaveLoop = true; 1948 1949 if (Requirements.doesNotMeet(F, L, Hints)) { 1950 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1951 "requirements.\n"); 1952 emitMissedWarning(F, L, Hints); 1953 return false; 1954 } 1955 1956 if (VF.Width == 1) { 1957 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1958 VecDiagMsg = 1959 "the cost-model indicates that vectorization is not beneficial"; 1960 VectorizeLoop = false; 1961 } 1962 1963 if (IC == 1 && UserIC <= 1) { 1964 // Tell the user interleaving is not beneficial. 1965 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1966 IntDiagMsg = 1967 "the cost-model indicates that interleaving is not beneficial"; 1968 InterleaveLoop = false; 1969 if (UserIC == 1) 1970 IntDiagMsg += 1971 " and is explicitly disabled or interleave count is set to 1"; 1972 } else if (IC > 1 && UserIC == 1) { 1973 // Tell the user interleaving is beneficial, but it explicitly disabled. 1974 DEBUG(dbgs() 1975 << "LV: Interleaving is beneficial but is explicitly disabled."); 1976 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1977 "but is explicitly disabled or interleave count is set to 1"; 1978 InterleaveLoop = false; 1979 } 1980 1981 // Override IC if user provided an interleave count. 1982 IC = UserIC > 0 ? UserIC : IC; 1983 1984 // Emit diagnostic messages, if any. 1985 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 1986 if (!VectorizeLoop && !InterleaveLoop) { 1987 // Do not vectorize or interleaving the loop. 1988 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1989 L->getStartLoc(), VecDiagMsg); 1990 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1991 L->getStartLoc(), IntDiagMsg); 1992 return false; 1993 } else if (!VectorizeLoop && InterleaveLoop) { 1994 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1995 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1996 L->getStartLoc(), VecDiagMsg); 1997 } else if (VectorizeLoop && !InterleaveLoop) { 1998 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1999 << DebugLocStr << '\n'); 2000 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2001 L->getStartLoc(), IntDiagMsg); 2002 } else if (VectorizeLoop && InterleaveLoop) { 2003 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2004 << DebugLocStr << '\n'); 2005 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2006 } 2007 2008 if (!VectorizeLoop) { 2009 assert(IC > 1 && "interleave count should not be 1 or 0"); 2010 // If we decided that it is not legal to vectorize the loop then 2011 // interleave it. 2012 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 2013 Unroller.vectorize(&LVL, CM.MinBWs); 2014 2015 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2016 Twine("interleaved loop (interleaved count: ") + 2017 Twine(IC) + ")"); 2018 } else { 2019 // If we decided that it is *legal* to vectorize the loop then do it. 2020 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2021 LB.vectorize(&LVL, CM.MinBWs); 2022 ++LoopsVectorized; 2023 2024 // Add metadata to disable runtime unrolling scalar loop when there's no 2025 // runtime check about strides and memory. Because at this situation, 2026 // scalar loop is rarely used not worthy to be unrolled. 2027 if (!LB.IsSafetyChecksAdded()) 2028 AddRuntimeUnrollDisableMetaData(L); 2029 2030 // Report the vectorization decision. 2031 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2032 Twine("vectorized loop (vectorization width: ") + 2033 Twine(VF.Width) + ", interleaved count: " + 2034 Twine(IC) + ")"); 2035 } 2036 2037 // Mark the loop as already vectorized to avoid vectorizing again. 2038 Hints.setAlreadyVectorized(); 2039 2040 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2041 return true; 2042 } 2043 2044 void getAnalysisUsage(AnalysisUsage &AU) const override { 2045 AU.addRequired<AssumptionCacheTracker>(); 2046 AU.addRequiredID(LoopSimplifyID); 2047 AU.addRequiredID(LCSSAID); 2048 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2049 AU.addRequired<DominatorTreeWrapperPass>(); 2050 AU.addRequired<LoopInfoWrapperPass>(); 2051 AU.addRequired<ScalarEvolutionWrapperPass>(); 2052 AU.addRequired<TargetTransformInfoWrapperPass>(); 2053 AU.addRequired<AAResultsWrapperPass>(); 2054 AU.addRequired<LoopAccessAnalysis>(); 2055 AU.addRequired<DemandedBitsWrapperPass>(); 2056 AU.addPreserved<LoopInfoWrapperPass>(); 2057 AU.addPreserved<DominatorTreeWrapperPass>(); 2058 AU.addPreserved<BasicAAWrapperPass>(); 2059 AU.addPreserved<GlobalsAAWrapperPass>(); 2060 } 2061 2062 }; 2063 2064 } // end anonymous namespace 2065 2066 //===----------------------------------------------------------------------===// 2067 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2068 // LoopVectorizationCostModel. 2069 //===----------------------------------------------------------------------===// 2070 2071 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2072 // We need to place the broadcast of invariant variables outside the loop. 2073 Instruction *Instr = dyn_cast<Instruction>(V); 2074 bool NewInstr = 2075 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 2076 Instr->getParent()) != LoopVectorBody.end()); 2077 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2078 2079 // Place the code for broadcasting invariant variables in the new preheader. 2080 IRBuilder<>::InsertPointGuard Guard(Builder); 2081 if (Invariant) 2082 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2083 2084 // Broadcast the scalar into all locations in the vector. 2085 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2086 2087 return Shuf; 2088 } 2089 2090 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2091 Value *Step) { 2092 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2093 assert(Val->getType()->getScalarType()->isIntegerTy() && 2094 "Elem must be an integer"); 2095 assert(Step->getType() == Val->getType()->getScalarType() && 2096 "Step has wrong type"); 2097 // Create the types. 2098 Type *ITy = Val->getType()->getScalarType(); 2099 VectorType *Ty = cast<VectorType>(Val->getType()); 2100 int VLen = Ty->getNumElements(); 2101 SmallVector<Constant*, 8> Indices; 2102 2103 // Create a vector of consecutive numbers from zero to VF. 2104 for (int i = 0; i < VLen; ++i) 2105 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2106 2107 // Add the consecutive indices to the vector value. 2108 Constant *Cv = ConstantVector::get(Indices); 2109 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2110 Step = Builder.CreateVectorSplat(VLen, Step); 2111 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2112 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2113 // which can be found from the original scalar operations. 2114 Step = Builder.CreateMul(Cv, Step); 2115 return Builder.CreateAdd(Val, Step, "induction"); 2116 } 2117 2118 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2119 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2120 auto *SE = PSE.getSE(); 2121 // Make sure that the pointer does not point to structs. 2122 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2123 return 0; 2124 2125 // If this value is a pointer induction variable we know it is consecutive. 2126 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2127 if (Phi && Inductions.count(Phi)) { 2128 InductionDescriptor II = Inductions[Phi]; 2129 return II.getConsecutiveDirection(); 2130 } 2131 2132 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2133 if (!Gep) 2134 return 0; 2135 2136 unsigned NumOperands = Gep->getNumOperands(); 2137 Value *GpPtr = Gep->getPointerOperand(); 2138 // If this GEP value is a consecutive pointer induction variable and all of 2139 // the indices are constant then we know it is consecutive. We can 2140 Phi = dyn_cast<PHINode>(GpPtr); 2141 if (Phi && Inductions.count(Phi)) { 2142 2143 // Make sure that the pointer does not point to structs. 2144 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2145 if (GepPtrType->getElementType()->isAggregateType()) 2146 return 0; 2147 2148 // Make sure that all of the index operands are loop invariant. 2149 for (unsigned i = 1; i < NumOperands; ++i) 2150 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2151 return 0; 2152 2153 InductionDescriptor II = Inductions[Phi]; 2154 return II.getConsecutiveDirection(); 2155 } 2156 2157 unsigned InductionOperand = getGEPInductionOperand(Gep); 2158 2159 // Check that all of the gep indices are uniform except for our induction 2160 // operand. 2161 for (unsigned i = 0; i != NumOperands; ++i) 2162 if (i != InductionOperand && 2163 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2164 return 0; 2165 2166 // We can emit wide load/stores only if the last non-zero index is the 2167 // induction variable. 2168 const SCEV *Last = nullptr; 2169 if (!Strides.count(Gep)) 2170 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2171 else { 2172 // Because of the multiplication by a stride we can have a s/zext cast. 2173 // We are going to replace this stride by 1 so the cast is safe to ignore. 2174 // 2175 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2176 // %0 = trunc i64 %indvars.iv to i32 2177 // %mul = mul i32 %0, %Stride1 2178 // %idxprom = zext i32 %mul to i64 << Safe cast. 2179 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2180 // 2181 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2182 Gep->getOperand(InductionOperand), Gep); 2183 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2184 Last = 2185 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2186 ? C->getOperand() 2187 : Last; 2188 } 2189 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2190 const SCEV *Step = AR->getStepRecurrence(*SE); 2191 2192 // The memory is consecutive because the last index is consecutive 2193 // and all other indices are loop invariant. 2194 if (Step->isOne()) 2195 return 1; 2196 if (Step->isAllOnesValue()) 2197 return -1; 2198 } 2199 2200 return 0; 2201 } 2202 2203 bool LoopVectorizationLegality::isUniform(Value *V) { 2204 return LAI->isUniform(V); 2205 } 2206 2207 InnerLoopVectorizer::VectorParts& 2208 InnerLoopVectorizer::getVectorValue(Value *V) { 2209 assert(V != Induction && "The new induction variable should not be used."); 2210 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2211 2212 // If we have a stride that is replaced by one, do it here. 2213 if (Legal->hasStride(V)) 2214 V = ConstantInt::get(V->getType(), 1); 2215 2216 // If we have this scalar in the map, return it. 2217 if (WidenMap.has(V)) 2218 return WidenMap.get(V); 2219 2220 // If this scalar is unknown, assume that it is a constant or that it is 2221 // loop invariant. Broadcast V and save the value for future uses. 2222 Value *B = getBroadcastInstrs(V); 2223 return WidenMap.splat(V, B); 2224 } 2225 2226 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2227 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2228 SmallVector<Constant*, 8> ShuffleMask; 2229 for (unsigned i = 0; i < VF; ++i) 2230 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2231 2232 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2233 ConstantVector::get(ShuffleMask), 2234 "reverse"); 2235 } 2236 2237 // Get a mask to interleave \p NumVec vectors into a wide vector. 2238 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2239 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2240 // <0, 4, 1, 5, 2, 6, 3, 7> 2241 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2242 unsigned NumVec) { 2243 SmallVector<Constant *, 16> Mask; 2244 for (unsigned i = 0; i < VF; i++) 2245 for (unsigned j = 0; j < NumVec; j++) 2246 Mask.push_back(Builder.getInt32(j * VF + i)); 2247 2248 return ConstantVector::get(Mask); 2249 } 2250 2251 // Get the strided mask starting from index \p Start. 2252 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2253 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2254 unsigned Stride, unsigned VF) { 2255 SmallVector<Constant *, 16> Mask; 2256 for (unsigned i = 0; i < VF; i++) 2257 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2258 2259 return ConstantVector::get(Mask); 2260 } 2261 2262 // Get a mask of two parts: The first part consists of sequential integers 2263 // starting from 0, The second part consists of UNDEFs. 2264 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2265 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2266 unsigned NumUndef) { 2267 SmallVector<Constant *, 16> Mask; 2268 for (unsigned i = 0; i < NumInt; i++) 2269 Mask.push_back(Builder.getInt32(i)); 2270 2271 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2272 for (unsigned i = 0; i < NumUndef; i++) 2273 Mask.push_back(Undef); 2274 2275 return ConstantVector::get(Mask); 2276 } 2277 2278 // Concatenate two vectors with the same element type. The 2nd vector should 2279 // not have more elements than the 1st vector. If the 2nd vector has less 2280 // elements, extend it with UNDEFs. 2281 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2282 Value *V2) { 2283 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2284 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2285 assert(VecTy1 && VecTy2 && 2286 VecTy1->getScalarType() == VecTy2->getScalarType() && 2287 "Expect two vectors with the same element type"); 2288 2289 unsigned NumElts1 = VecTy1->getNumElements(); 2290 unsigned NumElts2 = VecTy2->getNumElements(); 2291 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2292 2293 if (NumElts1 > NumElts2) { 2294 // Extend with UNDEFs. 2295 Constant *ExtMask = 2296 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2297 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2298 } 2299 2300 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2301 return Builder.CreateShuffleVector(V1, V2, Mask); 2302 } 2303 2304 // Concatenate vectors in the given list. All vectors have the same type. 2305 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2306 ArrayRef<Value *> InputList) { 2307 unsigned NumVec = InputList.size(); 2308 assert(NumVec > 1 && "Should be at least two vectors"); 2309 2310 SmallVector<Value *, 8> ResList; 2311 ResList.append(InputList.begin(), InputList.end()); 2312 do { 2313 SmallVector<Value *, 8> TmpList; 2314 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2315 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2316 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2317 "Only the last vector may have a different type"); 2318 2319 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2320 } 2321 2322 // Push the last vector if the total number of vectors is odd. 2323 if (NumVec % 2 != 0) 2324 TmpList.push_back(ResList[NumVec - 1]); 2325 2326 ResList = TmpList; 2327 NumVec = ResList.size(); 2328 } while (NumVec > 1); 2329 2330 return ResList[0]; 2331 } 2332 2333 // Try to vectorize the interleave group that \p Instr belongs to. 2334 // 2335 // E.g. Translate following interleaved load group (factor = 3): 2336 // for (i = 0; i < N; i+=3) { 2337 // R = Pic[i]; // Member of index 0 2338 // G = Pic[i+1]; // Member of index 1 2339 // B = Pic[i+2]; // Member of index 2 2340 // ... // do something to R, G, B 2341 // } 2342 // To: 2343 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2344 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2345 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2346 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2347 // 2348 // Or translate following interleaved store group (factor = 3): 2349 // for (i = 0; i < N; i+=3) { 2350 // ... do something to R, G, B 2351 // Pic[i] = R; // Member of index 0 2352 // Pic[i+1] = G; // Member of index 1 2353 // Pic[i+2] = B; // Member of index 2 2354 // } 2355 // To: 2356 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2357 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2358 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2359 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2360 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2361 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2362 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2363 assert(Group && "Fail to get an interleaved access group."); 2364 2365 // Skip if current instruction is not the insert position. 2366 if (Instr != Group->getInsertPos()) 2367 return; 2368 2369 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2370 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2371 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2372 2373 // Prepare for the vector type of the interleaved load/store. 2374 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2375 unsigned InterleaveFactor = Group->getFactor(); 2376 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2377 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2378 2379 // Prepare for the new pointers. 2380 setDebugLocFromInst(Builder, Ptr); 2381 VectorParts &PtrParts = getVectorValue(Ptr); 2382 SmallVector<Value *, 2> NewPtrs; 2383 unsigned Index = Group->getIndex(Instr); 2384 for (unsigned Part = 0; Part < UF; Part++) { 2385 // Extract the pointer for current instruction from the pointer vector. A 2386 // reverse access uses the pointer in the last lane. 2387 Value *NewPtr = Builder.CreateExtractElement( 2388 PtrParts[Part], 2389 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2390 2391 // Notice current instruction could be any index. Need to adjust the address 2392 // to the member of index 0. 2393 // 2394 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2395 // b = A[i]; // Member of index 0 2396 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2397 // 2398 // E.g. A[i+1] = a; // Member of index 1 2399 // A[i] = b; // Member of index 0 2400 // A[i+2] = c; // Member of index 2 (Current instruction) 2401 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2402 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2403 2404 // Cast to the vector pointer type. 2405 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2406 } 2407 2408 setDebugLocFromInst(Builder, Instr); 2409 Value *UndefVec = UndefValue::get(VecTy); 2410 2411 // Vectorize the interleaved load group. 2412 if (LI) { 2413 for (unsigned Part = 0; Part < UF; Part++) { 2414 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2415 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2416 2417 for (unsigned i = 0; i < InterleaveFactor; i++) { 2418 Instruction *Member = Group->getMember(i); 2419 2420 // Skip the gaps in the group. 2421 if (!Member) 2422 continue; 2423 2424 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2425 Value *StridedVec = Builder.CreateShuffleVector( 2426 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2427 2428 // If this member has different type, cast the result type. 2429 if (Member->getType() != ScalarTy) { 2430 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2431 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2432 } 2433 2434 VectorParts &Entry = WidenMap.get(Member); 2435 Entry[Part] = 2436 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2437 } 2438 2439 addMetadata(NewLoadInstr, Instr); 2440 } 2441 return; 2442 } 2443 2444 // The sub vector type for current instruction. 2445 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2446 2447 // Vectorize the interleaved store group. 2448 for (unsigned Part = 0; Part < UF; Part++) { 2449 // Collect the stored vector from each member. 2450 SmallVector<Value *, 4> StoredVecs; 2451 for (unsigned i = 0; i < InterleaveFactor; i++) { 2452 // Interleaved store group doesn't allow a gap, so each index has a member 2453 Instruction *Member = Group->getMember(i); 2454 assert(Member && "Fail to get a member from an interleaved store group"); 2455 2456 Value *StoredVec = 2457 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2458 if (Group->isReverse()) 2459 StoredVec = reverseVector(StoredVec); 2460 2461 // If this member has different type, cast it to an unified type. 2462 if (StoredVec->getType() != SubVT) 2463 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2464 2465 StoredVecs.push_back(StoredVec); 2466 } 2467 2468 // Concatenate all vectors into a wide vector. 2469 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2470 2471 // Interleave the elements in the wide vector. 2472 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2473 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2474 "interleaved.vec"); 2475 2476 Instruction *NewStoreInstr = 2477 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2478 addMetadata(NewStoreInstr, Instr); 2479 } 2480 } 2481 2482 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2483 // Attempt to issue a wide load. 2484 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2485 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2486 2487 assert((LI || SI) && "Invalid Load/Store instruction"); 2488 2489 // Try to vectorize the interleave group if this access is interleaved. 2490 if (Legal->isAccessInterleaved(Instr)) 2491 return vectorizeInterleaveGroup(Instr); 2492 2493 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2494 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2495 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2496 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2497 // An alignment of 0 means target abi alignment. We need to use the scalar's 2498 // target abi alignment in such a case. 2499 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2500 if (!Alignment) 2501 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2502 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2503 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2504 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2505 2506 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2507 !Legal->isMaskRequired(SI)) 2508 return scalarizeInstruction(Instr, true); 2509 2510 if (ScalarAllocatedSize != VectorElementSize) 2511 return scalarizeInstruction(Instr); 2512 2513 // If the pointer is loop invariant scalarize the load. 2514 if (LI && Legal->isUniform(Ptr)) 2515 return scalarizeInstruction(Instr); 2516 2517 // If the pointer is non-consecutive and gather/scatter is not supported 2518 // scalarize the instruction. 2519 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2520 bool Reverse = ConsecutiveStride < 0; 2521 bool CreateGatherScatter = !ConsecutiveStride && 2522 ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2523 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2524 2525 if (!ConsecutiveStride && !CreateGatherScatter) 2526 return scalarizeInstruction(Instr); 2527 2528 Constant *Zero = Builder.getInt32(0); 2529 VectorParts &Entry = WidenMap.get(Instr); 2530 VectorParts VectorGep; 2531 2532 // Handle consecutive loads/stores. 2533 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2534 if (ConsecutiveStride) { 2535 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2536 setDebugLocFromInst(Builder, Gep); 2537 Value *PtrOperand = Gep->getPointerOperand(); 2538 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2539 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2540 2541 // Create the new GEP with the new induction variable. 2542 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2543 Gep2->setOperand(0, FirstBasePtr); 2544 Gep2->setName("gep.indvar.base"); 2545 Ptr = Builder.Insert(Gep2); 2546 } else if (Gep) { 2547 setDebugLocFromInst(Builder, Gep); 2548 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2549 OrigLoop) && 2550 "Base ptr must be invariant"); 2551 // The last index does not have to be the induction. It can be 2552 // consecutive and be a function of the index. For example A[I+1]; 2553 unsigned NumOperands = Gep->getNumOperands(); 2554 unsigned InductionOperand = getGEPInductionOperand(Gep); 2555 // Create the new GEP with the new induction variable. 2556 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2557 2558 for (unsigned i = 0; i < NumOperands; ++i) { 2559 Value *GepOperand = Gep->getOperand(i); 2560 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2561 2562 // Update last index or loop invariant instruction anchored in loop. 2563 if (i == InductionOperand || 2564 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2565 assert((i == InductionOperand || 2566 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2567 OrigLoop)) && 2568 "Must be last index or loop invariant"); 2569 2570 VectorParts &GEPParts = getVectorValue(GepOperand); 2571 Value *Index = GEPParts[0]; 2572 Index = Builder.CreateExtractElement(Index, Zero); 2573 Gep2->setOperand(i, Index); 2574 Gep2->setName("gep.indvar.idx"); 2575 } 2576 } 2577 Ptr = Builder.Insert(Gep2); 2578 } else { // No GEP 2579 // Use the induction element ptr. 2580 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2581 setDebugLocFromInst(Builder, Ptr); 2582 VectorParts &PtrVal = getVectorValue(Ptr); 2583 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2584 } 2585 } else { 2586 // At this point we should vector version of GEP for Gather or Scatter 2587 assert(CreateGatherScatter && "The instruction should be scalarized"); 2588 if (Gep) { 2589 SmallVector<VectorParts, 4> OpsV; 2590 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2591 // base or index of GEP scalar 2592 for (Value *Op : Gep->operands()) { 2593 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2594 OpsV.push_back(VectorParts(UF, Op)); 2595 else 2596 OpsV.push_back(getVectorValue(Op)); 2597 } 2598 2599 for (unsigned Part = 0; Part < UF; ++Part) { 2600 SmallVector<Value*, 4> Ops; 2601 Value *GEPBasePtr = OpsV[0][Part]; 2602 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2603 Ops.push_back(OpsV[i][Part]); 2604 Value *NewGep = Builder.CreateGEP(nullptr, GEPBasePtr, Ops, 2605 "VectorGep"); 2606 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2607 NewGep = Builder.CreateBitCast(NewGep, 2608 VectorType::get(Ptr->getType(), VF)); 2609 VectorGep.push_back(NewGep); 2610 } 2611 } else 2612 VectorGep = getVectorValue(Ptr); 2613 } 2614 2615 VectorParts Mask = createBlockInMask(Instr->getParent()); 2616 // Handle Stores: 2617 if (SI) { 2618 assert(!Legal->isUniform(SI->getPointerOperand()) && 2619 "We do not allow storing to uniform addresses"); 2620 setDebugLocFromInst(Builder, SI); 2621 // We don't want to update the value in the map as it might be used in 2622 // another expression. So don't use a reference type for "StoredVal". 2623 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2624 2625 for (unsigned Part = 0; Part < UF; ++Part) { 2626 Instruction *NewSI = nullptr; 2627 if (CreateGatherScatter) { 2628 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2629 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2630 Alignment, MaskPart); 2631 } else { 2632 // Calculate the pointer for the specific unroll-part. 2633 Value *PartPtr = 2634 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2635 2636 if (Reverse) { 2637 // If we store to reverse consecutive memory locations, then we need 2638 // to reverse the order of elements in the stored value. 2639 StoredVal[Part] = reverseVector(StoredVal[Part]); 2640 // If the address is consecutive but reversed, then the 2641 // wide store needs to start at the last vector element. 2642 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2643 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2644 Mask[Part] = reverseVector(Mask[Part]); 2645 } 2646 2647 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2648 DataTy->getPointerTo(AddressSpace)); 2649 2650 if (Legal->isMaskRequired(SI)) 2651 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2652 Mask[Part]); 2653 else 2654 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, 2655 Alignment); 2656 } 2657 addMetadata(NewSI, SI); 2658 } 2659 return; 2660 } 2661 2662 // Handle loads. 2663 assert(LI && "Must have a load instruction"); 2664 setDebugLocFromInst(Builder, LI); 2665 for (unsigned Part = 0; Part < UF; ++Part) { 2666 Instruction* NewLI; 2667 if (CreateGatherScatter) { 2668 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2669 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, 2670 MaskPart, 0, "wide.masked.gather"); 2671 Entry[Part] = NewLI; 2672 } else { 2673 // Calculate the pointer for the specific unroll-part. 2674 Value *PartPtr = 2675 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2676 2677 if (Reverse) { 2678 // If the address is consecutive but reversed, then the 2679 // wide load needs to start at the last vector element. 2680 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2681 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2682 Mask[Part] = reverseVector(Mask[Part]); 2683 } 2684 2685 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2686 DataTy->getPointerTo(AddressSpace)); 2687 if (Legal->isMaskRequired(LI)) 2688 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2689 UndefValue::get(DataTy), 2690 "wide.masked.load"); 2691 else 2692 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2693 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2694 } 2695 addMetadata(NewLI, LI); 2696 } 2697 } 2698 2699 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2700 bool IfPredicateStore) { 2701 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2702 // Holds vector parameters or scalars, in case of uniform vals. 2703 SmallVector<VectorParts, 4> Params; 2704 2705 setDebugLocFromInst(Builder, Instr); 2706 2707 // Find all of the vectorized parameters. 2708 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2709 Value *SrcOp = Instr->getOperand(op); 2710 2711 // If we are accessing the old induction variable, use the new one. 2712 if (SrcOp == OldInduction) { 2713 Params.push_back(getVectorValue(SrcOp)); 2714 continue; 2715 } 2716 2717 // Try using previously calculated values. 2718 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2719 2720 // If the src is an instruction that appeared earlier in the basic block, 2721 // then it should already be vectorized. 2722 if (SrcInst && OrigLoop->contains(SrcInst)) { 2723 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2724 // The parameter is a vector value from earlier. 2725 Params.push_back(WidenMap.get(SrcInst)); 2726 } else { 2727 // The parameter is a scalar from outside the loop. Maybe even a constant. 2728 VectorParts Scalars; 2729 Scalars.append(UF, SrcOp); 2730 Params.push_back(Scalars); 2731 } 2732 } 2733 2734 assert(Params.size() == Instr->getNumOperands() && 2735 "Invalid number of operands"); 2736 2737 // Does this instruction return a value ? 2738 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2739 2740 Value *UndefVec = IsVoidRetTy ? nullptr : 2741 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2742 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2743 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2744 2745 VectorParts Cond; 2746 if (IfPredicateStore) { 2747 assert(Instr->getParent()->getSinglePredecessor() && 2748 "Only support single predecessor blocks"); 2749 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2750 Instr->getParent()); 2751 } 2752 2753 // For each vector unroll 'part': 2754 for (unsigned Part = 0; Part < UF; ++Part) { 2755 // For each scalar that we create: 2756 for (unsigned Width = 0; Width < VF; ++Width) { 2757 2758 // Start if-block. 2759 Value *Cmp = nullptr; 2760 if (IfPredicateStore) { 2761 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2762 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2763 ConstantInt::get(Cmp->getType(), 1)); 2764 } 2765 2766 Instruction *Cloned = Instr->clone(); 2767 if (!IsVoidRetTy) 2768 Cloned->setName(Instr->getName() + ".cloned"); 2769 // Replace the operands of the cloned instructions with extracted scalars. 2770 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2771 Value *Op = Params[op][Part]; 2772 // Param is a vector. Need to extract the right lane. 2773 if (Op->getType()->isVectorTy()) 2774 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2775 Cloned->setOperand(op, Op); 2776 } 2777 addNewMetadata(Cloned, Instr); 2778 2779 // Place the cloned scalar in the new loop. 2780 Builder.Insert(Cloned); 2781 2782 // If we just cloned a new assumption, add it the assumption cache. 2783 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2784 if (II->getIntrinsicID() == Intrinsic::assume) 2785 AC->registerAssumption(II); 2786 2787 // If the original scalar returns a value we need to place it in a vector 2788 // so that future users will be able to use it. 2789 if (!IsVoidRetTy) 2790 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2791 Builder.getInt32(Width)); 2792 // End if-block. 2793 if (IfPredicateStore) 2794 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 2795 Cmp)); 2796 } 2797 } 2798 } 2799 2800 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2801 Value *End, Value *Step, 2802 Instruction *DL) { 2803 BasicBlock *Header = L->getHeader(); 2804 BasicBlock *Latch = L->getLoopLatch(); 2805 // As we're just creating this loop, it's possible no latch exists 2806 // yet. If so, use the header as this will be a single block loop. 2807 if (!Latch) 2808 Latch = Header; 2809 2810 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2811 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2812 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2813 2814 Builder.SetInsertPoint(Latch->getTerminator()); 2815 2816 // Create i+1 and fill the PHINode. 2817 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2818 Induction->addIncoming(Start, L->getLoopPreheader()); 2819 Induction->addIncoming(Next, Latch); 2820 // Create the compare. 2821 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2822 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2823 2824 // Now we have two terminators. Remove the old one from the block. 2825 Latch->getTerminator()->eraseFromParent(); 2826 2827 return Induction; 2828 } 2829 2830 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2831 if (TripCount) 2832 return TripCount; 2833 2834 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2835 // Find the loop boundaries. 2836 ScalarEvolution *SE = PSE.getSE(); 2837 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2838 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2839 "Invalid loop count"); 2840 2841 Type *IdxTy = Legal->getWidestInductionType(); 2842 2843 // The exit count might have the type of i64 while the phi is i32. This can 2844 // happen if we have an induction variable that is sign extended before the 2845 // compare. The only way that we get a backedge taken count is that the 2846 // induction variable was signed and as such will not overflow. In such a case 2847 // truncation is legal. 2848 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2849 IdxTy->getPrimitiveSizeInBits()) 2850 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2851 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2852 2853 // Get the total trip count from the count by adding 1. 2854 const SCEV *ExitCount = SE->getAddExpr( 2855 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2856 2857 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2858 2859 // Expand the trip count and place the new instructions in the preheader. 2860 // Notice that the pre-header does not change, only the loop body. 2861 SCEVExpander Exp(*SE, DL, "induction"); 2862 2863 // Count holds the overall loop count (N). 2864 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2865 L->getLoopPreheader()->getTerminator()); 2866 2867 if (TripCount->getType()->isPointerTy()) 2868 TripCount = 2869 CastInst::CreatePointerCast(TripCount, IdxTy, 2870 "exitcount.ptrcnt.to.int", 2871 L->getLoopPreheader()->getTerminator()); 2872 2873 return TripCount; 2874 } 2875 2876 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2877 if (VectorTripCount) 2878 return VectorTripCount; 2879 2880 Value *TC = getOrCreateTripCount(L); 2881 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2882 2883 // Now we need to generate the expression for the part of the loop that the 2884 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2885 // iterations are not required for correctness, or N - Step, otherwise. Step 2886 // is equal to the vectorization factor (number of SIMD elements) times the 2887 // unroll factor (number of SIMD instructions). 2888 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2889 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2890 2891 // If there is a non-reversed interleaved group that may speculatively access 2892 // memory out-of-bounds, we need to ensure that there will be at least one 2893 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2894 // the trip count, we set the remainder to be equal to the step. If the step 2895 // does not evenly divide the trip count, no adjustment is necessary since 2896 // there will already be scalar iterations. Note that the minimum iterations 2897 // check ensures that N >= Step. 2898 if (VF > 1 && Legal->requiresScalarEpilogue()) { 2899 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2900 R = Builder.CreateSelect(IsZero, Step, R); 2901 } 2902 2903 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2904 2905 return VectorTripCount; 2906 } 2907 2908 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2909 BasicBlock *Bypass) { 2910 Value *Count = getOrCreateTripCount(L); 2911 BasicBlock *BB = L->getLoopPreheader(); 2912 IRBuilder<> Builder(BB->getTerminator()); 2913 2914 // Generate code to check that the loop's trip count that we computed by 2915 // adding one to the backedge-taken count will not overflow. 2916 Value *CheckMinIters = 2917 Builder.CreateICmpULT(Count, 2918 ConstantInt::get(Count->getType(), VF * UF), 2919 "min.iters.check"); 2920 2921 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2922 "min.iters.checked"); 2923 // Update dominator tree immediately if the generated block is a 2924 // LoopBypassBlock because SCEV expansions to generate loop bypass 2925 // checks may query it before the current function is finished. 2926 DT->addNewBlock(NewBB, BB); 2927 if (L->getParentLoop()) 2928 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2929 ReplaceInstWithInst(BB->getTerminator(), 2930 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2931 LoopBypassBlocks.push_back(BB); 2932 } 2933 2934 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2935 BasicBlock *Bypass) { 2936 Value *TC = getOrCreateVectorTripCount(L); 2937 BasicBlock *BB = L->getLoopPreheader(); 2938 IRBuilder<> Builder(BB->getTerminator()); 2939 2940 // Now, compare the new count to zero. If it is zero skip the vector loop and 2941 // jump to the scalar loop. 2942 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2943 "cmp.zero"); 2944 2945 // Generate code to check that the loop's trip count that we computed by 2946 // adding one to the backedge-taken count will not overflow. 2947 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2948 "vector.ph"); 2949 // Update dominator tree immediately if the generated block is a 2950 // LoopBypassBlock because SCEV expansions to generate loop bypass 2951 // checks may query it before the current function is finished. 2952 DT->addNewBlock(NewBB, BB); 2953 if (L->getParentLoop()) 2954 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2955 ReplaceInstWithInst(BB->getTerminator(), 2956 BranchInst::Create(Bypass, NewBB, Cmp)); 2957 LoopBypassBlocks.push_back(BB); 2958 } 2959 2960 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2961 BasicBlock *BB = L->getLoopPreheader(); 2962 2963 // Generate the code to check that the SCEV assumptions that we made. 2964 // We want the new basic block to start at the first instruction in a 2965 // sequence of instructions that form a check. 2966 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2967 "scev.check"); 2968 Value *SCEVCheck = 2969 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2970 2971 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2972 if (C->isZero()) 2973 return; 2974 2975 // Create a new block containing the stride check. 2976 BB->setName("vector.scevcheck"); 2977 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2978 // Update dominator tree immediately if the generated block is a 2979 // LoopBypassBlock because SCEV expansions to generate loop bypass 2980 // checks may query it before the current function is finished. 2981 DT->addNewBlock(NewBB, BB); 2982 if (L->getParentLoop()) 2983 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2984 ReplaceInstWithInst(BB->getTerminator(), 2985 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2986 LoopBypassBlocks.push_back(BB); 2987 AddedSafetyChecks = true; 2988 } 2989 2990 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 2991 BasicBlock *Bypass) { 2992 BasicBlock *BB = L->getLoopPreheader(); 2993 2994 // Generate the code that checks in runtime if arrays overlap. We put the 2995 // checks into a separate block to make the more common case of few elements 2996 // faster. 2997 Instruction *FirstCheckInst; 2998 Instruction *MemRuntimeCheck; 2999 std::tie(FirstCheckInst, MemRuntimeCheck) = 3000 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3001 if (!MemRuntimeCheck) 3002 return; 3003 3004 // Create a new block containing the memory check. 3005 BB->setName("vector.memcheck"); 3006 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3007 // Update dominator tree immediately if the generated block is a 3008 // LoopBypassBlock because SCEV expansions to generate loop bypass 3009 // checks may query it before the current function is finished. 3010 DT->addNewBlock(NewBB, BB); 3011 if (L->getParentLoop()) 3012 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3013 ReplaceInstWithInst(BB->getTerminator(), 3014 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3015 LoopBypassBlocks.push_back(BB); 3016 AddedSafetyChecks = true; 3017 3018 // We currently don't use LoopVersioning for the actual loop cloning but we 3019 // still use it to add the noalias metadata. 3020 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3021 PSE.getSE()); 3022 LVer->prepareNoAliasMetadata(); 3023 } 3024 3025 3026 void InnerLoopVectorizer::createEmptyLoop() { 3027 /* 3028 In this function we generate a new loop. The new loop will contain 3029 the vectorized instructions while the old loop will continue to run the 3030 scalar remainder. 3031 3032 [ ] <-- loop iteration number check. 3033 / | 3034 / v 3035 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3036 | / | 3037 | / v 3038 || [ ] <-- vector pre header. 3039 |/ | 3040 | v 3041 | [ ] \ 3042 | [ ]_| <-- vector loop. 3043 | | 3044 | v 3045 | -[ ] <--- middle-block. 3046 | / | 3047 | / v 3048 -|- >[ ] <--- new preheader. 3049 | | 3050 | v 3051 | [ ] \ 3052 | [ ]_| <-- old scalar loop to handle remainder. 3053 \ | 3054 \ v 3055 >[ ] <-- exit block. 3056 ... 3057 */ 3058 3059 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3060 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3061 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3062 assert(VectorPH && "Invalid loop structure"); 3063 assert(ExitBlock && "Must have an exit block"); 3064 3065 // Some loops have a single integer induction variable, while other loops 3066 // don't. One example is c++ iterators that often have multiple pointer 3067 // induction variables. In the code below we also support a case where we 3068 // don't have a single induction variable. 3069 // 3070 // We try to obtain an induction variable from the original loop as hard 3071 // as possible. However if we don't find one that: 3072 // - is an integer 3073 // - counts from zero, stepping by one 3074 // - is the size of the widest induction variable type 3075 // then we create a new one. 3076 OldInduction = Legal->getInduction(); 3077 Type *IdxTy = Legal->getWidestInductionType(); 3078 3079 // Split the single block loop into the two loop structure described above. 3080 BasicBlock *VecBody = 3081 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3082 BasicBlock *MiddleBlock = 3083 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3084 BasicBlock *ScalarPH = 3085 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3086 3087 // Create and register the new vector loop. 3088 Loop* Lp = new Loop(); 3089 Loop *ParentLoop = OrigLoop->getParentLoop(); 3090 3091 // Insert the new loop into the loop nest and register the new basic blocks 3092 // before calling any utilities such as SCEV that require valid LoopInfo. 3093 if (ParentLoop) { 3094 ParentLoop->addChildLoop(Lp); 3095 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3096 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3097 } else { 3098 LI->addTopLevelLoop(Lp); 3099 } 3100 Lp->addBasicBlockToLoop(VecBody, *LI); 3101 3102 // Find the loop boundaries. 3103 Value *Count = getOrCreateTripCount(Lp); 3104 3105 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3106 3107 // We need to test whether the backedge-taken count is uint##_max. Adding one 3108 // to it will cause overflow and an incorrect loop trip count in the vector 3109 // body. In case of overflow we want to directly jump to the scalar remainder 3110 // loop. 3111 emitMinimumIterationCountCheck(Lp, ScalarPH); 3112 // Now, compare the new count to zero. If it is zero skip the vector loop and 3113 // jump to the scalar loop. 3114 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3115 // Generate the code to check any assumptions that we've made for SCEV 3116 // expressions. 3117 emitSCEVChecks(Lp, ScalarPH); 3118 3119 // Generate the code that checks in runtime if arrays overlap. We put the 3120 // checks into a separate block to make the more common case of few elements 3121 // faster. 3122 emitMemRuntimeChecks(Lp, ScalarPH); 3123 3124 // Generate the induction variable. 3125 // The loop step is equal to the vectorization factor (num of SIMD elements) 3126 // times the unroll factor (num of SIMD instructions). 3127 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3128 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3129 Induction = 3130 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3131 getDebugLocFromInstOrOperands(OldInduction)); 3132 3133 // We are going to resume the execution of the scalar loop. 3134 // Go over all of the induction variables that we found and fix the 3135 // PHIs that are left in the scalar version of the loop. 3136 // The starting values of PHI nodes depend on the counter of the last 3137 // iteration in the vectorized loop. 3138 // If we come from a bypass edge then we need to start from the original 3139 // start value. 3140 3141 // This variable saves the new starting index for the scalar loop. It is used 3142 // to test if there are any tail iterations left once the vector loop has 3143 // completed. 3144 LoopVectorizationLegality::InductionList::iterator I, E; 3145 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3146 for (I = List->begin(), E = List->end(); I != E; ++I) { 3147 PHINode *OrigPhi = I->first; 3148 InductionDescriptor II = I->second; 3149 3150 // Create phi nodes to merge from the backedge-taken check block. 3151 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, 3152 "bc.resume.val", 3153 ScalarPH->getTerminator()); 3154 Value *EndValue; 3155 if (OrigPhi == OldInduction) { 3156 // We know what the end value is. 3157 EndValue = CountRoundDown; 3158 } else { 3159 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3160 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3161 II.getStepValue()->getType(), 3162 "cast.crd"); 3163 EndValue = II.transform(B, CRD); 3164 EndValue->setName("ind.end"); 3165 } 3166 3167 // The new PHI merges the original incoming value, in case of a bypass, 3168 // or the value at the end of the vectorized loop. 3169 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3170 3171 // Fix the scalar body counter (PHI node). 3172 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3173 3174 // The old induction's phi node in the scalar body needs the truncated 3175 // value. 3176 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3177 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3178 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3179 } 3180 3181 // Add a check in the middle block to see if we have completed 3182 // all of the iterations in the first vector loop. 3183 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3184 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3185 CountRoundDown, "cmp.n", 3186 MiddleBlock->getTerminator()); 3187 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3188 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3189 3190 // Get ready to start creating new instructions into the vectorized body. 3191 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3192 3193 // Save the state. 3194 LoopVectorPreHeader = Lp->getLoopPreheader(); 3195 LoopScalarPreHeader = ScalarPH; 3196 LoopMiddleBlock = MiddleBlock; 3197 LoopExitBlock = ExitBlock; 3198 LoopVectorBody.push_back(VecBody); 3199 LoopScalarBody = OldBasicBlock; 3200 3201 // Keep all loop hints from the original loop on the vector loop (we'll 3202 // replace the vectorizer-specific hints below). 3203 if (MDNode *LID = OrigLoop->getLoopID()) 3204 Lp->setLoopID(LID); 3205 3206 LoopVectorizeHints Hints(Lp, true); 3207 Hints.setAlreadyVectorized(); 3208 } 3209 3210 namespace { 3211 struct CSEDenseMapInfo { 3212 static bool canHandle(Instruction *I) { 3213 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3214 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3215 } 3216 static inline Instruction *getEmptyKey() { 3217 return DenseMapInfo<Instruction *>::getEmptyKey(); 3218 } 3219 static inline Instruction *getTombstoneKey() { 3220 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3221 } 3222 static unsigned getHashValue(Instruction *I) { 3223 assert(canHandle(I) && "Unknown instruction!"); 3224 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3225 I->value_op_end())); 3226 } 3227 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3228 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3229 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3230 return LHS == RHS; 3231 return LHS->isIdenticalTo(RHS); 3232 } 3233 }; 3234 } 3235 3236 /// \brief Check whether this block is a predicated block. 3237 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 3238 /// = ...; " blocks. We start with one vectorized basic block. For every 3239 /// conditional block we split this vectorized block. Therefore, every second 3240 /// block will be a predicated one. 3241 static bool isPredicatedBlock(unsigned BlockNum) { 3242 return BlockNum % 2; 3243 } 3244 3245 ///\brief Perform cse of induction variable instructions. 3246 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 3247 // Perform simple cse. 3248 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3249 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 3250 BasicBlock *BB = BBs[i]; 3251 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3252 Instruction *In = &*I++; 3253 3254 if (!CSEDenseMapInfo::canHandle(In)) 3255 continue; 3256 3257 // Check if we can replace this instruction with any of the 3258 // visited instructions. 3259 if (Instruction *V = CSEMap.lookup(In)) { 3260 In->replaceAllUsesWith(V); 3261 In->eraseFromParent(); 3262 continue; 3263 } 3264 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 3265 // ...;" blocks for predicated stores. Every second block is a predicated 3266 // block. 3267 if (isPredicatedBlock(i)) 3268 continue; 3269 3270 CSEMap[In] = In; 3271 } 3272 } 3273 } 3274 3275 /// \brief Adds a 'fast' flag to floating point operations. 3276 static Value *addFastMathFlag(Value *V) { 3277 if (isa<FPMathOperator>(V)){ 3278 FastMathFlags Flags; 3279 Flags.setUnsafeAlgebra(); 3280 cast<Instruction>(V)->setFastMathFlags(Flags); 3281 } 3282 return V; 3283 } 3284 3285 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3286 /// the result needs to be inserted and/or extracted from vectors. 3287 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3288 const TargetTransformInfo &TTI) { 3289 if (Ty->isVoidTy()) 3290 return 0; 3291 3292 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3293 unsigned Cost = 0; 3294 3295 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3296 if (Insert) 3297 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3298 if (Extract) 3299 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3300 } 3301 3302 return Cost; 3303 } 3304 3305 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3306 // Return the cost of the instruction, including scalarization overhead if it's 3307 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3308 // i.e. either vector version isn't available, or is too expensive. 3309 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3310 const TargetTransformInfo &TTI, 3311 const TargetLibraryInfo *TLI, 3312 bool &NeedToScalarize) { 3313 Function *F = CI->getCalledFunction(); 3314 StringRef FnName = CI->getCalledFunction()->getName(); 3315 Type *ScalarRetTy = CI->getType(); 3316 SmallVector<Type *, 4> Tys, ScalarTys; 3317 for (auto &ArgOp : CI->arg_operands()) 3318 ScalarTys.push_back(ArgOp->getType()); 3319 3320 // Estimate cost of scalarized vector call. The source operands are assumed 3321 // to be vectors, so we need to extract individual elements from there, 3322 // execute VF scalar calls, and then gather the result into the vector return 3323 // value. 3324 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3325 if (VF == 1) 3326 return ScalarCallCost; 3327 3328 // Compute corresponding vector type for return value and arguments. 3329 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3330 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3331 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3332 3333 // Compute costs of unpacking argument values for the scalar calls and 3334 // packing the return values to a vector. 3335 unsigned ScalarizationCost = 3336 getScalarizationOverhead(RetTy, true, false, TTI); 3337 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3338 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3339 3340 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3341 3342 // If we can't emit a vector call for this function, then the currently found 3343 // cost is the cost we need to return. 3344 NeedToScalarize = true; 3345 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3346 return Cost; 3347 3348 // If the corresponding vector cost is cheaper, return its cost. 3349 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3350 if (VectorCallCost < Cost) { 3351 NeedToScalarize = false; 3352 return VectorCallCost; 3353 } 3354 return Cost; 3355 } 3356 3357 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3358 // factor VF. Return the cost of the instruction, including scalarization 3359 // overhead if it's needed. 3360 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3361 const TargetTransformInfo &TTI, 3362 const TargetLibraryInfo *TLI) { 3363 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3364 assert(ID && "Expected intrinsic call!"); 3365 3366 Type *RetTy = ToVectorTy(CI->getType(), VF); 3367 SmallVector<Type *, 4> Tys; 3368 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3369 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3370 3371 FastMathFlags FMF; 3372 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3373 FMF = FPMO->getFastMathFlags(); 3374 3375 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3376 } 3377 3378 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3379 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3380 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3381 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3382 } 3383 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3384 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3385 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3386 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3387 } 3388 3389 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3390 // For every instruction `I` in MinBWs, truncate the operands, create a 3391 // truncated version of `I` and reextend its result. InstCombine runs 3392 // later and will remove any ext/trunc pairs. 3393 // 3394 for (auto &KV : MinBWs) { 3395 VectorParts &Parts = WidenMap.get(KV.first); 3396 for (Value *&I : Parts) { 3397 if (I->use_empty()) 3398 continue; 3399 Type *OriginalTy = I->getType(); 3400 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), 3401 KV.second); 3402 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3403 OriginalTy->getVectorNumElements()); 3404 if (TruncatedTy == OriginalTy) 3405 continue; 3406 3407 if (!isa<Instruction>(I)) 3408 continue; 3409 3410 IRBuilder<> B(cast<Instruction>(I)); 3411 auto ShrinkOperand = [&](Value *V) -> Value* { 3412 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3413 if (ZI->getSrcTy() == TruncatedTy) 3414 return ZI->getOperand(0); 3415 return B.CreateZExtOrTrunc(V, TruncatedTy); 3416 }; 3417 3418 // The actual instruction modification depends on the instruction type, 3419 // unfortunately. 3420 Value *NewI = nullptr; 3421 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3422 NewI = B.CreateBinOp(BO->getOpcode(), 3423 ShrinkOperand(BO->getOperand(0)), 3424 ShrinkOperand(BO->getOperand(1))); 3425 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3426 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3427 NewI = B.CreateICmp(CI->getPredicate(), 3428 ShrinkOperand(CI->getOperand(0)), 3429 ShrinkOperand(CI->getOperand(1))); 3430 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3431 NewI = B.CreateSelect(SI->getCondition(), 3432 ShrinkOperand(SI->getTrueValue()), 3433 ShrinkOperand(SI->getFalseValue())); 3434 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3435 switch (CI->getOpcode()) { 3436 default: llvm_unreachable("Unhandled cast!"); 3437 case Instruction::Trunc: 3438 NewI = ShrinkOperand(CI->getOperand(0)); 3439 break; 3440 case Instruction::SExt: 3441 NewI = B.CreateSExtOrTrunc(CI->getOperand(0), 3442 smallestIntegerVectorType(OriginalTy, 3443 TruncatedTy)); 3444 break; 3445 case Instruction::ZExt: 3446 NewI = B.CreateZExtOrTrunc(CI->getOperand(0), 3447 smallestIntegerVectorType(OriginalTy, 3448 TruncatedTy)); 3449 break; 3450 } 3451 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3452 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3453 auto *O0 = 3454 B.CreateZExtOrTrunc(SI->getOperand(0), 3455 VectorType::get(ScalarTruncatedTy, Elements0)); 3456 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3457 auto *O1 = 3458 B.CreateZExtOrTrunc(SI->getOperand(1), 3459 VectorType::get(ScalarTruncatedTy, Elements1)); 3460 3461 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3462 } else if (isa<LoadInst>(I)) { 3463 // Don't do anything with the operands, just extend the result. 3464 continue; 3465 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3466 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3467 auto *O0 = B.CreateZExtOrTrunc( 3468 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3469 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3470 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3471 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3472 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3473 auto *O0 = B.CreateZExtOrTrunc( 3474 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3475 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3476 } else { 3477 llvm_unreachable("Unhandled instruction type!"); 3478 } 3479 3480 // Lastly, extend the result. 3481 NewI->takeName(cast<Instruction>(I)); 3482 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3483 I->replaceAllUsesWith(Res); 3484 cast<Instruction>(I)->eraseFromParent(); 3485 I = Res; 3486 } 3487 } 3488 3489 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3490 for (auto &KV : MinBWs) { 3491 VectorParts &Parts = WidenMap.get(KV.first); 3492 for (Value *&I : Parts) { 3493 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3494 if (Inst && Inst->use_empty()) { 3495 Value *NewI = Inst->getOperand(0); 3496 Inst->eraseFromParent(); 3497 I = NewI; 3498 } 3499 } 3500 } 3501 } 3502 3503 void InnerLoopVectorizer::vectorizeLoop() { 3504 //===------------------------------------------------===// 3505 // 3506 // Notice: any optimization or new instruction that go 3507 // into the code below should be also be implemented in 3508 // the cost-model. 3509 // 3510 //===------------------------------------------------===// 3511 Constant *Zero = Builder.getInt32(0); 3512 3513 // In order to support recurrences we need to be able to vectorize Phi nodes. 3514 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3515 // we create a new vector PHI node with no incoming edges. We use this value 3516 // when we vectorize all of the instructions that use the PHI. Next, after 3517 // all of the instructions in the block are complete we add the new incoming 3518 // edges to the PHI. At this point all of the instructions in the basic block 3519 // are vectorized, so we can use them to construct the PHI. 3520 PhiVector PHIsToFix; 3521 3522 // Scan the loop in a topological order to ensure that defs are vectorized 3523 // before users. 3524 LoopBlocksDFS DFS(OrigLoop); 3525 DFS.perform(LI); 3526 3527 // Vectorize all of the blocks in the original loop. 3528 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3529 be = DFS.endRPO(); bb != be; ++bb) 3530 vectorizeBlockInLoop(*bb, &PHIsToFix); 3531 3532 // Insert truncates and extends for any truncated instructions as hints to 3533 // InstCombine. 3534 if (VF > 1) 3535 truncateToMinimalBitwidths(); 3536 3537 // At this point every instruction in the original loop is widened to a 3538 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3539 // nodes are currently empty because we did not want to introduce cycles. 3540 // This is the second stage of vectorizing recurrences. 3541 for (PHINode *Phi : PHIsToFix) { 3542 assert(Phi && "Unable to recover vectorized PHI"); 3543 3544 // Handle first-order recurrences that need to be fixed. 3545 if (Legal->isFirstOrderRecurrence(Phi)) { 3546 fixFirstOrderRecurrence(Phi); 3547 continue; 3548 } 3549 3550 // If the phi node is not a first-order recurrence, it must be a reduction. 3551 // Get it's reduction variable descriptor. 3552 assert(Legal->isReductionVariable(Phi) && 3553 "Unable to find the reduction variable"); 3554 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3555 3556 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3557 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3558 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3559 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3560 RdxDesc.getMinMaxRecurrenceKind(); 3561 setDebugLocFromInst(Builder, ReductionStartValue); 3562 3563 // We need to generate a reduction vector from the incoming scalar. 3564 // To do so, we need to generate the 'identity' vector and override 3565 // one of the elements with the incoming scalar reduction. We need 3566 // to do it in the vector-loop preheader. 3567 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3568 3569 // This is the vector-clone of the value that leaves the loop. 3570 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3571 Type *VecTy = VectorExit[0]->getType(); 3572 3573 // Find the reduction identity variable. Zero for addition, or, xor, 3574 // one for multiplication, -1 for And. 3575 Value *Identity; 3576 Value *VectorStart; 3577 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3578 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3579 // MinMax reduction have the start value as their identify. 3580 if (VF == 1) { 3581 VectorStart = Identity = ReductionStartValue; 3582 } else { 3583 VectorStart = Identity = 3584 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3585 } 3586 } else { 3587 // Handle other reduction kinds: 3588 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3589 RK, VecTy->getScalarType()); 3590 if (VF == 1) { 3591 Identity = Iden; 3592 // This vector is the Identity vector where the first element is the 3593 // incoming scalar reduction. 3594 VectorStart = ReductionStartValue; 3595 } else { 3596 Identity = ConstantVector::getSplat(VF, Iden); 3597 3598 // This vector is the Identity vector where the first element is the 3599 // incoming scalar reduction. 3600 VectorStart = 3601 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3602 } 3603 } 3604 3605 // Fix the vector-loop phi. 3606 3607 // Reductions do not have to start at zero. They can start with 3608 // any loop invariant values. 3609 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3610 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3611 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3612 VectorParts &Val = getVectorValue(LoopVal); 3613 for (unsigned part = 0; part < UF; ++part) { 3614 // Make sure to add the reduction stat value only to the 3615 // first unroll part. 3616 Value *StartVal = (part == 0) ? VectorStart : Identity; 3617 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3618 LoopVectorPreHeader); 3619 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3620 LoopVectorBody.back()); 3621 } 3622 3623 // Before each round, move the insertion point right between 3624 // the PHIs and the values we are going to write. 3625 // This allows us to write both PHINodes and the extractelement 3626 // instructions. 3627 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3628 3629 VectorParts RdxParts = getVectorValue(LoopExitInst); 3630 setDebugLocFromInst(Builder, LoopExitInst); 3631 3632 // If the vector reduction can be performed in a smaller type, we truncate 3633 // then extend the loop exit value to enable InstCombine to evaluate the 3634 // entire expression in the smaller type. 3635 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3636 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3637 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator()); 3638 for (unsigned part = 0; part < UF; ++part) { 3639 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3640 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3641 : Builder.CreateZExt(Trunc, VecTy); 3642 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3643 UI != RdxParts[part]->user_end();) 3644 if (*UI != Trunc) { 3645 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3646 RdxParts[part] = Extnd; 3647 } else { 3648 ++UI; 3649 } 3650 } 3651 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3652 for (unsigned part = 0; part < UF; ++part) 3653 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3654 } 3655 3656 // Reduce all of the unrolled parts into a single vector. 3657 Value *ReducedPartRdx = RdxParts[0]; 3658 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3659 setDebugLocFromInst(Builder, ReducedPartRdx); 3660 for (unsigned part = 1; part < UF; ++part) { 3661 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3662 // Floating point operations had to be 'fast' to enable the reduction. 3663 ReducedPartRdx = addFastMathFlag( 3664 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3665 ReducedPartRdx, "bin.rdx")); 3666 else 3667 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3668 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3669 } 3670 3671 if (VF > 1) { 3672 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3673 // and vector ops, reducing the set of values being computed by half each 3674 // round. 3675 assert(isPowerOf2_32(VF) && 3676 "Reduction emission only supported for pow2 vectors!"); 3677 Value *TmpVec = ReducedPartRdx; 3678 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3679 for (unsigned i = VF; i != 1; i >>= 1) { 3680 // Move the upper half of the vector to the lower half. 3681 for (unsigned j = 0; j != i/2; ++j) 3682 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3683 3684 // Fill the rest of the mask with undef. 3685 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3686 UndefValue::get(Builder.getInt32Ty())); 3687 3688 Value *Shuf = 3689 Builder.CreateShuffleVector(TmpVec, 3690 UndefValue::get(TmpVec->getType()), 3691 ConstantVector::get(ShuffleMask), 3692 "rdx.shuf"); 3693 3694 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3695 // Floating point operations had to be 'fast' to enable the reduction. 3696 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3697 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3698 else 3699 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3700 TmpVec, Shuf); 3701 } 3702 3703 // The result is in the first element of the vector. 3704 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3705 Builder.getInt32(0)); 3706 3707 // If the reduction can be performed in a smaller type, we need to extend 3708 // the reduction to the wider type before we branch to the original loop. 3709 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3710 ReducedPartRdx = 3711 RdxDesc.isSigned() 3712 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3713 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3714 } 3715 3716 // Create a phi node that merges control-flow from the backedge-taken check 3717 // block and the middle block. 3718 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3719 LoopScalarPreHeader->getTerminator()); 3720 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3721 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3722 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3723 3724 // Now, we need to fix the users of the reduction variable 3725 // inside and outside of the scalar remainder loop. 3726 // We know that the loop is in LCSSA form. We need to update the 3727 // PHI nodes in the exit blocks. 3728 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3729 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3730 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3731 if (!LCSSAPhi) break; 3732 3733 // All PHINodes need to have a single entry edge, or two if 3734 // we already fixed them. 3735 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3736 3737 // We found our reduction value exit-PHI. Update it with the 3738 // incoming bypass edge. 3739 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3740 // Add an edge coming from the bypass. 3741 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3742 break; 3743 } 3744 }// end of the LCSSA phi scan. 3745 3746 // Fix the scalar loop reduction variable with the incoming reduction sum 3747 // from the vector body and from the backedge value. 3748 int IncomingEdgeBlockIdx = 3749 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3750 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3751 // Pick the other block. 3752 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3753 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3754 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3755 } // end of for each Phi in PHIsToFix. 3756 3757 fixLCSSAPHIs(); 3758 3759 // Make sure DomTree is updated. 3760 updateAnalysis(); 3761 3762 // Predicate any stores. 3763 for (auto KV : PredicatedStores) { 3764 BasicBlock::iterator I(KV.first); 3765 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3766 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3767 /*BranchWeights=*/nullptr, DT, LI); 3768 I->moveBefore(T); 3769 I->getParent()->setName("pred.store.if"); 3770 BB->setName("pred.store.continue"); 3771 } 3772 DEBUG(DT->verifyDomTree()); 3773 // Remove redundant induction instructions. 3774 cse(LoopVectorBody); 3775 } 3776 3777 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3778 3779 // This is the second phase of vectorizing first-order rececurrences. An 3780 // overview of the transformation is described below. Suppose we have the 3781 // following loop. 3782 // 3783 // for (int i = 0; i < n; ++i) 3784 // b[i] = a[i] - a[i - 1]; 3785 // 3786 // There is a first-order recurrence on "a". For this loop, the shorthand 3787 // scalar IR looks like: 3788 // 3789 // scalar.ph: 3790 // s_init = a[-1] 3791 // br scalar.body 3792 // 3793 // scalar.body: 3794 // i = phi [0, scalar.ph], [i+1, scalar.body] 3795 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3796 // s2 = a[i] 3797 // b[i] = s2 - s1 3798 // br cond, scalar.body, ... 3799 // 3800 // In this example, s1 is a recurrence because it's value depends on the 3801 // previous iteration. In the first phase of vectorization, we created a 3802 // temporary value for s1. We now complete the vectorization and produce the 3803 // shorthand vector IR shown below (for VF = 4, UF = 1). 3804 // 3805 // vector.ph: 3806 // v_init = vector(..., ..., ..., a[-1]) 3807 // br vector.body 3808 // 3809 // vector.body 3810 // i = phi [0, vector.ph], [i+4, vector.body] 3811 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3812 // v2 = a[i, i+1, i+2, i+3]; 3813 // v3 = vector(v1(3), v2(0, 1, 2)) 3814 // b[i, i+1, i+2, i+3] = v2 - v3 3815 // br cond, vector.body, middle.block 3816 // 3817 // middle.block: 3818 // x = v2(3) 3819 // br scalar.ph 3820 // 3821 // scalar.ph: 3822 // s_init = phi [x, middle.block], [a[-1], otherwise] 3823 // br scalar.body 3824 // 3825 // After execution completes the vector loop, we extract the next value of 3826 // the recurrence (x) to use as the initial value in the scalar loop. 3827 3828 // Get the original loop preheader and single loop latch. 3829 auto *Preheader = OrigLoop->getLoopPreheader(); 3830 auto *Latch = OrigLoop->getLoopLatch(); 3831 3832 // Get the initial and previous values of the scalar recurrence. 3833 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3834 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3835 3836 // Create a vector from the initial value. 3837 auto *VectorInit = ScalarInit; 3838 if (VF > 1) { 3839 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3840 VectorInit = Builder.CreateInsertElement( 3841 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3842 Builder.getInt32(VF - 1), "vector.recur.init"); 3843 } 3844 3845 // We constructed a temporary phi node in the first phase of vectorization. 3846 // This phi node will eventually be deleted. 3847 auto &PhiParts = getVectorValue(Phi); 3848 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3849 3850 // Create a phi node for the new recurrence. The current value will either be 3851 // the initial value inserted into a vector or loop-varying vector value. 3852 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3853 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3854 3855 // Get the vectorized previous value. We ensured the previous values was an 3856 // instruction when detecting the recurrence. 3857 auto &PreviousParts = getVectorValue(Previous); 3858 3859 // Set the insertion point to be after this instruction. We ensured the 3860 // previous value dominated all uses of the phi when detecting the 3861 // recurrence. 3862 Builder.SetInsertPoint( 3863 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3864 3865 // We will construct a vector for the recurrence by combining the values for 3866 // the current and previous iterations. This is the required shuffle mask. 3867 SmallVector<Constant *, 8> ShuffleMask(VF); 3868 ShuffleMask[0] = Builder.getInt32(VF - 1); 3869 for (unsigned I = 1; I < VF; ++I) 3870 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3871 3872 // The vector from which to take the initial value for the current iteration 3873 // (actual or unrolled). Initially, this is the vector phi node. 3874 Value *Incoming = VecPhi; 3875 3876 // Shuffle the current and previous vector and update the vector parts. 3877 for (unsigned Part = 0; Part < UF; ++Part) { 3878 auto *Shuffle = 3879 VF > 1 3880 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3881 ConstantVector::get(ShuffleMask)) 3882 : Incoming; 3883 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3884 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3885 PhiParts[Part] = Shuffle; 3886 Incoming = PreviousParts[Part]; 3887 } 3888 3889 // Fix the latch value of the new recurrence in the vector loop. 3890 VecPhi->addIncoming(Incoming, 3891 LI->getLoopFor(LoopVectorBody[0])->getLoopLatch()); 3892 3893 // Extract the last vector element in the middle block. This will be the 3894 // initial value for the recurrence when jumping to the scalar loop. 3895 auto *Extract = Incoming; 3896 if (VF > 1) { 3897 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3898 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3899 "vector.recur.extract"); 3900 } 3901 3902 // Fix the initial value of the original recurrence in the scalar loop. 3903 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3904 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3905 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3906 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 3907 Start->addIncoming(Incoming, BB); 3908 } 3909 3910 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3911 Phi->setName("scalar.recur"); 3912 3913 // Finally, fix users of the recurrence outside the loop. The users will need 3914 // either the last value of the scalar recurrence or the last value of the 3915 // vector recurrence we extracted in the middle block. Since the loop is in 3916 // LCSSA form, we just need to find the phi node for the original scalar 3917 // recurrence in the exit block, and then add an edge for the middle block. 3918 for (auto &I : *LoopExitBlock) { 3919 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 3920 if (!LCSSAPhi) 3921 break; 3922 if (LCSSAPhi->getIncomingValue(0) == Phi) { 3923 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 3924 break; 3925 } 3926 } 3927 } 3928 3929 void InnerLoopVectorizer::fixLCSSAPHIs() { 3930 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3931 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3932 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3933 if (!LCSSAPhi) break; 3934 if (LCSSAPhi->getNumIncomingValues() == 1) 3935 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3936 LoopMiddleBlock); 3937 } 3938 } 3939 3940 InnerLoopVectorizer::VectorParts 3941 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3942 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3943 "Invalid edge"); 3944 3945 // Look for cached value. 3946 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3947 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3948 if (ECEntryIt != MaskCache.end()) 3949 return ECEntryIt->second; 3950 3951 VectorParts SrcMask = createBlockInMask(Src); 3952 3953 // The terminator has to be a branch inst! 3954 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3955 assert(BI && "Unexpected terminator found"); 3956 3957 if (BI->isConditional()) { 3958 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3959 3960 if (BI->getSuccessor(0) != Dst) 3961 for (unsigned part = 0; part < UF; ++part) 3962 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3963 3964 for (unsigned part = 0; part < UF; ++part) 3965 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3966 3967 MaskCache[Edge] = EdgeMask; 3968 return EdgeMask; 3969 } 3970 3971 MaskCache[Edge] = SrcMask; 3972 return SrcMask; 3973 } 3974 3975 InnerLoopVectorizer::VectorParts 3976 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3977 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3978 3979 // Loop incoming mask is all-one. 3980 if (OrigLoop->getHeader() == BB) { 3981 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3982 return getVectorValue(C); 3983 } 3984 3985 // This is the block mask. We OR all incoming edges, and with zero. 3986 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3987 VectorParts BlockMask = getVectorValue(Zero); 3988 3989 // For each pred: 3990 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3991 VectorParts EM = createEdgeMask(*it, BB); 3992 for (unsigned part = 0; part < UF; ++part) 3993 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3994 } 3995 3996 return BlockMask; 3997 } 3998 3999 void InnerLoopVectorizer::widenPHIInstruction( 4000 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 4001 unsigned VF, PhiVector *PV) { 4002 PHINode* P = cast<PHINode>(PN); 4003 // Handle recurrences. 4004 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4005 for (unsigned part = 0; part < UF; ++part) { 4006 // This is phase one of vectorizing PHIs. 4007 Type *VecTy = (VF == 1) ? PN->getType() : 4008 VectorType::get(PN->getType(), VF); 4009 Entry[part] = PHINode::Create( 4010 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt()); 4011 } 4012 PV->push_back(P); 4013 return; 4014 } 4015 4016 setDebugLocFromInst(Builder, P); 4017 // Check for PHI nodes that are lowered to vector selects. 4018 if (P->getParent() != OrigLoop->getHeader()) { 4019 // We know that all PHIs in non-header blocks are converted into 4020 // selects, so we don't have to worry about the insertion order and we 4021 // can just use the builder. 4022 // At this point we generate the predication tree. There may be 4023 // duplications since this is a simple recursive scan, but future 4024 // optimizations will clean it up. 4025 4026 unsigned NumIncoming = P->getNumIncomingValues(); 4027 4028 // Generate a sequence of selects of the form: 4029 // SELECT(Mask3, In3, 4030 // SELECT(Mask2, In2, 4031 // ( ...))) 4032 for (unsigned In = 0; In < NumIncoming; In++) { 4033 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 4034 P->getParent()); 4035 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4036 4037 for (unsigned part = 0; part < UF; ++part) { 4038 // We might have single edge PHIs (blocks) - use an identity 4039 // 'select' for the first PHI operand. 4040 if (In == 0) 4041 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 4042 In0[part]); 4043 else 4044 // Select between the current value and the previous incoming edge 4045 // based on the incoming mask. 4046 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 4047 Entry[part], "predphi"); 4048 } 4049 } 4050 return; 4051 } 4052 4053 // This PHINode must be an induction variable. 4054 // Make sure that we know about it. 4055 assert(Legal->getInductionVars()->count(P) && 4056 "Not an induction variable"); 4057 4058 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4059 4060 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4061 // which can be found from the original scalar operations. 4062 switch (II.getKind()) { 4063 case InductionDescriptor::IK_NoInduction: 4064 llvm_unreachable("Unknown induction"); 4065 case InductionDescriptor::IK_IntInduction: { 4066 assert(P->getType() == II.getStartValue()->getType() && 4067 "Types must match"); 4068 // Handle other induction variables that are now based on the 4069 // canonical one. 4070 Value *V = Induction; 4071 if (P != OldInduction) { 4072 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4073 V = II.transform(Builder, V); 4074 V->setName("offset.idx"); 4075 } 4076 Value *Broadcasted = getBroadcastInstrs(V); 4077 // After broadcasting the induction variable we need to make the vector 4078 // consecutive by adding 0, 1, 2, etc. 4079 for (unsigned part = 0; part < UF; ++part) 4080 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue()); 4081 return; 4082 } 4083 case InductionDescriptor::IK_PtrInduction: 4084 // Handle the pointer induction variable case. 4085 assert(P->getType()->isPointerTy() && "Unexpected type."); 4086 // This is the normalized GEP that starts counting at zero. 4087 Value *PtrInd = Induction; 4088 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType()); 4089 // This is the vector of results. Notice that we don't generate 4090 // vector geps because scalar geps result in better code. 4091 for (unsigned part = 0; part < UF; ++part) { 4092 if (VF == 1) { 4093 int EltIndex = part; 4094 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4095 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4096 Value *SclrGep = II.transform(Builder, GlobalIdx); 4097 SclrGep->setName("next.gep"); 4098 Entry[part] = SclrGep; 4099 continue; 4100 } 4101 4102 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4103 for (unsigned int i = 0; i < VF; ++i) { 4104 int EltIndex = i + part * VF; 4105 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4106 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4107 Value *SclrGep = II.transform(Builder, GlobalIdx); 4108 SclrGep->setName("next.gep"); 4109 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4110 Builder.getInt32(i), 4111 "insert.gep"); 4112 } 4113 Entry[part] = VecVal; 4114 } 4115 return; 4116 } 4117 } 4118 4119 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4120 // For each instruction in the old loop. 4121 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4122 VectorParts &Entry = WidenMap.get(&*it); 4123 4124 switch (it->getOpcode()) { 4125 case Instruction::Br: 4126 // Nothing to do for PHIs and BR, since we already took care of the 4127 // loop control flow instructions. 4128 continue; 4129 case Instruction::PHI: { 4130 // Vectorize PHINodes. 4131 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4132 continue; 4133 }// End of PHI. 4134 4135 case Instruction::Add: 4136 case Instruction::FAdd: 4137 case Instruction::Sub: 4138 case Instruction::FSub: 4139 case Instruction::Mul: 4140 case Instruction::FMul: 4141 case Instruction::UDiv: 4142 case Instruction::SDiv: 4143 case Instruction::FDiv: 4144 case Instruction::URem: 4145 case Instruction::SRem: 4146 case Instruction::FRem: 4147 case Instruction::Shl: 4148 case Instruction::LShr: 4149 case Instruction::AShr: 4150 case Instruction::And: 4151 case Instruction::Or: 4152 case Instruction::Xor: { 4153 // Just widen binops. 4154 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4155 setDebugLocFromInst(Builder, BinOp); 4156 VectorParts &A = getVectorValue(it->getOperand(0)); 4157 VectorParts &B = getVectorValue(it->getOperand(1)); 4158 4159 // Use this vector value for all users of the original instruction. 4160 for (unsigned Part = 0; Part < UF; ++Part) { 4161 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4162 4163 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4164 VecOp->copyIRFlags(BinOp); 4165 4166 Entry[Part] = V; 4167 } 4168 4169 addMetadata(Entry, &*it); 4170 break; 4171 } 4172 case Instruction::Select: { 4173 // Widen selects. 4174 // If the selector is loop invariant we can create a select 4175 // instruction with a scalar condition. Otherwise, use vector-select. 4176 auto *SE = PSE.getSE(); 4177 bool InvariantCond = 4178 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4179 setDebugLocFromInst(Builder, &*it); 4180 4181 // The condition can be loop invariant but still defined inside the 4182 // loop. This means that we can't just use the original 'cond' value. 4183 // We have to take the 'vectorized' value and pick the first lane. 4184 // Instcombine will make this a no-op. 4185 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4186 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4187 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4188 4189 Value *ScalarCond = (VF == 1) ? Cond[0] : 4190 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4191 4192 for (unsigned Part = 0; Part < UF; ++Part) { 4193 Entry[Part] = Builder.CreateSelect( 4194 InvariantCond ? ScalarCond : Cond[Part], 4195 Op0[Part], 4196 Op1[Part]); 4197 } 4198 4199 addMetadata(Entry, &*it); 4200 break; 4201 } 4202 4203 case Instruction::ICmp: 4204 case Instruction::FCmp: { 4205 // Widen compares. Generate vector compares. 4206 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4207 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4208 setDebugLocFromInst(Builder, &*it); 4209 VectorParts &A = getVectorValue(it->getOperand(0)); 4210 VectorParts &B = getVectorValue(it->getOperand(1)); 4211 for (unsigned Part = 0; Part < UF; ++Part) { 4212 Value *C = nullptr; 4213 if (FCmp) { 4214 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4215 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4216 } else { 4217 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4218 } 4219 Entry[Part] = C; 4220 } 4221 4222 addMetadata(Entry, &*it); 4223 break; 4224 } 4225 4226 case Instruction::Store: 4227 case Instruction::Load: 4228 vectorizeMemoryInstruction(&*it); 4229 break; 4230 case Instruction::ZExt: 4231 case Instruction::SExt: 4232 case Instruction::FPToUI: 4233 case Instruction::FPToSI: 4234 case Instruction::FPExt: 4235 case Instruction::PtrToInt: 4236 case Instruction::IntToPtr: 4237 case Instruction::SIToFP: 4238 case Instruction::UIToFP: 4239 case Instruction::Trunc: 4240 case Instruction::FPTrunc: 4241 case Instruction::BitCast: { 4242 CastInst *CI = dyn_cast<CastInst>(it); 4243 setDebugLocFromInst(Builder, &*it); 4244 /// Optimize the special case where the source is the induction 4245 /// variable. Notice that we can only optimize the 'trunc' case 4246 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4247 /// c. other casts depend on pointer size. 4248 if (CI->getOperand(0) == OldInduction && 4249 it->getOpcode() == Instruction::Trunc) { 4250 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 4251 CI->getType()); 4252 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4253 InductionDescriptor II = 4254 Legal->getInductionVars()->lookup(OldInduction); 4255 Constant *Step = ConstantInt::getSigned( 4256 CI->getType(), II.getStepValue()->getSExtValue()); 4257 for (unsigned Part = 0; Part < UF; ++Part) 4258 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 4259 addMetadata(Entry, &*it); 4260 break; 4261 } 4262 /// Vectorize casts. 4263 Type *DestTy = (VF == 1) ? CI->getType() : 4264 VectorType::get(CI->getType(), VF); 4265 4266 VectorParts &A = getVectorValue(it->getOperand(0)); 4267 for (unsigned Part = 0; Part < UF; ++Part) 4268 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4269 addMetadata(Entry, &*it); 4270 break; 4271 } 4272 4273 case Instruction::Call: { 4274 // Ignore dbg intrinsics. 4275 if (isa<DbgInfoIntrinsic>(it)) 4276 break; 4277 setDebugLocFromInst(Builder, &*it); 4278 4279 Module *M = BB->getParent()->getParent(); 4280 CallInst *CI = cast<CallInst>(it); 4281 4282 StringRef FnName = CI->getCalledFunction()->getName(); 4283 Function *F = CI->getCalledFunction(); 4284 Type *RetTy = ToVectorTy(CI->getType(), VF); 4285 SmallVector<Type *, 4> Tys; 4286 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4287 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4288 4289 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4290 if (ID && 4291 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4292 ID == Intrinsic::lifetime_start)) { 4293 scalarizeInstruction(&*it); 4294 break; 4295 } 4296 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4297 // version of the instruction. 4298 // Is it beneficial to perform intrinsic call compared to lib call? 4299 bool NeedToScalarize; 4300 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4301 bool UseVectorIntrinsic = 4302 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4303 if (!UseVectorIntrinsic && NeedToScalarize) { 4304 scalarizeInstruction(&*it); 4305 break; 4306 } 4307 4308 for (unsigned Part = 0; Part < UF; ++Part) { 4309 SmallVector<Value *, 4> Args; 4310 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4311 Value *Arg = CI->getArgOperand(i); 4312 // Some intrinsics have a scalar argument - don't replace it with a 4313 // vector. 4314 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4315 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4316 Arg = VectorArg[Part]; 4317 } 4318 Args.push_back(Arg); 4319 } 4320 4321 Function *VectorF; 4322 if (UseVectorIntrinsic) { 4323 // Use vector version of the intrinsic. 4324 Type *TysForDecl[] = {CI->getType()}; 4325 if (VF > 1) 4326 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4327 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4328 } else { 4329 // Use vector version of the library call. 4330 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4331 assert(!VFnName.empty() && "Vector function name is empty."); 4332 VectorF = M->getFunction(VFnName); 4333 if (!VectorF) { 4334 // Generate a declaration 4335 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4336 VectorF = 4337 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4338 VectorF->copyAttributesFrom(F); 4339 } 4340 } 4341 assert(VectorF && "Can't create vector function."); 4342 4343 SmallVector<OperandBundleDef, 1> OpBundles; 4344 CI->getOperandBundlesAsDefs(OpBundles); 4345 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4346 4347 if (isa<FPMathOperator>(V)) 4348 V->copyFastMathFlags(CI); 4349 4350 Entry[Part] = V; 4351 } 4352 4353 addMetadata(Entry, &*it); 4354 break; 4355 } 4356 4357 default: 4358 // All other instructions are unsupported. Scalarize them. 4359 scalarizeInstruction(&*it); 4360 break; 4361 }// end of switch. 4362 }// end of for_each instr. 4363 } 4364 4365 void InnerLoopVectorizer::updateAnalysis() { 4366 // Forget the original basic block. 4367 PSE.getSE()->forgetLoop(OrigLoop); 4368 4369 // Update the dominator tree information. 4370 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4371 "Entry does not dominate exit."); 4372 4373 // We don't predicate stores by this point, so the vector body should be a 4374 // single loop. 4375 assert(LoopVectorBody.size() == 1 && "Expected single block loop!"); 4376 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 4377 4378 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back()); 4379 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4380 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4381 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4382 4383 DEBUG(DT->verifyDomTree()); 4384 } 4385 4386 /// \brief Check whether it is safe to if-convert this phi node. 4387 /// 4388 /// Phi nodes with constant expressions that can trap are not safe to if 4389 /// convert. 4390 static bool canIfConvertPHINodes(BasicBlock *BB) { 4391 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4392 PHINode *Phi = dyn_cast<PHINode>(I); 4393 if (!Phi) 4394 return true; 4395 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4396 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4397 if (C->canTrap()) 4398 return false; 4399 } 4400 return true; 4401 } 4402 4403 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4404 if (!EnableIfConversion) { 4405 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4406 return false; 4407 } 4408 4409 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4410 4411 // A list of pointers that we can safely read and write to. 4412 SmallPtrSet<Value *, 8> SafePointes; 4413 4414 // Collect safe addresses. 4415 for (Loop::block_iterator BI = TheLoop->block_begin(), 4416 BE = TheLoop->block_end(); BI != BE; ++BI) { 4417 BasicBlock *BB = *BI; 4418 4419 if (blockNeedsPredication(BB)) 4420 continue; 4421 4422 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4423 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4424 SafePointes.insert(LI->getPointerOperand()); 4425 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4426 SafePointes.insert(SI->getPointerOperand()); 4427 } 4428 } 4429 4430 // Collect the blocks that need predication. 4431 BasicBlock *Header = TheLoop->getHeader(); 4432 for (Loop::block_iterator BI = TheLoop->block_begin(), 4433 BE = TheLoop->block_end(); BI != BE; ++BI) { 4434 BasicBlock *BB = *BI; 4435 4436 // We don't support switch statements inside loops. 4437 if (!isa<BranchInst>(BB->getTerminator())) { 4438 emitAnalysis(VectorizationReport(BB->getTerminator()) 4439 << "loop contains a switch statement"); 4440 return false; 4441 } 4442 4443 // We must be able to predicate all blocks that need to be predicated. 4444 if (blockNeedsPredication(BB)) { 4445 if (!blockCanBePredicated(BB, SafePointes)) { 4446 emitAnalysis(VectorizationReport(BB->getTerminator()) 4447 << "control flow cannot be substituted for a select"); 4448 return false; 4449 } 4450 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4451 emitAnalysis(VectorizationReport(BB->getTerminator()) 4452 << "control flow cannot be substituted for a select"); 4453 return false; 4454 } 4455 } 4456 4457 // We can if-convert this loop. 4458 return true; 4459 } 4460 4461 bool LoopVectorizationLegality::canVectorize() { 4462 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4463 // be canonicalized. 4464 if (!TheLoop->getLoopPreheader()) { 4465 emitAnalysis( 4466 VectorizationReport() << 4467 "loop control flow is not understood by vectorizer"); 4468 return false; 4469 } 4470 4471 // We can only vectorize innermost loops. 4472 if (!TheLoop->empty()) { 4473 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4474 return false; 4475 } 4476 4477 // We must have a single backedge. 4478 if (TheLoop->getNumBackEdges() != 1) { 4479 emitAnalysis( 4480 VectorizationReport() << 4481 "loop control flow is not understood by vectorizer"); 4482 return false; 4483 } 4484 4485 // We must have a single exiting block. 4486 if (!TheLoop->getExitingBlock()) { 4487 emitAnalysis( 4488 VectorizationReport() << 4489 "loop control flow is not understood by vectorizer"); 4490 return false; 4491 } 4492 4493 // We only handle bottom-tested loops, i.e. loop in which the condition is 4494 // checked at the end of each iteration. With that we can assume that all 4495 // instructions in the loop are executed the same number of times. 4496 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4497 emitAnalysis( 4498 VectorizationReport() << 4499 "loop control flow is not understood by vectorizer"); 4500 return false; 4501 } 4502 4503 // We need to have a loop header. 4504 DEBUG(dbgs() << "LV: Found a loop: " << 4505 TheLoop->getHeader()->getName() << '\n'); 4506 4507 // Check if we can if-convert non-single-bb loops. 4508 unsigned NumBlocks = TheLoop->getNumBlocks(); 4509 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4510 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4511 return false; 4512 } 4513 4514 // ScalarEvolution needs to be able to find the exit count. 4515 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4516 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4517 emitAnalysis(VectorizationReport() 4518 << "could not determine number of loop iterations"); 4519 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4520 return false; 4521 } 4522 4523 // Check if we can vectorize the instructions and CFG in this loop. 4524 if (!canVectorizeInstrs()) { 4525 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4526 return false; 4527 } 4528 4529 // Go over each instruction and look at memory deps. 4530 if (!canVectorizeMemory()) { 4531 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4532 return false; 4533 } 4534 4535 // Collect all of the variables that remain uniform after vectorization. 4536 collectLoopUniforms(); 4537 4538 DEBUG(dbgs() << "LV: We can vectorize this loop" 4539 << (LAI->getRuntimePointerChecking()->Need 4540 ? " (with a runtime bound check)" 4541 : "") 4542 << "!\n"); 4543 4544 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4545 4546 // If an override option has been passed in for interleaved accesses, use it. 4547 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4548 UseInterleaved = EnableInterleavedMemAccesses; 4549 4550 // Analyze interleaved memory accesses. 4551 if (UseInterleaved) 4552 InterleaveInfo.analyzeInterleaving(Strides); 4553 4554 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4555 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4556 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4557 4558 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4559 emitAnalysis(VectorizationReport() 4560 << "Too many SCEV assumptions need to be made and checked " 4561 << "at runtime"); 4562 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4563 return false; 4564 } 4565 4566 // Okay! We can vectorize. At this point we don't have any other mem analysis 4567 // which may limit our maximum vectorization factor, so just return true with 4568 // no restrictions. 4569 return true; 4570 } 4571 4572 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4573 if (Ty->isPointerTy()) 4574 return DL.getIntPtrType(Ty); 4575 4576 // It is possible that char's or short's overflow when we ask for the loop's 4577 // trip count, work around this by changing the type size. 4578 if (Ty->getScalarSizeInBits() < 32) 4579 return Type::getInt32Ty(Ty->getContext()); 4580 4581 return Ty; 4582 } 4583 4584 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4585 Ty0 = convertPointerToIntegerType(DL, Ty0); 4586 Ty1 = convertPointerToIntegerType(DL, Ty1); 4587 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4588 return Ty0; 4589 return Ty1; 4590 } 4591 4592 /// \brief Check that the instruction has outside loop users and is not an 4593 /// identified reduction variable. 4594 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4595 SmallPtrSetImpl<Value *> &Reductions) { 4596 // Reduction instructions are allowed to have exit users. All other 4597 // instructions must not have external users. 4598 if (!Reductions.count(Inst)) 4599 //Check that all of the users of the loop are inside the BB. 4600 for (User *U : Inst->users()) { 4601 Instruction *UI = cast<Instruction>(U); 4602 // This user may be a reduction exit value. 4603 if (!TheLoop->contains(UI)) { 4604 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4605 return true; 4606 } 4607 } 4608 return false; 4609 } 4610 4611 bool LoopVectorizationLegality::canVectorizeInstrs() { 4612 BasicBlock *Header = TheLoop->getHeader(); 4613 4614 // Look for the attribute signaling the absence of NaNs. 4615 Function &F = *Header->getParent(); 4616 const DataLayout &DL = F.getParent()->getDataLayout(); 4617 HasFunNoNaNAttr = 4618 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4619 4620 // For each block in the loop. 4621 for (Loop::block_iterator bb = TheLoop->block_begin(), 4622 be = TheLoop->block_end(); bb != be; ++bb) { 4623 4624 // Scan the instructions in the block and look for hazards. 4625 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4626 ++it) { 4627 4628 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4629 Type *PhiTy = Phi->getType(); 4630 // Check that this PHI type is allowed. 4631 if (!PhiTy->isIntegerTy() && 4632 !PhiTy->isFloatingPointTy() && 4633 !PhiTy->isPointerTy()) { 4634 emitAnalysis(VectorizationReport(&*it) 4635 << "loop control flow is not understood by vectorizer"); 4636 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4637 return false; 4638 } 4639 4640 // If this PHINode is not in the header block, then we know that we 4641 // can convert it to select during if-conversion. No need to check if 4642 // the PHIs in this block are induction or reduction variables. 4643 if (*bb != Header) { 4644 // Check that this instruction has no outside users or is an 4645 // identified reduction value with an outside user. 4646 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4647 continue; 4648 emitAnalysis(VectorizationReport(&*it) << 4649 "value could not be identified as " 4650 "an induction or reduction variable"); 4651 return false; 4652 } 4653 4654 // We only allow if-converted PHIs with exactly two incoming values. 4655 if (Phi->getNumIncomingValues() != 2) { 4656 emitAnalysis(VectorizationReport(&*it) 4657 << "control flow not understood by vectorizer"); 4658 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4659 return false; 4660 } 4661 4662 InductionDescriptor ID; 4663 if (InductionDescriptor::isInductionPHI(Phi, PSE.getSE(), ID)) { 4664 Inductions[Phi] = ID; 4665 // Get the widest type. 4666 if (!WidestIndTy) 4667 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4668 else 4669 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4670 4671 // Int inductions are special because we only allow one IV. 4672 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4673 ID.getStepValue()->isOne() && 4674 isa<Constant>(ID.getStartValue()) && 4675 cast<Constant>(ID.getStartValue())->isNullValue()) { 4676 // Use the phi node with the widest type as induction. Use the last 4677 // one if there are multiple (no good reason for doing this other 4678 // than it is expedient). We've checked that it begins at zero and 4679 // steps by one, so this is a canonical induction variable. 4680 if (!Induction || PhiTy == WidestIndTy) 4681 Induction = Phi; 4682 } 4683 4684 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4685 4686 // Until we explicitly handle the case of an induction variable with 4687 // an outside loop user we have to give up vectorizing this loop. 4688 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4689 emitAnalysis(VectorizationReport(&*it) << 4690 "use of induction value outside of the " 4691 "loop is not handled by vectorizer"); 4692 return false; 4693 } 4694 4695 continue; 4696 } 4697 4698 RecurrenceDescriptor RedDes; 4699 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4700 if (RedDes.hasUnsafeAlgebra()) 4701 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4702 AllowedExit.insert(RedDes.getLoopExitInstr()); 4703 Reductions[Phi] = RedDes; 4704 continue; 4705 } 4706 4707 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4708 FirstOrderRecurrences.insert(Phi); 4709 continue; 4710 } 4711 4712 emitAnalysis(VectorizationReport(&*it) << 4713 "value that could not be identified as " 4714 "reduction is used outside the loop"); 4715 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4716 return false; 4717 }// end of PHI handling 4718 4719 // We handle calls that: 4720 // * Are debug info intrinsics. 4721 // * Have a mapping to an IR intrinsic. 4722 // * Have a vector version available. 4723 CallInst *CI = dyn_cast<CallInst>(it); 4724 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4725 !(CI->getCalledFunction() && TLI && 4726 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4727 emitAnalysis(VectorizationReport(&*it) 4728 << "call instruction cannot be vectorized"); 4729 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4730 return false; 4731 } 4732 4733 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4734 // second argument is the same (i.e. loop invariant) 4735 if (CI && 4736 hasVectorInstrinsicScalarOpd(getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4737 auto *SE = PSE.getSE(); 4738 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4739 emitAnalysis(VectorizationReport(&*it) 4740 << "intrinsic instruction cannot be vectorized"); 4741 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4742 return false; 4743 } 4744 } 4745 4746 // Check that the instruction return type is vectorizable. 4747 // Also, we can't vectorize extractelement instructions. 4748 if ((!VectorType::isValidElementType(it->getType()) && 4749 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4750 emitAnalysis(VectorizationReport(&*it) 4751 << "instruction return type cannot be vectorized"); 4752 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4753 return false; 4754 } 4755 4756 // Check that the stored type is vectorizable. 4757 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4758 Type *T = ST->getValueOperand()->getType(); 4759 if (!VectorType::isValidElementType(T)) { 4760 emitAnalysis(VectorizationReport(ST) << 4761 "store instruction cannot be vectorized"); 4762 return false; 4763 } 4764 if (EnableMemAccessVersioning) 4765 collectStridedAccess(ST); 4766 4767 } else if (LoadInst *LI = dyn_cast<LoadInst>(it)) { 4768 if (EnableMemAccessVersioning) 4769 collectStridedAccess(LI); 4770 4771 // FP instructions can allow unsafe algebra, thus vectorizable by 4772 // non-IEEE-754 compliant SIMD units. 4773 // This applies to floating-point math operations and calls, not memory 4774 // operations, shuffles, or casts, as they don't change precision or 4775 // semantics. 4776 } else if (it->getType()->isFloatingPointTy() && 4777 (CI || it->isBinaryOp()) && 4778 !it->hasUnsafeAlgebra()) { 4779 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4780 Hints->setPotentiallyUnsafe(); 4781 } 4782 4783 // Reduction instructions are allowed to have exit users. 4784 // All other instructions must not have external users. 4785 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4786 emitAnalysis(VectorizationReport(&*it) << 4787 "value cannot be used outside the loop"); 4788 return false; 4789 } 4790 4791 } // next instr. 4792 4793 } 4794 4795 if (!Induction) { 4796 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4797 if (Inductions.empty()) { 4798 emitAnalysis(VectorizationReport() 4799 << "loop induction variable could not be identified"); 4800 return false; 4801 } 4802 } 4803 4804 // Now we know the widest induction type, check if our found induction 4805 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4806 // will create another. 4807 if (Induction && WidestIndTy != Induction->getType()) 4808 Induction = nullptr; 4809 4810 return true; 4811 } 4812 4813 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4814 Value *Ptr = nullptr; 4815 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4816 Ptr = LI->getPointerOperand(); 4817 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4818 Ptr = SI->getPointerOperand(); 4819 else 4820 return; 4821 4822 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4823 if (!Stride) 4824 return; 4825 4826 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4827 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4828 Strides[Ptr] = Stride; 4829 StrideSet.insert(Stride); 4830 } 4831 4832 void LoopVectorizationLegality::collectLoopUniforms() { 4833 // We now know that the loop is vectorizable! 4834 // Collect variables that will remain uniform after vectorization. 4835 std::vector<Value*> Worklist; 4836 BasicBlock *Latch = TheLoop->getLoopLatch(); 4837 4838 // Start with the conditional branch and walk up the block. 4839 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4840 4841 // Also add all consecutive pointer values; these values will be uniform 4842 // after vectorization (and subsequent cleanup) and, until revectorization is 4843 // supported, all dependencies must also be uniform. 4844 for (Loop::block_iterator B = TheLoop->block_begin(), 4845 BE = TheLoop->block_end(); B != BE; ++B) 4846 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4847 I != IE; ++I) 4848 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4849 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4850 4851 while (!Worklist.empty()) { 4852 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4853 Worklist.pop_back(); 4854 4855 // Look at instructions inside this loop. 4856 // Stop when reaching PHI nodes. 4857 // TODO: we need to follow values all over the loop, not only in this block. 4858 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4859 continue; 4860 4861 // This is a known uniform. 4862 Uniforms.insert(I); 4863 4864 // Insert all operands. 4865 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4866 } 4867 } 4868 4869 bool LoopVectorizationLegality::canVectorizeMemory() { 4870 LAI = &LAA->getInfo(TheLoop, Strides); 4871 auto &OptionalReport = LAI->getReport(); 4872 if (OptionalReport) 4873 emitAnalysis(VectorizationReport(*OptionalReport)); 4874 if (!LAI->canVectorizeMemory()) 4875 return false; 4876 4877 if (LAI->hasStoreToLoopInvariantAddress()) { 4878 emitAnalysis( 4879 VectorizationReport() 4880 << "write to a loop invariant address could not be vectorized"); 4881 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4882 return false; 4883 } 4884 4885 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4886 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 4887 4888 return true; 4889 } 4890 4891 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4892 Value *In0 = const_cast<Value*>(V); 4893 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4894 if (!PN) 4895 return false; 4896 4897 return Inductions.count(PN); 4898 } 4899 4900 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 4901 return FirstOrderRecurrences.count(Phi); 4902 } 4903 4904 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4905 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4906 } 4907 4908 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4909 SmallPtrSetImpl<Value *> &SafePtrs) { 4910 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4911 4912 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4913 // Check that we don't have a constant expression that can trap as operand. 4914 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4915 OI != OE; ++OI) { 4916 if (Constant *C = dyn_cast<Constant>(*OI)) 4917 if (C->canTrap()) 4918 return false; 4919 } 4920 // We might be able to hoist the load. 4921 if (it->mayReadFromMemory()) { 4922 LoadInst *LI = dyn_cast<LoadInst>(it); 4923 if (!LI) 4924 return false; 4925 if (!SafePtrs.count(LI->getPointerOperand())) { 4926 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 4927 isLegalMaskedGather(LI->getType())) { 4928 MaskedOp.insert(LI); 4929 continue; 4930 } 4931 // !llvm.mem.parallel_loop_access implies if-conversion safety. 4932 if (IsAnnotatedParallel) 4933 continue; 4934 return false; 4935 } 4936 } 4937 4938 // We don't predicate stores at the moment. 4939 if (it->mayWriteToMemory()) { 4940 StoreInst *SI = dyn_cast<StoreInst>(it); 4941 // We only support predication of stores in basic blocks with one 4942 // predecessor. 4943 if (!SI) 4944 return false; 4945 4946 // Build a masked store if it is legal for the target. 4947 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 4948 SI->getPointerOperand()) || 4949 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 4950 MaskedOp.insert(SI); 4951 continue; 4952 } 4953 4954 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4955 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4956 4957 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4958 !isSinglePredecessor) 4959 return false; 4960 } 4961 if (it->mayThrow()) 4962 return false; 4963 4964 // The instructions below can trap. 4965 switch (it->getOpcode()) { 4966 default: continue; 4967 case Instruction::UDiv: 4968 case Instruction::SDiv: 4969 case Instruction::URem: 4970 case Instruction::SRem: 4971 return false; 4972 } 4973 } 4974 4975 return true; 4976 } 4977 4978 void InterleavedAccessInfo::collectConstStridedAccesses( 4979 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4980 const ValueToValueMap &Strides) { 4981 // Holds load/store instructions in program order. 4982 SmallVector<Instruction *, 16> AccessList; 4983 4984 for (auto *BB : TheLoop->getBlocks()) { 4985 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4986 4987 for (auto &I : *BB) { 4988 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4989 continue; 4990 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4991 if (IsPred) 4992 return; 4993 4994 AccessList.push_back(&I); 4995 } 4996 } 4997 4998 if (AccessList.empty()) 4999 return; 5000 5001 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5002 for (auto I : AccessList) { 5003 LoadInst *LI = dyn_cast<LoadInst>(I); 5004 StoreInst *SI = dyn_cast<StoreInst>(I); 5005 5006 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 5007 int Stride = isStridedPtr(PSE, Ptr, TheLoop, Strides); 5008 5009 // The factor of the corresponding interleave group. 5010 unsigned Factor = std::abs(Stride); 5011 5012 // Ignore the access if the factor is too small or too large. 5013 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 5014 continue; 5015 5016 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5017 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5018 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5019 5020 // An alignment of 0 means target ABI alignment. 5021 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5022 if (!Align) 5023 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5024 5025 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 5026 } 5027 } 5028 5029 // Analyze interleaved accesses and collect them into interleave groups. 5030 // 5031 // Notice that the vectorization on interleaved groups will change instruction 5032 // orders and may break dependences. But the memory dependence check guarantees 5033 // that there is no overlap between two pointers of different strides, element 5034 // sizes or underlying bases. 5035 // 5036 // For pointers sharing the same stride, element size and underlying base, no 5037 // need to worry about Read-After-Write dependences and Write-After-Read 5038 // dependences. 5039 // 5040 // E.g. The RAW dependence: A[i] = a; 5041 // b = A[i]; 5042 // This won't exist as it is a store-load forwarding conflict, which has 5043 // already been checked and forbidden in the dependence check. 5044 // 5045 // E.g. The WAR dependence: a = A[i]; // (1) 5046 // A[i] = b; // (2) 5047 // The store group of (2) is always inserted at or below (2), and the load group 5048 // of (1) is always inserted at or above (1). The dependence is safe. 5049 void InterleavedAccessInfo::analyzeInterleaving( 5050 const ValueToValueMap &Strides) { 5051 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5052 5053 // Holds all the stride accesses. 5054 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5055 collectConstStridedAccesses(StrideAccesses, Strides); 5056 5057 if (StrideAccesses.empty()) 5058 return; 5059 5060 // Holds all interleaved store groups temporarily. 5061 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5062 // Holds all interleaved load groups temporarily. 5063 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5064 5065 // Search the load-load/write-write pair B-A in bottom-up order and try to 5066 // insert B into the interleave group of A according to 3 rules: 5067 // 1. A and B have the same stride. 5068 // 2. A and B have the same memory object size. 5069 // 3. B belongs to the group according to the distance. 5070 // 5071 // The bottom-up order can avoid breaking the Write-After-Write dependences 5072 // between two pointers of the same base. 5073 // E.g. A[i] = a; (1) 5074 // A[i] = b; (2) 5075 // A[i+1] = c (3) 5076 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 5077 // above (1), which guarantees that (1) is always above (2). 5078 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 5079 ++I) { 5080 Instruction *A = I->first; 5081 StrideDescriptor DesA = I->second; 5082 5083 InterleaveGroup *Group = getInterleaveGroup(A); 5084 if (!Group) { 5085 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5086 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5087 } 5088 5089 if (A->mayWriteToMemory()) 5090 StoreGroups.insert(Group); 5091 else 5092 LoadGroups.insert(Group); 5093 5094 for (auto II = std::next(I); II != E; ++II) { 5095 Instruction *B = II->first; 5096 StrideDescriptor DesB = II->second; 5097 5098 // Ignore if B is already in a group or B is a different memory operation. 5099 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5100 continue; 5101 5102 // Check the rule 1 and 2. 5103 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5104 continue; 5105 5106 // Calculate the distance and prepare for the rule 3. 5107 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5108 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5109 if (!DistToA) 5110 continue; 5111 5112 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5113 5114 // Skip if the distance is not multiple of size as they are not in the 5115 // same group. 5116 if (DistanceToA % static_cast<int>(DesA.Size)) 5117 continue; 5118 5119 // The index of B is the index of A plus the related index to A. 5120 int IndexB = 5121 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5122 5123 // Try to insert B into the group. 5124 if (Group->insertMember(B, IndexB, DesB.Align)) { 5125 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5126 << " into the interleave group with" << *A << '\n'); 5127 InterleaveGroupMap[B] = Group; 5128 5129 // Set the first load in program order as the insert position. 5130 if (B->mayReadFromMemory()) 5131 Group->setInsertPos(B); 5132 } 5133 } // Iteration on instruction B 5134 } // Iteration on instruction A 5135 5136 // Remove interleaved store groups with gaps. 5137 for (InterleaveGroup *Group : StoreGroups) 5138 if (Group->getNumMembers() != Group->getFactor()) 5139 releaseGroup(Group); 5140 5141 // If there is a non-reversed interleaved load group with gaps, we will need 5142 // to execute at least one scalar epilogue iteration. This will ensure that 5143 // we don't speculatively access memory out-of-bounds. Note that we only need 5144 // to look for a member at index factor - 1, since every group must have a 5145 // member at index zero. 5146 for (InterleaveGroup *Group : LoadGroups) 5147 if (!Group->getMember(Group->getFactor() - 1)) { 5148 if (Group->isReverse()) { 5149 releaseGroup(Group); 5150 } else { 5151 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5152 RequiresScalarEpilogue = true; 5153 } 5154 } 5155 } 5156 5157 LoopVectorizationCostModel::VectorizationFactor 5158 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5159 // Width 1 means no vectorize 5160 VectorizationFactor Factor = { 1U, 0U }; 5161 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5162 emitAnalysis(VectorizationReport() << 5163 "runtime pointer checks needed. Enable vectorization of this " 5164 "loop with '#pragma clang loop vectorize(enable)' when " 5165 "compiling with -Os/-Oz"); 5166 DEBUG(dbgs() << 5167 "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5168 return Factor; 5169 } 5170 5171 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5172 emitAnalysis(VectorizationReport() << 5173 "store that is conditionally executed prevents vectorization"); 5174 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5175 return Factor; 5176 } 5177 5178 // Find the trip count. 5179 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5180 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5181 5182 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5183 unsigned SmallestType, WidestType; 5184 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5185 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5186 unsigned MaxSafeDepDist = -1U; 5187 if (Legal->getMaxSafeDepDistBytes() != -1U) 5188 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5189 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5190 WidestRegister : MaxSafeDepDist); 5191 unsigned MaxVectorSize = WidestRegister / WidestType; 5192 5193 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5194 << WidestType << " bits.\n"); 5195 DEBUG(dbgs() << "LV: The Widest register is: " 5196 << WidestRegister << " bits.\n"); 5197 5198 if (MaxVectorSize == 0) { 5199 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5200 MaxVectorSize = 1; 5201 } 5202 5203 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5204 " into one vector!"); 5205 5206 unsigned VF = MaxVectorSize; 5207 if (MaximizeBandwidth && !OptForSize) { 5208 // Collect all viable vectorization factors. 5209 SmallVector<unsigned, 8> VFs; 5210 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5211 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5212 VFs.push_back(VS); 5213 5214 // For each VF calculate its register usage. 5215 auto RUs = calculateRegisterUsage(VFs); 5216 5217 // Select the largest VF which doesn't require more registers than existing 5218 // ones. 5219 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5220 for (int i = RUs.size() - 1; i >= 0; --i) { 5221 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5222 VF = VFs[i]; 5223 break; 5224 } 5225 } 5226 } 5227 5228 // If we optimize the program for size, avoid creating the tail loop. 5229 if (OptForSize) { 5230 // If we are unable to calculate the trip count then don't try to vectorize. 5231 if (TC < 2) { 5232 emitAnalysis 5233 (VectorizationReport() << 5234 "unable to calculate the loop count due to complex control flow"); 5235 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5236 return Factor; 5237 } 5238 5239 // Find the maximum SIMD width that can fit within the trip count. 5240 VF = TC % MaxVectorSize; 5241 5242 if (VF == 0) 5243 VF = MaxVectorSize; 5244 else { 5245 // If the trip count that we found modulo the vectorization factor is not 5246 // zero then we require a tail. 5247 emitAnalysis(VectorizationReport() << 5248 "cannot optimize for size and vectorize at the " 5249 "same time. Enable vectorization of this loop " 5250 "with '#pragma clang loop vectorize(enable)' " 5251 "when compiling with -Os/-Oz"); 5252 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5253 return Factor; 5254 } 5255 } 5256 5257 int UserVF = Hints->getWidth(); 5258 if (UserVF != 0) { 5259 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5260 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5261 5262 Factor.Width = UserVF; 5263 return Factor; 5264 } 5265 5266 float Cost = expectedCost(1).first; 5267 #ifndef NDEBUG 5268 const float ScalarCost = Cost; 5269 #endif /* NDEBUG */ 5270 unsigned Width = 1; 5271 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5272 5273 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5274 // Ignore scalar width, because the user explicitly wants vectorization. 5275 if (ForceVectorization && VF > 1) { 5276 Width = 2; 5277 Cost = expectedCost(Width).first / (float)Width; 5278 } 5279 5280 for (unsigned i=2; i <= VF; i*=2) { 5281 // Notice that the vector loop needs to be executed less times, so 5282 // we need to divide the cost of the vector loops by the width of 5283 // the vector elements. 5284 VectorizationCostTy C = expectedCost(i); 5285 float VectorCost = C.first / (float)i; 5286 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5287 (int)VectorCost << ".\n"); 5288 if (!C.second && !ForceVectorization) { 5289 DEBUG(dbgs() << "LV: Not considering vector loop of width " << i << 5290 " because it will not generate any vector instructions.\n"); 5291 continue; 5292 } 5293 if (VectorCost < Cost) { 5294 Cost = VectorCost; 5295 Width = i; 5296 } 5297 } 5298 5299 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5300 << "LV: Vectorization seems to be not beneficial, " 5301 << "but was forced by a user.\n"); 5302 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5303 Factor.Width = Width; 5304 Factor.Cost = Width * Cost; 5305 return Factor; 5306 } 5307 5308 std::pair<unsigned, unsigned> 5309 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5310 unsigned MinWidth = -1U; 5311 unsigned MaxWidth = 8; 5312 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5313 5314 // For each block. 5315 for (Loop::block_iterator bb = TheLoop->block_begin(), 5316 be = TheLoop->block_end(); bb != be; ++bb) { 5317 BasicBlock *BB = *bb; 5318 5319 // For each instruction in the loop. 5320 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5321 Type *T = it->getType(); 5322 5323 // Skip ignored values. 5324 if (ValuesToIgnore.count(&*it)) 5325 continue; 5326 5327 // Only examine Loads, Stores and PHINodes. 5328 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5329 continue; 5330 5331 // Examine PHI nodes that are reduction variables. Update the type to 5332 // account for the recurrence type. 5333 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5334 if (!Legal->isReductionVariable(PN)) 5335 continue; 5336 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5337 T = RdxDesc.getRecurrenceType(); 5338 } 5339 5340 // Examine the stored values. 5341 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5342 T = ST->getValueOperand()->getType(); 5343 5344 // Ignore loaded pointer types and stored pointer types that are not 5345 // consecutive. However, we do want to take consecutive stores/loads of 5346 // pointer vectors into account. 5347 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5348 continue; 5349 5350 MinWidth = std::min(MinWidth, 5351 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5352 MaxWidth = std::max(MaxWidth, 5353 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5354 } 5355 } 5356 5357 return {MinWidth, MaxWidth}; 5358 } 5359 5360 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5361 unsigned VF, 5362 unsigned LoopCost) { 5363 5364 // -- The interleave heuristics -- 5365 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5366 // There are many micro-architectural considerations that we can't predict 5367 // at this level. For example, frontend pressure (on decode or fetch) due to 5368 // code size, or the number and capabilities of the execution ports. 5369 // 5370 // We use the following heuristics to select the interleave count: 5371 // 1. If the code has reductions, then we interleave to break the cross 5372 // iteration dependency. 5373 // 2. If the loop is really small, then we interleave to reduce the loop 5374 // overhead. 5375 // 3. We don't interleave if we think that we will spill registers to memory 5376 // due to the increased register pressure. 5377 5378 // When we optimize for size, we don't interleave. 5379 if (OptForSize) 5380 return 1; 5381 5382 // We used the distance for the interleave count. 5383 if (Legal->getMaxSafeDepDistBytes() != -1U) 5384 return 1; 5385 5386 // Do not interleave loops with a relatively small trip count. 5387 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5388 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5389 return 1; 5390 5391 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5392 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5393 " registers\n"); 5394 5395 if (VF == 1) { 5396 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5397 TargetNumRegisters = ForceTargetNumScalarRegs; 5398 } else { 5399 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5400 TargetNumRegisters = ForceTargetNumVectorRegs; 5401 } 5402 5403 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5404 // We divide by these constants so assume that we have at least one 5405 // instruction that uses at least one register. 5406 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5407 R.NumInstructions = std::max(R.NumInstructions, 1U); 5408 5409 // We calculate the interleave count using the following formula. 5410 // Subtract the number of loop invariants from the number of available 5411 // registers. These registers are used by all of the interleaved instances. 5412 // Next, divide the remaining registers by the number of registers that is 5413 // required by the loop, in order to estimate how many parallel instances 5414 // fit without causing spills. All of this is rounded down if necessary to be 5415 // a power of two. We want power of two interleave count to simplify any 5416 // addressing operations or alignment considerations. 5417 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5418 R.MaxLocalUsers); 5419 5420 // Don't count the induction variable as interleaved. 5421 if (EnableIndVarRegisterHeur) 5422 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5423 std::max(1U, (R.MaxLocalUsers - 1))); 5424 5425 // Clamp the interleave ranges to reasonable counts. 5426 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5427 5428 // Check if the user has overridden the max. 5429 if (VF == 1) { 5430 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5431 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5432 } else { 5433 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5434 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5435 } 5436 5437 // If we did not calculate the cost for VF (because the user selected the VF) 5438 // then we calculate the cost of VF here. 5439 if (LoopCost == 0) 5440 LoopCost = expectedCost(VF).first; 5441 5442 // Clamp the calculated IC to be between the 1 and the max interleave count 5443 // that the target allows. 5444 if (IC > MaxInterleaveCount) 5445 IC = MaxInterleaveCount; 5446 else if (IC < 1) 5447 IC = 1; 5448 5449 // Interleave if we vectorized this loop and there is a reduction that could 5450 // benefit from interleaving. 5451 if (VF > 1 && Legal->getReductionVars()->size()) { 5452 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5453 return IC; 5454 } 5455 5456 // Note that if we've already vectorized the loop we will have done the 5457 // runtime check and so interleaving won't require further checks. 5458 bool InterleavingRequiresRuntimePointerCheck = 5459 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5460 5461 // We want to interleave small loops in order to reduce the loop overhead and 5462 // potentially expose ILP opportunities. 5463 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5464 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5465 // We assume that the cost overhead is 1 and we use the cost model 5466 // to estimate the cost of the loop and interleave until the cost of the 5467 // loop overhead is about 5% of the cost of the loop. 5468 unsigned SmallIC = 5469 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5470 5471 // Interleave until store/load ports (estimated by max interleave count) are 5472 // saturated. 5473 unsigned NumStores = Legal->getNumStores(); 5474 unsigned NumLoads = Legal->getNumLoads(); 5475 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5476 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5477 5478 // If we have a scalar reduction (vector reductions are already dealt with 5479 // by this point), we can increase the critical path length if the loop 5480 // we're interleaving is inside another loop. Limit, by default to 2, so the 5481 // critical path only gets increased by one reduction operation. 5482 if (Legal->getReductionVars()->size() && 5483 TheLoop->getLoopDepth() > 1) { 5484 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5485 SmallIC = std::min(SmallIC, F); 5486 StoresIC = std::min(StoresIC, F); 5487 LoadsIC = std::min(LoadsIC, F); 5488 } 5489 5490 if (EnableLoadStoreRuntimeInterleave && 5491 std::max(StoresIC, LoadsIC) > SmallIC) { 5492 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5493 return std::max(StoresIC, LoadsIC); 5494 } 5495 5496 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5497 return SmallIC; 5498 } 5499 5500 // Interleave if this is a large loop (small loops are already dealt with by 5501 // this point) that could benefit from interleaving. 5502 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5503 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5504 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5505 return IC; 5506 } 5507 5508 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5509 return 1; 5510 } 5511 5512 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5513 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5514 // This function calculates the register usage by measuring the highest number 5515 // of values that are alive at a single location. Obviously, this is a very 5516 // rough estimation. We scan the loop in a topological order in order and 5517 // assign a number to each instruction. We use RPO to ensure that defs are 5518 // met before their users. We assume that each instruction that has in-loop 5519 // users starts an interval. We record every time that an in-loop value is 5520 // used, so we have a list of the first and last occurrences of each 5521 // instruction. Next, we transpose this data structure into a multi map that 5522 // holds the list of intervals that *end* at a specific location. This multi 5523 // map allows us to perform a linear search. We scan the instructions linearly 5524 // and record each time that a new interval starts, by placing it in a set. 5525 // If we find this value in the multi-map then we remove it from the set. 5526 // The max register usage is the maximum size of the set. 5527 // We also search for instructions that are defined outside the loop, but are 5528 // used inside the loop. We need this number separately from the max-interval 5529 // usage number because when we unroll, loop-invariant values do not take 5530 // more register. 5531 LoopBlocksDFS DFS(TheLoop); 5532 DFS.perform(LI); 5533 5534 RegisterUsage RU; 5535 RU.NumInstructions = 0; 5536 5537 // Each 'key' in the map opens a new interval. The values 5538 // of the map are the index of the 'last seen' usage of the 5539 // instruction that is the key. 5540 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5541 // Maps instruction to its index. 5542 DenseMap<unsigned, Instruction*> IdxToInstr; 5543 // Marks the end of each interval. 5544 IntervalMap EndPoint; 5545 // Saves the list of instruction indices that are used in the loop. 5546 SmallSet<Instruction*, 8> Ends; 5547 // Saves the list of values that are used in the loop but are 5548 // defined outside the loop, such as arguments and constants. 5549 SmallPtrSet<Value*, 8> LoopInvariants; 5550 5551 unsigned Index = 0; 5552 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5553 be = DFS.endRPO(); bb != be; ++bb) { 5554 RU.NumInstructions += (*bb)->size(); 5555 for (Instruction &I : **bb) { 5556 IdxToInstr[Index++] = &I; 5557 5558 // Save the end location of each USE. 5559 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5560 Value *U = I.getOperand(i); 5561 Instruction *Instr = dyn_cast<Instruction>(U); 5562 5563 // Ignore non-instruction values such as arguments, constants, etc. 5564 if (!Instr) continue; 5565 5566 // If this instruction is outside the loop then record it and continue. 5567 if (!TheLoop->contains(Instr)) { 5568 LoopInvariants.insert(Instr); 5569 continue; 5570 } 5571 5572 // Overwrite previous end points. 5573 EndPoint[Instr] = Index; 5574 Ends.insert(Instr); 5575 } 5576 } 5577 } 5578 5579 // Saves the list of intervals that end with the index in 'key'. 5580 typedef SmallVector<Instruction*, 2> InstrList; 5581 DenseMap<unsigned, InstrList> TransposeEnds; 5582 5583 // Transpose the EndPoints to a list of values that end at each index. 5584 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5585 it != e; ++it) 5586 TransposeEnds[it->second].push_back(it->first); 5587 5588 SmallSet<Instruction*, 8> OpenIntervals; 5589 5590 // Get the size of the widest register. 5591 unsigned MaxSafeDepDist = -1U; 5592 if (Legal->getMaxSafeDepDistBytes() != -1U) 5593 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5594 unsigned WidestRegister = 5595 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5596 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5597 5598 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5599 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5600 5601 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5602 5603 // A lambda that gets the register usage for the given type and VF. 5604 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5605 if (Ty->isTokenTy()) 5606 return 0U; 5607 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5608 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5609 }; 5610 5611 for (unsigned int i = 0; i < Index; ++i) { 5612 Instruction *I = IdxToInstr[i]; 5613 // Ignore instructions that are never used within the loop. 5614 if (!Ends.count(I)) continue; 5615 5616 // Skip ignored values. 5617 if (ValuesToIgnore.count(I)) 5618 continue; 5619 5620 // Remove all of the instructions that end at this location. 5621 InstrList &List = TransposeEnds[i]; 5622 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5623 OpenIntervals.erase(List[j]); 5624 5625 // For each VF find the maximum usage of registers. 5626 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5627 if (VFs[j] == 1) { 5628 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5629 continue; 5630 } 5631 5632 // Count the number of live intervals. 5633 unsigned RegUsage = 0; 5634 for (auto Inst : OpenIntervals) 5635 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5636 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5637 } 5638 5639 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5640 << OpenIntervals.size() << '\n'); 5641 5642 // Add the current instruction to the list of open intervals. 5643 OpenIntervals.insert(I); 5644 } 5645 5646 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5647 unsigned Invariant = 0; 5648 if (VFs[i] == 1) 5649 Invariant = LoopInvariants.size(); 5650 else { 5651 for (auto Inst : LoopInvariants) 5652 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5653 } 5654 5655 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5656 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5657 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5658 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5659 5660 RU.LoopInvariantRegs = Invariant; 5661 RU.MaxLocalUsers = MaxUsages[i]; 5662 RUs[i] = RU; 5663 } 5664 5665 return RUs; 5666 } 5667 5668 LoopVectorizationCostModel::VectorizationCostTy 5669 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5670 VectorizationCostTy Cost; 5671 5672 // For each block. 5673 for (Loop::block_iterator bb = TheLoop->block_begin(), 5674 be = TheLoop->block_end(); bb != be; ++bb) { 5675 VectorizationCostTy BlockCost; 5676 BasicBlock *BB = *bb; 5677 5678 // For each instruction in the old loop. 5679 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5680 // Skip dbg intrinsics. 5681 if (isa<DbgInfoIntrinsic>(it)) 5682 continue; 5683 5684 // Skip ignored values. 5685 if (ValuesToIgnore.count(&*it)) 5686 continue; 5687 5688 VectorizationCostTy C = getInstructionCost(&*it, VF); 5689 5690 // Check if we should override the cost. 5691 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5692 C.first = ForceTargetInstructionCost; 5693 5694 BlockCost.first += C.first; 5695 BlockCost.second |= C.second; 5696 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << 5697 " for VF " << VF << " For instruction: " << *it << '\n'); 5698 } 5699 5700 // We assume that if-converted blocks have a 50% chance of being executed. 5701 // When the code is scalar then some of the blocks are avoided due to CF. 5702 // When the code is vectorized we execute all code paths. 5703 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5704 BlockCost.first /= 2; 5705 5706 Cost.first += BlockCost.first; 5707 Cost.second |= BlockCost.second; 5708 } 5709 5710 return Cost; 5711 } 5712 5713 /// \brief Check if the load/store instruction \p I may be translated into 5714 /// gather/scatter during vectorization. 5715 /// 5716 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5717 /// instruction. We need it to retrieve data type. 5718 /// Using gather/scatter is possible when it is supported by target. 5719 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5720 LoopVectorizationLegality *Legal) { 5721 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5722 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5723 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5724 } 5725 5726 /// \brief Check whether the address computation for a non-consecutive memory 5727 /// access looks like an unlikely candidate for being merged into the indexing 5728 /// mode. 5729 /// 5730 /// We look for a GEP which has one index that is an induction variable and all 5731 /// other indices are loop invariant. If the stride of this access is also 5732 /// within a small bound we decide that this address computation can likely be 5733 /// merged into the addressing mode. 5734 /// In all other cases, we identify the address computation as complex. 5735 static bool isLikelyComplexAddressComputation(Value *Ptr, 5736 LoopVectorizationLegality *Legal, 5737 ScalarEvolution *SE, 5738 const Loop *TheLoop) { 5739 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5740 if (!Gep) 5741 return true; 5742 5743 // We are looking for a gep with all loop invariant indices except for one 5744 // which should be an induction variable. 5745 unsigned NumOperands = Gep->getNumOperands(); 5746 for (unsigned i = 1; i < NumOperands; ++i) { 5747 Value *Opd = Gep->getOperand(i); 5748 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5749 !Legal->isInductionVariable(Opd)) 5750 return true; 5751 } 5752 5753 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5754 // can likely be merged into the address computation. 5755 unsigned MaxMergeDistance = 64; 5756 5757 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5758 if (!AddRec) 5759 return true; 5760 5761 // Check the step is constant. 5762 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5763 // Calculate the pointer stride and check if it is consecutive. 5764 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5765 if (!C) 5766 return true; 5767 5768 const APInt &APStepVal = C->getAPInt(); 5769 5770 // Huge step value - give up. 5771 if (APStepVal.getBitWidth() > 64) 5772 return true; 5773 5774 int64_t StepVal = APStepVal.getSExtValue(); 5775 5776 return StepVal > MaxMergeDistance; 5777 } 5778 5779 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5780 return Legal->hasStride(I->getOperand(0)) || 5781 Legal->hasStride(I->getOperand(1)); 5782 } 5783 5784 LoopVectorizationCostModel::VectorizationCostTy 5785 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5786 // If we know that this instruction will remain uniform, check the cost of 5787 // the scalar version. 5788 if (Legal->isUniformAfterVectorization(I)) 5789 VF = 1; 5790 5791 Type *VectorTy; 5792 unsigned C = getInstructionCost(I, VF, VectorTy); 5793 5794 bool TypeNotScalarized = VF > 1 && !VectorTy->isVoidTy() && 5795 TTI.getNumberOfParts(VectorTy) < VF; 5796 return VectorizationCostTy(C, TypeNotScalarized); 5797 } 5798 5799 unsigned 5800 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF, 5801 Type *&VectorTy) { 5802 Type *RetTy = I->getType(); 5803 if (VF > 1 && MinBWs.count(I)) 5804 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5805 VectorTy = ToVectorTy(RetTy, VF); 5806 5807 // TODO: We need to estimate the cost of intrinsic calls. 5808 switch (I->getOpcode()) { 5809 case Instruction::GetElementPtr: 5810 // We mark this instruction as zero-cost because the cost of GEPs in 5811 // vectorized code depends on whether the corresponding memory instruction 5812 // is scalarized or not. Therefore, we handle GEPs with the memory 5813 // instruction cost. 5814 return 0; 5815 case Instruction::Br: { 5816 return TTI.getCFInstrCost(I->getOpcode()); 5817 } 5818 case Instruction::PHI: { 5819 auto *Phi = cast<PHINode>(I); 5820 5821 // First-order recurrences are replaced by vector shuffles inside the loop. 5822 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5823 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5824 VectorTy, VF - 1, VectorTy); 5825 5826 // TODO: IF-converted IFs become selects. 5827 return 0; 5828 } 5829 case Instruction::Add: 5830 case Instruction::FAdd: 5831 case Instruction::Sub: 5832 case Instruction::FSub: 5833 case Instruction::Mul: 5834 case Instruction::FMul: 5835 case Instruction::UDiv: 5836 case Instruction::SDiv: 5837 case Instruction::FDiv: 5838 case Instruction::URem: 5839 case Instruction::SRem: 5840 case Instruction::FRem: 5841 case Instruction::Shl: 5842 case Instruction::LShr: 5843 case Instruction::AShr: 5844 case Instruction::And: 5845 case Instruction::Or: 5846 case Instruction::Xor: { 5847 // Since we will replace the stride by 1 the multiplication should go away. 5848 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5849 return 0; 5850 // Certain instructions can be cheaper to vectorize if they have a constant 5851 // second vector operand. One example of this are shifts on x86. 5852 TargetTransformInfo::OperandValueKind Op1VK = 5853 TargetTransformInfo::OK_AnyValue; 5854 TargetTransformInfo::OperandValueKind Op2VK = 5855 TargetTransformInfo::OK_AnyValue; 5856 TargetTransformInfo::OperandValueProperties Op1VP = 5857 TargetTransformInfo::OP_None; 5858 TargetTransformInfo::OperandValueProperties Op2VP = 5859 TargetTransformInfo::OP_None; 5860 Value *Op2 = I->getOperand(1); 5861 5862 // Check for a splat of a constant or for a non uniform vector of constants. 5863 if (isa<ConstantInt>(Op2)) { 5864 ConstantInt *CInt = cast<ConstantInt>(Op2); 5865 if (CInt && CInt->getValue().isPowerOf2()) 5866 Op2VP = TargetTransformInfo::OP_PowerOf2; 5867 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5868 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5869 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5870 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5871 if (SplatValue) { 5872 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5873 if (CInt && CInt->getValue().isPowerOf2()) 5874 Op2VP = TargetTransformInfo::OP_PowerOf2; 5875 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5876 } 5877 } 5878 5879 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5880 Op1VP, Op2VP); 5881 } 5882 case Instruction::Select: { 5883 SelectInst *SI = cast<SelectInst>(I); 5884 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5885 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5886 Type *CondTy = SI->getCondition()->getType(); 5887 if (!ScalarCond) 5888 CondTy = VectorType::get(CondTy, VF); 5889 5890 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5891 } 5892 case Instruction::ICmp: 5893 case Instruction::FCmp: { 5894 Type *ValTy = I->getOperand(0)->getType(); 5895 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5896 auto It = MinBWs.find(Op0AsInstruction); 5897 if (VF > 1 && It != MinBWs.end()) 5898 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5899 VectorTy = ToVectorTy(ValTy, VF); 5900 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5901 } 5902 case Instruction::Store: 5903 case Instruction::Load: { 5904 StoreInst *SI = dyn_cast<StoreInst>(I); 5905 LoadInst *LI = dyn_cast<LoadInst>(I); 5906 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5907 LI->getType()); 5908 VectorTy = ToVectorTy(ValTy, VF); 5909 5910 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5911 unsigned AS = SI ? SI->getPointerAddressSpace() : 5912 LI->getPointerAddressSpace(); 5913 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5914 // We add the cost of address computation here instead of with the gep 5915 // instruction because only here we know whether the operation is 5916 // scalarized. 5917 if (VF == 1) 5918 return TTI.getAddressComputationCost(VectorTy) + 5919 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5920 5921 if (LI && Legal->isUniform(Ptr)) { 5922 // Scalar load + broadcast 5923 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 5924 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5925 Alignment, AS); 5926 return Cost + TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, 5927 ValTy); 5928 } 5929 5930 // For an interleaved access, calculate the total cost of the whole 5931 // interleave group. 5932 if (Legal->isAccessInterleaved(I)) { 5933 auto Group = Legal->getInterleavedAccessGroup(I); 5934 assert(Group && "Fail to get an interleaved access group."); 5935 5936 // Only calculate the cost once at the insert position. 5937 if (Group->getInsertPos() != I) 5938 return 0; 5939 5940 unsigned InterleaveFactor = Group->getFactor(); 5941 Type *WideVecTy = 5942 VectorType::get(VectorTy->getVectorElementType(), 5943 VectorTy->getVectorNumElements() * InterleaveFactor); 5944 5945 // Holds the indices of existing members in an interleaved load group. 5946 // An interleaved store group doesn't need this as it dones't allow gaps. 5947 SmallVector<unsigned, 4> Indices; 5948 if (LI) { 5949 for (unsigned i = 0; i < InterleaveFactor; i++) 5950 if (Group->getMember(i)) 5951 Indices.push_back(i); 5952 } 5953 5954 // Calculate the cost of the whole interleaved group. 5955 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5956 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5957 Group->getAlignment(), AS); 5958 5959 if (Group->isReverse()) 5960 Cost += 5961 Group->getNumMembers() * 5962 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5963 5964 // FIXME: The interleaved load group with a huge gap could be even more 5965 // expensive than scalar operations. Then we could ignore such group and 5966 // use scalar operations instead. 5967 return Cost; 5968 } 5969 5970 // Scalarized loads/stores. 5971 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5972 bool UseGatherOrScatter = (ConsecutiveStride == 0) && 5973 isGatherOrScatterLegal(I, Ptr, Legal); 5974 5975 bool Reverse = ConsecutiveStride < 0; 5976 const DataLayout &DL = I->getModule()->getDataLayout(); 5977 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5978 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5979 if ((!ConsecutiveStride && !UseGatherOrScatter) || 5980 ScalarAllocatedSize != VectorElementSize) { 5981 bool IsComplexComputation = 5982 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5983 unsigned Cost = 0; 5984 // The cost of extracting from the value vector and pointer vector. 5985 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5986 for (unsigned i = 0; i < VF; ++i) { 5987 // The cost of extracting the pointer operand. 5988 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5989 // In case of STORE, the cost of ExtractElement from the vector. 5990 // In case of LOAD, the cost of InsertElement into the returned 5991 // vector. 5992 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5993 Instruction::InsertElement, 5994 VectorTy, i); 5995 } 5996 5997 // The cost of the scalar loads/stores. 5998 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5999 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6000 Alignment, AS); 6001 return Cost; 6002 } 6003 6004 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6005 if (UseGatherOrScatter) { 6006 assert(ConsecutiveStride == 0 && 6007 "Gather/Scatter are not used for consecutive stride"); 6008 return Cost + 6009 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6010 Legal->isMaskRequired(I), Alignment); 6011 } 6012 // Wide load/stores. 6013 if (Legal->isMaskRequired(I)) 6014 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 6015 AS); 6016 else 6017 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6018 6019 if (Reverse) 6020 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 6021 VectorTy, 0); 6022 return Cost; 6023 } 6024 case Instruction::ZExt: 6025 case Instruction::SExt: 6026 case Instruction::FPToUI: 6027 case Instruction::FPToSI: 6028 case Instruction::FPExt: 6029 case Instruction::PtrToInt: 6030 case Instruction::IntToPtr: 6031 case Instruction::SIToFP: 6032 case Instruction::UIToFP: 6033 case Instruction::Trunc: 6034 case Instruction::FPTrunc: 6035 case Instruction::BitCast: { 6036 // We optimize the truncation of induction variable. 6037 // The cost of these is the same as the scalar operation. 6038 if (I->getOpcode() == Instruction::Trunc && 6039 Legal->isInductionVariable(I->getOperand(0))) 6040 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6041 I->getOperand(0)->getType()); 6042 6043 Type *SrcScalarTy = I->getOperand(0)->getType(); 6044 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6045 if (VF > 1 && MinBWs.count(I)) { 6046 // This cast is going to be shrunk. This may remove the cast or it might 6047 // turn it into slightly different cast. For example, if MinBW == 16, 6048 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6049 // 6050 // Calculate the modified src and dest types. 6051 Type *MinVecTy = VectorTy; 6052 if (I->getOpcode() == Instruction::Trunc) { 6053 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6054 VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), 6055 MinVecTy); 6056 } else if (I->getOpcode() == Instruction::ZExt || 6057 I->getOpcode() == Instruction::SExt) { 6058 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6059 VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), 6060 MinVecTy); 6061 } 6062 } 6063 6064 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6065 } 6066 case Instruction::Call: { 6067 bool NeedToScalarize; 6068 CallInst *CI = cast<CallInst>(I); 6069 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6070 if (getVectorIntrinsicIDForCall(CI, TLI)) 6071 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6072 return CallCost; 6073 } 6074 default: { 6075 // We are scalarizing the instruction. Return the cost of the scalar 6076 // instruction, plus the cost of insert and extract into vector 6077 // elements, times the vector width. 6078 unsigned Cost = 0; 6079 6080 if (!RetTy->isVoidTy() && VF != 1) { 6081 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6082 VectorTy); 6083 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6084 VectorTy); 6085 6086 // The cost of inserting the results plus extracting each one of the 6087 // operands. 6088 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6089 } 6090 6091 // The cost of executing VF copies of the scalar instruction. This opcode 6092 // is unknown. Assume that it is the same as 'mul'. 6093 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6094 return Cost; 6095 } 6096 }// end of switch. 6097 } 6098 6099 char LoopVectorize::ID = 0; 6100 static const char lv_name[] = "Loop Vectorization"; 6101 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6102 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6103 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6104 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6105 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6107 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6108 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6109 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6110 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6111 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6112 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6113 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6114 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6115 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6116 6117 namespace llvm { 6118 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6119 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6120 } 6121 } 6122 6123 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6124 // Check for a store. 6125 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6126 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6127 6128 // Check for a load. 6129 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6130 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6131 6132 return false; 6133 } 6134 6135 6136 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6137 bool IfPredicateStore) { 6138 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6139 // Holds vector parameters or scalars, in case of uniform vals. 6140 SmallVector<VectorParts, 4> Params; 6141 6142 setDebugLocFromInst(Builder, Instr); 6143 6144 // Find all of the vectorized parameters. 6145 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6146 Value *SrcOp = Instr->getOperand(op); 6147 6148 // If we are accessing the old induction variable, use the new one. 6149 if (SrcOp == OldInduction) { 6150 Params.push_back(getVectorValue(SrcOp)); 6151 continue; 6152 } 6153 6154 // Try using previously calculated values. 6155 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6156 6157 // If the src is an instruction that appeared earlier in the basic block 6158 // then it should already be vectorized. 6159 if (SrcInst && OrigLoop->contains(SrcInst)) { 6160 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6161 // The parameter is a vector value from earlier. 6162 Params.push_back(WidenMap.get(SrcInst)); 6163 } else { 6164 // The parameter is a scalar from outside the loop. Maybe even a constant. 6165 VectorParts Scalars; 6166 Scalars.append(UF, SrcOp); 6167 Params.push_back(Scalars); 6168 } 6169 } 6170 6171 assert(Params.size() == Instr->getNumOperands() && 6172 "Invalid number of operands"); 6173 6174 // Does this instruction return a value ? 6175 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6176 6177 Value *UndefVec = IsVoidRetTy ? nullptr : 6178 UndefValue::get(Instr->getType()); 6179 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6180 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6181 6182 VectorParts Cond; 6183 if (IfPredicateStore) { 6184 assert(Instr->getParent()->getSinglePredecessor() && 6185 "Only support single predecessor blocks"); 6186 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6187 Instr->getParent()); 6188 } 6189 6190 // For each vector unroll 'part': 6191 for (unsigned Part = 0; Part < UF; ++Part) { 6192 // For each scalar that we create: 6193 6194 // Start an "if (pred) a[i] = ..." block. 6195 Value *Cmp = nullptr; 6196 if (IfPredicateStore) { 6197 if (Cond[Part]->getType()->isVectorTy()) 6198 Cond[Part] = 6199 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6200 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6201 ConstantInt::get(Cond[Part]->getType(), 1)); 6202 } 6203 6204 Instruction *Cloned = Instr->clone(); 6205 if (!IsVoidRetTy) 6206 Cloned->setName(Instr->getName() + ".cloned"); 6207 // Replace the operands of the cloned instructions with extracted scalars. 6208 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6209 Value *Op = Params[op][Part]; 6210 Cloned->setOperand(op, Op); 6211 } 6212 6213 // Place the cloned scalar in the new loop. 6214 Builder.Insert(Cloned); 6215 6216 // If we just cloned a new assumption, add it the assumption cache. 6217 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6218 if (II->getIntrinsicID() == Intrinsic::assume) 6219 AC->registerAssumption(II); 6220 6221 // If the original scalar returns a value we need to place it in a vector 6222 // so that future users will be able to use it. 6223 if (!IsVoidRetTy) 6224 VecResults[Part] = Cloned; 6225 6226 // End if-block. 6227 if (IfPredicateStore) 6228 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 6229 Cmp)); 6230 } 6231 } 6232 6233 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6234 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6235 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6236 6237 return scalarizeInstruction(Instr, IfPredicateStore); 6238 } 6239 6240 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6241 return Vec; 6242 } 6243 6244 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6245 return V; 6246 } 6247 6248 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6249 // When unrolling and the VF is 1, we only need to add a simple scalar. 6250 Type *ITy = Val->getType(); 6251 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6252 Constant *C = ConstantInt::get(ITy, StartIdx); 6253 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6254 } 6255