1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask,
548                                   bool ConsecutiveStride, bool Reverse);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Create the exit value of first order recurrences in the middle block and
594   /// update their users.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Create code for the loop exit value of the reduction.
598   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
599 
600   /// Clear NSW/NUW flags from reduction instructions if necessary.
601   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
602                                VPTransformState &State);
603 
604   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
605   /// means we need to add the appropriate incoming value from the middle
606   /// block as exiting edges from the scalar epilogue loop (if present) are
607   /// already in place, and we exit the vector loop exclusively to the middle
608   /// block.
609   void fixLCSSAPHIs(VPTransformState &State);
610 
611   /// Iteratively sink the scalarized operands of a predicated instruction into
612   /// the block that was created for it.
613   void sinkScalarOperands(Instruction *PredInst);
614 
615   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
616   /// represented as.
617   void truncateToMinimalBitwidths(VPTransformState &State);
618 
619   /// This function adds
620   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
621   /// to each vector element of Val. The sequence starts at StartIndex.
622   /// \p Opcode is relevant for FP induction variable.
623   virtual Value *
624   getStepVector(Value *Val, Value *StartIdx, Value *Step,
625                 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd);
626 
627   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
628   /// variable on which to base the steps, \p Step is the size of the step, and
629   /// \p EntryVal is the value from the original loop that maps to the steps.
630   /// Note that \p EntryVal doesn't have to be an induction variable - it
631   /// can also be a truncate instruction.
632   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
633                         const InductionDescriptor &ID, VPValue *Def,
634                         VPValue *CastDef, VPTransformState &State);
635 
636   /// Create a vector induction phi node based on an existing scalar one. \p
637   /// EntryVal is the value from the original loop that maps to the vector phi
638   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
639   /// truncate instruction, instead of widening the original IV, we widen a
640   /// version of the IV truncated to \p EntryVal's type.
641   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
642                                        Value *Step, Value *Start,
643                                        Instruction *EntryVal, VPValue *Def,
644                                        VPValue *CastDef,
645                                        VPTransformState &State);
646 
647   /// Returns true if an instruction \p I should be scalarized instead of
648   /// vectorized for the chosen vectorization factor.
649   bool shouldScalarizeInstruction(Instruction *I) const;
650 
651   /// Returns true if we should generate a scalar version of \p IV.
652   bool needsScalarInduction(Instruction *IV) const;
653 
654   /// If there is a cast involved in the induction variable \p ID, which should
655   /// be ignored in the vectorized loop body, this function records the
656   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
657   /// cast. We had already proved that the casted Phi is equal to the uncasted
658   /// Phi in the vectorized loop (under a runtime guard), and therefore
659   /// there is no need to vectorize the cast - the same value can be used in the
660   /// vector loop for both the Phi and the cast.
661   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
662   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
663   ///
664   /// \p EntryVal is the value from the original loop that maps to the vector
665   /// phi node and is used to distinguish what is the IV currently being
666   /// processed - original one (if \p EntryVal is a phi corresponding to the
667   /// original IV) or the "newly-created" one based on the proof mentioned above
668   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
669   /// latter case \p EntryVal is a TruncInst and we must not record anything for
670   /// that IV, but it's error-prone to expect callers of this routine to care
671   /// about that, hence this explicit parameter.
672   void recordVectorLoopValueForInductionCast(
673       const InductionDescriptor &ID, const Instruction *EntryVal,
674       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
675       unsigned Part, unsigned Lane = UINT_MAX);
676 
677   /// Generate a shuffle sequence that will reverse the vector Vec.
678   virtual Value *reverseVector(Value *Vec);
679 
680   /// Returns (and creates if needed) the original loop trip count.
681   Value *getOrCreateTripCount(Loop *NewLoop);
682 
683   /// Returns (and creates if needed) the trip count of the widened loop.
684   Value *getOrCreateVectorTripCount(Loop *NewLoop);
685 
686   /// Returns a bitcasted value to the requested vector type.
687   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
688   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
689                                 const DataLayout &DL);
690 
691   /// Emit a bypass check to see if the vector trip count is zero, including if
692   /// it overflows.
693   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
694 
695   /// Emit a bypass check to see if all of the SCEV assumptions we've
696   /// had to make are correct. Returns the block containing the checks or
697   /// nullptr if no checks have been added.
698   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
699 
700   /// Emit bypass checks to check any memory assumptions we may have made.
701   /// Returns the block containing the checks or nullptr if no checks have been
702   /// added.
703   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
704 
705   /// Compute the transformed value of Index at offset StartValue using step
706   /// StepValue.
707   /// For integer induction, returns StartValue + Index * StepValue.
708   /// For pointer induction, returns StartValue[Index * StepValue].
709   /// FIXME: The newly created binary instructions should contain nsw/nuw
710   /// flags, which can be found from the original scalar operations.
711   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
712                               const DataLayout &DL,
713                               const InductionDescriptor &ID) const;
714 
715   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
716   /// vector loop preheader, middle block and scalar preheader. Also
717   /// allocate a loop object for the new vector loop and return it.
718   Loop *createVectorLoopSkeleton(StringRef Prefix);
719 
720   /// Create new phi nodes for the induction variables to resume iteration count
721   /// in the scalar epilogue, from where the vectorized loop left off (given by
722   /// \p VectorTripCount).
723   /// In cases where the loop skeleton is more complicated (eg. epilogue
724   /// vectorization) and the resume values can come from an additional bypass
725   /// block, the \p AdditionalBypass pair provides information about the bypass
726   /// block and the end value on the edge from bypass to this loop.
727   void createInductionResumeValues(
728       Loop *L, Value *VectorTripCount,
729       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
730 
731   /// Complete the loop skeleton by adding debug MDs, creating appropriate
732   /// conditional branches in the middle block, preparing the builder and
733   /// running the verifier. Take in the vector loop \p L as argument, and return
734   /// the preheader of the completed vector loop.
735   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
736 
737   /// Add additional metadata to \p To that was not present on \p Orig.
738   ///
739   /// Currently this is used to add the noalias annotations based on the
740   /// inserted memchecks.  Use this for instructions that are *cloned* into the
741   /// vector loop.
742   void addNewMetadata(Instruction *To, const Instruction *Orig);
743 
744   /// Add metadata from one instruction to another.
745   ///
746   /// This includes both the original MDs from \p From and additional ones (\see
747   /// addNewMetadata).  Use this for *newly created* instructions in the vector
748   /// loop.
749   void addMetadata(Instruction *To, Instruction *From);
750 
751   /// Similar to the previous function but it adds the metadata to a
752   /// vector of instructions.
753   void addMetadata(ArrayRef<Value *> To, Instruction *From);
754 
755   /// Allow subclasses to override and print debug traces before/after vplan
756   /// execution, when trace information is requested.
757   virtual void printDebugTracesAtStart(){};
758   virtual void printDebugTracesAtEnd(){};
759 
760   /// The original loop.
761   Loop *OrigLoop;
762 
763   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
764   /// dynamic knowledge to simplify SCEV expressions and converts them to a
765   /// more usable form.
766   PredicatedScalarEvolution &PSE;
767 
768   /// Loop Info.
769   LoopInfo *LI;
770 
771   /// Dominator Tree.
772   DominatorTree *DT;
773 
774   /// Alias Analysis.
775   AAResults *AA;
776 
777   /// Target Library Info.
778   const TargetLibraryInfo *TLI;
779 
780   /// Target Transform Info.
781   const TargetTransformInfo *TTI;
782 
783   /// Assumption Cache.
784   AssumptionCache *AC;
785 
786   /// Interface to emit optimization remarks.
787   OptimizationRemarkEmitter *ORE;
788 
789   /// LoopVersioning.  It's only set up (non-null) if memchecks were
790   /// used.
791   ///
792   /// This is currently only used to add no-alias metadata based on the
793   /// memchecks.  The actually versioning is performed manually.
794   std::unique_ptr<LoopVersioning> LVer;
795 
796   /// The vectorization SIMD factor to use. Each vector will have this many
797   /// vector elements.
798   ElementCount VF;
799 
800   /// The vectorization unroll factor to use. Each scalar is vectorized to this
801   /// many different vector instructions.
802   unsigned UF;
803 
804   /// The builder that we use
805   IRBuilder<> Builder;
806 
807   // --- Vectorization state ---
808 
809   /// The vector-loop preheader.
810   BasicBlock *LoopVectorPreHeader;
811 
812   /// The scalar-loop preheader.
813   BasicBlock *LoopScalarPreHeader;
814 
815   /// Middle Block between the vector and the scalar.
816   BasicBlock *LoopMiddleBlock;
817 
818   /// The unique ExitBlock of the scalar loop if one exists.  Note that
819   /// there can be multiple exiting edges reaching this block.
820   BasicBlock *LoopExitBlock;
821 
822   /// The vector loop body.
823   BasicBlock *LoopVectorBody;
824 
825   /// The scalar loop body.
826   BasicBlock *LoopScalarBody;
827 
828   /// A list of all bypass blocks. The first block is the entry of the loop.
829   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
830 
831   /// The new Induction variable which was added to the new block.
832   PHINode *Induction = nullptr;
833 
834   /// The induction variable of the old basic block.
835   PHINode *OldInduction = nullptr;
836 
837   /// Store instructions that were predicated.
838   SmallVector<Instruction *, 4> PredicatedInstructions;
839 
840   /// Trip count of the original loop.
841   Value *TripCount = nullptr;
842 
843   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
844   Value *VectorTripCount = nullptr;
845 
846   /// The legality analysis.
847   LoopVectorizationLegality *Legal;
848 
849   /// The profitablity analysis.
850   LoopVectorizationCostModel *Cost;
851 
852   // Record whether runtime checks are added.
853   bool AddedSafetyChecks = false;
854 
855   // Holds the end values for each induction variable. We save the end values
856   // so we can later fix-up the external users of the induction variables.
857   DenseMap<PHINode *, Value *> IVEndValues;
858 
859   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
860   // fixed up at the end of vector code generation.
861   SmallVector<PHINode *, 8> OrigPHIsToFix;
862 
863   /// BFI and PSI are used to check for profile guided size optimizations.
864   BlockFrequencyInfo *BFI;
865   ProfileSummaryInfo *PSI;
866 
867   // Whether this loop should be optimized for size based on profile guided size
868   // optimizatios.
869   bool OptForSizeBasedOnProfile;
870 
871   /// Structure to hold information about generated runtime checks, responsible
872   /// for cleaning the checks, if vectorization turns out unprofitable.
873   GeneratedRTChecks &RTChecks;
874 };
875 
876 class InnerLoopUnroller : public InnerLoopVectorizer {
877 public:
878   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
879                     LoopInfo *LI, DominatorTree *DT,
880                     const TargetLibraryInfo *TLI,
881                     const TargetTransformInfo *TTI, AssumptionCache *AC,
882                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
883                     LoopVectorizationLegality *LVL,
884                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
885                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
886       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
887                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
888                             BFI, PSI, Check) {}
889 
890 private:
891   Value *getBroadcastInstrs(Value *V) override;
892   Value *getStepVector(
893       Value *Val, Value *StartIdx, Value *Step,
894       Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override;
895   Value *reverseVector(Value *Vec) override;
896 };
897 
898 /// Encapsulate information regarding vectorization of a loop and its epilogue.
899 /// This information is meant to be updated and used across two stages of
900 /// epilogue vectorization.
901 struct EpilogueLoopVectorizationInfo {
902   ElementCount MainLoopVF = ElementCount::getFixed(0);
903   unsigned MainLoopUF = 0;
904   ElementCount EpilogueVF = ElementCount::getFixed(0);
905   unsigned EpilogueUF = 0;
906   BasicBlock *MainLoopIterationCountCheck = nullptr;
907   BasicBlock *EpilogueIterationCountCheck = nullptr;
908   BasicBlock *SCEVSafetyCheck = nullptr;
909   BasicBlock *MemSafetyCheck = nullptr;
910   Value *TripCount = nullptr;
911   Value *VectorTripCount = nullptr;
912 
913   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
914                                 ElementCount EVF, unsigned EUF)
915       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1107   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1108   Constant *StepVal = ConstantInt::get(
1109       Step->getType(),
1110       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1111   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1112 }
1113 
1114 namespace llvm {
1115 
1116 /// Return the runtime value for VF.
1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1118   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1119   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1120 }
1121 
1122 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1123   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1124   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1125   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1126   return B.CreateUIToFP(RuntimeVF, FTy);
1127 }
1128 
1129 void reportVectorizationFailure(const StringRef DebugMsg,
1130                                 const StringRef OREMsg, const StringRef ORETag,
1131                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1132                                 Instruction *I) {
1133   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1134   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1135   ORE->emit(
1136       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1137       << "loop not vectorized: " << OREMsg);
1138 }
1139 
1140 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1141                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1142                              Instruction *I) {
1143   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1144   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1145   ORE->emit(
1146       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1147       << Msg);
1148 }
1149 
1150 } // end namespace llvm
1151 
1152 #ifndef NDEBUG
1153 /// \return string containing a file name and a line # for the given loop.
1154 static std::string getDebugLocString(const Loop *L) {
1155   std::string Result;
1156   if (L) {
1157     raw_string_ostream OS(Result);
1158     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1159       LoopDbgLoc.print(OS);
1160     else
1161       // Just print the module name.
1162       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1163     OS.flush();
1164   }
1165   return Result;
1166 }
1167 #endif
1168 
1169 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1170                                          const Instruction *Orig) {
1171   // If the loop was versioned with memchecks, add the corresponding no-alias
1172   // metadata.
1173   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1174     LVer->annotateInstWithNoAlias(To, Orig);
1175 }
1176 
1177 void InnerLoopVectorizer::addMetadata(Instruction *To,
1178                                       Instruction *From) {
1179   propagateMetadata(To, From);
1180   addNewMetadata(To, From);
1181 }
1182 
1183 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1184                                       Instruction *From) {
1185   for (Value *V : To) {
1186     if (Instruction *I = dyn_cast<Instruction>(V))
1187       addMetadata(I, From);
1188   }
1189 }
1190 
1191 namespace llvm {
1192 
1193 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1194 // lowered.
1195 enum ScalarEpilogueLowering {
1196 
1197   // The default: allowing scalar epilogues.
1198   CM_ScalarEpilogueAllowed,
1199 
1200   // Vectorization with OptForSize: don't allow epilogues.
1201   CM_ScalarEpilogueNotAllowedOptSize,
1202 
1203   // A special case of vectorisation with OptForSize: loops with a very small
1204   // trip count are considered for vectorization under OptForSize, thereby
1205   // making sure the cost of their loop body is dominant, free of runtime
1206   // guards and scalar iteration overheads.
1207   CM_ScalarEpilogueNotAllowedLowTripLoop,
1208 
1209   // Loop hint predicate indicating an epilogue is undesired.
1210   CM_ScalarEpilogueNotNeededUsePredicate,
1211 
1212   // Directive indicating we must either tail fold or not vectorize
1213   CM_ScalarEpilogueNotAllowedUsePredicate
1214 };
1215 
1216 /// ElementCountComparator creates a total ordering for ElementCount
1217 /// for the purposes of using it in a set structure.
1218 struct ElementCountComparator {
1219   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1220     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1221            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1222   }
1223 };
1224 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1225 
1226 /// LoopVectorizationCostModel - estimates the expected speedups due to
1227 /// vectorization.
1228 /// In many cases vectorization is not profitable. This can happen because of
1229 /// a number of reasons. In this class we mainly attempt to predict the
1230 /// expected speedup/slowdowns due to the supported instruction set. We use the
1231 /// TargetTransformInfo to query the different backends for the cost of
1232 /// different operations.
1233 class LoopVectorizationCostModel {
1234 public:
1235   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1236                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1237                              LoopVectorizationLegality *Legal,
1238                              const TargetTransformInfo &TTI,
1239                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1240                              AssumptionCache *AC,
1241                              OptimizationRemarkEmitter *ORE, const Function *F,
1242                              const LoopVectorizeHints *Hints,
1243                              InterleavedAccessInfo &IAI)
1244       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1245         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1246         Hints(Hints), InterleaveInfo(IAI) {}
1247 
1248   /// \return An upper bound for the vectorization factors (both fixed and
1249   /// scalable). If the factors are 0, vectorization and interleaving should be
1250   /// avoided up front.
1251   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1252 
1253   /// \return True if runtime checks are required for vectorization, and false
1254   /// otherwise.
1255   bool runtimeChecksRequired();
1256 
1257   /// \return The most profitable vectorization factor and the cost of that VF.
1258   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1259   /// then this vectorization factor will be selected if vectorization is
1260   /// possible.
1261   VectorizationFactor
1262   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1263 
1264   VectorizationFactor
1265   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1266                                     const LoopVectorizationPlanner &LVP);
1267 
1268   /// Setup cost-based decisions for user vectorization factor.
1269   /// \return true if the UserVF is a feasible VF to be chosen.
1270   bool selectUserVectorizationFactor(ElementCount UserVF) {
1271     collectUniformsAndScalars(UserVF);
1272     collectInstsToScalarize(UserVF);
1273     return expectedCost(UserVF).first.isValid();
1274   }
1275 
1276   /// \return The size (in bits) of the smallest and widest types in the code
1277   /// that needs to be vectorized. We ignore values that remain scalar such as
1278   /// 64 bit loop indices.
1279   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1280 
1281   /// \return The desired interleave count.
1282   /// If interleave count has been specified by metadata it will be returned.
1283   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1284   /// are the selected vectorization factor and the cost of the selected VF.
1285   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1286 
1287   /// Memory access instruction may be vectorized in more than one way.
1288   /// Form of instruction after vectorization depends on cost.
1289   /// This function takes cost-based decisions for Load/Store instructions
1290   /// and collects them in a map. This decisions map is used for building
1291   /// the lists of loop-uniform and loop-scalar instructions.
1292   /// The calculated cost is saved with widening decision in order to
1293   /// avoid redundant calculations.
1294   void setCostBasedWideningDecision(ElementCount VF);
1295 
1296   /// A struct that represents some properties of the register usage
1297   /// of a loop.
1298   struct RegisterUsage {
1299     /// Holds the number of loop invariant values that are used in the loop.
1300     /// The key is ClassID of target-provided register class.
1301     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1302     /// Holds the maximum number of concurrent live intervals in the loop.
1303     /// The key is ClassID of target-provided register class.
1304     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1305   };
1306 
1307   /// \return Returns information about the register usages of the loop for the
1308   /// given vectorization factors.
1309   SmallVector<RegisterUsage, 8>
1310   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1311 
1312   /// Collect values we want to ignore in the cost model.
1313   void collectValuesToIgnore();
1314 
1315   /// Collect all element types in the loop for which widening is needed.
1316   void collectElementTypesForWidening();
1317 
1318   /// Split reductions into those that happen in the loop, and those that happen
1319   /// outside. In loop reductions are collected into InLoopReductionChains.
1320   void collectInLoopReductions();
1321 
1322   /// Returns true if we should use strict in-order reductions for the given
1323   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1324   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1325   /// of FP operations.
1326   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1327     return !Hints->allowReordering() && RdxDesc.isOrdered();
1328   }
1329 
1330   /// \returns The smallest bitwidth each instruction can be represented with.
1331   /// The vector equivalents of these instructions should be truncated to this
1332   /// type.
1333   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1334     return MinBWs;
1335   }
1336 
1337   /// \returns True if it is more profitable to scalarize instruction \p I for
1338   /// vectorization factor \p VF.
1339   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1340     assert(VF.isVector() &&
1341            "Profitable to scalarize relevant only for VF > 1.");
1342 
1343     // Cost model is not run in the VPlan-native path - return conservative
1344     // result until this changes.
1345     if (EnableVPlanNativePath)
1346       return false;
1347 
1348     auto Scalars = InstsToScalarize.find(VF);
1349     assert(Scalars != InstsToScalarize.end() &&
1350            "VF not yet analyzed for scalarization profitability");
1351     return Scalars->second.find(I) != Scalars->second.end();
1352   }
1353 
1354   /// Returns true if \p I is known to be uniform after vectorization.
1355   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1356     if (VF.isScalar())
1357       return true;
1358 
1359     // Cost model is not run in the VPlan-native path - return conservative
1360     // result until this changes.
1361     if (EnableVPlanNativePath)
1362       return false;
1363 
1364     auto UniformsPerVF = Uniforms.find(VF);
1365     assert(UniformsPerVF != Uniforms.end() &&
1366            "VF not yet analyzed for uniformity");
1367     return UniformsPerVF->second.count(I);
1368   }
1369 
1370   /// Returns true if \p I is known to be scalar after vectorization.
1371   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1372     if (VF.isScalar())
1373       return true;
1374 
1375     // Cost model is not run in the VPlan-native path - return conservative
1376     // result until this changes.
1377     if (EnableVPlanNativePath)
1378       return false;
1379 
1380     auto ScalarsPerVF = Scalars.find(VF);
1381     assert(ScalarsPerVF != Scalars.end() &&
1382            "Scalar values are not calculated for VF");
1383     return ScalarsPerVF->second.count(I);
1384   }
1385 
1386   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1387   /// for vectorization factor \p VF.
1388   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1389     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1390            !isProfitableToScalarize(I, VF) &&
1391            !isScalarAfterVectorization(I, VF);
1392   }
1393 
1394   /// Decision that was taken during cost calculation for memory instruction.
1395   enum InstWidening {
1396     CM_Unknown,
1397     CM_Widen,         // For consecutive accesses with stride +1.
1398     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1399     CM_Interleave,
1400     CM_GatherScatter,
1401     CM_Scalarize
1402   };
1403 
1404   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1405   /// instruction \p I and vector width \p VF.
1406   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1407                            InstructionCost Cost) {
1408     assert(VF.isVector() && "Expected VF >=2");
1409     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1410   }
1411 
1412   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1413   /// interleaving group \p Grp and vector width \p VF.
1414   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1415                            ElementCount VF, InstWidening W,
1416                            InstructionCost Cost) {
1417     assert(VF.isVector() && "Expected VF >=2");
1418     /// Broadcast this decicion to all instructions inside the group.
1419     /// But the cost will be assigned to one instruction only.
1420     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1421       if (auto *I = Grp->getMember(i)) {
1422         if (Grp->getInsertPos() == I)
1423           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1424         else
1425           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1426       }
1427     }
1428   }
1429 
1430   /// Return the cost model decision for the given instruction \p I and vector
1431   /// width \p VF. Return CM_Unknown if this instruction did not pass
1432   /// through the cost modeling.
1433   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1434     assert(VF.isVector() && "Expected VF to be a vector VF");
1435     // Cost model is not run in the VPlan-native path - return conservative
1436     // result until this changes.
1437     if (EnableVPlanNativePath)
1438       return CM_GatherScatter;
1439 
1440     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1441     auto Itr = WideningDecisions.find(InstOnVF);
1442     if (Itr == WideningDecisions.end())
1443       return CM_Unknown;
1444     return Itr->second.first;
1445   }
1446 
1447   /// Return the vectorization cost for the given instruction \p I and vector
1448   /// width \p VF.
1449   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1450     assert(VF.isVector() && "Expected VF >=2");
1451     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1452     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1453            "The cost is not calculated");
1454     return WideningDecisions[InstOnVF].second;
1455   }
1456 
1457   /// Return True if instruction \p I is an optimizable truncate whose operand
1458   /// is an induction variable. Such a truncate will be removed by adding a new
1459   /// induction variable with the destination type.
1460   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1461     // If the instruction is not a truncate, return false.
1462     auto *Trunc = dyn_cast<TruncInst>(I);
1463     if (!Trunc)
1464       return false;
1465 
1466     // Get the source and destination types of the truncate.
1467     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1468     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1469 
1470     // If the truncate is free for the given types, return false. Replacing a
1471     // free truncate with an induction variable would add an induction variable
1472     // update instruction to each iteration of the loop. We exclude from this
1473     // check the primary induction variable since it will need an update
1474     // instruction regardless.
1475     Value *Op = Trunc->getOperand(0);
1476     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1477       return false;
1478 
1479     // If the truncated value is not an induction variable, return false.
1480     return Legal->isInductionPhi(Op);
1481   }
1482 
1483   /// Collects the instructions to scalarize for each predicated instruction in
1484   /// the loop.
1485   void collectInstsToScalarize(ElementCount VF);
1486 
1487   /// Collect Uniform and Scalar values for the given \p VF.
1488   /// The sets depend on CM decision for Load/Store instructions
1489   /// that may be vectorized as interleave, gather-scatter or scalarized.
1490   void collectUniformsAndScalars(ElementCount VF) {
1491     // Do the analysis once.
1492     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1493       return;
1494     setCostBasedWideningDecision(VF);
1495     collectLoopUniforms(VF);
1496     collectLoopScalars(VF);
1497   }
1498 
1499   /// Returns true if the target machine supports masked store operation
1500   /// for the given \p DataType and kind of access to \p Ptr.
1501   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1502     return Legal->isConsecutivePtr(DataType, Ptr) &&
1503            TTI.isLegalMaskedStore(DataType, Alignment);
1504   }
1505 
1506   /// Returns true if the target machine supports masked load operation
1507   /// for the given \p DataType and kind of access to \p Ptr.
1508   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1509     return Legal->isConsecutivePtr(DataType, Ptr) &&
1510            TTI.isLegalMaskedLoad(DataType, Alignment);
1511   }
1512 
1513   /// Returns true if the target machine can represent \p V as a masked gather
1514   /// or scatter operation.
1515   bool isLegalGatherOrScatter(Value *V) {
1516     bool LI = isa<LoadInst>(V);
1517     bool SI = isa<StoreInst>(V);
1518     if (!LI && !SI)
1519       return false;
1520     auto *Ty = getLoadStoreType(V);
1521     Align Align = getLoadStoreAlignment(V);
1522     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1523            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1524   }
1525 
1526   /// Returns true if the target machine supports all of the reduction
1527   /// variables found for the given VF.
1528   bool canVectorizeReductions(ElementCount VF) const {
1529     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1530       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1531       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1532     }));
1533   }
1534 
1535   /// Returns true if \p I is an instruction that will be scalarized with
1536   /// predication. Such instructions include conditional stores and
1537   /// instructions that may divide by zero.
1538   /// If a non-zero VF has been calculated, we check if I will be scalarized
1539   /// predication for that VF.
1540   bool isScalarWithPredication(Instruction *I) const;
1541 
1542   // Returns true if \p I is an instruction that will be predicated either
1543   // through scalar predication or masked load/store or masked gather/scatter.
1544   // Superset of instructions that return true for isScalarWithPredication.
1545   bool isPredicatedInst(Instruction *I) {
1546     if (!blockNeedsPredication(I->getParent()))
1547       return false;
1548     // Loads and stores that need some form of masked operation are predicated
1549     // instructions.
1550     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1551       return Legal->isMaskRequired(I);
1552     return isScalarWithPredication(I);
1553   }
1554 
1555   /// Returns true if \p I is a memory instruction with consecutive memory
1556   /// access that can be widened.
1557   bool
1558   memoryInstructionCanBeWidened(Instruction *I,
1559                                 ElementCount VF = ElementCount::getFixed(1));
1560 
1561   /// Returns true if \p I is a memory instruction in an interleaved-group
1562   /// of memory accesses that can be vectorized with wide vector loads/stores
1563   /// and shuffles.
1564   bool
1565   interleavedAccessCanBeWidened(Instruction *I,
1566                                 ElementCount VF = ElementCount::getFixed(1));
1567 
1568   /// Check if \p Instr belongs to any interleaved access group.
1569   bool isAccessInterleaved(Instruction *Instr) {
1570     return InterleaveInfo.isInterleaved(Instr);
1571   }
1572 
1573   /// Get the interleaved access group that \p Instr belongs to.
1574   const InterleaveGroup<Instruction> *
1575   getInterleavedAccessGroup(Instruction *Instr) {
1576     return InterleaveInfo.getInterleaveGroup(Instr);
1577   }
1578 
1579   /// Returns true if we're required to use a scalar epilogue for at least
1580   /// the final iteration of the original loop.
1581   bool requiresScalarEpilogue(ElementCount VF) const {
1582     if (!isScalarEpilogueAllowed())
1583       return false;
1584     // If we might exit from anywhere but the latch, must run the exiting
1585     // iteration in scalar form.
1586     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1587       return true;
1588     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1589   }
1590 
1591   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1592   /// loop hint annotation.
1593   bool isScalarEpilogueAllowed() const {
1594     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1595   }
1596 
1597   /// Returns true if all loop blocks should be masked to fold tail loop.
1598   bool foldTailByMasking() const { return FoldTailByMasking; }
1599 
1600   bool blockNeedsPredication(BasicBlock *BB) const {
1601     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1602   }
1603 
1604   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1605   /// nodes to the chain of instructions representing the reductions. Uses a
1606   /// MapVector to ensure deterministic iteration order.
1607   using ReductionChainMap =
1608       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1609 
1610   /// Return the chain of instructions representing an inloop reduction.
1611   const ReductionChainMap &getInLoopReductionChains() const {
1612     return InLoopReductionChains;
1613   }
1614 
1615   /// Returns true if the Phi is part of an inloop reduction.
1616   bool isInLoopReduction(PHINode *Phi) const {
1617     return InLoopReductionChains.count(Phi);
1618   }
1619 
1620   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1621   /// with factor VF.  Return the cost of the instruction, including
1622   /// scalarization overhead if it's needed.
1623   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1624 
1625   /// Estimate cost of a call instruction CI if it were vectorized with factor
1626   /// VF. Return the cost of the instruction, including scalarization overhead
1627   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1628   /// scalarized -
1629   /// i.e. either vector version isn't available, or is too expensive.
1630   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1631                                     bool &NeedToScalarize) const;
1632 
1633   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1634   /// that of B.
1635   bool isMoreProfitable(const VectorizationFactor &A,
1636                         const VectorizationFactor &B) const;
1637 
1638   /// Invalidates decisions already taken by the cost model.
1639   void invalidateCostModelingDecisions() {
1640     WideningDecisions.clear();
1641     Uniforms.clear();
1642     Scalars.clear();
1643   }
1644 
1645 private:
1646   unsigned NumPredStores = 0;
1647 
1648   /// \return An upper bound for the vectorization factors for both
1649   /// fixed and scalable vectorization, where the minimum-known number of
1650   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1651   /// disabled or unsupported, then the scalable part will be equal to
1652   /// ElementCount::getScalable(0).
1653   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1654                                            ElementCount UserVF);
1655 
1656   /// \return the maximized element count based on the targets vector
1657   /// registers and the loop trip-count, but limited to a maximum safe VF.
1658   /// This is a helper function of computeFeasibleMaxVF.
1659   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1660   /// issue that occurred on one of the buildbots which cannot be reproduced
1661   /// without having access to the properietary compiler (see comments on
1662   /// D98509). The issue is currently under investigation and this workaround
1663   /// will be removed as soon as possible.
1664   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1665                                        unsigned SmallestType,
1666                                        unsigned WidestType,
1667                                        const ElementCount &MaxSafeVF);
1668 
1669   /// \return the maximum legal scalable VF, based on the safe max number
1670   /// of elements.
1671   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1672 
1673   /// The vectorization cost is a combination of the cost itself and a boolean
1674   /// indicating whether any of the contributing operations will actually
1675   /// operate on vector values after type legalization in the backend. If this
1676   /// latter value is false, then all operations will be scalarized (i.e. no
1677   /// vectorization has actually taken place).
1678   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1679 
1680   /// Returns the expected execution cost. The unit of the cost does
1681   /// not matter because we use the 'cost' units to compare different
1682   /// vector widths. The cost that is returned is *not* normalized by
1683   /// the factor width. If \p Invalid is not nullptr, this function
1684   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1685   /// each instruction that has an Invalid cost for the given VF.
1686   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1687   VectorizationCostTy
1688   expectedCost(ElementCount VF,
1689                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1690 
1691   /// Returns the execution time cost of an instruction for a given vector
1692   /// width. Vector width of one means scalar.
1693   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost-computation logic from getInstructionCost which provides
1696   /// the vector type as an output parameter.
1697   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1698                                      Type *&VectorTy);
1699 
1700   /// Return the cost of instructions in an inloop reduction pattern, if I is
1701   /// part of that pattern.
1702   Optional<InstructionCost>
1703   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1704                           TTI::TargetCostKind CostKind);
1705 
1706   /// Calculate vectorization cost of memory instruction \p I.
1707   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1708 
1709   /// The cost computation for scalarized memory instruction.
1710   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1711 
1712   /// The cost computation for interleaving group of memory instructions.
1713   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1714 
1715   /// The cost computation for Gather/Scatter instruction.
1716   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1717 
1718   /// The cost computation for widening instruction \p I with consecutive
1719   /// memory access.
1720   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1721 
1722   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1723   /// Load: scalar load + broadcast.
1724   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1725   /// element)
1726   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1727 
1728   /// Estimate the overhead of scalarizing an instruction. This is a
1729   /// convenience wrapper for the type-based getScalarizationOverhead API.
1730   InstructionCost getScalarizationOverhead(Instruction *I,
1731                                            ElementCount VF) const;
1732 
1733   /// Returns whether the instruction is a load or store and will be a emitted
1734   /// as a vector operation.
1735   bool isConsecutiveLoadOrStore(Instruction *I);
1736 
1737   /// Returns true if an artificially high cost for emulated masked memrefs
1738   /// should be used.
1739   bool useEmulatedMaskMemRefHack(Instruction *I);
1740 
1741   /// Map of scalar integer values to the smallest bitwidth they can be legally
1742   /// represented as. The vector equivalents of these values should be truncated
1743   /// to this type.
1744   MapVector<Instruction *, uint64_t> MinBWs;
1745 
1746   /// A type representing the costs for instructions if they were to be
1747   /// scalarized rather than vectorized. The entries are Instruction-Cost
1748   /// pairs.
1749   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1750 
1751   /// A set containing all BasicBlocks that are known to present after
1752   /// vectorization as a predicated block.
1753   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1754 
1755   /// Records whether it is allowed to have the original scalar loop execute at
1756   /// least once. This may be needed as a fallback loop in case runtime
1757   /// aliasing/dependence checks fail, or to handle the tail/remainder
1758   /// iterations when the trip count is unknown or doesn't divide by the VF,
1759   /// or as a peel-loop to handle gaps in interleave-groups.
1760   /// Under optsize and when the trip count is very small we don't allow any
1761   /// iterations to execute in the scalar loop.
1762   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1763 
1764   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1765   bool FoldTailByMasking = false;
1766 
1767   /// A map holding scalar costs for different vectorization factors. The
1768   /// presence of a cost for an instruction in the mapping indicates that the
1769   /// instruction will be scalarized when vectorizing with the associated
1770   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1771   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1772 
1773   /// Holds the instructions known to be uniform after vectorization.
1774   /// The data is collected per VF.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1776 
1777   /// Holds the instructions known to be scalar after vectorization.
1778   /// The data is collected per VF.
1779   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1780 
1781   /// Holds the instructions (address computations) that are forced to be
1782   /// scalarized.
1783   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1784 
1785   /// PHINodes of the reductions that should be expanded in-loop along with
1786   /// their associated chains of reduction operations, in program order from top
1787   /// (PHI) to bottom
1788   ReductionChainMap InLoopReductionChains;
1789 
1790   /// A Map of inloop reduction operations and their immediate chain operand.
1791   /// FIXME: This can be removed once reductions can be costed correctly in
1792   /// vplan. This was added to allow quick lookup to the inloop operations,
1793   /// without having to loop through InLoopReductionChains.
1794   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1795 
1796   /// Returns the expected difference in cost from scalarizing the expression
1797   /// feeding a predicated instruction \p PredInst. The instructions to
1798   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1799   /// non-negative return value implies the expression will be scalarized.
1800   /// Currently, only single-use chains are considered for scalarization.
1801   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1802                               ElementCount VF);
1803 
1804   /// Collect the instructions that are uniform after vectorization. An
1805   /// instruction is uniform if we represent it with a single scalar value in
1806   /// the vectorized loop corresponding to each vector iteration. Examples of
1807   /// uniform instructions include pointer operands of consecutive or
1808   /// interleaved memory accesses. Note that although uniformity implies an
1809   /// instruction will be scalar, the reverse is not true. In general, a
1810   /// scalarized instruction will be represented by VF scalar values in the
1811   /// vectorized loop, each corresponding to an iteration of the original
1812   /// scalar loop.
1813   void collectLoopUniforms(ElementCount VF);
1814 
1815   /// Collect the instructions that are scalar after vectorization. An
1816   /// instruction is scalar if it is known to be uniform or will be scalarized
1817   /// during vectorization. Non-uniform scalarized instructions will be
1818   /// represented by VF values in the vectorized loop, each corresponding to an
1819   /// iteration of the original scalar loop.
1820   void collectLoopScalars(ElementCount VF);
1821 
1822   /// Keeps cost model vectorization decision and cost for instructions.
1823   /// Right now it is used for memory instructions only.
1824   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1825                                 std::pair<InstWidening, InstructionCost>>;
1826 
1827   DecisionList WideningDecisions;
1828 
1829   /// Returns true if \p V is expected to be vectorized and it needs to be
1830   /// extracted.
1831   bool needsExtract(Value *V, ElementCount VF) const {
1832     Instruction *I = dyn_cast<Instruction>(V);
1833     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1834         TheLoop->isLoopInvariant(I))
1835       return false;
1836 
1837     // Assume we can vectorize V (and hence we need extraction) if the
1838     // scalars are not computed yet. This can happen, because it is called
1839     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1840     // the scalars are collected. That should be a safe assumption in most
1841     // cases, because we check if the operands have vectorizable types
1842     // beforehand in LoopVectorizationLegality.
1843     return Scalars.find(VF) == Scalars.end() ||
1844            !isScalarAfterVectorization(I, VF);
1845   };
1846 
1847   /// Returns a range containing only operands needing to be extracted.
1848   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1849                                                    ElementCount VF) const {
1850     return SmallVector<Value *, 4>(make_filter_range(
1851         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1852   }
1853 
1854   /// Determines if we have the infrastructure to vectorize loop \p L and its
1855   /// epilogue, assuming the main loop is vectorized by \p VF.
1856   bool isCandidateForEpilogueVectorization(const Loop &L,
1857                                            const ElementCount VF) const;
1858 
1859   /// Returns true if epilogue vectorization is considered profitable, and
1860   /// false otherwise.
1861   /// \p VF is the vectorization factor chosen for the original loop.
1862   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1863 
1864 public:
1865   /// The loop that we evaluate.
1866   Loop *TheLoop;
1867 
1868   /// Predicated scalar evolution analysis.
1869   PredicatedScalarEvolution &PSE;
1870 
1871   /// Loop Info analysis.
1872   LoopInfo *LI;
1873 
1874   /// Vectorization legality.
1875   LoopVectorizationLegality *Legal;
1876 
1877   /// Vector target information.
1878   const TargetTransformInfo &TTI;
1879 
1880   /// Target Library Info.
1881   const TargetLibraryInfo *TLI;
1882 
1883   /// Demanded bits analysis.
1884   DemandedBits *DB;
1885 
1886   /// Assumption cache.
1887   AssumptionCache *AC;
1888 
1889   /// Interface to emit optimization remarks.
1890   OptimizationRemarkEmitter *ORE;
1891 
1892   const Function *TheFunction;
1893 
1894   /// Loop Vectorize Hint.
1895   const LoopVectorizeHints *Hints;
1896 
1897   /// The interleave access information contains groups of interleaved accesses
1898   /// with the same stride and close to each other.
1899   InterleavedAccessInfo &InterleaveInfo;
1900 
1901   /// Values to ignore in the cost model.
1902   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1903 
1904   /// Values to ignore in the cost model when VF > 1.
1905   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1906 
1907   /// All element types found in the loop.
1908   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1909 
1910   /// Profitable vector factors.
1911   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1912 };
1913 } // end namespace llvm
1914 
1915 /// Helper struct to manage generating runtime checks for vectorization.
1916 ///
1917 /// The runtime checks are created up-front in temporary blocks to allow better
1918 /// estimating the cost and un-linked from the existing IR. After deciding to
1919 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1920 /// temporary blocks are completely removed.
1921 class GeneratedRTChecks {
1922   /// Basic block which contains the generated SCEV checks, if any.
1923   BasicBlock *SCEVCheckBlock = nullptr;
1924 
1925   /// The value representing the result of the generated SCEV checks. If it is
1926   /// nullptr, either no SCEV checks have been generated or they have been used.
1927   Value *SCEVCheckCond = nullptr;
1928 
1929   /// Basic block which contains the generated memory runtime checks, if any.
1930   BasicBlock *MemCheckBlock = nullptr;
1931 
1932   /// The value representing the result of the generated memory runtime checks.
1933   /// If it is nullptr, either no memory runtime checks have been generated or
1934   /// they have been used.
1935   Value *MemRuntimeCheckCond = nullptr;
1936 
1937   DominatorTree *DT;
1938   LoopInfo *LI;
1939 
1940   SCEVExpander SCEVExp;
1941   SCEVExpander MemCheckExp;
1942 
1943 public:
1944   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1945                     const DataLayout &DL)
1946       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1947         MemCheckExp(SE, DL, "scev.check") {}
1948 
1949   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1950   /// accurately estimate the cost of the runtime checks. The blocks are
1951   /// un-linked from the IR and is added back during vector code generation. If
1952   /// there is no vector code generation, the check blocks are removed
1953   /// completely.
1954   void Create(Loop *L, const LoopAccessInfo &LAI,
1955               const SCEVUnionPredicate &UnionPred) {
1956 
1957     BasicBlock *LoopHeader = L->getHeader();
1958     BasicBlock *Preheader = L->getLoopPreheader();
1959 
1960     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1961     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1962     // may be used by SCEVExpander. The blocks will be un-linked from their
1963     // predecessors and removed from LI & DT at the end of the function.
1964     if (!UnionPred.isAlwaysTrue()) {
1965       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1966                                   nullptr, "vector.scevcheck");
1967 
1968       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1969           &UnionPred, SCEVCheckBlock->getTerminator());
1970     }
1971 
1972     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1973     if (RtPtrChecking.Need) {
1974       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1975       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1976                                  "vector.memcheck");
1977 
1978       MemRuntimeCheckCond =
1979           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1980                            RtPtrChecking.getChecks(), MemCheckExp);
1981       assert(MemRuntimeCheckCond &&
1982              "no RT checks generated although RtPtrChecking "
1983              "claimed checks are required");
1984     }
1985 
1986     if (!MemCheckBlock && !SCEVCheckBlock)
1987       return;
1988 
1989     // Unhook the temporary block with the checks, update various places
1990     // accordingly.
1991     if (SCEVCheckBlock)
1992       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1993     if (MemCheckBlock)
1994       MemCheckBlock->replaceAllUsesWith(Preheader);
1995 
1996     if (SCEVCheckBlock) {
1997       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1998       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1999       Preheader->getTerminator()->eraseFromParent();
2000     }
2001     if (MemCheckBlock) {
2002       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2003       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2004       Preheader->getTerminator()->eraseFromParent();
2005     }
2006 
2007     DT->changeImmediateDominator(LoopHeader, Preheader);
2008     if (MemCheckBlock) {
2009       DT->eraseNode(MemCheckBlock);
2010       LI->removeBlock(MemCheckBlock);
2011     }
2012     if (SCEVCheckBlock) {
2013       DT->eraseNode(SCEVCheckBlock);
2014       LI->removeBlock(SCEVCheckBlock);
2015     }
2016   }
2017 
2018   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2019   /// unused.
2020   ~GeneratedRTChecks() {
2021     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2022     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2023     if (!SCEVCheckCond)
2024       SCEVCleaner.markResultUsed();
2025 
2026     if (!MemRuntimeCheckCond)
2027       MemCheckCleaner.markResultUsed();
2028 
2029     if (MemRuntimeCheckCond) {
2030       auto &SE = *MemCheckExp.getSE();
2031       // Memory runtime check generation creates compares that use expanded
2032       // values. Remove them before running the SCEVExpanderCleaners.
2033       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2034         if (MemCheckExp.isInsertedInstruction(&I))
2035           continue;
2036         SE.forgetValue(&I);
2037         SE.eraseValueFromMap(&I);
2038         I.eraseFromParent();
2039       }
2040     }
2041     MemCheckCleaner.cleanup();
2042     SCEVCleaner.cleanup();
2043 
2044     if (SCEVCheckCond)
2045       SCEVCheckBlock->eraseFromParent();
2046     if (MemRuntimeCheckCond)
2047       MemCheckBlock->eraseFromParent();
2048   }
2049 
2050   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2051   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2052   /// depending on the generated condition.
2053   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2054                              BasicBlock *LoopVectorPreHeader,
2055                              BasicBlock *LoopExitBlock) {
2056     if (!SCEVCheckCond)
2057       return nullptr;
2058     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2059       if (C->isZero())
2060         return nullptr;
2061 
2062     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2063 
2064     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2065     // Create new preheader for vector loop.
2066     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2067       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2068 
2069     SCEVCheckBlock->getTerminator()->eraseFromParent();
2070     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2071     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2072                                                 SCEVCheckBlock);
2073 
2074     DT->addNewBlock(SCEVCheckBlock, Pred);
2075     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2076 
2077     ReplaceInstWithInst(
2078         SCEVCheckBlock->getTerminator(),
2079         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2080     // Mark the check as used, to prevent it from being removed during cleanup.
2081     SCEVCheckCond = nullptr;
2082     return SCEVCheckBlock;
2083   }
2084 
2085   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2086   /// the branches to branch to the vector preheader or \p Bypass, depending on
2087   /// the generated condition.
2088   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2089                                    BasicBlock *LoopVectorPreHeader) {
2090     // Check if we generated code that checks in runtime if arrays overlap.
2091     if (!MemRuntimeCheckCond)
2092       return nullptr;
2093 
2094     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2095     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2096                                                 MemCheckBlock);
2097 
2098     DT->addNewBlock(MemCheckBlock, Pred);
2099     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2100     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2101 
2102     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2103       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2104 
2105     ReplaceInstWithInst(
2106         MemCheckBlock->getTerminator(),
2107         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2108     MemCheckBlock->getTerminator()->setDebugLoc(
2109         Pred->getTerminator()->getDebugLoc());
2110 
2111     // Mark the check as used, to prevent it from being removed during cleanup.
2112     MemRuntimeCheckCond = nullptr;
2113     return MemCheckBlock;
2114   }
2115 };
2116 
2117 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2118 // vectorization. The loop needs to be annotated with #pragma omp simd
2119 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2120 // vector length information is not provided, vectorization is not considered
2121 // explicit. Interleave hints are not allowed either. These limitations will be
2122 // relaxed in the future.
2123 // Please, note that we are currently forced to abuse the pragma 'clang
2124 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2125 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2126 // provides *explicit vectorization hints* (LV can bypass legal checks and
2127 // assume that vectorization is legal). However, both hints are implemented
2128 // using the same metadata (llvm.loop.vectorize, processed by
2129 // LoopVectorizeHints). This will be fixed in the future when the native IR
2130 // representation for pragma 'omp simd' is introduced.
2131 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2132                                    OptimizationRemarkEmitter *ORE) {
2133   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2134   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2135 
2136   // Only outer loops with an explicit vectorization hint are supported.
2137   // Unannotated outer loops are ignored.
2138   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2139     return false;
2140 
2141   Function *Fn = OuterLp->getHeader()->getParent();
2142   if (!Hints.allowVectorization(Fn, OuterLp,
2143                                 true /*VectorizeOnlyWhenForced*/)) {
2144     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2145     return false;
2146   }
2147 
2148   if (Hints.getInterleave() > 1) {
2149     // TODO: Interleave support is future work.
2150     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2151                          "outer loops.\n");
2152     Hints.emitRemarkWithHints();
2153     return false;
2154   }
2155 
2156   return true;
2157 }
2158 
2159 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2160                                   OptimizationRemarkEmitter *ORE,
2161                                   SmallVectorImpl<Loop *> &V) {
2162   // Collect inner loops and outer loops without irreducible control flow. For
2163   // now, only collect outer loops that have explicit vectorization hints. If we
2164   // are stress testing the VPlan H-CFG construction, we collect the outermost
2165   // loop of every loop nest.
2166   if (L.isInnermost() || VPlanBuildStressTest ||
2167       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2168     LoopBlocksRPO RPOT(&L);
2169     RPOT.perform(LI);
2170     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2171       V.push_back(&L);
2172       // TODO: Collect inner loops inside marked outer loops in case
2173       // vectorization fails for the outer loop. Do not invoke
2174       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2175       // already known to be reducible. We can use an inherited attribute for
2176       // that.
2177       return;
2178     }
2179   }
2180   for (Loop *InnerL : L)
2181     collectSupportedLoops(*InnerL, LI, ORE, V);
2182 }
2183 
2184 namespace {
2185 
2186 /// The LoopVectorize Pass.
2187 struct LoopVectorize : public FunctionPass {
2188   /// Pass identification, replacement for typeid
2189   static char ID;
2190 
2191   LoopVectorizePass Impl;
2192 
2193   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2194                          bool VectorizeOnlyWhenForced = false)
2195       : FunctionPass(ID),
2196         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2197     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2198   }
2199 
2200   bool runOnFunction(Function &F) override {
2201     if (skipFunction(F))
2202       return false;
2203 
2204     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2205     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2206     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2207     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2208     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2209     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2210     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2211     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2212     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2213     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2214     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2215     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2216     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2217 
2218     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2219         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2220 
2221     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2222                         GetLAA, *ORE, PSI).MadeAnyChange;
2223   }
2224 
2225   void getAnalysisUsage(AnalysisUsage &AU) const override {
2226     AU.addRequired<AssumptionCacheTracker>();
2227     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2228     AU.addRequired<DominatorTreeWrapperPass>();
2229     AU.addRequired<LoopInfoWrapperPass>();
2230     AU.addRequired<ScalarEvolutionWrapperPass>();
2231     AU.addRequired<TargetTransformInfoWrapperPass>();
2232     AU.addRequired<AAResultsWrapperPass>();
2233     AU.addRequired<LoopAccessLegacyAnalysis>();
2234     AU.addRequired<DemandedBitsWrapperPass>();
2235     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2236     AU.addRequired<InjectTLIMappingsLegacy>();
2237 
2238     // We currently do not preserve loopinfo/dominator analyses with outer loop
2239     // vectorization. Until this is addressed, mark these analyses as preserved
2240     // only for non-VPlan-native path.
2241     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2242     if (!EnableVPlanNativePath) {
2243       AU.addPreserved<LoopInfoWrapperPass>();
2244       AU.addPreserved<DominatorTreeWrapperPass>();
2245     }
2246 
2247     AU.addPreserved<BasicAAWrapperPass>();
2248     AU.addPreserved<GlobalsAAWrapperPass>();
2249     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2250   }
2251 };
2252 
2253 } // end anonymous namespace
2254 
2255 //===----------------------------------------------------------------------===//
2256 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2257 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2258 //===----------------------------------------------------------------------===//
2259 
2260 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2261   // We need to place the broadcast of invariant variables outside the loop,
2262   // but only if it's proven safe to do so. Else, broadcast will be inside
2263   // vector loop body.
2264   Instruction *Instr = dyn_cast<Instruction>(V);
2265   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2266                      (!Instr ||
2267                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2268   // Place the code for broadcasting invariant variables in the new preheader.
2269   IRBuilder<>::InsertPointGuard Guard(Builder);
2270   if (SafeToHoist)
2271     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2272 
2273   // Broadcast the scalar into all locations in the vector.
2274   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2275 
2276   return Shuf;
2277 }
2278 
2279 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2280     const InductionDescriptor &II, Value *Step, Value *Start,
2281     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2282     VPTransformState &State) {
2283   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2284          "Expected either an induction phi-node or a truncate of it!");
2285 
2286   // Construct the initial value of the vector IV in the vector loop preheader
2287   auto CurrIP = Builder.saveIP();
2288   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2289   if (isa<TruncInst>(EntryVal)) {
2290     assert(Start->getType()->isIntegerTy() &&
2291            "Truncation requires an integer type");
2292     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2293     Step = Builder.CreateTrunc(Step, TruncType);
2294     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2295   }
2296 
2297   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2298   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2299   Value *SteppedStart =
2300       getStepVector(SplatStart, Zero, Step, II.getInductionOpcode());
2301 
2302   // We create vector phi nodes for both integer and floating-point induction
2303   // variables. Here, we determine the kind of arithmetic we will perform.
2304   Instruction::BinaryOps AddOp;
2305   Instruction::BinaryOps MulOp;
2306   if (Step->getType()->isIntegerTy()) {
2307     AddOp = Instruction::Add;
2308     MulOp = Instruction::Mul;
2309   } else {
2310     AddOp = II.getInductionOpcode();
2311     MulOp = Instruction::FMul;
2312   }
2313 
2314   // Multiply the vectorization factor by the step using integer or
2315   // floating-point arithmetic as appropriate.
2316   Type *StepType = Step->getType();
2317   Value *RuntimeVF;
2318   if (Step->getType()->isFloatingPointTy())
2319     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF);
2320   else
2321     RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2322   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2323 
2324   // Create a vector splat to use in the induction update.
2325   //
2326   // FIXME: If the step is non-constant, we create the vector splat with
2327   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2328   //        handle a constant vector splat.
2329   Value *SplatVF = isa<Constant>(Mul)
2330                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2331                        : Builder.CreateVectorSplat(VF, Mul);
2332   Builder.restoreIP(CurrIP);
2333 
2334   // We may need to add the step a number of times, depending on the unroll
2335   // factor. The last of those goes into the PHI.
2336   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2337                                     &*LoopVectorBody->getFirstInsertionPt());
2338   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2339   Instruction *LastInduction = VecInd;
2340   for (unsigned Part = 0; Part < UF; ++Part) {
2341     State.set(Def, LastInduction, Part);
2342 
2343     if (isa<TruncInst>(EntryVal))
2344       addMetadata(LastInduction, EntryVal);
2345     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2346                                           State, Part);
2347 
2348     LastInduction = cast<Instruction>(
2349         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2350     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2351   }
2352 
2353   // Move the last step to the end of the latch block. This ensures consistent
2354   // placement of all induction updates.
2355   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2356   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2357   auto *ICmp = cast<Instruction>(Br->getCondition());
2358   LastInduction->moveBefore(ICmp);
2359   LastInduction->setName("vec.ind.next");
2360 
2361   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2362   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2363 }
2364 
2365 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2366   return Cost->isScalarAfterVectorization(I, VF) ||
2367          Cost->isProfitableToScalarize(I, VF);
2368 }
2369 
2370 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2371   if (shouldScalarizeInstruction(IV))
2372     return true;
2373   auto isScalarInst = [&](User *U) -> bool {
2374     auto *I = cast<Instruction>(U);
2375     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2376   };
2377   return llvm::any_of(IV->users(), isScalarInst);
2378 }
2379 
2380 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2381     const InductionDescriptor &ID, const Instruction *EntryVal,
2382     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2383     unsigned Part, unsigned Lane) {
2384   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2385          "Expected either an induction phi-node or a truncate of it!");
2386 
2387   // This induction variable is not the phi from the original loop but the
2388   // newly-created IV based on the proof that casted Phi is equal to the
2389   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2390   // re-uses the same InductionDescriptor that original IV uses but we don't
2391   // have to do any recording in this case - that is done when original IV is
2392   // processed.
2393   if (isa<TruncInst>(EntryVal))
2394     return;
2395 
2396   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2397   if (Casts.empty())
2398     return;
2399   // Only the first Cast instruction in the Casts vector is of interest.
2400   // The rest of the Casts (if exist) have no uses outside the
2401   // induction update chain itself.
2402   if (Lane < UINT_MAX)
2403     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2404   else
2405     State.set(CastDef, VectorLoopVal, Part);
2406 }
2407 
2408 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2409                                                 TruncInst *Trunc, VPValue *Def,
2410                                                 VPValue *CastDef,
2411                                                 VPTransformState &State) {
2412   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2413          "Primary induction variable must have an integer type");
2414 
2415   auto II = Legal->getInductionVars().find(IV);
2416   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2417 
2418   auto ID = II->second;
2419   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2420 
2421   // The value from the original loop to which we are mapping the new induction
2422   // variable.
2423   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2424 
2425   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2426 
2427   // Generate code for the induction step. Note that induction steps are
2428   // required to be loop-invariant
2429   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2430     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2431            "Induction step should be loop invariant");
2432     if (PSE.getSE()->isSCEVable(IV->getType())) {
2433       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2434       return Exp.expandCodeFor(Step, Step->getType(),
2435                                LoopVectorPreHeader->getTerminator());
2436     }
2437     return cast<SCEVUnknown>(Step)->getValue();
2438   };
2439 
2440   // The scalar value to broadcast. This is derived from the canonical
2441   // induction variable. If a truncation type is given, truncate the canonical
2442   // induction variable and step. Otherwise, derive these values from the
2443   // induction descriptor.
2444   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2445     Value *ScalarIV = Induction;
2446     if (IV != OldInduction) {
2447       ScalarIV = IV->getType()->isIntegerTy()
2448                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2449                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2450                                           IV->getType());
2451       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2452       ScalarIV->setName("offset.idx");
2453     }
2454     if (Trunc) {
2455       auto *TruncType = cast<IntegerType>(Trunc->getType());
2456       assert(Step->getType()->isIntegerTy() &&
2457              "Truncation requires an integer step");
2458       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2459       Step = Builder.CreateTrunc(Step, TruncType);
2460     }
2461     return ScalarIV;
2462   };
2463 
2464   // Create the vector values from the scalar IV, in the absence of creating a
2465   // vector IV.
2466   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2467     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2468     for (unsigned Part = 0; Part < UF; ++Part) {
2469       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2470       Value *StartIdx;
2471       if (Step->getType()->isFloatingPointTy())
2472         StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part);
2473       else
2474         StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part);
2475 
2476       Value *EntryPart =
2477           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode());
2478       State.set(Def, EntryPart, Part);
2479       if (Trunc)
2480         addMetadata(EntryPart, Trunc);
2481       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2482                                             State, Part);
2483     }
2484   };
2485 
2486   // Fast-math-flags propagate from the original induction instruction.
2487   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2488   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2489     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2490 
2491   // Now do the actual transformations, and start with creating the step value.
2492   Value *Step = CreateStepValue(ID.getStep());
2493   if (VF.isZero() || VF.isScalar()) {
2494     Value *ScalarIV = CreateScalarIV(Step);
2495     CreateSplatIV(ScalarIV, Step);
2496     return;
2497   }
2498 
2499   // Determine if we want a scalar version of the induction variable. This is
2500   // true if the induction variable itself is not widened, or if it has at
2501   // least one user in the loop that is not widened.
2502   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2503   if (!NeedsScalarIV) {
2504     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2505                                     State);
2506     return;
2507   }
2508 
2509   // Try to create a new independent vector induction variable. If we can't
2510   // create the phi node, we will splat the scalar induction variable in each
2511   // loop iteration.
2512   if (!shouldScalarizeInstruction(EntryVal)) {
2513     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2514                                     State);
2515     Value *ScalarIV = CreateScalarIV(Step);
2516     // Create scalar steps that can be used by instructions we will later
2517     // scalarize. Note that the addition of the scalar steps will not increase
2518     // the number of instructions in the loop in the common case prior to
2519     // InstCombine. We will be trading one vector extract for each scalar step.
2520     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2521     return;
2522   }
2523 
2524   // All IV users are scalar instructions, so only emit a scalar IV, not a
2525   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2526   // predicate used by the masked loads/stores.
2527   Value *ScalarIV = CreateScalarIV(Step);
2528   if (!Cost->isScalarEpilogueAllowed())
2529     CreateSplatIV(ScalarIV, Step);
2530   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2531 }
2532 
2533 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx,
2534                                           Value *Step,
2535                                           Instruction::BinaryOps BinOp) {
2536   // Create and check the types.
2537   auto *ValVTy = cast<VectorType>(Val->getType());
2538   ElementCount VLen = ValVTy->getElementCount();
2539 
2540   Type *STy = Val->getType()->getScalarType();
2541   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2542          "Induction Step must be an integer or FP");
2543   assert(Step->getType() == STy && "Step has wrong type");
2544 
2545   SmallVector<Constant *, 8> Indices;
2546 
2547   // Create a vector of consecutive numbers from zero to VF.
2548   VectorType *InitVecValVTy = ValVTy;
2549   Type *InitVecValSTy = STy;
2550   if (STy->isFloatingPointTy()) {
2551     InitVecValSTy =
2552         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2553     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2554   }
2555   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2556 
2557   // Splat the StartIdx
2558   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2559 
2560   if (STy->isIntegerTy()) {
2561     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2562     Step = Builder.CreateVectorSplat(VLen, Step);
2563     assert(Step->getType() == Val->getType() && "Invalid step vec");
2564     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2565     // which can be found from the original scalar operations.
2566     Step = Builder.CreateMul(InitVec, Step);
2567     return Builder.CreateAdd(Val, Step, "induction");
2568   }
2569 
2570   // Floating point induction.
2571   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2572          "Binary Opcode should be specified for FP induction");
2573   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2574   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2575 
2576   Step = Builder.CreateVectorSplat(VLen, Step);
2577   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2578   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2579 }
2580 
2581 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2582                                            Instruction *EntryVal,
2583                                            const InductionDescriptor &ID,
2584                                            VPValue *Def, VPValue *CastDef,
2585                                            VPTransformState &State) {
2586   // We shouldn't have to build scalar steps if we aren't vectorizing.
2587   assert(VF.isVector() && "VF should be greater than one");
2588   // Get the value type and ensure it and the step have the same integer type.
2589   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2590   assert(ScalarIVTy == Step->getType() &&
2591          "Val and Step should have the same type");
2592 
2593   // We build scalar steps for both integer and floating-point induction
2594   // variables. Here, we determine the kind of arithmetic we will perform.
2595   Instruction::BinaryOps AddOp;
2596   Instruction::BinaryOps MulOp;
2597   if (ScalarIVTy->isIntegerTy()) {
2598     AddOp = Instruction::Add;
2599     MulOp = Instruction::Mul;
2600   } else {
2601     AddOp = ID.getInductionOpcode();
2602     MulOp = Instruction::FMul;
2603   }
2604 
2605   // Determine the number of scalars we need to generate for each unroll
2606   // iteration. If EntryVal is uniform, we only need to generate the first
2607   // lane. Otherwise, we generate all VF values.
2608   bool IsUniform =
2609       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2610   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2611   // Compute the scalar steps and save the results in State.
2612   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2613                                      ScalarIVTy->getScalarSizeInBits());
2614   Type *VecIVTy = nullptr;
2615   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2616   if (!IsUniform && VF.isScalable()) {
2617     VecIVTy = VectorType::get(ScalarIVTy, VF);
2618     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2619     SplatStep = Builder.CreateVectorSplat(VF, Step);
2620     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2621   }
2622 
2623   for (unsigned Part = 0; Part < UF; ++Part) {
2624     Value *StartIdx0 =
2625         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2626 
2627     if (!IsUniform && VF.isScalable()) {
2628       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2629       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2630       if (ScalarIVTy->isFloatingPointTy())
2631         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2632       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2633       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2634       State.set(Def, Add, Part);
2635       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2636                                             Part);
2637       // It's useful to record the lane values too for the known minimum number
2638       // of elements so we do those below. This improves the code quality when
2639       // trying to extract the first element, for example.
2640     }
2641 
2642     if (ScalarIVTy->isFloatingPointTy())
2643       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2644 
2645     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2646       Value *StartIdx = Builder.CreateBinOp(
2647           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2648       // The step returned by `createStepForVF` is a runtime-evaluated value
2649       // when VF is scalable. Otherwise, it should be folded into a Constant.
2650       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2651              "Expected StartIdx to be folded to a constant when VF is not "
2652              "scalable");
2653       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2654       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2655       State.set(Def, Add, VPIteration(Part, Lane));
2656       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2657                                             Part, Lane);
2658     }
2659   }
2660 }
2661 
2662 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2663                                                     const VPIteration &Instance,
2664                                                     VPTransformState &State) {
2665   Value *ScalarInst = State.get(Def, Instance);
2666   Value *VectorValue = State.get(Def, Instance.Part);
2667   VectorValue = Builder.CreateInsertElement(
2668       VectorValue, ScalarInst,
2669       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2670   State.set(Def, VectorValue, Instance.Part);
2671 }
2672 
2673 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2674   assert(Vec->getType()->isVectorTy() && "Invalid type");
2675   return Builder.CreateVectorReverse(Vec, "reverse");
2676 }
2677 
2678 // Return whether we allow using masked interleave-groups (for dealing with
2679 // strided loads/stores that reside in predicated blocks, or for dealing
2680 // with gaps).
2681 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2682   // If an override option has been passed in for interleaved accesses, use it.
2683   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2684     return EnableMaskedInterleavedMemAccesses;
2685 
2686   return TTI.enableMaskedInterleavedAccessVectorization();
2687 }
2688 
2689 // Try to vectorize the interleave group that \p Instr belongs to.
2690 //
2691 // E.g. Translate following interleaved load group (factor = 3):
2692 //   for (i = 0; i < N; i+=3) {
2693 //     R = Pic[i];             // Member of index 0
2694 //     G = Pic[i+1];           // Member of index 1
2695 //     B = Pic[i+2];           // Member of index 2
2696 //     ... // do something to R, G, B
2697 //   }
2698 // To:
2699 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2700 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2701 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2702 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2703 //
2704 // Or translate following interleaved store group (factor = 3):
2705 //   for (i = 0; i < N; i+=3) {
2706 //     ... do something to R, G, B
2707 //     Pic[i]   = R;           // Member of index 0
2708 //     Pic[i+1] = G;           // Member of index 1
2709 //     Pic[i+2] = B;           // Member of index 2
2710 //   }
2711 // To:
2712 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2713 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2714 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2715 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2716 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2717 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2718     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2719     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2720     VPValue *BlockInMask) {
2721   Instruction *Instr = Group->getInsertPos();
2722   const DataLayout &DL = Instr->getModule()->getDataLayout();
2723 
2724   // Prepare for the vector type of the interleaved load/store.
2725   Type *ScalarTy = getLoadStoreType(Instr);
2726   unsigned InterleaveFactor = Group->getFactor();
2727   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2728   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2729 
2730   // Prepare for the new pointers.
2731   SmallVector<Value *, 2> AddrParts;
2732   unsigned Index = Group->getIndex(Instr);
2733 
2734   // TODO: extend the masked interleaved-group support to reversed access.
2735   assert((!BlockInMask || !Group->isReverse()) &&
2736          "Reversed masked interleave-group not supported.");
2737 
2738   // If the group is reverse, adjust the index to refer to the last vector lane
2739   // instead of the first. We adjust the index from the first vector lane,
2740   // rather than directly getting the pointer for lane VF - 1, because the
2741   // pointer operand of the interleaved access is supposed to be uniform. For
2742   // uniform instructions, we're only required to generate a value for the
2743   // first vector lane in each unroll iteration.
2744   if (Group->isReverse())
2745     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2746 
2747   for (unsigned Part = 0; Part < UF; Part++) {
2748     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2749     setDebugLocFromInst(AddrPart);
2750 
2751     // Notice current instruction could be any index. Need to adjust the address
2752     // to the member of index 0.
2753     //
2754     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2755     //       b = A[i];       // Member of index 0
2756     // Current pointer is pointed to A[i+1], adjust it to A[i].
2757     //
2758     // E.g.  A[i+1] = a;     // Member of index 1
2759     //       A[i]   = b;     // Member of index 0
2760     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2761     // Current pointer is pointed to A[i+2], adjust it to A[i].
2762 
2763     bool InBounds = false;
2764     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2765       InBounds = gep->isInBounds();
2766     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2767     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2768 
2769     // Cast to the vector pointer type.
2770     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2771     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2772     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2773   }
2774 
2775   setDebugLocFromInst(Instr);
2776   Value *PoisonVec = PoisonValue::get(VecTy);
2777 
2778   Value *MaskForGaps = nullptr;
2779   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2780     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2781     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2782   }
2783 
2784   // Vectorize the interleaved load group.
2785   if (isa<LoadInst>(Instr)) {
2786     // For each unroll part, create a wide load for the group.
2787     SmallVector<Value *, 2> NewLoads;
2788     for (unsigned Part = 0; Part < UF; Part++) {
2789       Instruction *NewLoad;
2790       if (BlockInMask || MaskForGaps) {
2791         assert(useMaskedInterleavedAccesses(*TTI) &&
2792                "masked interleaved groups are not allowed.");
2793         Value *GroupMask = MaskForGaps;
2794         if (BlockInMask) {
2795           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2796           Value *ShuffledMask = Builder.CreateShuffleVector(
2797               BlockInMaskPart,
2798               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2799               "interleaved.mask");
2800           GroupMask = MaskForGaps
2801                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2802                                                 MaskForGaps)
2803                           : ShuffledMask;
2804         }
2805         NewLoad =
2806             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2807                                      GroupMask, PoisonVec, "wide.masked.vec");
2808       }
2809       else
2810         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2811                                             Group->getAlign(), "wide.vec");
2812       Group->addMetadata(NewLoad);
2813       NewLoads.push_back(NewLoad);
2814     }
2815 
2816     // For each member in the group, shuffle out the appropriate data from the
2817     // wide loads.
2818     unsigned J = 0;
2819     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2820       Instruction *Member = Group->getMember(I);
2821 
2822       // Skip the gaps in the group.
2823       if (!Member)
2824         continue;
2825 
2826       auto StrideMask =
2827           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2828       for (unsigned Part = 0; Part < UF; Part++) {
2829         Value *StridedVec = Builder.CreateShuffleVector(
2830             NewLoads[Part], StrideMask, "strided.vec");
2831 
2832         // If this member has different type, cast the result type.
2833         if (Member->getType() != ScalarTy) {
2834           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2835           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2836           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2837         }
2838 
2839         if (Group->isReverse())
2840           StridedVec = reverseVector(StridedVec);
2841 
2842         State.set(VPDefs[J], StridedVec, Part);
2843       }
2844       ++J;
2845     }
2846     return;
2847   }
2848 
2849   // The sub vector type for current instruction.
2850   auto *SubVT = VectorType::get(ScalarTy, VF);
2851 
2852   // Vectorize the interleaved store group.
2853   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2854   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2855          "masked interleaved groups are not allowed.");
2856   assert((!MaskForGaps || !VF.isScalable()) &&
2857          "masking gaps for scalable vectors is not yet supported.");
2858   for (unsigned Part = 0; Part < UF; Part++) {
2859     // Collect the stored vector from each member.
2860     SmallVector<Value *, 4> StoredVecs;
2861     for (unsigned i = 0; i < InterleaveFactor; i++) {
2862       assert((Group->getMember(i) || MaskForGaps) &&
2863              "Fail to get a member from an interleaved store group");
2864       Instruction *Member = Group->getMember(i);
2865 
2866       // Skip the gaps in the group.
2867       if (!Member) {
2868         Value *Undef = PoisonValue::get(SubVT);
2869         StoredVecs.push_back(Undef);
2870         continue;
2871       }
2872 
2873       Value *StoredVec = State.get(StoredValues[i], Part);
2874 
2875       if (Group->isReverse())
2876         StoredVec = reverseVector(StoredVec);
2877 
2878       // If this member has different type, cast it to a unified type.
2879 
2880       if (StoredVec->getType() != SubVT)
2881         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2882 
2883       StoredVecs.push_back(StoredVec);
2884     }
2885 
2886     // Concatenate all vectors into a wide vector.
2887     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2888 
2889     // Interleave the elements in the wide vector.
2890     Value *IVec = Builder.CreateShuffleVector(
2891         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2892         "interleaved.vec");
2893 
2894     Instruction *NewStoreInstr;
2895     if (BlockInMask || MaskForGaps) {
2896       Value *GroupMask = MaskForGaps;
2897       if (BlockInMask) {
2898         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2899         Value *ShuffledMask = Builder.CreateShuffleVector(
2900             BlockInMaskPart,
2901             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2902             "interleaved.mask");
2903         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2904                                                       ShuffledMask, MaskForGaps)
2905                                 : ShuffledMask;
2906       }
2907       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2908                                                 Group->getAlign(), GroupMask);
2909     } else
2910       NewStoreInstr =
2911           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2912 
2913     Group->addMetadata(NewStoreInstr);
2914   }
2915 }
2916 
2917 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2918     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2919     VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride,
2920     bool Reverse) {
2921   // Attempt to issue a wide load.
2922   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2923   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2924 
2925   assert((LI || SI) && "Invalid Load/Store instruction");
2926   assert((!SI || StoredValue) && "No stored value provided for widened store");
2927   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2928 
2929   Type *ScalarDataTy = getLoadStoreType(Instr);
2930 
2931   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2932   const Align Alignment = getLoadStoreAlignment(Instr);
2933   bool CreateGatherScatter = !ConsecutiveStride;
2934 
2935   VectorParts BlockInMaskParts(UF);
2936   bool isMaskRequired = BlockInMask;
2937   if (isMaskRequired)
2938     for (unsigned Part = 0; Part < UF; ++Part)
2939       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2940 
2941   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2942     // Calculate the pointer for the specific unroll-part.
2943     GetElementPtrInst *PartPtr = nullptr;
2944 
2945     bool InBounds = false;
2946     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2947       InBounds = gep->isInBounds();
2948     if (Reverse) {
2949       // If the address is consecutive but reversed, then the
2950       // wide store needs to start at the last vector element.
2951       // RunTimeVF =  VScale * VF.getKnownMinValue()
2952       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2953       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2954       // NumElt = -Part * RunTimeVF
2955       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2956       // LastLane = 1 - RunTimeVF
2957       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2958       PartPtr =
2959           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2960       PartPtr->setIsInBounds(InBounds);
2961       PartPtr = cast<GetElementPtrInst>(
2962           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2963       PartPtr->setIsInBounds(InBounds);
2964       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2965         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2966     } else {
2967       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2968       PartPtr = cast<GetElementPtrInst>(
2969           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2970       PartPtr->setIsInBounds(InBounds);
2971     }
2972 
2973     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2974     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2975   };
2976 
2977   // Handle Stores:
2978   if (SI) {
2979     setDebugLocFromInst(SI);
2980 
2981     for (unsigned Part = 0; Part < UF; ++Part) {
2982       Instruction *NewSI = nullptr;
2983       Value *StoredVal = State.get(StoredValue, Part);
2984       if (CreateGatherScatter) {
2985         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2986         Value *VectorGep = State.get(Addr, Part);
2987         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2988                                             MaskPart);
2989       } else {
2990         if (Reverse) {
2991           // If we store to reverse consecutive memory locations, then we need
2992           // to reverse the order of elements in the stored value.
2993           StoredVal = reverseVector(StoredVal);
2994           // We don't want to update the value in the map as it might be used in
2995           // another expression. So don't call resetVectorValue(StoredVal).
2996         }
2997         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2998         if (isMaskRequired)
2999           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3000                                             BlockInMaskParts[Part]);
3001         else
3002           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3003       }
3004       addMetadata(NewSI, SI);
3005     }
3006     return;
3007   }
3008 
3009   // Handle loads.
3010   assert(LI && "Must have a load instruction");
3011   setDebugLocFromInst(LI);
3012   for (unsigned Part = 0; Part < UF; ++Part) {
3013     Value *NewLI;
3014     if (CreateGatherScatter) {
3015       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3016       Value *VectorGep = State.get(Addr, Part);
3017       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3018                                          nullptr, "wide.masked.gather");
3019       addMetadata(NewLI, LI);
3020     } else {
3021       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3022       if (isMaskRequired)
3023         NewLI = Builder.CreateMaskedLoad(
3024             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3025             PoisonValue::get(DataTy), "wide.masked.load");
3026       else
3027         NewLI =
3028             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3029 
3030       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3031       addMetadata(NewLI, LI);
3032       if (Reverse)
3033         NewLI = reverseVector(NewLI);
3034     }
3035 
3036     State.set(Def, NewLI, Part);
3037   }
3038 }
3039 
3040 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3041                                                VPUser &User,
3042                                                const VPIteration &Instance,
3043                                                bool IfPredicateInstr,
3044                                                VPTransformState &State) {
3045   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3046 
3047   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3048   // the first lane and part.
3049   if (isa<NoAliasScopeDeclInst>(Instr))
3050     if (!Instance.isFirstIteration())
3051       return;
3052 
3053   setDebugLocFromInst(Instr);
3054 
3055   // Does this instruction return a value ?
3056   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3057 
3058   Instruction *Cloned = Instr->clone();
3059   if (!IsVoidRetTy)
3060     Cloned->setName(Instr->getName() + ".cloned");
3061 
3062   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3063                                Builder.GetInsertPoint());
3064   // Replace the operands of the cloned instructions with their scalar
3065   // equivalents in the new loop.
3066   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3067     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3068     auto InputInstance = Instance;
3069     if (!Operand || !OrigLoop->contains(Operand) ||
3070         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3071       InputInstance.Lane = VPLane::getFirstLane();
3072     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3073     Cloned->setOperand(op, NewOp);
3074   }
3075   addNewMetadata(Cloned, Instr);
3076 
3077   // Place the cloned scalar in the new loop.
3078   Builder.Insert(Cloned);
3079 
3080   State.set(Def, Cloned, Instance);
3081 
3082   // If we just cloned a new assumption, add it the assumption cache.
3083   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3084     AC->registerAssumption(II);
3085 
3086   // End if-block.
3087   if (IfPredicateInstr)
3088     PredicatedInstructions.push_back(Cloned);
3089 }
3090 
3091 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3092                                                       Value *End, Value *Step,
3093                                                       Instruction *DL) {
3094   BasicBlock *Header = L->getHeader();
3095   BasicBlock *Latch = L->getLoopLatch();
3096   // As we're just creating this loop, it's possible no latch exists
3097   // yet. If so, use the header as this will be a single block loop.
3098   if (!Latch)
3099     Latch = Header;
3100 
3101   IRBuilder<> B(&*Header->getFirstInsertionPt());
3102   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3103   setDebugLocFromInst(OldInst, &B);
3104   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3105 
3106   B.SetInsertPoint(Latch->getTerminator());
3107   setDebugLocFromInst(OldInst, &B);
3108 
3109   // Create i+1 and fill the PHINode.
3110   //
3111   // If the tail is not folded, we know that End - Start >= Step (either
3112   // statically or through the minimum iteration checks). We also know that both
3113   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3114   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3115   // overflows and we can mark the induction increment as NUW.
3116   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3117                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3118   Induction->addIncoming(Start, L->getLoopPreheader());
3119   Induction->addIncoming(Next, Latch);
3120   // Create the compare.
3121   Value *ICmp = B.CreateICmpEQ(Next, End);
3122   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3123 
3124   // Now we have two terminators. Remove the old one from the block.
3125   Latch->getTerminator()->eraseFromParent();
3126 
3127   return Induction;
3128 }
3129 
3130 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3131   if (TripCount)
3132     return TripCount;
3133 
3134   assert(L && "Create Trip Count for null loop.");
3135   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3136   // Find the loop boundaries.
3137   ScalarEvolution *SE = PSE.getSE();
3138   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3139   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3140          "Invalid loop count");
3141 
3142   Type *IdxTy = Legal->getWidestInductionType();
3143   assert(IdxTy && "No type for induction");
3144 
3145   // The exit count might have the type of i64 while the phi is i32. This can
3146   // happen if we have an induction variable that is sign extended before the
3147   // compare. The only way that we get a backedge taken count is that the
3148   // induction variable was signed and as such will not overflow. In such a case
3149   // truncation is legal.
3150   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3151       IdxTy->getPrimitiveSizeInBits())
3152     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3153   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3154 
3155   // Get the total trip count from the count by adding 1.
3156   const SCEV *ExitCount = SE->getAddExpr(
3157       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3158 
3159   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3160 
3161   // Expand the trip count and place the new instructions in the preheader.
3162   // Notice that the pre-header does not change, only the loop body.
3163   SCEVExpander Exp(*SE, DL, "induction");
3164 
3165   // Count holds the overall loop count (N).
3166   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3167                                 L->getLoopPreheader()->getTerminator());
3168 
3169   if (TripCount->getType()->isPointerTy())
3170     TripCount =
3171         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3172                                     L->getLoopPreheader()->getTerminator());
3173 
3174   return TripCount;
3175 }
3176 
3177 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3178   if (VectorTripCount)
3179     return VectorTripCount;
3180 
3181   Value *TC = getOrCreateTripCount(L);
3182   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3183 
3184   Type *Ty = TC->getType();
3185   // This is where we can make the step a runtime constant.
3186   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3187 
3188   // If the tail is to be folded by masking, round the number of iterations N
3189   // up to a multiple of Step instead of rounding down. This is done by first
3190   // adding Step-1 and then rounding down. Note that it's ok if this addition
3191   // overflows: the vector induction variable will eventually wrap to zero given
3192   // that it starts at zero and its Step is a power of two; the loop will then
3193   // exit, with the last early-exit vector comparison also producing all-true.
3194   if (Cost->foldTailByMasking()) {
3195     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3196            "VF*UF must be a power of 2 when folding tail by masking");
3197     assert(!VF.isScalable() &&
3198            "Tail folding not yet supported for scalable vectors");
3199     TC = Builder.CreateAdd(
3200         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3201   }
3202 
3203   // Now we need to generate the expression for the part of the loop that the
3204   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3205   // iterations are not required for correctness, or N - Step, otherwise. Step
3206   // is equal to the vectorization factor (number of SIMD elements) times the
3207   // unroll factor (number of SIMD instructions).
3208   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3209 
3210   // There are cases where we *must* run at least one iteration in the remainder
3211   // loop.  See the cost model for when this can happen.  If the step evenly
3212   // divides the trip count, we set the remainder to be equal to the step. If
3213   // the step does not evenly divide the trip count, no adjustment is necessary
3214   // since there will already be scalar iterations. Note that the minimum
3215   // iterations check ensures that N >= Step.
3216   if (Cost->requiresScalarEpilogue(VF)) {
3217     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3218     R = Builder.CreateSelect(IsZero, Step, R);
3219   }
3220 
3221   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3222 
3223   return VectorTripCount;
3224 }
3225 
3226 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3227                                                    const DataLayout &DL) {
3228   // Verify that V is a vector type with same number of elements as DstVTy.
3229   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3230   unsigned VF = DstFVTy->getNumElements();
3231   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3232   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3233   Type *SrcElemTy = SrcVecTy->getElementType();
3234   Type *DstElemTy = DstFVTy->getElementType();
3235   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3236          "Vector elements must have same size");
3237 
3238   // Do a direct cast if element types are castable.
3239   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3240     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3241   }
3242   // V cannot be directly casted to desired vector type.
3243   // May happen when V is a floating point vector but DstVTy is a vector of
3244   // pointers or vice-versa. Handle this using a two-step bitcast using an
3245   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3246   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3247          "Only one type should be a pointer type");
3248   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3249          "Only one type should be a floating point type");
3250   Type *IntTy =
3251       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3252   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3253   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3254   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3255 }
3256 
3257 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3258                                                          BasicBlock *Bypass) {
3259   Value *Count = getOrCreateTripCount(L);
3260   // Reuse existing vector loop preheader for TC checks.
3261   // Note that new preheader block is generated for vector loop.
3262   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3263   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3264 
3265   // Generate code to check if the loop's trip count is less than VF * UF, or
3266   // equal to it in case a scalar epilogue is required; this implies that the
3267   // vector trip count is zero. This check also covers the case where adding one
3268   // to the backedge-taken count overflowed leading to an incorrect trip count
3269   // of zero. In this case we will also jump to the scalar loop.
3270   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3271                                             : ICmpInst::ICMP_ULT;
3272 
3273   // If tail is to be folded, vector loop takes care of all iterations.
3274   Value *CheckMinIters = Builder.getFalse();
3275   if (!Cost->foldTailByMasking()) {
3276     Value *Step =
3277         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3278     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3279   }
3280   // Create new preheader for vector loop.
3281   LoopVectorPreHeader =
3282       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3283                  "vector.ph");
3284 
3285   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3286                                DT->getNode(Bypass)->getIDom()) &&
3287          "TC check is expected to dominate Bypass");
3288 
3289   // Update dominator for Bypass & LoopExit (if needed).
3290   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3291   if (!Cost->requiresScalarEpilogue(VF))
3292     // If there is an epilogue which must run, there's no edge from the
3293     // middle block to exit blocks  and thus no need to update the immediate
3294     // dominator of the exit blocks.
3295     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3296 
3297   ReplaceInstWithInst(
3298       TCCheckBlock->getTerminator(),
3299       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3300   LoopBypassBlocks.push_back(TCCheckBlock);
3301 }
3302 
3303 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3304 
3305   BasicBlock *const SCEVCheckBlock =
3306       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3307   if (!SCEVCheckBlock)
3308     return nullptr;
3309 
3310   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3311            (OptForSizeBasedOnProfile &&
3312             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3313          "Cannot SCEV check stride or overflow when optimizing for size");
3314 
3315 
3316   // Update dominator only if this is first RT check.
3317   if (LoopBypassBlocks.empty()) {
3318     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3319     if (!Cost->requiresScalarEpilogue(VF))
3320       // If there is an epilogue which must run, there's no edge from the
3321       // middle block to exit blocks  and thus no need to update the immediate
3322       // dominator of the exit blocks.
3323       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3324   }
3325 
3326   LoopBypassBlocks.push_back(SCEVCheckBlock);
3327   AddedSafetyChecks = true;
3328   return SCEVCheckBlock;
3329 }
3330 
3331 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3332                                                       BasicBlock *Bypass) {
3333   // VPlan-native path does not do any analysis for runtime checks currently.
3334   if (EnableVPlanNativePath)
3335     return nullptr;
3336 
3337   BasicBlock *const MemCheckBlock =
3338       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3339 
3340   // Check if we generated code that checks in runtime if arrays overlap. We put
3341   // the checks into a separate block to make the more common case of few
3342   // elements faster.
3343   if (!MemCheckBlock)
3344     return nullptr;
3345 
3346   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3347     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3348            "Cannot emit memory checks when optimizing for size, unless forced "
3349            "to vectorize.");
3350     ORE->emit([&]() {
3351       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3352                                         L->getStartLoc(), L->getHeader())
3353              << "Code-size may be reduced by not forcing "
3354                 "vectorization, or by source-code modifications "
3355                 "eliminating the need for runtime checks "
3356                 "(e.g., adding 'restrict').";
3357     });
3358   }
3359 
3360   LoopBypassBlocks.push_back(MemCheckBlock);
3361 
3362   AddedSafetyChecks = true;
3363 
3364   // We currently don't use LoopVersioning for the actual loop cloning but we
3365   // still use it to add the noalias metadata.
3366   LVer = std::make_unique<LoopVersioning>(
3367       *Legal->getLAI(),
3368       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3369       DT, PSE.getSE());
3370   LVer->prepareNoAliasMetadata();
3371   return MemCheckBlock;
3372 }
3373 
3374 Value *InnerLoopVectorizer::emitTransformedIndex(
3375     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3376     const InductionDescriptor &ID) const {
3377 
3378   SCEVExpander Exp(*SE, DL, "induction");
3379   auto Step = ID.getStep();
3380   auto StartValue = ID.getStartValue();
3381   assert(Index->getType()->getScalarType() == Step->getType() &&
3382          "Index scalar type does not match StepValue type");
3383 
3384   // Note: the IR at this point is broken. We cannot use SE to create any new
3385   // SCEV and then expand it, hoping that SCEV's simplification will give us
3386   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3387   // lead to various SCEV crashes. So all we can do is to use builder and rely
3388   // on InstCombine for future simplifications. Here we handle some trivial
3389   // cases only.
3390   auto CreateAdd = [&B](Value *X, Value *Y) {
3391     assert(X->getType() == Y->getType() && "Types don't match!");
3392     if (auto *CX = dyn_cast<ConstantInt>(X))
3393       if (CX->isZero())
3394         return Y;
3395     if (auto *CY = dyn_cast<ConstantInt>(Y))
3396       if (CY->isZero())
3397         return X;
3398     return B.CreateAdd(X, Y);
3399   };
3400 
3401   // We allow X to be a vector type, in which case Y will potentially be
3402   // splatted into a vector with the same element count.
3403   auto CreateMul = [&B](Value *X, Value *Y) {
3404     assert(X->getType()->getScalarType() == Y->getType() &&
3405            "Types don't match!");
3406     if (auto *CX = dyn_cast<ConstantInt>(X))
3407       if (CX->isOne())
3408         return Y;
3409     if (auto *CY = dyn_cast<ConstantInt>(Y))
3410       if (CY->isOne())
3411         return X;
3412     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3413     if (XVTy && !isa<VectorType>(Y->getType()))
3414       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3415     return B.CreateMul(X, Y);
3416   };
3417 
3418   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3419   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3420   // the DomTree is not kept up-to-date for additional blocks generated in the
3421   // vector loop. By using the header as insertion point, we guarantee that the
3422   // expanded instructions dominate all their uses.
3423   auto GetInsertPoint = [this, &B]() {
3424     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3425     if (InsertBB != LoopVectorBody &&
3426         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3427       return LoopVectorBody->getTerminator();
3428     return &*B.GetInsertPoint();
3429   };
3430 
3431   switch (ID.getKind()) {
3432   case InductionDescriptor::IK_IntInduction: {
3433     assert(!isa<VectorType>(Index->getType()) &&
3434            "Vector indices not supported for integer inductions yet");
3435     assert(Index->getType() == StartValue->getType() &&
3436            "Index type does not match StartValue type");
3437     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3438       return B.CreateSub(StartValue, Index);
3439     auto *Offset = CreateMul(
3440         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3441     return CreateAdd(StartValue, Offset);
3442   }
3443   case InductionDescriptor::IK_PtrInduction: {
3444     assert(isa<SCEVConstant>(Step) &&
3445            "Expected constant step for pointer induction");
3446     return B.CreateGEP(
3447         ID.getElementType(), StartValue,
3448         CreateMul(Index,
3449                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3450                                     GetInsertPoint())));
3451   }
3452   case InductionDescriptor::IK_FpInduction: {
3453     assert(!isa<VectorType>(Index->getType()) &&
3454            "Vector indices not supported for FP inductions yet");
3455     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3456     auto InductionBinOp = ID.getInductionBinOp();
3457     assert(InductionBinOp &&
3458            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3459             InductionBinOp->getOpcode() == Instruction::FSub) &&
3460            "Original bin op should be defined for FP induction");
3461 
3462     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3463     Value *MulExp = B.CreateFMul(StepValue, Index);
3464     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3465                          "induction");
3466   }
3467   case InductionDescriptor::IK_NoInduction:
3468     return nullptr;
3469   }
3470   llvm_unreachable("invalid enum");
3471 }
3472 
3473 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3474   LoopScalarBody = OrigLoop->getHeader();
3475   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3476   assert(LoopVectorPreHeader && "Invalid loop structure");
3477   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3478   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3479          "multiple exit loop without required epilogue?");
3480 
3481   LoopMiddleBlock =
3482       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3483                  LI, nullptr, Twine(Prefix) + "middle.block");
3484   LoopScalarPreHeader =
3485       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3486                  nullptr, Twine(Prefix) + "scalar.ph");
3487 
3488   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3489 
3490   // Set up the middle block terminator.  Two cases:
3491   // 1) If we know that we must execute the scalar epilogue, emit an
3492   //    unconditional branch.
3493   // 2) Otherwise, we must have a single unique exit block (due to how we
3494   //    implement the multiple exit case).  In this case, set up a conditonal
3495   //    branch from the middle block to the loop scalar preheader, and the
3496   //    exit block.  completeLoopSkeleton will update the condition to use an
3497   //    iteration check, if required to decide whether to execute the remainder.
3498   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3499     BranchInst::Create(LoopScalarPreHeader) :
3500     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3501                        Builder.getTrue());
3502   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3503   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3504 
3505   // We intentionally don't let SplitBlock to update LoopInfo since
3506   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3507   // LoopVectorBody is explicitly added to the correct place few lines later.
3508   LoopVectorBody =
3509       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3510                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3511 
3512   // Update dominator for loop exit.
3513   if (!Cost->requiresScalarEpilogue(VF))
3514     // If there is an epilogue which must run, there's no edge from the
3515     // middle block to exit blocks  and thus no need to update the immediate
3516     // dominator of the exit blocks.
3517     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3518 
3519   // Create and register the new vector loop.
3520   Loop *Lp = LI->AllocateLoop();
3521   Loop *ParentLoop = OrigLoop->getParentLoop();
3522 
3523   // Insert the new loop into the loop nest and register the new basic blocks
3524   // before calling any utilities such as SCEV that require valid LoopInfo.
3525   if (ParentLoop) {
3526     ParentLoop->addChildLoop(Lp);
3527   } else {
3528     LI->addTopLevelLoop(Lp);
3529   }
3530   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3531   return Lp;
3532 }
3533 
3534 void InnerLoopVectorizer::createInductionResumeValues(
3535     Loop *L, Value *VectorTripCount,
3536     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3537   assert(VectorTripCount && L && "Expected valid arguments");
3538   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3539           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3540          "Inconsistent information about additional bypass.");
3541   // We are going to resume the execution of the scalar loop.
3542   // Go over all of the induction variables that we found and fix the
3543   // PHIs that are left in the scalar version of the loop.
3544   // The starting values of PHI nodes depend on the counter of the last
3545   // iteration in the vectorized loop.
3546   // If we come from a bypass edge then we need to start from the original
3547   // start value.
3548   for (auto &InductionEntry : Legal->getInductionVars()) {
3549     PHINode *OrigPhi = InductionEntry.first;
3550     InductionDescriptor II = InductionEntry.second;
3551 
3552     // Create phi nodes to merge from the  backedge-taken check block.
3553     PHINode *BCResumeVal =
3554         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3555                         LoopScalarPreHeader->getTerminator());
3556     // Copy original phi DL over to the new one.
3557     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3558     Value *&EndValue = IVEndValues[OrigPhi];
3559     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3560     if (OrigPhi == OldInduction) {
3561       // We know what the end value is.
3562       EndValue = VectorTripCount;
3563     } else {
3564       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3565 
3566       // Fast-math-flags propagate from the original induction instruction.
3567       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3568         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3569 
3570       Type *StepType = II.getStep()->getType();
3571       Instruction::CastOps CastOp =
3572           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3573       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3574       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3575       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3576       EndValue->setName("ind.end");
3577 
3578       // Compute the end value for the additional bypass (if applicable).
3579       if (AdditionalBypass.first) {
3580         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3581         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3582                                          StepType, true);
3583         CRD =
3584             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3585         EndValueFromAdditionalBypass =
3586             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3587         EndValueFromAdditionalBypass->setName("ind.end");
3588       }
3589     }
3590     // The new PHI merges the original incoming value, in case of a bypass,
3591     // or the value at the end of the vectorized loop.
3592     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3593 
3594     // Fix the scalar body counter (PHI node).
3595     // The old induction's phi node in the scalar body needs the truncated
3596     // value.
3597     for (BasicBlock *BB : LoopBypassBlocks)
3598       BCResumeVal->addIncoming(II.getStartValue(), BB);
3599 
3600     if (AdditionalBypass.first)
3601       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3602                                             EndValueFromAdditionalBypass);
3603 
3604     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3605   }
3606 }
3607 
3608 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3609                                                       MDNode *OrigLoopID) {
3610   assert(L && "Expected valid loop.");
3611 
3612   // The trip counts should be cached by now.
3613   Value *Count = getOrCreateTripCount(L);
3614   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3615 
3616   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3617 
3618   // Add a check in the middle block to see if we have completed
3619   // all of the iterations in the first vector loop.  Three cases:
3620   // 1) If we require a scalar epilogue, there is no conditional branch as
3621   //    we unconditionally branch to the scalar preheader.  Do nothing.
3622   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3623   //    Thus if tail is to be folded, we know we don't need to run the
3624   //    remainder and we can use the previous value for the condition (true).
3625   // 3) Otherwise, construct a runtime check.
3626   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3627     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3628                                         Count, VectorTripCount, "cmp.n",
3629                                         LoopMiddleBlock->getTerminator());
3630 
3631     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3632     // of the corresponding compare because they may have ended up with
3633     // different line numbers and we want to avoid awkward line stepping while
3634     // debugging. Eg. if the compare has got a line number inside the loop.
3635     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3636     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3637   }
3638 
3639   // Get ready to start creating new instructions into the vectorized body.
3640   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3641          "Inconsistent vector loop preheader");
3642   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3643 
3644   Optional<MDNode *> VectorizedLoopID =
3645       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3646                                       LLVMLoopVectorizeFollowupVectorized});
3647   if (VectorizedLoopID.hasValue()) {
3648     L->setLoopID(VectorizedLoopID.getValue());
3649 
3650     // Do not setAlreadyVectorized if loop attributes have been defined
3651     // explicitly.
3652     return LoopVectorPreHeader;
3653   }
3654 
3655   // Keep all loop hints from the original loop on the vector loop (we'll
3656   // replace the vectorizer-specific hints below).
3657   if (MDNode *LID = OrigLoop->getLoopID())
3658     L->setLoopID(LID);
3659 
3660   LoopVectorizeHints Hints(L, true, *ORE);
3661   Hints.setAlreadyVectorized();
3662 
3663 #ifdef EXPENSIVE_CHECKS
3664   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3665   LI->verify(*DT);
3666 #endif
3667 
3668   return LoopVectorPreHeader;
3669 }
3670 
3671 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3672   /*
3673    In this function we generate a new loop. The new loop will contain
3674    the vectorized instructions while the old loop will continue to run the
3675    scalar remainder.
3676 
3677        [ ] <-- loop iteration number check.
3678     /   |
3679    /    v
3680   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3681   |  /  |
3682   | /   v
3683   ||   [ ]     <-- vector pre header.
3684   |/    |
3685   |     v
3686   |    [  ] \
3687   |    [  ]_|   <-- vector loop.
3688   |     |
3689   |     v
3690   \   -[ ]   <--- middle-block.
3691    \/   |
3692    /\   v
3693    | ->[ ]     <--- new preheader.
3694    |    |
3695  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3696    |   [ ] \
3697    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3698     \   |
3699      \  v
3700       >[ ]     <-- exit block(s).
3701    ...
3702    */
3703 
3704   // Get the metadata of the original loop before it gets modified.
3705   MDNode *OrigLoopID = OrigLoop->getLoopID();
3706 
3707   // Workaround!  Compute the trip count of the original loop and cache it
3708   // before we start modifying the CFG.  This code has a systemic problem
3709   // wherein it tries to run analysis over partially constructed IR; this is
3710   // wrong, and not simply for SCEV.  The trip count of the original loop
3711   // simply happens to be prone to hitting this in practice.  In theory, we
3712   // can hit the same issue for any SCEV, or ValueTracking query done during
3713   // mutation.  See PR49900.
3714   getOrCreateTripCount(OrigLoop);
3715 
3716   // Create an empty vector loop, and prepare basic blocks for the runtime
3717   // checks.
3718   Loop *Lp = createVectorLoopSkeleton("");
3719 
3720   // Now, compare the new count to zero. If it is zero skip the vector loop and
3721   // jump to the scalar loop. This check also covers the case where the
3722   // backedge-taken count is uint##_max: adding one to it will overflow leading
3723   // to an incorrect trip count of zero. In this (rare) case we will also jump
3724   // to the scalar loop.
3725   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3726 
3727   // Generate the code to check any assumptions that we've made for SCEV
3728   // expressions.
3729   emitSCEVChecks(Lp, LoopScalarPreHeader);
3730 
3731   // Generate the code that checks in runtime if arrays overlap. We put the
3732   // checks into a separate block to make the more common case of few elements
3733   // faster.
3734   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3735 
3736   // Some loops have a single integer induction variable, while other loops
3737   // don't. One example is c++ iterators that often have multiple pointer
3738   // induction variables. In the code below we also support a case where we
3739   // don't have a single induction variable.
3740   //
3741   // We try to obtain an induction variable from the original loop as hard
3742   // as possible. However if we don't find one that:
3743   //   - is an integer
3744   //   - counts from zero, stepping by one
3745   //   - is the size of the widest induction variable type
3746   // then we create a new one.
3747   OldInduction = Legal->getPrimaryInduction();
3748   Type *IdxTy = Legal->getWidestInductionType();
3749   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3750   // The loop step is equal to the vectorization factor (num of SIMD elements)
3751   // times the unroll factor (num of SIMD instructions).
3752   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3753   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3754   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3755   Induction =
3756       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3757                               getDebugLocFromInstOrOperands(OldInduction));
3758 
3759   // Emit phis for the new starting index of the scalar loop.
3760   createInductionResumeValues(Lp, CountRoundDown);
3761 
3762   return completeLoopSkeleton(Lp, OrigLoopID);
3763 }
3764 
3765 // Fix up external users of the induction variable. At this point, we are
3766 // in LCSSA form, with all external PHIs that use the IV having one input value,
3767 // coming from the remainder loop. We need those PHIs to also have a correct
3768 // value for the IV when arriving directly from the middle block.
3769 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3770                                        const InductionDescriptor &II,
3771                                        Value *CountRoundDown, Value *EndValue,
3772                                        BasicBlock *MiddleBlock) {
3773   // There are two kinds of external IV usages - those that use the value
3774   // computed in the last iteration (the PHI) and those that use the penultimate
3775   // value (the value that feeds into the phi from the loop latch).
3776   // We allow both, but they, obviously, have different values.
3777 
3778   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3779 
3780   DenseMap<Value *, Value *> MissingVals;
3781 
3782   // An external user of the last iteration's value should see the value that
3783   // the remainder loop uses to initialize its own IV.
3784   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3785   for (User *U : PostInc->users()) {
3786     Instruction *UI = cast<Instruction>(U);
3787     if (!OrigLoop->contains(UI)) {
3788       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3789       MissingVals[UI] = EndValue;
3790     }
3791   }
3792 
3793   // An external user of the penultimate value need to see EndValue - Step.
3794   // The simplest way to get this is to recompute it from the constituent SCEVs,
3795   // that is Start + (Step * (CRD - 1)).
3796   for (User *U : OrigPhi->users()) {
3797     auto *UI = cast<Instruction>(U);
3798     if (!OrigLoop->contains(UI)) {
3799       const DataLayout &DL =
3800           OrigLoop->getHeader()->getModule()->getDataLayout();
3801       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3802 
3803       IRBuilder<> B(MiddleBlock->getTerminator());
3804 
3805       // Fast-math-flags propagate from the original induction instruction.
3806       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3807         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3808 
3809       Value *CountMinusOne = B.CreateSub(
3810           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3811       Value *CMO =
3812           !II.getStep()->getType()->isIntegerTy()
3813               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3814                              II.getStep()->getType())
3815               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3816       CMO->setName("cast.cmo");
3817       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3818       Escape->setName("ind.escape");
3819       MissingVals[UI] = Escape;
3820     }
3821   }
3822 
3823   for (auto &I : MissingVals) {
3824     PHINode *PHI = cast<PHINode>(I.first);
3825     // One corner case we have to handle is two IVs "chasing" each-other,
3826     // that is %IV2 = phi [...], [ %IV1, %latch ]
3827     // In this case, if IV1 has an external use, we need to avoid adding both
3828     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3829     // don't already have an incoming value for the middle block.
3830     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3831       PHI->addIncoming(I.second, MiddleBlock);
3832   }
3833 }
3834 
3835 namespace {
3836 
3837 struct CSEDenseMapInfo {
3838   static bool canHandle(const Instruction *I) {
3839     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3840            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3841   }
3842 
3843   static inline Instruction *getEmptyKey() {
3844     return DenseMapInfo<Instruction *>::getEmptyKey();
3845   }
3846 
3847   static inline Instruction *getTombstoneKey() {
3848     return DenseMapInfo<Instruction *>::getTombstoneKey();
3849   }
3850 
3851   static unsigned getHashValue(const Instruction *I) {
3852     assert(canHandle(I) && "Unknown instruction!");
3853     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3854                                                            I->value_op_end()));
3855   }
3856 
3857   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3858     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3859         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3860       return LHS == RHS;
3861     return LHS->isIdenticalTo(RHS);
3862   }
3863 };
3864 
3865 } // end anonymous namespace
3866 
3867 ///Perform cse of induction variable instructions.
3868 static void cse(BasicBlock *BB) {
3869   // Perform simple cse.
3870   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3871   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3872     if (!CSEDenseMapInfo::canHandle(&In))
3873       continue;
3874 
3875     // Check if we can replace this instruction with any of the
3876     // visited instructions.
3877     if (Instruction *V = CSEMap.lookup(&In)) {
3878       In.replaceAllUsesWith(V);
3879       In.eraseFromParent();
3880       continue;
3881     }
3882 
3883     CSEMap[&In] = &In;
3884   }
3885 }
3886 
3887 InstructionCost
3888 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3889                                               bool &NeedToScalarize) const {
3890   Function *F = CI->getCalledFunction();
3891   Type *ScalarRetTy = CI->getType();
3892   SmallVector<Type *, 4> Tys, ScalarTys;
3893   for (auto &ArgOp : CI->args())
3894     ScalarTys.push_back(ArgOp->getType());
3895 
3896   // Estimate cost of scalarized vector call. The source operands are assumed
3897   // to be vectors, so we need to extract individual elements from there,
3898   // execute VF scalar calls, and then gather the result into the vector return
3899   // value.
3900   InstructionCost ScalarCallCost =
3901       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3902   if (VF.isScalar())
3903     return ScalarCallCost;
3904 
3905   // Compute corresponding vector type for return value and arguments.
3906   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3907   for (Type *ScalarTy : ScalarTys)
3908     Tys.push_back(ToVectorTy(ScalarTy, VF));
3909 
3910   // Compute costs of unpacking argument values for the scalar calls and
3911   // packing the return values to a vector.
3912   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3913 
3914   InstructionCost Cost =
3915       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3916 
3917   // If we can't emit a vector call for this function, then the currently found
3918   // cost is the cost we need to return.
3919   NeedToScalarize = true;
3920   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3921   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3922 
3923   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3924     return Cost;
3925 
3926   // If the corresponding vector cost is cheaper, return its cost.
3927   InstructionCost VectorCallCost =
3928       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3929   if (VectorCallCost < Cost) {
3930     NeedToScalarize = false;
3931     Cost = VectorCallCost;
3932   }
3933   return Cost;
3934 }
3935 
3936 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3937   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3938     return Elt;
3939   return VectorType::get(Elt, VF);
3940 }
3941 
3942 InstructionCost
3943 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3944                                                    ElementCount VF) const {
3945   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3946   assert(ID && "Expected intrinsic call!");
3947   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3948   FastMathFlags FMF;
3949   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3950     FMF = FPMO->getFastMathFlags();
3951 
3952   SmallVector<const Value *> Arguments(CI->args());
3953   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3954   SmallVector<Type *> ParamTys;
3955   std::transform(FTy->param_begin(), FTy->param_end(),
3956                  std::back_inserter(ParamTys),
3957                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3958 
3959   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3960                                     dyn_cast<IntrinsicInst>(CI));
3961   return TTI.getIntrinsicInstrCost(CostAttrs,
3962                                    TargetTransformInfo::TCK_RecipThroughput);
3963 }
3964 
3965 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3966   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3967   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3968   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3969 }
3970 
3971 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3972   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3973   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3974   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3975 }
3976 
3977 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3978   // For every instruction `I` in MinBWs, truncate the operands, create a
3979   // truncated version of `I` and reextend its result. InstCombine runs
3980   // later and will remove any ext/trunc pairs.
3981   SmallPtrSet<Value *, 4> Erased;
3982   for (const auto &KV : Cost->getMinimalBitwidths()) {
3983     // If the value wasn't vectorized, we must maintain the original scalar
3984     // type. The absence of the value from State indicates that it
3985     // wasn't vectorized.
3986     // FIXME: Should not rely on getVPValue at this point.
3987     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3988     if (!State.hasAnyVectorValue(Def))
3989       continue;
3990     for (unsigned Part = 0; Part < UF; ++Part) {
3991       Value *I = State.get(Def, Part);
3992       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3993         continue;
3994       Type *OriginalTy = I->getType();
3995       Type *ScalarTruncatedTy =
3996           IntegerType::get(OriginalTy->getContext(), KV.second);
3997       auto *TruncatedTy = VectorType::get(
3998           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3999       if (TruncatedTy == OriginalTy)
4000         continue;
4001 
4002       IRBuilder<> B(cast<Instruction>(I));
4003       auto ShrinkOperand = [&](Value *V) -> Value * {
4004         if (auto *ZI = dyn_cast<ZExtInst>(V))
4005           if (ZI->getSrcTy() == TruncatedTy)
4006             return ZI->getOperand(0);
4007         return B.CreateZExtOrTrunc(V, TruncatedTy);
4008       };
4009 
4010       // The actual instruction modification depends on the instruction type,
4011       // unfortunately.
4012       Value *NewI = nullptr;
4013       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4014         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4015                              ShrinkOperand(BO->getOperand(1)));
4016 
4017         // Any wrapping introduced by shrinking this operation shouldn't be
4018         // considered undefined behavior. So, we can't unconditionally copy
4019         // arithmetic wrapping flags to NewI.
4020         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4021       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4022         NewI =
4023             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4024                          ShrinkOperand(CI->getOperand(1)));
4025       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4026         NewI = B.CreateSelect(SI->getCondition(),
4027                               ShrinkOperand(SI->getTrueValue()),
4028                               ShrinkOperand(SI->getFalseValue()));
4029       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4030         switch (CI->getOpcode()) {
4031         default:
4032           llvm_unreachable("Unhandled cast!");
4033         case Instruction::Trunc:
4034           NewI = ShrinkOperand(CI->getOperand(0));
4035           break;
4036         case Instruction::SExt:
4037           NewI = B.CreateSExtOrTrunc(
4038               CI->getOperand(0),
4039               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4040           break;
4041         case Instruction::ZExt:
4042           NewI = B.CreateZExtOrTrunc(
4043               CI->getOperand(0),
4044               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4045           break;
4046         }
4047       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4048         auto Elements0 =
4049             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4050         auto *O0 = B.CreateZExtOrTrunc(
4051             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4052         auto Elements1 =
4053             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4054         auto *O1 = B.CreateZExtOrTrunc(
4055             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4056 
4057         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4058       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4059         // Don't do anything with the operands, just extend the result.
4060         continue;
4061       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4062         auto Elements =
4063             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4064         auto *O0 = B.CreateZExtOrTrunc(
4065             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4066         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4067         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4068       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4069         auto Elements =
4070             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4071         auto *O0 = B.CreateZExtOrTrunc(
4072             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4073         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4074       } else {
4075         // If we don't know what to do, be conservative and don't do anything.
4076         continue;
4077       }
4078 
4079       // Lastly, extend the result.
4080       NewI->takeName(cast<Instruction>(I));
4081       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4082       I->replaceAllUsesWith(Res);
4083       cast<Instruction>(I)->eraseFromParent();
4084       Erased.insert(I);
4085       State.reset(Def, Res, Part);
4086     }
4087   }
4088 
4089   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4090   for (const auto &KV : Cost->getMinimalBitwidths()) {
4091     // If the value wasn't vectorized, we must maintain the original scalar
4092     // type. The absence of the value from State indicates that it
4093     // wasn't vectorized.
4094     // FIXME: Should not rely on getVPValue at this point.
4095     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4096     if (!State.hasAnyVectorValue(Def))
4097       continue;
4098     for (unsigned Part = 0; Part < UF; ++Part) {
4099       Value *I = State.get(Def, Part);
4100       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4101       if (Inst && Inst->use_empty()) {
4102         Value *NewI = Inst->getOperand(0);
4103         Inst->eraseFromParent();
4104         State.reset(Def, NewI, Part);
4105       }
4106     }
4107   }
4108 }
4109 
4110 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4111   // Insert truncates and extends for any truncated instructions as hints to
4112   // InstCombine.
4113   if (VF.isVector())
4114     truncateToMinimalBitwidths(State);
4115 
4116   // Fix widened non-induction PHIs by setting up the PHI operands.
4117   if (OrigPHIsToFix.size()) {
4118     assert(EnableVPlanNativePath &&
4119            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4120     fixNonInductionPHIs(State);
4121   }
4122 
4123   // At this point every instruction in the original loop is widened to a
4124   // vector form. Now we need to fix the recurrences in the loop. These PHI
4125   // nodes are currently empty because we did not want to introduce cycles.
4126   // This is the second stage of vectorizing recurrences.
4127   fixCrossIterationPHIs(State);
4128 
4129   // Forget the original basic block.
4130   PSE.getSE()->forgetLoop(OrigLoop);
4131 
4132   // If we inserted an edge from the middle block to the unique exit block,
4133   // update uses outside the loop (phis) to account for the newly inserted
4134   // edge.
4135   if (!Cost->requiresScalarEpilogue(VF)) {
4136     // Fix-up external users of the induction variables.
4137     for (auto &Entry : Legal->getInductionVars())
4138       fixupIVUsers(Entry.first, Entry.second,
4139                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4140                    IVEndValues[Entry.first], LoopMiddleBlock);
4141 
4142     fixLCSSAPHIs(State);
4143   }
4144 
4145   for (Instruction *PI : PredicatedInstructions)
4146     sinkScalarOperands(&*PI);
4147 
4148   // Remove redundant induction instructions.
4149   cse(LoopVectorBody);
4150 
4151   // Set/update profile weights for the vector and remainder loops as original
4152   // loop iterations are now distributed among them. Note that original loop
4153   // represented by LoopScalarBody becomes remainder loop after vectorization.
4154   //
4155   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4156   // end up getting slightly roughened result but that should be OK since
4157   // profile is not inherently precise anyway. Note also possible bypass of
4158   // vector code caused by legality checks is ignored, assigning all the weight
4159   // to the vector loop, optimistically.
4160   //
4161   // For scalable vectorization we can't know at compile time how many iterations
4162   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4163   // vscale of '1'.
4164   setProfileInfoAfterUnrolling(
4165       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4166       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4167 }
4168 
4169 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4170   // In order to support recurrences we need to be able to vectorize Phi nodes.
4171   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4172   // stage #2: We now need to fix the recurrences by adding incoming edges to
4173   // the currently empty PHI nodes. At this point every instruction in the
4174   // original loop is widened to a vector form so we can use them to construct
4175   // the incoming edges.
4176   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4177   for (VPRecipeBase &R : Header->phis()) {
4178     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4179       fixReduction(ReductionPhi, State);
4180     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4181       fixFirstOrderRecurrence(FOR, State);
4182   }
4183 }
4184 
4185 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4186                                                   VPTransformState &State) {
4187   // This is the second phase of vectorizing first-order recurrences. An
4188   // overview of the transformation is described below. Suppose we have the
4189   // following loop.
4190   //
4191   //   for (int i = 0; i < n; ++i)
4192   //     b[i] = a[i] - a[i - 1];
4193   //
4194   // There is a first-order recurrence on "a". For this loop, the shorthand
4195   // scalar IR looks like:
4196   //
4197   //   scalar.ph:
4198   //     s_init = a[-1]
4199   //     br scalar.body
4200   //
4201   //   scalar.body:
4202   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4203   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4204   //     s2 = a[i]
4205   //     b[i] = s2 - s1
4206   //     br cond, scalar.body, ...
4207   //
4208   // In this example, s1 is a recurrence because it's value depends on the
4209   // previous iteration. In the first phase of vectorization, we created a
4210   // vector phi v1 for s1. We now complete the vectorization and produce the
4211   // shorthand vector IR shown below (for VF = 4, UF = 1).
4212   //
4213   //   vector.ph:
4214   //     v_init = vector(..., ..., ..., a[-1])
4215   //     br vector.body
4216   //
4217   //   vector.body
4218   //     i = phi [0, vector.ph], [i+4, vector.body]
4219   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4220   //     v2 = a[i, i+1, i+2, i+3];
4221   //     v3 = vector(v1(3), v2(0, 1, 2))
4222   //     b[i, i+1, i+2, i+3] = v2 - v3
4223   //     br cond, vector.body, middle.block
4224   //
4225   //   middle.block:
4226   //     x = v2(3)
4227   //     br scalar.ph
4228   //
4229   //   scalar.ph:
4230   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4231   //     br scalar.body
4232   //
4233   // After execution completes the vector loop, we extract the next value of
4234   // the recurrence (x) to use as the initial value in the scalar loop.
4235 
4236   // Extract the last vector element in the middle block. This will be the
4237   // initial value for the recurrence when jumping to the scalar loop.
4238   VPValue *PreviousDef = PhiR->getBackedgeValue();
4239   Value *Incoming = State.get(PreviousDef, UF - 1);
4240   auto *ExtractForScalar = Incoming;
4241   auto *IdxTy = Builder.getInt32Ty();
4242   if (VF.isVector()) {
4243     auto *One = ConstantInt::get(IdxTy, 1);
4244     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4245     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4246     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4247     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4248                                                     "vector.recur.extract");
4249   }
4250   // Extract the second last element in the middle block if the
4251   // Phi is used outside the loop. We need to extract the phi itself
4252   // and not the last element (the phi update in the current iteration). This
4253   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4254   // when the scalar loop is not run at all.
4255   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4256   if (VF.isVector()) {
4257     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4258     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4259     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4260         Incoming, Idx, "vector.recur.extract.for.phi");
4261   } else if (UF > 1)
4262     // When loop is unrolled without vectorizing, initialize
4263     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4264     // of `Incoming`. This is analogous to the vectorized case above: extracting
4265     // the second last element when VF > 1.
4266     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4267 
4268   // Fix the initial value of the original recurrence in the scalar loop.
4269   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4270   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4271   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4272   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4273   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4274     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4275     Start->addIncoming(Incoming, BB);
4276   }
4277 
4278   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4279   Phi->setName("scalar.recur");
4280 
4281   // Finally, fix users of the recurrence outside the loop. The users will need
4282   // either the last value of the scalar recurrence or the last value of the
4283   // vector recurrence we extracted in the middle block. Since the loop is in
4284   // LCSSA form, we just need to find all the phi nodes for the original scalar
4285   // recurrence in the exit block, and then add an edge for the middle block.
4286   // Note that LCSSA does not imply single entry when the original scalar loop
4287   // had multiple exiting edges (as we always run the last iteration in the
4288   // scalar epilogue); in that case, there is no edge from middle to exit and
4289   // and thus no phis which needed updated.
4290   if (!Cost->requiresScalarEpilogue(VF))
4291     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4292       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4293         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4294 }
4295 
4296 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4297                                        VPTransformState &State) {
4298   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4299   // Get it's reduction variable descriptor.
4300   assert(Legal->isReductionVariable(OrigPhi) &&
4301          "Unable to find the reduction variable");
4302   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4303 
4304   RecurKind RK = RdxDesc.getRecurrenceKind();
4305   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4306   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4307   setDebugLocFromInst(ReductionStartValue);
4308 
4309   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4310   // This is the vector-clone of the value that leaves the loop.
4311   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4312 
4313   // Wrap flags are in general invalid after vectorization, clear them.
4314   clearReductionWrapFlags(RdxDesc, State);
4315 
4316   // Before each round, move the insertion point right between
4317   // the PHIs and the values we are going to write.
4318   // This allows us to write both PHINodes and the extractelement
4319   // instructions.
4320   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4321 
4322   setDebugLocFromInst(LoopExitInst);
4323 
4324   Type *PhiTy = OrigPhi->getType();
4325   // If tail is folded by masking, the vector value to leave the loop should be
4326   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4327   // instead of the former. For an inloop reduction the reduction will already
4328   // be predicated, and does not need to be handled here.
4329   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4330     for (unsigned Part = 0; Part < UF; ++Part) {
4331       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4332       Value *Sel = nullptr;
4333       for (User *U : VecLoopExitInst->users()) {
4334         if (isa<SelectInst>(U)) {
4335           assert(!Sel && "Reduction exit feeding two selects");
4336           Sel = U;
4337         } else
4338           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4339       }
4340       assert(Sel && "Reduction exit feeds no select");
4341       State.reset(LoopExitInstDef, Sel, Part);
4342 
4343       // If the target can create a predicated operator for the reduction at no
4344       // extra cost in the loop (for example a predicated vadd), it can be
4345       // cheaper for the select to remain in the loop than be sunk out of it,
4346       // and so use the select value for the phi instead of the old
4347       // LoopExitValue.
4348       if (PreferPredicatedReductionSelect ||
4349           TTI->preferPredicatedReductionSelect(
4350               RdxDesc.getOpcode(), PhiTy,
4351               TargetTransformInfo::ReductionFlags())) {
4352         auto *VecRdxPhi =
4353             cast<PHINode>(State.get(PhiR, Part));
4354         VecRdxPhi->setIncomingValueForBlock(
4355             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4356       }
4357     }
4358   }
4359 
4360   // If the vector reduction can be performed in a smaller type, we truncate
4361   // then extend the loop exit value to enable InstCombine to evaluate the
4362   // entire expression in the smaller type.
4363   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4364     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4365     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4366     Builder.SetInsertPoint(
4367         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4368     VectorParts RdxParts(UF);
4369     for (unsigned Part = 0; Part < UF; ++Part) {
4370       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4371       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4372       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4373                                         : Builder.CreateZExt(Trunc, VecTy);
4374       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4375            UI != RdxParts[Part]->user_end();)
4376         if (*UI != Trunc) {
4377           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4378           RdxParts[Part] = Extnd;
4379         } else {
4380           ++UI;
4381         }
4382     }
4383     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4384     for (unsigned Part = 0; Part < UF; ++Part) {
4385       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4386       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4387     }
4388   }
4389 
4390   // Reduce all of the unrolled parts into a single vector.
4391   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4392   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4393 
4394   // The middle block terminator has already been assigned a DebugLoc here (the
4395   // OrigLoop's single latch terminator). We want the whole middle block to
4396   // appear to execute on this line because: (a) it is all compiler generated,
4397   // (b) these instructions are always executed after evaluating the latch
4398   // conditional branch, and (c) other passes may add new predecessors which
4399   // terminate on this line. This is the easiest way to ensure we don't
4400   // accidentally cause an extra step back into the loop while debugging.
4401   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4402   if (PhiR->isOrdered())
4403     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4404   else {
4405     // Floating-point operations should have some FMF to enable the reduction.
4406     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4407     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4408     for (unsigned Part = 1; Part < UF; ++Part) {
4409       Value *RdxPart = State.get(LoopExitInstDef, Part);
4410       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4411         ReducedPartRdx = Builder.CreateBinOp(
4412             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4413       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4414         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4415                                            ReducedPartRdx, RdxPart);
4416       else
4417         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4418     }
4419   }
4420 
4421   // Create the reduction after the loop. Note that inloop reductions create the
4422   // target reduction in the loop using a Reduction recipe.
4423   if (VF.isVector() && !PhiR->isInLoop()) {
4424     ReducedPartRdx =
4425         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4426     // If the reduction can be performed in a smaller type, we need to extend
4427     // the reduction to the wider type before we branch to the original loop.
4428     if (PhiTy != RdxDesc.getRecurrenceType())
4429       ReducedPartRdx = RdxDesc.isSigned()
4430                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4431                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4432   }
4433 
4434   // Create a phi node that merges control-flow from the backedge-taken check
4435   // block and the middle block.
4436   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4437                                         LoopScalarPreHeader->getTerminator());
4438   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4439     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4440   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4441 
4442   // Now, we need to fix the users of the reduction variable
4443   // inside and outside of the scalar remainder loop.
4444 
4445   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4446   // in the exit blocks.  See comment on analogous loop in
4447   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4448   if (!Cost->requiresScalarEpilogue(VF))
4449     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4450       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4451         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4452 
4453   // Fix the scalar loop reduction variable with the incoming reduction sum
4454   // from the vector body and from the backedge value.
4455   int IncomingEdgeBlockIdx =
4456       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4457   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4458   // Pick the other block.
4459   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4460   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4461   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4462 }
4463 
4464 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4465                                                   VPTransformState &State) {
4466   RecurKind RK = RdxDesc.getRecurrenceKind();
4467   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4468     return;
4469 
4470   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4471   assert(LoopExitInstr && "null loop exit instruction");
4472   SmallVector<Instruction *, 8> Worklist;
4473   SmallPtrSet<Instruction *, 8> Visited;
4474   Worklist.push_back(LoopExitInstr);
4475   Visited.insert(LoopExitInstr);
4476 
4477   while (!Worklist.empty()) {
4478     Instruction *Cur = Worklist.pop_back_val();
4479     if (isa<OverflowingBinaryOperator>(Cur))
4480       for (unsigned Part = 0; Part < UF; ++Part) {
4481         // FIXME: Should not rely on getVPValue at this point.
4482         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4483         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4484       }
4485 
4486     for (User *U : Cur->users()) {
4487       Instruction *UI = cast<Instruction>(U);
4488       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4489           Visited.insert(UI).second)
4490         Worklist.push_back(UI);
4491     }
4492   }
4493 }
4494 
4495 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4496   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4497     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4498       // Some phis were already hand updated by the reduction and recurrence
4499       // code above, leave them alone.
4500       continue;
4501 
4502     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4503     // Non-instruction incoming values will have only one value.
4504 
4505     VPLane Lane = VPLane::getFirstLane();
4506     if (isa<Instruction>(IncomingValue) &&
4507         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4508                                            VF))
4509       Lane = VPLane::getLastLaneForVF(VF);
4510 
4511     // Can be a loop invariant incoming value or the last scalar value to be
4512     // extracted from the vectorized loop.
4513     // FIXME: Should not rely on getVPValue at this point.
4514     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4515     Value *lastIncomingValue =
4516         OrigLoop->isLoopInvariant(IncomingValue)
4517             ? IncomingValue
4518             : State.get(State.Plan->getVPValue(IncomingValue, true),
4519                         VPIteration(UF - 1, Lane));
4520     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4521   }
4522 }
4523 
4524 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4525   // The basic block and loop containing the predicated instruction.
4526   auto *PredBB = PredInst->getParent();
4527   auto *VectorLoop = LI->getLoopFor(PredBB);
4528 
4529   // Initialize a worklist with the operands of the predicated instruction.
4530   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4531 
4532   // Holds instructions that we need to analyze again. An instruction may be
4533   // reanalyzed if we don't yet know if we can sink it or not.
4534   SmallVector<Instruction *, 8> InstsToReanalyze;
4535 
4536   // Returns true if a given use occurs in the predicated block. Phi nodes use
4537   // their operands in their corresponding predecessor blocks.
4538   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4539     auto *I = cast<Instruction>(U.getUser());
4540     BasicBlock *BB = I->getParent();
4541     if (auto *Phi = dyn_cast<PHINode>(I))
4542       BB = Phi->getIncomingBlock(
4543           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4544     return BB == PredBB;
4545   };
4546 
4547   // Iteratively sink the scalarized operands of the predicated instruction
4548   // into the block we created for it. When an instruction is sunk, it's
4549   // operands are then added to the worklist. The algorithm ends after one pass
4550   // through the worklist doesn't sink a single instruction.
4551   bool Changed;
4552   do {
4553     // Add the instructions that need to be reanalyzed to the worklist, and
4554     // reset the changed indicator.
4555     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4556     InstsToReanalyze.clear();
4557     Changed = false;
4558 
4559     while (!Worklist.empty()) {
4560       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4561 
4562       // We can't sink an instruction if it is a phi node, is not in the loop,
4563       // or may have side effects.
4564       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4565           I->mayHaveSideEffects())
4566         continue;
4567 
4568       // If the instruction is already in PredBB, check if we can sink its
4569       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4570       // sinking the scalar instruction I, hence it appears in PredBB; but it
4571       // may have failed to sink I's operands (recursively), which we try
4572       // (again) here.
4573       if (I->getParent() == PredBB) {
4574         Worklist.insert(I->op_begin(), I->op_end());
4575         continue;
4576       }
4577 
4578       // It's legal to sink the instruction if all its uses occur in the
4579       // predicated block. Otherwise, there's nothing to do yet, and we may
4580       // need to reanalyze the instruction.
4581       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4582         InstsToReanalyze.push_back(I);
4583         continue;
4584       }
4585 
4586       // Move the instruction to the beginning of the predicated block, and add
4587       // it's operands to the worklist.
4588       I->moveBefore(&*PredBB->getFirstInsertionPt());
4589       Worklist.insert(I->op_begin(), I->op_end());
4590 
4591       // The sinking may have enabled other instructions to be sunk, so we will
4592       // need to iterate.
4593       Changed = true;
4594     }
4595   } while (Changed);
4596 }
4597 
4598 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4599   for (PHINode *OrigPhi : OrigPHIsToFix) {
4600     VPWidenPHIRecipe *VPPhi =
4601         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4602     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4603     // Make sure the builder has a valid insert point.
4604     Builder.SetInsertPoint(NewPhi);
4605     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4606       VPValue *Inc = VPPhi->getIncomingValue(i);
4607       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4608       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4609     }
4610   }
4611 }
4612 
4613 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4614   return Cost->useOrderedReductions(RdxDesc);
4615 }
4616 
4617 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4618                                    VPUser &Operands, unsigned UF,
4619                                    ElementCount VF, bool IsPtrLoopInvariant,
4620                                    SmallBitVector &IsIndexLoopInvariant,
4621                                    VPTransformState &State) {
4622   // Construct a vector GEP by widening the operands of the scalar GEP as
4623   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4624   // results in a vector of pointers when at least one operand of the GEP
4625   // is vector-typed. Thus, to keep the representation compact, we only use
4626   // vector-typed operands for loop-varying values.
4627 
4628   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4629     // If we are vectorizing, but the GEP has only loop-invariant operands,
4630     // the GEP we build (by only using vector-typed operands for
4631     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4632     // produce a vector of pointers, we need to either arbitrarily pick an
4633     // operand to broadcast, or broadcast a clone of the original GEP.
4634     // Here, we broadcast a clone of the original.
4635     //
4636     // TODO: If at some point we decide to scalarize instructions having
4637     //       loop-invariant operands, this special case will no longer be
4638     //       required. We would add the scalarization decision to
4639     //       collectLoopScalars() and teach getVectorValue() to broadcast
4640     //       the lane-zero scalar value.
4641     auto *Clone = Builder.Insert(GEP->clone());
4642     for (unsigned Part = 0; Part < UF; ++Part) {
4643       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4644       State.set(VPDef, EntryPart, Part);
4645       addMetadata(EntryPart, GEP);
4646     }
4647   } else {
4648     // If the GEP has at least one loop-varying operand, we are sure to
4649     // produce a vector of pointers. But if we are only unrolling, we want
4650     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4651     // produce with the code below will be scalar (if VF == 1) or vector
4652     // (otherwise). Note that for the unroll-only case, we still maintain
4653     // values in the vector mapping with initVector, as we do for other
4654     // instructions.
4655     for (unsigned Part = 0; Part < UF; ++Part) {
4656       // The pointer operand of the new GEP. If it's loop-invariant, we
4657       // won't broadcast it.
4658       auto *Ptr = IsPtrLoopInvariant
4659                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4660                       : State.get(Operands.getOperand(0), Part);
4661 
4662       // Collect all the indices for the new GEP. If any index is
4663       // loop-invariant, we won't broadcast it.
4664       SmallVector<Value *, 4> Indices;
4665       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4666         VPValue *Operand = Operands.getOperand(I);
4667         if (IsIndexLoopInvariant[I - 1])
4668           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4669         else
4670           Indices.push_back(State.get(Operand, Part));
4671       }
4672 
4673       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4674       // but it should be a vector, otherwise.
4675       auto *NewGEP =
4676           GEP->isInBounds()
4677               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4678                                           Indices)
4679               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4680       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4681              "NewGEP is not a pointer vector");
4682       State.set(VPDef, NewGEP, Part);
4683       addMetadata(NewGEP, GEP);
4684     }
4685   }
4686 }
4687 
4688 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4689                                               VPWidenPHIRecipe *PhiR,
4690                                               VPTransformState &State) {
4691   PHINode *P = cast<PHINode>(PN);
4692   if (EnableVPlanNativePath) {
4693     // Currently we enter here in the VPlan-native path for non-induction
4694     // PHIs where all control flow is uniform. We simply widen these PHIs.
4695     // Create a vector phi with no operands - the vector phi operands will be
4696     // set at the end of vector code generation.
4697     Type *VecTy = (State.VF.isScalar())
4698                       ? PN->getType()
4699                       : VectorType::get(PN->getType(), State.VF);
4700     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4701     State.set(PhiR, VecPhi, 0);
4702     OrigPHIsToFix.push_back(P);
4703 
4704     return;
4705   }
4706 
4707   assert(PN->getParent() == OrigLoop->getHeader() &&
4708          "Non-header phis should have been handled elsewhere");
4709 
4710   // In order to support recurrences we need to be able to vectorize Phi nodes.
4711   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4712   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4713   // this value when we vectorize all of the instructions that use the PHI.
4714 
4715   assert(!Legal->isReductionVariable(P) &&
4716          "reductions should be handled elsewhere");
4717 
4718   setDebugLocFromInst(P);
4719 
4720   // This PHINode must be an induction variable.
4721   // Make sure that we know about it.
4722   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4723 
4724   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4725   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4726 
4727   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4728   // which can be found from the original scalar operations.
4729   switch (II.getKind()) {
4730   case InductionDescriptor::IK_NoInduction:
4731     llvm_unreachable("Unknown induction");
4732   case InductionDescriptor::IK_IntInduction:
4733   case InductionDescriptor::IK_FpInduction:
4734     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4735   case InductionDescriptor::IK_PtrInduction: {
4736     // Handle the pointer induction variable case.
4737     assert(P->getType()->isPointerTy() && "Unexpected type.");
4738 
4739     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4740       // This is the normalized GEP that starts counting at zero.
4741       Value *PtrInd =
4742           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4743       // Determine the number of scalars we need to generate for each unroll
4744       // iteration. If the instruction is uniform, we only need to generate the
4745       // first lane. Otherwise, we generate all VF values.
4746       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4747       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4748 
4749       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4750       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4751       if (NeedsVectorIndex) {
4752         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4753         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4754         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4755       }
4756 
4757       for (unsigned Part = 0; Part < UF; ++Part) {
4758         Value *PartStart = createStepForVF(
4759             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4760 
4761         if (NeedsVectorIndex) {
4762           // Here we cache the whole vector, which means we can support the
4763           // extraction of any lane. However, in some cases the extractelement
4764           // instruction that is generated for scalar uses of this vector (e.g.
4765           // a load instruction) is not folded away. Therefore we still
4766           // calculate values for the first n lanes to avoid redundant moves
4767           // (when extracting the 0th element) and to produce scalar code (i.e.
4768           // additional add/gep instructions instead of expensive extractelement
4769           // instructions) when extracting higher-order elements.
4770           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4771           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4772           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4773           Value *SclrGep =
4774               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4775           SclrGep->setName("next.gep");
4776           State.set(PhiR, SclrGep, Part);
4777         }
4778 
4779         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4780           Value *Idx = Builder.CreateAdd(
4781               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4782           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4783           Value *SclrGep =
4784               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4785           SclrGep->setName("next.gep");
4786           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4787         }
4788       }
4789       return;
4790     }
4791     assert(isa<SCEVConstant>(II.getStep()) &&
4792            "Induction step not a SCEV constant!");
4793     Type *PhiType = II.getStep()->getType();
4794 
4795     // Build a pointer phi
4796     Value *ScalarStartValue = II.getStartValue();
4797     Type *ScStValueType = ScalarStartValue->getType();
4798     PHINode *NewPointerPhi =
4799         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4800     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4801 
4802     // A pointer induction, performed by using a gep
4803     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4804     Instruction *InductionLoc = LoopLatch->getTerminator();
4805     const SCEV *ScalarStep = II.getStep();
4806     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4807     Value *ScalarStepValue =
4808         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4809     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4810     Value *NumUnrolledElems =
4811         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4812     Value *InductionGEP = GetElementPtrInst::Create(
4813         II.getElementType(), NewPointerPhi,
4814         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4815         InductionLoc);
4816     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4817 
4818     // Create UF many actual address geps that use the pointer
4819     // phi as base and a vectorized version of the step value
4820     // (<step*0, ..., step*N>) as offset.
4821     for (unsigned Part = 0; Part < State.UF; ++Part) {
4822       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4823       Value *StartOffsetScalar =
4824           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4825       Value *StartOffset =
4826           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4827       // Create a vector of consecutive numbers from zero to VF.
4828       StartOffset =
4829           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4830 
4831       Value *GEP = Builder.CreateGEP(
4832           II.getElementType(), NewPointerPhi,
4833           Builder.CreateMul(
4834               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4835               "vector.gep"));
4836       State.set(PhiR, GEP, Part);
4837     }
4838   }
4839   }
4840 }
4841 
4842 /// A helper function for checking whether an integer division-related
4843 /// instruction may divide by zero (in which case it must be predicated if
4844 /// executed conditionally in the scalar code).
4845 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4846 /// Non-zero divisors that are non compile-time constants will not be
4847 /// converted into multiplication, so we will still end up scalarizing
4848 /// the division, but can do so w/o predication.
4849 static bool mayDivideByZero(Instruction &I) {
4850   assert((I.getOpcode() == Instruction::UDiv ||
4851           I.getOpcode() == Instruction::SDiv ||
4852           I.getOpcode() == Instruction::URem ||
4853           I.getOpcode() == Instruction::SRem) &&
4854          "Unexpected instruction");
4855   Value *Divisor = I.getOperand(1);
4856   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4857   return !CInt || CInt->isZero();
4858 }
4859 
4860 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4861                                            VPUser &User,
4862                                            VPTransformState &State) {
4863   switch (I.getOpcode()) {
4864   case Instruction::Call:
4865   case Instruction::Br:
4866   case Instruction::PHI:
4867   case Instruction::GetElementPtr:
4868   case Instruction::Select:
4869     llvm_unreachable("This instruction is handled by a different recipe.");
4870   case Instruction::UDiv:
4871   case Instruction::SDiv:
4872   case Instruction::SRem:
4873   case Instruction::URem:
4874   case Instruction::Add:
4875   case Instruction::FAdd:
4876   case Instruction::Sub:
4877   case Instruction::FSub:
4878   case Instruction::FNeg:
4879   case Instruction::Mul:
4880   case Instruction::FMul:
4881   case Instruction::FDiv:
4882   case Instruction::FRem:
4883   case Instruction::Shl:
4884   case Instruction::LShr:
4885   case Instruction::AShr:
4886   case Instruction::And:
4887   case Instruction::Or:
4888   case Instruction::Xor: {
4889     // Just widen unops and binops.
4890     setDebugLocFromInst(&I);
4891 
4892     for (unsigned Part = 0; Part < UF; ++Part) {
4893       SmallVector<Value *, 2> Ops;
4894       for (VPValue *VPOp : User.operands())
4895         Ops.push_back(State.get(VPOp, Part));
4896 
4897       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4898 
4899       if (auto *VecOp = dyn_cast<Instruction>(V))
4900         VecOp->copyIRFlags(&I);
4901 
4902       // Use this vector value for all users of the original instruction.
4903       State.set(Def, V, Part);
4904       addMetadata(V, &I);
4905     }
4906 
4907     break;
4908   }
4909   case Instruction::ICmp:
4910   case Instruction::FCmp: {
4911     // Widen compares. Generate vector compares.
4912     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4913     auto *Cmp = cast<CmpInst>(&I);
4914     setDebugLocFromInst(Cmp);
4915     for (unsigned Part = 0; Part < UF; ++Part) {
4916       Value *A = State.get(User.getOperand(0), Part);
4917       Value *B = State.get(User.getOperand(1), Part);
4918       Value *C = nullptr;
4919       if (FCmp) {
4920         // Propagate fast math flags.
4921         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4922         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4923         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4924       } else {
4925         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4926       }
4927       State.set(Def, C, Part);
4928       addMetadata(C, &I);
4929     }
4930 
4931     break;
4932   }
4933 
4934   case Instruction::ZExt:
4935   case Instruction::SExt:
4936   case Instruction::FPToUI:
4937   case Instruction::FPToSI:
4938   case Instruction::FPExt:
4939   case Instruction::PtrToInt:
4940   case Instruction::IntToPtr:
4941   case Instruction::SIToFP:
4942   case Instruction::UIToFP:
4943   case Instruction::Trunc:
4944   case Instruction::FPTrunc:
4945   case Instruction::BitCast: {
4946     auto *CI = cast<CastInst>(&I);
4947     setDebugLocFromInst(CI);
4948 
4949     /// Vectorize casts.
4950     Type *DestTy =
4951         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4952 
4953     for (unsigned Part = 0; Part < UF; ++Part) {
4954       Value *A = State.get(User.getOperand(0), Part);
4955       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4956       State.set(Def, Cast, Part);
4957       addMetadata(Cast, &I);
4958     }
4959     break;
4960   }
4961   default:
4962     // This instruction is not vectorized by simple widening.
4963     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4964     llvm_unreachable("Unhandled instruction!");
4965   } // end of switch.
4966 }
4967 
4968 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4969                                                VPUser &ArgOperands,
4970                                                VPTransformState &State) {
4971   assert(!isa<DbgInfoIntrinsic>(I) &&
4972          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4973   setDebugLocFromInst(&I);
4974 
4975   Module *M = I.getParent()->getParent()->getParent();
4976   auto *CI = cast<CallInst>(&I);
4977 
4978   SmallVector<Type *, 4> Tys;
4979   for (Value *ArgOperand : CI->args())
4980     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4981 
4982   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4983 
4984   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4985   // version of the instruction.
4986   // Is it beneficial to perform intrinsic call compared to lib call?
4987   bool NeedToScalarize = false;
4988   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4989   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4990   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4991   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4992          "Instruction should be scalarized elsewhere.");
4993   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4994          "Either the intrinsic cost or vector call cost must be valid");
4995 
4996   for (unsigned Part = 0; Part < UF; ++Part) {
4997     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4998     SmallVector<Value *, 4> Args;
4999     for (auto &I : enumerate(ArgOperands.operands())) {
5000       // Some intrinsics have a scalar argument - don't replace it with a
5001       // vector.
5002       Value *Arg;
5003       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5004         Arg = State.get(I.value(), Part);
5005       else {
5006         Arg = State.get(I.value(), VPIteration(0, 0));
5007         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5008           TysForDecl.push_back(Arg->getType());
5009       }
5010       Args.push_back(Arg);
5011     }
5012 
5013     Function *VectorF;
5014     if (UseVectorIntrinsic) {
5015       // Use vector version of the intrinsic.
5016       if (VF.isVector())
5017         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5018       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5019       assert(VectorF && "Can't retrieve vector intrinsic.");
5020     } else {
5021       // Use vector version of the function call.
5022       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5023 #ifndef NDEBUG
5024       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5025              "Can't create vector function.");
5026 #endif
5027         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5028     }
5029       SmallVector<OperandBundleDef, 1> OpBundles;
5030       CI->getOperandBundlesAsDefs(OpBundles);
5031       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5032 
5033       if (isa<FPMathOperator>(V))
5034         V->copyFastMathFlags(CI);
5035 
5036       State.set(Def, V, Part);
5037       addMetadata(V, &I);
5038   }
5039 }
5040 
5041 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5042                                                  VPUser &Operands,
5043                                                  bool InvariantCond,
5044                                                  VPTransformState &State) {
5045   setDebugLocFromInst(&I);
5046 
5047   // The condition can be loop invariant  but still defined inside the
5048   // loop. This means that we can't just use the original 'cond' value.
5049   // We have to take the 'vectorized' value and pick the first lane.
5050   // Instcombine will make this a no-op.
5051   auto *InvarCond = InvariantCond
5052                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5053                         : nullptr;
5054 
5055   for (unsigned Part = 0; Part < UF; ++Part) {
5056     Value *Cond =
5057         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5058     Value *Op0 = State.get(Operands.getOperand(1), Part);
5059     Value *Op1 = State.get(Operands.getOperand(2), Part);
5060     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5061     State.set(VPDef, Sel, Part);
5062     addMetadata(Sel, &I);
5063   }
5064 }
5065 
5066 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5067   // We should not collect Scalars more than once per VF. Right now, this
5068   // function is called from collectUniformsAndScalars(), which already does
5069   // this check. Collecting Scalars for VF=1 does not make any sense.
5070   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5071          "This function should not be visited twice for the same VF");
5072 
5073   SmallSetVector<Instruction *, 8> Worklist;
5074 
5075   // These sets are used to seed the analysis with pointers used by memory
5076   // accesses that will remain scalar.
5077   SmallSetVector<Instruction *, 8> ScalarPtrs;
5078   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5079   auto *Latch = TheLoop->getLoopLatch();
5080 
5081   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5082   // The pointer operands of loads and stores will be scalar as long as the
5083   // memory access is not a gather or scatter operation. The value operand of a
5084   // store will remain scalar if the store is scalarized.
5085   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5086     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5087     assert(WideningDecision != CM_Unknown &&
5088            "Widening decision should be ready at this moment");
5089     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5090       if (Ptr == Store->getValueOperand())
5091         return WideningDecision == CM_Scalarize;
5092     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5093            "Ptr is neither a value or pointer operand");
5094     return WideningDecision != CM_GatherScatter;
5095   };
5096 
5097   // A helper that returns true if the given value is a bitcast or
5098   // getelementptr instruction contained in the loop.
5099   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5100     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5101             isa<GetElementPtrInst>(V)) &&
5102            !TheLoop->isLoopInvariant(V);
5103   };
5104 
5105   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5106     if (!isa<PHINode>(Ptr) ||
5107         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5108       return false;
5109     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5110     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5111       return false;
5112     return isScalarUse(MemAccess, Ptr);
5113   };
5114 
5115   // A helper that evaluates a memory access's use of a pointer. If the
5116   // pointer is actually the pointer induction of a loop, it is being
5117   // inserted into Worklist. If the use will be a scalar use, and the
5118   // pointer is only used by memory accesses, we place the pointer in
5119   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5120   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5121     if (isScalarPtrInduction(MemAccess, Ptr)) {
5122       Worklist.insert(cast<Instruction>(Ptr));
5123       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5124                         << "\n");
5125 
5126       Instruction *Update = cast<Instruction>(
5127           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5128 
5129       // If there is more than one user of Update (Ptr), we shouldn't assume it
5130       // will be scalar after vectorisation as other users of the instruction
5131       // may require widening. Otherwise, add it to ScalarPtrs.
5132       if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) {
5133         ScalarPtrs.insert(Update);
5134         return;
5135       }
5136     }
5137     // We only care about bitcast and getelementptr instructions contained in
5138     // the loop.
5139     if (!isLoopVaryingBitCastOrGEP(Ptr))
5140       return;
5141 
5142     // If the pointer has already been identified as scalar (e.g., if it was
5143     // also identified as uniform), there's nothing to do.
5144     auto *I = cast<Instruction>(Ptr);
5145     if (Worklist.count(I))
5146       return;
5147 
5148     // If the use of the pointer will be a scalar use, and all users of the
5149     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5150     // place the pointer in PossibleNonScalarPtrs.
5151     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5152           return isa<LoadInst>(U) || isa<StoreInst>(U);
5153         }))
5154       ScalarPtrs.insert(I);
5155     else
5156       PossibleNonScalarPtrs.insert(I);
5157   };
5158 
5159   // We seed the scalars analysis with three classes of instructions: (1)
5160   // instructions marked uniform-after-vectorization and (2) bitcast,
5161   // getelementptr and (pointer) phi instructions used by memory accesses
5162   // requiring a scalar use.
5163   //
5164   // (1) Add to the worklist all instructions that have been identified as
5165   // uniform-after-vectorization.
5166   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5167 
5168   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5169   // memory accesses requiring a scalar use. The pointer operands of loads and
5170   // stores will be scalar as long as the memory accesses is not a gather or
5171   // scatter operation. The value operand of a store will remain scalar if the
5172   // store is scalarized.
5173   for (auto *BB : TheLoop->blocks())
5174     for (auto &I : *BB) {
5175       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5176         evaluatePtrUse(Load, Load->getPointerOperand());
5177       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5178         evaluatePtrUse(Store, Store->getPointerOperand());
5179         evaluatePtrUse(Store, Store->getValueOperand());
5180       }
5181     }
5182   for (auto *I : ScalarPtrs)
5183     if (!PossibleNonScalarPtrs.count(I)) {
5184       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5185       Worklist.insert(I);
5186     }
5187 
5188   // Insert the forced scalars.
5189   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5190   // induction variable when the PHI user is scalarized.
5191   auto ForcedScalar = ForcedScalars.find(VF);
5192   if (ForcedScalar != ForcedScalars.end())
5193     for (auto *I : ForcedScalar->second)
5194       Worklist.insert(I);
5195 
5196   // Expand the worklist by looking through any bitcasts and getelementptr
5197   // instructions we've already identified as scalar. This is similar to the
5198   // expansion step in collectLoopUniforms(); however, here we're only
5199   // expanding to include additional bitcasts and getelementptr instructions.
5200   unsigned Idx = 0;
5201   while (Idx != Worklist.size()) {
5202     Instruction *Dst = Worklist[Idx++];
5203     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5204       continue;
5205     auto *Src = cast<Instruction>(Dst->getOperand(0));
5206     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5207           auto *J = cast<Instruction>(U);
5208           return !TheLoop->contains(J) || Worklist.count(J) ||
5209                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5210                   isScalarUse(J, Src));
5211         })) {
5212       Worklist.insert(Src);
5213       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5214     }
5215   }
5216 
5217   // An induction variable will remain scalar if all users of the induction
5218   // variable and induction variable update remain scalar.
5219   for (auto &Induction : Legal->getInductionVars()) {
5220     auto *Ind = Induction.first;
5221     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5222 
5223     // If tail-folding is applied, the primary induction variable will be used
5224     // to feed a vector compare.
5225     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5226       continue;
5227 
5228     // Determine if all users of the induction variable are scalar after
5229     // vectorization.
5230     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5231       auto *I = cast<Instruction>(U);
5232       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5233     });
5234     if (!ScalarInd)
5235       continue;
5236 
5237     // Determine if all users of the induction variable update instruction are
5238     // scalar after vectorization.
5239     auto ScalarIndUpdate =
5240         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5241           auto *I = cast<Instruction>(U);
5242           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5243         });
5244     if (!ScalarIndUpdate)
5245       continue;
5246 
5247     // The induction variable and its update instruction will remain scalar.
5248     Worklist.insert(Ind);
5249     Worklist.insert(IndUpdate);
5250     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5251     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5252                       << "\n");
5253   }
5254 
5255   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5256 }
5257 
5258 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5259   if (!blockNeedsPredication(I->getParent()))
5260     return false;
5261   switch(I->getOpcode()) {
5262   default:
5263     break;
5264   case Instruction::Load:
5265   case Instruction::Store: {
5266     if (!Legal->isMaskRequired(I))
5267       return false;
5268     auto *Ptr = getLoadStorePointerOperand(I);
5269     auto *Ty = getLoadStoreType(I);
5270     const Align Alignment = getLoadStoreAlignment(I);
5271     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5272                                 TTI.isLegalMaskedGather(Ty, Alignment))
5273                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5274                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5275   }
5276   case Instruction::UDiv:
5277   case Instruction::SDiv:
5278   case Instruction::SRem:
5279   case Instruction::URem:
5280     return mayDivideByZero(*I);
5281   }
5282   return false;
5283 }
5284 
5285 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5286     Instruction *I, ElementCount VF) {
5287   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5288   assert(getWideningDecision(I, VF) == CM_Unknown &&
5289          "Decision should not be set yet.");
5290   auto *Group = getInterleavedAccessGroup(I);
5291   assert(Group && "Must have a group.");
5292 
5293   // If the instruction's allocated size doesn't equal it's type size, it
5294   // requires padding and will be scalarized.
5295   auto &DL = I->getModule()->getDataLayout();
5296   auto *ScalarTy = getLoadStoreType(I);
5297   if (hasIrregularType(ScalarTy, DL))
5298     return false;
5299 
5300   // Check if masking is required.
5301   // A Group may need masking for one of two reasons: it resides in a block that
5302   // needs predication, or it was decided to use masking to deal with gaps
5303   // (either a gap at the end of a load-access that may result in a speculative
5304   // load, or any gaps in a store-access).
5305   bool PredicatedAccessRequiresMasking =
5306       blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5307   bool LoadAccessWithGapsRequiresEpilogMasking =
5308       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5309       !isScalarEpilogueAllowed();
5310   bool StoreAccessWithGapsRequiresMasking =
5311       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5312   if (!PredicatedAccessRequiresMasking &&
5313       !LoadAccessWithGapsRequiresEpilogMasking &&
5314       !StoreAccessWithGapsRequiresMasking)
5315     return true;
5316 
5317   // If masked interleaving is required, we expect that the user/target had
5318   // enabled it, because otherwise it either wouldn't have been created or
5319   // it should have been invalidated by the CostModel.
5320   assert(useMaskedInterleavedAccesses(TTI) &&
5321          "Masked interleave-groups for predicated accesses are not enabled.");
5322 
5323   if (Group->isReverse())
5324     return false;
5325 
5326   auto *Ty = getLoadStoreType(I);
5327   const Align Alignment = getLoadStoreAlignment(I);
5328   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5329                           : TTI.isLegalMaskedStore(Ty, Alignment);
5330 }
5331 
5332 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5333     Instruction *I, ElementCount VF) {
5334   // Get and ensure we have a valid memory instruction.
5335   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5336 
5337   auto *Ptr = getLoadStorePointerOperand(I);
5338   auto *ScalarTy = getLoadStoreType(I);
5339 
5340   // In order to be widened, the pointer should be consecutive, first of all.
5341   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5342     return false;
5343 
5344   // If the instruction is a store located in a predicated block, it will be
5345   // scalarized.
5346   if (isScalarWithPredication(I))
5347     return false;
5348 
5349   // If the instruction's allocated size doesn't equal it's type size, it
5350   // requires padding and will be scalarized.
5351   auto &DL = I->getModule()->getDataLayout();
5352   if (hasIrregularType(ScalarTy, DL))
5353     return false;
5354 
5355   return true;
5356 }
5357 
5358 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5359   // We should not collect Uniforms more than once per VF. Right now,
5360   // this function is called from collectUniformsAndScalars(), which
5361   // already does this check. Collecting Uniforms for VF=1 does not make any
5362   // sense.
5363 
5364   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5365          "This function should not be visited twice for the same VF");
5366 
5367   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5368   // not analyze again.  Uniforms.count(VF) will return 1.
5369   Uniforms[VF].clear();
5370 
5371   // We now know that the loop is vectorizable!
5372   // Collect instructions inside the loop that will remain uniform after
5373   // vectorization.
5374 
5375   // Global values, params and instructions outside of current loop are out of
5376   // scope.
5377   auto isOutOfScope = [&](Value *V) -> bool {
5378     Instruction *I = dyn_cast<Instruction>(V);
5379     return (!I || !TheLoop->contains(I));
5380   };
5381 
5382   SetVector<Instruction *> Worklist;
5383   BasicBlock *Latch = TheLoop->getLoopLatch();
5384 
5385   // Instructions that are scalar with predication must not be considered
5386   // uniform after vectorization, because that would create an erroneous
5387   // replicating region where only a single instance out of VF should be formed.
5388   // TODO: optimize such seldom cases if found important, see PR40816.
5389   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5390     if (isOutOfScope(I)) {
5391       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5392                         << *I << "\n");
5393       return;
5394     }
5395     if (isScalarWithPredication(I)) {
5396       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5397                         << *I << "\n");
5398       return;
5399     }
5400     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5401     Worklist.insert(I);
5402   };
5403 
5404   // Start with the conditional branch. If the branch condition is an
5405   // instruction contained in the loop that is only used by the branch, it is
5406   // uniform.
5407   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5408   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5409     addToWorklistIfAllowed(Cmp);
5410 
5411   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5412     InstWidening WideningDecision = getWideningDecision(I, VF);
5413     assert(WideningDecision != CM_Unknown &&
5414            "Widening decision should be ready at this moment");
5415 
5416     // A uniform memory op is itself uniform.  We exclude uniform stores
5417     // here as they demand the last lane, not the first one.
5418     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5419       assert(WideningDecision == CM_Scalarize);
5420       return true;
5421     }
5422 
5423     return (WideningDecision == CM_Widen ||
5424             WideningDecision == CM_Widen_Reverse ||
5425             WideningDecision == CM_Interleave);
5426   };
5427 
5428 
5429   // Returns true if Ptr is the pointer operand of a memory access instruction
5430   // I, and I is known to not require scalarization.
5431   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5432     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5433   };
5434 
5435   // Holds a list of values which are known to have at least one uniform use.
5436   // Note that there may be other uses which aren't uniform.  A "uniform use"
5437   // here is something which only demands lane 0 of the unrolled iterations;
5438   // it does not imply that all lanes produce the same value (e.g. this is not
5439   // the usual meaning of uniform)
5440   SetVector<Value *> HasUniformUse;
5441 
5442   // Scan the loop for instructions which are either a) known to have only
5443   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5444   for (auto *BB : TheLoop->blocks())
5445     for (auto &I : *BB) {
5446       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5447         switch (II->getIntrinsicID()) {
5448         case Intrinsic::sideeffect:
5449         case Intrinsic::experimental_noalias_scope_decl:
5450         case Intrinsic::assume:
5451         case Intrinsic::lifetime_start:
5452         case Intrinsic::lifetime_end:
5453           if (TheLoop->hasLoopInvariantOperands(&I))
5454             addToWorklistIfAllowed(&I);
5455           break;
5456         default:
5457           break;
5458         }
5459       }
5460 
5461       // ExtractValue instructions must be uniform, because the operands are
5462       // known to be loop-invariant.
5463       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5464         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5465                "Expected aggregate value to be loop invariant");
5466         addToWorklistIfAllowed(EVI);
5467         continue;
5468       }
5469 
5470       // If there's no pointer operand, there's nothing to do.
5471       auto *Ptr = getLoadStorePointerOperand(&I);
5472       if (!Ptr)
5473         continue;
5474 
5475       // A uniform memory op is itself uniform.  We exclude uniform stores
5476       // here as they demand the last lane, not the first one.
5477       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5478         addToWorklistIfAllowed(&I);
5479 
5480       if (isUniformDecision(&I, VF)) {
5481         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5482         HasUniformUse.insert(Ptr);
5483       }
5484     }
5485 
5486   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5487   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5488   // disallows uses outside the loop as well.
5489   for (auto *V : HasUniformUse) {
5490     if (isOutOfScope(V))
5491       continue;
5492     auto *I = cast<Instruction>(V);
5493     auto UsersAreMemAccesses =
5494       llvm::all_of(I->users(), [&](User *U) -> bool {
5495         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5496       });
5497     if (UsersAreMemAccesses)
5498       addToWorklistIfAllowed(I);
5499   }
5500 
5501   // Expand Worklist in topological order: whenever a new instruction
5502   // is added , its users should be already inside Worklist.  It ensures
5503   // a uniform instruction will only be used by uniform instructions.
5504   unsigned idx = 0;
5505   while (idx != Worklist.size()) {
5506     Instruction *I = Worklist[idx++];
5507 
5508     for (auto OV : I->operand_values()) {
5509       // isOutOfScope operands cannot be uniform instructions.
5510       if (isOutOfScope(OV))
5511         continue;
5512       // First order recurrence Phi's should typically be considered
5513       // non-uniform.
5514       auto *OP = dyn_cast<PHINode>(OV);
5515       if (OP && Legal->isFirstOrderRecurrence(OP))
5516         continue;
5517       // If all the users of the operand are uniform, then add the
5518       // operand into the uniform worklist.
5519       auto *OI = cast<Instruction>(OV);
5520       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5521             auto *J = cast<Instruction>(U);
5522             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5523           }))
5524         addToWorklistIfAllowed(OI);
5525     }
5526   }
5527 
5528   // For an instruction to be added into Worklist above, all its users inside
5529   // the loop should also be in Worklist. However, this condition cannot be
5530   // true for phi nodes that form a cyclic dependence. We must process phi
5531   // nodes separately. An induction variable will remain uniform if all users
5532   // of the induction variable and induction variable update remain uniform.
5533   // The code below handles both pointer and non-pointer induction variables.
5534   for (auto &Induction : Legal->getInductionVars()) {
5535     auto *Ind = Induction.first;
5536     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5537 
5538     // Determine if all users of the induction variable are uniform after
5539     // vectorization.
5540     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5541       auto *I = cast<Instruction>(U);
5542       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5543              isVectorizedMemAccessUse(I, Ind);
5544     });
5545     if (!UniformInd)
5546       continue;
5547 
5548     // Determine if all users of the induction variable update instruction are
5549     // uniform after vectorization.
5550     auto UniformIndUpdate =
5551         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5552           auto *I = cast<Instruction>(U);
5553           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5554                  isVectorizedMemAccessUse(I, IndUpdate);
5555         });
5556     if (!UniformIndUpdate)
5557       continue;
5558 
5559     // The induction variable and its update instruction will remain uniform.
5560     addToWorklistIfAllowed(Ind);
5561     addToWorklistIfAllowed(IndUpdate);
5562   }
5563 
5564   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5565 }
5566 
5567 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5568   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5569 
5570   if (Legal->getRuntimePointerChecking()->Need) {
5571     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5572         "runtime pointer checks needed. Enable vectorization of this "
5573         "loop with '#pragma clang loop vectorize(enable)' when "
5574         "compiling with -Os/-Oz",
5575         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5576     return true;
5577   }
5578 
5579   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5580     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5581         "runtime SCEV checks needed. Enable vectorization of this "
5582         "loop with '#pragma clang loop vectorize(enable)' when "
5583         "compiling with -Os/-Oz",
5584         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5585     return true;
5586   }
5587 
5588   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5589   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5590     reportVectorizationFailure("Runtime stride check for small trip count",
5591         "runtime stride == 1 checks needed. Enable vectorization of "
5592         "this loop without such check by compiling with -Os/-Oz",
5593         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5594     return true;
5595   }
5596 
5597   return false;
5598 }
5599 
5600 ElementCount
5601 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5602   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5603     return ElementCount::getScalable(0);
5604 
5605   if (Hints->isScalableVectorizationDisabled()) {
5606     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5607                             "ScalableVectorizationDisabled", ORE, TheLoop);
5608     return ElementCount::getScalable(0);
5609   }
5610 
5611   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5612 
5613   auto MaxScalableVF = ElementCount::getScalable(
5614       std::numeric_limits<ElementCount::ScalarTy>::max());
5615 
5616   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5617   // FIXME: While for scalable vectors this is currently sufficient, this should
5618   // be replaced by a more detailed mechanism that filters out specific VFs,
5619   // instead of invalidating vectorization for a whole set of VFs based on the
5620   // MaxVF.
5621 
5622   // Disable scalable vectorization if the loop contains unsupported reductions.
5623   if (!canVectorizeReductions(MaxScalableVF)) {
5624     reportVectorizationInfo(
5625         "Scalable vectorization not supported for the reduction "
5626         "operations found in this loop.",
5627         "ScalableVFUnfeasible", ORE, TheLoop);
5628     return ElementCount::getScalable(0);
5629   }
5630 
5631   // Disable scalable vectorization if the loop contains any instructions
5632   // with element types not supported for scalable vectors.
5633   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5634         return !Ty->isVoidTy() &&
5635                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5636       })) {
5637     reportVectorizationInfo("Scalable vectorization is not supported "
5638                             "for all element types found in this loop.",
5639                             "ScalableVFUnfeasible", ORE, TheLoop);
5640     return ElementCount::getScalable(0);
5641   }
5642 
5643   if (Legal->isSafeForAnyVectorWidth())
5644     return MaxScalableVF;
5645 
5646   // Limit MaxScalableVF by the maximum safe dependence distance.
5647   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5648   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5649     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5650                              .getVScaleRangeArgs()
5651                              .second;
5652     if (VScaleMax > 0)
5653       MaxVScale = VScaleMax;
5654   }
5655   MaxScalableVF = ElementCount::getScalable(
5656       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5657   if (!MaxScalableVF)
5658     reportVectorizationInfo(
5659         "Max legal vector width too small, scalable vectorization "
5660         "unfeasible.",
5661         "ScalableVFUnfeasible", ORE, TheLoop);
5662 
5663   return MaxScalableVF;
5664 }
5665 
5666 FixedScalableVFPair
5667 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5668                                                  ElementCount UserVF) {
5669   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5670   unsigned SmallestType, WidestType;
5671   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5672 
5673   // Get the maximum safe dependence distance in bits computed by LAA.
5674   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5675   // the memory accesses that is most restrictive (involved in the smallest
5676   // dependence distance).
5677   unsigned MaxSafeElements =
5678       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5679 
5680   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5681   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5682 
5683   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5684                     << ".\n");
5685   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5686                     << ".\n");
5687 
5688   // First analyze the UserVF, fall back if the UserVF should be ignored.
5689   if (UserVF) {
5690     auto MaxSafeUserVF =
5691         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5692 
5693     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5694       // If `VF=vscale x N` is safe, then so is `VF=N`
5695       if (UserVF.isScalable())
5696         return FixedScalableVFPair(
5697             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5698       else
5699         return UserVF;
5700     }
5701 
5702     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5703 
5704     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5705     // is better to ignore the hint and let the compiler choose a suitable VF.
5706     if (!UserVF.isScalable()) {
5707       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5708                         << " is unsafe, clamping to max safe VF="
5709                         << MaxSafeFixedVF << ".\n");
5710       ORE->emit([&]() {
5711         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5712                                           TheLoop->getStartLoc(),
5713                                           TheLoop->getHeader())
5714                << "User-specified vectorization factor "
5715                << ore::NV("UserVectorizationFactor", UserVF)
5716                << " is unsafe, clamping to maximum safe vectorization factor "
5717                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5718       });
5719       return MaxSafeFixedVF;
5720     }
5721 
5722     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5723       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5724                         << " is ignored because scalable vectors are not "
5725                            "available.\n");
5726       ORE->emit([&]() {
5727         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5728                                           TheLoop->getStartLoc(),
5729                                           TheLoop->getHeader())
5730                << "User-specified vectorization factor "
5731                << ore::NV("UserVectorizationFactor", UserVF)
5732                << " is ignored because the target does not support scalable "
5733                   "vectors. The compiler will pick a more suitable value.";
5734       });
5735     } else {
5736       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5737                         << " is unsafe. Ignoring scalable UserVF.\n");
5738       ORE->emit([&]() {
5739         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5740                                           TheLoop->getStartLoc(),
5741                                           TheLoop->getHeader())
5742                << "User-specified vectorization factor "
5743                << ore::NV("UserVectorizationFactor", UserVF)
5744                << " is unsafe. Ignoring the hint to let the compiler pick a "
5745                   "more suitable value.";
5746       });
5747     }
5748   }
5749 
5750   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5751                     << " / " << WidestType << " bits.\n");
5752 
5753   FixedScalableVFPair Result(ElementCount::getFixed(1),
5754                              ElementCount::getScalable(0));
5755   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5756                                            WidestType, MaxSafeFixedVF))
5757     Result.FixedVF = MaxVF;
5758 
5759   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5760                                            WidestType, MaxSafeScalableVF))
5761     if (MaxVF.isScalable()) {
5762       Result.ScalableVF = MaxVF;
5763       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5764                         << "\n");
5765     }
5766 
5767   return Result;
5768 }
5769 
5770 FixedScalableVFPair
5771 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5772   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5773     // TODO: It may by useful to do since it's still likely to be dynamically
5774     // uniform if the target can skip.
5775     reportVectorizationFailure(
5776         "Not inserting runtime ptr check for divergent target",
5777         "runtime pointer checks needed. Not enabled for divergent target",
5778         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5779     return FixedScalableVFPair::getNone();
5780   }
5781 
5782   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5783   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5784   if (TC == 1) {
5785     reportVectorizationFailure("Single iteration (non) loop",
5786         "loop trip count is one, irrelevant for vectorization",
5787         "SingleIterationLoop", ORE, TheLoop);
5788     return FixedScalableVFPair::getNone();
5789   }
5790 
5791   switch (ScalarEpilogueStatus) {
5792   case CM_ScalarEpilogueAllowed:
5793     return computeFeasibleMaxVF(TC, UserVF);
5794   case CM_ScalarEpilogueNotAllowedUsePredicate:
5795     LLVM_FALLTHROUGH;
5796   case CM_ScalarEpilogueNotNeededUsePredicate:
5797     LLVM_DEBUG(
5798         dbgs() << "LV: vector predicate hint/switch found.\n"
5799                << "LV: Not allowing scalar epilogue, creating predicated "
5800                << "vector loop.\n");
5801     break;
5802   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5803     // fallthrough as a special case of OptForSize
5804   case CM_ScalarEpilogueNotAllowedOptSize:
5805     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5806       LLVM_DEBUG(
5807           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5808     else
5809       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5810                         << "count.\n");
5811 
5812     // Bail if runtime checks are required, which are not good when optimising
5813     // for size.
5814     if (runtimeChecksRequired())
5815       return FixedScalableVFPair::getNone();
5816 
5817     break;
5818   }
5819 
5820   // The only loops we can vectorize without a scalar epilogue, are loops with
5821   // a bottom-test and a single exiting block. We'd have to handle the fact
5822   // that not every instruction executes on the last iteration.  This will
5823   // require a lane mask which varies through the vector loop body.  (TODO)
5824   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5825     // If there was a tail-folding hint/switch, but we can't fold the tail by
5826     // masking, fallback to a vectorization with a scalar epilogue.
5827     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5828       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5829                            "scalar epilogue instead.\n");
5830       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5831       return computeFeasibleMaxVF(TC, UserVF);
5832     }
5833     return FixedScalableVFPair::getNone();
5834   }
5835 
5836   // Now try the tail folding
5837 
5838   // Invalidate interleave groups that require an epilogue if we can't mask
5839   // the interleave-group.
5840   if (!useMaskedInterleavedAccesses(TTI)) {
5841     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5842            "No decisions should have been taken at this point");
5843     // Note: There is no need to invalidate any cost modeling decisions here, as
5844     // non where taken so far.
5845     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5846   }
5847 
5848   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5849   // Avoid tail folding if the trip count is known to be a multiple of any VF
5850   // we chose.
5851   // FIXME: The condition below pessimises the case for fixed-width vectors,
5852   // when scalable VFs are also candidates for vectorization.
5853   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5854     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5855     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5856            "MaxFixedVF must be a power of 2");
5857     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5858                                    : MaxFixedVF.getFixedValue();
5859     ScalarEvolution *SE = PSE.getSE();
5860     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5861     const SCEV *ExitCount = SE->getAddExpr(
5862         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5863     const SCEV *Rem = SE->getURemExpr(
5864         SE->applyLoopGuards(ExitCount, TheLoop),
5865         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5866     if (Rem->isZero()) {
5867       // Accept MaxFixedVF if we do not have a tail.
5868       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5869       return MaxFactors;
5870     }
5871   }
5872 
5873   // For scalable vectors, don't use tail folding as this is currently not yet
5874   // supported. The code is likely to have ended up here if the tripcount is
5875   // low, in which case it makes sense not to use scalable vectors.
5876   if (MaxFactors.ScalableVF.isVector())
5877     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5878 
5879   // If we don't know the precise trip count, or if the trip count that we
5880   // found modulo the vectorization factor is not zero, try to fold the tail
5881   // by masking.
5882   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5883   if (Legal->prepareToFoldTailByMasking()) {
5884     FoldTailByMasking = true;
5885     return MaxFactors;
5886   }
5887 
5888   // If there was a tail-folding hint/switch, but we can't fold the tail by
5889   // masking, fallback to a vectorization with a scalar epilogue.
5890   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5891     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5892                          "scalar epilogue instead.\n");
5893     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5894     return MaxFactors;
5895   }
5896 
5897   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5898     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5899     return FixedScalableVFPair::getNone();
5900   }
5901 
5902   if (TC == 0) {
5903     reportVectorizationFailure(
5904         "Unable to calculate the loop count due to complex control flow",
5905         "unable to calculate the loop count due to complex control flow",
5906         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5907     return FixedScalableVFPair::getNone();
5908   }
5909 
5910   reportVectorizationFailure(
5911       "Cannot optimize for size and vectorize at the same time.",
5912       "cannot optimize for size and vectorize at the same time. "
5913       "Enable vectorization of this loop with '#pragma clang loop "
5914       "vectorize(enable)' when compiling with -Os/-Oz",
5915       "NoTailLoopWithOptForSize", ORE, TheLoop);
5916   return FixedScalableVFPair::getNone();
5917 }
5918 
5919 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5920     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5921     const ElementCount &MaxSafeVF) {
5922   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5923   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5924       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5925                            : TargetTransformInfo::RGK_FixedWidthVector);
5926 
5927   // Convenience function to return the minimum of two ElementCounts.
5928   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5929     assert((LHS.isScalable() == RHS.isScalable()) &&
5930            "Scalable flags must match");
5931     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5932   };
5933 
5934   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5935   // Note that both WidestRegister and WidestType may not be a powers of 2.
5936   auto MaxVectorElementCount = ElementCount::get(
5937       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5938       ComputeScalableMaxVF);
5939   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5940   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5941                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5942 
5943   if (!MaxVectorElementCount) {
5944     LLVM_DEBUG(dbgs() << "LV: The target has no "
5945                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5946                       << " vector registers.\n");
5947     return ElementCount::getFixed(1);
5948   }
5949 
5950   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5951   if (ConstTripCount &&
5952       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5953       isPowerOf2_32(ConstTripCount)) {
5954     // We need to clamp the VF to be the ConstTripCount. There is no point in
5955     // choosing a higher viable VF as done in the loop below. If
5956     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5957     // the TC is less than or equal to the known number of lanes.
5958     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5959                       << ConstTripCount << "\n");
5960     return TripCountEC;
5961   }
5962 
5963   ElementCount MaxVF = MaxVectorElementCount;
5964   if (TTI.shouldMaximizeVectorBandwidth() ||
5965       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5966     auto MaxVectorElementCountMaxBW = ElementCount::get(
5967         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5968         ComputeScalableMaxVF);
5969     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5970 
5971     // Collect all viable vectorization factors larger than the default MaxVF
5972     // (i.e. MaxVectorElementCount).
5973     SmallVector<ElementCount, 8> VFs;
5974     for (ElementCount VS = MaxVectorElementCount * 2;
5975          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5976       VFs.push_back(VS);
5977 
5978     // For each VF calculate its register usage.
5979     auto RUs = calculateRegisterUsage(VFs);
5980 
5981     // Select the largest VF which doesn't require more registers than existing
5982     // ones.
5983     for (int i = RUs.size() - 1; i >= 0; --i) {
5984       bool Selected = true;
5985       for (auto &pair : RUs[i].MaxLocalUsers) {
5986         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5987         if (pair.second > TargetNumRegisters)
5988           Selected = false;
5989       }
5990       if (Selected) {
5991         MaxVF = VFs[i];
5992         break;
5993       }
5994     }
5995     if (ElementCount MinVF =
5996             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5997       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5998         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5999                           << ") with target's minimum: " << MinVF << '\n');
6000         MaxVF = MinVF;
6001       }
6002     }
6003   }
6004   return MaxVF;
6005 }
6006 
6007 bool LoopVectorizationCostModel::isMoreProfitable(
6008     const VectorizationFactor &A, const VectorizationFactor &B) const {
6009   InstructionCost CostA = A.Cost;
6010   InstructionCost CostB = B.Cost;
6011 
6012   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6013 
6014   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6015       MaxTripCount) {
6016     // If we are folding the tail and the trip count is a known (possibly small)
6017     // constant, the trip count will be rounded up to an integer number of
6018     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6019     // which we compare directly. When not folding the tail, the total cost will
6020     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6021     // approximated with the per-lane cost below instead of using the tripcount
6022     // as here.
6023     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6024     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6025     return RTCostA < RTCostB;
6026   }
6027 
6028   // When set to preferred, for now assume vscale may be larger than 1, so
6029   // that scalable vectorization is slightly favorable over fixed-width
6030   // vectorization.
6031   if (Hints->isScalableVectorizationPreferred())
6032     if (A.Width.isScalable() && !B.Width.isScalable())
6033       return (CostA * B.Width.getKnownMinValue()) <=
6034              (CostB * A.Width.getKnownMinValue());
6035 
6036   // To avoid the need for FP division:
6037   //      (CostA / A.Width) < (CostB / B.Width)
6038   // <=>  (CostA * B.Width) < (CostB * A.Width)
6039   return (CostA * B.Width.getKnownMinValue()) <
6040          (CostB * A.Width.getKnownMinValue());
6041 }
6042 
6043 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6044     const ElementCountSet &VFCandidates) {
6045   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6046   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6047   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6048   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6049          "Expected Scalar VF to be a candidate");
6050 
6051   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6052   VectorizationFactor ChosenFactor = ScalarCost;
6053 
6054   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6055   if (ForceVectorization && VFCandidates.size() > 1) {
6056     // Ignore scalar width, because the user explicitly wants vectorization.
6057     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6058     // evaluation.
6059     ChosenFactor.Cost = InstructionCost::getMax();
6060   }
6061 
6062   SmallVector<InstructionVFPair> InvalidCosts;
6063   for (const auto &i : VFCandidates) {
6064     // The cost for scalar VF=1 is already calculated, so ignore it.
6065     if (i.isScalar())
6066       continue;
6067 
6068     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6069     VectorizationFactor Candidate(i, C.first);
6070     LLVM_DEBUG(
6071         dbgs() << "LV: Vector loop of width " << i << " costs: "
6072                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6073                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6074                << ".\n");
6075 
6076     if (!C.second && !ForceVectorization) {
6077       LLVM_DEBUG(
6078           dbgs() << "LV: Not considering vector loop of width " << i
6079                  << " because it will not generate any vector instructions.\n");
6080       continue;
6081     }
6082 
6083     // If profitable add it to ProfitableVF list.
6084     if (isMoreProfitable(Candidate, ScalarCost))
6085       ProfitableVFs.push_back(Candidate);
6086 
6087     if (isMoreProfitable(Candidate, ChosenFactor))
6088       ChosenFactor = Candidate;
6089   }
6090 
6091   // Emit a report of VFs with invalid costs in the loop.
6092   if (!InvalidCosts.empty()) {
6093     // Group the remarks per instruction, keeping the instruction order from
6094     // InvalidCosts.
6095     std::map<Instruction *, unsigned> Numbering;
6096     unsigned I = 0;
6097     for (auto &Pair : InvalidCosts)
6098       if (!Numbering.count(Pair.first))
6099         Numbering[Pair.first] = I++;
6100 
6101     // Sort the list, first on instruction(number) then on VF.
6102     llvm::sort(InvalidCosts,
6103                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6104                  if (Numbering[A.first] != Numbering[B.first])
6105                    return Numbering[A.first] < Numbering[B.first];
6106                  ElementCountComparator ECC;
6107                  return ECC(A.second, B.second);
6108                });
6109 
6110     // For a list of ordered instruction-vf pairs:
6111     //   [(load, vf1), (load, vf2), (store, vf1)]
6112     // Group the instructions together to emit separate remarks for:
6113     //   load  (vf1, vf2)
6114     //   store (vf1)
6115     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6116     auto Subset = ArrayRef<InstructionVFPair>();
6117     do {
6118       if (Subset.empty())
6119         Subset = Tail.take_front(1);
6120 
6121       Instruction *I = Subset.front().first;
6122 
6123       // If the next instruction is different, or if there are no other pairs,
6124       // emit a remark for the collated subset. e.g.
6125       //   [(load, vf1), (load, vf2))]
6126       // to emit:
6127       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6128       if (Subset == Tail || Tail[Subset.size()].first != I) {
6129         std::string OutString;
6130         raw_string_ostream OS(OutString);
6131         assert(!Subset.empty() && "Unexpected empty range");
6132         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6133         for (auto &Pair : Subset)
6134           OS << (Pair.second == Subset.front().second ? "" : ", ")
6135              << Pair.second;
6136         OS << "):";
6137         if (auto *CI = dyn_cast<CallInst>(I))
6138           OS << " call to " << CI->getCalledFunction()->getName();
6139         else
6140           OS << " " << I->getOpcodeName();
6141         OS.flush();
6142         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6143         Tail = Tail.drop_front(Subset.size());
6144         Subset = {};
6145       } else
6146         // Grow the subset by one element
6147         Subset = Tail.take_front(Subset.size() + 1);
6148     } while (!Tail.empty());
6149   }
6150 
6151   if (!EnableCondStoresVectorization && NumPredStores) {
6152     reportVectorizationFailure("There are conditional stores.",
6153         "store that is conditionally executed prevents vectorization",
6154         "ConditionalStore", ORE, TheLoop);
6155     ChosenFactor = ScalarCost;
6156   }
6157 
6158   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6159                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6160              << "LV: Vectorization seems to be not beneficial, "
6161              << "but was forced by a user.\n");
6162   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6163   return ChosenFactor;
6164 }
6165 
6166 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6167     const Loop &L, ElementCount VF) const {
6168   // Cross iteration phis such as reductions need special handling and are
6169   // currently unsupported.
6170   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6171         return Legal->isFirstOrderRecurrence(&Phi) ||
6172                Legal->isReductionVariable(&Phi);
6173       }))
6174     return false;
6175 
6176   // Phis with uses outside of the loop require special handling and are
6177   // currently unsupported.
6178   for (auto &Entry : Legal->getInductionVars()) {
6179     // Look for uses of the value of the induction at the last iteration.
6180     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6181     for (User *U : PostInc->users())
6182       if (!L.contains(cast<Instruction>(U)))
6183         return false;
6184     // Look for uses of penultimate value of the induction.
6185     for (User *U : Entry.first->users())
6186       if (!L.contains(cast<Instruction>(U)))
6187         return false;
6188   }
6189 
6190   // Induction variables that are widened require special handling that is
6191   // currently not supported.
6192   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6193         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6194                  this->isProfitableToScalarize(Entry.first, VF));
6195       }))
6196     return false;
6197 
6198   // Epilogue vectorization code has not been auditted to ensure it handles
6199   // non-latch exits properly.  It may be fine, but it needs auditted and
6200   // tested.
6201   if (L.getExitingBlock() != L.getLoopLatch())
6202     return false;
6203 
6204   return true;
6205 }
6206 
6207 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6208     const ElementCount VF) const {
6209   // FIXME: We need a much better cost-model to take different parameters such
6210   // as register pressure, code size increase and cost of extra branches into
6211   // account. For now we apply a very crude heuristic and only consider loops
6212   // with vectorization factors larger than a certain value.
6213   // We also consider epilogue vectorization unprofitable for targets that don't
6214   // consider interleaving beneficial (eg. MVE).
6215   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6216     return false;
6217   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6218     return true;
6219   return false;
6220 }
6221 
6222 VectorizationFactor
6223 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6224     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6225   VectorizationFactor Result = VectorizationFactor::Disabled();
6226   if (!EnableEpilogueVectorization) {
6227     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6228     return Result;
6229   }
6230 
6231   if (!isScalarEpilogueAllowed()) {
6232     LLVM_DEBUG(
6233         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6234                   "allowed.\n";);
6235     return Result;
6236   }
6237 
6238   // FIXME: This can be fixed for scalable vectors later, because at this stage
6239   // the LoopVectorizer will only consider vectorizing a loop with scalable
6240   // vectors when the loop has a hint to enable vectorization for a given VF.
6241   if (MainLoopVF.isScalable()) {
6242     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6243                          "yet supported.\n");
6244     return Result;
6245   }
6246 
6247   // Not really a cost consideration, but check for unsupported cases here to
6248   // simplify the logic.
6249   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6250     LLVM_DEBUG(
6251         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6252                   "not a supported candidate.\n";);
6253     return Result;
6254   }
6255 
6256   if (EpilogueVectorizationForceVF > 1) {
6257     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6258     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
6259     if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC}))
6260       return {ForcedEC, 0};
6261     else {
6262       LLVM_DEBUG(
6263           dbgs()
6264               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6265       return Result;
6266     }
6267   }
6268 
6269   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6270       TheLoop->getHeader()->getParent()->hasMinSize()) {
6271     LLVM_DEBUG(
6272         dbgs()
6273             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6274     return Result;
6275   }
6276 
6277   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6278     return Result;
6279 
6280   for (auto &NextVF : ProfitableVFs)
6281     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6282         (Result.Width.getFixedValue() == 1 ||
6283          isMoreProfitable(NextVF, Result)) &&
6284         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6285       Result = NextVF;
6286 
6287   if (Result != VectorizationFactor::Disabled())
6288     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6289                       << Result.Width.getFixedValue() << "\n";);
6290   return Result;
6291 }
6292 
6293 std::pair<unsigned, unsigned>
6294 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6295   unsigned MinWidth = -1U;
6296   unsigned MaxWidth = 8;
6297   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6298   for (Type *T : ElementTypesInLoop) {
6299     MinWidth = std::min<unsigned>(
6300         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6301     MaxWidth = std::max<unsigned>(
6302         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6303   }
6304   return {MinWidth, MaxWidth};
6305 }
6306 
6307 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6308   ElementTypesInLoop.clear();
6309   // For each block.
6310   for (BasicBlock *BB : TheLoop->blocks()) {
6311     // For each instruction in the loop.
6312     for (Instruction &I : BB->instructionsWithoutDebug()) {
6313       Type *T = I.getType();
6314 
6315       // Skip ignored values.
6316       if (ValuesToIgnore.count(&I))
6317         continue;
6318 
6319       // Only examine Loads, Stores and PHINodes.
6320       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6321         continue;
6322 
6323       // Examine PHI nodes that are reduction variables. Update the type to
6324       // account for the recurrence type.
6325       if (auto *PN = dyn_cast<PHINode>(&I)) {
6326         if (!Legal->isReductionVariable(PN))
6327           continue;
6328         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6329         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6330             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6331                                       RdxDesc.getRecurrenceType(),
6332                                       TargetTransformInfo::ReductionFlags()))
6333           continue;
6334         T = RdxDesc.getRecurrenceType();
6335       }
6336 
6337       // Examine the stored values.
6338       if (auto *ST = dyn_cast<StoreInst>(&I))
6339         T = ST->getValueOperand()->getType();
6340 
6341       // Ignore loaded pointer types and stored pointer types that are not
6342       // vectorizable.
6343       //
6344       // FIXME: The check here attempts to predict whether a load or store will
6345       //        be vectorized. We only know this for certain after a VF has
6346       //        been selected. Here, we assume that if an access can be
6347       //        vectorized, it will be. We should also look at extending this
6348       //        optimization to non-pointer types.
6349       //
6350       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6351           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6352         continue;
6353 
6354       ElementTypesInLoop.insert(T);
6355     }
6356   }
6357 }
6358 
6359 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6360                                                            unsigned LoopCost) {
6361   // -- The interleave heuristics --
6362   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6363   // There are many micro-architectural considerations that we can't predict
6364   // at this level. For example, frontend pressure (on decode or fetch) due to
6365   // code size, or the number and capabilities of the execution ports.
6366   //
6367   // We use the following heuristics to select the interleave count:
6368   // 1. If the code has reductions, then we interleave to break the cross
6369   // iteration dependency.
6370   // 2. If the loop is really small, then we interleave to reduce the loop
6371   // overhead.
6372   // 3. We don't interleave if we think that we will spill registers to memory
6373   // due to the increased register pressure.
6374 
6375   if (!isScalarEpilogueAllowed())
6376     return 1;
6377 
6378   // We used the distance for the interleave count.
6379   if (Legal->getMaxSafeDepDistBytes() != -1U)
6380     return 1;
6381 
6382   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6383   const bool HasReductions = !Legal->getReductionVars().empty();
6384   // Do not interleave loops with a relatively small known or estimated trip
6385   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6386   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6387   // because with the above conditions interleaving can expose ILP and break
6388   // cross iteration dependences for reductions.
6389   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6390       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6391     return 1;
6392 
6393   RegisterUsage R = calculateRegisterUsage({VF})[0];
6394   // We divide by these constants so assume that we have at least one
6395   // instruction that uses at least one register.
6396   for (auto& pair : R.MaxLocalUsers) {
6397     pair.second = std::max(pair.second, 1U);
6398   }
6399 
6400   // We calculate the interleave count using the following formula.
6401   // Subtract the number of loop invariants from the number of available
6402   // registers. These registers are used by all of the interleaved instances.
6403   // Next, divide the remaining registers by the number of registers that is
6404   // required by the loop, in order to estimate how many parallel instances
6405   // fit without causing spills. All of this is rounded down if necessary to be
6406   // a power of two. We want power of two interleave count to simplify any
6407   // addressing operations or alignment considerations.
6408   // We also want power of two interleave counts to ensure that the induction
6409   // variable of the vector loop wraps to zero, when tail is folded by masking;
6410   // this currently happens when OptForSize, in which case IC is set to 1 above.
6411   unsigned IC = UINT_MAX;
6412 
6413   for (auto& pair : R.MaxLocalUsers) {
6414     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6415     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6416                       << " registers of "
6417                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6418     if (VF.isScalar()) {
6419       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6420         TargetNumRegisters = ForceTargetNumScalarRegs;
6421     } else {
6422       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6423         TargetNumRegisters = ForceTargetNumVectorRegs;
6424     }
6425     unsigned MaxLocalUsers = pair.second;
6426     unsigned LoopInvariantRegs = 0;
6427     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6428       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6429 
6430     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6431     // Don't count the induction variable as interleaved.
6432     if (EnableIndVarRegisterHeur) {
6433       TmpIC =
6434           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6435                         std::max(1U, (MaxLocalUsers - 1)));
6436     }
6437 
6438     IC = std::min(IC, TmpIC);
6439   }
6440 
6441   // Clamp the interleave ranges to reasonable counts.
6442   unsigned MaxInterleaveCount =
6443       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6444 
6445   // Check if the user has overridden the max.
6446   if (VF.isScalar()) {
6447     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6448       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6449   } else {
6450     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6451       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6452   }
6453 
6454   // If trip count is known or estimated compile time constant, limit the
6455   // interleave count to be less than the trip count divided by VF, provided it
6456   // is at least 1.
6457   //
6458   // For scalable vectors we can't know if interleaving is beneficial. It may
6459   // not be beneficial for small loops if none of the lanes in the second vector
6460   // iterations is enabled. However, for larger loops, there is likely to be a
6461   // similar benefit as for fixed-width vectors. For now, we choose to leave
6462   // the InterleaveCount as if vscale is '1', although if some information about
6463   // the vector is known (e.g. min vector size), we can make a better decision.
6464   if (BestKnownTC) {
6465     MaxInterleaveCount =
6466         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6467     // Make sure MaxInterleaveCount is greater than 0.
6468     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6469   }
6470 
6471   assert(MaxInterleaveCount > 0 &&
6472          "Maximum interleave count must be greater than 0");
6473 
6474   // Clamp the calculated IC to be between the 1 and the max interleave count
6475   // that the target and trip count allows.
6476   if (IC > MaxInterleaveCount)
6477     IC = MaxInterleaveCount;
6478   else
6479     // Make sure IC is greater than 0.
6480     IC = std::max(1u, IC);
6481 
6482   assert(IC > 0 && "Interleave count must be greater than 0.");
6483 
6484   // If we did not calculate the cost for VF (because the user selected the VF)
6485   // then we calculate the cost of VF here.
6486   if (LoopCost == 0) {
6487     InstructionCost C = expectedCost(VF).first;
6488     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6489     LoopCost = *C.getValue();
6490   }
6491 
6492   assert(LoopCost && "Non-zero loop cost expected");
6493 
6494   // Interleave if we vectorized this loop and there is a reduction that could
6495   // benefit from interleaving.
6496   if (VF.isVector() && HasReductions) {
6497     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6498     return IC;
6499   }
6500 
6501   // Note that if we've already vectorized the loop we will have done the
6502   // runtime check and so interleaving won't require further checks.
6503   bool InterleavingRequiresRuntimePointerCheck =
6504       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6505 
6506   // We want to interleave small loops in order to reduce the loop overhead and
6507   // potentially expose ILP opportunities.
6508   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6509                     << "LV: IC is " << IC << '\n'
6510                     << "LV: VF is " << VF << '\n');
6511   const bool AggressivelyInterleaveReductions =
6512       TTI.enableAggressiveInterleaving(HasReductions);
6513   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6514     // We assume that the cost overhead is 1 and we use the cost model
6515     // to estimate the cost of the loop and interleave until the cost of the
6516     // loop overhead is about 5% of the cost of the loop.
6517     unsigned SmallIC =
6518         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6519 
6520     // Interleave until store/load ports (estimated by max interleave count) are
6521     // saturated.
6522     unsigned NumStores = Legal->getNumStores();
6523     unsigned NumLoads = Legal->getNumLoads();
6524     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6525     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6526 
6527     // There is little point in interleaving for reductions containing selects
6528     // and compares when VF=1 since it may just create more overhead than it's
6529     // worth for loops with small trip counts. This is because we still have to
6530     // do the final reduction after the loop.
6531     bool HasSelectCmpReductions =
6532         HasReductions &&
6533         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6534           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6535           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6536               RdxDesc.getRecurrenceKind());
6537         });
6538     if (HasSelectCmpReductions) {
6539       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6540       return 1;
6541     }
6542 
6543     // If we have a scalar reduction (vector reductions are already dealt with
6544     // by this point), we can increase the critical path length if the loop
6545     // we're interleaving is inside another loop. For tree-wise reductions
6546     // set the limit to 2, and for ordered reductions it's best to disable
6547     // interleaving entirely.
6548     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6549       bool HasOrderedReductions =
6550           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6551             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6552             return RdxDesc.isOrdered();
6553           });
6554       if (HasOrderedReductions) {
6555         LLVM_DEBUG(
6556             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6557         return 1;
6558       }
6559 
6560       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6561       SmallIC = std::min(SmallIC, F);
6562       StoresIC = std::min(StoresIC, F);
6563       LoadsIC = std::min(LoadsIC, F);
6564     }
6565 
6566     if (EnableLoadStoreRuntimeInterleave &&
6567         std::max(StoresIC, LoadsIC) > SmallIC) {
6568       LLVM_DEBUG(
6569           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6570       return std::max(StoresIC, LoadsIC);
6571     }
6572 
6573     // If there are scalar reductions and TTI has enabled aggressive
6574     // interleaving for reductions, we will interleave to expose ILP.
6575     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6576         AggressivelyInterleaveReductions) {
6577       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6578       // Interleave no less than SmallIC but not as aggressive as the normal IC
6579       // to satisfy the rare situation when resources are too limited.
6580       return std::max(IC / 2, SmallIC);
6581     } else {
6582       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6583       return SmallIC;
6584     }
6585   }
6586 
6587   // Interleave if this is a large loop (small loops are already dealt with by
6588   // this point) that could benefit from interleaving.
6589   if (AggressivelyInterleaveReductions) {
6590     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6591     return IC;
6592   }
6593 
6594   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6595   return 1;
6596 }
6597 
6598 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6599 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6600   // This function calculates the register usage by measuring the highest number
6601   // of values that are alive at a single location. Obviously, this is a very
6602   // rough estimation. We scan the loop in a topological order in order and
6603   // assign a number to each instruction. We use RPO to ensure that defs are
6604   // met before their users. We assume that each instruction that has in-loop
6605   // users starts an interval. We record every time that an in-loop value is
6606   // used, so we have a list of the first and last occurrences of each
6607   // instruction. Next, we transpose this data structure into a multi map that
6608   // holds the list of intervals that *end* at a specific location. This multi
6609   // map allows us to perform a linear search. We scan the instructions linearly
6610   // and record each time that a new interval starts, by placing it in a set.
6611   // If we find this value in the multi-map then we remove it from the set.
6612   // The max register usage is the maximum size of the set.
6613   // We also search for instructions that are defined outside the loop, but are
6614   // used inside the loop. We need this number separately from the max-interval
6615   // usage number because when we unroll, loop-invariant values do not take
6616   // more register.
6617   LoopBlocksDFS DFS(TheLoop);
6618   DFS.perform(LI);
6619 
6620   RegisterUsage RU;
6621 
6622   // Each 'key' in the map opens a new interval. The values
6623   // of the map are the index of the 'last seen' usage of the
6624   // instruction that is the key.
6625   using IntervalMap = DenseMap<Instruction *, unsigned>;
6626 
6627   // Maps instruction to its index.
6628   SmallVector<Instruction *, 64> IdxToInstr;
6629   // Marks the end of each interval.
6630   IntervalMap EndPoint;
6631   // Saves the list of instruction indices that are used in the loop.
6632   SmallPtrSet<Instruction *, 8> Ends;
6633   // Saves the list of values that are used in the loop but are
6634   // defined outside the loop, such as arguments and constants.
6635   SmallPtrSet<Value *, 8> LoopInvariants;
6636 
6637   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6638     for (Instruction &I : BB->instructionsWithoutDebug()) {
6639       IdxToInstr.push_back(&I);
6640 
6641       // Save the end location of each USE.
6642       for (Value *U : I.operands()) {
6643         auto *Instr = dyn_cast<Instruction>(U);
6644 
6645         // Ignore non-instruction values such as arguments, constants, etc.
6646         if (!Instr)
6647           continue;
6648 
6649         // If this instruction is outside the loop then record it and continue.
6650         if (!TheLoop->contains(Instr)) {
6651           LoopInvariants.insert(Instr);
6652           continue;
6653         }
6654 
6655         // Overwrite previous end points.
6656         EndPoint[Instr] = IdxToInstr.size();
6657         Ends.insert(Instr);
6658       }
6659     }
6660   }
6661 
6662   // Saves the list of intervals that end with the index in 'key'.
6663   using InstrList = SmallVector<Instruction *, 2>;
6664   DenseMap<unsigned, InstrList> TransposeEnds;
6665 
6666   // Transpose the EndPoints to a list of values that end at each index.
6667   for (auto &Interval : EndPoint)
6668     TransposeEnds[Interval.second].push_back(Interval.first);
6669 
6670   SmallPtrSet<Instruction *, 8> OpenIntervals;
6671   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6672   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6673 
6674   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6675 
6676   // A lambda that gets the register usage for the given type and VF.
6677   const auto &TTICapture = TTI;
6678   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6679     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6680       return 0;
6681     InstructionCost::CostType RegUsage =
6682         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6683     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6684            "Nonsensical values for register usage.");
6685     return RegUsage;
6686   };
6687 
6688   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6689     Instruction *I = IdxToInstr[i];
6690 
6691     // Remove all of the instructions that end at this location.
6692     InstrList &List = TransposeEnds[i];
6693     for (Instruction *ToRemove : List)
6694       OpenIntervals.erase(ToRemove);
6695 
6696     // Ignore instructions that are never used within the loop.
6697     if (!Ends.count(I))
6698       continue;
6699 
6700     // Skip ignored values.
6701     if (ValuesToIgnore.count(I))
6702       continue;
6703 
6704     // For each VF find the maximum usage of registers.
6705     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6706       // Count the number of live intervals.
6707       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6708 
6709       if (VFs[j].isScalar()) {
6710         for (auto Inst : OpenIntervals) {
6711           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6712           if (RegUsage.find(ClassID) == RegUsage.end())
6713             RegUsage[ClassID] = 1;
6714           else
6715             RegUsage[ClassID] += 1;
6716         }
6717       } else {
6718         collectUniformsAndScalars(VFs[j]);
6719         for (auto Inst : OpenIntervals) {
6720           // Skip ignored values for VF > 1.
6721           if (VecValuesToIgnore.count(Inst))
6722             continue;
6723           if (isScalarAfterVectorization(Inst, VFs[j])) {
6724             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6725             if (RegUsage.find(ClassID) == RegUsage.end())
6726               RegUsage[ClassID] = 1;
6727             else
6728               RegUsage[ClassID] += 1;
6729           } else {
6730             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6731             if (RegUsage.find(ClassID) == RegUsage.end())
6732               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6733             else
6734               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6735           }
6736         }
6737       }
6738 
6739       for (auto& pair : RegUsage) {
6740         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6741           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6742         else
6743           MaxUsages[j][pair.first] = pair.second;
6744       }
6745     }
6746 
6747     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6748                       << OpenIntervals.size() << '\n');
6749 
6750     // Add the current instruction to the list of open intervals.
6751     OpenIntervals.insert(I);
6752   }
6753 
6754   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6755     SmallMapVector<unsigned, unsigned, 4> Invariant;
6756 
6757     for (auto Inst : LoopInvariants) {
6758       unsigned Usage =
6759           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6760       unsigned ClassID =
6761           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6762       if (Invariant.find(ClassID) == Invariant.end())
6763         Invariant[ClassID] = Usage;
6764       else
6765         Invariant[ClassID] += Usage;
6766     }
6767 
6768     LLVM_DEBUG({
6769       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6770       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6771              << " item\n";
6772       for (const auto &pair : MaxUsages[i]) {
6773         dbgs() << "LV(REG): RegisterClass: "
6774                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6775                << " registers\n";
6776       }
6777       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6778              << " item\n";
6779       for (const auto &pair : Invariant) {
6780         dbgs() << "LV(REG): RegisterClass: "
6781                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6782                << " registers\n";
6783       }
6784     });
6785 
6786     RU.LoopInvariantRegs = Invariant;
6787     RU.MaxLocalUsers = MaxUsages[i];
6788     RUs[i] = RU;
6789   }
6790 
6791   return RUs;
6792 }
6793 
6794 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6795   // TODO: Cost model for emulated masked load/store is completely
6796   // broken. This hack guides the cost model to use an artificially
6797   // high enough value to practically disable vectorization with such
6798   // operations, except where previously deployed legality hack allowed
6799   // using very low cost values. This is to avoid regressions coming simply
6800   // from moving "masked load/store" check from legality to cost model.
6801   // Masked Load/Gather emulation was previously never allowed.
6802   // Limited number of Masked Store/Scatter emulation was allowed.
6803   assert(isPredicatedInst(I) &&
6804          "Expecting a scalar emulated instruction");
6805   return isa<LoadInst>(I) ||
6806          (isa<StoreInst>(I) &&
6807           NumPredStores > NumberOfStoresToPredicate);
6808 }
6809 
6810 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6811   // If we aren't vectorizing the loop, or if we've already collected the
6812   // instructions to scalarize, there's nothing to do. Collection may already
6813   // have occurred if we have a user-selected VF and are now computing the
6814   // expected cost for interleaving.
6815   if (VF.isScalar() || VF.isZero() ||
6816       InstsToScalarize.find(VF) != InstsToScalarize.end())
6817     return;
6818 
6819   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6820   // not profitable to scalarize any instructions, the presence of VF in the
6821   // map will indicate that we've analyzed it already.
6822   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6823 
6824   // Find all the instructions that are scalar with predication in the loop and
6825   // determine if it would be better to not if-convert the blocks they are in.
6826   // If so, we also record the instructions to scalarize.
6827   for (BasicBlock *BB : TheLoop->blocks()) {
6828     if (!blockNeedsPredication(BB))
6829       continue;
6830     for (Instruction &I : *BB)
6831       if (isScalarWithPredication(&I)) {
6832         ScalarCostsTy ScalarCosts;
6833         // Do not apply discount if scalable, because that would lead to
6834         // invalid scalarization costs.
6835         // Do not apply discount logic if hacked cost is needed
6836         // for emulated masked memrefs.
6837         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6838             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6839           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6840         // Remember that BB will remain after vectorization.
6841         PredicatedBBsAfterVectorization.insert(BB);
6842       }
6843   }
6844 }
6845 
6846 int LoopVectorizationCostModel::computePredInstDiscount(
6847     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6848   assert(!isUniformAfterVectorization(PredInst, VF) &&
6849          "Instruction marked uniform-after-vectorization will be predicated");
6850 
6851   // Initialize the discount to zero, meaning that the scalar version and the
6852   // vector version cost the same.
6853   InstructionCost Discount = 0;
6854 
6855   // Holds instructions to analyze. The instructions we visit are mapped in
6856   // ScalarCosts. Those instructions are the ones that would be scalarized if
6857   // we find that the scalar version costs less.
6858   SmallVector<Instruction *, 8> Worklist;
6859 
6860   // Returns true if the given instruction can be scalarized.
6861   auto canBeScalarized = [&](Instruction *I) -> bool {
6862     // We only attempt to scalarize instructions forming a single-use chain
6863     // from the original predicated block that would otherwise be vectorized.
6864     // Although not strictly necessary, we give up on instructions we know will
6865     // already be scalar to avoid traversing chains that are unlikely to be
6866     // beneficial.
6867     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6868         isScalarAfterVectorization(I, VF))
6869       return false;
6870 
6871     // If the instruction is scalar with predication, it will be analyzed
6872     // separately. We ignore it within the context of PredInst.
6873     if (isScalarWithPredication(I))
6874       return false;
6875 
6876     // If any of the instruction's operands are uniform after vectorization,
6877     // the instruction cannot be scalarized. This prevents, for example, a
6878     // masked load from being scalarized.
6879     //
6880     // We assume we will only emit a value for lane zero of an instruction
6881     // marked uniform after vectorization, rather than VF identical values.
6882     // Thus, if we scalarize an instruction that uses a uniform, we would
6883     // create uses of values corresponding to the lanes we aren't emitting code
6884     // for. This behavior can be changed by allowing getScalarValue to clone
6885     // the lane zero values for uniforms rather than asserting.
6886     for (Use &U : I->operands())
6887       if (auto *J = dyn_cast<Instruction>(U.get()))
6888         if (isUniformAfterVectorization(J, VF))
6889           return false;
6890 
6891     // Otherwise, we can scalarize the instruction.
6892     return true;
6893   };
6894 
6895   // Compute the expected cost discount from scalarizing the entire expression
6896   // feeding the predicated instruction. We currently only consider expressions
6897   // that are single-use instruction chains.
6898   Worklist.push_back(PredInst);
6899   while (!Worklist.empty()) {
6900     Instruction *I = Worklist.pop_back_val();
6901 
6902     // If we've already analyzed the instruction, there's nothing to do.
6903     if (ScalarCosts.find(I) != ScalarCosts.end())
6904       continue;
6905 
6906     // Compute the cost of the vector instruction. Note that this cost already
6907     // includes the scalarization overhead of the predicated instruction.
6908     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6909 
6910     // Compute the cost of the scalarized instruction. This cost is the cost of
6911     // the instruction as if it wasn't if-converted and instead remained in the
6912     // predicated block. We will scale this cost by block probability after
6913     // computing the scalarization overhead.
6914     InstructionCost ScalarCost =
6915         VF.getFixedValue() *
6916         getInstructionCost(I, ElementCount::getFixed(1)).first;
6917 
6918     // Compute the scalarization overhead of needed insertelement instructions
6919     // and phi nodes.
6920     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6921       ScalarCost += TTI.getScalarizationOverhead(
6922           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6923           APInt::getAllOnes(VF.getFixedValue()), true, false);
6924       ScalarCost +=
6925           VF.getFixedValue() *
6926           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6927     }
6928 
6929     // Compute the scalarization overhead of needed extractelement
6930     // instructions. For each of the instruction's operands, if the operand can
6931     // be scalarized, add it to the worklist; otherwise, account for the
6932     // overhead.
6933     for (Use &U : I->operands())
6934       if (auto *J = dyn_cast<Instruction>(U.get())) {
6935         assert(VectorType::isValidElementType(J->getType()) &&
6936                "Instruction has non-scalar type");
6937         if (canBeScalarized(J))
6938           Worklist.push_back(J);
6939         else if (needsExtract(J, VF)) {
6940           ScalarCost += TTI.getScalarizationOverhead(
6941               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6942               APInt::getAllOnes(VF.getFixedValue()), false, true);
6943         }
6944       }
6945 
6946     // Scale the total scalar cost by block probability.
6947     ScalarCost /= getReciprocalPredBlockProb();
6948 
6949     // Compute the discount. A non-negative discount means the vector version
6950     // of the instruction costs more, and scalarizing would be beneficial.
6951     Discount += VectorCost - ScalarCost;
6952     ScalarCosts[I] = ScalarCost;
6953   }
6954 
6955   return *Discount.getValue();
6956 }
6957 
6958 LoopVectorizationCostModel::VectorizationCostTy
6959 LoopVectorizationCostModel::expectedCost(
6960     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6961   VectorizationCostTy Cost;
6962 
6963   // For each block.
6964   for (BasicBlock *BB : TheLoop->blocks()) {
6965     VectorizationCostTy BlockCost;
6966 
6967     // For each instruction in the old loop.
6968     for (Instruction &I : BB->instructionsWithoutDebug()) {
6969       // Skip ignored values.
6970       if (ValuesToIgnore.count(&I) ||
6971           (VF.isVector() && VecValuesToIgnore.count(&I)))
6972         continue;
6973 
6974       VectorizationCostTy C = getInstructionCost(&I, VF);
6975 
6976       // Check if we should override the cost.
6977       if (C.first.isValid() &&
6978           ForceTargetInstructionCost.getNumOccurrences() > 0)
6979         C.first = InstructionCost(ForceTargetInstructionCost);
6980 
6981       // Keep a list of instructions with invalid costs.
6982       if (Invalid && !C.first.isValid())
6983         Invalid->emplace_back(&I, VF);
6984 
6985       BlockCost.first += C.first;
6986       BlockCost.second |= C.second;
6987       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6988                         << " for VF " << VF << " For instruction: " << I
6989                         << '\n');
6990     }
6991 
6992     // If we are vectorizing a predicated block, it will have been
6993     // if-converted. This means that the block's instructions (aside from
6994     // stores and instructions that may divide by zero) will now be
6995     // unconditionally executed. For the scalar case, we may not always execute
6996     // the predicated block, if it is an if-else block. Thus, scale the block's
6997     // cost by the probability of executing it. blockNeedsPredication from
6998     // Legal is used so as to not include all blocks in tail folded loops.
6999     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
7000       BlockCost.first /= getReciprocalPredBlockProb();
7001 
7002     Cost.first += BlockCost.first;
7003     Cost.second |= BlockCost.second;
7004   }
7005 
7006   return Cost;
7007 }
7008 
7009 /// Gets Address Access SCEV after verifying that the access pattern
7010 /// is loop invariant except the induction variable dependence.
7011 ///
7012 /// This SCEV can be sent to the Target in order to estimate the address
7013 /// calculation cost.
7014 static const SCEV *getAddressAccessSCEV(
7015               Value *Ptr,
7016               LoopVectorizationLegality *Legal,
7017               PredicatedScalarEvolution &PSE,
7018               const Loop *TheLoop) {
7019 
7020   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7021   if (!Gep)
7022     return nullptr;
7023 
7024   // We are looking for a gep with all loop invariant indices except for one
7025   // which should be an induction variable.
7026   auto SE = PSE.getSE();
7027   unsigned NumOperands = Gep->getNumOperands();
7028   for (unsigned i = 1; i < NumOperands; ++i) {
7029     Value *Opd = Gep->getOperand(i);
7030     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7031         !Legal->isInductionVariable(Opd))
7032       return nullptr;
7033   }
7034 
7035   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7036   return PSE.getSCEV(Ptr);
7037 }
7038 
7039 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7040   return Legal->hasStride(I->getOperand(0)) ||
7041          Legal->hasStride(I->getOperand(1));
7042 }
7043 
7044 InstructionCost
7045 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7046                                                         ElementCount VF) {
7047   assert(VF.isVector() &&
7048          "Scalarization cost of instruction implies vectorization.");
7049   if (VF.isScalable())
7050     return InstructionCost::getInvalid();
7051 
7052   Type *ValTy = getLoadStoreType(I);
7053   auto SE = PSE.getSE();
7054 
7055   unsigned AS = getLoadStoreAddressSpace(I);
7056   Value *Ptr = getLoadStorePointerOperand(I);
7057   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7058 
7059   // Figure out whether the access is strided and get the stride value
7060   // if it's known in compile time
7061   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7062 
7063   // Get the cost of the scalar memory instruction and address computation.
7064   InstructionCost Cost =
7065       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7066 
7067   // Don't pass *I here, since it is scalar but will actually be part of a
7068   // vectorized loop where the user of it is a vectorized instruction.
7069   const Align Alignment = getLoadStoreAlignment(I);
7070   Cost += VF.getKnownMinValue() *
7071           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7072                               AS, TTI::TCK_RecipThroughput);
7073 
7074   // Get the overhead of the extractelement and insertelement instructions
7075   // we might create due to scalarization.
7076   Cost += getScalarizationOverhead(I, VF);
7077 
7078   // If we have a predicated load/store, it will need extra i1 extracts and
7079   // conditional branches, but may not be executed for each vector lane. Scale
7080   // the cost by the probability of executing the predicated block.
7081   if (isPredicatedInst(I)) {
7082     Cost /= getReciprocalPredBlockProb();
7083 
7084     // Add the cost of an i1 extract and a branch
7085     auto *Vec_i1Ty =
7086         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7087     Cost += TTI.getScalarizationOverhead(
7088         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7089         /*Insert=*/false, /*Extract=*/true);
7090     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7091 
7092     if (useEmulatedMaskMemRefHack(I))
7093       // Artificially setting to a high enough value to practically disable
7094       // vectorization with such operations.
7095       Cost = 3000000;
7096   }
7097 
7098   return Cost;
7099 }
7100 
7101 InstructionCost
7102 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7103                                                     ElementCount VF) {
7104   Type *ValTy = getLoadStoreType(I);
7105   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7106   Value *Ptr = getLoadStorePointerOperand(I);
7107   unsigned AS = getLoadStoreAddressSpace(I);
7108   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7109   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7110 
7111   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7112          "Stride should be 1 or -1 for consecutive memory access");
7113   const Align Alignment = getLoadStoreAlignment(I);
7114   InstructionCost Cost = 0;
7115   if (Legal->isMaskRequired(I))
7116     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7117                                       CostKind);
7118   else
7119     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7120                                 CostKind, I);
7121 
7122   bool Reverse = ConsecutiveStride < 0;
7123   if (Reverse)
7124     Cost +=
7125         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7126   return Cost;
7127 }
7128 
7129 InstructionCost
7130 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7131                                                 ElementCount VF) {
7132   assert(Legal->isUniformMemOp(*I));
7133 
7134   Type *ValTy = getLoadStoreType(I);
7135   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7136   const Align Alignment = getLoadStoreAlignment(I);
7137   unsigned AS = getLoadStoreAddressSpace(I);
7138   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7139   if (isa<LoadInst>(I)) {
7140     return TTI.getAddressComputationCost(ValTy) +
7141            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7142                                CostKind) +
7143            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7144   }
7145   StoreInst *SI = cast<StoreInst>(I);
7146 
7147   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7148   return TTI.getAddressComputationCost(ValTy) +
7149          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7150                              CostKind) +
7151          (isLoopInvariantStoreValue
7152               ? 0
7153               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7154                                        VF.getKnownMinValue() - 1));
7155 }
7156 
7157 InstructionCost
7158 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7159                                                  ElementCount VF) {
7160   Type *ValTy = getLoadStoreType(I);
7161   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7162   const Align Alignment = getLoadStoreAlignment(I);
7163   const Value *Ptr = getLoadStorePointerOperand(I);
7164 
7165   return TTI.getAddressComputationCost(VectorTy) +
7166          TTI.getGatherScatterOpCost(
7167              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7168              TargetTransformInfo::TCK_RecipThroughput, I);
7169 }
7170 
7171 InstructionCost
7172 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7173                                                    ElementCount VF) {
7174   // TODO: Once we have support for interleaving with scalable vectors
7175   // we can calculate the cost properly here.
7176   if (VF.isScalable())
7177     return InstructionCost::getInvalid();
7178 
7179   Type *ValTy = getLoadStoreType(I);
7180   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7181   unsigned AS = getLoadStoreAddressSpace(I);
7182 
7183   auto Group = getInterleavedAccessGroup(I);
7184   assert(Group && "Fail to get an interleaved access group.");
7185 
7186   unsigned InterleaveFactor = Group->getFactor();
7187   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7188 
7189   // Holds the indices of existing members in the interleaved group.
7190   SmallVector<unsigned, 4> Indices;
7191   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7192     if (Group->getMember(IF))
7193       Indices.push_back(IF);
7194 
7195   // Calculate the cost of the whole interleaved group.
7196   bool UseMaskForGaps =
7197       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7198       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7199   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7200       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7201       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7202 
7203   if (Group->isReverse()) {
7204     // TODO: Add support for reversed masked interleaved access.
7205     assert(!Legal->isMaskRequired(I) &&
7206            "Reverse masked interleaved access not supported.");
7207     Cost +=
7208         Group->getNumMembers() *
7209         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7210   }
7211   return Cost;
7212 }
7213 
7214 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7215     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7216   using namespace llvm::PatternMatch;
7217   // Early exit for no inloop reductions
7218   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7219     return None;
7220   auto *VectorTy = cast<VectorType>(Ty);
7221 
7222   // We are looking for a pattern of, and finding the minimal acceptable cost:
7223   //  reduce(mul(ext(A), ext(B))) or
7224   //  reduce(mul(A, B)) or
7225   //  reduce(ext(A)) or
7226   //  reduce(A).
7227   // The basic idea is that we walk down the tree to do that, finding the root
7228   // reduction instruction in InLoopReductionImmediateChains. From there we find
7229   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7230   // of the components. If the reduction cost is lower then we return it for the
7231   // reduction instruction and 0 for the other instructions in the pattern. If
7232   // it is not we return an invalid cost specifying the orignal cost method
7233   // should be used.
7234   Instruction *RetI = I;
7235   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7236     if (!RetI->hasOneUser())
7237       return None;
7238     RetI = RetI->user_back();
7239   }
7240   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7241       RetI->user_back()->getOpcode() == Instruction::Add) {
7242     if (!RetI->hasOneUser())
7243       return None;
7244     RetI = RetI->user_back();
7245   }
7246 
7247   // Test if the found instruction is a reduction, and if not return an invalid
7248   // cost specifying the parent to use the original cost modelling.
7249   if (!InLoopReductionImmediateChains.count(RetI))
7250     return None;
7251 
7252   // Find the reduction this chain is a part of and calculate the basic cost of
7253   // the reduction on its own.
7254   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7255   Instruction *ReductionPhi = LastChain;
7256   while (!isa<PHINode>(ReductionPhi))
7257     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7258 
7259   const RecurrenceDescriptor &RdxDesc =
7260       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7261 
7262   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7263       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7264 
7265   // If we're using ordered reductions then we can just return the base cost
7266   // here, since getArithmeticReductionCost calculates the full ordered
7267   // reduction cost when FP reassociation is not allowed.
7268   if (useOrderedReductions(RdxDesc))
7269     return BaseCost;
7270 
7271   // Get the operand that was not the reduction chain and match it to one of the
7272   // patterns, returning the better cost if it is found.
7273   Instruction *RedOp = RetI->getOperand(1) == LastChain
7274                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7275                            : dyn_cast<Instruction>(RetI->getOperand(1));
7276 
7277   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7278 
7279   Instruction *Op0, *Op1;
7280   if (RedOp &&
7281       match(RedOp,
7282             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7283       match(Op0, m_ZExtOrSExt(m_Value())) &&
7284       Op0->getOpcode() == Op1->getOpcode() &&
7285       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7286       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7287       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7288 
7289     // Matched reduce(ext(mul(ext(A), ext(B)))
7290     // Note that the extend opcodes need to all match, or if A==B they will have
7291     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7292     // which is equally fine.
7293     bool IsUnsigned = isa<ZExtInst>(Op0);
7294     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7295     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7296 
7297     InstructionCost ExtCost =
7298         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7299                              TTI::CastContextHint::None, CostKind, Op0);
7300     InstructionCost MulCost =
7301         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7302     InstructionCost Ext2Cost =
7303         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7304                              TTI::CastContextHint::None, CostKind, RedOp);
7305 
7306     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7307         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7308         CostKind);
7309 
7310     if (RedCost.isValid() &&
7311         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7312       return I == RetI ? RedCost : 0;
7313   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7314              !TheLoop->isLoopInvariant(RedOp)) {
7315     // Matched reduce(ext(A))
7316     bool IsUnsigned = isa<ZExtInst>(RedOp);
7317     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7318     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7319         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7320         CostKind);
7321 
7322     InstructionCost ExtCost =
7323         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7324                              TTI::CastContextHint::None, CostKind, RedOp);
7325     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7326       return I == RetI ? RedCost : 0;
7327   } else if (RedOp &&
7328              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7329     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7330         Op0->getOpcode() == Op1->getOpcode() &&
7331         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7332         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7333       bool IsUnsigned = isa<ZExtInst>(Op0);
7334       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7335       // Matched reduce(mul(ext, ext))
7336       InstructionCost ExtCost =
7337           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7338                                TTI::CastContextHint::None, CostKind, Op0);
7339       InstructionCost MulCost =
7340           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7341 
7342       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7343           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7344           CostKind);
7345 
7346       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7347         return I == RetI ? RedCost : 0;
7348     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7349       // Matched reduce(mul())
7350       InstructionCost MulCost =
7351           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7352 
7353       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7354           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7355           CostKind);
7356 
7357       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7358         return I == RetI ? RedCost : 0;
7359     }
7360   }
7361 
7362   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7363 }
7364 
7365 InstructionCost
7366 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7367                                                      ElementCount VF) {
7368   // Calculate scalar cost only. Vectorization cost should be ready at this
7369   // moment.
7370   if (VF.isScalar()) {
7371     Type *ValTy = getLoadStoreType(I);
7372     const Align Alignment = getLoadStoreAlignment(I);
7373     unsigned AS = getLoadStoreAddressSpace(I);
7374 
7375     return TTI.getAddressComputationCost(ValTy) +
7376            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7377                                TTI::TCK_RecipThroughput, I);
7378   }
7379   return getWideningCost(I, VF);
7380 }
7381 
7382 LoopVectorizationCostModel::VectorizationCostTy
7383 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7384                                                ElementCount VF) {
7385   // If we know that this instruction will remain uniform, check the cost of
7386   // the scalar version.
7387   if (isUniformAfterVectorization(I, VF))
7388     VF = ElementCount::getFixed(1);
7389 
7390   if (VF.isVector() && isProfitableToScalarize(I, VF))
7391     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7392 
7393   // Forced scalars do not have any scalarization overhead.
7394   auto ForcedScalar = ForcedScalars.find(VF);
7395   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7396     auto InstSet = ForcedScalar->second;
7397     if (InstSet.count(I))
7398       return VectorizationCostTy(
7399           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7400            VF.getKnownMinValue()),
7401           false);
7402   }
7403 
7404   Type *VectorTy;
7405   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7406 
7407   bool TypeNotScalarized =
7408       VF.isVector() && VectorTy->isVectorTy() &&
7409       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7410   return VectorizationCostTy(C, TypeNotScalarized);
7411 }
7412 
7413 InstructionCost
7414 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7415                                                      ElementCount VF) const {
7416 
7417   // There is no mechanism yet to create a scalable scalarization loop,
7418   // so this is currently Invalid.
7419   if (VF.isScalable())
7420     return InstructionCost::getInvalid();
7421 
7422   if (VF.isScalar())
7423     return 0;
7424 
7425   InstructionCost Cost = 0;
7426   Type *RetTy = ToVectorTy(I->getType(), VF);
7427   if (!RetTy->isVoidTy() &&
7428       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7429     Cost += TTI.getScalarizationOverhead(
7430         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7431         false);
7432 
7433   // Some targets keep addresses scalar.
7434   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7435     return Cost;
7436 
7437   // Some targets support efficient element stores.
7438   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7439     return Cost;
7440 
7441   // Collect operands to consider.
7442   CallInst *CI = dyn_cast<CallInst>(I);
7443   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7444 
7445   // Skip operands that do not require extraction/scalarization and do not incur
7446   // any overhead.
7447   SmallVector<Type *> Tys;
7448   for (auto *V : filterExtractingOperands(Ops, VF))
7449     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7450   return Cost + TTI.getOperandsScalarizationOverhead(
7451                     filterExtractingOperands(Ops, VF), Tys);
7452 }
7453 
7454 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7455   if (VF.isScalar())
7456     return;
7457   NumPredStores = 0;
7458   for (BasicBlock *BB : TheLoop->blocks()) {
7459     // For each instruction in the old loop.
7460     for (Instruction &I : *BB) {
7461       Value *Ptr =  getLoadStorePointerOperand(&I);
7462       if (!Ptr)
7463         continue;
7464 
7465       // TODO: We should generate better code and update the cost model for
7466       // predicated uniform stores. Today they are treated as any other
7467       // predicated store (see added test cases in
7468       // invariant-store-vectorization.ll).
7469       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7470         NumPredStores++;
7471 
7472       if (Legal->isUniformMemOp(I)) {
7473         // TODO: Avoid replicating loads and stores instead of
7474         // relying on instcombine to remove them.
7475         // Load: Scalar load + broadcast
7476         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7477         InstructionCost Cost;
7478         if (isa<StoreInst>(&I) && VF.isScalable() &&
7479             isLegalGatherOrScatter(&I)) {
7480           Cost = getGatherScatterCost(&I, VF);
7481           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7482         } else {
7483           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7484                  "Cannot yet scalarize uniform stores");
7485           Cost = getUniformMemOpCost(&I, VF);
7486           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7487         }
7488         continue;
7489       }
7490 
7491       // We assume that widening is the best solution when possible.
7492       if (memoryInstructionCanBeWidened(&I, VF)) {
7493         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7494         int ConsecutiveStride = Legal->isConsecutivePtr(
7495             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7496         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7497                "Expected consecutive stride.");
7498         InstWidening Decision =
7499             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7500         setWideningDecision(&I, VF, Decision, Cost);
7501         continue;
7502       }
7503 
7504       // Choose between Interleaving, Gather/Scatter or Scalarization.
7505       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7506       unsigned NumAccesses = 1;
7507       if (isAccessInterleaved(&I)) {
7508         auto Group = getInterleavedAccessGroup(&I);
7509         assert(Group && "Fail to get an interleaved access group.");
7510 
7511         // Make one decision for the whole group.
7512         if (getWideningDecision(&I, VF) != CM_Unknown)
7513           continue;
7514 
7515         NumAccesses = Group->getNumMembers();
7516         if (interleavedAccessCanBeWidened(&I, VF))
7517           InterleaveCost = getInterleaveGroupCost(&I, VF);
7518       }
7519 
7520       InstructionCost GatherScatterCost =
7521           isLegalGatherOrScatter(&I)
7522               ? getGatherScatterCost(&I, VF) * NumAccesses
7523               : InstructionCost::getInvalid();
7524 
7525       InstructionCost ScalarizationCost =
7526           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7527 
7528       // Choose better solution for the current VF,
7529       // write down this decision and use it during vectorization.
7530       InstructionCost Cost;
7531       InstWidening Decision;
7532       if (InterleaveCost <= GatherScatterCost &&
7533           InterleaveCost < ScalarizationCost) {
7534         Decision = CM_Interleave;
7535         Cost = InterleaveCost;
7536       } else if (GatherScatterCost < ScalarizationCost) {
7537         Decision = CM_GatherScatter;
7538         Cost = GatherScatterCost;
7539       } else {
7540         Decision = CM_Scalarize;
7541         Cost = ScalarizationCost;
7542       }
7543       // If the instructions belongs to an interleave group, the whole group
7544       // receives the same decision. The whole group receives the cost, but
7545       // the cost will actually be assigned to one instruction.
7546       if (auto Group = getInterleavedAccessGroup(&I))
7547         setWideningDecision(Group, VF, Decision, Cost);
7548       else
7549         setWideningDecision(&I, VF, Decision, Cost);
7550     }
7551   }
7552 
7553   // Make sure that any load of address and any other address computation
7554   // remains scalar unless there is gather/scatter support. This avoids
7555   // inevitable extracts into address registers, and also has the benefit of
7556   // activating LSR more, since that pass can't optimize vectorized
7557   // addresses.
7558   if (TTI.prefersVectorizedAddressing())
7559     return;
7560 
7561   // Start with all scalar pointer uses.
7562   SmallPtrSet<Instruction *, 8> AddrDefs;
7563   for (BasicBlock *BB : TheLoop->blocks())
7564     for (Instruction &I : *BB) {
7565       Instruction *PtrDef =
7566         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7567       if (PtrDef && TheLoop->contains(PtrDef) &&
7568           getWideningDecision(&I, VF) != CM_GatherScatter)
7569         AddrDefs.insert(PtrDef);
7570     }
7571 
7572   // Add all instructions used to generate the addresses.
7573   SmallVector<Instruction *, 4> Worklist;
7574   append_range(Worklist, AddrDefs);
7575   while (!Worklist.empty()) {
7576     Instruction *I = Worklist.pop_back_val();
7577     for (auto &Op : I->operands())
7578       if (auto *InstOp = dyn_cast<Instruction>(Op))
7579         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7580             AddrDefs.insert(InstOp).second)
7581           Worklist.push_back(InstOp);
7582   }
7583 
7584   for (auto *I : AddrDefs) {
7585     if (isa<LoadInst>(I)) {
7586       // Setting the desired widening decision should ideally be handled in
7587       // by cost functions, but since this involves the task of finding out
7588       // if the loaded register is involved in an address computation, it is
7589       // instead changed here when we know this is the case.
7590       InstWidening Decision = getWideningDecision(I, VF);
7591       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7592         // Scalarize a widened load of address.
7593         setWideningDecision(
7594             I, VF, CM_Scalarize,
7595             (VF.getKnownMinValue() *
7596              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7597       else if (auto Group = getInterleavedAccessGroup(I)) {
7598         // Scalarize an interleave group of address loads.
7599         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7600           if (Instruction *Member = Group->getMember(I))
7601             setWideningDecision(
7602                 Member, VF, CM_Scalarize,
7603                 (VF.getKnownMinValue() *
7604                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7605         }
7606       }
7607     } else
7608       // Make sure I gets scalarized and a cost estimate without
7609       // scalarization overhead.
7610       ForcedScalars[VF].insert(I);
7611   }
7612 }
7613 
7614 InstructionCost
7615 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7616                                                Type *&VectorTy) {
7617   Type *RetTy = I->getType();
7618   if (canTruncateToMinimalBitwidth(I, VF))
7619     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7620   auto SE = PSE.getSE();
7621   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7622 
7623   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7624                                                 ElementCount VF) -> bool {
7625     if (VF.isScalar())
7626       return true;
7627 
7628     auto Scalarized = InstsToScalarize.find(VF);
7629     assert(Scalarized != InstsToScalarize.end() &&
7630            "VF not yet analyzed for scalarization profitability");
7631     return !Scalarized->second.count(I) &&
7632            llvm::all_of(I->users(), [&](User *U) {
7633              auto *UI = cast<Instruction>(U);
7634              return !Scalarized->second.count(UI);
7635            });
7636   };
7637   (void) hasSingleCopyAfterVectorization;
7638 
7639   if (isScalarAfterVectorization(I, VF)) {
7640     // With the exception of GEPs and PHIs, after scalarization there should
7641     // only be one copy of the instruction generated in the loop. This is
7642     // because the VF is either 1, or any instructions that need scalarizing
7643     // have already been dealt with by the the time we get here. As a result,
7644     // it means we don't have to multiply the instruction cost by VF.
7645     assert(I->getOpcode() == Instruction::GetElementPtr ||
7646            I->getOpcode() == Instruction::PHI ||
7647            (I->getOpcode() == Instruction::BitCast &&
7648             I->getType()->isPointerTy()) ||
7649            hasSingleCopyAfterVectorization(I, VF));
7650     VectorTy = RetTy;
7651   } else
7652     VectorTy = ToVectorTy(RetTy, VF);
7653 
7654   // TODO: We need to estimate the cost of intrinsic calls.
7655   switch (I->getOpcode()) {
7656   case Instruction::GetElementPtr:
7657     // We mark this instruction as zero-cost because the cost of GEPs in
7658     // vectorized code depends on whether the corresponding memory instruction
7659     // is scalarized or not. Therefore, we handle GEPs with the memory
7660     // instruction cost.
7661     return 0;
7662   case Instruction::Br: {
7663     // In cases of scalarized and predicated instructions, there will be VF
7664     // predicated blocks in the vectorized loop. Each branch around these
7665     // blocks requires also an extract of its vector compare i1 element.
7666     bool ScalarPredicatedBB = false;
7667     BranchInst *BI = cast<BranchInst>(I);
7668     if (VF.isVector() && BI->isConditional() &&
7669         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7670          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7671       ScalarPredicatedBB = true;
7672 
7673     if (ScalarPredicatedBB) {
7674       // Not possible to scalarize scalable vector with predicated instructions.
7675       if (VF.isScalable())
7676         return InstructionCost::getInvalid();
7677       // Return cost for branches around scalarized and predicated blocks.
7678       auto *Vec_i1Ty =
7679           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7680       return (
7681           TTI.getScalarizationOverhead(
7682               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7683           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7684     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7685       // The back-edge branch will remain, as will all scalar branches.
7686       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7687     else
7688       // This branch will be eliminated by if-conversion.
7689       return 0;
7690     // Note: We currently assume zero cost for an unconditional branch inside
7691     // a predicated block since it will become a fall-through, although we
7692     // may decide in the future to call TTI for all branches.
7693   }
7694   case Instruction::PHI: {
7695     auto *Phi = cast<PHINode>(I);
7696 
7697     // First-order recurrences are replaced by vector shuffles inside the loop.
7698     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7699     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7700       return TTI.getShuffleCost(
7701           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7702           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7703 
7704     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7705     // converted into select instructions. We require N - 1 selects per phi
7706     // node, where N is the number of incoming values.
7707     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7708       return (Phi->getNumIncomingValues() - 1) *
7709              TTI.getCmpSelInstrCost(
7710                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7711                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7712                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7713 
7714     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7715   }
7716   case Instruction::UDiv:
7717   case Instruction::SDiv:
7718   case Instruction::URem:
7719   case Instruction::SRem:
7720     // If we have a predicated instruction, it may not be executed for each
7721     // vector lane. Get the scalarization cost and scale this amount by the
7722     // probability of executing the predicated block. If the instruction is not
7723     // predicated, we fall through to the next case.
7724     if (VF.isVector() && isScalarWithPredication(I)) {
7725       InstructionCost Cost = 0;
7726 
7727       // These instructions have a non-void type, so account for the phi nodes
7728       // that we will create. This cost is likely to be zero. The phi node
7729       // cost, if any, should be scaled by the block probability because it
7730       // models a copy at the end of each predicated block.
7731       Cost += VF.getKnownMinValue() *
7732               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7733 
7734       // The cost of the non-predicated instruction.
7735       Cost += VF.getKnownMinValue() *
7736               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7737 
7738       // The cost of insertelement and extractelement instructions needed for
7739       // scalarization.
7740       Cost += getScalarizationOverhead(I, VF);
7741 
7742       // Scale the cost by the probability of executing the predicated blocks.
7743       // This assumes the predicated block for each vector lane is equally
7744       // likely.
7745       return Cost / getReciprocalPredBlockProb();
7746     }
7747     LLVM_FALLTHROUGH;
7748   case Instruction::Add:
7749   case Instruction::FAdd:
7750   case Instruction::Sub:
7751   case Instruction::FSub:
7752   case Instruction::Mul:
7753   case Instruction::FMul:
7754   case Instruction::FDiv:
7755   case Instruction::FRem:
7756   case Instruction::Shl:
7757   case Instruction::LShr:
7758   case Instruction::AShr:
7759   case Instruction::And:
7760   case Instruction::Or:
7761   case Instruction::Xor: {
7762     // Since we will replace the stride by 1 the multiplication should go away.
7763     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7764       return 0;
7765 
7766     // Detect reduction patterns
7767     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7768       return *RedCost;
7769 
7770     // Certain instructions can be cheaper to vectorize if they have a constant
7771     // second vector operand. One example of this are shifts on x86.
7772     Value *Op2 = I->getOperand(1);
7773     TargetTransformInfo::OperandValueProperties Op2VP;
7774     TargetTransformInfo::OperandValueKind Op2VK =
7775         TTI.getOperandInfo(Op2, Op2VP);
7776     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7777       Op2VK = TargetTransformInfo::OK_UniformValue;
7778 
7779     SmallVector<const Value *, 4> Operands(I->operand_values());
7780     return TTI.getArithmeticInstrCost(
7781         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7782         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7783   }
7784   case Instruction::FNeg: {
7785     return TTI.getArithmeticInstrCost(
7786         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7787         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7788         TargetTransformInfo::OP_None, I->getOperand(0), I);
7789   }
7790   case Instruction::Select: {
7791     SelectInst *SI = cast<SelectInst>(I);
7792     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7793     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7794 
7795     const Value *Op0, *Op1;
7796     using namespace llvm::PatternMatch;
7797     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7798                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7799       // select x, y, false --> x & y
7800       // select x, true, y --> x | y
7801       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7802       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7803       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7804       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7805       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7806               Op1->getType()->getScalarSizeInBits() == 1);
7807 
7808       SmallVector<const Value *, 2> Operands{Op0, Op1};
7809       return TTI.getArithmeticInstrCost(
7810           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7811           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7812     }
7813 
7814     Type *CondTy = SI->getCondition()->getType();
7815     if (!ScalarCond)
7816       CondTy = VectorType::get(CondTy, VF);
7817     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7818                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7819   }
7820   case Instruction::ICmp:
7821   case Instruction::FCmp: {
7822     Type *ValTy = I->getOperand(0)->getType();
7823     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7824     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7825       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7826     VectorTy = ToVectorTy(ValTy, VF);
7827     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7828                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7829   }
7830   case Instruction::Store:
7831   case Instruction::Load: {
7832     ElementCount Width = VF;
7833     if (Width.isVector()) {
7834       InstWidening Decision = getWideningDecision(I, Width);
7835       assert(Decision != CM_Unknown &&
7836              "CM decision should be taken at this point");
7837       if (Decision == CM_Scalarize)
7838         Width = ElementCount::getFixed(1);
7839     }
7840     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7841     return getMemoryInstructionCost(I, VF);
7842   }
7843   case Instruction::BitCast:
7844     if (I->getType()->isPointerTy())
7845       return 0;
7846     LLVM_FALLTHROUGH;
7847   case Instruction::ZExt:
7848   case Instruction::SExt:
7849   case Instruction::FPToUI:
7850   case Instruction::FPToSI:
7851   case Instruction::FPExt:
7852   case Instruction::PtrToInt:
7853   case Instruction::IntToPtr:
7854   case Instruction::SIToFP:
7855   case Instruction::UIToFP:
7856   case Instruction::Trunc:
7857   case Instruction::FPTrunc: {
7858     // Computes the CastContextHint from a Load/Store instruction.
7859     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7860       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7861              "Expected a load or a store!");
7862 
7863       if (VF.isScalar() || !TheLoop->contains(I))
7864         return TTI::CastContextHint::Normal;
7865 
7866       switch (getWideningDecision(I, VF)) {
7867       case LoopVectorizationCostModel::CM_GatherScatter:
7868         return TTI::CastContextHint::GatherScatter;
7869       case LoopVectorizationCostModel::CM_Interleave:
7870         return TTI::CastContextHint::Interleave;
7871       case LoopVectorizationCostModel::CM_Scalarize:
7872       case LoopVectorizationCostModel::CM_Widen:
7873         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7874                                         : TTI::CastContextHint::Normal;
7875       case LoopVectorizationCostModel::CM_Widen_Reverse:
7876         return TTI::CastContextHint::Reversed;
7877       case LoopVectorizationCostModel::CM_Unknown:
7878         llvm_unreachable("Instr did not go through cost modelling?");
7879       }
7880 
7881       llvm_unreachable("Unhandled case!");
7882     };
7883 
7884     unsigned Opcode = I->getOpcode();
7885     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7886     // For Trunc, the context is the only user, which must be a StoreInst.
7887     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7888       if (I->hasOneUse())
7889         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7890           CCH = ComputeCCH(Store);
7891     }
7892     // For Z/Sext, the context is the operand, which must be a LoadInst.
7893     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7894              Opcode == Instruction::FPExt) {
7895       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7896         CCH = ComputeCCH(Load);
7897     }
7898 
7899     // We optimize the truncation of induction variables having constant
7900     // integer steps. The cost of these truncations is the same as the scalar
7901     // operation.
7902     if (isOptimizableIVTruncate(I, VF)) {
7903       auto *Trunc = cast<TruncInst>(I);
7904       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7905                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7906     }
7907 
7908     // Detect reduction patterns
7909     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7910       return *RedCost;
7911 
7912     Type *SrcScalarTy = I->getOperand(0)->getType();
7913     Type *SrcVecTy =
7914         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7915     if (canTruncateToMinimalBitwidth(I, VF)) {
7916       // This cast is going to be shrunk. This may remove the cast or it might
7917       // turn it into slightly different cast. For example, if MinBW == 16,
7918       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7919       //
7920       // Calculate the modified src and dest types.
7921       Type *MinVecTy = VectorTy;
7922       if (Opcode == Instruction::Trunc) {
7923         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7924         VectorTy =
7925             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7926       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7927         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7928         VectorTy =
7929             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7930       }
7931     }
7932 
7933     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7934   }
7935   case Instruction::Call: {
7936     bool NeedToScalarize;
7937     CallInst *CI = cast<CallInst>(I);
7938     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7939     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7940       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7941       return std::min(CallCost, IntrinsicCost);
7942     }
7943     return CallCost;
7944   }
7945   case Instruction::ExtractValue:
7946     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7947   case Instruction::Alloca:
7948     // We cannot easily widen alloca to a scalable alloca, as
7949     // the result would need to be a vector of pointers.
7950     if (VF.isScalable())
7951       return InstructionCost::getInvalid();
7952     LLVM_FALLTHROUGH;
7953   default:
7954     // This opcode is unknown. Assume that it is the same as 'mul'.
7955     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7956   } // end of switch.
7957 }
7958 
7959 char LoopVectorize::ID = 0;
7960 
7961 static const char lv_name[] = "Loop Vectorization";
7962 
7963 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7964 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7965 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7966 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7967 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7968 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7969 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7970 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7971 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7972 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7973 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7974 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7975 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7976 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7977 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7978 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7979 
7980 namespace llvm {
7981 
7982 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7983 
7984 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7985                               bool VectorizeOnlyWhenForced) {
7986   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7987 }
7988 
7989 } // end namespace llvm
7990 
7991 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7992   // Check if the pointer operand of a load or store instruction is
7993   // consecutive.
7994   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7995     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7996   return false;
7997 }
7998 
7999 void LoopVectorizationCostModel::collectValuesToIgnore() {
8000   // Ignore ephemeral values.
8001   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
8002 
8003   // Ignore type-promoting instructions we identified during reduction
8004   // detection.
8005   for (auto &Reduction : Legal->getReductionVars()) {
8006     RecurrenceDescriptor &RedDes = Reduction.second;
8007     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
8008     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8009   }
8010   // Ignore type-casting instructions we identified during induction
8011   // detection.
8012   for (auto &Induction : Legal->getInductionVars()) {
8013     InductionDescriptor &IndDes = Induction.second;
8014     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8015     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8016   }
8017 }
8018 
8019 void LoopVectorizationCostModel::collectInLoopReductions() {
8020   for (auto &Reduction : Legal->getReductionVars()) {
8021     PHINode *Phi = Reduction.first;
8022     RecurrenceDescriptor &RdxDesc = Reduction.second;
8023 
8024     // We don't collect reductions that are type promoted (yet).
8025     if (RdxDesc.getRecurrenceType() != Phi->getType())
8026       continue;
8027 
8028     // If the target would prefer this reduction to happen "in-loop", then we
8029     // want to record it as such.
8030     unsigned Opcode = RdxDesc.getOpcode();
8031     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8032         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8033                                    TargetTransformInfo::ReductionFlags()))
8034       continue;
8035 
8036     // Check that we can correctly put the reductions into the loop, by
8037     // finding the chain of operations that leads from the phi to the loop
8038     // exit value.
8039     SmallVector<Instruction *, 4> ReductionOperations =
8040         RdxDesc.getReductionOpChain(Phi, TheLoop);
8041     bool InLoop = !ReductionOperations.empty();
8042     if (InLoop) {
8043       InLoopReductionChains[Phi] = ReductionOperations;
8044       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8045       Instruction *LastChain = Phi;
8046       for (auto *I : ReductionOperations) {
8047         InLoopReductionImmediateChains[I] = LastChain;
8048         LastChain = I;
8049       }
8050     }
8051     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8052                       << " reduction for phi: " << *Phi << "\n");
8053   }
8054 }
8055 
8056 // TODO: we could return a pair of values that specify the max VF and
8057 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8058 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8059 // doesn't have a cost model that can choose which plan to execute if
8060 // more than one is generated.
8061 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8062                                  LoopVectorizationCostModel &CM) {
8063   unsigned WidestType;
8064   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8065   return WidestVectorRegBits / WidestType;
8066 }
8067 
8068 VectorizationFactor
8069 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8070   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8071   ElementCount VF = UserVF;
8072   // Outer loop handling: They may require CFG and instruction level
8073   // transformations before even evaluating whether vectorization is profitable.
8074   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8075   // the vectorization pipeline.
8076   if (!OrigLoop->isInnermost()) {
8077     // If the user doesn't provide a vectorization factor, determine a
8078     // reasonable one.
8079     if (UserVF.isZero()) {
8080       VF = ElementCount::getFixed(determineVPlanVF(
8081           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8082               .getFixedSize(),
8083           CM));
8084       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8085 
8086       // Make sure we have a VF > 1 for stress testing.
8087       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8088         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8089                           << "overriding computed VF.\n");
8090         VF = ElementCount::getFixed(4);
8091       }
8092     }
8093     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8094     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8095            "VF needs to be a power of two");
8096     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8097                       << "VF " << VF << " to build VPlans.\n");
8098     buildVPlans(VF, VF);
8099 
8100     // For VPlan build stress testing, we bail out after VPlan construction.
8101     if (VPlanBuildStressTest)
8102       return VectorizationFactor::Disabled();
8103 
8104     return {VF, 0 /*Cost*/};
8105   }
8106 
8107   LLVM_DEBUG(
8108       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8109                 "VPlan-native path.\n");
8110   return VectorizationFactor::Disabled();
8111 }
8112 
8113 Optional<VectorizationFactor>
8114 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8115   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8116   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8117   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8118     return None;
8119 
8120   // Invalidate interleave groups if all blocks of loop will be predicated.
8121   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8122       !useMaskedInterleavedAccesses(*TTI)) {
8123     LLVM_DEBUG(
8124         dbgs()
8125         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8126            "which requires masked-interleaved support.\n");
8127     if (CM.InterleaveInfo.invalidateGroups())
8128       // Invalidating interleave groups also requires invalidating all decisions
8129       // based on them, which includes widening decisions and uniform and scalar
8130       // values.
8131       CM.invalidateCostModelingDecisions();
8132   }
8133 
8134   ElementCount MaxUserVF =
8135       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8136   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8137   if (!UserVF.isZero() && UserVFIsLegal) {
8138     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8139            "VF needs to be a power of two");
8140     // Collect the instructions (and their associated costs) that will be more
8141     // profitable to scalarize.
8142     if (CM.selectUserVectorizationFactor(UserVF)) {
8143       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8144       CM.collectInLoopReductions();
8145       buildVPlansWithVPRecipes(UserVF, UserVF);
8146       LLVM_DEBUG(printPlans(dbgs()));
8147       return {{UserVF, 0}};
8148     } else
8149       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8150                               "InvalidCost", ORE, OrigLoop);
8151   }
8152 
8153   // Populate the set of Vectorization Factor Candidates.
8154   ElementCountSet VFCandidates;
8155   for (auto VF = ElementCount::getFixed(1);
8156        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8157     VFCandidates.insert(VF);
8158   for (auto VF = ElementCount::getScalable(1);
8159        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8160     VFCandidates.insert(VF);
8161 
8162   for (const auto &VF : VFCandidates) {
8163     // Collect Uniform and Scalar instructions after vectorization with VF.
8164     CM.collectUniformsAndScalars(VF);
8165 
8166     // Collect the instructions (and their associated costs) that will be more
8167     // profitable to scalarize.
8168     if (VF.isVector())
8169       CM.collectInstsToScalarize(VF);
8170   }
8171 
8172   CM.collectInLoopReductions();
8173   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8174   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8175 
8176   LLVM_DEBUG(printPlans(dbgs()));
8177   if (!MaxFactors.hasVector())
8178     return VectorizationFactor::Disabled();
8179 
8180   // Select the optimal vectorization factor.
8181   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8182 
8183   // Check if it is profitable to vectorize with runtime checks.
8184   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8185   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8186     bool PragmaThresholdReached =
8187         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8188     bool ThresholdReached =
8189         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8190     if ((ThresholdReached && !Hints.allowReordering()) ||
8191         PragmaThresholdReached) {
8192       ORE->emit([&]() {
8193         return OptimizationRemarkAnalysisAliasing(
8194                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8195                    OrigLoop->getHeader())
8196                << "loop not vectorized: cannot prove it is safe to reorder "
8197                   "memory operations";
8198       });
8199       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8200       Hints.emitRemarkWithHints();
8201       return VectorizationFactor::Disabled();
8202     }
8203   }
8204   return SelectedVF;
8205 }
8206 
8207 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
8208   assert(count_if(VPlans,
8209                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
8210              1 &&
8211          "Best VF has not a single VPlan.");
8212 
8213   for (const VPlanPtr &Plan : VPlans) {
8214     if (Plan->hasVF(VF))
8215       return *Plan.get();
8216   }
8217   llvm_unreachable("No plan found!");
8218 }
8219 
8220 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
8221                                            VPlan &BestVPlan,
8222                                            InnerLoopVectorizer &ILV,
8223                                            DominatorTree *DT) {
8224   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
8225                     << '\n');
8226 
8227   // Perform the actual loop transformation.
8228 
8229   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8230   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
8231   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8232   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8233   State.CanonicalIV = ILV.Induction;
8234 
8235   ILV.printDebugTracesAtStart();
8236 
8237   //===------------------------------------------------===//
8238   //
8239   // Notice: any optimization or new instruction that go
8240   // into the code below should also be implemented in
8241   // the cost-model.
8242   //
8243   //===------------------------------------------------===//
8244 
8245   // 2. Copy and widen instructions from the old loop into the new loop.
8246   BestVPlan.execute(&State);
8247 
8248   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8249   //    predication, updating analyses.
8250   ILV.fixVectorizedLoop(State);
8251 
8252   ILV.printDebugTracesAtEnd();
8253 }
8254 
8255 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8256 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8257   for (const auto &Plan : VPlans)
8258     if (PrintVPlansInDotFormat)
8259       Plan->printDOT(O);
8260     else
8261       Plan->print(O);
8262 }
8263 #endif
8264 
8265 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8266     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8267 
8268   // We create new control-flow for the vectorized loop, so the original exit
8269   // conditions will be dead after vectorization if it's only used by the
8270   // terminator
8271   SmallVector<BasicBlock*> ExitingBlocks;
8272   OrigLoop->getExitingBlocks(ExitingBlocks);
8273   for (auto *BB : ExitingBlocks) {
8274     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8275     if (!Cmp || !Cmp->hasOneUse())
8276       continue;
8277 
8278     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8279     if (!DeadInstructions.insert(Cmp).second)
8280       continue;
8281 
8282     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8283     // TODO: can recurse through operands in general
8284     for (Value *Op : Cmp->operands()) {
8285       if (isa<TruncInst>(Op) && Op->hasOneUse())
8286           DeadInstructions.insert(cast<Instruction>(Op));
8287     }
8288   }
8289 
8290   // We create new "steps" for induction variable updates to which the original
8291   // induction variables map. An original update instruction will be dead if
8292   // all its users except the induction variable are dead.
8293   auto *Latch = OrigLoop->getLoopLatch();
8294   for (auto &Induction : Legal->getInductionVars()) {
8295     PHINode *Ind = Induction.first;
8296     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8297 
8298     // If the tail is to be folded by masking, the primary induction variable,
8299     // if exists, isn't dead: it will be used for masking. Don't kill it.
8300     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8301       continue;
8302 
8303     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8304           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8305         }))
8306       DeadInstructions.insert(IndUpdate);
8307 
8308     // We record as "Dead" also the type-casting instructions we had identified
8309     // during induction analysis. We don't need any handling for them in the
8310     // vectorized loop because we have proven that, under a proper runtime
8311     // test guarding the vectorized loop, the value of the phi, and the casted
8312     // value of the phi, are the same. The last instruction in this casting chain
8313     // will get its scalar/vector/widened def from the scalar/vector/widened def
8314     // of the respective phi node. Any other casts in the induction def-use chain
8315     // have no other uses outside the phi update chain, and will be ignored.
8316     InductionDescriptor &IndDes = Induction.second;
8317     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8318     DeadInstructions.insert(Casts.begin(), Casts.end());
8319   }
8320 }
8321 
8322 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8323 
8324 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8325 
8326 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx,
8327                                         Value *Step,
8328                                         Instruction::BinaryOps BinOp) {
8329   // When unrolling and the VF is 1, we only need to add a simple scalar.
8330   Type *Ty = Val->getType();
8331   assert(!Ty->isVectorTy() && "Val must be a scalar");
8332 
8333   if (Ty->isFloatingPointTy()) {
8334     // Floating-point operations inherit FMF via the builder's flags.
8335     Value *MulOp = Builder.CreateFMul(StartIdx, Step);
8336     return Builder.CreateBinOp(BinOp, Val, MulOp);
8337   }
8338   return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction");
8339 }
8340 
8341 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8342   SmallVector<Metadata *, 4> MDs;
8343   // Reserve first location for self reference to the LoopID metadata node.
8344   MDs.push_back(nullptr);
8345   bool IsUnrollMetadata = false;
8346   MDNode *LoopID = L->getLoopID();
8347   if (LoopID) {
8348     // First find existing loop unrolling disable metadata.
8349     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8350       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8351       if (MD) {
8352         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8353         IsUnrollMetadata =
8354             S && S->getString().startswith("llvm.loop.unroll.disable");
8355       }
8356       MDs.push_back(LoopID->getOperand(i));
8357     }
8358   }
8359 
8360   if (!IsUnrollMetadata) {
8361     // Add runtime unroll disable metadata.
8362     LLVMContext &Context = L->getHeader()->getContext();
8363     SmallVector<Metadata *, 1> DisableOperands;
8364     DisableOperands.push_back(
8365         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8366     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8367     MDs.push_back(DisableNode);
8368     MDNode *NewLoopID = MDNode::get(Context, MDs);
8369     // Set operand 0 to refer to the loop id itself.
8370     NewLoopID->replaceOperandWith(0, NewLoopID);
8371     L->setLoopID(NewLoopID);
8372   }
8373 }
8374 
8375 //===--------------------------------------------------------------------===//
8376 // EpilogueVectorizerMainLoop
8377 //===--------------------------------------------------------------------===//
8378 
8379 /// This function is partially responsible for generating the control flow
8380 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8381 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8382   MDNode *OrigLoopID = OrigLoop->getLoopID();
8383   Loop *Lp = createVectorLoopSkeleton("");
8384 
8385   // Generate the code to check the minimum iteration count of the vector
8386   // epilogue (see below).
8387   EPI.EpilogueIterationCountCheck =
8388       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8389   EPI.EpilogueIterationCountCheck->setName("iter.check");
8390 
8391   // Generate the code to check any assumptions that we've made for SCEV
8392   // expressions.
8393   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8394 
8395   // Generate the code that checks at runtime if arrays overlap. We put the
8396   // checks into a separate block to make the more common case of few elements
8397   // faster.
8398   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8399 
8400   // Generate the iteration count check for the main loop, *after* the check
8401   // for the epilogue loop, so that the path-length is shorter for the case
8402   // that goes directly through the vector epilogue. The longer-path length for
8403   // the main loop is compensated for, by the gain from vectorizing the larger
8404   // trip count. Note: the branch will get updated later on when we vectorize
8405   // the epilogue.
8406   EPI.MainLoopIterationCountCheck =
8407       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8408 
8409   // Generate the induction variable.
8410   OldInduction = Legal->getPrimaryInduction();
8411   Type *IdxTy = Legal->getWidestInductionType();
8412   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8413   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8414   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8415   EPI.VectorTripCount = CountRoundDown;
8416   Induction =
8417       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8418                               getDebugLocFromInstOrOperands(OldInduction));
8419 
8420   // Skip induction resume value creation here because they will be created in
8421   // the second pass. If we created them here, they wouldn't be used anyway,
8422   // because the vplan in the second pass still contains the inductions from the
8423   // original loop.
8424 
8425   return completeLoopSkeleton(Lp, OrigLoopID);
8426 }
8427 
8428 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8429   LLVM_DEBUG({
8430     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8431            << "Main Loop VF:" << EPI.MainLoopVF
8432            << ", Main Loop UF:" << EPI.MainLoopUF
8433            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8434            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8435   });
8436 }
8437 
8438 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8439   DEBUG_WITH_TYPE(VerboseDebug, {
8440     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8441   });
8442 }
8443 
8444 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8445     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8446   assert(L && "Expected valid Loop.");
8447   assert(Bypass && "Expected valid bypass basic block.");
8448   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8449   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8450   Value *Count = getOrCreateTripCount(L);
8451   // Reuse existing vector loop preheader for TC checks.
8452   // Note that new preheader block is generated for vector loop.
8453   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8454   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8455 
8456   // Generate code to check if the loop's trip count is less than VF * UF of the
8457   // main vector loop.
8458   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8459       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8460 
8461   Value *CheckMinIters = Builder.CreateICmp(
8462       P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor),
8463       "min.iters.check");
8464 
8465   if (!ForEpilogue)
8466     TCCheckBlock->setName("vector.main.loop.iter.check");
8467 
8468   // Create new preheader for vector loop.
8469   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8470                                    DT, LI, nullptr, "vector.ph");
8471 
8472   if (ForEpilogue) {
8473     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8474                                  DT->getNode(Bypass)->getIDom()) &&
8475            "TC check is expected to dominate Bypass");
8476 
8477     // Update dominator for Bypass & LoopExit.
8478     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8479     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8480       // For loops with multiple exits, there's no edge from the middle block
8481       // to exit blocks (as the epilogue must run) and thus no need to update
8482       // the immediate dominator of the exit blocks.
8483       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8484 
8485     LoopBypassBlocks.push_back(TCCheckBlock);
8486 
8487     // Save the trip count so we don't have to regenerate it in the
8488     // vec.epilog.iter.check. This is safe to do because the trip count
8489     // generated here dominates the vector epilog iter check.
8490     EPI.TripCount = Count;
8491   }
8492 
8493   ReplaceInstWithInst(
8494       TCCheckBlock->getTerminator(),
8495       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8496 
8497   return TCCheckBlock;
8498 }
8499 
8500 //===--------------------------------------------------------------------===//
8501 // EpilogueVectorizerEpilogueLoop
8502 //===--------------------------------------------------------------------===//
8503 
8504 /// This function is partially responsible for generating the control flow
8505 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8506 BasicBlock *
8507 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8508   MDNode *OrigLoopID = OrigLoop->getLoopID();
8509   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8510 
8511   // Now, compare the remaining count and if there aren't enough iterations to
8512   // execute the vectorized epilogue skip to the scalar part.
8513   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8514   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8515   LoopVectorPreHeader =
8516       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8517                  LI, nullptr, "vec.epilog.ph");
8518   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8519                                           VecEpilogueIterationCountCheck);
8520 
8521   // Adjust the control flow taking the state info from the main loop
8522   // vectorization into account.
8523   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8524          "expected this to be saved from the previous pass.");
8525   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8526       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8527 
8528   DT->changeImmediateDominator(LoopVectorPreHeader,
8529                                EPI.MainLoopIterationCountCheck);
8530 
8531   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8532       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8533 
8534   if (EPI.SCEVSafetyCheck)
8535     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8536         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8537   if (EPI.MemSafetyCheck)
8538     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8539         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8540 
8541   DT->changeImmediateDominator(
8542       VecEpilogueIterationCountCheck,
8543       VecEpilogueIterationCountCheck->getSinglePredecessor());
8544 
8545   DT->changeImmediateDominator(LoopScalarPreHeader,
8546                                EPI.EpilogueIterationCountCheck);
8547   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8548     // If there is an epilogue which must run, there's no edge from the
8549     // middle block to exit blocks  and thus no need to update the immediate
8550     // dominator of the exit blocks.
8551     DT->changeImmediateDominator(LoopExitBlock,
8552                                  EPI.EpilogueIterationCountCheck);
8553 
8554   // Keep track of bypass blocks, as they feed start values to the induction
8555   // phis in the scalar loop preheader.
8556   if (EPI.SCEVSafetyCheck)
8557     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8558   if (EPI.MemSafetyCheck)
8559     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8560   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8561 
8562   // Generate a resume induction for the vector epilogue and put it in the
8563   // vector epilogue preheader
8564   Type *IdxTy = Legal->getWidestInductionType();
8565   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8566                                          LoopVectorPreHeader->getFirstNonPHI());
8567   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8568   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8569                            EPI.MainLoopIterationCountCheck);
8570 
8571   // Generate the induction variable.
8572   OldInduction = Legal->getPrimaryInduction();
8573   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8574   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8575   Value *StartIdx = EPResumeVal;
8576   Induction =
8577       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8578                               getDebugLocFromInstOrOperands(OldInduction));
8579 
8580   // Generate induction resume values. These variables save the new starting
8581   // indexes for the scalar loop. They are used to test if there are any tail
8582   // iterations left once the vector loop has completed.
8583   // Note that when the vectorized epilogue is skipped due to iteration count
8584   // check, then the resume value for the induction variable comes from
8585   // the trip count of the main vector loop, hence passing the AdditionalBypass
8586   // argument.
8587   createInductionResumeValues(Lp, CountRoundDown,
8588                               {VecEpilogueIterationCountCheck,
8589                                EPI.VectorTripCount} /* AdditionalBypass */);
8590 
8591   AddRuntimeUnrollDisableMetaData(Lp);
8592   return completeLoopSkeleton(Lp, OrigLoopID);
8593 }
8594 
8595 BasicBlock *
8596 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8597     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8598 
8599   assert(EPI.TripCount &&
8600          "Expected trip count to have been safed in the first pass.");
8601   assert(
8602       (!isa<Instruction>(EPI.TripCount) ||
8603        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8604       "saved trip count does not dominate insertion point.");
8605   Value *TC = EPI.TripCount;
8606   IRBuilder<> Builder(Insert->getTerminator());
8607   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8608 
8609   // Generate code to check if the loop's trip count is less than VF * UF of the
8610   // vector epilogue loop.
8611   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8612       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8613 
8614   Value *CheckMinIters = Builder.CreateICmp(
8615       P, Count,
8616       getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF),
8617       "min.epilog.iters.check");
8618 
8619   ReplaceInstWithInst(
8620       Insert->getTerminator(),
8621       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8622 
8623   LoopBypassBlocks.push_back(Insert);
8624   return Insert;
8625 }
8626 
8627 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8628   LLVM_DEBUG({
8629     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8630            << "Epilogue Loop VF:" << EPI.EpilogueVF
8631            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8632   });
8633 }
8634 
8635 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8636   DEBUG_WITH_TYPE(VerboseDebug, {
8637     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8638   });
8639 }
8640 
8641 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8642     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8643   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8644   bool PredicateAtRangeStart = Predicate(Range.Start);
8645 
8646   for (ElementCount TmpVF = Range.Start * 2;
8647        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8648     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8649       Range.End = TmpVF;
8650       break;
8651     }
8652 
8653   return PredicateAtRangeStart;
8654 }
8655 
8656 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8657 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8658 /// of VF's starting at a given VF and extending it as much as possible. Each
8659 /// vectorization decision can potentially shorten this sub-range during
8660 /// buildVPlan().
8661 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8662                                            ElementCount MaxVF) {
8663   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8664   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8665     VFRange SubRange = {VF, MaxVFPlusOne};
8666     VPlans.push_back(buildVPlan(SubRange));
8667     VF = SubRange.End;
8668   }
8669 }
8670 
8671 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8672                                          VPlanPtr &Plan) {
8673   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8674 
8675   // Look for cached value.
8676   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8677   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8678   if (ECEntryIt != EdgeMaskCache.end())
8679     return ECEntryIt->second;
8680 
8681   VPValue *SrcMask = createBlockInMask(Src, Plan);
8682 
8683   // The terminator has to be a branch inst!
8684   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8685   assert(BI && "Unexpected terminator found");
8686 
8687   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8688     return EdgeMaskCache[Edge] = SrcMask;
8689 
8690   // If source is an exiting block, we know the exit edge is dynamically dead
8691   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8692   // adding uses of an otherwise potentially dead instruction.
8693   if (OrigLoop->isLoopExiting(Src))
8694     return EdgeMaskCache[Edge] = SrcMask;
8695 
8696   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8697   assert(EdgeMask && "No Edge Mask found for condition");
8698 
8699   if (BI->getSuccessor(0) != Dst)
8700     EdgeMask = Builder.createNot(EdgeMask);
8701 
8702   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8703     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8704     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8705     // The select version does not introduce new UB if SrcMask is false and
8706     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8707     VPValue *False = Plan->getOrAddVPValue(
8708         ConstantInt::getFalse(BI->getCondition()->getType()));
8709     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8710   }
8711 
8712   return EdgeMaskCache[Edge] = EdgeMask;
8713 }
8714 
8715 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8716   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8717 
8718   // Look for cached value.
8719   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8720   if (BCEntryIt != BlockMaskCache.end())
8721     return BCEntryIt->second;
8722 
8723   // All-one mask is modelled as no-mask following the convention for masked
8724   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8725   VPValue *BlockMask = nullptr;
8726 
8727   if (OrigLoop->getHeader() == BB) {
8728     if (!CM.blockNeedsPredication(BB))
8729       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8730 
8731     // Create the block in mask as the first non-phi instruction in the block.
8732     VPBuilder::InsertPointGuard Guard(Builder);
8733     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8734     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8735 
8736     // Introduce the early-exit compare IV <= BTC to form header block mask.
8737     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8738     // Start by constructing the desired canonical IV.
8739     VPValue *IV = nullptr;
8740     if (Legal->getPrimaryInduction())
8741       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8742     else {
8743       auto *IVRecipe = new VPWidenCanonicalIVRecipe();
8744       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8745       IV = IVRecipe;
8746     }
8747     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8748     bool TailFolded = !CM.isScalarEpilogueAllowed();
8749 
8750     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8751       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8752       // as a second argument, we only pass the IV here and extract the
8753       // tripcount from the transform state where codegen of the VP instructions
8754       // happen.
8755       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8756     } else {
8757       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8758     }
8759     return BlockMaskCache[BB] = BlockMask;
8760   }
8761 
8762   // This is the block mask. We OR all incoming edges.
8763   for (auto *Predecessor : predecessors(BB)) {
8764     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8765     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8766       return BlockMaskCache[BB] = EdgeMask;
8767 
8768     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8769       BlockMask = EdgeMask;
8770       continue;
8771     }
8772 
8773     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8774   }
8775 
8776   return BlockMaskCache[BB] = BlockMask;
8777 }
8778 
8779 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8780                                                 ArrayRef<VPValue *> Operands,
8781                                                 VFRange &Range,
8782                                                 VPlanPtr &Plan) {
8783   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8784          "Must be called with either a load or store");
8785 
8786   auto willWiden = [&](ElementCount VF) -> bool {
8787     if (VF.isScalar())
8788       return false;
8789     LoopVectorizationCostModel::InstWidening Decision =
8790         CM.getWideningDecision(I, VF);
8791     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8792            "CM decision should be taken at this point.");
8793     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8794       return true;
8795     if (CM.isScalarAfterVectorization(I, VF) ||
8796         CM.isProfitableToScalarize(I, VF))
8797       return false;
8798     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8799   };
8800 
8801   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8802     return nullptr;
8803 
8804   VPValue *Mask = nullptr;
8805   if (Legal->isMaskRequired(I))
8806     Mask = createBlockInMask(I->getParent(), Plan);
8807 
8808   // Determine if the pointer operand of the access is either consecutive or
8809   // reverse consecutive.
8810   LoopVectorizationCostModel::InstWidening Decision =
8811       CM.getWideningDecision(I, Range.Start);
8812   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8813   bool Consecutive =
8814       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8815 
8816   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8817     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8818                                               Consecutive, Reverse);
8819 
8820   StoreInst *Store = cast<StoreInst>(I);
8821   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8822                                             Mask, Consecutive, Reverse);
8823 }
8824 
8825 VPWidenIntOrFpInductionRecipe *
8826 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8827                                            ArrayRef<VPValue *> Operands) const {
8828   // Check if this is an integer or fp induction. If so, build the recipe that
8829   // produces its scalar and vector values.
8830   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8831   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8832       II.getKind() == InductionDescriptor::IK_FpInduction) {
8833     assert(II.getStartValue() ==
8834            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8835     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8836     return new VPWidenIntOrFpInductionRecipe(
8837         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8838   }
8839 
8840   return nullptr;
8841 }
8842 
8843 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8844     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8845     VPlan &Plan) const {
8846   // Optimize the special case where the source is a constant integer
8847   // induction variable. Notice that we can only optimize the 'trunc' case
8848   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8849   // (c) other casts depend on pointer size.
8850 
8851   // Determine whether \p K is a truncation based on an induction variable that
8852   // can be optimized.
8853   auto isOptimizableIVTruncate =
8854       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8855     return [=](ElementCount VF) -> bool {
8856       return CM.isOptimizableIVTruncate(K, VF);
8857     };
8858   };
8859 
8860   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8861           isOptimizableIVTruncate(I), Range)) {
8862 
8863     InductionDescriptor II =
8864         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8865     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8866     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8867                                              Start, nullptr, I);
8868   }
8869   return nullptr;
8870 }
8871 
8872 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8873                                                 ArrayRef<VPValue *> Operands,
8874                                                 VPlanPtr &Plan) {
8875   // If all incoming values are equal, the incoming VPValue can be used directly
8876   // instead of creating a new VPBlendRecipe.
8877   VPValue *FirstIncoming = Operands[0];
8878   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8879         return FirstIncoming == Inc;
8880       })) {
8881     return Operands[0];
8882   }
8883 
8884   // We know that all PHIs in non-header blocks are converted into selects, so
8885   // we don't have to worry about the insertion order and we can just use the
8886   // builder. At this point we generate the predication tree. There may be
8887   // duplications since this is a simple recursive scan, but future
8888   // optimizations will clean it up.
8889   SmallVector<VPValue *, 2> OperandsWithMask;
8890   unsigned NumIncoming = Phi->getNumIncomingValues();
8891 
8892   for (unsigned In = 0; In < NumIncoming; In++) {
8893     VPValue *EdgeMask =
8894       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8895     assert((EdgeMask || NumIncoming == 1) &&
8896            "Multiple predecessors with one having a full mask");
8897     OperandsWithMask.push_back(Operands[In]);
8898     if (EdgeMask)
8899       OperandsWithMask.push_back(EdgeMask);
8900   }
8901   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8902 }
8903 
8904 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8905                                                    ArrayRef<VPValue *> Operands,
8906                                                    VFRange &Range) const {
8907 
8908   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8909       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8910       Range);
8911 
8912   if (IsPredicated)
8913     return nullptr;
8914 
8915   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8916   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8917              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8918              ID == Intrinsic::pseudoprobe ||
8919              ID == Intrinsic::experimental_noalias_scope_decl))
8920     return nullptr;
8921 
8922   auto willWiden = [&](ElementCount VF) -> bool {
8923     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8924     // The following case may be scalarized depending on the VF.
8925     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8926     // version of the instruction.
8927     // Is it beneficial to perform intrinsic call compared to lib call?
8928     bool NeedToScalarize = false;
8929     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8930     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8931     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8932     return UseVectorIntrinsic || !NeedToScalarize;
8933   };
8934 
8935   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8936     return nullptr;
8937 
8938   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8939   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8940 }
8941 
8942 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8943   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8944          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8945   // Instruction should be widened, unless it is scalar after vectorization,
8946   // scalarization is profitable or it is predicated.
8947   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8948     return CM.isScalarAfterVectorization(I, VF) ||
8949            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8950   };
8951   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8952                                                              Range);
8953 }
8954 
8955 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8956                                            ArrayRef<VPValue *> Operands) const {
8957   auto IsVectorizableOpcode = [](unsigned Opcode) {
8958     switch (Opcode) {
8959     case Instruction::Add:
8960     case Instruction::And:
8961     case Instruction::AShr:
8962     case Instruction::BitCast:
8963     case Instruction::FAdd:
8964     case Instruction::FCmp:
8965     case Instruction::FDiv:
8966     case Instruction::FMul:
8967     case Instruction::FNeg:
8968     case Instruction::FPExt:
8969     case Instruction::FPToSI:
8970     case Instruction::FPToUI:
8971     case Instruction::FPTrunc:
8972     case Instruction::FRem:
8973     case Instruction::FSub:
8974     case Instruction::ICmp:
8975     case Instruction::IntToPtr:
8976     case Instruction::LShr:
8977     case Instruction::Mul:
8978     case Instruction::Or:
8979     case Instruction::PtrToInt:
8980     case Instruction::SDiv:
8981     case Instruction::Select:
8982     case Instruction::SExt:
8983     case Instruction::Shl:
8984     case Instruction::SIToFP:
8985     case Instruction::SRem:
8986     case Instruction::Sub:
8987     case Instruction::Trunc:
8988     case Instruction::UDiv:
8989     case Instruction::UIToFP:
8990     case Instruction::URem:
8991     case Instruction::Xor:
8992     case Instruction::ZExt:
8993       return true;
8994     }
8995     return false;
8996   };
8997 
8998   if (!IsVectorizableOpcode(I->getOpcode()))
8999     return nullptr;
9000 
9001   // Success: widen this instruction.
9002   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
9003 }
9004 
9005 void VPRecipeBuilder::fixHeaderPhis() {
9006   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
9007   for (VPWidenPHIRecipe *R : PhisToFix) {
9008     auto *PN = cast<PHINode>(R->getUnderlyingValue());
9009     VPRecipeBase *IncR =
9010         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
9011     R->addOperand(IncR->getVPSingleValue());
9012   }
9013 }
9014 
9015 VPBasicBlock *VPRecipeBuilder::handleReplication(
9016     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
9017     VPlanPtr &Plan) {
9018   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
9019       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
9020       Range);
9021 
9022   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9023       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9024 
9025   // Even if the instruction is not marked as uniform, there are certain
9026   // intrinsic calls that can be effectively treated as such, so we check for
9027   // them here. Conservatively, we only do this for scalable vectors, since
9028   // for fixed-width VFs we can always fall back on full scalarization.
9029   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9030     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9031     case Intrinsic::assume:
9032     case Intrinsic::lifetime_start:
9033     case Intrinsic::lifetime_end:
9034       // For scalable vectors if one of the operands is variant then we still
9035       // want to mark as uniform, which will generate one instruction for just
9036       // the first lane of the vector. We can't scalarize the call in the same
9037       // way as for fixed-width vectors because we don't know how many lanes
9038       // there are.
9039       //
9040       // The reasons for doing it this way for scalable vectors are:
9041       //   1. For the assume intrinsic generating the instruction for the first
9042       //      lane is still be better than not generating any at all. For
9043       //      example, the input may be a splat across all lanes.
9044       //   2. For the lifetime start/end intrinsics the pointer operand only
9045       //      does anything useful when the input comes from a stack object,
9046       //      which suggests it should always be uniform. For non-stack objects
9047       //      the effect is to poison the object, which still allows us to
9048       //      remove the call.
9049       IsUniform = true;
9050       break;
9051     default:
9052       break;
9053     }
9054   }
9055 
9056   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9057                                        IsUniform, IsPredicated);
9058   setRecipe(I, Recipe);
9059   Plan->addVPValue(I, Recipe);
9060 
9061   // Find if I uses a predicated instruction. If so, it will use its scalar
9062   // value. Avoid hoisting the insert-element which packs the scalar value into
9063   // a vector value, as that happens iff all users use the vector value.
9064   for (VPValue *Op : Recipe->operands()) {
9065     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9066     if (!PredR)
9067       continue;
9068     auto *RepR =
9069         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9070     assert(RepR->isPredicated() &&
9071            "expected Replicate recipe to be predicated");
9072     RepR->setAlsoPack(false);
9073   }
9074 
9075   // Finalize the recipe for Instr, first if it is not predicated.
9076   if (!IsPredicated) {
9077     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9078     VPBB->appendRecipe(Recipe);
9079     return VPBB;
9080   }
9081   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9082   assert(VPBB->getSuccessors().empty() &&
9083          "VPBB has successors when handling predicated replication.");
9084   // Record predicated instructions for above packing optimizations.
9085   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9086   VPBlockUtils::insertBlockAfter(Region, VPBB);
9087   auto *RegSucc = new VPBasicBlock();
9088   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9089   return RegSucc;
9090 }
9091 
9092 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9093                                                       VPRecipeBase *PredRecipe,
9094                                                       VPlanPtr &Plan) {
9095   // Instructions marked for predication are replicated and placed under an
9096   // if-then construct to prevent side-effects.
9097 
9098   // Generate recipes to compute the block mask for this region.
9099   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9100 
9101   // Build the triangular if-then region.
9102   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9103   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9104   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9105   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9106   auto *PHIRecipe = Instr->getType()->isVoidTy()
9107                         ? nullptr
9108                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9109   if (PHIRecipe) {
9110     Plan->removeVPValueFor(Instr);
9111     Plan->addVPValue(Instr, PHIRecipe);
9112   }
9113   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9114   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9115   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9116 
9117   // Note: first set Entry as region entry and then connect successors starting
9118   // from it in order, to propagate the "parent" of each VPBasicBlock.
9119   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9120   VPBlockUtils::connectBlocks(Pred, Exit);
9121 
9122   return Region;
9123 }
9124 
9125 VPRecipeOrVPValueTy
9126 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9127                                         ArrayRef<VPValue *> Operands,
9128                                         VFRange &Range, VPlanPtr &Plan) {
9129   // First, check for specific widening recipes that deal with calls, memory
9130   // operations, inductions and Phi nodes.
9131   if (auto *CI = dyn_cast<CallInst>(Instr))
9132     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9133 
9134   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9135     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9136 
9137   VPRecipeBase *Recipe;
9138   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9139     if (Phi->getParent() != OrigLoop->getHeader())
9140       return tryToBlend(Phi, Operands, Plan);
9141     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9142       return toVPRecipeResult(Recipe);
9143 
9144     VPWidenPHIRecipe *PhiRecipe = nullptr;
9145     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9146       VPValue *StartV = Operands[0];
9147       if (Legal->isReductionVariable(Phi)) {
9148         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9149         assert(RdxDesc.getRecurrenceStartValue() ==
9150                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9151         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9152                                              CM.isInLoopReduction(Phi),
9153                                              CM.useOrderedReductions(RdxDesc));
9154       } else {
9155         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9156       }
9157 
9158       // Record the incoming value from the backedge, so we can add the incoming
9159       // value from the backedge after all recipes have been created.
9160       recordRecipeOf(cast<Instruction>(
9161           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9162       PhisToFix.push_back(PhiRecipe);
9163     } else {
9164       // TODO: record start and backedge value for remaining pointer induction
9165       // phis.
9166       assert(Phi->getType()->isPointerTy() &&
9167              "only pointer phis should be handled here");
9168       PhiRecipe = new VPWidenPHIRecipe(Phi);
9169     }
9170 
9171     return toVPRecipeResult(PhiRecipe);
9172   }
9173 
9174   if (isa<TruncInst>(Instr) &&
9175       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9176                                                Range, *Plan)))
9177     return toVPRecipeResult(Recipe);
9178 
9179   if (!shouldWiden(Instr, Range))
9180     return nullptr;
9181 
9182   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9183     return toVPRecipeResult(new VPWidenGEPRecipe(
9184         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9185 
9186   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9187     bool InvariantCond =
9188         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9189     return toVPRecipeResult(new VPWidenSelectRecipe(
9190         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9191   }
9192 
9193   return toVPRecipeResult(tryToWiden(Instr, Operands));
9194 }
9195 
9196 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9197                                                         ElementCount MaxVF) {
9198   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9199 
9200   // Collect instructions from the original loop that will become trivially dead
9201   // in the vectorized loop. We don't need to vectorize these instructions. For
9202   // example, original induction update instructions can become dead because we
9203   // separately emit induction "steps" when generating code for the new loop.
9204   // Similarly, we create a new latch condition when setting up the structure
9205   // of the new loop, so the old one can become dead.
9206   SmallPtrSet<Instruction *, 4> DeadInstructions;
9207   collectTriviallyDeadInstructions(DeadInstructions);
9208 
9209   // Add assume instructions we need to drop to DeadInstructions, to prevent
9210   // them from being added to the VPlan.
9211   // TODO: We only need to drop assumes in blocks that get flattend. If the
9212   // control flow is preserved, we should keep them.
9213   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9214   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9215 
9216   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9217   // Dead instructions do not need sinking. Remove them from SinkAfter.
9218   for (Instruction *I : DeadInstructions)
9219     SinkAfter.erase(I);
9220 
9221   // Cannot sink instructions after dead instructions (there won't be any
9222   // recipes for them). Instead, find the first non-dead previous instruction.
9223   for (auto &P : Legal->getSinkAfter()) {
9224     Instruction *SinkTarget = P.second;
9225     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9226     (void)FirstInst;
9227     while (DeadInstructions.contains(SinkTarget)) {
9228       assert(
9229           SinkTarget != FirstInst &&
9230           "Must find a live instruction (at least the one feeding the "
9231           "first-order recurrence PHI) before reaching beginning of the block");
9232       SinkTarget = SinkTarget->getPrevNode();
9233       assert(SinkTarget != P.first &&
9234              "sink source equals target, no sinking required");
9235     }
9236     P.second = SinkTarget;
9237   }
9238 
9239   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9240   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9241     VFRange SubRange = {VF, MaxVFPlusOne};
9242     VPlans.push_back(
9243         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9244     VF = SubRange.End;
9245   }
9246 }
9247 
9248 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9249     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9250     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9251 
9252   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9253 
9254   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9255 
9256   // ---------------------------------------------------------------------------
9257   // Pre-construction: record ingredients whose recipes we'll need to further
9258   // process after constructing the initial VPlan.
9259   // ---------------------------------------------------------------------------
9260 
9261   // Mark instructions we'll need to sink later and their targets as
9262   // ingredients whose recipe we'll need to record.
9263   for (auto &Entry : SinkAfter) {
9264     RecipeBuilder.recordRecipeOf(Entry.first);
9265     RecipeBuilder.recordRecipeOf(Entry.second);
9266   }
9267   for (auto &Reduction : CM.getInLoopReductionChains()) {
9268     PHINode *Phi = Reduction.first;
9269     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9270     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9271 
9272     RecipeBuilder.recordRecipeOf(Phi);
9273     for (auto &R : ReductionOperations) {
9274       RecipeBuilder.recordRecipeOf(R);
9275       // For min/max reducitons, where we have a pair of icmp/select, we also
9276       // need to record the ICmp recipe, so it can be removed later.
9277       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9278              "Only min/max recurrences allowed for inloop reductions");
9279       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9280         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9281     }
9282   }
9283 
9284   // For each interleave group which is relevant for this (possibly trimmed)
9285   // Range, add it to the set of groups to be later applied to the VPlan and add
9286   // placeholders for its members' Recipes which we'll be replacing with a
9287   // single VPInterleaveRecipe.
9288   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9289     auto applyIG = [IG, this](ElementCount VF) -> bool {
9290       return (VF.isVector() && // Query is illegal for VF == 1
9291               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9292                   LoopVectorizationCostModel::CM_Interleave);
9293     };
9294     if (!getDecisionAndClampRange(applyIG, Range))
9295       continue;
9296     InterleaveGroups.insert(IG);
9297     for (unsigned i = 0; i < IG->getFactor(); i++)
9298       if (Instruction *Member = IG->getMember(i))
9299         RecipeBuilder.recordRecipeOf(Member);
9300   };
9301 
9302   // ---------------------------------------------------------------------------
9303   // Build initial VPlan: Scan the body of the loop in a topological order to
9304   // visit each basic block after having visited its predecessor basic blocks.
9305   // ---------------------------------------------------------------------------
9306 
9307   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9308   auto Plan = std::make_unique<VPlan>();
9309 
9310   // Scan the body of the loop in a topological order to visit each basic block
9311   // after having visited its predecessor basic blocks.
9312   LoopBlocksDFS DFS(OrigLoop);
9313   DFS.perform(LI);
9314 
9315   VPBasicBlock *VPBB = nullptr;
9316   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9317     // Relevant instructions from basic block BB will be grouped into VPRecipe
9318     // ingredients and fill a new VPBasicBlock.
9319     unsigned VPBBsForBB = 0;
9320     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9321     if (VPBB)
9322       VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9323     else
9324       Plan->setEntry(FirstVPBBForBB);
9325     VPBB = FirstVPBBForBB;
9326     Builder.setInsertPoint(VPBB);
9327 
9328     // Introduce each ingredient into VPlan.
9329     // TODO: Model and preserve debug instrinsics in VPlan.
9330     for (Instruction &I : BB->instructionsWithoutDebug()) {
9331       Instruction *Instr = &I;
9332 
9333       // First filter out irrelevant instructions, to ensure no recipes are
9334       // built for them.
9335       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9336         continue;
9337 
9338       SmallVector<VPValue *, 4> Operands;
9339       auto *Phi = dyn_cast<PHINode>(Instr);
9340       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9341         Operands.push_back(Plan->getOrAddVPValue(
9342             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9343       } else {
9344         auto OpRange = Plan->mapToVPValues(Instr->operands());
9345         Operands = {OpRange.begin(), OpRange.end()};
9346       }
9347       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9348               Instr, Operands, Range, Plan)) {
9349         // If Instr can be simplified to an existing VPValue, use it.
9350         if (RecipeOrValue.is<VPValue *>()) {
9351           auto *VPV = RecipeOrValue.get<VPValue *>();
9352           Plan->addVPValue(Instr, VPV);
9353           // If the re-used value is a recipe, register the recipe for the
9354           // instruction, in case the recipe for Instr needs to be recorded.
9355           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9356             RecipeBuilder.setRecipe(Instr, R);
9357           continue;
9358         }
9359         // Otherwise, add the new recipe.
9360         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9361         for (auto *Def : Recipe->definedValues()) {
9362           auto *UV = Def->getUnderlyingValue();
9363           Plan->addVPValue(UV, Def);
9364         }
9365 
9366         RecipeBuilder.setRecipe(Instr, Recipe);
9367         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe)) {
9368           // Make sure induction recipes are all kept in the header block.
9369           // VPWidenIntOrFpInductionRecipe may be generated when reaching a
9370           // Trunc of an induction Phi, where Trunc may not be in the header.
9371           auto *Header = Plan->getEntry()->getEntryBasicBlock();
9372           Header->insert(Recipe, Header->getFirstNonPhi());
9373         } else
9374           VPBB->appendRecipe(Recipe);
9375         continue;
9376       }
9377 
9378       // Otherwise, if all widening options failed, Instruction is to be
9379       // replicated. This may create a successor for VPBB.
9380       VPBasicBlock *NextVPBB =
9381           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9382       if (NextVPBB != VPBB) {
9383         VPBB = NextVPBB;
9384         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9385                                     : "");
9386       }
9387     }
9388   }
9389 
9390   assert(isa<VPBasicBlock>(Plan->getEntry()) &&
9391          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9392          "entry block must be set to a non-empty VPBasicBlock");
9393   RecipeBuilder.fixHeaderPhis();
9394 
9395   // ---------------------------------------------------------------------------
9396   // Transform initial VPlan: Apply previously taken decisions, in order, to
9397   // bring the VPlan to its final state.
9398   // ---------------------------------------------------------------------------
9399 
9400   // Apply Sink-After legal constraints.
9401   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9402     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9403     if (Region && Region->isReplicator()) {
9404       assert(Region->getNumSuccessors() == 1 &&
9405              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9406       assert(R->getParent()->size() == 1 &&
9407              "A recipe in an original replicator region must be the only "
9408              "recipe in its block");
9409       return Region;
9410     }
9411     return nullptr;
9412   };
9413   for (auto &Entry : SinkAfter) {
9414     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9415     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9416 
9417     auto *TargetRegion = GetReplicateRegion(Target);
9418     auto *SinkRegion = GetReplicateRegion(Sink);
9419     if (!SinkRegion) {
9420       // If the sink source is not a replicate region, sink the recipe directly.
9421       if (TargetRegion) {
9422         // The target is in a replication region, make sure to move Sink to
9423         // the block after it, not into the replication region itself.
9424         VPBasicBlock *NextBlock =
9425             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9426         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9427       } else
9428         Sink->moveAfter(Target);
9429       continue;
9430     }
9431 
9432     // The sink source is in a replicate region. Unhook the region from the CFG.
9433     auto *SinkPred = SinkRegion->getSinglePredecessor();
9434     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9435     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9436     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9437     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9438 
9439     if (TargetRegion) {
9440       // The target recipe is also in a replicate region, move the sink region
9441       // after the target region.
9442       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9443       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9444       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9445       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9446     } else {
9447       // The sink source is in a replicate region, we need to move the whole
9448       // replicate region, which should only contain a single recipe in the
9449       // main block.
9450       auto *SplitBlock =
9451           Target->getParent()->splitAt(std::next(Target->getIterator()));
9452 
9453       auto *SplitPred = SplitBlock->getSinglePredecessor();
9454 
9455       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9456       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9457       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9458       if (VPBB == SplitPred)
9459         VPBB = SplitBlock;
9460     }
9461   }
9462 
9463   // Adjust the recipes for any inloop reductions.
9464   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9465 
9466   // Introduce a recipe to combine the incoming and previous values of a
9467   // first-order recurrence.
9468   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9469     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9470     if (!RecurPhi)
9471       continue;
9472 
9473     auto *RecurSplice = cast<VPInstruction>(
9474         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9475                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9476 
9477     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9478     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9479       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9480       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9481     } else
9482       RecurSplice->moveAfter(PrevRecipe);
9483     RecurPhi->replaceAllUsesWith(RecurSplice);
9484     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9485     // all users.
9486     RecurSplice->setOperand(0, RecurPhi);
9487   }
9488 
9489   // Interleave memory: for each Interleave Group we marked earlier as relevant
9490   // for this VPlan, replace the Recipes widening its memory instructions with a
9491   // single VPInterleaveRecipe at its insertion point.
9492   for (auto IG : InterleaveGroups) {
9493     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9494         RecipeBuilder.getRecipe(IG->getInsertPos()));
9495     SmallVector<VPValue *, 4> StoredValues;
9496     for (unsigned i = 0; i < IG->getFactor(); ++i)
9497       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9498         auto *StoreR =
9499             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9500         StoredValues.push_back(StoreR->getStoredValue());
9501       }
9502 
9503     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9504                                         Recipe->getMask());
9505     VPIG->insertBefore(Recipe);
9506     unsigned J = 0;
9507     for (unsigned i = 0; i < IG->getFactor(); ++i)
9508       if (Instruction *Member = IG->getMember(i)) {
9509         if (!Member->getType()->isVoidTy()) {
9510           VPValue *OriginalV = Plan->getVPValue(Member);
9511           Plan->removeVPValueFor(Member);
9512           Plan->addVPValue(Member, VPIG->getVPValue(J));
9513           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9514           J++;
9515         }
9516         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9517       }
9518   }
9519 
9520   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9521   // in ways that accessing values using original IR values is incorrect.
9522   Plan->disableValue2VPValue();
9523 
9524   VPlanTransforms::sinkScalarOperands(*Plan);
9525   VPlanTransforms::mergeReplicateRegions(*Plan);
9526 
9527   std::string PlanName;
9528   raw_string_ostream RSO(PlanName);
9529   ElementCount VF = Range.Start;
9530   Plan->addVF(VF);
9531   RSO << "Initial VPlan for VF={" << VF;
9532   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9533     Plan->addVF(VF);
9534     RSO << "," << VF;
9535   }
9536   RSO << "},UF>=1";
9537   RSO.flush();
9538   Plan->setName(PlanName);
9539 
9540   return Plan;
9541 }
9542 
9543 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9544   // Outer loop handling: They may require CFG and instruction level
9545   // transformations before even evaluating whether vectorization is profitable.
9546   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9547   // the vectorization pipeline.
9548   assert(!OrigLoop->isInnermost());
9549   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9550 
9551   // Create new empty VPlan
9552   auto Plan = std::make_unique<VPlan>();
9553 
9554   // Build hierarchical CFG
9555   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9556   HCFGBuilder.buildHierarchicalCFG();
9557 
9558   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9559        VF *= 2)
9560     Plan->addVF(VF);
9561 
9562   if (EnableVPlanPredication) {
9563     VPlanPredicator VPP(*Plan);
9564     VPP.predicate();
9565 
9566     // Avoid running transformation to recipes until masked code generation in
9567     // VPlan-native path is in place.
9568     return Plan;
9569   }
9570 
9571   SmallPtrSet<Instruction *, 1> DeadInstructions;
9572   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9573                                              Legal->getInductionVars(),
9574                                              DeadInstructions, *PSE.getSE());
9575   return Plan;
9576 }
9577 
9578 // Adjust the recipes for reductions. For in-loop reductions the chain of
9579 // instructions leading from the loop exit instr to the phi need to be converted
9580 // to reductions, with one operand being vector and the other being the scalar
9581 // reduction chain. For other reductions, a select is introduced between the phi
9582 // and live-out recipes when folding the tail.
9583 void LoopVectorizationPlanner::adjustRecipesForReductions(
9584     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9585     ElementCount MinVF) {
9586   for (auto &Reduction : CM.getInLoopReductionChains()) {
9587     PHINode *Phi = Reduction.first;
9588     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9589     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9590 
9591     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9592       continue;
9593 
9594     // ReductionOperations are orders top-down from the phi's use to the
9595     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9596     // which of the two operands will remain scalar and which will be reduced.
9597     // For minmax the chain will be the select instructions.
9598     Instruction *Chain = Phi;
9599     for (Instruction *R : ReductionOperations) {
9600       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9601       RecurKind Kind = RdxDesc.getRecurrenceKind();
9602 
9603       VPValue *ChainOp = Plan->getVPValue(Chain);
9604       unsigned FirstOpId;
9605       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9606              "Only min/max recurrences allowed for inloop reductions");
9607       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9608         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9609                "Expected to replace a VPWidenSelectSC");
9610         FirstOpId = 1;
9611       } else {
9612         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9613                "Expected to replace a VPWidenSC");
9614         FirstOpId = 0;
9615       }
9616       unsigned VecOpId =
9617           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9618       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9619 
9620       auto *CondOp = CM.foldTailByMasking()
9621                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9622                          : nullptr;
9623       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9624           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9625       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9626       Plan->removeVPValueFor(R);
9627       Plan->addVPValue(R, RedRecipe);
9628       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9629       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9630       WidenRecipe->eraseFromParent();
9631 
9632       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9633         VPRecipeBase *CompareRecipe =
9634             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9635         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9636                "Expected to replace a VPWidenSC");
9637         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9638                "Expected no remaining users");
9639         CompareRecipe->eraseFromParent();
9640       }
9641       Chain = R;
9642     }
9643   }
9644 
9645   // If tail is folded by masking, introduce selects between the phi
9646   // and the live-out instruction of each reduction, at the end of the latch.
9647   if (CM.foldTailByMasking()) {
9648     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9649       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9650       if (!PhiR || PhiR->isInLoop())
9651         continue;
9652       Builder.setInsertPoint(LatchVPBB);
9653       VPValue *Cond =
9654           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9655       VPValue *Red = PhiR->getBackedgeValue();
9656       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9657     }
9658   }
9659 }
9660 
9661 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9662 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9663                                VPSlotTracker &SlotTracker) const {
9664   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9665   IG->getInsertPos()->printAsOperand(O, false);
9666   O << ", ";
9667   getAddr()->printAsOperand(O, SlotTracker);
9668   VPValue *Mask = getMask();
9669   if (Mask) {
9670     O << ", ";
9671     Mask->printAsOperand(O, SlotTracker);
9672   }
9673 
9674   unsigned OpIdx = 0;
9675   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9676     if (!IG->getMember(i))
9677       continue;
9678     if (getNumStoreOperands() > 0) {
9679       O << "\n" << Indent << "  store ";
9680       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9681       O << " to index " << i;
9682     } else {
9683       O << "\n" << Indent << "  ";
9684       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9685       O << " = load from index " << i;
9686     }
9687     ++OpIdx;
9688   }
9689 }
9690 #endif
9691 
9692 void VPWidenCallRecipe::execute(VPTransformState &State) {
9693   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9694                                   *this, State);
9695 }
9696 
9697 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9698   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9699                                     this, *this, InvariantCond, State);
9700 }
9701 
9702 void VPWidenRecipe::execute(VPTransformState &State) {
9703   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9704 }
9705 
9706 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9707   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9708                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9709                       IsIndexLoopInvariant, State);
9710 }
9711 
9712 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9713   assert(!State.Instance && "Int or FP induction being replicated.");
9714   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9715                                    getTruncInst(), getVPValue(0),
9716                                    getCastValue(), State);
9717 }
9718 
9719 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9720   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9721                                  State);
9722 }
9723 
9724 void VPBlendRecipe::execute(VPTransformState &State) {
9725   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9726   // We know that all PHIs in non-header blocks are converted into
9727   // selects, so we don't have to worry about the insertion order and we
9728   // can just use the builder.
9729   // At this point we generate the predication tree. There may be
9730   // duplications since this is a simple recursive scan, but future
9731   // optimizations will clean it up.
9732 
9733   unsigned NumIncoming = getNumIncomingValues();
9734 
9735   // Generate a sequence of selects of the form:
9736   // SELECT(Mask3, In3,
9737   //        SELECT(Mask2, In2,
9738   //               SELECT(Mask1, In1,
9739   //                      In0)))
9740   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9741   // are essentially undef are taken from In0.
9742   InnerLoopVectorizer::VectorParts Entry(State.UF);
9743   for (unsigned In = 0; In < NumIncoming; ++In) {
9744     for (unsigned Part = 0; Part < State.UF; ++Part) {
9745       // We might have single edge PHIs (blocks) - use an identity
9746       // 'select' for the first PHI operand.
9747       Value *In0 = State.get(getIncomingValue(In), Part);
9748       if (In == 0)
9749         Entry[Part] = In0; // Initialize with the first incoming value.
9750       else {
9751         // Select between the current value and the previous incoming edge
9752         // based on the incoming mask.
9753         Value *Cond = State.get(getMask(In), Part);
9754         Entry[Part] =
9755             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9756       }
9757     }
9758   }
9759   for (unsigned Part = 0; Part < State.UF; ++Part)
9760     State.set(this, Entry[Part], Part);
9761 }
9762 
9763 void VPInterleaveRecipe::execute(VPTransformState &State) {
9764   assert(!State.Instance && "Interleave group being replicated.");
9765   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9766                                       getStoredValues(), getMask());
9767 }
9768 
9769 void VPReductionRecipe::execute(VPTransformState &State) {
9770   assert(!State.Instance && "Reduction being replicated.");
9771   Value *PrevInChain = State.get(getChainOp(), 0);
9772   RecurKind Kind = RdxDesc->getRecurrenceKind();
9773   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9774   // Propagate the fast-math flags carried by the underlying instruction.
9775   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9776   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9777   for (unsigned Part = 0; Part < State.UF; ++Part) {
9778     Value *NewVecOp = State.get(getVecOp(), Part);
9779     if (VPValue *Cond = getCondOp()) {
9780       Value *NewCond = State.get(Cond, Part);
9781       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9782       Value *Iden = RdxDesc->getRecurrenceIdentity(
9783           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9784       Value *IdenVec =
9785           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9786       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9787       NewVecOp = Select;
9788     }
9789     Value *NewRed;
9790     Value *NextInChain;
9791     if (IsOrdered) {
9792       if (State.VF.isVector())
9793         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9794                                         PrevInChain);
9795       else
9796         NewRed = State.Builder.CreateBinOp(
9797             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9798             NewVecOp);
9799       PrevInChain = NewRed;
9800     } else {
9801       PrevInChain = State.get(getChainOp(), Part);
9802       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9803     }
9804     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9805       NextInChain =
9806           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9807                          NewRed, PrevInChain);
9808     } else if (IsOrdered)
9809       NextInChain = NewRed;
9810     else
9811       NextInChain = State.Builder.CreateBinOp(
9812           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9813           PrevInChain);
9814     State.set(this, NextInChain, Part);
9815   }
9816 }
9817 
9818 void VPReplicateRecipe::execute(VPTransformState &State) {
9819   if (State.Instance) { // Generate a single instance.
9820     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9821     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9822                                     *State.Instance, IsPredicated, State);
9823     // Insert scalar instance packing it into a vector.
9824     if (AlsoPack && State.VF.isVector()) {
9825       // If we're constructing lane 0, initialize to start from poison.
9826       if (State.Instance->Lane.isFirstLane()) {
9827         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9828         Value *Poison = PoisonValue::get(
9829             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9830         State.set(this, Poison, State.Instance->Part);
9831       }
9832       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9833     }
9834     return;
9835   }
9836 
9837   // Generate scalar instances for all VF lanes of all UF parts, unless the
9838   // instruction is uniform inwhich case generate only the first lane for each
9839   // of the UF parts.
9840   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9841   assert((!State.VF.isScalable() || IsUniform) &&
9842          "Can't scalarize a scalable vector");
9843   for (unsigned Part = 0; Part < State.UF; ++Part)
9844     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9845       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9846                                       VPIteration(Part, Lane), IsPredicated,
9847                                       State);
9848 }
9849 
9850 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9851   assert(State.Instance && "Branch on Mask works only on single instance.");
9852 
9853   unsigned Part = State.Instance->Part;
9854   unsigned Lane = State.Instance->Lane.getKnownLane();
9855 
9856   Value *ConditionBit = nullptr;
9857   VPValue *BlockInMask = getMask();
9858   if (BlockInMask) {
9859     ConditionBit = State.get(BlockInMask, Part);
9860     if (ConditionBit->getType()->isVectorTy())
9861       ConditionBit = State.Builder.CreateExtractElement(
9862           ConditionBit, State.Builder.getInt32(Lane));
9863   } else // Block in mask is all-one.
9864     ConditionBit = State.Builder.getTrue();
9865 
9866   // Replace the temporary unreachable terminator with a new conditional branch,
9867   // whose two destinations will be set later when they are created.
9868   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9869   assert(isa<UnreachableInst>(CurrentTerminator) &&
9870          "Expected to replace unreachable terminator with conditional branch.");
9871   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9872   CondBr->setSuccessor(0, nullptr);
9873   ReplaceInstWithInst(CurrentTerminator, CondBr);
9874 }
9875 
9876 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9877   assert(State.Instance && "Predicated instruction PHI works per instance.");
9878   Instruction *ScalarPredInst =
9879       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9880   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9881   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9882   assert(PredicatingBB && "Predicated block has no single predecessor.");
9883   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9884          "operand must be VPReplicateRecipe");
9885 
9886   // By current pack/unpack logic we need to generate only a single phi node: if
9887   // a vector value for the predicated instruction exists at this point it means
9888   // the instruction has vector users only, and a phi for the vector value is
9889   // needed. In this case the recipe of the predicated instruction is marked to
9890   // also do that packing, thereby "hoisting" the insert-element sequence.
9891   // Otherwise, a phi node for the scalar value is needed.
9892   unsigned Part = State.Instance->Part;
9893   if (State.hasVectorValue(getOperand(0), Part)) {
9894     Value *VectorValue = State.get(getOperand(0), Part);
9895     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9896     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9897     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9898     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9899     if (State.hasVectorValue(this, Part))
9900       State.reset(this, VPhi, Part);
9901     else
9902       State.set(this, VPhi, Part);
9903     // NOTE: Currently we need to update the value of the operand, so the next
9904     // predicated iteration inserts its generated value in the correct vector.
9905     State.reset(getOperand(0), VPhi, Part);
9906   } else {
9907     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9908     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9909     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9910                      PredicatingBB);
9911     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9912     if (State.hasScalarValue(this, *State.Instance))
9913       State.reset(this, Phi, *State.Instance);
9914     else
9915       State.set(this, Phi, *State.Instance);
9916     // NOTE: Currently we need to update the value of the operand, so the next
9917     // predicated iteration inserts its generated value in the correct vector.
9918     State.reset(getOperand(0), Phi, *State.Instance);
9919   }
9920 }
9921 
9922 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9923   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9924   State.ILV->vectorizeMemoryInstruction(
9925       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9926       StoredValue, getMask(), Consecutive, Reverse);
9927 }
9928 
9929 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9930 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9931 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9932 // for predication.
9933 static ScalarEpilogueLowering getScalarEpilogueLowering(
9934     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9935     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9936     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9937     LoopVectorizationLegality &LVL) {
9938   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9939   // don't look at hints or options, and don't request a scalar epilogue.
9940   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9941   // LoopAccessInfo (due to code dependency and not being able to reliably get
9942   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9943   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9944   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9945   // back to the old way and vectorize with versioning when forced. See D81345.)
9946   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9947                                                       PGSOQueryType::IRPass) &&
9948                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9949     return CM_ScalarEpilogueNotAllowedOptSize;
9950 
9951   // 2) If set, obey the directives
9952   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9953     switch (PreferPredicateOverEpilogue) {
9954     case PreferPredicateTy::ScalarEpilogue:
9955       return CM_ScalarEpilogueAllowed;
9956     case PreferPredicateTy::PredicateElseScalarEpilogue:
9957       return CM_ScalarEpilogueNotNeededUsePredicate;
9958     case PreferPredicateTy::PredicateOrDontVectorize:
9959       return CM_ScalarEpilogueNotAllowedUsePredicate;
9960     };
9961   }
9962 
9963   // 3) If set, obey the hints
9964   switch (Hints.getPredicate()) {
9965   case LoopVectorizeHints::FK_Enabled:
9966     return CM_ScalarEpilogueNotNeededUsePredicate;
9967   case LoopVectorizeHints::FK_Disabled:
9968     return CM_ScalarEpilogueAllowed;
9969   };
9970 
9971   // 4) if the TTI hook indicates this is profitable, request predication.
9972   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9973                                        LVL.getLAI()))
9974     return CM_ScalarEpilogueNotNeededUsePredicate;
9975 
9976   return CM_ScalarEpilogueAllowed;
9977 }
9978 
9979 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9980   // If Values have been set for this Def return the one relevant for \p Part.
9981   if (hasVectorValue(Def, Part))
9982     return Data.PerPartOutput[Def][Part];
9983 
9984   if (!hasScalarValue(Def, {Part, 0})) {
9985     Value *IRV = Def->getLiveInIRValue();
9986     Value *B = ILV->getBroadcastInstrs(IRV);
9987     set(Def, B, Part);
9988     return B;
9989   }
9990 
9991   Value *ScalarValue = get(Def, {Part, 0});
9992   // If we aren't vectorizing, we can just copy the scalar map values over
9993   // to the vector map.
9994   if (VF.isScalar()) {
9995     set(Def, ScalarValue, Part);
9996     return ScalarValue;
9997   }
9998 
9999   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10000   bool IsUniform = RepR && RepR->isUniform();
10001 
10002   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10003   // Check if there is a scalar value for the selected lane.
10004   if (!hasScalarValue(Def, {Part, LastLane})) {
10005     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10006     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10007            "unexpected recipe found to be invariant");
10008     IsUniform = true;
10009     LastLane = 0;
10010   }
10011 
10012   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10013   // Set the insert point after the last scalarized instruction or after the
10014   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10015   // will directly follow the scalar definitions.
10016   auto OldIP = Builder.saveIP();
10017   auto NewIP =
10018       isa<PHINode>(LastInst)
10019           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10020           : std::next(BasicBlock::iterator(LastInst));
10021   Builder.SetInsertPoint(&*NewIP);
10022 
10023   // However, if we are vectorizing, we need to construct the vector values.
10024   // If the value is known to be uniform after vectorization, we can just
10025   // broadcast the scalar value corresponding to lane zero for each unroll
10026   // iteration. Otherwise, we construct the vector values using
10027   // insertelement instructions. Since the resulting vectors are stored in
10028   // State, we will only generate the insertelements once.
10029   Value *VectorValue = nullptr;
10030   if (IsUniform) {
10031     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10032     set(Def, VectorValue, Part);
10033   } else {
10034     // Initialize packing with insertelements to start from undef.
10035     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10036     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10037     set(Def, Undef, Part);
10038     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10039       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10040     VectorValue = get(Def, Part);
10041   }
10042   Builder.restoreIP(OldIP);
10043   return VectorValue;
10044 }
10045 
10046 // Process the loop in the VPlan-native vectorization path. This path builds
10047 // VPlan upfront in the vectorization pipeline, which allows to apply
10048 // VPlan-to-VPlan transformations from the very beginning without modifying the
10049 // input LLVM IR.
10050 static bool processLoopInVPlanNativePath(
10051     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10052     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10053     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10054     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10055     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10056     LoopVectorizationRequirements &Requirements) {
10057 
10058   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10059     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10060     return false;
10061   }
10062   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10063   Function *F = L->getHeader()->getParent();
10064   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10065 
10066   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10067       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10068 
10069   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10070                                 &Hints, IAI);
10071   // Use the planner for outer loop vectorization.
10072   // TODO: CM is not used at this point inside the planner. Turn CM into an
10073   // optional argument if we don't need it in the future.
10074   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10075                                Requirements, ORE);
10076 
10077   // Get user vectorization factor.
10078   ElementCount UserVF = Hints.getWidth();
10079 
10080   CM.collectElementTypesForWidening();
10081 
10082   // Plan how to best vectorize, return the best VF and its cost.
10083   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10084 
10085   // If we are stress testing VPlan builds, do not attempt to generate vector
10086   // code. Masked vector code generation support will follow soon.
10087   // Also, do not attempt to vectorize if no vector code will be produced.
10088   if (VPlanBuildStressTest || EnableVPlanPredication ||
10089       VectorizationFactor::Disabled() == VF)
10090     return false;
10091 
10092   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10093 
10094   {
10095     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10096                              F->getParent()->getDataLayout());
10097     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10098                            &CM, BFI, PSI, Checks);
10099     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10100                       << L->getHeader()->getParent()->getName() << "\"\n");
10101     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10102   }
10103 
10104   // Mark the loop as already vectorized to avoid vectorizing again.
10105   Hints.setAlreadyVectorized();
10106   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10107   return true;
10108 }
10109 
10110 // Emit a remark if there are stores to floats that required a floating point
10111 // extension. If the vectorized loop was generated with floating point there
10112 // will be a performance penalty from the conversion overhead and the change in
10113 // the vector width.
10114 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10115   SmallVector<Instruction *, 4> Worklist;
10116   for (BasicBlock *BB : L->getBlocks()) {
10117     for (Instruction &Inst : *BB) {
10118       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10119         if (S->getValueOperand()->getType()->isFloatTy())
10120           Worklist.push_back(S);
10121       }
10122     }
10123   }
10124 
10125   // Traverse the floating point stores upwards searching, for floating point
10126   // conversions.
10127   SmallPtrSet<const Instruction *, 4> Visited;
10128   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10129   while (!Worklist.empty()) {
10130     auto *I = Worklist.pop_back_val();
10131     if (!L->contains(I))
10132       continue;
10133     if (!Visited.insert(I).second)
10134       continue;
10135 
10136     // Emit a remark if the floating point store required a floating
10137     // point conversion.
10138     // TODO: More work could be done to identify the root cause such as a
10139     // constant or a function return type and point the user to it.
10140     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10141       ORE->emit([&]() {
10142         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10143                                           I->getDebugLoc(), L->getHeader())
10144                << "floating point conversion changes vector width. "
10145                << "Mixed floating point precision requires an up/down "
10146                << "cast that will negatively impact performance.";
10147       });
10148 
10149     for (Use &Op : I->operands())
10150       if (auto *OpI = dyn_cast<Instruction>(Op))
10151         Worklist.push_back(OpI);
10152   }
10153 }
10154 
10155 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10156     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10157                                !EnableLoopInterleaving),
10158       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10159                               !EnableLoopVectorization) {}
10160 
10161 bool LoopVectorizePass::processLoop(Loop *L) {
10162   assert((EnableVPlanNativePath || L->isInnermost()) &&
10163          "VPlan-native path is not enabled. Only process inner loops.");
10164 
10165 #ifndef NDEBUG
10166   const std::string DebugLocStr = getDebugLocString(L);
10167 #endif /* NDEBUG */
10168 
10169   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10170                     << L->getHeader()->getParent()->getName() << "\" from "
10171                     << DebugLocStr << "\n");
10172 
10173   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10174 
10175   LLVM_DEBUG(
10176       dbgs() << "LV: Loop hints:"
10177              << " force="
10178              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10179                      ? "disabled"
10180                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10181                             ? "enabled"
10182                             : "?"))
10183              << " width=" << Hints.getWidth()
10184              << " interleave=" << Hints.getInterleave() << "\n");
10185 
10186   // Function containing loop
10187   Function *F = L->getHeader()->getParent();
10188 
10189   // Looking at the diagnostic output is the only way to determine if a loop
10190   // was vectorized (other than looking at the IR or machine code), so it
10191   // is important to generate an optimization remark for each loop. Most of
10192   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10193   // generated as OptimizationRemark and OptimizationRemarkMissed are
10194   // less verbose reporting vectorized loops and unvectorized loops that may
10195   // benefit from vectorization, respectively.
10196 
10197   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10198     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10199     return false;
10200   }
10201 
10202   PredicatedScalarEvolution PSE(*SE, *L);
10203 
10204   // Check if it is legal to vectorize the loop.
10205   LoopVectorizationRequirements Requirements;
10206   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10207                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10208   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10209     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10210     Hints.emitRemarkWithHints();
10211     return false;
10212   }
10213 
10214   // Check the function attributes and profiles to find out if this function
10215   // should be optimized for size.
10216   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10217       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10218 
10219   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10220   // here. They may require CFG and instruction level transformations before
10221   // even evaluating whether vectorization is profitable. Since we cannot modify
10222   // the incoming IR, we need to build VPlan upfront in the vectorization
10223   // pipeline.
10224   if (!L->isInnermost())
10225     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10226                                         ORE, BFI, PSI, Hints, Requirements);
10227 
10228   assert(L->isInnermost() && "Inner loop expected.");
10229 
10230   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10231   // count by optimizing for size, to minimize overheads.
10232   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10233   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10234     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10235                       << "This loop is worth vectorizing only if no scalar "
10236                       << "iteration overheads are incurred.");
10237     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10238       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10239     else {
10240       LLVM_DEBUG(dbgs() << "\n");
10241       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10242     }
10243   }
10244 
10245   // Check the function attributes to see if implicit floats are allowed.
10246   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10247   // an integer loop and the vector instructions selected are purely integer
10248   // vector instructions?
10249   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10250     reportVectorizationFailure(
10251         "Can't vectorize when the NoImplicitFloat attribute is used",
10252         "loop not vectorized due to NoImplicitFloat attribute",
10253         "NoImplicitFloat", ORE, L);
10254     Hints.emitRemarkWithHints();
10255     return false;
10256   }
10257 
10258   // Check if the target supports potentially unsafe FP vectorization.
10259   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10260   // for the target we're vectorizing for, to make sure none of the
10261   // additional fp-math flags can help.
10262   if (Hints.isPotentiallyUnsafe() &&
10263       TTI->isFPVectorizationPotentiallyUnsafe()) {
10264     reportVectorizationFailure(
10265         "Potentially unsafe FP op prevents vectorization",
10266         "loop not vectorized due to unsafe FP support.",
10267         "UnsafeFP", ORE, L);
10268     Hints.emitRemarkWithHints();
10269     return false;
10270   }
10271 
10272   bool AllowOrderedReductions;
10273   // If the flag is set, use that instead and override the TTI behaviour.
10274   if (ForceOrderedReductions.getNumOccurrences() > 0)
10275     AllowOrderedReductions = ForceOrderedReductions;
10276   else
10277     AllowOrderedReductions = TTI->enableOrderedReductions();
10278   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10279     ORE->emit([&]() {
10280       auto *ExactFPMathInst = Requirements.getExactFPInst();
10281       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10282                                                  ExactFPMathInst->getDebugLoc(),
10283                                                  ExactFPMathInst->getParent())
10284              << "loop not vectorized: cannot prove it is safe to reorder "
10285                 "floating-point operations";
10286     });
10287     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10288                          "reorder floating-point operations\n");
10289     Hints.emitRemarkWithHints();
10290     return false;
10291   }
10292 
10293   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10294   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10295 
10296   // If an override option has been passed in for interleaved accesses, use it.
10297   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10298     UseInterleaved = EnableInterleavedMemAccesses;
10299 
10300   // Analyze interleaved memory accesses.
10301   if (UseInterleaved) {
10302     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10303   }
10304 
10305   // Use the cost model.
10306   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10307                                 F, &Hints, IAI);
10308   CM.collectValuesToIgnore();
10309   CM.collectElementTypesForWidening();
10310 
10311   // Use the planner for vectorization.
10312   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10313                                Requirements, ORE);
10314 
10315   // Get user vectorization factor and interleave count.
10316   ElementCount UserVF = Hints.getWidth();
10317   unsigned UserIC = Hints.getInterleave();
10318 
10319   // Plan how to best vectorize, return the best VF and its cost.
10320   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10321 
10322   VectorizationFactor VF = VectorizationFactor::Disabled();
10323   unsigned IC = 1;
10324 
10325   if (MaybeVF) {
10326     VF = *MaybeVF;
10327     // Select the interleave count.
10328     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10329   }
10330 
10331   // Identify the diagnostic messages that should be produced.
10332   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10333   bool VectorizeLoop = true, InterleaveLoop = true;
10334   if (VF.Width.isScalar()) {
10335     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10336     VecDiagMsg = std::make_pair(
10337         "VectorizationNotBeneficial",
10338         "the cost-model indicates that vectorization is not beneficial");
10339     VectorizeLoop = false;
10340   }
10341 
10342   if (!MaybeVF && UserIC > 1) {
10343     // Tell the user interleaving was avoided up-front, despite being explicitly
10344     // requested.
10345     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10346                          "interleaving should be avoided up front\n");
10347     IntDiagMsg = std::make_pair(
10348         "InterleavingAvoided",
10349         "Ignoring UserIC, because interleaving was avoided up front");
10350     InterleaveLoop = false;
10351   } else if (IC == 1 && UserIC <= 1) {
10352     // Tell the user interleaving is not beneficial.
10353     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10354     IntDiagMsg = std::make_pair(
10355         "InterleavingNotBeneficial",
10356         "the cost-model indicates that interleaving is not beneficial");
10357     InterleaveLoop = false;
10358     if (UserIC == 1) {
10359       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10360       IntDiagMsg.second +=
10361           " and is explicitly disabled or interleave count is set to 1";
10362     }
10363   } else if (IC > 1 && UserIC == 1) {
10364     // Tell the user interleaving is beneficial, but it explicitly disabled.
10365     LLVM_DEBUG(
10366         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10367     IntDiagMsg = std::make_pair(
10368         "InterleavingBeneficialButDisabled",
10369         "the cost-model indicates that interleaving is beneficial "
10370         "but is explicitly disabled or interleave count is set to 1");
10371     InterleaveLoop = false;
10372   }
10373 
10374   // Override IC if user provided an interleave count.
10375   IC = UserIC > 0 ? UserIC : IC;
10376 
10377   // Emit diagnostic messages, if any.
10378   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10379   if (!VectorizeLoop && !InterleaveLoop) {
10380     // Do not vectorize or interleaving the loop.
10381     ORE->emit([&]() {
10382       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10383                                       L->getStartLoc(), L->getHeader())
10384              << VecDiagMsg.second;
10385     });
10386     ORE->emit([&]() {
10387       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10388                                       L->getStartLoc(), L->getHeader())
10389              << IntDiagMsg.second;
10390     });
10391     return false;
10392   } else if (!VectorizeLoop && InterleaveLoop) {
10393     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10394     ORE->emit([&]() {
10395       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10396                                         L->getStartLoc(), L->getHeader())
10397              << VecDiagMsg.second;
10398     });
10399   } else if (VectorizeLoop && !InterleaveLoop) {
10400     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10401                       << ") in " << DebugLocStr << '\n');
10402     ORE->emit([&]() {
10403       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10404                                         L->getStartLoc(), L->getHeader())
10405              << IntDiagMsg.second;
10406     });
10407   } else if (VectorizeLoop && InterleaveLoop) {
10408     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10409                       << ") in " << DebugLocStr << '\n');
10410     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10411   }
10412 
10413   bool DisableRuntimeUnroll = false;
10414   MDNode *OrigLoopID = L->getLoopID();
10415   {
10416     // Optimistically generate runtime checks. Drop them if they turn out to not
10417     // be profitable. Limit the scope of Checks, so the cleanup happens
10418     // immediately after vector codegeneration is done.
10419     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10420                              F->getParent()->getDataLayout());
10421     if (!VF.Width.isScalar() || IC > 1)
10422       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10423     VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10424 
10425     using namespace ore;
10426     if (!VectorizeLoop) {
10427       assert(IC > 1 && "interleave count should not be 1 or 0");
10428       // If we decided that it is not legal to vectorize the loop, then
10429       // interleave it.
10430       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10431                                  &CM, BFI, PSI, Checks);
10432       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10433 
10434       ORE->emit([&]() {
10435         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10436                                   L->getHeader())
10437                << "interleaved loop (interleaved count: "
10438                << NV("InterleaveCount", IC) << ")";
10439       });
10440     } else {
10441       // If we decided that it is *legal* to vectorize the loop, then do it.
10442 
10443       // Consider vectorizing the epilogue too if it's profitable.
10444       VectorizationFactor EpilogueVF =
10445           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10446       if (EpilogueVF.Width.isVector()) {
10447 
10448         // The first pass vectorizes the main loop and creates a scalar epilogue
10449         // to be vectorized by executing the plan (potentially with a different
10450         // factor) again shortly afterwards.
10451         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10452         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10453                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10454 
10455         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestPlan, MainILV, DT);
10456         ++LoopsVectorized;
10457 
10458         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10459         formLCSSARecursively(*L, *DT, LI, SE);
10460 
10461         // Second pass vectorizes the epilogue and adjusts the control flow
10462         // edges from the first pass.
10463         EPI.MainLoopVF = EPI.EpilogueVF;
10464         EPI.MainLoopUF = EPI.EpilogueUF;
10465         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10466                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10467                                                  Checks);
10468         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestPlan, EpilogILV,
10469                         DT);
10470         ++LoopsEpilogueVectorized;
10471 
10472         if (!MainILV.areSafetyChecksAdded())
10473           DisableRuntimeUnroll = true;
10474       } else {
10475         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10476                                &LVL, &CM, BFI, PSI, Checks);
10477         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10478         ++LoopsVectorized;
10479 
10480         // Add metadata to disable runtime unrolling a scalar loop when there
10481         // are no runtime checks about strides and memory. A scalar loop that is
10482         // rarely used is not worth unrolling.
10483         if (!LB.areSafetyChecksAdded())
10484           DisableRuntimeUnroll = true;
10485       }
10486       // Report the vectorization decision.
10487       ORE->emit([&]() {
10488         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10489                                   L->getHeader())
10490                << "vectorized loop (vectorization width: "
10491                << NV("VectorizationFactor", VF.Width)
10492                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10493       });
10494     }
10495 
10496     if (ORE->allowExtraAnalysis(LV_NAME))
10497       checkMixedPrecision(L, ORE);
10498   }
10499 
10500   Optional<MDNode *> RemainderLoopID =
10501       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10502                                       LLVMLoopVectorizeFollowupEpilogue});
10503   if (RemainderLoopID.hasValue()) {
10504     L->setLoopID(RemainderLoopID.getValue());
10505   } else {
10506     if (DisableRuntimeUnroll)
10507       AddRuntimeUnrollDisableMetaData(L);
10508 
10509     // Mark the loop as already vectorized to avoid vectorizing again.
10510     Hints.setAlreadyVectorized();
10511   }
10512 
10513   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10514   return true;
10515 }
10516 
10517 LoopVectorizeResult LoopVectorizePass::runImpl(
10518     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10519     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10520     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10521     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10522     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10523   SE = &SE_;
10524   LI = &LI_;
10525   TTI = &TTI_;
10526   DT = &DT_;
10527   BFI = &BFI_;
10528   TLI = TLI_;
10529   AA = &AA_;
10530   AC = &AC_;
10531   GetLAA = &GetLAA_;
10532   DB = &DB_;
10533   ORE = &ORE_;
10534   PSI = PSI_;
10535 
10536   // Don't attempt if
10537   // 1. the target claims to have no vector registers, and
10538   // 2. interleaving won't help ILP.
10539   //
10540   // The second condition is necessary because, even if the target has no
10541   // vector registers, loop vectorization may still enable scalar
10542   // interleaving.
10543   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10544       TTI->getMaxInterleaveFactor(1) < 2)
10545     return LoopVectorizeResult(false, false);
10546 
10547   bool Changed = false, CFGChanged = false;
10548 
10549   // The vectorizer requires loops to be in simplified form.
10550   // Since simplification may add new inner loops, it has to run before the
10551   // legality and profitability checks. This means running the loop vectorizer
10552   // will simplify all loops, regardless of whether anything end up being
10553   // vectorized.
10554   for (auto &L : *LI)
10555     Changed |= CFGChanged |=
10556         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10557 
10558   // Build up a worklist of inner-loops to vectorize. This is necessary as
10559   // the act of vectorizing or partially unrolling a loop creates new loops
10560   // and can invalidate iterators across the loops.
10561   SmallVector<Loop *, 8> Worklist;
10562 
10563   for (Loop *L : *LI)
10564     collectSupportedLoops(*L, LI, ORE, Worklist);
10565 
10566   LoopsAnalyzed += Worklist.size();
10567 
10568   // Now walk the identified inner loops.
10569   while (!Worklist.empty()) {
10570     Loop *L = Worklist.pop_back_val();
10571 
10572     // For the inner loops we actually process, form LCSSA to simplify the
10573     // transform.
10574     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10575 
10576     Changed |= CFGChanged |= processLoop(L);
10577   }
10578 
10579   // Process each loop nest in the function.
10580   return LoopVectorizeResult(Changed, CFGChanged);
10581 }
10582 
10583 PreservedAnalyses LoopVectorizePass::run(Function &F,
10584                                          FunctionAnalysisManager &AM) {
10585     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10586     auto &LI = AM.getResult<LoopAnalysis>(F);
10587     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10588     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10589     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10590     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10591     auto &AA = AM.getResult<AAManager>(F);
10592     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10593     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10594     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10595 
10596     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10597     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10598         [&](Loop &L) -> const LoopAccessInfo & {
10599       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10600                                         TLI, TTI, nullptr, nullptr, nullptr};
10601       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10602     };
10603     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10604     ProfileSummaryInfo *PSI =
10605         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10606     LoopVectorizeResult Result =
10607         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10608     if (!Result.MadeAnyChange)
10609       return PreservedAnalyses::all();
10610     PreservedAnalyses PA;
10611 
10612     // We currently do not preserve loopinfo/dominator analyses with outer loop
10613     // vectorization. Until this is addressed, mark these analyses as preserved
10614     // only for non-VPlan-native path.
10615     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10616     if (!EnableVPlanNativePath) {
10617       PA.preserve<LoopAnalysis>();
10618       PA.preserve<DominatorTreeAnalysis>();
10619     }
10620     if (!Result.MadeCFGChange)
10621       PA.preserveSet<CFGAnalyses>();
10622     return PA;
10623 }
10624 
10625 void LoopVectorizePass::printPipeline(
10626     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10627   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10628       OS, MapClassName2PassName);
10629 
10630   OS << "<";
10631   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10632   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10633   OS << ">";
10634 }
10635