1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/BlockFrequencyInfo.h" 58 #include "llvm/Analysis/LoopInfo.h" 59 #include "llvm/Analysis/LoopIterator.h" 60 #include "llvm/Analysis/LoopPass.h" 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/Analysis/ScalarEvolutionExpander.h" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Analysis/TargetTransformInfo.h" 65 #include "llvm/Analysis/ValueTracking.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfo.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/LLVMContext.h" 77 #include "llvm/IR/Module.h" 78 #include "llvm/IR/PatternMatch.h" 79 #include "llvm/IR/Type.h" 80 #include "llvm/IR/Value.h" 81 #include "llvm/IR/ValueHandle.h" 82 #include "llvm/IR/Verifier.h" 83 #include "llvm/Pass.h" 84 #include "llvm/Support/BranchProbability.h" 85 #include "llvm/Support/CommandLine.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Scalar.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/VectorUtils.h" 92 #include <algorithm> 93 #include <map> 94 #include <tuple> 95 96 using namespace llvm; 97 using namespace llvm::PatternMatch; 98 99 #define LV_NAME "loop-vectorize" 100 #define DEBUG_TYPE LV_NAME 101 102 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 103 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 104 105 static cl::opt<unsigned> 106 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 107 cl::desc("Sets the SIMD width. Zero is autoselect.")); 108 109 static cl::opt<unsigned> 110 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 111 cl::desc("Sets the vectorization unroll count. " 112 "Zero is autoselect.")); 113 114 static cl::opt<bool> 115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 116 cl::desc("Enable if-conversion during vectorization.")); 117 118 /// We don't vectorize loops with a known constant trip count below this number. 119 static cl::opt<unsigned> 120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 121 cl::Hidden, 122 cl::desc("Don't vectorize loops with a constant " 123 "trip count that is smaller than this " 124 "value.")); 125 126 /// This enables versioning on the strides of symbolically striding memory 127 /// accesses in code like the following. 128 /// for (i = 0; i < N; ++i) 129 /// A[i * Stride1] += B[i * Stride2] ... 130 /// 131 /// Will be roughly translated to 132 /// if (Stride1 == 1 && Stride2 == 1) { 133 /// for (i = 0; i < N; i+=4) 134 /// A[i:i+3] += ... 135 /// } else 136 /// ... 137 static cl::opt<bool> EnableMemAccessVersioning( 138 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 139 cl::desc("Enable symblic stride memory access versioning")); 140 141 /// We don't unroll loops with a known constant trip count below this number. 142 static const unsigned TinyTripCountUnrollThreshold = 128; 143 144 /// When performing memory disambiguation checks at runtime do not make more 145 /// than this number of comparisons. 146 static const unsigned RuntimeMemoryCheckThreshold = 8; 147 148 /// Maximum simd width. 149 static const unsigned MaxVectorWidth = 64; 150 151 static cl::opt<unsigned> ForceTargetNumScalarRegs( 152 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's number of scalar registers.")); 154 155 static cl::opt<unsigned> ForceTargetNumVectorRegs( 156 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's number of vector registers.")); 158 159 /// Maximum vectorization unroll count. 160 static const unsigned MaxUnrollFactor = 16; 161 162 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor( 163 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's max unroll factor for scalar " 165 "loops.")); 166 167 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor( 168 "force-target-max-vector-unroll", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's max unroll factor for " 170 "vectorized loops.")); 171 172 static cl::opt<unsigned> ForceTargetInstructionCost( 173 "force-target-instruction-cost", cl::init(0), cl::Hidden, 174 cl::desc("A flag that overrides the target's expected cost for " 175 "an instruction to a single constant value. Mostly " 176 "useful for getting consistent testing.")); 177 178 static cl::opt<unsigned> SmallLoopCost( 179 "small-loop-cost", cl::init(20), cl::Hidden, 180 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 181 182 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 183 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 184 cl::desc("Enable the use of the block frequency analysis to access PGO " 185 "heuristics minimizing code growth in cold regions and being more " 186 "aggressive in hot regions.")); 187 188 // Runtime unroll loops for load/store throughput. 189 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 190 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 191 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 192 193 /// The number of stores in a loop that are allowed to need predication. 194 static cl::opt<unsigned> NumberOfStoresToPredicate( 195 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 196 cl::desc("Max number of stores to be predicated behind an if.")); 197 198 static cl::opt<bool> EnableIndVarRegisterHeur( 199 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 200 cl::desc("Count the induction variable only once when unrolling")); 201 202 static cl::opt<bool> EnableCondStoresVectorization( 203 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 204 cl::desc("Enable if predication of stores during vectorization.")); 205 206 namespace { 207 208 // Forward declarations. 209 class LoopVectorizationLegality; 210 class LoopVectorizationCostModel; 211 212 /// InnerLoopVectorizer vectorizes loops which contain only one basic 213 /// block to a specified vectorization factor (VF). 214 /// This class performs the widening of scalars into vectors, or multiple 215 /// scalars. This class also implements the following features: 216 /// * It inserts an epilogue loop for handling loops that don't have iteration 217 /// counts that are known to be a multiple of the vectorization factor. 218 /// * It handles the code generation for reduction variables. 219 /// * Scalarization (implementation using scalars) of un-vectorizable 220 /// instructions. 221 /// InnerLoopVectorizer does not perform any vectorization-legality 222 /// checks, and relies on the caller to check for the different legality 223 /// aspects. The InnerLoopVectorizer relies on the 224 /// LoopVectorizationLegality class to provide information about the induction 225 /// and reduction variables that were found to a given vectorization factor. 226 class InnerLoopVectorizer { 227 public: 228 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 229 DominatorTree *DT, const DataLayout *DL, 230 const TargetLibraryInfo *TLI, unsigned VecWidth, 231 unsigned UnrollFactor) 232 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 233 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 234 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 235 Legal(nullptr) {} 236 237 // Perform the actual loop widening (vectorization). 238 void vectorize(LoopVectorizationLegality *L) { 239 Legal = L; 240 // Create a new empty loop. Unlink the old loop and connect the new one. 241 createEmptyLoop(); 242 // Widen each instruction in the old loop to a new one in the new loop. 243 // Use the Legality module to find the induction and reduction variables. 244 vectorizeLoop(); 245 // Register the new loop and update the analysis passes. 246 updateAnalysis(); 247 } 248 249 virtual ~InnerLoopVectorizer() {} 250 251 protected: 252 /// A small list of PHINodes. 253 typedef SmallVector<PHINode*, 4> PhiVector; 254 /// When we unroll loops we have multiple vector values for each scalar. 255 /// This data structure holds the unrolled and vectorized values that 256 /// originated from one scalar instruction. 257 typedef SmallVector<Value*, 2> VectorParts; 258 259 // When we if-convert we need create edge masks. We have to cache values so 260 // that we don't end up with exponential recursion/IR. 261 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 262 VectorParts> EdgeMaskCache; 263 264 /// \brief Add code that checks at runtime if the accessed arrays overlap. 265 /// 266 /// Returns a pair of instructions where the first element is the first 267 /// instruction generated in possibly a sequence of instructions and the 268 /// second value is the final comparator value or NULL if no check is needed. 269 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 270 271 /// \brief Add checks for strides that where assumed to be 1. 272 /// 273 /// Returns the last check instruction and the first check instruction in the 274 /// pair as (first, last). 275 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 276 277 /// Create an empty loop, based on the loop ranges of the old loop. 278 void createEmptyLoop(); 279 /// Copy and widen the instructions from the old loop. 280 virtual void vectorizeLoop(); 281 282 /// \brief The Loop exit block may have single value PHI nodes where the 283 /// incoming value is 'Undef'. While vectorizing we only handled real values 284 /// that were defined inside the loop. Here we fix the 'undef case'. 285 /// See PR14725. 286 void fixLCSSAPHIs(); 287 288 /// A helper function that computes the predicate of the block BB, assuming 289 /// that the header block of the loop is set to True. It returns the *entry* 290 /// mask for the block BB. 291 VectorParts createBlockInMask(BasicBlock *BB); 292 /// A helper function that computes the predicate of the edge between SRC 293 /// and DST. 294 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 295 296 /// A helper function to vectorize a single BB within the innermost loop. 297 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 298 299 /// Vectorize a single PHINode in a block. This method handles the induction 300 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 301 /// arbitrary length vectors. 302 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 303 unsigned UF, unsigned VF, PhiVector *PV); 304 305 /// Insert the new loop to the loop hierarchy and pass manager 306 /// and update the analysis passes. 307 void updateAnalysis(); 308 309 /// This instruction is un-vectorizable. Implement it as a sequence 310 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 311 /// scalarized instruction behind an if block predicated on the control 312 /// dependence of the instruction. 313 virtual void scalarizeInstruction(Instruction *Instr, 314 bool IfPredicateStore=false); 315 316 /// Vectorize Load and Store instructions, 317 virtual void vectorizeMemoryInstruction(Instruction *Instr); 318 319 /// Create a broadcast instruction. This method generates a broadcast 320 /// instruction (shuffle) for loop invariant values and for the induction 321 /// value. If this is the induction variable then we extend it to N, N+1, ... 322 /// this is needed because each iteration in the loop corresponds to a SIMD 323 /// element. 324 virtual Value *getBroadcastInstrs(Value *V); 325 326 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 327 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 328 /// The sequence starts at StartIndex. 329 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 330 331 /// When we go over instructions in the basic block we rely on previous 332 /// values within the current basic block or on loop invariant values. 333 /// When we widen (vectorize) values we place them in the map. If the values 334 /// are not within the map, they have to be loop invariant, so we simply 335 /// broadcast them into a vector. 336 VectorParts &getVectorValue(Value *V); 337 338 /// Generate a shuffle sequence that will reverse the vector Vec. 339 virtual Value *reverseVector(Value *Vec); 340 341 /// This is a helper class that holds the vectorizer state. It maps scalar 342 /// instructions to vector instructions. When the code is 'unrolled' then 343 /// then a single scalar value is mapped to multiple vector parts. The parts 344 /// are stored in the VectorPart type. 345 struct ValueMap { 346 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 347 /// are mapped. 348 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 349 350 /// \return True if 'Key' is saved in the Value Map. 351 bool has(Value *Key) const { return MapStorage.count(Key); } 352 353 /// Initializes a new entry in the map. Sets all of the vector parts to the 354 /// save value in 'Val'. 355 /// \return A reference to a vector with splat values. 356 VectorParts &splat(Value *Key, Value *Val) { 357 VectorParts &Entry = MapStorage[Key]; 358 Entry.assign(UF, Val); 359 return Entry; 360 } 361 362 ///\return A reference to the value that is stored at 'Key'. 363 VectorParts &get(Value *Key) { 364 VectorParts &Entry = MapStorage[Key]; 365 if (Entry.empty()) 366 Entry.resize(UF); 367 assert(Entry.size() == UF); 368 return Entry; 369 } 370 371 private: 372 /// The unroll factor. Each entry in the map stores this number of vector 373 /// elements. 374 unsigned UF; 375 376 /// Map storage. We use std::map and not DenseMap because insertions to a 377 /// dense map invalidates its iterators. 378 std::map<Value *, VectorParts> MapStorage; 379 }; 380 381 /// The original loop. 382 Loop *OrigLoop; 383 /// Scev analysis to use. 384 ScalarEvolution *SE; 385 /// Loop Info. 386 LoopInfo *LI; 387 /// Dominator Tree. 388 DominatorTree *DT; 389 /// Data Layout. 390 const DataLayout *DL; 391 /// Target Library Info. 392 const TargetLibraryInfo *TLI; 393 394 /// The vectorization SIMD factor to use. Each vector will have this many 395 /// vector elements. 396 unsigned VF; 397 398 protected: 399 /// The vectorization unroll factor to use. Each scalar is vectorized to this 400 /// many different vector instructions. 401 unsigned UF; 402 403 /// The builder that we use 404 IRBuilder<> Builder; 405 406 // --- Vectorization state --- 407 408 /// The vector-loop preheader. 409 BasicBlock *LoopVectorPreHeader; 410 /// The scalar-loop preheader. 411 BasicBlock *LoopScalarPreHeader; 412 /// Middle Block between the vector and the scalar. 413 BasicBlock *LoopMiddleBlock; 414 ///The ExitBlock of the scalar loop. 415 BasicBlock *LoopExitBlock; 416 ///The vector loop body. 417 SmallVector<BasicBlock *, 4> LoopVectorBody; 418 ///The scalar loop body. 419 BasicBlock *LoopScalarBody; 420 /// A list of all bypass blocks. The first block is the entry of the loop. 421 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 422 423 /// The new Induction variable which was added to the new block. 424 PHINode *Induction; 425 /// The induction variable of the old basic block. 426 PHINode *OldInduction; 427 /// Holds the extended (to the widest induction type) start index. 428 Value *ExtendedIdx; 429 /// Maps scalars to widened vectors. 430 ValueMap WidenMap; 431 EdgeMaskCache MaskCache; 432 433 LoopVectorizationLegality *Legal; 434 }; 435 436 class InnerLoopUnroller : public InnerLoopVectorizer { 437 public: 438 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 439 DominatorTree *DT, const DataLayout *DL, 440 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 441 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 442 443 private: 444 void scalarizeInstruction(Instruction *Instr, 445 bool IfPredicateStore = false) override; 446 void vectorizeMemoryInstruction(Instruction *Instr) override; 447 Value *getBroadcastInstrs(Value *V) override; 448 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 449 Value *reverseVector(Value *Vec) override; 450 }; 451 452 /// \brief Look for a meaningful debug location on the instruction or it's 453 /// operands. 454 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 455 if (!I) 456 return I; 457 458 DebugLoc Empty; 459 if (I->getDebugLoc() != Empty) 460 return I; 461 462 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 463 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 464 if (OpInst->getDebugLoc() != Empty) 465 return OpInst; 466 } 467 468 return I; 469 } 470 471 /// \brief Set the debug location in the builder using the debug location in the 472 /// instruction. 473 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 474 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 475 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 476 else 477 B.SetCurrentDebugLocation(DebugLoc()); 478 } 479 480 #ifndef NDEBUG 481 /// \return string containing a file name and a line # for the given loop. 482 static std::string getDebugLocString(const Loop *L) { 483 std::string Result; 484 if (L) { 485 raw_string_ostream OS(Result); 486 const DebugLoc LoopDbgLoc = L->getStartLoc(); 487 if (!LoopDbgLoc.isUnknown()) 488 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 489 else 490 // Just print the module name. 491 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 492 OS.flush(); 493 } 494 return Result; 495 } 496 #endif 497 498 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 499 /// to what vectorization factor. 500 /// This class does not look at the profitability of vectorization, only the 501 /// legality. This class has two main kinds of checks: 502 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 503 /// will change the order of memory accesses in a way that will change the 504 /// correctness of the program. 505 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 506 /// checks for a number of different conditions, such as the availability of a 507 /// single induction variable, that all types are supported and vectorize-able, 508 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 509 /// This class is also used by InnerLoopVectorizer for identifying 510 /// induction variable and the different reduction variables. 511 class LoopVectorizationLegality { 512 public: 513 unsigned NumLoads; 514 unsigned NumStores; 515 unsigned NumPredStores; 516 517 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 518 DominatorTree *DT, TargetLibraryInfo *TLI) 519 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 520 DT(DT), TLI(TLI), Induction(nullptr), WidestIndTy(nullptr), 521 HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {} 522 523 /// This enum represents the kinds of reductions that we support. 524 enum ReductionKind { 525 RK_NoReduction, ///< Not a reduction. 526 RK_IntegerAdd, ///< Sum of integers. 527 RK_IntegerMult, ///< Product of integers. 528 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 529 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 530 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 531 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 532 RK_FloatAdd, ///< Sum of floats. 533 RK_FloatMult, ///< Product of floats. 534 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 535 }; 536 537 /// This enum represents the kinds of inductions that we support. 538 enum InductionKind { 539 IK_NoInduction, ///< Not an induction variable. 540 IK_IntInduction, ///< Integer induction variable. Step = 1. 541 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 542 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 543 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 544 }; 545 546 // This enum represents the kind of minmax reduction. 547 enum MinMaxReductionKind { 548 MRK_Invalid, 549 MRK_UIntMin, 550 MRK_UIntMax, 551 MRK_SIntMin, 552 MRK_SIntMax, 553 MRK_FloatMin, 554 MRK_FloatMax 555 }; 556 557 /// This struct holds information about reduction variables. 558 struct ReductionDescriptor { 559 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 560 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 561 562 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 563 MinMaxReductionKind MK) 564 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 565 566 // The starting value of the reduction. 567 // It does not have to be zero! 568 TrackingVH<Value> StartValue; 569 // The instruction who's value is used outside the loop. 570 Instruction *LoopExitInstr; 571 // The kind of the reduction. 572 ReductionKind Kind; 573 // If this a min/max reduction the kind of reduction. 574 MinMaxReductionKind MinMaxKind; 575 }; 576 577 /// This POD struct holds information about a potential reduction operation. 578 struct ReductionInstDesc { 579 ReductionInstDesc(bool IsRedux, Instruction *I) : 580 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 581 582 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 583 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 584 585 // Is this instruction a reduction candidate. 586 bool IsReduction; 587 // The last instruction in a min/max pattern (select of the select(icmp()) 588 // pattern), or the current reduction instruction otherwise. 589 Instruction *PatternLastInst; 590 // If this is a min/max pattern the comparison predicate. 591 MinMaxReductionKind MinMaxKind; 592 }; 593 594 /// This struct holds information about the memory runtime legality 595 /// check that a group of pointers do not overlap. 596 struct RuntimePointerCheck { 597 RuntimePointerCheck() : Need(false) {} 598 599 /// Reset the state of the pointer runtime information. 600 void reset() { 601 Need = false; 602 Pointers.clear(); 603 Starts.clear(); 604 Ends.clear(); 605 IsWritePtr.clear(); 606 DependencySetId.clear(); 607 } 608 609 /// Insert a pointer and calculate the start and end SCEVs. 610 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 611 unsigned DepSetId, ValueToValueMap &Strides); 612 613 /// This flag indicates if we need to add the runtime check. 614 bool Need; 615 /// Holds the pointers that we need to check. 616 SmallVector<TrackingVH<Value>, 2> Pointers; 617 /// Holds the pointer value at the beginning of the loop. 618 SmallVector<const SCEV*, 2> Starts; 619 /// Holds the pointer value at the end of the loop. 620 SmallVector<const SCEV*, 2> Ends; 621 /// Holds the information if this pointer is used for writing to memory. 622 SmallVector<bool, 2> IsWritePtr; 623 /// Holds the id of the set of pointers that could be dependent because of a 624 /// shared underlying object. 625 SmallVector<unsigned, 2> DependencySetId; 626 }; 627 628 /// A struct for saving information about induction variables. 629 struct InductionInfo { 630 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 631 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 632 /// Start value. 633 TrackingVH<Value> StartValue; 634 /// Induction kind. 635 InductionKind IK; 636 }; 637 638 /// ReductionList contains the reduction descriptors for all 639 /// of the reductions that were found in the loop. 640 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 641 642 /// InductionList saves induction variables and maps them to the 643 /// induction descriptor. 644 typedef MapVector<PHINode*, InductionInfo> InductionList; 645 646 /// Returns true if it is legal to vectorize this loop. 647 /// This does not mean that it is profitable to vectorize this 648 /// loop, only that it is legal to do so. 649 bool canVectorize(); 650 651 /// Returns the Induction variable. 652 PHINode *getInduction() { return Induction; } 653 654 /// Returns the reduction variables found in the loop. 655 ReductionList *getReductionVars() { return &Reductions; } 656 657 /// Returns the induction variables found in the loop. 658 InductionList *getInductionVars() { return &Inductions; } 659 660 /// Returns the widest induction type. 661 Type *getWidestInductionType() { return WidestIndTy; } 662 663 /// Returns True if V is an induction variable in this loop. 664 bool isInductionVariable(const Value *V); 665 666 /// Return true if the block BB needs to be predicated in order for the loop 667 /// to be vectorized. 668 bool blockNeedsPredication(BasicBlock *BB); 669 670 /// Check if this pointer is consecutive when vectorizing. This happens 671 /// when the last index of the GEP is the induction variable, or that the 672 /// pointer itself is an induction variable. 673 /// This check allows us to vectorize A[idx] into a wide load/store. 674 /// Returns: 675 /// 0 - Stride is unknown or non-consecutive. 676 /// 1 - Address is consecutive. 677 /// -1 - Address is consecutive, and decreasing. 678 int isConsecutivePtr(Value *Ptr); 679 680 /// Returns true if the value V is uniform within the loop. 681 bool isUniform(Value *V); 682 683 /// Returns true if this instruction will remain scalar after vectorization. 684 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 685 686 /// Returns the information that we collected about runtime memory check. 687 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 688 689 /// This function returns the identity element (or neutral element) for 690 /// the operation K. 691 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 692 693 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 694 695 bool hasStride(Value *V) { return StrideSet.count(V); } 696 bool mustCheckStrides() { return !StrideSet.empty(); } 697 SmallPtrSet<Value *, 8>::iterator strides_begin() { 698 return StrideSet.begin(); 699 } 700 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 701 702 private: 703 /// Check if a single basic block loop is vectorizable. 704 /// At this point we know that this is a loop with a constant trip count 705 /// and we only need to check individual instructions. 706 bool canVectorizeInstrs(); 707 708 /// When we vectorize loops we may change the order in which 709 /// we read and write from memory. This method checks if it is 710 /// legal to vectorize the code, considering only memory constrains. 711 /// Returns true if the loop is vectorizable 712 bool canVectorizeMemory(); 713 714 /// Return true if we can vectorize this loop using the IF-conversion 715 /// transformation. 716 bool canVectorizeWithIfConvert(); 717 718 /// Collect the variables that need to stay uniform after vectorization. 719 void collectLoopUniforms(); 720 721 /// Return true if all of the instructions in the block can be speculatively 722 /// executed. \p SafePtrs is a list of addresses that are known to be legal 723 /// and we know that we can read from them without segfault. 724 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 725 726 /// Returns True, if 'Phi' is the kind of reduction variable for type 727 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 728 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 729 /// Returns a struct describing if the instruction 'I' can be a reduction 730 /// variable of type 'Kind'. If the reduction is a min/max pattern of 731 /// select(icmp()) this function advances the instruction pointer 'I' from the 732 /// compare instruction to the select instruction and stores this pointer in 733 /// 'PatternLastInst' member of the returned struct. 734 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 735 ReductionInstDesc &Desc); 736 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 737 /// pattern corresponding to a min(X, Y) or max(X, Y). 738 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 739 ReductionInstDesc &Prev); 740 /// Returns the induction kind of Phi. This function may return NoInduction 741 /// if the PHI is not an induction variable. 742 InductionKind isInductionVariable(PHINode *Phi); 743 744 /// \brief Collect memory access with loop invariant strides. 745 /// 746 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 747 /// invariant. 748 void collectStridedAcccess(Value *LoadOrStoreInst); 749 750 /// The loop that we evaluate. 751 Loop *TheLoop; 752 /// Scev analysis. 753 ScalarEvolution *SE; 754 /// DataLayout analysis. 755 const DataLayout *DL; 756 /// Dominators. 757 DominatorTree *DT; 758 /// Target Library Info. 759 TargetLibraryInfo *TLI; 760 761 // --- vectorization state --- // 762 763 /// Holds the integer induction variable. This is the counter of the 764 /// loop. 765 PHINode *Induction; 766 /// Holds the reduction variables. 767 ReductionList Reductions; 768 /// Holds all of the induction variables that we found in the loop. 769 /// Notice that inductions don't need to start at zero and that induction 770 /// variables can be pointers. 771 InductionList Inductions; 772 /// Holds the widest induction type encountered. 773 Type *WidestIndTy; 774 775 /// Allowed outside users. This holds the reduction 776 /// vars which can be accessed from outside the loop. 777 SmallPtrSet<Value*, 4> AllowedExit; 778 /// This set holds the variables which are known to be uniform after 779 /// vectorization. 780 SmallPtrSet<Instruction*, 4> Uniforms; 781 /// We need to check that all of the pointers in this list are disjoint 782 /// at runtime. 783 RuntimePointerCheck PtrRtCheck; 784 /// Can we assume the absence of NaNs. 785 bool HasFunNoNaNAttr; 786 787 unsigned MaxSafeDepDistBytes; 788 789 ValueToValueMap Strides; 790 SmallPtrSet<Value *, 8> StrideSet; 791 }; 792 793 /// LoopVectorizationCostModel - estimates the expected speedups due to 794 /// vectorization. 795 /// In many cases vectorization is not profitable. This can happen because of 796 /// a number of reasons. In this class we mainly attempt to predict the 797 /// expected speedup/slowdowns due to the supported instruction set. We use the 798 /// TargetTransformInfo to query the different backends for the cost of 799 /// different operations. 800 class LoopVectorizationCostModel { 801 public: 802 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 803 LoopVectorizationLegality *Legal, 804 const TargetTransformInfo &TTI, 805 const DataLayout *DL, const TargetLibraryInfo *TLI) 806 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 807 808 /// Information about vectorization costs 809 struct VectorizationFactor { 810 unsigned Width; // Vector width with best cost 811 unsigned Cost; // Cost of the loop with that width 812 }; 813 /// \return The most profitable vectorization factor and the cost of that VF. 814 /// This method checks every power of two up to VF. If UserVF is not ZERO 815 /// then this vectorization factor will be selected if vectorization is 816 /// possible. 817 VectorizationFactor selectVectorizationFactor(bool OptForSize, 818 unsigned UserVF, 819 bool ForceVectorization); 820 821 /// \return The size (in bits) of the widest type in the code that 822 /// needs to be vectorized. We ignore values that remain scalar such as 823 /// 64 bit loop indices. 824 unsigned getWidestType(); 825 826 /// \return The most profitable unroll factor. 827 /// If UserUF is non-zero then this method finds the best unroll-factor 828 /// based on register pressure and other parameters. 829 /// VF and LoopCost are the selected vectorization factor and the cost of the 830 /// selected VF. 831 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 832 unsigned LoopCost); 833 834 /// \brief A struct that represents some properties of the register usage 835 /// of a loop. 836 struct RegisterUsage { 837 /// Holds the number of loop invariant values that are used in the loop. 838 unsigned LoopInvariantRegs; 839 /// Holds the maximum number of concurrent live intervals in the loop. 840 unsigned MaxLocalUsers; 841 /// Holds the number of instructions in the loop. 842 unsigned NumInstructions; 843 }; 844 845 /// \return information about the register usage of the loop. 846 RegisterUsage calculateRegisterUsage(); 847 848 private: 849 /// Returns the expected execution cost. The unit of the cost does 850 /// not matter because we use the 'cost' units to compare different 851 /// vector widths. The cost that is returned is *not* normalized by 852 /// the factor width. 853 unsigned expectedCost(unsigned VF); 854 855 /// Returns the execution time cost of an instruction for a given vector 856 /// width. Vector width of one means scalar. 857 unsigned getInstructionCost(Instruction *I, unsigned VF); 858 859 /// A helper function for converting Scalar types to vector types. 860 /// If the incoming type is void, we return void. If the VF is 1, we return 861 /// the scalar type. 862 static Type* ToVectorTy(Type *Scalar, unsigned VF); 863 864 /// Returns whether the instruction is a load or store and will be a emitted 865 /// as a vector operation. 866 bool isConsecutiveLoadOrStore(Instruction *I); 867 868 /// The loop that we evaluate. 869 Loop *TheLoop; 870 /// Scev analysis. 871 ScalarEvolution *SE; 872 /// Loop Info analysis. 873 LoopInfo *LI; 874 /// Vectorization legality. 875 LoopVectorizationLegality *Legal; 876 /// Vector target information. 877 const TargetTransformInfo &TTI; 878 /// Target data layout information. 879 const DataLayout *DL; 880 /// Target Library Info. 881 const TargetLibraryInfo *TLI; 882 }; 883 884 /// Utility class for getting and setting loop vectorizer hints in the form 885 /// of loop metadata. 886 class LoopVectorizeHints { 887 public: 888 enum ForceKind { 889 FK_Undefined = -1, ///< Not selected. 890 FK_Disabled = 0, ///< Forcing disabled. 891 FK_Enabled = 1, ///< Forcing enabled. 892 }; 893 894 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 895 : Width(VectorizationFactor), 896 Unroll(DisableUnrolling), 897 Force(FK_Undefined), 898 LoopID(L->getLoopID()) { 899 getHints(L); 900 // force-vector-unroll overrides DisableUnrolling. 901 if (VectorizationUnroll.getNumOccurrences() > 0) 902 Unroll = VectorizationUnroll; 903 904 DEBUG(if (DisableUnrolling && Unroll == 1) dbgs() 905 << "LV: Unrolling disabled by the pass manager\n"); 906 } 907 908 /// Return the loop vectorizer metadata prefix. 909 static StringRef Prefix() { return "llvm.vectorizer."; } 910 911 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const { 912 SmallVector<Value*, 2> Vals; 913 Vals.push_back(MDString::get(Context, Name)); 914 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 915 return MDNode::get(Context, Vals); 916 } 917 918 /// Mark the loop L as already vectorized by setting the width to 1. 919 void setAlreadyVectorized(Loop *L) { 920 LLVMContext &Context = L->getHeader()->getContext(); 921 922 Width = 1; 923 924 // Create a new loop id with one more operand for the already_vectorized 925 // hint. If the loop already has a loop id then copy the existing operands. 926 SmallVector<Value*, 4> Vals(1); 927 if (LoopID) 928 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 929 Vals.push_back(LoopID->getOperand(i)); 930 931 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 932 Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1)); 933 934 MDNode *NewLoopID = MDNode::get(Context, Vals); 935 // Set operand 0 to refer to the loop id itself. 936 NewLoopID->replaceOperandWith(0, NewLoopID); 937 938 L->setLoopID(NewLoopID); 939 if (LoopID) 940 LoopID->replaceAllUsesWith(NewLoopID); 941 942 LoopID = NewLoopID; 943 } 944 945 unsigned getWidth() const { return Width; } 946 unsigned getUnroll() const { return Unroll; } 947 enum ForceKind getForce() const { return Force; } 948 MDNode *getLoopID() const { return LoopID; } 949 950 private: 951 /// Find hints specified in the loop metadata. 952 void getHints(const Loop *L) { 953 if (!LoopID) 954 return; 955 956 // First operand should refer to the loop id itself. 957 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 958 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 959 960 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 961 const MDString *S = nullptr; 962 SmallVector<Value*, 4> Args; 963 964 // The expected hint is either a MDString or a MDNode with the first 965 // operand a MDString. 966 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 967 if (!MD || MD->getNumOperands() == 0) 968 continue; 969 S = dyn_cast<MDString>(MD->getOperand(0)); 970 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 971 Args.push_back(MD->getOperand(i)); 972 } else { 973 S = dyn_cast<MDString>(LoopID->getOperand(i)); 974 assert(Args.size() == 0 && "too many arguments for MDString"); 975 } 976 977 if (!S) 978 continue; 979 980 // Check if the hint starts with the vectorizer prefix. 981 StringRef Hint = S->getString(); 982 if (!Hint.startswith(Prefix())) 983 continue; 984 // Remove the prefix. 985 Hint = Hint.substr(Prefix().size(), StringRef::npos); 986 987 if (Args.size() == 1) 988 getHint(Hint, Args[0]); 989 } 990 } 991 992 // Check string hint with one operand. 993 void getHint(StringRef Hint, Value *Arg) { 994 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 995 if (!C) return; 996 unsigned Val = C->getZExtValue(); 997 998 if (Hint == "width") { 999 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 1000 Width = Val; 1001 else 1002 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 1003 } else if (Hint == "unroll") { 1004 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 1005 Unroll = Val; 1006 else 1007 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 1008 } else if (Hint == "enable") { 1009 if (C->getBitWidth() == 1) 1010 Force = Val == 1 ? LoopVectorizeHints::FK_Enabled 1011 : LoopVectorizeHints::FK_Disabled; 1012 else 1013 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n"); 1014 } else { 1015 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 1016 } 1017 } 1018 1019 /// Vectorization width. 1020 unsigned Width; 1021 /// Vectorization unroll factor. 1022 unsigned Unroll; 1023 /// Vectorization forced 1024 enum ForceKind Force; 1025 1026 MDNode *LoopID; 1027 }; 1028 1029 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1030 if (L.empty()) 1031 return V.push_back(&L); 1032 1033 for (Loop *InnerL : L) 1034 addInnerLoop(*InnerL, V); 1035 } 1036 1037 /// The LoopVectorize Pass. 1038 struct LoopVectorize : public FunctionPass { 1039 /// Pass identification, replacement for typeid 1040 static char ID; 1041 1042 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1043 : FunctionPass(ID), 1044 DisableUnrolling(NoUnrolling), 1045 AlwaysVectorize(AlwaysVectorize) { 1046 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1047 } 1048 1049 ScalarEvolution *SE; 1050 const DataLayout *DL; 1051 LoopInfo *LI; 1052 TargetTransformInfo *TTI; 1053 DominatorTree *DT; 1054 BlockFrequencyInfo *BFI; 1055 TargetLibraryInfo *TLI; 1056 bool DisableUnrolling; 1057 bool AlwaysVectorize; 1058 1059 BlockFrequency ColdEntryFreq; 1060 1061 bool runOnFunction(Function &F) override { 1062 SE = &getAnalysis<ScalarEvolution>(); 1063 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1064 DL = DLP ? &DLP->getDataLayout() : nullptr; 1065 LI = &getAnalysis<LoopInfo>(); 1066 TTI = &getAnalysis<TargetTransformInfo>(); 1067 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1068 BFI = &getAnalysis<BlockFrequencyInfo>(); 1069 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1070 1071 // Compute some weights outside of the loop over the loops. Compute this 1072 // using a BranchProbability to re-use its scaling math. 1073 const BranchProbability ColdProb(1, 5); // 20% 1074 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1075 1076 // If the target claims to have no vector registers don't attempt 1077 // vectorization. 1078 if (!TTI->getNumberOfRegisters(true)) 1079 return false; 1080 1081 if (!DL) { 1082 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1083 << ": Missing data layout\n"); 1084 return false; 1085 } 1086 1087 // Build up a worklist of inner-loops to vectorize. This is necessary as 1088 // the act of vectorizing or partially unrolling a loop creates new loops 1089 // and can invalidate iterators across the loops. 1090 SmallVector<Loop *, 8> Worklist; 1091 1092 for (Loop *L : *LI) 1093 addInnerLoop(*L, Worklist); 1094 1095 LoopsAnalyzed += Worklist.size(); 1096 1097 // Now walk the identified inner loops. 1098 bool Changed = false; 1099 while (!Worklist.empty()) 1100 Changed |= processLoop(Worklist.pop_back_val()); 1101 1102 // Process each loop nest in the function. 1103 return Changed; 1104 } 1105 1106 bool processLoop(Loop *L) { 1107 assert(L->empty() && "Only process inner loops."); 1108 1109 #ifndef NDEBUG 1110 const std::string DebugLocStr = getDebugLocString(L); 1111 #endif /* NDEBUG */ 1112 1113 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1114 << L->getHeader()->getParent()->getName() << "\" from " 1115 << DebugLocStr << "\n"); 1116 1117 LoopVectorizeHints Hints(L, DisableUnrolling); 1118 1119 DEBUG(dbgs() << "LV: Loop hints:" 1120 << " force=" 1121 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1122 ? "disabled" 1123 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1124 ? "enabled" 1125 : "?")) << " width=" << Hints.getWidth() 1126 << " unroll=" << Hints.getUnroll() << "\n"); 1127 1128 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1129 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1130 return false; 1131 } 1132 1133 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1134 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1135 return false; 1136 } 1137 1138 if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) { 1139 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1140 return false; 1141 } 1142 1143 // Check the loop for a trip count threshold: 1144 // do not vectorize loops with a tiny trip count. 1145 BasicBlock *Latch = L->getLoopLatch(); 1146 const unsigned TC = SE->getSmallConstantTripCount(L, Latch); 1147 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1148 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1149 << "This loop is not worth vectorizing."); 1150 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1151 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1152 else { 1153 DEBUG(dbgs() << "\n"); 1154 return false; 1155 } 1156 } 1157 1158 // Check if it is legal to vectorize the loop. 1159 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI); 1160 if (!LVL.canVectorize()) { 1161 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1162 return false; 1163 } 1164 1165 // Use the cost model. 1166 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 1167 1168 // Check the function attributes to find out if this function should be 1169 // optimized for size. 1170 Function *F = L->getHeader()->getParent(); 1171 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1172 F->hasFnAttribute(Attribute::OptimizeForSize); 1173 1174 // Compute the weighted frequency of this loop being executed and see if it 1175 // is less than 20% of the function entry baseline frequency. Note that we 1176 // always have a canonical loop here because we think we *can* vectoriez. 1177 // FIXME: This is hidden behind a flag due to pervasive problems with 1178 // exactly what block frequency models. 1179 if (LoopVectorizeWithBlockFrequency) { 1180 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1181 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1182 LoopEntryFreq < ColdEntryFreq) 1183 OptForSize = true; 1184 } 1185 1186 // Check the function attributes to see if implicit floats are allowed.a 1187 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1188 // an integer loop and the vector instructions selected are purely integer 1189 // vector instructions? 1190 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1191 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1192 "attribute is used.\n"); 1193 return false; 1194 } 1195 1196 // Select the optimal vectorization factor. 1197 const LoopVectorizationCostModel::VectorizationFactor VF = 1198 CM.selectVectorizationFactor(OptForSize, Hints.getWidth(), 1199 Hints.getForce() == 1200 LoopVectorizeHints::FK_Enabled); 1201 1202 // Select the unroll factor. 1203 const unsigned UF = 1204 CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost); 1205 1206 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1207 << DebugLocStr << '\n'); 1208 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1209 1210 if (VF.Width == 1) { 1211 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1212 if (UF == 1) 1213 return false; 1214 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1215 1216 // Report the unrolling decision. 1217 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1218 Twine("unrolled with interleaving factor " + 1219 Twine(UF) + 1220 " (vectorization not beneficial)")); 1221 1222 // We decided not to vectorize, but we may want to unroll. 1223 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1224 Unroller.vectorize(&LVL); 1225 } else { 1226 // If we decided that it is *legal* to vectorize the loop then do it. 1227 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1228 LB.vectorize(&LVL); 1229 ++LoopsVectorized; 1230 1231 // Report the vectorization decision. 1232 emitOptimizationRemark( 1233 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1234 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1235 ", unrolling interleave factor: " + Twine(UF) + ")"); 1236 } 1237 1238 // Mark the loop as already vectorized to avoid vectorizing again. 1239 Hints.setAlreadyVectorized(L); 1240 1241 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1242 return true; 1243 } 1244 1245 void getAnalysisUsage(AnalysisUsage &AU) const override { 1246 AU.addRequiredID(LoopSimplifyID); 1247 AU.addRequiredID(LCSSAID); 1248 AU.addRequired<BlockFrequencyInfo>(); 1249 AU.addRequired<DominatorTreeWrapperPass>(); 1250 AU.addRequired<LoopInfo>(); 1251 AU.addRequired<ScalarEvolution>(); 1252 AU.addRequired<TargetTransformInfo>(); 1253 AU.addPreserved<LoopInfo>(); 1254 AU.addPreserved<DominatorTreeWrapperPass>(); 1255 } 1256 1257 }; 1258 1259 } // end anonymous namespace 1260 1261 //===----------------------------------------------------------------------===// 1262 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1263 // LoopVectorizationCostModel. 1264 //===----------------------------------------------------------------------===// 1265 1266 static Value *stripIntegerCast(Value *V) { 1267 if (CastInst *CI = dyn_cast<CastInst>(V)) 1268 if (CI->getOperand(0)->getType()->isIntegerTy()) 1269 return CI->getOperand(0); 1270 return V; 1271 } 1272 1273 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1274 /// 1275 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1276 /// \p Ptr. 1277 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1278 ValueToValueMap &PtrToStride, 1279 Value *Ptr, Value *OrigPtr = nullptr) { 1280 1281 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1282 1283 // If there is an entry in the map return the SCEV of the pointer with the 1284 // symbolic stride replaced by one. 1285 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1286 if (SI != PtrToStride.end()) { 1287 Value *StrideVal = SI->second; 1288 1289 // Strip casts. 1290 StrideVal = stripIntegerCast(StrideVal); 1291 1292 // Replace symbolic stride by one. 1293 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1294 ValueToValueMap RewriteMap; 1295 RewriteMap[StrideVal] = One; 1296 1297 const SCEV *ByOne = 1298 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1299 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1300 << "\n"); 1301 return ByOne; 1302 } 1303 1304 // Otherwise, just return the SCEV of the original pointer. 1305 return SE->getSCEV(Ptr); 1306 } 1307 1308 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1309 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1310 ValueToValueMap &Strides) { 1311 // Get the stride replaced scev. 1312 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1313 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1314 assert(AR && "Invalid addrec expression"); 1315 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1316 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1317 Pointers.push_back(Ptr); 1318 Starts.push_back(AR->getStart()); 1319 Ends.push_back(ScEnd); 1320 IsWritePtr.push_back(WritePtr); 1321 DependencySetId.push_back(DepSetId); 1322 } 1323 1324 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1325 // We need to place the broadcast of invariant variables outside the loop. 1326 Instruction *Instr = dyn_cast<Instruction>(V); 1327 bool NewInstr = 1328 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1329 Instr->getParent()) != LoopVectorBody.end()); 1330 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1331 1332 // Place the code for broadcasting invariant variables in the new preheader. 1333 IRBuilder<>::InsertPointGuard Guard(Builder); 1334 if (Invariant) 1335 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1336 1337 // Broadcast the scalar into all locations in the vector. 1338 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1339 1340 return Shuf; 1341 } 1342 1343 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1344 bool Negate) { 1345 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1346 assert(Val->getType()->getScalarType()->isIntegerTy() && 1347 "Elem must be an integer"); 1348 // Create the types. 1349 Type *ITy = Val->getType()->getScalarType(); 1350 VectorType *Ty = cast<VectorType>(Val->getType()); 1351 int VLen = Ty->getNumElements(); 1352 SmallVector<Constant*, 8> Indices; 1353 1354 // Create a vector of consecutive numbers from zero to VF. 1355 for (int i = 0; i < VLen; ++i) { 1356 int64_t Idx = Negate ? (-i) : i; 1357 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1358 } 1359 1360 // Add the consecutive indices to the vector value. 1361 Constant *Cv = ConstantVector::get(Indices); 1362 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1363 return Builder.CreateAdd(Val, Cv, "induction"); 1364 } 1365 1366 /// \brief Find the operand of the GEP that should be checked for consecutive 1367 /// stores. This ignores trailing indices that have no effect on the final 1368 /// pointer. 1369 static unsigned getGEPInductionOperand(const DataLayout *DL, 1370 const GetElementPtrInst *Gep) { 1371 unsigned LastOperand = Gep->getNumOperands() - 1; 1372 unsigned GEPAllocSize = DL->getTypeAllocSize( 1373 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1374 1375 // Walk backwards and try to peel off zeros. 1376 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1377 // Find the type we're currently indexing into. 1378 gep_type_iterator GEPTI = gep_type_begin(Gep); 1379 std::advance(GEPTI, LastOperand - 1); 1380 1381 // If it's a type with the same allocation size as the result of the GEP we 1382 // can peel off the zero index. 1383 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1384 break; 1385 --LastOperand; 1386 } 1387 1388 return LastOperand; 1389 } 1390 1391 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1392 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1393 // Make sure that the pointer does not point to structs. 1394 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1395 return 0; 1396 1397 // If this value is a pointer induction variable we know it is consecutive. 1398 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1399 if (Phi && Inductions.count(Phi)) { 1400 InductionInfo II = Inductions[Phi]; 1401 if (IK_PtrInduction == II.IK) 1402 return 1; 1403 else if (IK_ReversePtrInduction == II.IK) 1404 return -1; 1405 } 1406 1407 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1408 if (!Gep) 1409 return 0; 1410 1411 unsigned NumOperands = Gep->getNumOperands(); 1412 Value *GpPtr = Gep->getPointerOperand(); 1413 // If this GEP value is a consecutive pointer induction variable and all of 1414 // the indices are constant then we know it is consecutive. We can 1415 Phi = dyn_cast<PHINode>(GpPtr); 1416 if (Phi && Inductions.count(Phi)) { 1417 1418 // Make sure that the pointer does not point to structs. 1419 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1420 if (GepPtrType->getElementType()->isAggregateType()) 1421 return 0; 1422 1423 // Make sure that all of the index operands are loop invariant. 1424 for (unsigned i = 1; i < NumOperands; ++i) 1425 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1426 return 0; 1427 1428 InductionInfo II = Inductions[Phi]; 1429 if (IK_PtrInduction == II.IK) 1430 return 1; 1431 else if (IK_ReversePtrInduction == II.IK) 1432 return -1; 1433 } 1434 1435 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1436 1437 // Check that all of the gep indices are uniform except for our induction 1438 // operand. 1439 for (unsigned i = 0; i != NumOperands; ++i) 1440 if (i != InductionOperand && 1441 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1442 return 0; 1443 1444 // We can emit wide load/stores only if the last non-zero index is the 1445 // induction variable. 1446 const SCEV *Last = nullptr; 1447 if (!Strides.count(Gep)) 1448 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1449 else { 1450 // Because of the multiplication by a stride we can have a s/zext cast. 1451 // We are going to replace this stride by 1 so the cast is safe to ignore. 1452 // 1453 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1454 // %0 = trunc i64 %indvars.iv to i32 1455 // %mul = mul i32 %0, %Stride1 1456 // %idxprom = zext i32 %mul to i64 << Safe cast. 1457 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1458 // 1459 Last = replaceSymbolicStrideSCEV(SE, Strides, 1460 Gep->getOperand(InductionOperand), Gep); 1461 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1462 Last = 1463 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1464 ? C->getOperand() 1465 : Last; 1466 } 1467 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1468 const SCEV *Step = AR->getStepRecurrence(*SE); 1469 1470 // The memory is consecutive because the last index is consecutive 1471 // and all other indices are loop invariant. 1472 if (Step->isOne()) 1473 return 1; 1474 if (Step->isAllOnesValue()) 1475 return -1; 1476 } 1477 1478 return 0; 1479 } 1480 1481 bool LoopVectorizationLegality::isUniform(Value *V) { 1482 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1483 } 1484 1485 InnerLoopVectorizer::VectorParts& 1486 InnerLoopVectorizer::getVectorValue(Value *V) { 1487 assert(V != Induction && "The new induction variable should not be used."); 1488 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1489 1490 // If we have a stride that is replaced by one, do it here. 1491 if (Legal->hasStride(V)) 1492 V = ConstantInt::get(V->getType(), 1); 1493 1494 // If we have this scalar in the map, return it. 1495 if (WidenMap.has(V)) 1496 return WidenMap.get(V); 1497 1498 // If this scalar is unknown, assume that it is a constant or that it is 1499 // loop invariant. Broadcast V and save the value for future uses. 1500 Value *B = getBroadcastInstrs(V); 1501 return WidenMap.splat(V, B); 1502 } 1503 1504 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1505 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1506 SmallVector<Constant*, 8> ShuffleMask; 1507 for (unsigned i = 0; i < VF; ++i) 1508 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1509 1510 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1511 ConstantVector::get(ShuffleMask), 1512 "reverse"); 1513 } 1514 1515 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1516 // Attempt to issue a wide load. 1517 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1518 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1519 1520 assert((LI || SI) && "Invalid Load/Store instruction"); 1521 1522 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1523 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1524 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1525 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1526 // An alignment of 0 means target abi alignment. We need to use the scalar's 1527 // target abi alignment in such a case. 1528 if (!Alignment) 1529 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1530 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1531 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1532 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1533 1534 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1535 return scalarizeInstruction(Instr, true); 1536 1537 if (ScalarAllocatedSize != VectorElementSize) 1538 return scalarizeInstruction(Instr); 1539 1540 // If the pointer is loop invariant or if it is non-consecutive, 1541 // scalarize the load. 1542 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1543 bool Reverse = ConsecutiveStride < 0; 1544 bool UniformLoad = LI && Legal->isUniform(Ptr); 1545 if (!ConsecutiveStride || UniformLoad) 1546 return scalarizeInstruction(Instr); 1547 1548 Constant *Zero = Builder.getInt32(0); 1549 VectorParts &Entry = WidenMap.get(Instr); 1550 1551 // Handle consecutive loads/stores. 1552 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1553 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1554 setDebugLocFromInst(Builder, Gep); 1555 Value *PtrOperand = Gep->getPointerOperand(); 1556 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1557 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1558 1559 // Create the new GEP with the new induction variable. 1560 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1561 Gep2->setOperand(0, FirstBasePtr); 1562 Gep2->setName("gep.indvar.base"); 1563 Ptr = Builder.Insert(Gep2); 1564 } else if (Gep) { 1565 setDebugLocFromInst(Builder, Gep); 1566 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1567 OrigLoop) && "Base ptr must be invariant"); 1568 1569 // The last index does not have to be the induction. It can be 1570 // consecutive and be a function of the index. For example A[I+1]; 1571 unsigned NumOperands = Gep->getNumOperands(); 1572 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1573 // Create the new GEP with the new induction variable. 1574 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1575 1576 for (unsigned i = 0; i < NumOperands; ++i) { 1577 Value *GepOperand = Gep->getOperand(i); 1578 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1579 1580 // Update last index or loop invariant instruction anchored in loop. 1581 if (i == InductionOperand || 1582 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1583 assert((i == InductionOperand || 1584 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1585 "Must be last index or loop invariant"); 1586 1587 VectorParts &GEPParts = getVectorValue(GepOperand); 1588 Value *Index = GEPParts[0]; 1589 Index = Builder.CreateExtractElement(Index, Zero); 1590 Gep2->setOperand(i, Index); 1591 Gep2->setName("gep.indvar.idx"); 1592 } 1593 } 1594 Ptr = Builder.Insert(Gep2); 1595 } else { 1596 // Use the induction element ptr. 1597 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1598 setDebugLocFromInst(Builder, Ptr); 1599 VectorParts &PtrVal = getVectorValue(Ptr); 1600 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1601 } 1602 1603 // Handle Stores: 1604 if (SI) { 1605 assert(!Legal->isUniform(SI->getPointerOperand()) && 1606 "We do not allow storing to uniform addresses"); 1607 setDebugLocFromInst(Builder, SI); 1608 // We don't want to update the value in the map as it might be used in 1609 // another expression. So don't use a reference type for "StoredVal". 1610 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1611 1612 for (unsigned Part = 0; Part < UF; ++Part) { 1613 // Calculate the pointer for the specific unroll-part. 1614 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1615 1616 if (Reverse) { 1617 // If we store to reverse consecutive memory locations then we need 1618 // to reverse the order of elements in the stored value. 1619 StoredVal[Part] = reverseVector(StoredVal[Part]); 1620 // If the address is consecutive but reversed, then the 1621 // wide store needs to start at the last vector element. 1622 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1623 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1624 } 1625 1626 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1627 DataTy->getPointerTo(AddressSpace)); 1628 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1629 } 1630 return; 1631 } 1632 1633 // Handle loads. 1634 assert(LI && "Must have a load instruction"); 1635 setDebugLocFromInst(Builder, LI); 1636 for (unsigned Part = 0; Part < UF; ++Part) { 1637 // Calculate the pointer for the specific unroll-part. 1638 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1639 1640 if (Reverse) { 1641 // If the address is consecutive but reversed, then the 1642 // wide store needs to start at the last vector element. 1643 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1644 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1645 } 1646 1647 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1648 DataTy->getPointerTo(AddressSpace)); 1649 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1650 cast<LoadInst>(LI)->setAlignment(Alignment); 1651 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1652 } 1653 } 1654 1655 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1656 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1657 // Holds vector parameters or scalars, in case of uniform vals. 1658 SmallVector<VectorParts, 4> Params; 1659 1660 setDebugLocFromInst(Builder, Instr); 1661 1662 // Find all of the vectorized parameters. 1663 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1664 Value *SrcOp = Instr->getOperand(op); 1665 1666 // If we are accessing the old induction variable, use the new one. 1667 if (SrcOp == OldInduction) { 1668 Params.push_back(getVectorValue(SrcOp)); 1669 continue; 1670 } 1671 1672 // Try using previously calculated values. 1673 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1674 1675 // If the src is an instruction that appeared earlier in the basic block 1676 // then it should already be vectorized. 1677 if (SrcInst && OrigLoop->contains(SrcInst)) { 1678 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1679 // The parameter is a vector value from earlier. 1680 Params.push_back(WidenMap.get(SrcInst)); 1681 } else { 1682 // The parameter is a scalar from outside the loop. Maybe even a constant. 1683 VectorParts Scalars; 1684 Scalars.append(UF, SrcOp); 1685 Params.push_back(Scalars); 1686 } 1687 } 1688 1689 assert(Params.size() == Instr->getNumOperands() && 1690 "Invalid number of operands"); 1691 1692 // Does this instruction return a value ? 1693 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1694 1695 Value *UndefVec = IsVoidRetTy ? nullptr : 1696 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1697 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1698 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1699 1700 Instruction *InsertPt = Builder.GetInsertPoint(); 1701 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1702 BasicBlock *CondBlock = nullptr; 1703 1704 VectorParts Cond; 1705 Loop *VectorLp = nullptr; 1706 if (IfPredicateStore) { 1707 assert(Instr->getParent()->getSinglePredecessor() && 1708 "Only support single predecessor blocks"); 1709 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1710 Instr->getParent()); 1711 VectorLp = LI->getLoopFor(IfBlock); 1712 assert(VectorLp && "Must have a loop for this block"); 1713 } 1714 1715 // For each vector unroll 'part': 1716 for (unsigned Part = 0; Part < UF; ++Part) { 1717 // For each scalar that we create: 1718 for (unsigned Width = 0; Width < VF; ++Width) { 1719 1720 // Start if-block. 1721 Value *Cmp = nullptr; 1722 if (IfPredicateStore) { 1723 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1724 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1725 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1726 LoopVectorBody.push_back(CondBlock); 1727 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1728 // Update Builder with newly created basic block. 1729 Builder.SetInsertPoint(InsertPt); 1730 } 1731 1732 Instruction *Cloned = Instr->clone(); 1733 if (!IsVoidRetTy) 1734 Cloned->setName(Instr->getName() + ".cloned"); 1735 // Replace the operands of the cloned instructions with extracted scalars. 1736 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1737 Value *Op = Params[op][Part]; 1738 // Param is a vector. Need to extract the right lane. 1739 if (Op->getType()->isVectorTy()) 1740 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1741 Cloned->setOperand(op, Op); 1742 } 1743 1744 // Place the cloned scalar in the new loop. 1745 Builder.Insert(Cloned); 1746 1747 // If the original scalar returns a value we need to place it in a vector 1748 // so that future users will be able to use it. 1749 if (!IsVoidRetTy) 1750 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1751 Builder.getInt32(Width)); 1752 // End if-block. 1753 if (IfPredicateStore) { 1754 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1755 LoopVectorBody.push_back(NewIfBlock); 1756 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 1757 Builder.SetInsertPoint(InsertPt); 1758 Instruction *OldBr = IfBlock->getTerminator(); 1759 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1760 OldBr->eraseFromParent(); 1761 IfBlock = NewIfBlock; 1762 } 1763 } 1764 } 1765 } 1766 1767 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1768 Instruction *Loc) { 1769 if (FirstInst) 1770 return FirstInst; 1771 if (Instruction *I = dyn_cast<Instruction>(V)) 1772 return I->getParent() == Loc->getParent() ? I : nullptr; 1773 return nullptr; 1774 } 1775 1776 std::pair<Instruction *, Instruction *> 1777 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1778 Instruction *tnullptr = nullptr; 1779 if (!Legal->mustCheckStrides()) 1780 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1781 1782 IRBuilder<> ChkBuilder(Loc); 1783 1784 // Emit checks. 1785 Value *Check = nullptr; 1786 Instruction *FirstInst = nullptr; 1787 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1788 SE = Legal->strides_end(); 1789 SI != SE; ++SI) { 1790 Value *Ptr = stripIntegerCast(*SI); 1791 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1792 "stride.chk"); 1793 // Store the first instruction we create. 1794 FirstInst = getFirstInst(FirstInst, C, Loc); 1795 if (Check) 1796 Check = ChkBuilder.CreateOr(Check, C); 1797 else 1798 Check = C; 1799 } 1800 1801 // We have to do this trickery because the IRBuilder might fold the check to a 1802 // constant expression in which case there is no Instruction anchored in a 1803 // the block. 1804 LLVMContext &Ctx = Loc->getContext(); 1805 Instruction *TheCheck = 1806 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1807 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1808 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1809 1810 return std::make_pair(FirstInst, TheCheck); 1811 } 1812 1813 std::pair<Instruction *, Instruction *> 1814 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 1815 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1816 Legal->getRuntimePointerCheck(); 1817 1818 Instruction *tnullptr = nullptr; 1819 if (!PtrRtCheck->Need) 1820 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1821 1822 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1823 SmallVector<TrackingVH<Value> , 2> Starts; 1824 SmallVector<TrackingVH<Value> , 2> Ends; 1825 1826 LLVMContext &Ctx = Loc->getContext(); 1827 SCEVExpander Exp(*SE, "induction"); 1828 Instruction *FirstInst = nullptr; 1829 1830 for (unsigned i = 0; i < NumPointers; ++i) { 1831 Value *Ptr = PtrRtCheck->Pointers[i]; 1832 const SCEV *Sc = SE->getSCEV(Ptr); 1833 1834 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1835 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1836 *Ptr <<"\n"); 1837 Starts.push_back(Ptr); 1838 Ends.push_back(Ptr); 1839 } else { 1840 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1841 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1842 1843 // Use this type for pointer arithmetic. 1844 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1845 1846 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1847 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1848 Starts.push_back(Start); 1849 Ends.push_back(End); 1850 } 1851 } 1852 1853 IRBuilder<> ChkBuilder(Loc); 1854 // Our instructions might fold to a constant. 1855 Value *MemoryRuntimeCheck = nullptr; 1856 for (unsigned i = 0; i < NumPointers; ++i) { 1857 for (unsigned j = i+1; j < NumPointers; ++j) { 1858 // No need to check if two readonly pointers intersect. 1859 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1860 continue; 1861 1862 // Only need to check pointers between two different dependency sets. 1863 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1864 continue; 1865 1866 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1867 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1868 1869 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1870 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1871 "Trying to bounds check pointers with different address spaces"); 1872 1873 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1874 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1875 1876 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1877 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1878 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1879 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1880 1881 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1882 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1883 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1884 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1885 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1886 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1887 if (MemoryRuntimeCheck) { 1888 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1889 "conflict.rdx"); 1890 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1891 } 1892 MemoryRuntimeCheck = IsConflict; 1893 } 1894 } 1895 1896 // We have to do this trickery because the IRBuilder might fold the check to a 1897 // constant expression in which case there is no Instruction anchored in a 1898 // the block. 1899 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1900 ConstantInt::getTrue(Ctx)); 1901 ChkBuilder.Insert(Check, "memcheck.conflict"); 1902 FirstInst = getFirstInst(FirstInst, Check, Loc); 1903 return std::make_pair(FirstInst, Check); 1904 } 1905 1906 void InnerLoopVectorizer::createEmptyLoop() { 1907 /* 1908 In this function we generate a new loop. The new loop will contain 1909 the vectorized instructions while the old loop will continue to run the 1910 scalar remainder. 1911 1912 [ ] <-- Back-edge taken count overflow check. 1913 / | 1914 / v 1915 | [ ] <-- vector loop bypass (may consist of multiple blocks). 1916 | / | 1917 | / v 1918 || [ ] <-- vector pre header. 1919 || | 1920 || v 1921 || [ ] \ 1922 || [ ]_| <-- vector loop. 1923 || | 1924 | \ v 1925 | >[ ] <--- middle-block. 1926 | / | 1927 | / v 1928 -|- >[ ] <--- new preheader. 1929 | | 1930 | v 1931 | [ ] \ 1932 | [ ]_| <-- old scalar loop to handle remainder. 1933 \ | 1934 \ v 1935 >[ ] <-- exit block. 1936 ... 1937 */ 1938 1939 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 1940 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 1941 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 1942 assert(BypassBlock && "Invalid loop structure"); 1943 assert(ExitBlock && "Must have an exit block"); 1944 1945 // Some loops have a single integer induction variable, while other loops 1946 // don't. One example is c++ iterators that often have multiple pointer 1947 // induction variables. In the code below we also support a case where we 1948 // don't have a single induction variable. 1949 OldInduction = Legal->getInduction(); 1950 Type *IdxTy = Legal->getWidestInductionType(); 1951 1952 // Find the loop boundaries. 1953 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 1954 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 1955 1956 // The exit count might have the type of i64 while the phi is i32. This can 1957 // happen if we have an induction variable that is sign extended before the 1958 // compare. The only way that we get a backedge taken count is that the 1959 // induction variable was signed and as such will not overflow. In such a case 1960 // truncation is legal. 1961 if (ExitCount->getType()->getPrimitiveSizeInBits() > 1962 IdxTy->getPrimitiveSizeInBits()) 1963 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 1964 1965 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 1966 // Get the total trip count from the count by adding 1. 1967 ExitCount = SE->getAddExpr(BackedgeTakeCount, 1968 SE->getConstant(BackedgeTakeCount->getType(), 1)); 1969 1970 // Expand the trip count and place the new instructions in the preheader. 1971 // Notice that the pre-header does not change, only the loop body. 1972 SCEVExpander Exp(*SE, "induction"); 1973 1974 // We need to test whether the backedge-taken count is uint##_max. Adding one 1975 // to it will cause overflow and an incorrect loop trip count in the vector 1976 // body. In case of overflow we want to directly jump to the scalar remainder 1977 // loop. 1978 Value *BackedgeCount = 1979 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 1980 BypassBlock->getTerminator()); 1981 if (BackedgeCount->getType()->isPointerTy()) 1982 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 1983 "backedge.ptrcnt.to.int", 1984 BypassBlock->getTerminator()); 1985 Instruction *CheckBCOverflow = 1986 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 1987 Constant::getAllOnesValue(BackedgeCount->getType()), 1988 "backedge.overflow", BypassBlock->getTerminator()); 1989 1990 // The loop index does not have to start at Zero. Find the original start 1991 // value from the induction PHI node. If we don't have an induction variable 1992 // then we know that it starts at zero. 1993 Builder.SetInsertPoint(BypassBlock->getTerminator()); 1994 Value *StartIdx = ExtendedIdx = OldInduction ? 1995 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 1996 IdxTy): 1997 ConstantInt::get(IdxTy, 0); 1998 1999 // We need an instruction to anchor the overflow check on. StartIdx needs to 2000 // be defined before the overflow check branch. Because the scalar preheader 2001 // is going to merge the start index and so the overflow branch block needs to 2002 // contain a definition of the start index. 2003 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2004 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2005 BypassBlock->getTerminator()); 2006 2007 // Count holds the overall loop count (N). 2008 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2009 BypassBlock->getTerminator()); 2010 2011 LoopBypassBlocks.push_back(BypassBlock); 2012 2013 // Split the single block loop into the two loop structure described above. 2014 BasicBlock *VectorPH = 2015 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2016 BasicBlock *VecBody = 2017 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2018 BasicBlock *MiddleBlock = 2019 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2020 BasicBlock *ScalarPH = 2021 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2022 2023 // Create and register the new vector loop. 2024 Loop* Lp = new Loop(); 2025 Loop *ParentLoop = OrigLoop->getParentLoop(); 2026 2027 // Insert the new loop into the loop nest and register the new basic blocks 2028 // before calling any utilities such as SCEV that require valid LoopInfo. 2029 if (ParentLoop) { 2030 ParentLoop->addChildLoop(Lp); 2031 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2032 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2033 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2034 } else { 2035 LI->addTopLevelLoop(Lp); 2036 } 2037 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2038 2039 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2040 // inside the loop. 2041 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2042 2043 // Generate the induction variable. 2044 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2045 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2046 // The loop step is equal to the vectorization factor (num of SIMD elements) 2047 // times the unroll factor (num of SIMD instructions). 2048 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2049 2050 // This is the IR builder that we use to add all of the logic for bypassing 2051 // the new vector loop. 2052 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2053 setDebugLocFromInst(BypassBuilder, 2054 getDebugLocFromInstOrOperands(OldInduction)); 2055 2056 // We may need to extend the index in case there is a type mismatch. 2057 // We know that the count starts at zero and does not overflow. 2058 if (Count->getType() != IdxTy) { 2059 // The exit count can be of pointer type. Convert it to the correct 2060 // integer type. 2061 if (ExitCount->getType()->isPointerTy()) 2062 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2063 else 2064 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2065 } 2066 2067 // Add the start index to the loop count to get the new end index. 2068 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2069 2070 // Now we need to generate the expression for N - (N % VF), which is 2071 // the part that the vectorized body will execute. 2072 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2073 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2074 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2075 "end.idx.rnd.down"); 2076 2077 // Now, compare the new count to zero. If it is zero skip the vector loop and 2078 // jump to the scalar loop. 2079 Value *Cmp = 2080 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2081 2082 BasicBlock *LastBypassBlock = BypassBlock; 2083 2084 // Generate code to check that the loops trip count that we computed by adding 2085 // one to the backedge-taken count will not overflow. 2086 { 2087 auto PastOverflowCheck = 2088 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2089 BasicBlock *CheckBlock = 2090 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2091 if (ParentLoop) 2092 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2093 LoopBypassBlocks.push_back(CheckBlock); 2094 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2095 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2096 OldTerm->eraseFromParent(); 2097 LastBypassBlock = CheckBlock; 2098 } 2099 2100 // Generate the code to check that the strides we assumed to be one are really 2101 // one. We want the new basic block to start at the first instruction in a 2102 // sequence of instructions that form a check. 2103 Instruction *StrideCheck; 2104 Instruction *FirstCheckInst; 2105 std::tie(FirstCheckInst, StrideCheck) = 2106 addStrideCheck(LastBypassBlock->getTerminator()); 2107 if (StrideCheck) { 2108 // Create a new block containing the stride check. 2109 BasicBlock *CheckBlock = 2110 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2111 if (ParentLoop) 2112 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2113 LoopBypassBlocks.push_back(CheckBlock); 2114 2115 // Replace the branch into the memory check block with a conditional branch 2116 // for the "few elements case". 2117 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2118 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2119 OldTerm->eraseFromParent(); 2120 2121 Cmp = StrideCheck; 2122 LastBypassBlock = CheckBlock; 2123 } 2124 2125 // Generate the code that checks in runtime if arrays overlap. We put the 2126 // checks into a separate block to make the more common case of few elements 2127 // faster. 2128 Instruction *MemRuntimeCheck; 2129 std::tie(FirstCheckInst, MemRuntimeCheck) = 2130 addRuntimeCheck(LastBypassBlock->getTerminator()); 2131 if (MemRuntimeCheck) { 2132 // Create a new block containing the memory check. 2133 BasicBlock *CheckBlock = 2134 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2135 if (ParentLoop) 2136 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2137 LoopBypassBlocks.push_back(CheckBlock); 2138 2139 // Replace the branch into the memory check block with a conditional branch 2140 // for the "few elements case". 2141 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2142 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2143 OldTerm->eraseFromParent(); 2144 2145 Cmp = MemRuntimeCheck; 2146 LastBypassBlock = CheckBlock; 2147 } 2148 2149 LastBypassBlock->getTerminator()->eraseFromParent(); 2150 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2151 LastBypassBlock); 2152 2153 // We are going to resume the execution of the scalar loop. 2154 // Go over all of the induction variables that we found and fix the 2155 // PHIs that are left in the scalar version of the loop. 2156 // The starting values of PHI nodes depend on the counter of the last 2157 // iteration in the vectorized loop. 2158 // If we come from a bypass edge then we need to start from the original 2159 // start value. 2160 2161 // This variable saves the new starting index for the scalar loop. 2162 PHINode *ResumeIndex = nullptr; 2163 LoopVectorizationLegality::InductionList::iterator I, E; 2164 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2165 // Set builder to point to last bypass block. 2166 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2167 for (I = List->begin(), E = List->end(); I != E; ++I) { 2168 PHINode *OrigPhi = I->first; 2169 LoopVectorizationLegality::InductionInfo II = I->second; 2170 2171 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2172 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2173 MiddleBlock->getTerminator()); 2174 // We might have extended the type of the induction variable but we need a 2175 // truncated version for the scalar loop. 2176 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2177 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2178 MiddleBlock->getTerminator()) : nullptr; 2179 2180 // Create phi nodes to merge from the backedge-taken check block. 2181 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2182 ScalarPH->getTerminator()); 2183 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2184 2185 PHINode *BCTruncResumeVal = nullptr; 2186 if (OrigPhi == OldInduction) { 2187 BCTruncResumeVal = 2188 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2189 ScalarPH->getTerminator()); 2190 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2191 } 2192 2193 Value *EndValue = nullptr; 2194 switch (II.IK) { 2195 case LoopVectorizationLegality::IK_NoInduction: 2196 llvm_unreachable("Unknown induction"); 2197 case LoopVectorizationLegality::IK_IntInduction: { 2198 // Handle the integer induction counter. 2199 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2200 2201 // We have the canonical induction variable. 2202 if (OrigPhi == OldInduction) { 2203 // Create a truncated version of the resume value for the scalar loop, 2204 // we might have promoted the type to a larger width. 2205 EndValue = 2206 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2207 // The new PHI merges the original incoming value, in case of a bypass, 2208 // or the value at the end of the vectorized loop. 2209 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2210 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2211 TruncResumeVal->addIncoming(EndValue, VecBody); 2212 2213 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2214 2215 // We know what the end value is. 2216 EndValue = IdxEndRoundDown; 2217 // We also know which PHI node holds it. 2218 ResumeIndex = ResumeVal; 2219 break; 2220 } 2221 2222 // Not the canonical induction variable - add the vector loop count to the 2223 // start value. 2224 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2225 II.StartValue->getType(), 2226 "cast.crd"); 2227 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2228 break; 2229 } 2230 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2231 // Convert the CountRoundDown variable to the PHI size. 2232 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2233 II.StartValue->getType(), 2234 "cast.crd"); 2235 // Handle reverse integer induction counter. 2236 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2237 break; 2238 } 2239 case LoopVectorizationLegality::IK_PtrInduction: { 2240 // For pointer induction variables, calculate the offset using 2241 // the end index. 2242 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2243 "ptr.ind.end"); 2244 break; 2245 } 2246 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2247 // The value at the end of the loop for the reverse pointer is calculated 2248 // by creating a GEP with a negative index starting from the start value. 2249 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2250 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2251 "rev.ind.end"); 2252 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2253 "rev.ptr.ind.end"); 2254 break; 2255 } 2256 }// end of case 2257 2258 // The new PHI merges the original incoming value, in case of a bypass, 2259 // or the value at the end of the vectorized loop. 2260 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2261 if (OrigPhi == OldInduction) 2262 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2263 else 2264 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2265 } 2266 ResumeVal->addIncoming(EndValue, VecBody); 2267 2268 // Fix the scalar body counter (PHI node). 2269 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2270 2271 // The old induction's phi node in the scalar body needs the truncated 2272 // value. 2273 if (OrigPhi == OldInduction) { 2274 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2275 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2276 } else { 2277 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2278 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2279 } 2280 } 2281 2282 // If we are generating a new induction variable then we also need to 2283 // generate the code that calculates the exit value. This value is not 2284 // simply the end of the counter because we may skip the vectorized body 2285 // in case of a runtime check. 2286 if (!OldInduction){ 2287 assert(!ResumeIndex && "Unexpected resume value found"); 2288 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2289 MiddleBlock->getTerminator()); 2290 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2291 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2292 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2293 } 2294 2295 // Make sure that we found the index where scalar loop needs to continue. 2296 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2297 "Invalid resume Index"); 2298 2299 // Add a check in the middle block to see if we have completed 2300 // all of the iterations in the first vector loop. 2301 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2302 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2303 ResumeIndex, "cmp.n", 2304 MiddleBlock->getTerminator()); 2305 2306 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2307 // Remove the old terminator. 2308 MiddleBlock->getTerminator()->eraseFromParent(); 2309 2310 // Create i+1 and fill the PHINode. 2311 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2312 Induction->addIncoming(StartIdx, VectorPH); 2313 Induction->addIncoming(NextIdx, VecBody); 2314 // Create the compare. 2315 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2316 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2317 2318 // Now we have two terminators. Remove the old one from the block. 2319 VecBody->getTerminator()->eraseFromParent(); 2320 2321 // Get ready to start creating new instructions into the vectorized body. 2322 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2323 2324 // Save the state. 2325 LoopVectorPreHeader = VectorPH; 2326 LoopScalarPreHeader = ScalarPH; 2327 LoopMiddleBlock = MiddleBlock; 2328 LoopExitBlock = ExitBlock; 2329 LoopVectorBody.push_back(VecBody); 2330 LoopScalarBody = OldBasicBlock; 2331 2332 LoopVectorizeHints Hints(Lp, true); 2333 Hints.setAlreadyVectorized(Lp); 2334 } 2335 2336 /// This function returns the identity element (or neutral element) for 2337 /// the operation K. 2338 Constant* 2339 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2340 switch (K) { 2341 case RK_IntegerXor: 2342 case RK_IntegerAdd: 2343 case RK_IntegerOr: 2344 // Adding, Xoring, Oring zero to a number does not change it. 2345 return ConstantInt::get(Tp, 0); 2346 case RK_IntegerMult: 2347 // Multiplying a number by 1 does not change it. 2348 return ConstantInt::get(Tp, 1); 2349 case RK_IntegerAnd: 2350 // AND-ing a number with an all-1 value does not change it. 2351 return ConstantInt::get(Tp, -1, true); 2352 case RK_FloatMult: 2353 // Multiplying a number by 1 does not change it. 2354 return ConstantFP::get(Tp, 1.0L); 2355 case RK_FloatAdd: 2356 // Adding zero to a number does not change it. 2357 return ConstantFP::get(Tp, 0.0L); 2358 default: 2359 llvm_unreachable("Unknown reduction kind"); 2360 } 2361 } 2362 2363 /// This function translates the reduction kind to an LLVM binary operator. 2364 static unsigned 2365 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2366 switch (Kind) { 2367 case LoopVectorizationLegality::RK_IntegerAdd: 2368 return Instruction::Add; 2369 case LoopVectorizationLegality::RK_IntegerMult: 2370 return Instruction::Mul; 2371 case LoopVectorizationLegality::RK_IntegerOr: 2372 return Instruction::Or; 2373 case LoopVectorizationLegality::RK_IntegerAnd: 2374 return Instruction::And; 2375 case LoopVectorizationLegality::RK_IntegerXor: 2376 return Instruction::Xor; 2377 case LoopVectorizationLegality::RK_FloatMult: 2378 return Instruction::FMul; 2379 case LoopVectorizationLegality::RK_FloatAdd: 2380 return Instruction::FAdd; 2381 case LoopVectorizationLegality::RK_IntegerMinMax: 2382 return Instruction::ICmp; 2383 case LoopVectorizationLegality::RK_FloatMinMax: 2384 return Instruction::FCmp; 2385 default: 2386 llvm_unreachable("Unknown reduction operation"); 2387 } 2388 } 2389 2390 Value *createMinMaxOp(IRBuilder<> &Builder, 2391 LoopVectorizationLegality::MinMaxReductionKind RK, 2392 Value *Left, 2393 Value *Right) { 2394 CmpInst::Predicate P = CmpInst::ICMP_NE; 2395 switch (RK) { 2396 default: 2397 llvm_unreachable("Unknown min/max reduction kind"); 2398 case LoopVectorizationLegality::MRK_UIntMin: 2399 P = CmpInst::ICMP_ULT; 2400 break; 2401 case LoopVectorizationLegality::MRK_UIntMax: 2402 P = CmpInst::ICMP_UGT; 2403 break; 2404 case LoopVectorizationLegality::MRK_SIntMin: 2405 P = CmpInst::ICMP_SLT; 2406 break; 2407 case LoopVectorizationLegality::MRK_SIntMax: 2408 P = CmpInst::ICMP_SGT; 2409 break; 2410 case LoopVectorizationLegality::MRK_FloatMin: 2411 P = CmpInst::FCMP_OLT; 2412 break; 2413 case LoopVectorizationLegality::MRK_FloatMax: 2414 P = CmpInst::FCMP_OGT; 2415 break; 2416 } 2417 2418 Value *Cmp; 2419 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2420 RK == LoopVectorizationLegality::MRK_FloatMax) 2421 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2422 else 2423 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2424 2425 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2426 return Select; 2427 } 2428 2429 namespace { 2430 struct CSEDenseMapInfo { 2431 static bool canHandle(Instruction *I) { 2432 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2433 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2434 } 2435 static inline Instruction *getEmptyKey() { 2436 return DenseMapInfo<Instruction *>::getEmptyKey(); 2437 } 2438 static inline Instruction *getTombstoneKey() { 2439 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2440 } 2441 static unsigned getHashValue(Instruction *I) { 2442 assert(canHandle(I) && "Unknown instruction!"); 2443 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2444 I->value_op_end())); 2445 } 2446 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2447 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2448 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2449 return LHS == RHS; 2450 return LHS->isIdenticalTo(RHS); 2451 } 2452 }; 2453 } 2454 2455 /// \brief Check whether this block is a predicated block. 2456 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2457 /// = ...; " blocks. We start with one vectorized basic block. For every 2458 /// conditional block we split this vectorized block. Therefore, every second 2459 /// block will be a predicated one. 2460 static bool isPredicatedBlock(unsigned BlockNum) { 2461 return BlockNum % 2; 2462 } 2463 2464 ///\brief Perform cse of induction variable instructions. 2465 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2466 // Perform simple cse. 2467 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2468 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2469 BasicBlock *BB = BBs[i]; 2470 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2471 Instruction *In = I++; 2472 2473 if (!CSEDenseMapInfo::canHandle(In)) 2474 continue; 2475 2476 // Check if we can replace this instruction with any of the 2477 // visited instructions. 2478 if (Instruction *V = CSEMap.lookup(In)) { 2479 In->replaceAllUsesWith(V); 2480 In->eraseFromParent(); 2481 continue; 2482 } 2483 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2484 // ...;" blocks for predicated stores. Every second block is a predicated 2485 // block. 2486 if (isPredicatedBlock(i)) 2487 continue; 2488 2489 CSEMap[In] = In; 2490 } 2491 } 2492 } 2493 2494 /// \brief Adds a 'fast' flag to floating point operations. 2495 static Value *addFastMathFlag(Value *V) { 2496 if (isa<FPMathOperator>(V)){ 2497 FastMathFlags Flags; 2498 Flags.setUnsafeAlgebra(); 2499 cast<Instruction>(V)->setFastMathFlags(Flags); 2500 } 2501 return V; 2502 } 2503 2504 void InnerLoopVectorizer::vectorizeLoop() { 2505 //===------------------------------------------------===// 2506 // 2507 // Notice: any optimization or new instruction that go 2508 // into the code below should be also be implemented in 2509 // the cost-model. 2510 // 2511 //===------------------------------------------------===// 2512 Constant *Zero = Builder.getInt32(0); 2513 2514 // In order to support reduction variables we need to be able to vectorize 2515 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2516 // stages. First, we create a new vector PHI node with no incoming edges. 2517 // We use this value when we vectorize all of the instructions that use the 2518 // PHI. Next, after all of the instructions in the block are complete we 2519 // add the new incoming edges to the PHI. At this point all of the 2520 // instructions in the basic block are vectorized, so we can use them to 2521 // construct the PHI. 2522 PhiVector RdxPHIsToFix; 2523 2524 // Scan the loop in a topological order to ensure that defs are vectorized 2525 // before users. 2526 LoopBlocksDFS DFS(OrigLoop); 2527 DFS.perform(LI); 2528 2529 // Vectorize all of the blocks in the original loop. 2530 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2531 be = DFS.endRPO(); bb != be; ++bb) 2532 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2533 2534 // At this point every instruction in the original loop is widened to 2535 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2536 // that we vectorized. The PHI nodes are currently empty because we did 2537 // not want to introduce cycles. Notice that the remaining PHI nodes 2538 // that we need to fix are reduction variables. 2539 2540 // Create the 'reduced' values for each of the induction vars. 2541 // The reduced values are the vector values that we scalarize and combine 2542 // after the loop is finished. 2543 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2544 it != e; ++it) { 2545 PHINode *RdxPhi = *it; 2546 assert(RdxPhi && "Unable to recover vectorized PHI"); 2547 2548 // Find the reduction variable descriptor. 2549 assert(Legal->getReductionVars()->count(RdxPhi) && 2550 "Unable to find the reduction variable"); 2551 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2552 (*Legal->getReductionVars())[RdxPhi]; 2553 2554 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2555 2556 // We need to generate a reduction vector from the incoming scalar. 2557 // To do so, we need to generate the 'identity' vector and override 2558 // one of the elements with the incoming scalar reduction. We need 2559 // to do it in the vector-loop preheader. 2560 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2561 2562 // This is the vector-clone of the value that leaves the loop. 2563 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2564 Type *VecTy = VectorExit[0]->getType(); 2565 2566 // Find the reduction identity variable. Zero for addition, or, xor, 2567 // one for multiplication, -1 for And. 2568 Value *Identity; 2569 Value *VectorStart; 2570 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2571 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2572 // MinMax reduction have the start value as their identify. 2573 if (VF == 1) { 2574 VectorStart = Identity = RdxDesc.StartValue; 2575 } else { 2576 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2577 RdxDesc.StartValue, 2578 "minmax.ident"); 2579 } 2580 } else { 2581 // Handle other reduction kinds: 2582 Constant *Iden = 2583 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2584 VecTy->getScalarType()); 2585 if (VF == 1) { 2586 Identity = Iden; 2587 // This vector is the Identity vector where the first element is the 2588 // incoming scalar reduction. 2589 VectorStart = RdxDesc.StartValue; 2590 } else { 2591 Identity = ConstantVector::getSplat(VF, Iden); 2592 2593 // This vector is the Identity vector where the first element is the 2594 // incoming scalar reduction. 2595 VectorStart = Builder.CreateInsertElement(Identity, 2596 RdxDesc.StartValue, Zero); 2597 } 2598 } 2599 2600 // Fix the vector-loop phi. 2601 // We created the induction variable so we know that the 2602 // preheader is the first entry. 2603 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2604 2605 // Reductions do not have to start at zero. They can start with 2606 // any loop invariant values. 2607 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2608 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2609 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2610 VectorParts &Val = getVectorValue(LoopVal); 2611 for (unsigned part = 0; part < UF; ++part) { 2612 // Make sure to add the reduction stat value only to the 2613 // first unroll part. 2614 Value *StartVal = (part == 0) ? VectorStart : Identity; 2615 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2616 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2617 LoopVectorBody.back()); 2618 } 2619 2620 // Before each round, move the insertion point right between 2621 // the PHIs and the values we are going to write. 2622 // This allows us to write both PHINodes and the extractelement 2623 // instructions. 2624 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2625 2626 VectorParts RdxParts; 2627 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2628 for (unsigned part = 0; part < UF; ++part) { 2629 // This PHINode contains the vectorized reduction variable, or 2630 // the initial value vector, if we bypass the vector loop. 2631 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2632 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2633 Value *StartVal = (part == 0) ? VectorStart : Identity; 2634 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2635 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2636 NewPhi->addIncoming(RdxExitVal[part], 2637 LoopVectorBody.back()); 2638 RdxParts.push_back(NewPhi); 2639 } 2640 2641 // Reduce all of the unrolled parts into a single vector. 2642 Value *ReducedPartRdx = RdxParts[0]; 2643 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2644 setDebugLocFromInst(Builder, ReducedPartRdx); 2645 for (unsigned part = 1; part < UF; ++part) { 2646 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2647 // Floating point operations had to be 'fast' to enable the reduction. 2648 ReducedPartRdx = addFastMathFlag( 2649 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2650 ReducedPartRdx, "bin.rdx")); 2651 else 2652 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2653 ReducedPartRdx, RdxParts[part]); 2654 } 2655 2656 if (VF > 1) { 2657 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2658 // and vector ops, reducing the set of values being computed by half each 2659 // round. 2660 assert(isPowerOf2_32(VF) && 2661 "Reduction emission only supported for pow2 vectors!"); 2662 Value *TmpVec = ReducedPartRdx; 2663 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2664 for (unsigned i = VF; i != 1; i >>= 1) { 2665 // Move the upper half of the vector to the lower half. 2666 for (unsigned j = 0; j != i/2; ++j) 2667 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2668 2669 // Fill the rest of the mask with undef. 2670 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2671 UndefValue::get(Builder.getInt32Ty())); 2672 2673 Value *Shuf = 2674 Builder.CreateShuffleVector(TmpVec, 2675 UndefValue::get(TmpVec->getType()), 2676 ConstantVector::get(ShuffleMask), 2677 "rdx.shuf"); 2678 2679 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2680 // Floating point operations had to be 'fast' to enable the reduction. 2681 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2682 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2683 else 2684 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2685 } 2686 2687 // The result is in the first element of the vector. 2688 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2689 Builder.getInt32(0)); 2690 } 2691 2692 // Create a phi node that merges control-flow from the backedge-taken check 2693 // block and the middle block. 2694 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2695 LoopScalarPreHeader->getTerminator()); 2696 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2697 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2698 2699 // Now, we need to fix the users of the reduction variable 2700 // inside and outside of the scalar remainder loop. 2701 // We know that the loop is in LCSSA form. We need to update the 2702 // PHI nodes in the exit blocks. 2703 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2704 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2705 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2706 if (!LCSSAPhi) break; 2707 2708 // All PHINodes need to have a single entry edge, or two if 2709 // we already fixed them. 2710 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2711 2712 // We found our reduction value exit-PHI. Update it with the 2713 // incoming bypass edge. 2714 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2715 // Add an edge coming from the bypass. 2716 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2717 break; 2718 } 2719 }// end of the LCSSA phi scan. 2720 2721 // Fix the scalar loop reduction variable with the incoming reduction sum 2722 // from the vector body and from the backedge value. 2723 int IncomingEdgeBlockIdx = 2724 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2725 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2726 // Pick the other block. 2727 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2728 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2729 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2730 }// end of for each redux variable. 2731 2732 fixLCSSAPHIs(); 2733 2734 // Remove redundant induction instructions. 2735 cse(LoopVectorBody); 2736 } 2737 2738 void InnerLoopVectorizer::fixLCSSAPHIs() { 2739 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2740 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2741 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2742 if (!LCSSAPhi) break; 2743 if (LCSSAPhi->getNumIncomingValues() == 1) 2744 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2745 LoopMiddleBlock); 2746 } 2747 } 2748 2749 InnerLoopVectorizer::VectorParts 2750 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2751 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2752 "Invalid edge"); 2753 2754 // Look for cached value. 2755 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2756 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2757 if (ECEntryIt != MaskCache.end()) 2758 return ECEntryIt->second; 2759 2760 VectorParts SrcMask = createBlockInMask(Src); 2761 2762 // The terminator has to be a branch inst! 2763 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2764 assert(BI && "Unexpected terminator found"); 2765 2766 if (BI->isConditional()) { 2767 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2768 2769 if (BI->getSuccessor(0) != Dst) 2770 for (unsigned part = 0; part < UF; ++part) 2771 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2772 2773 for (unsigned part = 0; part < UF; ++part) 2774 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2775 2776 MaskCache[Edge] = EdgeMask; 2777 return EdgeMask; 2778 } 2779 2780 MaskCache[Edge] = SrcMask; 2781 return SrcMask; 2782 } 2783 2784 InnerLoopVectorizer::VectorParts 2785 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2786 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2787 2788 // Loop incoming mask is all-one. 2789 if (OrigLoop->getHeader() == BB) { 2790 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2791 return getVectorValue(C); 2792 } 2793 2794 // This is the block mask. We OR all incoming edges, and with zero. 2795 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2796 VectorParts BlockMask = getVectorValue(Zero); 2797 2798 // For each pred: 2799 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2800 VectorParts EM = createEdgeMask(*it, BB); 2801 for (unsigned part = 0; part < UF; ++part) 2802 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2803 } 2804 2805 return BlockMask; 2806 } 2807 2808 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2809 InnerLoopVectorizer::VectorParts &Entry, 2810 unsigned UF, unsigned VF, PhiVector *PV) { 2811 PHINode* P = cast<PHINode>(PN); 2812 // Handle reduction variables: 2813 if (Legal->getReductionVars()->count(P)) { 2814 for (unsigned part = 0; part < UF; ++part) { 2815 // This is phase one of vectorizing PHIs. 2816 Type *VecTy = (VF == 1) ? PN->getType() : 2817 VectorType::get(PN->getType(), VF); 2818 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2819 LoopVectorBody.back()-> getFirstInsertionPt()); 2820 } 2821 PV->push_back(P); 2822 return; 2823 } 2824 2825 setDebugLocFromInst(Builder, P); 2826 // Check for PHI nodes that are lowered to vector selects. 2827 if (P->getParent() != OrigLoop->getHeader()) { 2828 // We know that all PHIs in non-header blocks are converted into 2829 // selects, so we don't have to worry about the insertion order and we 2830 // can just use the builder. 2831 // At this point we generate the predication tree. There may be 2832 // duplications since this is a simple recursive scan, but future 2833 // optimizations will clean it up. 2834 2835 unsigned NumIncoming = P->getNumIncomingValues(); 2836 2837 // Generate a sequence of selects of the form: 2838 // SELECT(Mask3, In3, 2839 // SELECT(Mask2, In2, 2840 // ( ...))) 2841 for (unsigned In = 0; In < NumIncoming; In++) { 2842 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2843 P->getParent()); 2844 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2845 2846 for (unsigned part = 0; part < UF; ++part) { 2847 // We might have single edge PHIs (blocks) - use an identity 2848 // 'select' for the first PHI operand. 2849 if (In == 0) 2850 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2851 In0[part]); 2852 else 2853 // Select between the current value and the previous incoming edge 2854 // based on the incoming mask. 2855 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2856 Entry[part], "predphi"); 2857 } 2858 } 2859 return; 2860 } 2861 2862 // This PHINode must be an induction variable. 2863 // Make sure that we know about it. 2864 assert(Legal->getInductionVars()->count(P) && 2865 "Not an induction variable"); 2866 2867 LoopVectorizationLegality::InductionInfo II = 2868 Legal->getInductionVars()->lookup(P); 2869 2870 switch (II.IK) { 2871 case LoopVectorizationLegality::IK_NoInduction: 2872 llvm_unreachable("Unknown induction"); 2873 case LoopVectorizationLegality::IK_IntInduction: { 2874 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2875 Type *PhiTy = P->getType(); 2876 Value *Broadcasted; 2877 if (P == OldInduction) { 2878 // Handle the canonical induction variable. We might have had to 2879 // extend the type. 2880 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2881 } else { 2882 // Handle other induction variables that are now based on the 2883 // canonical one. 2884 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2885 "normalized.idx"); 2886 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2887 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2888 "offset.idx"); 2889 } 2890 Broadcasted = getBroadcastInstrs(Broadcasted); 2891 // After broadcasting the induction variable we need to make the vector 2892 // consecutive by adding 0, 1, 2, etc. 2893 for (unsigned part = 0; part < UF; ++part) 2894 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 2895 return; 2896 } 2897 case LoopVectorizationLegality::IK_ReverseIntInduction: 2898 case LoopVectorizationLegality::IK_PtrInduction: 2899 case LoopVectorizationLegality::IK_ReversePtrInduction: 2900 // Handle reverse integer and pointer inductions. 2901 Value *StartIdx = ExtendedIdx; 2902 // This is the normalized GEP that starts counting at zero. 2903 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 2904 "normalized.idx"); 2905 2906 // Handle the reverse integer induction variable case. 2907 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 2908 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 2909 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 2910 "resize.norm.idx"); 2911 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 2912 "reverse.idx"); 2913 2914 // This is a new value so do not hoist it out. 2915 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 2916 // After broadcasting the induction variable we need to make the 2917 // vector consecutive by adding ... -3, -2, -1, 0. 2918 for (unsigned part = 0; part < UF; ++part) 2919 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 2920 true); 2921 return; 2922 } 2923 2924 // Handle the pointer induction variable case. 2925 assert(P->getType()->isPointerTy() && "Unexpected type."); 2926 2927 // Is this a reverse induction ptr or a consecutive induction ptr. 2928 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 2929 II.IK); 2930 2931 // This is the vector of results. Notice that we don't generate 2932 // vector geps because scalar geps result in better code. 2933 for (unsigned part = 0; part < UF; ++part) { 2934 if (VF == 1) { 2935 int EltIndex = (part) * (Reverse ? -1 : 1); 2936 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2937 Value *GlobalIdx; 2938 if (Reverse) 2939 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2940 else 2941 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2942 2943 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2944 "next.gep"); 2945 Entry[part] = SclrGep; 2946 continue; 2947 } 2948 2949 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 2950 for (unsigned int i = 0; i < VF; ++i) { 2951 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 2952 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2953 Value *GlobalIdx; 2954 if (!Reverse) 2955 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2956 else 2957 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2958 2959 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2960 "next.gep"); 2961 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 2962 Builder.getInt32(i), 2963 "insert.gep"); 2964 } 2965 Entry[part] = VecVal; 2966 } 2967 return; 2968 } 2969 } 2970 2971 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 2972 // For each instruction in the old loop. 2973 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2974 VectorParts &Entry = WidenMap.get(it); 2975 switch (it->getOpcode()) { 2976 case Instruction::Br: 2977 // Nothing to do for PHIs and BR, since we already took care of the 2978 // loop control flow instructions. 2979 continue; 2980 case Instruction::PHI:{ 2981 // Vectorize PHINodes. 2982 widenPHIInstruction(it, Entry, UF, VF, PV); 2983 continue; 2984 }// End of PHI. 2985 2986 case Instruction::Add: 2987 case Instruction::FAdd: 2988 case Instruction::Sub: 2989 case Instruction::FSub: 2990 case Instruction::Mul: 2991 case Instruction::FMul: 2992 case Instruction::UDiv: 2993 case Instruction::SDiv: 2994 case Instruction::FDiv: 2995 case Instruction::URem: 2996 case Instruction::SRem: 2997 case Instruction::FRem: 2998 case Instruction::Shl: 2999 case Instruction::LShr: 3000 case Instruction::AShr: 3001 case Instruction::And: 3002 case Instruction::Or: 3003 case Instruction::Xor: { 3004 // Just widen binops. 3005 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3006 setDebugLocFromInst(Builder, BinOp); 3007 VectorParts &A = getVectorValue(it->getOperand(0)); 3008 VectorParts &B = getVectorValue(it->getOperand(1)); 3009 3010 // Use this vector value for all users of the original instruction. 3011 for (unsigned Part = 0; Part < UF; ++Part) { 3012 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3013 3014 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 3015 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 3016 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 3017 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 3018 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 3019 } 3020 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 3021 VecOp->setIsExact(BinOp->isExact()); 3022 3023 // Copy the fast-math flags. 3024 if (VecOp && isa<FPMathOperator>(V)) 3025 VecOp->setFastMathFlags(it->getFastMathFlags()); 3026 3027 Entry[Part] = V; 3028 } 3029 break; 3030 } 3031 case Instruction::Select: { 3032 // Widen selects. 3033 // If the selector is loop invariant we can create a select 3034 // instruction with a scalar condition. Otherwise, use vector-select. 3035 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3036 OrigLoop); 3037 setDebugLocFromInst(Builder, it); 3038 3039 // The condition can be loop invariant but still defined inside the 3040 // loop. This means that we can't just use the original 'cond' value. 3041 // We have to take the 'vectorized' value and pick the first lane. 3042 // Instcombine will make this a no-op. 3043 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3044 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3045 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3046 3047 Value *ScalarCond = (VF == 1) ? Cond[0] : 3048 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3049 3050 for (unsigned Part = 0; Part < UF; ++Part) { 3051 Entry[Part] = Builder.CreateSelect( 3052 InvariantCond ? ScalarCond : Cond[Part], 3053 Op0[Part], 3054 Op1[Part]); 3055 } 3056 break; 3057 } 3058 3059 case Instruction::ICmp: 3060 case Instruction::FCmp: { 3061 // Widen compares. Generate vector compares. 3062 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3063 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3064 setDebugLocFromInst(Builder, it); 3065 VectorParts &A = getVectorValue(it->getOperand(0)); 3066 VectorParts &B = getVectorValue(it->getOperand(1)); 3067 for (unsigned Part = 0; Part < UF; ++Part) { 3068 Value *C = nullptr; 3069 if (FCmp) 3070 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3071 else 3072 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3073 Entry[Part] = C; 3074 } 3075 break; 3076 } 3077 3078 case Instruction::Store: 3079 case Instruction::Load: 3080 vectorizeMemoryInstruction(it); 3081 break; 3082 case Instruction::ZExt: 3083 case Instruction::SExt: 3084 case Instruction::FPToUI: 3085 case Instruction::FPToSI: 3086 case Instruction::FPExt: 3087 case Instruction::PtrToInt: 3088 case Instruction::IntToPtr: 3089 case Instruction::SIToFP: 3090 case Instruction::UIToFP: 3091 case Instruction::Trunc: 3092 case Instruction::FPTrunc: 3093 case Instruction::BitCast: { 3094 CastInst *CI = dyn_cast<CastInst>(it); 3095 setDebugLocFromInst(Builder, it); 3096 /// Optimize the special case where the source is the induction 3097 /// variable. Notice that we can only optimize the 'trunc' case 3098 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3099 /// c. other casts depend on pointer size. 3100 if (CI->getOperand(0) == OldInduction && 3101 it->getOpcode() == Instruction::Trunc) { 3102 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3103 CI->getType()); 3104 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3105 for (unsigned Part = 0; Part < UF; ++Part) 3106 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3107 break; 3108 } 3109 /// Vectorize casts. 3110 Type *DestTy = (VF == 1) ? CI->getType() : 3111 VectorType::get(CI->getType(), VF); 3112 3113 VectorParts &A = getVectorValue(it->getOperand(0)); 3114 for (unsigned Part = 0; Part < UF; ++Part) 3115 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3116 break; 3117 } 3118 3119 case Instruction::Call: { 3120 // Ignore dbg intrinsics. 3121 if (isa<DbgInfoIntrinsic>(it)) 3122 break; 3123 setDebugLocFromInst(Builder, it); 3124 3125 Module *M = BB->getParent()->getParent(); 3126 CallInst *CI = cast<CallInst>(it); 3127 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3128 assert(ID && "Not an intrinsic call!"); 3129 switch (ID) { 3130 case Intrinsic::lifetime_end: 3131 case Intrinsic::lifetime_start: 3132 scalarizeInstruction(it); 3133 break; 3134 default: 3135 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3136 for (unsigned Part = 0; Part < UF; ++Part) { 3137 SmallVector<Value *, 4> Args; 3138 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3139 if (HasScalarOpd && i == 1) { 3140 Args.push_back(CI->getArgOperand(i)); 3141 continue; 3142 } 3143 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3144 Args.push_back(Arg[Part]); 3145 } 3146 Type *Tys[] = {CI->getType()}; 3147 if (VF > 1) 3148 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3149 3150 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3151 Entry[Part] = Builder.CreateCall(F, Args); 3152 } 3153 break; 3154 } 3155 break; 3156 } 3157 3158 default: 3159 // All other instructions are unsupported. Scalarize them. 3160 scalarizeInstruction(it); 3161 break; 3162 }// end of switch. 3163 }// end of for_each instr. 3164 } 3165 3166 void InnerLoopVectorizer::updateAnalysis() { 3167 // Forget the original basic block. 3168 SE->forgetLoop(OrigLoop); 3169 3170 // Update the dominator tree information. 3171 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3172 "Entry does not dominate exit."); 3173 3174 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3175 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3176 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3177 3178 // Due to if predication of stores we might create a sequence of "if(pred) 3179 // a[i] = ...; " blocks. 3180 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3181 if (i == 0) 3182 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3183 else if (isPredicatedBlock(i)) { 3184 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3185 } else { 3186 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3187 } 3188 } 3189 3190 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3191 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3192 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3193 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3194 3195 DEBUG(DT->verifyDomTree()); 3196 } 3197 3198 /// \brief Check whether it is safe to if-convert this phi node. 3199 /// 3200 /// Phi nodes with constant expressions that can trap are not safe to if 3201 /// convert. 3202 static bool canIfConvertPHINodes(BasicBlock *BB) { 3203 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3204 PHINode *Phi = dyn_cast<PHINode>(I); 3205 if (!Phi) 3206 return true; 3207 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3208 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3209 if (C->canTrap()) 3210 return false; 3211 } 3212 return true; 3213 } 3214 3215 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3216 if (!EnableIfConversion) 3217 return false; 3218 3219 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3220 3221 // A list of pointers that we can safely read and write to. 3222 SmallPtrSet<Value *, 8> SafePointes; 3223 3224 // Collect safe addresses. 3225 for (Loop::block_iterator BI = TheLoop->block_begin(), 3226 BE = TheLoop->block_end(); BI != BE; ++BI) { 3227 BasicBlock *BB = *BI; 3228 3229 if (blockNeedsPredication(BB)) 3230 continue; 3231 3232 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3233 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3234 SafePointes.insert(LI->getPointerOperand()); 3235 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3236 SafePointes.insert(SI->getPointerOperand()); 3237 } 3238 } 3239 3240 // Collect the blocks that need predication. 3241 BasicBlock *Header = TheLoop->getHeader(); 3242 for (Loop::block_iterator BI = TheLoop->block_begin(), 3243 BE = TheLoop->block_end(); BI != BE; ++BI) { 3244 BasicBlock *BB = *BI; 3245 3246 // We don't support switch statements inside loops. 3247 if (!isa<BranchInst>(BB->getTerminator())) 3248 return false; 3249 3250 // We must be able to predicate all blocks that need to be predicated. 3251 if (blockNeedsPredication(BB)) { 3252 if (!blockCanBePredicated(BB, SafePointes)) 3253 return false; 3254 } else if (BB != Header && !canIfConvertPHINodes(BB)) 3255 return false; 3256 3257 } 3258 3259 // We can if-convert this loop. 3260 return true; 3261 } 3262 3263 bool LoopVectorizationLegality::canVectorize() { 3264 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3265 // be canonicalized. 3266 if (!TheLoop->getLoopPreheader()) 3267 return false; 3268 3269 // We can only vectorize innermost loops. 3270 if (TheLoop->getSubLoopsVector().size()) 3271 return false; 3272 3273 // We must have a single backedge. 3274 if (TheLoop->getNumBackEdges() != 1) 3275 return false; 3276 3277 // We must have a single exiting block. 3278 if (!TheLoop->getExitingBlock()) 3279 return false; 3280 3281 // We need to have a loop header. 3282 DEBUG(dbgs() << "LV: Found a loop: " << 3283 TheLoop->getHeader()->getName() << '\n'); 3284 3285 // Check if we can if-convert non-single-bb loops. 3286 unsigned NumBlocks = TheLoop->getNumBlocks(); 3287 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3288 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3289 return false; 3290 } 3291 3292 // ScalarEvolution needs to be able to find the exit count. 3293 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3294 if (ExitCount == SE->getCouldNotCompute()) { 3295 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3296 return false; 3297 } 3298 3299 // Check if we can vectorize the instructions and CFG in this loop. 3300 if (!canVectorizeInstrs()) { 3301 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3302 return false; 3303 } 3304 3305 // Go over each instruction and look at memory deps. 3306 if (!canVectorizeMemory()) { 3307 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3308 return false; 3309 } 3310 3311 // Collect all of the variables that remain uniform after vectorization. 3312 collectLoopUniforms(); 3313 3314 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3315 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3316 <<"!\n"); 3317 3318 // Okay! We can vectorize. At this point we don't have any other mem analysis 3319 // which may limit our maximum vectorization factor, so just return true with 3320 // no restrictions. 3321 return true; 3322 } 3323 3324 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3325 if (Ty->isPointerTy()) 3326 return DL.getIntPtrType(Ty); 3327 3328 // It is possible that char's or short's overflow when we ask for the loop's 3329 // trip count, work around this by changing the type size. 3330 if (Ty->getScalarSizeInBits() < 32) 3331 return Type::getInt32Ty(Ty->getContext()); 3332 3333 return Ty; 3334 } 3335 3336 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3337 Ty0 = convertPointerToIntegerType(DL, Ty0); 3338 Ty1 = convertPointerToIntegerType(DL, Ty1); 3339 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3340 return Ty0; 3341 return Ty1; 3342 } 3343 3344 /// \brief Check that the instruction has outside loop users and is not an 3345 /// identified reduction variable. 3346 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3347 SmallPtrSet<Value *, 4> &Reductions) { 3348 // Reduction instructions are allowed to have exit users. All other 3349 // instructions must not have external users. 3350 if (!Reductions.count(Inst)) 3351 //Check that all of the users of the loop are inside the BB. 3352 for (User *U : Inst->users()) { 3353 Instruction *UI = cast<Instruction>(U); 3354 // This user may be a reduction exit value. 3355 if (!TheLoop->contains(UI)) { 3356 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3357 return true; 3358 } 3359 } 3360 return false; 3361 } 3362 3363 bool LoopVectorizationLegality::canVectorizeInstrs() { 3364 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3365 BasicBlock *Header = TheLoop->getHeader(); 3366 3367 // Look for the attribute signaling the absence of NaNs. 3368 Function &F = *Header->getParent(); 3369 if (F.hasFnAttribute("no-nans-fp-math")) 3370 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3371 AttributeSet::FunctionIndex, 3372 "no-nans-fp-math").getValueAsString() == "true"; 3373 3374 // For each block in the loop. 3375 for (Loop::block_iterator bb = TheLoop->block_begin(), 3376 be = TheLoop->block_end(); bb != be; ++bb) { 3377 3378 // Scan the instructions in the block and look for hazards. 3379 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3380 ++it) { 3381 3382 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3383 Type *PhiTy = Phi->getType(); 3384 // Check that this PHI type is allowed. 3385 if (!PhiTy->isIntegerTy() && 3386 !PhiTy->isFloatingPointTy() && 3387 !PhiTy->isPointerTy()) { 3388 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3389 return false; 3390 } 3391 3392 // If this PHINode is not in the header block, then we know that we 3393 // can convert it to select during if-conversion. No need to check if 3394 // the PHIs in this block are induction or reduction variables. 3395 if (*bb != Header) { 3396 // Check that this instruction has no outside users or is an 3397 // identified reduction value with an outside user. 3398 if(!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3399 continue; 3400 return false; 3401 } 3402 3403 // We only allow if-converted PHIs with more than two incoming values. 3404 if (Phi->getNumIncomingValues() != 2) { 3405 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3406 return false; 3407 } 3408 3409 // This is the value coming from the preheader. 3410 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3411 // Check if this is an induction variable. 3412 InductionKind IK = isInductionVariable(Phi); 3413 3414 if (IK_NoInduction != IK) { 3415 // Get the widest type. 3416 if (!WidestIndTy) 3417 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3418 else 3419 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3420 3421 // Int inductions are special because we only allow one IV. 3422 if (IK == IK_IntInduction) { 3423 // Use the phi node with the widest type as induction. Use the last 3424 // one if there are multiple (no good reason for doing this other 3425 // than it is expedient). 3426 if (!Induction || PhiTy == WidestIndTy) 3427 Induction = Phi; 3428 } 3429 3430 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3431 Inductions[Phi] = InductionInfo(StartValue, IK); 3432 3433 // Until we explicitly handle the case of an induction variable with 3434 // an outside loop user we have to give up vectorizing this loop. 3435 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3436 return false; 3437 3438 continue; 3439 } 3440 3441 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3442 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3443 continue; 3444 } 3445 if (AddReductionVar(Phi, RK_IntegerMult)) { 3446 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3447 continue; 3448 } 3449 if (AddReductionVar(Phi, RK_IntegerOr)) { 3450 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3451 continue; 3452 } 3453 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3454 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3455 continue; 3456 } 3457 if (AddReductionVar(Phi, RK_IntegerXor)) { 3458 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3459 continue; 3460 } 3461 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3462 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3463 continue; 3464 } 3465 if (AddReductionVar(Phi, RK_FloatMult)) { 3466 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3467 continue; 3468 } 3469 if (AddReductionVar(Phi, RK_FloatAdd)) { 3470 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3471 continue; 3472 } 3473 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3474 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3475 "\n"); 3476 continue; 3477 } 3478 3479 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3480 return false; 3481 }// end of PHI handling 3482 3483 // We still don't handle functions. However, we can ignore dbg intrinsic 3484 // calls and we do handle certain intrinsic and libm functions. 3485 CallInst *CI = dyn_cast<CallInst>(it); 3486 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3487 DEBUG(dbgs() << "LV: Found a call site.\n"); 3488 return false; 3489 } 3490 3491 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3492 // second argument is the same (i.e. loop invariant) 3493 if (CI && 3494 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3495 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3496 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3497 return false; 3498 } 3499 } 3500 3501 // Check that the instruction return type is vectorizable. 3502 // Also, we can't vectorize extractelement instructions. 3503 if ((!VectorType::isValidElementType(it->getType()) && 3504 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3505 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3506 return false; 3507 } 3508 3509 // Check that the stored type is vectorizable. 3510 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3511 Type *T = ST->getValueOperand()->getType(); 3512 if (!VectorType::isValidElementType(T)) 3513 return false; 3514 if (EnableMemAccessVersioning) 3515 collectStridedAcccess(ST); 3516 } 3517 3518 if (EnableMemAccessVersioning) 3519 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3520 collectStridedAcccess(LI); 3521 3522 // Reduction instructions are allowed to have exit users. 3523 // All other instructions must not have external users. 3524 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3525 return false; 3526 3527 } // next instr. 3528 3529 } 3530 3531 if (!Induction) { 3532 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3533 if (Inductions.empty()) 3534 return false; 3535 } 3536 3537 return true; 3538 } 3539 3540 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3541 /// return the induction operand of the gep pointer. 3542 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3543 const DataLayout *DL, Loop *Lp) { 3544 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3545 if (!GEP) 3546 return Ptr; 3547 3548 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3549 3550 // Check that all of the gep indices are uniform except for our induction 3551 // operand. 3552 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3553 if (i != InductionOperand && 3554 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3555 return Ptr; 3556 return GEP->getOperand(InductionOperand); 3557 } 3558 3559 ///\brief Look for a cast use of the passed value. 3560 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3561 Value *UniqueCast = nullptr; 3562 for (User *U : Ptr->users()) { 3563 CastInst *CI = dyn_cast<CastInst>(U); 3564 if (CI && CI->getType() == Ty) { 3565 if (!UniqueCast) 3566 UniqueCast = CI; 3567 else 3568 return nullptr; 3569 } 3570 } 3571 return UniqueCast; 3572 } 3573 3574 ///\brief Get the stride of a pointer access in a loop. 3575 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3576 /// pointer to the Value, or null otherwise. 3577 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3578 const DataLayout *DL, Loop *Lp) { 3579 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3580 if (!PtrTy || PtrTy->isAggregateType()) 3581 return nullptr; 3582 3583 // Try to remove a gep instruction to make the pointer (actually index at this 3584 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3585 // pointer, otherwise, we are analyzing the index. 3586 Value *OrigPtr = Ptr; 3587 3588 // The size of the pointer access. 3589 int64_t PtrAccessSize = 1; 3590 3591 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3592 const SCEV *V = SE->getSCEV(Ptr); 3593 3594 if (Ptr != OrigPtr) 3595 // Strip off casts. 3596 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3597 V = C->getOperand(); 3598 3599 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3600 if (!S) 3601 return nullptr; 3602 3603 V = S->getStepRecurrence(*SE); 3604 if (!V) 3605 return nullptr; 3606 3607 // Strip off the size of access multiplication if we are still analyzing the 3608 // pointer. 3609 if (OrigPtr == Ptr) { 3610 DL->getTypeAllocSize(PtrTy->getElementType()); 3611 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3612 if (M->getOperand(0)->getSCEVType() != scConstant) 3613 return nullptr; 3614 3615 const APInt &APStepVal = 3616 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3617 3618 // Huge step value - give up. 3619 if (APStepVal.getBitWidth() > 64) 3620 return nullptr; 3621 3622 int64_t StepVal = APStepVal.getSExtValue(); 3623 if (PtrAccessSize != StepVal) 3624 return nullptr; 3625 V = M->getOperand(1); 3626 } 3627 } 3628 3629 // Strip off casts. 3630 Type *StripedOffRecurrenceCast = nullptr; 3631 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3632 StripedOffRecurrenceCast = C->getType(); 3633 V = C->getOperand(); 3634 } 3635 3636 // Look for the loop invariant symbolic value. 3637 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3638 if (!U) 3639 return nullptr; 3640 3641 Value *Stride = U->getValue(); 3642 if (!Lp->isLoopInvariant(Stride)) 3643 return nullptr; 3644 3645 // If we have stripped off the recurrence cast we have to make sure that we 3646 // return the value that is used in this loop so that we can replace it later. 3647 if (StripedOffRecurrenceCast) 3648 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3649 3650 return Stride; 3651 } 3652 3653 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3654 Value *Ptr = nullptr; 3655 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3656 Ptr = LI->getPointerOperand(); 3657 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3658 Ptr = SI->getPointerOperand(); 3659 else 3660 return; 3661 3662 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3663 if (!Stride) 3664 return; 3665 3666 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3667 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3668 Strides[Ptr] = Stride; 3669 StrideSet.insert(Stride); 3670 } 3671 3672 void LoopVectorizationLegality::collectLoopUniforms() { 3673 // We now know that the loop is vectorizable! 3674 // Collect variables that will remain uniform after vectorization. 3675 std::vector<Value*> Worklist; 3676 BasicBlock *Latch = TheLoop->getLoopLatch(); 3677 3678 // Start with the conditional branch and walk up the block. 3679 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3680 3681 // Also add all consecutive pointer values; these values will be uniform 3682 // after vectorization (and subsequent cleanup) and, until revectorization is 3683 // supported, all dependencies must also be uniform. 3684 for (Loop::block_iterator B = TheLoop->block_begin(), 3685 BE = TheLoop->block_end(); B != BE; ++B) 3686 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3687 I != IE; ++I) 3688 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3689 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3690 3691 while (Worklist.size()) { 3692 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3693 Worklist.pop_back(); 3694 3695 // Look at instructions inside this loop. 3696 // Stop when reaching PHI nodes. 3697 // TODO: we need to follow values all over the loop, not only in this block. 3698 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3699 continue; 3700 3701 // This is a known uniform. 3702 Uniforms.insert(I); 3703 3704 // Insert all operands. 3705 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3706 } 3707 } 3708 3709 namespace { 3710 /// \brief Analyses memory accesses in a loop. 3711 /// 3712 /// Checks whether run time pointer checks are needed and builds sets for data 3713 /// dependence checking. 3714 class AccessAnalysis { 3715 public: 3716 /// \brief Read or write access location. 3717 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3718 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3719 3720 /// \brief Set of potential dependent memory accesses. 3721 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3722 3723 AccessAnalysis(const DataLayout *Dl, DepCandidates &DA) : 3724 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 3725 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 3726 3727 /// \brief Register a load and whether it is only read from. 3728 void addLoad(Value *Ptr, bool IsReadOnly) { 3729 Accesses.insert(MemAccessInfo(Ptr, false)); 3730 if (IsReadOnly) 3731 ReadOnlyPtr.insert(Ptr); 3732 } 3733 3734 /// \brief Register a store. 3735 void addStore(Value *Ptr) { 3736 Accesses.insert(MemAccessInfo(Ptr, true)); 3737 } 3738 3739 /// \brief Check whether we can check the pointers at runtime for 3740 /// non-intersection. 3741 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3742 unsigned &NumComparisons, ScalarEvolution *SE, 3743 Loop *TheLoop, ValueToValueMap &Strides, 3744 bool ShouldCheckStride = false); 3745 3746 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3747 /// and builds sets of dependent accesses. 3748 void buildDependenceSets() { 3749 // Process read-write pointers first. 3750 processMemAccesses(false); 3751 // Next, process read pointers. 3752 processMemAccesses(true); 3753 } 3754 3755 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3756 3757 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3758 void resetDepChecks() { CheckDeps.clear(); } 3759 3760 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3761 3762 private: 3763 typedef SetVector<MemAccessInfo> PtrAccessSet; 3764 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 3765 3766 /// \brief Go over all memory access or only the deferred ones if 3767 /// \p UseDeferred is true and check whether runtime pointer checks are needed 3768 /// and build sets of dependency check candidates. 3769 void processMemAccesses(bool UseDeferred); 3770 3771 /// Set of all accesses. 3772 PtrAccessSet Accesses; 3773 3774 /// Set of access to check after all writes have been processed. 3775 PtrAccessSet DeferredAccesses; 3776 3777 /// Map of pointers to last access encountered. 3778 UnderlyingObjToAccessMap ObjToLastAccess; 3779 3780 /// Set of accesses that need a further dependence check. 3781 MemAccessInfoSet CheckDeps; 3782 3783 /// Set of pointers that are read only. 3784 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3785 3786 /// Set of underlying objects already written to. 3787 SmallPtrSet<Value*, 16> WriteObjects; 3788 3789 const DataLayout *DL; 3790 3791 /// Sets of potentially dependent accesses - members of one set share an 3792 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 3793 /// dependence check. 3794 DepCandidates &DepCands; 3795 3796 bool AreAllWritesIdentified; 3797 bool AreAllReadsIdentified; 3798 bool IsRTCheckNeeded; 3799 }; 3800 3801 } // end anonymous namespace 3802 3803 /// \brief Check whether a pointer can participate in a runtime bounds check. 3804 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 3805 Value *Ptr) { 3806 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 3807 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3808 if (!AR) 3809 return false; 3810 3811 return AR->isAffine(); 3812 } 3813 3814 /// \brief Check the stride of the pointer and ensure that it does not wrap in 3815 /// the address space. 3816 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 3817 const Loop *Lp, ValueToValueMap &StridesMap); 3818 3819 bool AccessAnalysis::canCheckPtrAtRT( 3820 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3821 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 3822 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 3823 // Find pointers with computable bounds. We are going to use this information 3824 // to place a runtime bound check. 3825 unsigned NumReadPtrChecks = 0; 3826 unsigned NumWritePtrChecks = 0; 3827 bool CanDoRT = true; 3828 3829 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 3830 // We assign consecutive id to access from different dependence sets. 3831 // Accesses within the same set don't need a runtime check. 3832 unsigned RunningDepId = 1; 3833 DenseMap<Value *, unsigned> DepSetId; 3834 3835 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 3836 AI != AE; ++AI) { 3837 const MemAccessInfo &Access = *AI; 3838 Value *Ptr = Access.getPointer(); 3839 bool IsWrite = Access.getInt(); 3840 3841 // Just add write checks if we have both. 3842 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true))) 3843 continue; 3844 3845 if (IsWrite) 3846 ++NumWritePtrChecks; 3847 else 3848 ++NumReadPtrChecks; 3849 3850 if (hasComputableBounds(SE, StridesMap, Ptr) && 3851 // When we run after a failing dependency check we have to make sure we 3852 // don't have wrapping pointers. 3853 (!ShouldCheckStride || 3854 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 3855 // The id of the dependence set. 3856 unsigned DepId; 3857 3858 if (IsDepCheckNeeded) { 3859 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 3860 unsigned &LeaderId = DepSetId[Leader]; 3861 if (!LeaderId) 3862 LeaderId = RunningDepId++; 3863 DepId = LeaderId; 3864 } else 3865 // Each access has its own dependence set. 3866 DepId = RunningDepId++; 3867 3868 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap); 3869 3870 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 3871 } else { 3872 CanDoRT = false; 3873 } 3874 } 3875 3876 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 3877 NumComparisons = 0; // Only one dependence set. 3878 else { 3879 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 3880 NumWritePtrChecks - 1)); 3881 } 3882 3883 // If the pointers that we would use for the bounds comparison have different 3884 // address spaces, assume the values aren't directly comparable, so we can't 3885 // use them for the runtime check. We also have to assume they could 3886 // overlap. In the future there should be metadata for whether address spaces 3887 // are disjoint. 3888 unsigned NumPointers = RtCheck.Pointers.size(); 3889 for (unsigned i = 0; i < NumPointers; ++i) { 3890 for (unsigned j = i + 1; j < NumPointers; ++j) { 3891 // Only need to check pointers between two different dependency sets. 3892 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 3893 continue; 3894 3895 Value *PtrI = RtCheck.Pointers[i]; 3896 Value *PtrJ = RtCheck.Pointers[j]; 3897 3898 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 3899 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 3900 if (ASi != ASj) { 3901 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 3902 " different address spaces\n"); 3903 return false; 3904 } 3905 } 3906 } 3907 3908 return CanDoRT; 3909 } 3910 3911 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 3912 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 3913 } 3914 3915 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 3916 // We process the set twice: first we process read-write pointers, last we 3917 // process read-only pointers. This allows us to skip dependence tests for 3918 // read-only pointers. 3919 3920 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 3921 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 3922 const MemAccessInfo &Access = *AI; 3923 Value *Ptr = Access.getPointer(); 3924 bool IsWrite = Access.getInt(); 3925 3926 DepCands.insert(Access); 3927 3928 // Memorize read-only pointers for later processing and skip them in the 3929 // first round (they need to be checked after we have seen all write 3930 // pointers). Note: we also mark pointer that are not consecutive as 3931 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 3932 // second check for "!IsWrite". 3933 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 3934 if (!UseDeferred && IsReadOnlyPtr) { 3935 DeferredAccesses.insert(Access); 3936 continue; 3937 } 3938 3939 bool NeedDepCheck = false; 3940 // Check whether there is the possibility of dependency because of 3941 // underlying objects being the same. 3942 typedef SmallVector<Value*, 16> ValueVector; 3943 ValueVector TempObjects; 3944 GetUnderlyingObjects(Ptr, TempObjects, DL); 3945 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 3946 UI != UE; ++UI) { 3947 Value *UnderlyingObj = *UI; 3948 3949 // If this is a write then it needs to be an identified object. If this a 3950 // read and all writes (so far) are identified function scope objects we 3951 // don't need an identified underlying object but only an Argument (the 3952 // next write is going to invalidate this assumption if it is 3953 // unidentified). 3954 // This is a micro-optimization for the case where all writes are 3955 // identified and we have one argument pointer. 3956 // Otherwise, we do need a runtime check. 3957 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 3958 (!IsWrite && (!AreAllWritesIdentified || 3959 !isa<Argument>(UnderlyingObj)) && 3960 !isIdentifiedObject(UnderlyingObj))) { 3961 DEBUG(dbgs() << "LV: Found an unidentified " << 3962 (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj << 3963 "\n"); 3964 IsRTCheckNeeded = (IsRTCheckNeeded || 3965 !isIdentifiedObject(UnderlyingObj) || 3966 !AreAllReadsIdentified); 3967 3968 if (IsWrite) 3969 AreAllWritesIdentified = false; 3970 if (!IsWrite) 3971 AreAllReadsIdentified = false; 3972 } 3973 3974 // If this is a write - check other reads and writes for conflicts. If 3975 // this is a read only check other writes for conflicts (but only if there 3976 // is no other write to the ptr - this is an optimization to catch "a[i] = 3977 // a[i] + " without having to do a dependence check). 3978 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 3979 NeedDepCheck = true; 3980 3981 if (IsWrite) 3982 WriteObjects.insert(UnderlyingObj); 3983 3984 // Create sets of pointers connected by shared underlying objects. 3985 UnderlyingObjToAccessMap::iterator Prev = 3986 ObjToLastAccess.find(UnderlyingObj); 3987 if (Prev != ObjToLastAccess.end()) 3988 DepCands.unionSets(Access, Prev->second); 3989 3990 ObjToLastAccess[UnderlyingObj] = Access; 3991 } 3992 3993 if (NeedDepCheck) 3994 CheckDeps.insert(Access); 3995 } 3996 } 3997 3998 namespace { 3999 /// \brief Checks memory dependences among accesses to the same underlying 4000 /// object to determine whether there vectorization is legal or not (and at 4001 /// which vectorization factor). 4002 /// 4003 /// This class works under the assumption that we already checked that memory 4004 /// locations with different underlying pointers are "must-not alias". 4005 /// We use the ScalarEvolution framework to symbolically evalutate access 4006 /// functions pairs. Since we currently don't restructure the loop we can rely 4007 /// on the program order of memory accesses to determine their safety. 4008 /// At the moment we will only deem accesses as safe for: 4009 /// * A negative constant distance assuming program order. 4010 /// 4011 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4012 /// a[i] = tmp; y = a[i]; 4013 /// 4014 /// The latter case is safe because later checks guarantuee that there can't 4015 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4016 /// the same variable: a header phi can only be an induction or a reduction, a 4017 /// reduction can't have a memory sink, an induction can't have a memory 4018 /// source). This is important and must not be violated (or we have to 4019 /// resort to checking for cycles through memory). 4020 /// 4021 /// * A positive constant distance assuming program order that is bigger 4022 /// than the biggest memory access. 4023 /// 4024 /// tmp = a[i] OR b[i] = x 4025 /// a[i+2] = tmp y = b[i+2]; 4026 /// 4027 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4028 /// 4029 /// * Zero distances and all accesses have the same size. 4030 /// 4031 class MemoryDepChecker { 4032 public: 4033 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4034 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4035 4036 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4037 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4038 ShouldRetryWithRuntimeCheck(false) {} 4039 4040 /// \brief Register the location (instructions are given increasing numbers) 4041 /// of a write access. 4042 void addAccess(StoreInst *SI) { 4043 Value *Ptr = SI->getPointerOperand(); 4044 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4045 InstMap.push_back(SI); 4046 ++AccessIdx; 4047 } 4048 4049 /// \brief Register the location (instructions are given increasing numbers) 4050 /// of a write access. 4051 void addAccess(LoadInst *LI) { 4052 Value *Ptr = LI->getPointerOperand(); 4053 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4054 InstMap.push_back(LI); 4055 ++AccessIdx; 4056 } 4057 4058 /// \brief Check whether the dependencies between the accesses are safe. 4059 /// 4060 /// Only checks sets with elements in \p CheckDeps. 4061 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4062 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4063 4064 /// \brief The maximum number of bytes of a vector register we can vectorize 4065 /// the accesses safely with. 4066 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4067 4068 /// \brief In same cases when the dependency check fails we can still 4069 /// vectorize the loop with a dynamic array access check. 4070 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4071 4072 private: 4073 ScalarEvolution *SE; 4074 const DataLayout *DL; 4075 const Loop *InnermostLoop; 4076 4077 /// \brief Maps access locations (ptr, read/write) to program order. 4078 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4079 4080 /// \brief Memory access instructions in program order. 4081 SmallVector<Instruction *, 16> InstMap; 4082 4083 /// \brief The program order index to be used for the next instruction. 4084 unsigned AccessIdx; 4085 4086 // We can access this many bytes in parallel safely. 4087 unsigned MaxSafeDepDistBytes; 4088 4089 /// \brief If we see a non-constant dependence distance we can still try to 4090 /// vectorize this loop with runtime checks. 4091 bool ShouldRetryWithRuntimeCheck; 4092 4093 /// \brief Check whether there is a plausible dependence between the two 4094 /// accesses. 4095 /// 4096 /// Access \p A must happen before \p B in program order. The two indices 4097 /// identify the index into the program order map. 4098 /// 4099 /// This function checks whether there is a plausible dependence (or the 4100 /// absence of such can't be proved) between the two accesses. If there is a 4101 /// plausible dependence but the dependence distance is bigger than one 4102 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4103 /// distance is smaller than any other distance encountered so far). 4104 /// Otherwise, this function returns true signaling a possible dependence. 4105 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4106 const MemAccessInfo &B, unsigned BIdx, 4107 ValueToValueMap &Strides); 4108 4109 /// \brief Check whether the data dependence could prevent store-load 4110 /// forwarding. 4111 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4112 }; 4113 4114 } // end anonymous namespace 4115 4116 static bool isInBoundsGep(Value *Ptr) { 4117 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4118 return GEP->isInBounds(); 4119 return false; 4120 } 4121 4122 /// \brief Check whether the access through \p Ptr has a constant stride. 4123 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4124 const Loop *Lp, ValueToValueMap &StridesMap) { 4125 const Type *Ty = Ptr->getType(); 4126 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4127 4128 // Make sure that the pointer does not point to aggregate types. 4129 const PointerType *PtrTy = cast<PointerType>(Ty); 4130 if (PtrTy->getElementType()->isAggregateType()) { 4131 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4132 "\n"); 4133 return 0; 4134 } 4135 4136 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4137 4138 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4139 if (!AR) { 4140 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4141 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4142 return 0; 4143 } 4144 4145 // The accesss function must stride over the innermost loop. 4146 if (Lp != AR->getLoop()) { 4147 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4148 *Ptr << " SCEV: " << *PtrScev << "\n"); 4149 } 4150 4151 // The address calculation must not wrap. Otherwise, a dependence could be 4152 // inverted. 4153 // An inbounds getelementptr that is a AddRec with a unit stride 4154 // cannot wrap per definition. The unit stride requirement is checked later. 4155 // An getelementptr without an inbounds attribute and unit stride would have 4156 // to access the pointer value "0" which is undefined behavior in address 4157 // space 0, therefore we can also vectorize this case. 4158 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4159 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4160 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4161 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4162 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4163 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4164 return 0; 4165 } 4166 4167 // Check the step is constant. 4168 const SCEV *Step = AR->getStepRecurrence(*SE); 4169 4170 // Calculate the pointer stride and check if it is consecutive. 4171 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4172 if (!C) { 4173 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4174 " SCEV: " << *PtrScev << "\n"); 4175 return 0; 4176 } 4177 4178 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4179 const APInt &APStepVal = C->getValue()->getValue(); 4180 4181 // Huge step value - give up. 4182 if (APStepVal.getBitWidth() > 64) 4183 return 0; 4184 4185 int64_t StepVal = APStepVal.getSExtValue(); 4186 4187 // Strided access. 4188 int64_t Stride = StepVal / Size; 4189 int64_t Rem = StepVal % Size; 4190 if (Rem) 4191 return 0; 4192 4193 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4194 // know we can't "wrap around the address space". In case of address space 4195 // zero we know that this won't happen without triggering undefined behavior. 4196 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4197 Stride != 1 && Stride != -1) 4198 return 0; 4199 4200 return Stride; 4201 } 4202 4203 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4204 unsigned TypeByteSize) { 4205 // If loads occur at a distance that is not a multiple of a feasible vector 4206 // factor store-load forwarding does not take place. 4207 // Positive dependences might cause troubles because vectorizing them might 4208 // prevent store-load forwarding making vectorized code run a lot slower. 4209 // a[i] = a[i-3] ^ a[i-8]; 4210 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4211 // hence on your typical architecture store-load forwarding does not take 4212 // place. Vectorizing in such cases does not make sense. 4213 // Store-load forwarding distance. 4214 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4215 // Maximum vector factor. 4216 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4217 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4218 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4219 4220 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4221 vf *= 2) { 4222 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4223 MaxVFWithoutSLForwardIssues = (vf >>=1); 4224 break; 4225 } 4226 } 4227 4228 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4229 DEBUG(dbgs() << "LV: Distance " << Distance << 4230 " that could cause a store-load forwarding conflict\n"); 4231 return true; 4232 } 4233 4234 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4235 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4236 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4237 return false; 4238 } 4239 4240 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4241 const MemAccessInfo &B, unsigned BIdx, 4242 ValueToValueMap &Strides) { 4243 assert (AIdx < BIdx && "Must pass arguments in program order"); 4244 4245 Value *APtr = A.getPointer(); 4246 Value *BPtr = B.getPointer(); 4247 bool AIsWrite = A.getInt(); 4248 bool BIsWrite = B.getInt(); 4249 4250 // Two reads are independent. 4251 if (!AIsWrite && !BIsWrite) 4252 return false; 4253 4254 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4255 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4256 4257 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4258 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4259 4260 const SCEV *Src = AScev; 4261 const SCEV *Sink = BScev; 4262 4263 // If the induction step is negative we have to invert source and sink of the 4264 // dependence. 4265 if (StrideAPtr < 0) { 4266 //Src = BScev; 4267 //Sink = AScev; 4268 std::swap(APtr, BPtr); 4269 std::swap(Src, Sink); 4270 std::swap(AIsWrite, BIsWrite); 4271 std::swap(AIdx, BIdx); 4272 std::swap(StrideAPtr, StrideBPtr); 4273 } 4274 4275 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4276 4277 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4278 << "(Induction step: " << StrideAPtr << ")\n"); 4279 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4280 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4281 4282 // Need consecutive accesses. We don't want to vectorize 4283 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4284 // the address space. 4285 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4286 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4287 return true; 4288 } 4289 4290 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4291 if (!C) { 4292 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4293 ShouldRetryWithRuntimeCheck = true; 4294 return true; 4295 } 4296 4297 Type *ATy = APtr->getType()->getPointerElementType(); 4298 Type *BTy = BPtr->getType()->getPointerElementType(); 4299 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4300 4301 // Negative distances are not plausible dependencies. 4302 const APInt &Val = C->getValue()->getValue(); 4303 if (Val.isNegative()) { 4304 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4305 if (IsTrueDataDependence && 4306 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4307 ATy != BTy)) 4308 return true; 4309 4310 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4311 return false; 4312 } 4313 4314 // Write to the same location with the same size. 4315 // Could be improved to assert type sizes are the same (i32 == float, etc). 4316 if (Val == 0) { 4317 if (ATy == BTy) 4318 return false; 4319 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4320 return true; 4321 } 4322 4323 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4324 4325 // Positive distance bigger than max vectorization factor. 4326 if (ATy != BTy) { 4327 DEBUG(dbgs() << 4328 "LV: ReadWrite-Write positive dependency with different types\n"); 4329 return false; 4330 } 4331 4332 unsigned Distance = (unsigned) Val.getZExtValue(); 4333 4334 // Bail out early if passed-in parameters make vectorization not feasible. 4335 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4336 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4337 4338 // The distance must be bigger than the size needed for a vectorized version 4339 // of the operation and the size of the vectorized operation must not be 4340 // bigger than the currrent maximum size. 4341 if (Distance < 2*TypeByteSize || 4342 2*TypeByteSize > MaxSafeDepDistBytes || 4343 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4344 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4345 << Val.getSExtValue() << '\n'); 4346 return true; 4347 } 4348 4349 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4350 Distance : MaxSafeDepDistBytes; 4351 4352 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4353 if (IsTrueDataDependence && 4354 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4355 return true; 4356 4357 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4358 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4359 4360 return false; 4361 } 4362 4363 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4364 MemAccessInfoSet &CheckDeps, 4365 ValueToValueMap &Strides) { 4366 4367 MaxSafeDepDistBytes = -1U; 4368 while (!CheckDeps.empty()) { 4369 MemAccessInfo CurAccess = *CheckDeps.begin(); 4370 4371 // Get the relevant memory access set. 4372 EquivalenceClasses<MemAccessInfo>::iterator I = 4373 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4374 4375 // Check accesses within this set. 4376 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4377 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4378 4379 // Check every access pair. 4380 while (AI != AE) { 4381 CheckDeps.erase(*AI); 4382 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4383 while (OI != AE) { 4384 // Check every accessing instruction pair in program order. 4385 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4386 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4387 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4388 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4389 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4390 return false; 4391 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4392 return false; 4393 } 4394 ++OI; 4395 } 4396 AI++; 4397 } 4398 } 4399 return true; 4400 } 4401 4402 bool LoopVectorizationLegality::canVectorizeMemory() { 4403 4404 typedef SmallVector<Value*, 16> ValueVector; 4405 typedef SmallPtrSet<Value*, 16> ValueSet; 4406 4407 // Holds the Load and Store *instructions*. 4408 ValueVector Loads; 4409 ValueVector Stores; 4410 4411 // Holds all the different accesses in the loop. 4412 unsigned NumReads = 0; 4413 unsigned NumReadWrites = 0; 4414 4415 PtrRtCheck.Pointers.clear(); 4416 PtrRtCheck.Need = false; 4417 4418 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4419 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4420 4421 // For each block. 4422 for (Loop::block_iterator bb = TheLoop->block_begin(), 4423 be = TheLoop->block_end(); bb != be; ++bb) { 4424 4425 // Scan the BB and collect legal loads and stores. 4426 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4427 ++it) { 4428 4429 // If this is a load, save it. If this instruction can read from memory 4430 // but is not a load, then we quit. Notice that we don't handle function 4431 // calls that read or write. 4432 if (it->mayReadFromMemory()) { 4433 // Many math library functions read the rounding mode. We will only 4434 // vectorize a loop if it contains known function calls that don't set 4435 // the flag. Therefore, it is safe to ignore this read from memory. 4436 CallInst *Call = dyn_cast<CallInst>(it); 4437 if (Call && getIntrinsicIDForCall(Call, TLI)) 4438 continue; 4439 4440 LoadInst *Ld = dyn_cast<LoadInst>(it); 4441 if (!Ld) return false; 4442 if (!Ld->isSimple() && !IsAnnotatedParallel) { 4443 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4444 return false; 4445 } 4446 NumLoads++; 4447 Loads.push_back(Ld); 4448 DepChecker.addAccess(Ld); 4449 continue; 4450 } 4451 4452 // Save 'store' instructions. Abort if other instructions write to memory. 4453 if (it->mayWriteToMemory()) { 4454 StoreInst *St = dyn_cast<StoreInst>(it); 4455 if (!St) return false; 4456 if (!St->isSimple() && !IsAnnotatedParallel) { 4457 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4458 return false; 4459 } 4460 NumStores++; 4461 Stores.push_back(St); 4462 DepChecker.addAccess(St); 4463 } 4464 } // Next instr. 4465 } // Next block. 4466 4467 // Now we have two lists that hold the loads and the stores. 4468 // Next, we find the pointers that they use. 4469 4470 // Check if we see any stores. If there are no stores, then we don't 4471 // care if the pointers are *restrict*. 4472 if (!Stores.size()) { 4473 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4474 return true; 4475 } 4476 4477 AccessAnalysis::DepCandidates DependentAccesses; 4478 AccessAnalysis Accesses(DL, DependentAccesses); 4479 4480 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4481 // multiple times on the same object. If the ptr is accessed twice, once 4482 // for read and once for write, it will only appear once (on the write 4483 // list). This is okay, since we are going to check for conflicts between 4484 // writes and between reads and writes, but not between reads and reads. 4485 ValueSet Seen; 4486 4487 ValueVector::iterator I, IE; 4488 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4489 StoreInst *ST = cast<StoreInst>(*I); 4490 Value* Ptr = ST->getPointerOperand(); 4491 4492 if (isUniform(Ptr)) { 4493 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4494 return false; 4495 } 4496 4497 // If we did *not* see this pointer before, insert it to the read-write 4498 // list. At this phase it is only a 'write' list. 4499 if (Seen.insert(Ptr)) { 4500 ++NumReadWrites; 4501 Accesses.addStore(Ptr); 4502 } 4503 } 4504 4505 if (IsAnnotatedParallel) { 4506 DEBUG(dbgs() 4507 << "LV: A loop annotated parallel, ignore memory dependency " 4508 << "checks.\n"); 4509 return true; 4510 } 4511 4512 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4513 LoadInst *LD = cast<LoadInst>(*I); 4514 Value* Ptr = LD->getPointerOperand(); 4515 // If we did *not* see this pointer before, insert it to the 4516 // read list. If we *did* see it before, then it is already in 4517 // the read-write list. This allows us to vectorize expressions 4518 // such as A[i] += x; Because the address of A[i] is a read-write 4519 // pointer. This only works if the index of A[i] is consecutive. 4520 // If the address of i is unknown (for example A[B[i]]) then we may 4521 // read a few words, modify, and write a few words, and some of the 4522 // words may be written to the same address. 4523 bool IsReadOnlyPtr = false; 4524 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4525 ++NumReads; 4526 IsReadOnlyPtr = true; 4527 } 4528 Accesses.addLoad(Ptr, IsReadOnlyPtr); 4529 } 4530 4531 // If we write (or read-write) to a single destination and there are no 4532 // other reads in this loop then is it safe to vectorize. 4533 if (NumReadWrites == 1 && NumReads == 0) { 4534 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4535 return true; 4536 } 4537 4538 // Build dependence sets and check whether we need a runtime pointer bounds 4539 // check. 4540 Accesses.buildDependenceSets(); 4541 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4542 4543 // Find pointers with computable bounds. We are going to use this information 4544 // to place a runtime bound check. 4545 unsigned NumComparisons = 0; 4546 bool CanDoRT = false; 4547 if (NeedRTCheck) 4548 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4549 Strides); 4550 4551 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4552 " pointer comparisons.\n"); 4553 4554 // If we only have one set of dependences to check pointers among we don't 4555 // need a runtime check. 4556 if (NumComparisons == 0 && NeedRTCheck) 4557 NeedRTCheck = false; 4558 4559 // Check that we did not collect too many pointers or found an unsizeable 4560 // pointer. 4561 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4562 PtrRtCheck.reset(); 4563 CanDoRT = false; 4564 } 4565 4566 if (CanDoRT) { 4567 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4568 } 4569 4570 if (NeedRTCheck && !CanDoRT) { 4571 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4572 "the array bounds.\n"); 4573 PtrRtCheck.reset(); 4574 return false; 4575 } 4576 4577 PtrRtCheck.Need = NeedRTCheck; 4578 4579 bool CanVecMem = true; 4580 if (Accesses.isDependencyCheckNeeded()) { 4581 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4582 CanVecMem = DepChecker.areDepsSafe( 4583 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4584 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4585 4586 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4587 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4588 NeedRTCheck = true; 4589 4590 // Clear the dependency checks. We assume they are not needed. 4591 Accesses.resetDepChecks(); 4592 4593 PtrRtCheck.reset(); 4594 PtrRtCheck.Need = true; 4595 4596 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4597 TheLoop, Strides, true); 4598 // Check that we did not collect too many pointers or found an unsizeable 4599 // pointer. 4600 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4601 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4602 PtrRtCheck.reset(); 4603 return false; 4604 } 4605 4606 CanVecMem = true; 4607 } 4608 } 4609 4610 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4611 " need a runtime memory check.\n"); 4612 4613 return CanVecMem; 4614 } 4615 4616 static bool hasMultipleUsesOf(Instruction *I, 4617 SmallPtrSet<Instruction *, 8> &Insts) { 4618 unsigned NumUses = 0; 4619 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4620 if (Insts.count(dyn_cast<Instruction>(*Use))) 4621 ++NumUses; 4622 if (NumUses > 1) 4623 return true; 4624 } 4625 4626 return false; 4627 } 4628 4629 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 4630 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4631 if (!Set.count(dyn_cast<Instruction>(*Use))) 4632 return false; 4633 return true; 4634 } 4635 4636 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4637 ReductionKind Kind) { 4638 if (Phi->getNumIncomingValues() != 2) 4639 return false; 4640 4641 // Reduction variables are only found in the loop header block. 4642 if (Phi->getParent() != TheLoop->getHeader()) 4643 return false; 4644 4645 // Obtain the reduction start value from the value that comes from the loop 4646 // preheader. 4647 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4648 4649 // ExitInstruction is the single value which is used outside the loop. 4650 // We only allow for a single reduction value to be used outside the loop. 4651 // This includes users of the reduction, variables (which form a cycle 4652 // which ends in the phi node). 4653 Instruction *ExitInstruction = nullptr; 4654 // Indicates that we found a reduction operation in our scan. 4655 bool FoundReduxOp = false; 4656 4657 // We start with the PHI node and scan for all of the users of this 4658 // instruction. All users must be instructions that can be used as reduction 4659 // variables (such as ADD). We must have a single out-of-block user. The cycle 4660 // must include the original PHI. 4661 bool FoundStartPHI = false; 4662 4663 // To recognize min/max patterns formed by a icmp select sequence, we store 4664 // the number of instruction we saw from the recognized min/max pattern, 4665 // to make sure we only see exactly the two instructions. 4666 unsigned NumCmpSelectPatternInst = 0; 4667 ReductionInstDesc ReduxDesc(false, nullptr); 4668 4669 SmallPtrSet<Instruction *, 8> VisitedInsts; 4670 SmallVector<Instruction *, 8> Worklist; 4671 Worklist.push_back(Phi); 4672 VisitedInsts.insert(Phi); 4673 4674 // A value in the reduction can be used: 4675 // - By the reduction: 4676 // - Reduction operation: 4677 // - One use of reduction value (safe). 4678 // - Multiple use of reduction value (not safe). 4679 // - PHI: 4680 // - All uses of the PHI must be the reduction (safe). 4681 // - Otherwise, not safe. 4682 // - By one instruction outside of the loop (safe). 4683 // - By further instructions outside of the loop (not safe). 4684 // - By an instruction that is not part of the reduction (not safe). 4685 // This is either: 4686 // * An instruction type other than PHI or the reduction operation. 4687 // * A PHI in the header other than the initial PHI. 4688 while (!Worklist.empty()) { 4689 Instruction *Cur = Worklist.back(); 4690 Worklist.pop_back(); 4691 4692 // No Users. 4693 // If the instruction has no users then this is a broken chain and can't be 4694 // a reduction variable. 4695 if (Cur->use_empty()) 4696 return false; 4697 4698 bool IsAPhi = isa<PHINode>(Cur); 4699 4700 // A header PHI use other than the original PHI. 4701 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4702 return false; 4703 4704 // Reductions of instructions such as Div, and Sub is only possible if the 4705 // LHS is the reduction variable. 4706 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4707 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4708 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4709 return false; 4710 4711 // Any reduction instruction must be of one of the allowed kinds. 4712 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4713 if (!ReduxDesc.IsReduction) 4714 return false; 4715 4716 // A reduction operation must only have one use of the reduction value. 4717 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4718 hasMultipleUsesOf(Cur, VisitedInsts)) 4719 return false; 4720 4721 // All inputs to a PHI node must be a reduction value. 4722 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4723 return false; 4724 4725 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4726 isa<SelectInst>(Cur))) 4727 ++NumCmpSelectPatternInst; 4728 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4729 isa<SelectInst>(Cur))) 4730 ++NumCmpSelectPatternInst; 4731 4732 // Check whether we found a reduction operator. 4733 FoundReduxOp |= !IsAPhi; 4734 4735 // Process users of current instruction. Push non-PHI nodes after PHI nodes 4736 // onto the stack. This way we are going to have seen all inputs to PHI 4737 // nodes once we get to them. 4738 SmallVector<Instruction *, 8> NonPHIs; 4739 SmallVector<Instruction *, 8> PHIs; 4740 for (User *U : Cur->users()) { 4741 Instruction *UI = cast<Instruction>(U); 4742 4743 // Check if we found the exit user. 4744 BasicBlock *Parent = UI->getParent(); 4745 if (!TheLoop->contains(Parent)) { 4746 // Exit if you find multiple outside users or if the header phi node is 4747 // being used. In this case the user uses the value of the previous 4748 // iteration, in which case we would loose "VF-1" iterations of the 4749 // reduction operation if we vectorize. 4750 if (ExitInstruction != nullptr || Cur == Phi) 4751 return false; 4752 4753 // The instruction used by an outside user must be the last instruction 4754 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4755 // operations on the value. 4756 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4757 return false; 4758 4759 ExitInstruction = Cur; 4760 continue; 4761 } 4762 4763 // Process instructions only once (termination). Each reduction cycle 4764 // value must only be used once, except by phi nodes and min/max 4765 // reductions which are represented as a cmp followed by a select. 4766 ReductionInstDesc IgnoredVal(false, nullptr); 4767 if (VisitedInsts.insert(UI)) { 4768 if (isa<PHINode>(UI)) 4769 PHIs.push_back(UI); 4770 else 4771 NonPHIs.push_back(UI); 4772 } else if (!isa<PHINode>(UI) && 4773 ((!isa<FCmpInst>(UI) && 4774 !isa<ICmpInst>(UI) && 4775 !isa<SelectInst>(UI)) || 4776 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4777 return false; 4778 4779 // Remember that we completed the cycle. 4780 if (UI == Phi) 4781 FoundStartPHI = true; 4782 } 4783 Worklist.append(PHIs.begin(), PHIs.end()); 4784 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4785 } 4786 4787 // This means we have seen one but not the other instruction of the 4788 // pattern or more than just a select and cmp. 4789 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4790 NumCmpSelectPatternInst != 2) 4791 return false; 4792 4793 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4794 return false; 4795 4796 // We found a reduction var if we have reached the original phi node and we 4797 // only have a single instruction with out-of-loop users. 4798 4799 // This instruction is allowed to have out-of-loop users. 4800 AllowedExit.insert(ExitInstruction); 4801 4802 // Save the description of this reduction variable. 4803 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4804 ReduxDesc.MinMaxKind); 4805 Reductions[Phi] = RD; 4806 // We've ended the cycle. This is a reduction variable if we have an 4807 // outside user and it has a binary op. 4808 4809 return true; 4810 } 4811 4812 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4813 /// pattern corresponding to a min(X, Y) or max(X, Y). 4814 LoopVectorizationLegality::ReductionInstDesc 4815 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4816 ReductionInstDesc &Prev) { 4817 4818 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4819 "Expect a select instruction"); 4820 Instruction *Cmp = nullptr; 4821 SelectInst *Select = nullptr; 4822 4823 // We must handle the select(cmp()) as a single instruction. Advance to the 4824 // select. 4825 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4826 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 4827 return ReductionInstDesc(false, I); 4828 return ReductionInstDesc(Select, Prev.MinMaxKind); 4829 } 4830 4831 // Only handle single use cases for now. 4832 if (!(Select = dyn_cast<SelectInst>(I))) 4833 return ReductionInstDesc(false, I); 4834 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4835 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4836 return ReductionInstDesc(false, I); 4837 if (!Cmp->hasOneUse()) 4838 return ReductionInstDesc(false, I); 4839 4840 Value *CmpLeft; 4841 Value *CmpRight; 4842 4843 // Look for a min/max pattern. 4844 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4845 return ReductionInstDesc(Select, MRK_UIntMin); 4846 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4847 return ReductionInstDesc(Select, MRK_UIntMax); 4848 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4849 return ReductionInstDesc(Select, MRK_SIntMax); 4850 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4851 return ReductionInstDesc(Select, MRK_SIntMin); 4852 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4853 return ReductionInstDesc(Select, MRK_FloatMin); 4854 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4855 return ReductionInstDesc(Select, MRK_FloatMax); 4856 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4857 return ReductionInstDesc(Select, MRK_FloatMin); 4858 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4859 return ReductionInstDesc(Select, MRK_FloatMax); 4860 4861 return ReductionInstDesc(false, I); 4862 } 4863 4864 LoopVectorizationLegality::ReductionInstDesc 4865 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4866 ReductionKind Kind, 4867 ReductionInstDesc &Prev) { 4868 bool FP = I->getType()->isFloatingPointTy(); 4869 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 4870 switch (I->getOpcode()) { 4871 default: 4872 return ReductionInstDesc(false, I); 4873 case Instruction::PHI: 4874 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4875 Kind != RK_FloatMinMax)) 4876 return ReductionInstDesc(false, I); 4877 return ReductionInstDesc(I, Prev.MinMaxKind); 4878 case Instruction::Sub: 4879 case Instruction::Add: 4880 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4881 case Instruction::Mul: 4882 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4883 case Instruction::And: 4884 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4885 case Instruction::Or: 4886 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4887 case Instruction::Xor: 4888 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4889 case Instruction::FMul: 4890 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4891 case Instruction::FAdd: 4892 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4893 case Instruction::FCmp: 4894 case Instruction::ICmp: 4895 case Instruction::Select: 4896 if (Kind != RK_IntegerMinMax && 4897 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4898 return ReductionInstDesc(false, I); 4899 return isMinMaxSelectCmpPattern(I, Prev); 4900 } 4901 } 4902 4903 LoopVectorizationLegality::InductionKind 4904 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 4905 Type *PhiTy = Phi->getType(); 4906 // We only handle integer and pointer inductions variables. 4907 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4908 return IK_NoInduction; 4909 4910 // Check that the PHI is consecutive. 4911 const SCEV *PhiScev = SE->getSCEV(Phi); 4912 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4913 if (!AR) { 4914 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4915 return IK_NoInduction; 4916 } 4917 const SCEV *Step = AR->getStepRecurrence(*SE); 4918 4919 // Integer inductions need to have a stride of one. 4920 if (PhiTy->isIntegerTy()) { 4921 if (Step->isOne()) 4922 return IK_IntInduction; 4923 if (Step->isAllOnesValue()) 4924 return IK_ReverseIntInduction; 4925 return IK_NoInduction; 4926 } 4927 4928 // Calculate the pointer stride and check if it is consecutive. 4929 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4930 if (!C) 4931 return IK_NoInduction; 4932 4933 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4934 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 4935 if (C->getValue()->equalsInt(Size)) 4936 return IK_PtrInduction; 4937 else if (C->getValue()->equalsInt(0 - Size)) 4938 return IK_ReversePtrInduction; 4939 4940 return IK_NoInduction; 4941 } 4942 4943 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4944 Value *In0 = const_cast<Value*>(V); 4945 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4946 if (!PN) 4947 return false; 4948 4949 return Inductions.count(PN); 4950 } 4951 4952 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4953 assert(TheLoop->contains(BB) && "Unknown block used"); 4954 4955 // Blocks that do not dominate the latch need predication. 4956 BasicBlock* Latch = TheLoop->getLoopLatch(); 4957 return !DT->dominates(BB, Latch); 4958 } 4959 4960 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4961 SmallPtrSet<Value *, 8>& SafePtrs) { 4962 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4963 // We might be able to hoist the load. 4964 if (it->mayReadFromMemory()) { 4965 LoadInst *LI = dyn_cast<LoadInst>(it); 4966 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 4967 return false; 4968 } 4969 4970 // We don't predicate stores at the moment. 4971 if (it->mayWriteToMemory()) { 4972 StoreInst *SI = dyn_cast<StoreInst>(it); 4973 // We only support predication of stores in basic blocks with one 4974 // predecessor. 4975 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 4976 !SafePtrs.count(SI->getPointerOperand()) || 4977 !SI->getParent()->getSinglePredecessor()) 4978 return false; 4979 } 4980 if (it->mayThrow()) 4981 return false; 4982 4983 // Check that we don't have a constant expression that can trap as operand. 4984 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4985 OI != OE; ++OI) { 4986 if (Constant *C = dyn_cast<Constant>(*OI)) 4987 if (C->canTrap()) 4988 return false; 4989 } 4990 4991 // The instructions below can trap. 4992 switch (it->getOpcode()) { 4993 default: continue; 4994 case Instruction::UDiv: 4995 case Instruction::SDiv: 4996 case Instruction::URem: 4997 case Instruction::SRem: 4998 return false; 4999 } 5000 } 5001 5002 return true; 5003 } 5004 5005 LoopVectorizationCostModel::VectorizationFactor 5006 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 5007 unsigned UserVF, 5008 bool ForceVectorization) { 5009 // Width 1 means no vectorize 5010 VectorizationFactor Factor = { 1U, 0U }; 5011 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5012 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5013 return Factor; 5014 } 5015 5016 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5017 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5018 return Factor; 5019 } 5020 5021 // Find the trip count. 5022 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 5023 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5024 5025 unsigned WidestType = getWidestType(); 5026 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5027 unsigned MaxSafeDepDist = -1U; 5028 if (Legal->getMaxSafeDepDistBytes() != -1U) 5029 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5030 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5031 WidestRegister : MaxSafeDepDist); 5032 unsigned MaxVectorSize = WidestRegister / WidestType; 5033 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5034 DEBUG(dbgs() << "LV: The Widest register is: " 5035 << WidestRegister << " bits.\n"); 5036 5037 if (MaxVectorSize == 0) { 5038 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5039 MaxVectorSize = 1; 5040 } 5041 5042 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 5043 " into one vector!"); 5044 5045 unsigned VF = MaxVectorSize; 5046 5047 // If we optimize the program for size, avoid creating the tail loop. 5048 if (OptForSize) { 5049 // If we are unable to calculate the trip count then don't try to vectorize. 5050 if (TC < 2) { 5051 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5052 return Factor; 5053 } 5054 5055 // Find the maximum SIMD width that can fit within the trip count. 5056 VF = TC % MaxVectorSize; 5057 5058 if (VF == 0) 5059 VF = MaxVectorSize; 5060 5061 // If the trip count that we found modulo the vectorization factor is not 5062 // zero then we require a tail. 5063 if (VF < 2) { 5064 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5065 return Factor; 5066 } 5067 } 5068 5069 if (UserVF != 0) { 5070 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5071 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5072 5073 Factor.Width = UserVF; 5074 return Factor; 5075 } 5076 5077 float Cost = expectedCost(1); 5078 #ifndef NDEBUG 5079 const float ScalarCost = Cost; 5080 #endif /* NDEBUG */ 5081 unsigned Width = 1; 5082 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5083 5084 // Ignore scalar width, because the user explicitly wants vectorization. 5085 if (ForceVectorization && VF > 1) { 5086 Width = 2; 5087 Cost = expectedCost(Width) / (float)Width; 5088 } 5089 5090 for (unsigned i=2; i <= VF; i*=2) { 5091 // Notice that the vector loop needs to be executed less times, so 5092 // we need to divide the cost of the vector loops by the width of 5093 // the vector elements. 5094 float VectorCost = expectedCost(i) / (float)i; 5095 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5096 (int)VectorCost << ".\n"); 5097 if (VectorCost < Cost) { 5098 Cost = VectorCost; 5099 Width = i; 5100 } 5101 } 5102 5103 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5104 << "LV: Vectorization seems to be not beneficial, " 5105 << "but was forced by a user.\n"); 5106 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5107 Factor.Width = Width; 5108 Factor.Cost = Width * Cost; 5109 return Factor; 5110 } 5111 5112 unsigned LoopVectorizationCostModel::getWidestType() { 5113 unsigned MaxWidth = 8; 5114 5115 // For each block. 5116 for (Loop::block_iterator bb = TheLoop->block_begin(), 5117 be = TheLoop->block_end(); bb != be; ++bb) { 5118 BasicBlock *BB = *bb; 5119 5120 // For each instruction in the loop. 5121 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5122 Type *T = it->getType(); 5123 5124 // Only examine Loads, Stores and PHINodes. 5125 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5126 continue; 5127 5128 // Examine PHI nodes that are reduction variables. 5129 if (PHINode *PN = dyn_cast<PHINode>(it)) 5130 if (!Legal->getReductionVars()->count(PN)) 5131 continue; 5132 5133 // Examine the stored values. 5134 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5135 T = ST->getValueOperand()->getType(); 5136 5137 // Ignore loaded pointer types and stored pointer types that are not 5138 // consecutive. However, we do want to take consecutive stores/loads of 5139 // pointer vectors into account. 5140 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5141 continue; 5142 5143 MaxWidth = std::max(MaxWidth, 5144 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5145 } 5146 } 5147 5148 return MaxWidth; 5149 } 5150 5151 unsigned 5152 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5153 unsigned UserUF, 5154 unsigned VF, 5155 unsigned LoopCost) { 5156 5157 // -- The unroll heuristics -- 5158 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5159 // There are many micro-architectural considerations that we can't predict 5160 // at this level. For example frontend pressure (on decode or fetch) due to 5161 // code size, or the number and capabilities of the execution ports. 5162 // 5163 // We use the following heuristics to select the unroll factor: 5164 // 1. If the code has reductions the we unroll in order to break the cross 5165 // iteration dependency. 5166 // 2. If the loop is really small then we unroll in order to reduce the loop 5167 // overhead. 5168 // 3. We don't unroll if we think that we will spill registers to memory due 5169 // to the increased register pressure. 5170 5171 // Use the user preference, unless 'auto' is selected. 5172 if (UserUF != 0) 5173 return UserUF; 5174 5175 // When we optimize for size we don't unroll. 5176 if (OptForSize) 5177 return 1; 5178 5179 // We used the distance for the unroll factor. 5180 if (Legal->getMaxSafeDepDistBytes() != -1U) 5181 return 1; 5182 5183 // Do not unroll loops with a relatively small trip count. 5184 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 5185 TheLoop->getLoopLatch()); 5186 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5187 return 1; 5188 5189 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5190 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5191 " registers\n"); 5192 5193 if (VF == 1) { 5194 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5195 TargetNumRegisters = ForceTargetNumScalarRegs; 5196 } else { 5197 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5198 TargetNumRegisters = ForceTargetNumVectorRegs; 5199 } 5200 5201 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5202 // We divide by these constants so assume that we have at least one 5203 // instruction that uses at least one register. 5204 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5205 R.NumInstructions = std::max(R.NumInstructions, 1U); 5206 5207 // We calculate the unroll factor using the following formula. 5208 // Subtract the number of loop invariants from the number of available 5209 // registers. These registers are used by all of the unrolled instances. 5210 // Next, divide the remaining registers by the number of registers that is 5211 // required by the loop, in order to estimate how many parallel instances 5212 // fit without causing spills. All of this is rounded down if necessary to be 5213 // a power of two. We want power of two unroll factors to simplify any 5214 // addressing operations or alignment considerations. 5215 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5216 R.MaxLocalUsers); 5217 5218 // Don't count the induction variable as unrolled. 5219 if (EnableIndVarRegisterHeur) 5220 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5221 std::max(1U, (R.MaxLocalUsers - 1))); 5222 5223 // Clamp the unroll factor ranges to reasonable factors. 5224 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 5225 5226 // Check if the user has overridden the unroll max. 5227 if (VF == 1) { 5228 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0) 5229 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor; 5230 } else { 5231 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0) 5232 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor; 5233 } 5234 5235 // If we did not calculate the cost for VF (because the user selected the VF) 5236 // then we calculate the cost of VF here. 5237 if (LoopCost == 0) 5238 LoopCost = expectedCost(VF); 5239 5240 // Clamp the calculated UF to be between the 1 and the max unroll factor 5241 // that the target allows. 5242 if (UF > MaxUnrollSize) 5243 UF = MaxUnrollSize; 5244 else if (UF < 1) 5245 UF = 1; 5246 5247 // Unroll if we vectorized this loop and there is a reduction that could 5248 // benefit from unrolling. 5249 if (VF > 1 && Legal->getReductionVars()->size()) { 5250 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5251 return UF; 5252 } 5253 5254 // Note that if we've already vectorized the loop we will have done the 5255 // runtime check and so unrolling won't require further checks. 5256 bool UnrollingRequiresRuntimePointerCheck = 5257 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5258 5259 // We want to unroll small loops in order to reduce the loop overhead and 5260 // potentially expose ILP opportunities. 5261 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5262 if (!UnrollingRequiresRuntimePointerCheck && 5263 LoopCost < SmallLoopCost) { 5264 // We assume that the cost overhead is 1 and we use the cost model 5265 // to estimate the cost of the loop and unroll until the cost of the 5266 // loop overhead is about 5% of the cost of the loop. 5267 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5268 5269 // Unroll until store/load ports (estimated by max unroll factor) are 5270 // saturated. 5271 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5272 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5273 5274 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5275 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5276 return std::max(StoresUF, LoadsUF); 5277 } 5278 5279 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5280 return SmallUF; 5281 } 5282 5283 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5284 return 1; 5285 } 5286 5287 LoopVectorizationCostModel::RegisterUsage 5288 LoopVectorizationCostModel::calculateRegisterUsage() { 5289 // This function calculates the register usage by measuring the highest number 5290 // of values that are alive at a single location. Obviously, this is a very 5291 // rough estimation. We scan the loop in a topological order in order and 5292 // assign a number to each instruction. We use RPO to ensure that defs are 5293 // met before their users. We assume that each instruction that has in-loop 5294 // users starts an interval. We record every time that an in-loop value is 5295 // used, so we have a list of the first and last occurrences of each 5296 // instruction. Next, we transpose this data structure into a multi map that 5297 // holds the list of intervals that *end* at a specific location. This multi 5298 // map allows us to perform a linear search. We scan the instructions linearly 5299 // and record each time that a new interval starts, by placing it in a set. 5300 // If we find this value in the multi-map then we remove it from the set. 5301 // The max register usage is the maximum size of the set. 5302 // We also search for instructions that are defined outside the loop, but are 5303 // used inside the loop. We need this number separately from the max-interval 5304 // usage number because when we unroll, loop-invariant values do not take 5305 // more register. 5306 LoopBlocksDFS DFS(TheLoop); 5307 DFS.perform(LI); 5308 5309 RegisterUsage R; 5310 R.NumInstructions = 0; 5311 5312 // Each 'key' in the map opens a new interval. The values 5313 // of the map are the index of the 'last seen' usage of the 5314 // instruction that is the key. 5315 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5316 // Maps instruction to its index. 5317 DenseMap<unsigned, Instruction*> IdxToInstr; 5318 // Marks the end of each interval. 5319 IntervalMap EndPoint; 5320 // Saves the list of instruction indices that are used in the loop. 5321 SmallSet<Instruction*, 8> Ends; 5322 // Saves the list of values that are used in the loop but are 5323 // defined outside the loop, such as arguments and constants. 5324 SmallPtrSet<Value*, 8> LoopInvariants; 5325 5326 unsigned Index = 0; 5327 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5328 be = DFS.endRPO(); bb != be; ++bb) { 5329 R.NumInstructions += (*bb)->size(); 5330 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5331 ++it) { 5332 Instruction *I = it; 5333 IdxToInstr[Index++] = I; 5334 5335 // Save the end location of each USE. 5336 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5337 Value *U = I->getOperand(i); 5338 Instruction *Instr = dyn_cast<Instruction>(U); 5339 5340 // Ignore non-instruction values such as arguments, constants, etc. 5341 if (!Instr) continue; 5342 5343 // If this instruction is outside the loop then record it and continue. 5344 if (!TheLoop->contains(Instr)) { 5345 LoopInvariants.insert(Instr); 5346 continue; 5347 } 5348 5349 // Overwrite previous end points. 5350 EndPoint[Instr] = Index; 5351 Ends.insert(Instr); 5352 } 5353 } 5354 } 5355 5356 // Saves the list of intervals that end with the index in 'key'. 5357 typedef SmallVector<Instruction*, 2> InstrList; 5358 DenseMap<unsigned, InstrList> TransposeEnds; 5359 5360 // Transpose the EndPoints to a list of values that end at each index. 5361 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5362 it != e; ++it) 5363 TransposeEnds[it->second].push_back(it->first); 5364 5365 SmallSet<Instruction*, 8> OpenIntervals; 5366 unsigned MaxUsage = 0; 5367 5368 5369 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5370 for (unsigned int i = 0; i < Index; ++i) { 5371 Instruction *I = IdxToInstr[i]; 5372 // Ignore instructions that are never used within the loop. 5373 if (!Ends.count(I)) continue; 5374 5375 // Remove all of the instructions that end at this location. 5376 InstrList &List = TransposeEnds[i]; 5377 for (unsigned int j=0, e = List.size(); j < e; ++j) 5378 OpenIntervals.erase(List[j]); 5379 5380 // Count the number of live interals. 5381 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5382 5383 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5384 OpenIntervals.size() << '\n'); 5385 5386 // Add the current instruction to the list of open intervals. 5387 OpenIntervals.insert(I); 5388 } 5389 5390 unsigned Invariant = LoopInvariants.size(); 5391 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5392 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5393 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5394 5395 R.LoopInvariantRegs = Invariant; 5396 R.MaxLocalUsers = MaxUsage; 5397 return R; 5398 } 5399 5400 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5401 unsigned Cost = 0; 5402 5403 // For each block. 5404 for (Loop::block_iterator bb = TheLoop->block_begin(), 5405 be = TheLoop->block_end(); bb != be; ++bb) { 5406 unsigned BlockCost = 0; 5407 BasicBlock *BB = *bb; 5408 5409 // For each instruction in the old loop. 5410 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5411 // Skip dbg intrinsics. 5412 if (isa<DbgInfoIntrinsic>(it)) 5413 continue; 5414 5415 unsigned C = getInstructionCost(it, VF); 5416 5417 // Check if we should override the cost. 5418 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5419 C = ForceTargetInstructionCost; 5420 5421 BlockCost += C; 5422 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5423 VF << " For instruction: " << *it << '\n'); 5424 } 5425 5426 // We assume that if-converted blocks have a 50% chance of being executed. 5427 // When the code is scalar then some of the blocks are avoided due to CF. 5428 // When the code is vectorized we execute all code paths. 5429 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5430 BlockCost /= 2; 5431 5432 Cost += BlockCost; 5433 } 5434 5435 return Cost; 5436 } 5437 5438 /// \brief Check whether the address computation for a non-consecutive memory 5439 /// access looks like an unlikely candidate for being merged into the indexing 5440 /// mode. 5441 /// 5442 /// We look for a GEP which has one index that is an induction variable and all 5443 /// other indices are loop invariant. If the stride of this access is also 5444 /// within a small bound we decide that this address computation can likely be 5445 /// merged into the addressing mode. 5446 /// In all other cases, we identify the address computation as complex. 5447 static bool isLikelyComplexAddressComputation(Value *Ptr, 5448 LoopVectorizationLegality *Legal, 5449 ScalarEvolution *SE, 5450 const Loop *TheLoop) { 5451 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5452 if (!Gep) 5453 return true; 5454 5455 // We are looking for a gep with all loop invariant indices except for one 5456 // which should be an induction variable. 5457 unsigned NumOperands = Gep->getNumOperands(); 5458 for (unsigned i = 1; i < NumOperands; ++i) { 5459 Value *Opd = Gep->getOperand(i); 5460 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5461 !Legal->isInductionVariable(Opd)) 5462 return true; 5463 } 5464 5465 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5466 // can likely be merged into the address computation. 5467 unsigned MaxMergeDistance = 64; 5468 5469 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5470 if (!AddRec) 5471 return true; 5472 5473 // Check the step is constant. 5474 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5475 // Calculate the pointer stride and check if it is consecutive. 5476 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5477 if (!C) 5478 return true; 5479 5480 const APInt &APStepVal = C->getValue()->getValue(); 5481 5482 // Huge step value - give up. 5483 if (APStepVal.getBitWidth() > 64) 5484 return true; 5485 5486 int64_t StepVal = APStepVal.getSExtValue(); 5487 5488 return StepVal > MaxMergeDistance; 5489 } 5490 5491 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5492 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5493 return true; 5494 return false; 5495 } 5496 5497 unsigned 5498 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5499 // If we know that this instruction will remain uniform, check the cost of 5500 // the scalar version. 5501 if (Legal->isUniformAfterVectorization(I)) 5502 VF = 1; 5503 5504 Type *RetTy = I->getType(); 5505 Type *VectorTy = ToVectorTy(RetTy, VF); 5506 5507 // TODO: We need to estimate the cost of intrinsic calls. 5508 switch (I->getOpcode()) { 5509 case Instruction::GetElementPtr: 5510 // We mark this instruction as zero-cost because the cost of GEPs in 5511 // vectorized code depends on whether the corresponding memory instruction 5512 // is scalarized or not. Therefore, we handle GEPs with the memory 5513 // instruction cost. 5514 return 0; 5515 case Instruction::Br: { 5516 return TTI.getCFInstrCost(I->getOpcode()); 5517 } 5518 case Instruction::PHI: 5519 //TODO: IF-converted IFs become selects. 5520 return 0; 5521 case Instruction::Add: 5522 case Instruction::FAdd: 5523 case Instruction::Sub: 5524 case Instruction::FSub: 5525 case Instruction::Mul: 5526 case Instruction::FMul: 5527 case Instruction::UDiv: 5528 case Instruction::SDiv: 5529 case Instruction::FDiv: 5530 case Instruction::URem: 5531 case Instruction::SRem: 5532 case Instruction::FRem: 5533 case Instruction::Shl: 5534 case Instruction::LShr: 5535 case Instruction::AShr: 5536 case Instruction::And: 5537 case Instruction::Or: 5538 case Instruction::Xor: { 5539 // Since we will replace the stride by 1 the multiplication should go away. 5540 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5541 return 0; 5542 // Certain instructions can be cheaper to vectorize if they have a constant 5543 // second vector operand. One example of this are shifts on x86. 5544 TargetTransformInfo::OperandValueKind Op1VK = 5545 TargetTransformInfo::OK_AnyValue; 5546 TargetTransformInfo::OperandValueKind Op2VK = 5547 TargetTransformInfo::OK_AnyValue; 5548 Value *Op2 = I->getOperand(1); 5549 5550 // Check for a splat of a constant or for a non uniform vector of constants. 5551 if (isa<ConstantInt>(Op2)) 5552 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5553 else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5554 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5555 if (cast<Constant>(Op2)->getSplatValue() != nullptr) 5556 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5557 } 5558 5559 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 5560 } 5561 case Instruction::Select: { 5562 SelectInst *SI = cast<SelectInst>(I); 5563 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5564 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5565 Type *CondTy = SI->getCondition()->getType(); 5566 if (!ScalarCond) 5567 CondTy = VectorType::get(CondTy, VF); 5568 5569 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5570 } 5571 case Instruction::ICmp: 5572 case Instruction::FCmp: { 5573 Type *ValTy = I->getOperand(0)->getType(); 5574 VectorTy = ToVectorTy(ValTy, VF); 5575 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5576 } 5577 case Instruction::Store: 5578 case Instruction::Load: { 5579 StoreInst *SI = dyn_cast<StoreInst>(I); 5580 LoadInst *LI = dyn_cast<LoadInst>(I); 5581 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5582 LI->getType()); 5583 VectorTy = ToVectorTy(ValTy, VF); 5584 5585 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5586 unsigned AS = SI ? SI->getPointerAddressSpace() : 5587 LI->getPointerAddressSpace(); 5588 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5589 // We add the cost of address computation here instead of with the gep 5590 // instruction because only here we know whether the operation is 5591 // scalarized. 5592 if (VF == 1) 5593 return TTI.getAddressComputationCost(VectorTy) + 5594 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5595 5596 // Scalarized loads/stores. 5597 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5598 bool Reverse = ConsecutiveStride < 0; 5599 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5600 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5601 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5602 bool IsComplexComputation = 5603 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5604 unsigned Cost = 0; 5605 // The cost of extracting from the value vector and pointer vector. 5606 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5607 for (unsigned i = 0; i < VF; ++i) { 5608 // The cost of extracting the pointer operand. 5609 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5610 // In case of STORE, the cost of ExtractElement from the vector. 5611 // In case of LOAD, the cost of InsertElement into the returned 5612 // vector. 5613 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5614 Instruction::InsertElement, 5615 VectorTy, i); 5616 } 5617 5618 // The cost of the scalar loads/stores. 5619 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5620 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5621 Alignment, AS); 5622 return Cost; 5623 } 5624 5625 // Wide load/stores. 5626 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5627 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5628 5629 if (Reverse) 5630 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5631 VectorTy, 0); 5632 return Cost; 5633 } 5634 case Instruction::ZExt: 5635 case Instruction::SExt: 5636 case Instruction::FPToUI: 5637 case Instruction::FPToSI: 5638 case Instruction::FPExt: 5639 case Instruction::PtrToInt: 5640 case Instruction::IntToPtr: 5641 case Instruction::SIToFP: 5642 case Instruction::UIToFP: 5643 case Instruction::Trunc: 5644 case Instruction::FPTrunc: 5645 case Instruction::BitCast: { 5646 // We optimize the truncation of induction variable. 5647 // The cost of these is the same as the scalar operation. 5648 if (I->getOpcode() == Instruction::Trunc && 5649 Legal->isInductionVariable(I->getOperand(0))) 5650 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5651 I->getOperand(0)->getType()); 5652 5653 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5654 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5655 } 5656 case Instruction::Call: { 5657 CallInst *CI = cast<CallInst>(I); 5658 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5659 assert(ID && "Not an intrinsic call!"); 5660 Type *RetTy = ToVectorTy(CI->getType(), VF); 5661 SmallVector<Type*, 4> Tys; 5662 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5663 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5664 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5665 } 5666 default: { 5667 // We are scalarizing the instruction. Return the cost of the scalar 5668 // instruction, plus the cost of insert and extract into vector 5669 // elements, times the vector width. 5670 unsigned Cost = 0; 5671 5672 if (!RetTy->isVoidTy() && VF != 1) { 5673 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5674 VectorTy); 5675 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5676 VectorTy); 5677 5678 // The cost of inserting the results plus extracting each one of the 5679 // operands. 5680 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5681 } 5682 5683 // The cost of executing VF copies of the scalar instruction. This opcode 5684 // is unknown. Assume that it is the same as 'mul'. 5685 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5686 return Cost; 5687 } 5688 }// end of switch. 5689 } 5690 5691 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5692 if (Scalar->isVoidTy() || VF == 1) 5693 return Scalar; 5694 return VectorType::get(Scalar, VF); 5695 } 5696 5697 char LoopVectorize::ID = 0; 5698 static const char lv_name[] = "Loop Vectorization"; 5699 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5700 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5701 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5702 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5703 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5704 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5705 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5706 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5707 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5708 5709 namespace llvm { 5710 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5711 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5712 } 5713 } 5714 5715 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5716 // Check for a store. 5717 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5718 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5719 5720 // Check for a load. 5721 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5722 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5723 5724 return false; 5725 } 5726 5727 5728 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5729 bool IfPredicateStore) { 5730 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5731 // Holds vector parameters or scalars, in case of uniform vals. 5732 SmallVector<VectorParts, 4> Params; 5733 5734 setDebugLocFromInst(Builder, Instr); 5735 5736 // Find all of the vectorized parameters. 5737 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5738 Value *SrcOp = Instr->getOperand(op); 5739 5740 // If we are accessing the old induction variable, use the new one. 5741 if (SrcOp == OldInduction) { 5742 Params.push_back(getVectorValue(SrcOp)); 5743 continue; 5744 } 5745 5746 // Try using previously calculated values. 5747 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5748 5749 // If the src is an instruction that appeared earlier in the basic block 5750 // then it should already be vectorized. 5751 if (SrcInst && OrigLoop->contains(SrcInst)) { 5752 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5753 // The parameter is a vector value from earlier. 5754 Params.push_back(WidenMap.get(SrcInst)); 5755 } else { 5756 // The parameter is a scalar from outside the loop. Maybe even a constant. 5757 VectorParts Scalars; 5758 Scalars.append(UF, SrcOp); 5759 Params.push_back(Scalars); 5760 } 5761 } 5762 5763 assert(Params.size() == Instr->getNumOperands() && 5764 "Invalid number of operands"); 5765 5766 // Does this instruction return a value ? 5767 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5768 5769 Value *UndefVec = IsVoidRetTy ? nullptr : 5770 UndefValue::get(Instr->getType()); 5771 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5772 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5773 5774 Instruction *InsertPt = Builder.GetInsertPoint(); 5775 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5776 BasicBlock *CondBlock = nullptr; 5777 5778 VectorParts Cond; 5779 Loop *VectorLp = nullptr; 5780 if (IfPredicateStore) { 5781 assert(Instr->getParent()->getSinglePredecessor() && 5782 "Only support single predecessor blocks"); 5783 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5784 Instr->getParent()); 5785 VectorLp = LI->getLoopFor(IfBlock); 5786 assert(VectorLp && "Must have a loop for this block"); 5787 } 5788 5789 // For each vector unroll 'part': 5790 for (unsigned Part = 0; Part < UF; ++Part) { 5791 // For each scalar that we create: 5792 5793 // Start an "if (pred) a[i] = ..." block. 5794 Value *Cmp = nullptr; 5795 if (IfPredicateStore) { 5796 if (Cond[Part]->getType()->isVectorTy()) 5797 Cond[Part] = 5798 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5799 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5800 ConstantInt::get(Cond[Part]->getType(), 1)); 5801 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5802 LoopVectorBody.push_back(CondBlock); 5803 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 5804 // Update Builder with newly created basic block. 5805 Builder.SetInsertPoint(InsertPt); 5806 } 5807 5808 Instruction *Cloned = Instr->clone(); 5809 if (!IsVoidRetTy) 5810 Cloned->setName(Instr->getName() + ".cloned"); 5811 // Replace the operands of the cloned instructions with extracted scalars. 5812 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5813 Value *Op = Params[op][Part]; 5814 Cloned->setOperand(op, Op); 5815 } 5816 5817 // Place the cloned scalar in the new loop. 5818 Builder.Insert(Cloned); 5819 5820 // If the original scalar returns a value we need to place it in a vector 5821 // so that future users will be able to use it. 5822 if (!IsVoidRetTy) 5823 VecResults[Part] = Cloned; 5824 5825 // End if-block. 5826 if (IfPredicateStore) { 5827 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5828 LoopVectorBody.push_back(NewIfBlock); 5829 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 5830 Builder.SetInsertPoint(InsertPt); 5831 Instruction *OldBr = IfBlock->getTerminator(); 5832 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5833 OldBr->eraseFromParent(); 5834 IfBlock = NewIfBlock; 5835 } 5836 } 5837 } 5838 5839 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5840 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5841 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5842 5843 return scalarizeInstruction(Instr, IfPredicateStore); 5844 } 5845 5846 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5847 return Vec; 5848 } 5849 5850 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5851 return V; 5852 } 5853 5854 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 5855 bool Negate) { 5856 // When unrolling and the VF is 1, we only need to add a simple scalar. 5857 Type *ITy = Val->getType(); 5858 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5859 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 5860 return Builder.CreateAdd(Val, C, "induction"); 5861 } 5862 5863