1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlanHCFGBuilder.h" 60 #include "VPlanHCFGTransforms.h" 61 #include "VPlanPredicator.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpander.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/Pass.h" 126 #include "llvm/Support/Casting.h" 127 #include "llvm/Support/CommandLine.h" 128 #include "llvm/Support/Compiler.h" 129 #include "llvm/Support/Debug.h" 130 #include "llvm/Support/ErrorHandling.h" 131 #include "llvm/Support/MathExtras.h" 132 #include "llvm/Support/raw_ostream.h" 133 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 134 #include "llvm/Transforms/Utils/LoopSimplify.h" 135 #include "llvm/Transforms/Utils/LoopUtils.h" 136 #include "llvm/Transforms/Utils/LoopVersioning.h" 137 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 138 #include <algorithm> 139 #include <cassert> 140 #include <cstdint> 141 #include <cstdlib> 142 #include <functional> 143 #include <iterator> 144 #include <limits> 145 #include <memory> 146 #include <string> 147 #include <tuple> 148 #include <utility> 149 #include <vector> 150 151 using namespace llvm; 152 153 #define LV_NAME "loop-vectorize" 154 #define DEBUG_TYPE LV_NAME 155 156 /// @{ 157 /// Metadata attribute names 158 static const char *const LLVMLoopVectorizeFollowupAll = 159 "llvm.loop.vectorize.followup_all"; 160 static const char *const LLVMLoopVectorizeFollowupVectorized = 161 "llvm.loop.vectorize.followup_vectorized"; 162 static const char *const LLVMLoopVectorizeFollowupEpilogue = 163 "llvm.loop.vectorize.followup_epilogue"; 164 /// @} 165 166 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 167 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 168 169 /// Loops with a known constant trip count below this number are vectorized only 170 /// if no scalar iteration overheads are incurred. 171 static cl::opt<unsigned> TinyTripCountVectorThreshold( 172 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 173 cl::desc("Loops with a constant trip count that is smaller than this " 174 "value are vectorized only if no scalar iteration overheads " 175 "are incurred.")); 176 177 static cl::opt<bool> MaximizeBandwidth( 178 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 179 cl::desc("Maximize bandwidth when selecting vectorization factor which " 180 "will be determined by the smallest type in loop.")); 181 182 static cl::opt<bool> EnableInterleavedMemAccesses( 183 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 184 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 185 186 /// An interleave-group may need masking if it resides in a block that needs 187 /// predication, or in order to mask away gaps. 188 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 189 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 190 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 191 192 /// We don't interleave loops with a known constant trip count below this 193 /// number. 194 static const unsigned TinyTripCountInterleaveThreshold = 128; 195 196 static cl::opt<unsigned> ForceTargetNumScalarRegs( 197 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 198 cl::desc("A flag that overrides the target's number of scalar registers.")); 199 200 static cl::opt<unsigned> ForceTargetNumVectorRegs( 201 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 202 cl::desc("A flag that overrides the target's number of vector registers.")); 203 204 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 205 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 206 cl::desc("A flag that overrides the target's max interleave factor for " 207 "scalar loops.")); 208 209 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 210 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's max interleave factor for " 212 "vectorized loops.")); 213 214 static cl::opt<unsigned> ForceTargetInstructionCost( 215 "force-target-instruction-cost", cl::init(0), cl::Hidden, 216 cl::desc("A flag that overrides the target's expected cost for " 217 "an instruction to a single constant value. Mostly " 218 "useful for getting consistent testing.")); 219 220 static cl::opt<unsigned> SmallLoopCost( 221 "small-loop-cost", cl::init(20), cl::Hidden, 222 cl::desc( 223 "The cost of a loop that is considered 'small' by the interleaver.")); 224 225 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 226 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 227 cl::desc("Enable the use of the block frequency analysis to access PGO " 228 "heuristics minimizing code growth in cold regions and being more " 229 "aggressive in hot regions.")); 230 231 // Runtime interleave loops for load/store throughput. 232 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 233 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 234 cl::desc( 235 "Enable runtime interleaving until load/store ports are saturated")); 236 237 /// The number of stores in a loop that are allowed to need predication. 238 static cl::opt<unsigned> NumberOfStoresToPredicate( 239 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 240 cl::desc("Max number of stores to be predicated behind an if.")); 241 242 static cl::opt<bool> EnableIndVarRegisterHeur( 243 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 244 cl::desc("Count the induction variable only once when interleaving")); 245 246 static cl::opt<bool> EnableCondStoresVectorization( 247 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 248 cl::desc("Enable if predication of stores during vectorization.")); 249 250 static cl::opt<unsigned> MaxNestedScalarReductionIC( 251 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 252 cl::desc("The maximum interleave count to use when interleaving a scalar " 253 "reduction in a nested loop.")); 254 255 cl::opt<bool> EnableVPlanNativePath( 256 "enable-vplan-native-path", cl::init(false), cl::Hidden, 257 cl::desc("Enable VPlan-native vectorization path with " 258 "support for outer loop vectorization.")); 259 260 // FIXME: Remove this switch once we have divergence analysis. Currently we 261 // assume divergent non-backedge branches when this switch is true. 262 cl::opt<bool> EnableVPlanPredication( 263 "enable-vplan-predication", cl::init(false), cl::Hidden, 264 cl::desc("Enable VPlan-native vectorization path predicator with " 265 "support for outer loop vectorization.")); 266 267 // This flag enables the stress testing of the VPlan H-CFG construction in the 268 // VPlan-native vectorization path. It must be used in conjuction with 269 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 270 // verification of the H-CFGs built. 271 static cl::opt<bool> VPlanBuildStressTest( 272 "vplan-build-stress-test", cl::init(false), cl::Hidden, 273 cl::desc( 274 "Build VPlan for every supported loop nest in the function and bail " 275 "out right after the build (stress test the VPlan H-CFG construction " 276 "in the VPlan-native vectorization path).")); 277 278 /// A helper function for converting Scalar types to vector types. 279 /// If the incoming type is void, we return void. If the VF is 1, we return 280 /// the scalar type. 281 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 282 if (Scalar->isVoidTy() || VF == 1) 283 return Scalar; 284 return VectorType::get(Scalar, VF); 285 } 286 287 /// A helper function that returns the type of loaded or stored value. 288 static Type *getMemInstValueType(Value *I) { 289 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 290 "Expected Load or Store instruction"); 291 if (auto *LI = dyn_cast<LoadInst>(I)) 292 return LI->getType(); 293 return cast<StoreInst>(I)->getValueOperand()->getType(); 294 } 295 296 /// A helper function that returns true if the given type is irregular. The 297 /// type is irregular if its allocated size doesn't equal the store size of an 298 /// element of the corresponding vector type at the given vectorization factor. 299 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 300 // Determine if an array of VF elements of type Ty is "bitcast compatible" 301 // with a <VF x Ty> vector. 302 if (VF > 1) { 303 auto *VectorTy = VectorType::get(Ty, VF); 304 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 305 } 306 307 // If the vectorization factor is one, we just check if an array of type Ty 308 // requires padding between elements. 309 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 310 } 311 312 /// A helper function that returns the reciprocal of the block probability of 313 /// predicated blocks. If we return X, we are assuming the predicated block 314 /// will execute once for every X iterations of the loop header. 315 /// 316 /// TODO: We should use actual block probability here, if available. Currently, 317 /// we always assume predicated blocks have a 50% chance of executing. 318 static unsigned getReciprocalPredBlockProb() { return 2; } 319 320 /// A helper function that adds a 'fast' flag to floating-point operations. 321 static Value *addFastMathFlag(Value *V) { 322 if (isa<FPMathOperator>(V)) 323 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 324 return V; 325 } 326 327 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 328 if (isa<FPMathOperator>(V)) 329 cast<Instruction>(V)->setFastMathFlags(FMF); 330 return V; 331 } 332 333 /// A helper function that returns an integer or floating-point constant with 334 /// value C. 335 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 336 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 337 : ConstantFP::get(Ty, C); 338 } 339 340 namespace llvm { 341 342 /// InnerLoopVectorizer vectorizes loops which contain only one basic 343 /// block to a specified vectorization factor (VF). 344 /// This class performs the widening of scalars into vectors, or multiple 345 /// scalars. This class also implements the following features: 346 /// * It inserts an epilogue loop for handling loops that don't have iteration 347 /// counts that are known to be a multiple of the vectorization factor. 348 /// * It handles the code generation for reduction variables. 349 /// * Scalarization (implementation using scalars) of un-vectorizable 350 /// instructions. 351 /// InnerLoopVectorizer does not perform any vectorization-legality 352 /// checks, and relies on the caller to check for the different legality 353 /// aspects. The InnerLoopVectorizer relies on the 354 /// LoopVectorizationLegality class to provide information about the induction 355 /// and reduction variables that were found to a given vectorization factor. 356 class InnerLoopVectorizer { 357 public: 358 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 359 LoopInfo *LI, DominatorTree *DT, 360 const TargetLibraryInfo *TLI, 361 const TargetTransformInfo *TTI, AssumptionCache *AC, 362 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 363 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 364 LoopVectorizationCostModel *CM) 365 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 366 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 367 Builder(PSE.getSE()->getContext()), 368 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 369 virtual ~InnerLoopVectorizer() = default; 370 371 /// Create a new empty loop. Unlink the old loop and connect the new one. 372 /// Return the pre-header block of the new loop. 373 BasicBlock *createVectorizedLoopSkeleton(); 374 375 /// Widen a single instruction within the innermost loop. 376 void widenInstruction(Instruction &I); 377 378 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 379 void fixVectorizedLoop(); 380 381 // Return true if any runtime check is added. 382 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 383 384 /// A type for vectorized values in the new loop. Each value from the 385 /// original loop, when vectorized, is represented by UF vector values in the 386 /// new unrolled loop, where UF is the unroll factor. 387 using VectorParts = SmallVector<Value *, 2>; 388 389 /// Vectorize a single PHINode in a block. This method handles the induction 390 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 391 /// arbitrary length vectors. 392 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 393 394 /// A helper function to scalarize a single Instruction in the innermost loop. 395 /// Generates a sequence of scalar instances for each lane between \p MinLane 396 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 397 /// inclusive.. 398 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 399 bool IfPredicateInstr); 400 401 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 402 /// is provided, the integer induction variable will first be truncated to 403 /// the corresponding type. 404 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 405 406 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 407 /// vector or scalar value on-demand if one is not yet available. When 408 /// vectorizing a loop, we visit the definition of an instruction before its 409 /// uses. When visiting the definition, we either vectorize or scalarize the 410 /// instruction, creating an entry for it in the corresponding map. (In some 411 /// cases, such as induction variables, we will create both vector and scalar 412 /// entries.) Then, as we encounter uses of the definition, we derive values 413 /// for each scalar or vector use unless such a value is already available. 414 /// For example, if we scalarize a definition and one of its uses is vector, 415 /// we build the required vector on-demand with an insertelement sequence 416 /// when visiting the use. Otherwise, if the use is scalar, we can use the 417 /// existing scalar definition. 418 /// 419 /// Return a value in the new loop corresponding to \p V from the original 420 /// loop at unroll index \p Part. If the value has already been vectorized, 421 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 422 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 423 /// a new vector value on-demand by inserting the scalar values into a vector 424 /// with an insertelement sequence. If the value has been neither vectorized 425 /// nor scalarized, it must be loop invariant, so we simply broadcast the 426 /// value into a vector. 427 Value *getOrCreateVectorValue(Value *V, unsigned Part); 428 429 /// Return a value in the new loop corresponding to \p V from the original 430 /// loop at unroll and vector indices \p Instance. If the value has been 431 /// vectorized but not scalarized, the necessary extractelement instruction 432 /// will be generated. 433 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 434 435 /// Construct the vector value of a scalarized value \p V one lane at a time. 436 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 437 438 /// Try to vectorize the interleaved access group that \p Instr belongs to, 439 /// optionally masking the vector operations if \p BlockInMask is non-null. 440 void vectorizeInterleaveGroup(Instruction *Instr, 441 VectorParts *BlockInMask = nullptr); 442 443 /// Vectorize Load and Store instructions, optionally masking the vector 444 /// operations if \p BlockInMask is non-null. 445 void vectorizeMemoryInstruction(Instruction *Instr, 446 VectorParts *BlockInMask = nullptr); 447 448 /// Set the debug location in the builder using the debug location in 449 /// the instruction. 450 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 451 452 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 453 void fixNonInductionPHIs(void); 454 455 protected: 456 friend class LoopVectorizationPlanner; 457 458 /// A small list of PHINodes. 459 using PhiVector = SmallVector<PHINode *, 4>; 460 461 /// A type for scalarized values in the new loop. Each value from the 462 /// original loop, when scalarized, is represented by UF x VF scalar values 463 /// in the new unrolled loop, where UF is the unroll factor and VF is the 464 /// vectorization factor. 465 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 466 467 /// Set up the values of the IVs correctly when exiting the vector loop. 468 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 469 Value *CountRoundDown, Value *EndValue, 470 BasicBlock *MiddleBlock); 471 472 /// Create a new induction variable inside L. 473 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 474 Value *Step, Instruction *DL); 475 476 /// Handle all cross-iteration phis in the header. 477 void fixCrossIterationPHIs(); 478 479 /// Fix a first-order recurrence. This is the second phase of vectorizing 480 /// this phi node. 481 void fixFirstOrderRecurrence(PHINode *Phi); 482 483 /// Fix a reduction cross-iteration phi. This is the second phase of 484 /// vectorizing this phi node. 485 void fixReduction(PHINode *Phi); 486 487 /// The Loop exit block may have single value PHI nodes with some 488 /// incoming value. While vectorizing we only handled real values 489 /// that were defined inside the loop and we should have one value for 490 /// each predecessor of its parent basic block. See PR14725. 491 void fixLCSSAPHIs(); 492 493 /// Iteratively sink the scalarized operands of a predicated instruction into 494 /// the block that was created for it. 495 void sinkScalarOperands(Instruction *PredInst); 496 497 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 498 /// represented as. 499 void truncateToMinimalBitwidths(); 500 501 /// Insert the new loop to the loop hierarchy and pass manager 502 /// and update the analysis passes. 503 void updateAnalysis(); 504 505 /// Create a broadcast instruction. This method generates a broadcast 506 /// instruction (shuffle) for loop invariant values and for the induction 507 /// value. If this is the induction variable then we extend it to N, N+1, ... 508 /// this is needed because each iteration in the loop corresponds to a SIMD 509 /// element. 510 virtual Value *getBroadcastInstrs(Value *V); 511 512 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 513 /// to each vector element of Val. The sequence starts at StartIndex. 514 /// \p Opcode is relevant for FP induction variable. 515 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 516 Instruction::BinaryOps Opcode = 517 Instruction::BinaryOpsEnd); 518 519 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 520 /// variable on which to base the steps, \p Step is the size of the step, and 521 /// \p EntryVal is the value from the original loop that maps to the steps. 522 /// Note that \p EntryVal doesn't have to be an induction variable - it 523 /// can also be a truncate instruction. 524 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 525 const InductionDescriptor &ID); 526 527 /// Create a vector induction phi node based on an existing scalar one. \p 528 /// EntryVal is the value from the original loop that maps to the vector phi 529 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 530 /// truncate instruction, instead of widening the original IV, we widen a 531 /// version of the IV truncated to \p EntryVal's type. 532 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 533 Value *Step, Instruction *EntryVal); 534 535 /// Returns true if an instruction \p I should be scalarized instead of 536 /// vectorized for the chosen vectorization factor. 537 bool shouldScalarizeInstruction(Instruction *I) const; 538 539 /// Returns true if we should generate a scalar version of \p IV. 540 bool needsScalarInduction(Instruction *IV) const; 541 542 /// If there is a cast involved in the induction variable \p ID, which should 543 /// be ignored in the vectorized loop body, this function records the 544 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 545 /// cast. We had already proved that the casted Phi is equal to the uncasted 546 /// Phi in the vectorized loop (under a runtime guard), and therefore 547 /// there is no need to vectorize the cast - the same value can be used in the 548 /// vector loop for both the Phi and the cast. 549 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 550 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 551 /// 552 /// \p EntryVal is the value from the original loop that maps to the vector 553 /// phi node and is used to distinguish what is the IV currently being 554 /// processed - original one (if \p EntryVal is a phi corresponding to the 555 /// original IV) or the "newly-created" one based on the proof mentioned above 556 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 557 /// latter case \p EntryVal is a TruncInst and we must not record anything for 558 /// that IV, but it's error-prone to expect callers of this routine to care 559 /// about that, hence this explicit parameter. 560 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 561 const Instruction *EntryVal, 562 Value *VectorLoopValue, 563 unsigned Part, 564 unsigned Lane = UINT_MAX); 565 566 /// Generate a shuffle sequence that will reverse the vector Vec. 567 virtual Value *reverseVector(Value *Vec); 568 569 /// Returns (and creates if needed) the original loop trip count. 570 Value *getOrCreateTripCount(Loop *NewLoop); 571 572 /// Returns (and creates if needed) the trip count of the widened loop. 573 Value *getOrCreateVectorTripCount(Loop *NewLoop); 574 575 /// Returns a bitcasted value to the requested vector type. 576 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 577 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 578 const DataLayout &DL); 579 580 /// Emit a bypass check to see if the vector trip count is zero, including if 581 /// it overflows. 582 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 583 584 /// Emit a bypass check to see if all of the SCEV assumptions we've 585 /// had to make are correct. 586 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 587 588 /// Emit bypass checks to check any memory assumptions we may have made. 589 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 590 591 /// Compute the transformed value of Index at offset StartValue using step 592 /// StepValue. 593 /// For integer induction, returns StartValue + Index * StepValue. 594 /// For pointer induction, returns StartValue[Index * StepValue]. 595 /// FIXME: The newly created binary instructions should contain nsw/nuw 596 /// flags, which can be found from the original scalar operations. 597 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 598 const DataLayout &DL, 599 const InductionDescriptor &ID) const; 600 601 /// Add additional metadata to \p To that was not present on \p Orig. 602 /// 603 /// Currently this is used to add the noalias annotations based on the 604 /// inserted memchecks. Use this for instructions that are *cloned* into the 605 /// vector loop. 606 void addNewMetadata(Instruction *To, const Instruction *Orig); 607 608 /// Add metadata from one instruction to another. 609 /// 610 /// This includes both the original MDs from \p From and additional ones (\see 611 /// addNewMetadata). Use this for *newly created* instructions in the vector 612 /// loop. 613 void addMetadata(Instruction *To, Instruction *From); 614 615 /// Similar to the previous function but it adds the metadata to a 616 /// vector of instructions. 617 void addMetadata(ArrayRef<Value *> To, Instruction *From); 618 619 /// The original loop. 620 Loop *OrigLoop; 621 622 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 623 /// dynamic knowledge to simplify SCEV expressions and converts them to a 624 /// more usable form. 625 PredicatedScalarEvolution &PSE; 626 627 /// Loop Info. 628 LoopInfo *LI; 629 630 /// Dominator Tree. 631 DominatorTree *DT; 632 633 /// Alias Analysis. 634 AliasAnalysis *AA; 635 636 /// Target Library Info. 637 const TargetLibraryInfo *TLI; 638 639 /// Target Transform Info. 640 const TargetTransformInfo *TTI; 641 642 /// Assumption Cache. 643 AssumptionCache *AC; 644 645 /// Interface to emit optimization remarks. 646 OptimizationRemarkEmitter *ORE; 647 648 /// LoopVersioning. It's only set up (non-null) if memchecks were 649 /// used. 650 /// 651 /// This is currently only used to add no-alias metadata based on the 652 /// memchecks. The actually versioning is performed manually. 653 std::unique_ptr<LoopVersioning> LVer; 654 655 /// The vectorization SIMD factor to use. Each vector will have this many 656 /// vector elements. 657 unsigned VF; 658 659 /// The vectorization unroll factor to use. Each scalar is vectorized to this 660 /// many different vector instructions. 661 unsigned UF; 662 663 /// The builder that we use 664 IRBuilder<> Builder; 665 666 // --- Vectorization state --- 667 668 /// The vector-loop preheader. 669 BasicBlock *LoopVectorPreHeader; 670 671 /// The scalar-loop preheader. 672 BasicBlock *LoopScalarPreHeader; 673 674 /// Middle Block between the vector and the scalar. 675 BasicBlock *LoopMiddleBlock; 676 677 /// The ExitBlock of the scalar loop. 678 BasicBlock *LoopExitBlock; 679 680 /// The vector loop body. 681 BasicBlock *LoopVectorBody; 682 683 /// The scalar loop body. 684 BasicBlock *LoopScalarBody; 685 686 /// A list of all bypass blocks. The first block is the entry of the loop. 687 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 688 689 /// The new Induction variable which was added to the new block. 690 PHINode *Induction = nullptr; 691 692 /// The induction variable of the old basic block. 693 PHINode *OldInduction = nullptr; 694 695 /// Maps values from the original loop to their corresponding values in the 696 /// vectorized loop. A key value can map to either vector values, scalar 697 /// values or both kinds of values, depending on whether the key was 698 /// vectorized and scalarized. 699 VectorizerValueMap VectorLoopValueMap; 700 701 /// Store instructions that were predicated. 702 SmallVector<Instruction *, 4> PredicatedInstructions; 703 704 /// Trip count of the original loop. 705 Value *TripCount = nullptr; 706 707 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 708 Value *VectorTripCount = nullptr; 709 710 /// The legality analysis. 711 LoopVectorizationLegality *Legal; 712 713 /// The profitablity analysis. 714 LoopVectorizationCostModel *Cost; 715 716 // Record whether runtime checks are added. 717 bool AddedSafetyChecks = false; 718 719 // Holds the end values for each induction variable. We save the end values 720 // so we can later fix-up the external users of the induction variables. 721 DenseMap<PHINode *, Value *> IVEndValues; 722 723 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 724 // fixed up at the end of vector code generation. 725 SmallVector<PHINode *, 8> OrigPHIsToFix; 726 }; 727 728 class InnerLoopUnroller : public InnerLoopVectorizer { 729 public: 730 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 731 LoopInfo *LI, DominatorTree *DT, 732 const TargetLibraryInfo *TLI, 733 const TargetTransformInfo *TTI, AssumptionCache *AC, 734 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 735 LoopVectorizationLegality *LVL, 736 LoopVectorizationCostModel *CM) 737 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 738 UnrollFactor, LVL, CM) {} 739 740 private: 741 Value *getBroadcastInstrs(Value *V) override; 742 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 743 Instruction::BinaryOps Opcode = 744 Instruction::BinaryOpsEnd) override; 745 Value *reverseVector(Value *Vec) override; 746 }; 747 748 } // end namespace llvm 749 750 /// Look for a meaningful debug location on the instruction or it's 751 /// operands. 752 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 753 if (!I) 754 return I; 755 756 DebugLoc Empty; 757 if (I->getDebugLoc() != Empty) 758 return I; 759 760 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 761 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 762 if (OpInst->getDebugLoc() != Empty) 763 return OpInst; 764 } 765 766 return I; 767 } 768 769 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 770 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 771 const DILocation *DIL = Inst->getDebugLoc(); 772 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 773 !isa<DbgInfoIntrinsic>(Inst)) { 774 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 775 if (NewDIL) 776 B.SetCurrentDebugLocation(NewDIL.getValue()); 777 else 778 LLVM_DEBUG(dbgs() 779 << "Failed to create new discriminator: " 780 << DIL->getFilename() << " Line: " << DIL->getLine()); 781 } 782 else 783 B.SetCurrentDebugLocation(DIL); 784 } else 785 B.SetCurrentDebugLocation(DebugLoc()); 786 } 787 788 #ifndef NDEBUG 789 /// \return string containing a file name and a line # for the given loop. 790 static std::string getDebugLocString(const Loop *L) { 791 std::string Result; 792 if (L) { 793 raw_string_ostream OS(Result); 794 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 795 LoopDbgLoc.print(OS); 796 else 797 // Just print the module name. 798 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 799 OS.flush(); 800 } 801 return Result; 802 } 803 #endif 804 805 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 806 const Instruction *Orig) { 807 // If the loop was versioned with memchecks, add the corresponding no-alias 808 // metadata. 809 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 810 LVer->annotateInstWithNoAlias(To, Orig); 811 } 812 813 void InnerLoopVectorizer::addMetadata(Instruction *To, 814 Instruction *From) { 815 propagateMetadata(To, From); 816 addNewMetadata(To, From); 817 } 818 819 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 820 Instruction *From) { 821 for (Value *V : To) { 822 if (Instruction *I = dyn_cast<Instruction>(V)) 823 addMetadata(I, From); 824 } 825 } 826 827 namespace llvm { 828 829 /// LoopVectorizationCostModel - estimates the expected speedups due to 830 /// vectorization. 831 /// In many cases vectorization is not profitable. This can happen because of 832 /// a number of reasons. In this class we mainly attempt to predict the 833 /// expected speedup/slowdowns due to the supported instruction set. We use the 834 /// TargetTransformInfo to query the different backends for the cost of 835 /// different operations. 836 class LoopVectorizationCostModel { 837 public: 838 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 839 LoopInfo *LI, LoopVectorizationLegality *Legal, 840 const TargetTransformInfo &TTI, 841 const TargetLibraryInfo *TLI, DemandedBits *DB, 842 AssumptionCache *AC, 843 OptimizationRemarkEmitter *ORE, const Function *F, 844 const LoopVectorizeHints *Hints, 845 InterleavedAccessInfo &IAI) 846 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 847 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 848 849 /// \return An upper bound for the vectorization factor, or None if 850 /// vectorization and interleaving should be avoided up front. 851 Optional<unsigned> computeMaxVF(bool OptForSize); 852 853 /// \return The most profitable vectorization factor and the cost of that VF. 854 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 855 /// then this vectorization factor will be selected if vectorization is 856 /// possible. 857 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 858 859 /// Setup cost-based decisions for user vectorization factor. 860 void selectUserVectorizationFactor(unsigned UserVF) { 861 collectUniformsAndScalars(UserVF); 862 collectInstsToScalarize(UserVF); 863 } 864 865 /// \return The size (in bits) of the smallest and widest types in the code 866 /// that needs to be vectorized. We ignore values that remain scalar such as 867 /// 64 bit loop indices. 868 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 869 870 /// \return The desired interleave count. 871 /// If interleave count has been specified by metadata it will be returned. 872 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 873 /// are the selected vectorization factor and the cost of the selected VF. 874 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 875 unsigned LoopCost); 876 877 /// Memory access instruction may be vectorized in more than one way. 878 /// Form of instruction after vectorization depends on cost. 879 /// This function takes cost-based decisions for Load/Store instructions 880 /// and collects them in a map. This decisions map is used for building 881 /// the lists of loop-uniform and loop-scalar instructions. 882 /// The calculated cost is saved with widening decision in order to 883 /// avoid redundant calculations. 884 void setCostBasedWideningDecision(unsigned VF); 885 886 /// A struct that represents some properties of the register usage 887 /// of a loop. 888 struct RegisterUsage { 889 /// Holds the number of loop invariant values that are used in the loop. 890 unsigned LoopInvariantRegs; 891 892 /// Holds the maximum number of concurrent live intervals in the loop. 893 unsigned MaxLocalUsers; 894 }; 895 896 /// \return Returns information about the register usages of the loop for the 897 /// given vectorization factors. 898 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 899 900 /// Collect values we want to ignore in the cost model. 901 void collectValuesToIgnore(); 902 903 /// \returns The smallest bitwidth each instruction can be represented with. 904 /// The vector equivalents of these instructions should be truncated to this 905 /// type. 906 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 907 return MinBWs; 908 } 909 910 /// \returns True if it is more profitable to scalarize instruction \p I for 911 /// vectorization factor \p VF. 912 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 913 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 914 915 // Cost model is not run in the VPlan-native path - return conservative 916 // result until this changes. 917 if (EnableVPlanNativePath) 918 return false; 919 920 auto Scalars = InstsToScalarize.find(VF); 921 assert(Scalars != InstsToScalarize.end() && 922 "VF not yet analyzed for scalarization profitability"); 923 return Scalars->second.find(I) != Scalars->second.end(); 924 } 925 926 /// Returns true if \p I is known to be uniform after vectorization. 927 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 928 if (VF == 1) 929 return true; 930 931 // Cost model is not run in the VPlan-native path - return conservative 932 // result until this changes. 933 if (EnableVPlanNativePath) 934 return false; 935 936 auto UniformsPerVF = Uniforms.find(VF); 937 assert(UniformsPerVF != Uniforms.end() && 938 "VF not yet analyzed for uniformity"); 939 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 940 } 941 942 /// Returns true if \p I is known to be scalar after vectorization. 943 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 944 if (VF == 1) 945 return true; 946 947 // Cost model is not run in the VPlan-native path - return conservative 948 // result until this changes. 949 if (EnableVPlanNativePath) 950 return false; 951 952 auto ScalarsPerVF = Scalars.find(VF); 953 assert(ScalarsPerVF != Scalars.end() && 954 "Scalar values are not calculated for VF"); 955 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 956 } 957 958 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 959 /// for vectorization factor \p VF. 960 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 961 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 962 !isProfitableToScalarize(I, VF) && 963 !isScalarAfterVectorization(I, VF); 964 } 965 966 /// Decision that was taken during cost calculation for memory instruction. 967 enum InstWidening { 968 CM_Unknown, 969 CM_Widen, // For consecutive accesses with stride +1. 970 CM_Widen_Reverse, // For consecutive accesses with stride -1. 971 CM_Interleave, 972 CM_GatherScatter, 973 CM_Scalarize 974 }; 975 976 /// Save vectorization decision \p W and \p Cost taken by the cost model for 977 /// instruction \p I and vector width \p VF. 978 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 979 unsigned Cost) { 980 assert(VF >= 2 && "Expected VF >=2"); 981 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 982 } 983 984 /// Save vectorization decision \p W and \p Cost taken by the cost model for 985 /// interleaving group \p Grp and vector width \p VF. 986 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 987 InstWidening W, unsigned Cost) { 988 assert(VF >= 2 && "Expected VF >=2"); 989 /// Broadcast this decicion to all instructions inside the group. 990 /// But the cost will be assigned to one instruction only. 991 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 992 if (auto *I = Grp->getMember(i)) { 993 if (Grp->getInsertPos() == I) 994 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 995 else 996 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 997 } 998 } 999 } 1000 1001 /// Return the cost model decision for the given instruction \p I and vector 1002 /// width \p VF. Return CM_Unknown if this instruction did not pass 1003 /// through the cost modeling. 1004 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1005 assert(VF >= 2 && "Expected VF >=2"); 1006 1007 // Cost model is not run in the VPlan-native path - return conservative 1008 // result until this changes. 1009 if (EnableVPlanNativePath) 1010 return CM_GatherScatter; 1011 1012 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1013 auto Itr = WideningDecisions.find(InstOnVF); 1014 if (Itr == WideningDecisions.end()) 1015 return CM_Unknown; 1016 return Itr->second.first; 1017 } 1018 1019 /// Return the vectorization cost for the given instruction \p I and vector 1020 /// width \p VF. 1021 unsigned getWideningCost(Instruction *I, unsigned VF) { 1022 assert(VF >= 2 && "Expected VF >=2"); 1023 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1024 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1025 "The cost is not calculated"); 1026 return WideningDecisions[InstOnVF].second; 1027 } 1028 1029 /// Return True if instruction \p I is an optimizable truncate whose operand 1030 /// is an induction variable. Such a truncate will be removed by adding a new 1031 /// induction variable with the destination type. 1032 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1033 // If the instruction is not a truncate, return false. 1034 auto *Trunc = dyn_cast<TruncInst>(I); 1035 if (!Trunc) 1036 return false; 1037 1038 // Get the source and destination types of the truncate. 1039 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1040 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1041 1042 // If the truncate is free for the given types, return false. Replacing a 1043 // free truncate with an induction variable would add an induction variable 1044 // update instruction to each iteration of the loop. We exclude from this 1045 // check the primary induction variable since it will need an update 1046 // instruction regardless. 1047 Value *Op = Trunc->getOperand(0); 1048 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1049 return false; 1050 1051 // If the truncated value is not an induction variable, return false. 1052 return Legal->isInductionPhi(Op); 1053 } 1054 1055 /// Collects the instructions to scalarize for each predicated instruction in 1056 /// the loop. 1057 void collectInstsToScalarize(unsigned VF); 1058 1059 /// Collect Uniform and Scalar values for the given \p VF. 1060 /// The sets depend on CM decision for Load/Store instructions 1061 /// that may be vectorized as interleave, gather-scatter or scalarized. 1062 void collectUniformsAndScalars(unsigned VF) { 1063 // Do the analysis once. 1064 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1065 return; 1066 setCostBasedWideningDecision(VF); 1067 collectLoopUniforms(VF); 1068 collectLoopScalars(VF); 1069 } 1070 1071 /// Returns true if the target machine supports masked store operation 1072 /// for the given \p DataType and kind of access to \p Ptr. 1073 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1074 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1075 } 1076 1077 /// Returns true if the target machine supports masked load operation 1078 /// for the given \p DataType and kind of access to \p Ptr. 1079 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1080 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1081 } 1082 1083 /// Returns true if the target machine supports masked scatter operation 1084 /// for the given \p DataType. 1085 bool isLegalMaskedScatter(Type *DataType) { 1086 return TTI.isLegalMaskedScatter(DataType); 1087 } 1088 1089 /// Returns true if the target machine supports masked gather operation 1090 /// for the given \p DataType. 1091 bool isLegalMaskedGather(Type *DataType) { 1092 return TTI.isLegalMaskedGather(DataType); 1093 } 1094 1095 /// Returns true if the target machine can represent \p V as a masked gather 1096 /// or scatter operation. 1097 bool isLegalGatherOrScatter(Value *V) { 1098 bool LI = isa<LoadInst>(V); 1099 bool SI = isa<StoreInst>(V); 1100 if (!LI && !SI) 1101 return false; 1102 auto *Ty = getMemInstValueType(V); 1103 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1104 } 1105 1106 /// Returns true if \p I is an instruction that will be scalarized with 1107 /// predication. Such instructions include conditional stores and 1108 /// instructions that may divide by zero. 1109 /// If a non-zero VF has been calculated, we check if I will be scalarized 1110 /// predication for that VF. 1111 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1112 1113 // Returns true if \p I is an instruction that will be predicated either 1114 // through scalar predication or masked load/store or masked gather/scatter. 1115 // Superset of instructions that return true for isScalarWithPredication. 1116 bool isPredicatedInst(Instruction *I) { 1117 if (!blockNeedsPredication(I->getParent())) 1118 return false; 1119 // Loads and stores that need some form of masked operation are predicated 1120 // instructions. 1121 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1122 return Legal->isMaskRequired(I); 1123 return isScalarWithPredication(I); 1124 } 1125 1126 /// Returns true if \p I is a memory instruction with consecutive memory 1127 /// access that can be widened. 1128 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1129 1130 /// Returns true if \p I is a memory instruction in an interleaved-group 1131 /// of memory accesses that can be vectorized with wide vector loads/stores 1132 /// and shuffles. 1133 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1134 1135 /// Check if \p Instr belongs to any interleaved access group. 1136 bool isAccessInterleaved(Instruction *Instr) { 1137 return InterleaveInfo.isInterleaved(Instr); 1138 } 1139 1140 /// Get the interleaved access group that \p Instr belongs to. 1141 const InterleaveGroup<Instruction> * 1142 getInterleavedAccessGroup(Instruction *Instr) { 1143 return InterleaveInfo.getInterleaveGroup(Instr); 1144 } 1145 1146 /// Returns true if an interleaved group requires a scalar iteration 1147 /// to handle accesses with gaps, and there is nothing preventing us from 1148 /// creating a scalar epilogue. 1149 bool requiresScalarEpilogue() const { 1150 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1151 } 1152 1153 /// Returns true if a scalar epilogue is not allowed due to optsize. 1154 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1155 1156 /// Returns true if all loop blocks should be masked to fold tail loop. 1157 bool foldTailByMasking() const { return FoldTailByMasking; } 1158 1159 bool blockNeedsPredication(BasicBlock *BB) { 1160 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1161 } 1162 1163 private: 1164 unsigned NumPredStores = 0; 1165 1166 /// \return An upper bound for the vectorization factor, larger than zero. 1167 /// One is returned if vectorization should best be avoided due to cost. 1168 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1169 1170 /// The vectorization cost is a combination of the cost itself and a boolean 1171 /// indicating whether any of the contributing operations will actually 1172 /// operate on 1173 /// vector values after type legalization in the backend. If this latter value 1174 /// is 1175 /// false, then all operations will be scalarized (i.e. no vectorization has 1176 /// actually taken place). 1177 using VectorizationCostTy = std::pair<unsigned, bool>; 1178 1179 /// Returns the expected execution cost. The unit of the cost does 1180 /// not matter because we use the 'cost' units to compare different 1181 /// vector widths. The cost that is returned is *not* normalized by 1182 /// the factor width. 1183 VectorizationCostTy expectedCost(unsigned VF); 1184 1185 /// Returns the execution time cost of an instruction for a given vector 1186 /// width. Vector width of one means scalar. 1187 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1188 1189 /// The cost-computation logic from getInstructionCost which provides 1190 /// the vector type as an output parameter. 1191 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1192 1193 /// Calculate vectorization cost of memory instruction \p I. 1194 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1195 1196 /// The cost computation for scalarized memory instruction. 1197 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1198 1199 /// The cost computation for interleaving group of memory instructions. 1200 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1201 1202 /// The cost computation for Gather/Scatter instruction. 1203 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1204 1205 /// The cost computation for widening instruction \p I with consecutive 1206 /// memory access. 1207 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1208 1209 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1210 /// Load: scalar load + broadcast. 1211 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1212 /// element) 1213 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1214 1215 /// Returns whether the instruction is a load or store and will be a emitted 1216 /// as a vector operation. 1217 bool isConsecutiveLoadOrStore(Instruction *I); 1218 1219 /// Returns true if an artificially high cost for emulated masked memrefs 1220 /// should be used. 1221 bool useEmulatedMaskMemRefHack(Instruction *I); 1222 1223 /// Create an analysis remark that explains why vectorization failed 1224 /// 1225 /// \p RemarkName is the identifier for the remark. \return the remark object 1226 /// that can be streamed to. 1227 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1228 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1229 RemarkName, TheLoop); 1230 } 1231 1232 /// Map of scalar integer values to the smallest bitwidth they can be legally 1233 /// represented as. The vector equivalents of these values should be truncated 1234 /// to this type. 1235 MapVector<Instruction *, uint64_t> MinBWs; 1236 1237 /// A type representing the costs for instructions if they were to be 1238 /// scalarized rather than vectorized. The entries are Instruction-Cost 1239 /// pairs. 1240 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1241 1242 /// A set containing all BasicBlocks that are known to present after 1243 /// vectorization as a predicated block. 1244 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1245 1246 /// Records whether it is allowed to have the original scalar loop execute at 1247 /// least once. This may be needed as a fallback loop in case runtime 1248 /// aliasing/dependence checks fail, or to handle the tail/remainder 1249 /// iterations when the trip count is unknown or doesn't divide by the VF, 1250 /// or as a peel-loop to handle gaps in interleave-groups. 1251 /// Under optsize and when the trip count is very small we don't allow any 1252 /// iterations to execute in the scalar loop. 1253 bool IsScalarEpilogueAllowed = true; 1254 1255 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1256 bool FoldTailByMasking = false; 1257 1258 /// A map holding scalar costs for different vectorization factors. The 1259 /// presence of a cost for an instruction in the mapping indicates that the 1260 /// instruction will be scalarized when vectorizing with the associated 1261 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1262 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1263 1264 /// Holds the instructions known to be uniform after vectorization. 1265 /// The data is collected per VF. 1266 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1267 1268 /// Holds the instructions known to be scalar after vectorization. 1269 /// The data is collected per VF. 1270 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1271 1272 /// Holds the instructions (address computations) that are forced to be 1273 /// scalarized. 1274 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1275 1276 /// Returns the expected difference in cost from scalarizing the expression 1277 /// feeding a predicated instruction \p PredInst. The instructions to 1278 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1279 /// non-negative return value implies the expression will be scalarized. 1280 /// Currently, only single-use chains are considered for scalarization. 1281 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1282 unsigned VF); 1283 1284 /// Collect the instructions that are uniform after vectorization. An 1285 /// instruction is uniform if we represent it with a single scalar value in 1286 /// the vectorized loop corresponding to each vector iteration. Examples of 1287 /// uniform instructions include pointer operands of consecutive or 1288 /// interleaved memory accesses. Note that although uniformity implies an 1289 /// instruction will be scalar, the reverse is not true. In general, a 1290 /// scalarized instruction will be represented by VF scalar values in the 1291 /// vectorized loop, each corresponding to an iteration of the original 1292 /// scalar loop. 1293 void collectLoopUniforms(unsigned VF); 1294 1295 /// Collect the instructions that are scalar after vectorization. An 1296 /// instruction is scalar if it is known to be uniform or will be scalarized 1297 /// during vectorization. Non-uniform scalarized instructions will be 1298 /// represented by VF values in the vectorized loop, each corresponding to an 1299 /// iteration of the original scalar loop. 1300 void collectLoopScalars(unsigned VF); 1301 1302 /// Keeps cost model vectorization decision and cost for instructions. 1303 /// Right now it is used for memory instructions only. 1304 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1305 std::pair<InstWidening, unsigned>>; 1306 1307 DecisionList WideningDecisions; 1308 1309 public: 1310 /// The loop that we evaluate. 1311 Loop *TheLoop; 1312 1313 /// Predicated scalar evolution analysis. 1314 PredicatedScalarEvolution &PSE; 1315 1316 /// Loop Info analysis. 1317 LoopInfo *LI; 1318 1319 /// Vectorization legality. 1320 LoopVectorizationLegality *Legal; 1321 1322 /// Vector target information. 1323 const TargetTransformInfo &TTI; 1324 1325 /// Target Library Info. 1326 const TargetLibraryInfo *TLI; 1327 1328 /// Demanded bits analysis. 1329 DemandedBits *DB; 1330 1331 /// Assumption cache. 1332 AssumptionCache *AC; 1333 1334 /// Interface to emit optimization remarks. 1335 OptimizationRemarkEmitter *ORE; 1336 1337 const Function *TheFunction; 1338 1339 /// Loop Vectorize Hint. 1340 const LoopVectorizeHints *Hints; 1341 1342 /// The interleave access information contains groups of interleaved accesses 1343 /// with the same stride and close to each other. 1344 InterleavedAccessInfo &InterleaveInfo; 1345 1346 /// Values to ignore in the cost model. 1347 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1348 1349 /// Values to ignore in the cost model when VF > 1. 1350 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1351 }; 1352 1353 } // end namespace llvm 1354 1355 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1356 // vectorization. The loop needs to be annotated with #pragma omp simd 1357 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1358 // vector length information is not provided, vectorization is not considered 1359 // explicit. Interleave hints are not allowed either. These limitations will be 1360 // relaxed in the future. 1361 // Please, note that we are currently forced to abuse the pragma 'clang 1362 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1363 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1364 // provides *explicit vectorization hints* (LV can bypass legal checks and 1365 // assume that vectorization is legal). However, both hints are implemented 1366 // using the same metadata (llvm.loop.vectorize, processed by 1367 // LoopVectorizeHints). This will be fixed in the future when the native IR 1368 // representation for pragma 'omp simd' is introduced. 1369 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1370 OptimizationRemarkEmitter *ORE) { 1371 assert(!OuterLp->empty() && "This is not an outer loop"); 1372 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1373 1374 // Only outer loops with an explicit vectorization hint are supported. 1375 // Unannotated outer loops are ignored. 1376 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1377 return false; 1378 1379 Function *Fn = OuterLp->getHeader()->getParent(); 1380 if (!Hints.allowVectorization(Fn, OuterLp, 1381 true /*VectorizeOnlyWhenForced*/)) { 1382 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1383 return false; 1384 } 1385 1386 if (!Hints.getWidth()) { 1387 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1388 Hints.emitRemarkWithHints(); 1389 return false; 1390 } 1391 1392 if (Hints.getInterleave() > 1) { 1393 // TODO: Interleave support is future work. 1394 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1395 "outer loops.\n"); 1396 Hints.emitRemarkWithHints(); 1397 return false; 1398 } 1399 1400 return true; 1401 } 1402 1403 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1404 OptimizationRemarkEmitter *ORE, 1405 SmallVectorImpl<Loop *> &V) { 1406 // Collect inner loops and outer loops without irreducible control flow. For 1407 // now, only collect outer loops that have explicit vectorization hints. If we 1408 // are stress testing the VPlan H-CFG construction, we collect the outermost 1409 // loop of every loop nest. 1410 if (L.empty() || VPlanBuildStressTest || 1411 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1412 LoopBlocksRPO RPOT(&L); 1413 RPOT.perform(LI); 1414 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1415 V.push_back(&L); 1416 // TODO: Collect inner loops inside marked outer loops in case 1417 // vectorization fails for the outer loop. Do not invoke 1418 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1419 // already known to be reducible. We can use an inherited attribute for 1420 // that. 1421 return; 1422 } 1423 } 1424 for (Loop *InnerL : L) 1425 collectSupportedLoops(*InnerL, LI, ORE, V); 1426 } 1427 1428 namespace { 1429 1430 /// The LoopVectorize Pass. 1431 struct LoopVectorize : public FunctionPass { 1432 /// Pass identification, replacement for typeid 1433 static char ID; 1434 1435 LoopVectorizePass Impl; 1436 1437 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1438 bool VectorizeOnlyWhenForced = false) 1439 : FunctionPass(ID) { 1440 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1441 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1442 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1443 } 1444 1445 bool runOnFunction(Function &F) override { 1446 if (skipFunction(F)) 1447 return false; 1448 1449 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1450 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1451 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1452 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1453 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1454 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1455 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1456 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1457 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1458 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1459 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1460 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1461 1462 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1463 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1464 1465 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1466 GetLAA, *ORE); 1467 } 1468 1469 void getAnalysisUsage(AnalysisUsage &AU) const override { 1470 AU.addRequired<AssumptionCacheTracker>(); 1471 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1472 AU.addRequired<DominatorTreeWrapperPass>(); 1473 AU.addRequired<LoopInfoWrapperPass>(); 1474 AU.addRequired<ScalarEvolutionWrapperPass>(); 1475 AU.addRequired<TargetTransformInfoWrapperPass>(); 1476 AU.addRequired<AAResultsWrapperPass>(); 1477 AU.addRequired<LoopAccessLegacyAnalysis>(); 1478 AU.addRequired<DemandedBitsWrapperPass>(); 1479 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1480 1481 // We currently do not preserve loopinfo/dominator analyses with outer loop 1482 // vectorization. Until this is addressed, mark these analyses as preserved 1483 // only for non-VPlan-native path. 1484 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1485 if (!EnableVPlanNativePath) { 1486 AU.addPreserved<LoopInfoWrapperPass>(); 1487 AU.addPreserved<DominatorTreeWrapperPass>(); 1488 } 1489 1490 AU.addPreserved<BasicAAWrapperPass>(); 1491 AU.addPreserved<GlobalsAAWrapperPass>(); 1492 } 1493 }; 1494 1495 } // end anonymous namespace 1496 1497 //===----------------------------------------------------------------------===// 1498 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1499 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1500 //===----------------------------------------------------------------------===// 1501 1502 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1503 // We need to place the broadcast of invariant variables outside the loop, 1504 // but only if it's proven safe to do so. Else, broadcast will be inside 1505 // vector loop body. 1506 Instruction *Instr = dyn_cast<Instruction>(V); 1507 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1508 (!Instr || 1509 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1510 // Place the code for broadcasting invariant variables in the new preheader. 1511 IRBuilder<>::InsertPointGuard Guard(Builder); 1512 if (SafeToHoist) 1513 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1514 1515 // Broadcast the scalar into all locations in the vector. 1516 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1517 1518 return Shuf; 1519 } 1520 1521 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1522 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1523 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1524 "Expected either an induction phi-node or a truncate of it!"); 1525 Value *Start = II.getStartValue(); 1526 1527 // Construct the initial value of the vector IV in the vector loop preheader 1528 auto CurrIP = Builder.saveIP(); 1529 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1530 if (isa<TruncInst>(EntryVal)) { 1531 assert(Start->getType()->isIntegerTy() && 1532 "Truncation requires an integer type"); 1533 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1534 Step = Builder.CreateTrunc(Step, TruncType); 1535 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1536 } 1537 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1538 Value *SteppedStart = 1539 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1540 1541 // We create vector phi nodes for both integer and floating-point induction 1542 // variables. Here, we determine the kind of arithmetic we will perform. 1543 Instruction::BinaryOps AddOp; 1544 Instruction::BinaryOps MulOp; 1545 if (Step->getType()->isIntegerTy()) { 1546 AddOp = Instruction::Add; 1547 MulOp = Instruction::Mul; 1548 } else { 1549 AddOp = II.getInductionOpcode(); 1550 MulOp = Instruction::FMul; 1551 } 1552 1553 // Multiply the vectorization factor by the step using integer or 1554 // floating-point arithmetic as appropriate. 1555 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1556 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1557 1558 // Create a vector splat to use in the induction update. 1559 // 1560 // FIXME: If the step is non-constant, we create the vector splat with 1561 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1562 // handle a constant vector splat. 1563 Value *SplatVF = isa<Constant>(Mul) 1564 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1565 : Builder.CreateVectorSplat(VF, Mul); 1566 Builder.restoreIP(CurrIP); 1567 1568 // We may need to add the step a number of times, depending on the unroll 1569 // factor. The last of those goes into the PHI. 1570 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1571 &*LoopVectorBody->getFirstInsertionPt()); 1572 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1573 Instruction *LastInduction = VecInd; 1574 for (unsigned Part = 0; Part < UF; ++Part) { 1575 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1576 1577 if (isa<TruncInst>(EntryVal)) 1578 addMetadata(LastInduction, EntryVal); 1579 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1580 1581 LastInduction = cast<Instruction>(addFastMathFlag( 1582 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1583 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1584 } 1585 1586 // Move the last step to the end of the latch block. This ensures consistent 1587 // placement of all induction updates. 1588 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1589 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1590 auto *ICmp = cast<Instruction>(Br->getCondition()); 1591 LastInduction->moveBefore(ICmp); 1592 LastInduction->setName("vec.ind.next"); 1593 1594 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1595 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1596 } 1597 1598 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1599 return Cost->isScalarAfterVectorization(I, VF) || 1600 Cost->isProfitableToScalarize(I, VF); 1601 } 1602 1603 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1604 if (shouldScalarizeInstruction(IV)) 1605 return true; 1606 auto isScalarInst = [&](User *U) -> bool { 1607 auto *I = cast<Instruction>(U); 1608 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1609 }; 1610 return llvm::any_of(IV->users(), isScalarInst); 1611 } 1612 1613 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1614 const InductionDescriptor &ID, const Instruction *EntryVal, 1615 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1616 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1617 "Expected either an induction phi-node or a truncate of it!"); 1618 1619 // This induction variable is not the phi from the original loop but the 1620 // newly-created IV based on the proof that casted Phi is equal to the 1621 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1622 // re-uses the same InductionDescriptor that original IV uses but we don't 1623 // have to do any recording in this case - that is done when original IV is 1624 // processed. 1625 if (isa<TruncInst>(EntryVal)) 1626 return; 1627 1628 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1629 if (Casts.empty()) 1630 return; 1631 // Only the first Cast instruction in the Casts vector is of interest. 1632 // The rest of the Casts (if exist) have no uses outside the 1633 // induction update chain itself. 1634 Instruction *CastInst = *Casts.begin(); 1635 if (Lane < UINT_MAX) 1636 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1637 else 1638 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1639 } 1640 1641 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1642 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1643 "Primary induction variable must have an integer type"); 1644 1645 auto II = Legal->getInductionVars()->find(IV); 1646 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1647 1648 auto ID = II->second; 1649 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1650 1651 // The scalar value to broadcast. This will be derived from the canonical 1652 // induction variable. 1653 Value *ScalarIV = nullptr; 1654 1655 // The value from the original loop to which we are mapping the new induction 1656 // variable. 1657 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1658 1659 // True if we have vectorized the induction variable. 1660 auto VectorizedIV = false; 1661 1662 // Determine if we want a scalar version of the induction variable. This is 1663 // true if the induction variable itself is not widened, or if it has at 1664 // least one user in the loop that is not widened. 1665 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1666 1667 // Generate code for the induction step. Note that induction steps are 1668 // required to be loop-invariant 1669 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1670 "Induction step should be loop invariant"); 1671 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1672 Value *Step = nullptr; 1673 if (PSE.getSE()->isSCEVable(IV->getType())) { 1674 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1675 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1676 LoopVectorPreHeader->getTerminator()); 1677 } else { 1678 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1679 } 1680 1681 // Try to create a new independent vector induction variable. If we can't 1682 // create the phi node, we will splat the scalar induction variable in each 1683 // loop iteration. 1684 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1685 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1686 VectorizedIV = true; 1687 } 1688 1689 // If we haven't yet vectorized the induction variable, or if we will create 1690 // a scalar one, we need to define the scalar induction variable and step 1691 // values. If we were given a truncation type, truncate the canonical 1692 // induction variable and step. Otherwise, derive these values from the 1693 // induction descriptor. 1694 if (!VectorizedIV || NeedsScalarIV) { 1695 ScalarIV = Induction; 1696 if (IV != OldInduction) { 1697 ScalarIV = IV->getType()->isIntegerTy() 1698 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1699 : Builder.CreateCast(Instruction::SIToFP, Induction, 1700 IV->getType()); 1701 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1702 ScalarIV->setName("offset.idx"); 1703 } 1704 if (Trunc) { 1705 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1706 assert(Step->getType()->isIntegerTy() && 1707 "Truncation requires an integer step"); 1708 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1709 Step = Builder.CreateTrunc(Step, TruncType); 1710 } 1711 } 1712 1713 // If we haven't yet vectorized the induction variable, splat the scalar 1714 // induction variable, and build the necessary step vectors. 1715 // TODO: Don't do it unless the vectorized IV is really required. 1716 if (!VectorizedIV) { 1717 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1718 for (unsigned Part = 0; Part < UF; ++Part) { 1719 Value *EntryPart = 1720 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1721 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1722 if (Trunc) 1723 addMetadata(EntryPart, Trunc); 1724 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1725 } 1726 } 1727 1728 // If an induction variable is only used for counting loop iterations or 1729 // calculating addresses, it doesn't need to be widened. Create scalar steps 1730 // that can be used by instructions we will later scalarize. Note that the 1731 // addition of the scalar steps will not increase the number of instructions 1732 // in the loop in the common case prior to InstCombine. We will be trading 1733 // one vector extract for each scalar step. 1734 if (NeedsScalarIV) 1735 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1736 } 1737 1738 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1739 Instruction::BinaryOps BinOp) { 1740 // Create and check the types. 1741 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1742 int VLen = Val->getType()->getVectorNumElements(); 1743 1744 Type *STy = Val->getType()->getScalarType(); 1745 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1746 "Induction Step must be an integer or FP"); 1747 assert(Step->getType() == STy && "Step has wrong type"); 1748 1749 SmallVector<Constant *, 8> Indices; 1750 1751 if (STy->isIntegerTy()) { 1752 // Create a vector of consecutive numbers from zero to VF. 1753 for (int i = 0; i < VLen; ++i) 1754 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1755 1756 // Add the consecutive indices to the vector value. 1757 Constant *Cv = ConstantVector::get(Indices); 1758 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1759 Step = Builder.CreateVectorSplat(VLen, Step); 1760 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1761 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1762 // which can be found from the original scalar operations. 1763 Step = Builder.CreateMul(Cv, Step); 1764 return Builder.CreateAdd(Val, Step, "induction"); 1765 } 1766 1767 // Floating point induction. 1768 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1769 "Binary Opcode should be specified for FP induction"); 1770 // Create a vector of consecutive numbers from zero to VF. 1771 for (int i = 0; i < VLen; ++i) 1772 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1773 1774 // Add the consecutive indices to the vector value. 1775 Constant *Cv = ConstantVector::get(Indices); 1776 1777 Step = Builder.CreateVectorSplat(VLen, Step); 1778 1779 // Floating point operations had to be 'fast' to enable the induction. 1780 FastMathFlags Flags; 1781 Flags.setFast(); 1782 1783 Value *MulOp = Builder.CreateFMul(Cv, Step); 1784 if (isa<Instruction>(MulOp)) 1785 // Have to check, MulOp may be a constant 1786 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1787 1788 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1789 if (isa<Instruction>(BOp)) 1790 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1791 return BOp; 1792 } 1793 1794 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1795 Instruction *EntryVal, 1796 const InductionDescriptor &ID) { 1797 // We shouldn't have to build scalar steps if we aren't vectorizing. 1798 assert(VF > 1 && "VF should be greater than one"); 1799 1800 // Get the value type and ensure it and the step have the same integer type. 1801 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1802 assert(ScalarIVTy == Step->getType() && 1803 "Val and Step should have the same type"); 1804 1805 // We build scalar steps for both integer and floating-point induction 1806 // variables. Here, we determine the kind of arithmetic we will perform. 1807 Instruction::BinaryOps AddOp; 1808 Instruction::BinaryOps MulOp; 1809 if (ScalarIVTy->isIntegerTy()) { 1810 AddOp = Instruction::Add; 1811 MulOp = Instruction::Mul; 1812 } else { 1813 AddOp = ID.getInductionOpcode(); 1814 MulOp = Instruction::FMul; 1815 } 1816 1817 // Determine the number of scalars we need to generate for each unroll 1818 // iteration. If EntryVal is uniform, we only need to generate the first 1819 // lane. Otherwise, we generate all VF values. 1820 unsigned Lanes = 1821 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1822 : VF; 1823 // Compute the scalar steps and save the results in VectorLoopValueMap. 1824 for (unsigned Part = 0; Part < UF; ++Part) { 1825 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1826 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1827 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1828 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1829 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1830 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1831 } 1832 } 1833 } 1834 1835 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1836 assert(V != Induction && "The new induction variable should not be used."); 1837 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1838 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1839 1840 // If we have a stride that is replaced by one, do it here. Defer this for 1841 // the VPlan-native path until we start running Legal checks in that path. 1842 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1843 V = ConstantInt::get(V->getType(), 1); 1844 1845 // If we have a vector mapped to this value, return it. 1846 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1847 return VectorLoopValueMap.getVectorValue(V, Part); 1848 1849 // If the value has not been vectorized, check if it has been scalarized 1850 // instead. If it has been scalarized, and we actually need the value in 1851 // vector form, we will construct the vector values on demand. 1852 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1853 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1854 1855 // If we've scalarized a value, that value should be an instruction. 1856 auto *I = cast<Instruction>(V); 1857 1858 // If we aren't vectorizing, we can just copy the scalar map values over to 1859 // the vector map. 1860 if (VF == 1) { 1861 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1862 return ScalarValue; 1863 } 1864 1865 // Get the last scalar instruction we generated for V and Part. If the value 1866 // is known to be uniform after vectorization, this corresponds to lane zero 1867 // of the Part unroll iteration. Otherwise, the last instruction is the one 1868 // we created for the last vector lane of the Part unroll iteration. 1869 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1870 auto *LastInst = cast<Instruction>( 1871 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1872 1873 // Set the insert point after the last scalarized instruction. This ensures 1874 // the insertelement sequence will directly follow the scalar definitions. 1875 auto OldIP = Builder.saveIP(); 1876 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1877 Builder.SetInsertPoint(&*NewIP); 1878 1879 // However, if we are vectorizing, we need to construct the vector values. 1880 // If the value is known to be uniform after vectorization, we can just 1881 // broadcast the scalar value corresponding to lane zero for each unroll 1882 // iteration. Otherwise, we construct the vector values using insertelement 1883 // instructions. Since the resulting vectors are stored in 1884 // VectorLoopValueMap, we will only generate the insertelements once. 1885 Value *VectorValue = nullptr; 1886 if (Cost->isUniformAfterVectorization(I, VF)) { 1887 VectorValue = getBroadcastInstrs(ScalarValue); 1888 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1889 } else { 1890 // Initialize packing with insertelements to start from undef. 1891 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1892 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1893 for (unsigned Lane = 0; Lane < VF; ++Lane) 1894 packScalarIntoVectorValue(V, {Part, Lane}); 1895 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1896 } 1897 Builder.restoreIP(OldIP); 1898 return VectorValue; 1899 } 1900 1901 // If this scalar is unknown, assume that it is a constant or that it is 1902 // loop invariant. Broadcast V and save the value for future uses. 1903 Value *B = getBroadcastInstrs(V); 1904 VectorLoopValueMap.setVectorValue(V, Part, B); 1905 return B; 1906 } 1907 1908 Value * 1909 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1910 const VPIteration &Instance) { 1911 // If the value is not an instruction contained in the loop, it should 1912 // already be scalar. 1913 if (OrigLoop->isLoopInvariant(V)) 1914 return V; 1915 1916 assert(Instance.Lane > 0 1917 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1918 : true && "Uniform values only have lane zero"); 1919 1920 // If the value from the original loop has not been vectorized, it is 1921 // represented by UF x VF scalar values in the new loop. Return the requested 1922 // scalar value. 1923 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1924 return VectorLoopValueMap.getScalarValue(V, Instance); 1925 1926 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1927 // for the given unroll part. If this entry is not a vector type (i.e., the 1928 // vectorization factor is one), there is no need to generate an 1929 // extractelement instruction. 1930 auto *U = getOrCreateVectorValue(V, Instance.Part); 1931 if (!U->getType()->isVectorTy()) { 1932 assert(VF == 1 && "Value not scalarized has non-vector type"); 1933 return U; 1934 } 1935 1936 // Otherwise, the value from the original loop has been vectorized and is 1937 // represented by UF vector values. Extract and return the requested scalar 1938 // value from the appropriate vector lane. 1939 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1940 } 1941 1942 void InnerLoopVectorizer::packScalarIntoVectorValue( 1943 Value *V, const VPIteration &Instance) { 1944 assert(V != Induction && "The new induction variable should not be used."); 1945 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1946 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1947 1948 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1949 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1950 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1951 Builder.getInt32(Instance.Lane)); 1952 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1953 } 1954 1955 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1956 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1957 SmallVector<Constant *, 8> ShuffleMask; 1958 for (unsigned i = 0; i < VF; ++i) 1959 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1960 1961 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1962 ConstantVector::get(ShuffleMask), 1963 "reverse"); 1964 } 1965 1966 // Return whether we allow using masked interleave-groups (for dealing with 1967 // strided loads/stores that reside in predicated blocks, or for dealing 1968 // with gaps). 1969 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1970 // If an override option has been passed in for interleaved accesses, use it. 1971 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1972 return EnableMaskedInterleavedMemAccesses; 1973 1974 return TTI.enableMaskedInterleavedAccessVectorization(); 1975 } 1976 1977 // Try to vectorize the interleave group that \p Instr belongs to. 1978 // 1979 // E.g. Translate following interleaved load group (factor = 3): 1980 // for (i = 0; i < N; i+=3) { 1981 // R = Pic[i]; // Member of index 0 1982 // G = Pic[i+1]; // Member of index 1 1983 // B = Pic[i+2]; // Member of index 2 1984 // ... // do something to R, G, B 1985 // } 1986 // To: 1987 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1988 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 1989 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 1990 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 1991 // 1992 // Or translate following interleaved store group (factor = 3): 1993 // for (i = 0; i < N; i+=3) { 1994 // ... do something to R, G, B 1995 // Pic[i] = R; // Member of index 0 1996 // Pic[i+1] = G; // Member of index 1 1997 // Pic[i+2] = B; // Member of index 2 1998 // } 1999 // To: 2000 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2001 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2002 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2003 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2004 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2005 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2006 VectorParts *BlockInMask) { 2007 const InterleaveGroup<Instruction> *Group = 2008 Cost->getInterleavedAccessGroup(Instr); 2009 assert(Group && "Fail to get an interleaved access group."); 2010 2011 // Skip if current instruction is not the insert position. 2012 if (Instr != Group->getInsertPos()) 2013 return; 2014 2015 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2016 Value *Ptr = getLoadStorePointerOperand(Instr); 2017 2018 // Prepare for the vector type of the interleaved load/store. 2019 Type *ScalarTy = getMemInstValueType(Instr); 2020 unsigned InterleaveFactor = Group->getFactor(); 2021 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2022 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2023 2024 // Prepare for the new pointers. 2025 setDebugLocFromInst(Builder, Ptr); 2026 SmallVector<Value *, 2> NewPtrs; 2027 unsigned Index = Group->getIndex(Instr); 2028 2029 VectorParts Mask; 2030 bool IsMaskForCondRequired = BlockInMask; 2031 if (IsMaskForCondRequired) { 2032 Mask = *BlockInMask; 2033 // TODO: extend the masked interleaved-group support to reversed access. 2034 assert(!Group->isReverse() && "Reversed masked interleave-group " 2035 "not supported."); 2036 } 2037 2038 // If the group is reverse, adjust the index to refer to the last vector lane 2039 // instead of the first. We adjust the index from the first vector lane, 2040 // rather than directly getting the pointer for lane VF - 1, because the 2041 // pointer operand of the interleaved access is supposed to be uniform. For 2042 // uniform instructions, we're only required to generate a value for the 2043 // first vector lane in each unroll iteration. 2044 if (Group->isReverse()) 2045 Index += (VF - 1) * Group->getFactor(); 2046 2047 bool InBounds = false; 2048 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2049 InBounds = gep->isInBounds(); 2050 2051 for (unsigned Part = 0; Part < UF; Part++) { 2052 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2053 2054 // Notice current instruction could be any index. Need to adjust the address 2055 // to the member of index 0. 2056 // 2057 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2058 // b = A[i]; // Member of index 0 2059 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2060 // 2061 // E.g. A[i+1] = a; // Member of index 1 2062 // A[i] = b; // Member of index 0 2063 // A[i+2] = c; // Member of index 2 (Current instruction) 2064 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2065 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2066 if (InBounds) 2067 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2068 2069 // Cast to the vector pointer type. 2070 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2071 } 2072 2073 setDebugLocFromInst(Builder, Instr); 2074 Value *UndefVec = UndefValue::get(VecTy); 2075 2076 Value *MaskForGaps = nullptr; 2077 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2078 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2079 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2080 } 2081 2082 // Vectorize the interleaved load group. 2083 if (isa<LoadInst>(Instr)) { 2084 // For each unroll part, create a wide load for the group. 2085 SmallVector<Value *, 2> NewLoads; 2086 for (unsigned Part = 0; Part < UF; Part++) { 2087 Instruction *NewLoad; 2088 if (IsMaskForCondRequired || MaskForGaps) { 2089 assert(useMaskedInterleavedAccesses(*TTI) && 2090 "masked interleaved groups are not allowed."); 2091 Value *GroupMask = MaskForGaps; 2092 if (IsMaskForCondRequired) { 2093 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2094 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2095 Value *ShuffledMask = Builder.CreateShuffleVector( 2096 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2097 GroupMask = MaskForGaps 2098 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2099 MaskForGaps) 2100 : ShuffledMask; 2101 } 2102 NewLoad = 2103 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2104 GroupMask, UndefVec, "wide.masked.vec"); 2105 } 2106 else 2107 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2108 Group->getAlignment(), "wide.vec"); 2109 Group->addMetadata(NewLoad); 2110 NewLoads.push_back(NewLoad); 2111 } 2112 2113 // For each member in the group, shuffle out the appropriate data from the 2114 // wide loads. 2115 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2116 Instruction *Member = Group->getMember(I); 2117 2118 // Skip the gaps in the group. 2119 if (!Member) 2120 continue; 2121 2122 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2123 for (unsigned Part = 0; Part < UF; Part++) { 2124 Value *StridedVec = Builder.CreateShuffleVector( 2125 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2126 2127 // If this member has different type, cast the result type. 2128 if (Member->getType() != ScalarTy) { 2129 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2130 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2131 } 2132 2133 if (Group->isReverse()) 2134 StridedVec = reverseVector(StridedVec); 2135 2136 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2137 } 2138 } 2139 return; 2140 } 2141 2142 // The sub vector type for current instruction. 2143 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2144 2145 // Vectorize the interleaved store group. 2146 for (unsigned Part = 0; Part < UF; Part++) { 2147 // Collect the stored vector from each member. 2148 SmallVector<Value *, 4> StoredVecs; 2149 for (unsigned i = 0; i < InterleaveFactor; i++) { 2150 // Interleaved store group doesn't allow a gap, so each index has a member 2151 Instruction *Member = Group->getMember(i); 2152 assert(Member && "Fail to get a member from an interleaved store group"); 2153 2154 Value *StoredVec = getOrCreateVectorValue( 2155 cast<StoreInst>(Member)->getValueOperand(), Part); 2156 if (Group->isReverse()) 2157 StoredVec = reverseVector(StoredVec); 2158 2159 // If this member has different type, cast it to a unified type. 2160 2161 if (StoredVec->getType() != SubVT) 2162 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2163 2164 StoredVecs.push_back(StoredVec); 2165 } 2166 2167 // Concatenate all vectors into a wide vector. 2168 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2169 2170 // Interleave the elements in the wide vector. 2171 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2172 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2173 "interleaved.vec"); 2174 2175 Instruction *NewStoreInstr; 2176 if (IsMaskForCondRequired) { 2177 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2178 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2179 Value *ShuffledMask = Builder.CreateShuffleVector( 2180 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2181 NewStoreInstr = Builder.CreateMaskedStore( 2182 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2183 } 2184 else 2185 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2186 Group->getAlignment()); 2187 2188 Group->addMetadata(NewStoreInstr); 2189 } 2190 } 2191 2192 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2193 VectorParts *BlockInMask) { 2194 // Attempt to issue a wide load. 2195 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2196 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2197 2198 assert((LI || SI) && "Invalid Load/Store instruction"); 2199 2200 LoopVectorizationCostModel::InstWidening Decision = 2201 Cost->getWideningDecision(Instr, VF); 2202 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2203 "CM decision should be taken at this point"); 2204 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2205 return vectorizeInterleaveGroup(Instr); 2206 2207 Type *ScalarDataTy = getMemInstValueType(Instr); 2208 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2209 Value *Ptr = getLoadStorePointerOperand(Instr); 2210 unsigned Alignment = getLoadStoreAlignment(Instr); 2211 // An alignment of 0 means target abi alignment. We need to use the scalar's 2212 // target abi alignment in such a case. 2213 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2214 if (!Alignment) 2215 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2216 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2217 2218 // Determine if the pointer operand of the access is either consecutive or 2219 // reverse consecutive. 2220 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2221 bool ConsecutiveStride = 2222 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2223 bool CreateGatherScatter = 2224 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2225 2226 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2227 // gather/scatter. Otherwise Decision should have been to Scalarize. 2228 assert((ConsecutiveStride || CreateGatherScatter) && 2229 "The instruction should be scalarized"); 2230 2231 // Handle consecutive loads/stores. 2232 if (ConsecutiveStride) 2233 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2234 2235 VectorParts Mask; 2236 bool isMaskRequired = BlockInMask; 2237 if (isMaskRequired) 2238 Mask = *BlockInMask; 2239 2240 bool InBounds = false; 2241 if (auto *gep = dyn_cast<GetElementPtrInst>( 2242 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2243 InBounds = gep->isInBounds(); 2244 2245 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2246 // Calculate the pointer for the specific unroll-part. 2247 GetElementPtrInst *PartPtr = nullptr; 2248 2249 if (Reverse) { 2250 // If the address is consecutive but reversed, then the 2251 // wide store needs to start at the last vector element. 2252 PartPtr = cast<GetElementPtrInst>( 2253 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2254 PartPtr->setIsInBounds(InBounds); 2255 PartPtr = cast<GetElementPtrInst>( 2256 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2257 PartPtr->setIsInBounds(InBounds); 2258 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2259 Mask[Part] = reverseVector(Mask[Part]); 2260 } else { 2261 PartPtr = cast<GetElementPtrInst>( 2262 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2263 PartPtr->setIsInBounds(InBounds); 2264 } 2265 2266 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2267 }; 2268 2269 // Handle Stores: 2270 if (SI) { 2271 setDebugLocFromInst(Builder, SI); 2272 2273 for (unsigned Part = 0; Part < UF; ++Part) { 2274 Instruction *NewSI = nullptr; 2275 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2276 if (CreateGatherScatter) { 2277 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2278 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2279 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2280 MaskPart); 2281 } else { 2282 if (Reverse) { 2283 // If we store to reverse consecutive memory locations, then we need 2284 // to reverse the order of elements in the stored value. 2285 StoredVal = reverseVector(StoredVal); 2286 // We don't want to update the value in the map as it might be used in 2287 // another expression. So don't call resetVectorValue(StoredVal). 2288 } 2289 auto *VecPtr = CreateVecPtr(Part, Ptr); 2290 if (isMaskRequired) 2291 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2292 Mask[Part]); 2293 else 2294 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2295 } 2296 addMetadata(NewSI, SI); 2297 } 2298 return; 2299 } 2300 2301 // Handle loads. 2302 assert(LI && "Must have a load instruction"); 2303 setDebugLocFromInst(Builder, LI); 2304 for (unsigned Part = 0; Part < UF; ++Part) { 2305 Value *NewLI; 2306 if (CreateGatherScatter) { 2307 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2308 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2309 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2310 nullptr, "wide.masked.gather"); 2311 addMetadata(NewLI, LI); 2312 } else { 2313 auto *VecPtr = CreateVecPtr(Part, Ptr); 2314 if (isMaskRequired) 2315 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2316 UndefValue::get(DataTy), 2317 "wide.masked.load"); 2318 else 2319 NewLI = 2320 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2321 2322 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2323 addMetadata(NewLI, LI); 2324 if (Reverse) 2325 NewLI = reverseVector(NewLI); 2326 } 2327 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2328 } 2329 } 2330 2331 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2332 const VPIteration &Instance, 2333 bool IfPredicateInstr) { 2334 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2335 2336 setDebugLocFromInst(Builder, Instr); 2337 2338 // Does this instruction return a value ? 2339 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2340 2341 Instruction *Cloned = Instr->clone(); 2342 if (!IsVoidRetTy) 2343 Cloned->setName(Instr->getName() + ".cloned"); 2344 2345 // Replace the operands of the cloned instructions with their scalar 2346 // equivalents in the new loop. 2347 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2348 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2349 Cloned->setOperand(op, NewOp); 2350 } 2351 addNewMetadata(Cloned, Instr); 2352 2353 // Place the cloned scalar in the new loop. 2354 Builder.Insert(Cloned); 2355 2356 // Add the cloned scalar to the scalar map entry. 2357 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2358 2359 // If we just cloned a new assumption, add it the assumption cache. 2360 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2361 if (II->getIntrinsicID() == Intrinsic::assume) 2362 AC->registerAssumption(II); 2363 2364 // End if-block. 2365 if (IfPredicateInstr) 2366 PredicatedInstructions.push_back(Cloned); 2367 } 2368 2369 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2370 Value *End, Value *Step, 2371 Instruction *DL) { 2372 BasicBlock *Header = L->getHeader(); 2373 BasicBlock *Latch = L->getLoopLatch(); 2374 // As we're just creating this loop, it's possible no latch exists 2375 // yet. If so, use the header as this will be a single block loop. 2376 if (!Latch) 2377 Latch = Header; 2378 2379 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2380 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2381 setDebugLocFromInst(Builder, OldInst); 2382 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2383 2384 Builder.SetInsertPoint(Latch->getTerminator()); 2385 setDebugLocFromInst(Builder, OldInst); 2386 2387 // Create i+1 and fill the PHINode. 2388 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2389 Induction->addIncoming(Start, L->getLoopPreheader()); 2390 Induction->addIncoming(Next, Latch); 2391 // Create the compare. 2392 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2393 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2394 2395 // Now we have two terminators. Remove the old one from the block. 2396 Latch->getTerminator()->eraseFromParent(); 2397 2398 return Induction; 2399 } 2400 2401 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2402 if (TripCount) 2403 return TripCount; 2404 2405 assert(L && "Create Trip Count for null loop."); 2406 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2407 // Find the loop boundaries. 2408 ScalarEvolution *SE = PSE.getSE(); 2409 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2410 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2411 "Invalid loop count"); 2412 2413 Type *IdxTy = Legal->getWidestInductionType(); 2414 assert(IdxTy && "No type for induction"); 2415 2416 // The exit count might have the type of i64 while the phi is i32. This can 2417 // happen if we have an induction variable that is sign extended before the 2418 // compare. The only way that we get a backedge taken count is that the 2419 // induction variable was signed and as such will not overflow. In such a case 2420 // truncation is legal. 2421 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2422 IdxTy->getPrimitiveSizeInBits()) 2423 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2424 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2425 2426 // Get the total trip count from the count by adding 1. 2427 const SCEV *ExitCount = SE->getAddExpr( 2428 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2429 2430 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2431 2432 // Expand the trip count and place the new instructions in the preheader. 2433 // Notice that the pre-header does not change, only the loop body. 2434 SCEVExpander Exp(*SE, DL, "induction"); 2435 2436 // Count holds the overall loop count (N). 2437 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2438 L->getLoopPreheader()->getTerminator()); 2439 2440 if (TripCount->getType()->isPointerTy()) 2441 TripCount = 2442 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2443 L->getLoopPreheader()->getTerminator()); 2444 2445 return TripCount; 2446 } 2447 2448 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2449 if (VectorTripCount) 2450 return VectorTripCount; 2451 2452 Value *TC = getOrCreateTripCount(L); 2453 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2454 2455 Type *Ty = TC->getType(); 2456 Constant *Step = ConstantInt::get(Ty, VF * UF); 2457 2458 // If the tail is to be folded by masking, round the number of iterations N 2459 // up to a multiple of Step instead of rounding down. This is done by first 2460 // adding Step-1 and then rounding down. Note that it's ok if this addition 2461 // overflows: the vector induction variable will eventually wrap to zero given 2462 // that it starts at zero and its Step is a power of two; the loop will then 2463 // exit, with the last early-exit vector comparison also producing all-true. 2464 if (Cost->foldTailByMasking()) { 2465 assert(isPowerOf2_32(VF * UF) && 2466 "VF*UF must be a power of 2 when folding tail by masking"); 2467 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2468 } 2469 2470 // Now we need to generate the expression for the part of the loop that the 2471 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2472 // iterations are not required for correctness, or N - Step, otherwise. Step 2473 // is equal to the vectorization factor (number of SIMD elements) times the 2474 // unroll factor (number of SIMD instructions). 2475 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2476 2477 // If there is a non-reversed interleaved group that may speculatively access 2478 // memory out-of-bounds, we need to ensure that there will be at least one 2479 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2480 // the trip count, we set the remainder to be equal to the step. If the step 2481 // does not evenly divide the trip count, no adjustment is necessary since 2482 // there will already be scalar iterations. Note that the minimum iterations 2483 // check ensures that N >= Step. 2484 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2485 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2486 R = Builder.CreateSelect(IsZero, Step, R); 2487 } 2488 2489 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2490 2491 return VectorTripCount; 2492 } 2493 2494 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2495 const DataLayout &DL) { 2496 // Verify that V is a vector type with same number of elements as DstVTy. 2497 unsigned VF = DstVTy->getNumElements(); 2498 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2499 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2500 Type *SrcElemTy = SrcVecTy->getElementType(); 2501 Type *DstElemTy = DstVTy->getElementType(); 2502 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2503 "Vector elements must have same size"); 2504 2505 // Do a direct cast if element types are castable. 2506 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2507 return Builder.CreateBitOrPointerCast(V, DstVTy); 2508 } 2509 // V cannot be directly casted to desired vector type. 2510 // May happen when V is a floating point vector but DstVTy is a vector of 2511 // pointers or vice-versa. Handle this using a two-step bitcast using an 2512 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2513 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2514 "Only one type should be a pointer type"); 2515 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2516 "Only one type should be a floating point type"); 2517 Type *IntTy = 2518 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2519 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2520 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2521 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2522 } 2523 2524 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2525 BasicBlock *Bypass) { 2526 Value *Count = getOrCreateTripCount(L); 2527 BasicBlock *BB = L->getLoopPreheader(); 2528 IRBuilder<> Builder(BB->getTerminator()); 2529 2530 // Generate code to check if the loop's trip count is less than VF * UF, or 2531 // equal to it in case a scalar epilogue is required; this implies that the 2532 // vector trip count is zero. This check also covers the case where adding one 2533 // to the backedge-taken count overflowed leading to an incorrect trip count 2534 // of zero. In this case we will also jump to the scalar loop. 2535 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2536 : ICmpInst::ICMP_ULT; 2537 2538 // If tail is to be folded, vector loop takes care of all iterations. 2539 Value *CheckMinIters = Builder.getFalse(); 2540 if (!Cost->foldTailByMasking()) 2541 CheckMinIters = Builder.CreateICmp( 2542 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2543 "min.iters.check"); 2544 2545 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2546 // Update dominator tree immediately if the generated block is a 2547 // LoopBypassBlock because SCEV expansions to generate loop bypass 2548 // checks may query it before the current function is finished. 2549 DT->addNewBlock(NewBB, BB); 2550 if (L->getParentLoop()) 2551 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2552 ReplaceInstWithInst(BB->getTerminator(), 2553 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2554 LoopBypassBlocks.push_back(BB); 2555 } 2556 2557 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2558 BasicBlock *BB = L->getLoopPreheader(); 2559 2560 // Generate the code to check that the SCEV assumptions that we made. 2561 // We want the new basic block to start at the first instruction in a 2562 // sequence of instructions that form a check. 2563 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2564 "scev.check"); 2565 Value *SCEVCheck = 2566 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2567 2568 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2569 if (C->isZero()) 2570 return; 2571 2572 assert(!Cost->foldTailByMasking() && 2573 "Cannot SCEV check stride or overflow when folding tail"); 2574 // Create a new block containing the stride check. 2575 BB->setName("vector.scevcheck"); 2576 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2577 // Update dominator tree immediately if the generated block is a 2578 // LoopBypassBlock because SCEV expansions to generate loop bypass 2579 // checks may query it before the current function is finished. 2580 DT->addNewBlock(NewBB, BB); 2581 if (L->getParentLoop()) 2582 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2583 ReplaceInstWithInst(BB->getTerminator(), 2584 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2585 LoopBypassBlocks.push_back(BB); 2586 AddedSafetyChecks = true; 2587 } 2588 2589 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2590 // VPlan-native path does not do any analysis for runtime checks currently. 2591 if (EnableVPlanNativePath) 2592 return; 2593 2594 BasicBlock *BB = L->getLoopPreheader(); 2595 2596 // Generate the code that checks in runtime if arrays overlap. We put the 2597 // checks into a separate block to make the more common case of few elements 2598 // faster. 2599 Instruction *FirstCheckInst; 2600 Instruction *MemRuntimeCheck; 2601 std::tie(FirstCheckInst, MemRuntimeCheck) = 2602 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2603 if (!MemRuntimeCheck) 2604 return; 2605 2606 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2607 // Create a new block containing the memory check. 2608 BB->setName("vector.memcheck"); 2609 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2610 // Update dominator tree immediately if the generated block is a 2611 // LoopBypassBlock because SCEV expansions to generate loop bypass 2612 // checks may query it before the current function is finished. 2613 DT->addNewBlock(NewBB, BB); 2614 if (L->getParentLoop()) 2615 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2616 ReplaceInstWithInst(BB->getTerminator(), 2617 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2618 LoopBypassBlocks.push_back(BB); 2619 AddedSafetyChecks = true; 2620 2621 // We currently don't use LoopVersioning for the actual loop cloning but we 2622 // still use it to add the noalias metadata. 2623 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2624 PSE.getSE()); 2625 LVer->prepareNoAliasMetadata(); 2626 } 2627 2628 Value *InnerLoopVectorizer::emitTransformedIndex( 2629 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2630 const InductionDescriptor &ID) const { 2631 2632 SCEVExpander Exp(*SE, DL, "induction"); 2633 auto Step = ID.getStep(); 2634 auto StartValue = ID.getStartValue(); 2635 assert(Index->getType() == Step->getType() && 2636 "Index type does not match StepValue type"); 2637 2638 // Note: the IR at this point is broken. We cannot use SE to create any new 2639 // SCEV and then expand it, hoping that SCEV's simplification will give us 2640 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2641 // lead to various SCEV crashes. So all we can do is to use builder and rely 2642 // on InstCombine for future simplifications. Here we handle some trivial 2643 // cases only. 2644 auto CreateAdd = [&B](Value *X, Value *Y) { 2645 assert(X->getType() == Y->getType() && "Types don't match!"); 2646 if (auto *CX = dyn_cast<ConstantInt>(X)) 2647 if (CX->isZero()) 2648 return Y; 2649 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2650 if (CY->isZero()) 2651 return X; 2652 return B.CreateAdd(X, Y); 2653 }; 2654 2655 auto CreateMul = [&B](Value *X, Value *Y) { 2656 assert(X->getType() == Y->getType() && "Types don't match!"); 2657 if (auto *CX = dyn_cast<ConstantInt>(X)) 2658 if (CX->isOne()) 2659 return Y; 2660 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2661 if (CY->isOne()) 2662 return X; 2663 return B.CreateMul(X, Y); 2664 }; 2665 2666 switch (ID.getKind()) { 2667 case InductionDescriptor::IK_IntInduction: { 2668 assert(Index->getType() == StartValue->getType() && 2669 "Index type does not match StartValue type"); 2670 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2671 return B.CreateSub(StartValue, Index); 2672 auto *Offset = CreateMul( 2673 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2674 return CreateAdd(StartValue, Offset); 2675 } 2676 case InductionDescriptor::IK_PtrInduction: { 2677 assert(isa<SCEVConstant>(Step) && 2678 "Expected constant step for pointer induction"); 2679 return B.CreateGEP( 2680 StartValue->getType()->getPointerElementType(), StartValue, 2681 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2682 &*B.GetInsertPoint()))); 2683 } 2684 case InductionDescriptor::IK_FpInduction: { 2685 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2686 auto InductionBinOp = ID.getInductionBinOp(); 2687 assert(InductionBinOp && 2688 (InductionBinOp->getOpcode() == Instruction::FAdd || 2689 InductionBinOp->getOpcode() == Instruction::FSub) && 2690 "Original bin op should be defined for FP induction"); 2691 2692 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2693 2694 // Floating point operations had to be 'fast' to enable the induction. 2695 FastMathFlags Flags; 2696 Flags.setFast(); 2697 2698 Value *MulExp = B.CreateFMul(StepValue, Index); 2699 if (isa<Instruction>(MulExp)) 2700 // We have to check, the MulExp may be a constant. 2701 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2702 2703 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2704 "induction"); 2705 if (isa<Instruction>(BOp)) 2706 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2707 2708 return BOp; 2709 } 2710 case InductionDescriptor::IK_NoInduction: 2711 return nullptr; 2712 } 2713 llvm_unreachable("invalid enum"); 2714 } 2715 2716 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2717 /* 2718 In this function we generate a new loop. The new loop will contain 2719 the vectorized instructions while the old loop will continue to run the 2720 scalar remainder. 2721 2722 [ ] <-- loop iteration number check. 2723 / | 2724 / v 2725 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2726 | / | 2727 | / v 2728 || [ ] <-- vector pre header. 2729 |/ | 2730 | v 2731 | [ ] \ 2732 | [ ]_| <-- vector loop. 2733 | | 2734 | v 2735 | -[ ] <--- middle-block. 2736 | / | 2737 | / v 2738 -|- >[ ] <--- new preheader. 2739 | | 2740 | v 2741 | [ ] \ 2742 | [ ]_| <-- old scalar loop to handle remainder. 2743 \ | 2744 \ v 2745 >[ ] <-- exit block. 2746 ... 2747 */ 2748 2749 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2750 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2751 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2752 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2753 assert(VectorPH && "Invalid loop structure"); 2754 assert(ExitBlock && "Must have an exit block"); 2755 2756 // Some loops have a single integer induction variable, while other loops 2757 // don't. One example is c++ iterators that often have multiple pointer 2758 // induction variables. In the code below we also support a case where we 2759 // don't have a single induction variable. 2760 // 2761 // We try to obtain an induction variable from the original loop as hard 2762 // as possible. However if we don't find one that: 2763 // - is an integer 2764 // - counts from zero, stepping by one 2765 // - is the size of the widest induction variable type 2766 // then we create a new one. 2767 OldInduction = Legal->getPrimaryInduction(); 2768 Type *IdxTy = Legal->getWidestInductionType(); 2769 2770 // Split the single block loop into the two loop structure described above. 2771 BasicBlock *VecBody = 2772 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2773 BasicBlock *MiddleBlock = 2774 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2775 BasicBlock *ScalarPH = 2776 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2777 2778 // Create and register the new vector loop. 2779 Loop *Lp = LI->AllocateLoop(); 2780 Loop *ParentLoop = OrigLoop->getParentLoop(); 2781 2782 // Insert the new loop into the loop nest and register the new basic blocks 2783 // before calling any utilities such as SCEV that require valid LoopInfo. 2784 if (ParentLoop) { 2785 ParentLoop->addChildLoop(Lp); 2786 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2787 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2788 } else { 2789 LI->addTopLevelLoop(Lp); 2790 } 2791 Lp->addBasicBlockToLoop(VecBody, *LI); 2792 2793 // Find the loop boundaries. 2794 Value *Count = getOrCreateTripCount(Lp); 2795 2796 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2797 2798 // Now, compare the new count to zero. If it is zero skip the vector loop and 2799 // jump to the scalar loop. This check also covers the case where the 2800 // backedge-taken count is uint##_max: adding one to it will overflow leading 2801 // to an incorrect trip count of zero. In this (rare) case we will also jump 2802 // to the scalar loop. 2803 emitMinimumIterationCountCheck(Lp, ScalarPH); 2804 2805 // Generate the code to check any assumptions that we've made for SCEV 2806 // expressions. 2807 emitSCEVChecks(Lp, ScalarPH); 2808 2809 // Generate the code that checks in runtime if arrays overlap. We put the 2810 // checks into a separate block to make the more common case of few elements 2811 // faster. 2812 emitMemRuntimeChecks(Lp, ScalarPH); 2813 2814 // Generate the induction variable. 2815 // The loop step is equal to the vectorization factor (num of SIMD elements) 2816 // times the unroll factor (num of SIMD instructions). 2817 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2818 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2819 Induction = 2820 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2821 getDebugLocFromInstOrOperands(OldInduction)); 2822 2823 // We are going to resume the execution of the scalar loop. 2824 // Go over all of the induction variables that we found and fix the 2825 // PHIs that are left in the scalar version of the loop. 2826 // The starting values of PHI nodes depend on the counter of the last 2827 // iteration in the vectorized loop. 2828 // If we come from a bypass edge then we need to start from the original 2829 // start value. 2830 2831 // This variable saves the new starting index for the scalar loop. It is used 2832 // to test if there are any tail iterations left once the vector loop has 2833 // completed. 2834 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2835 for (auto &InductionEntry : *List) { 2836 PHINode *OrigPhi = InductionEntry.first; 2837 InductionDescriptor II = InductionEntry.second; 2838 2839 // Create phi nodes to merge from the backedge-taken check block. 2840 PHINode *BCResumeVal = PHINode::Create( 2841 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2842 // Copy original phi DL over to the new one. 2843 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2844 Value *&EndValue = IVEndValues[OrigPhi]; 2845 if (OrigPhi == OldInduction) { 2846 // We know what the end value is. 2847 EndValue = CountRoundDown; 2848 } else { 2849 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2850 Type *StepType = II.getStep()->getType(); 2851 Instruction::CastOps CastOp = 2852 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2853 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2854 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2855 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2856 EndValue->setName("ind.end"); 2857 } 2858 2859 // The new PHI merges the original incoming value, in case of a bypass, 2860 // or the value at the end of the vectorized loop. 2861 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2862 2863 // Fix the scalar body counter (PHI node). 2864 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2865 2866 // The old induction's phi node in the scalar body needs the truncated 2867 // value. 2868 for (BasicBlock *BB : LoopBypassBlocks) 2869 BCResumeVal->addIncoming(II.getStartValue(), BB); 2870 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2871 } 2872 2873 // Add a check in the middle block to see if we have completed 2874 // all of the iterations in the first vector loop. 2875 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2876 // If tail is to be folded, we know we don't need to run the remainder. 2877 Value *CmpN = Builder.getTrue(); 2878 if (!Cost->foldTailByMasking()) 2879 CmpN = 2880 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2881 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2882 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2883 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2884 2885 // Get ready to start creating new instructions into the vectorized body. 2886 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2887 2888 // Save the state. 2889 LoopVectorPreHeader = Lp->getLoopPreheader(); 2890 LoopScalarPreHeader = ScalarPH; 2891 LoopMiddleBlock = MiddleBlock; 2892 LoopExitBlock = ExitBlock; 2893 LoopVectorBody = VecBody; 2894 LoopScalarBody = OldBasicBlock; 2895 2896 Optional<MDNode *> VectorizedLoopID = 2897 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2898 LLVMLoopVectorizeFollowupVectorized}); 2899 if (VectorizedLoopID.hasValue()) { 2900 Lp->setLoopID(VectorizedLoopID.getValue()); 2901 2902 // Do not setAlreadyVectorized if loop attributes have been defined 2903 // explicitly. 2904 return LoopVectorPreHeader; 2905 } 2906 2907 // Keep all loop hints from the original loop on the vector loop (we'll 2908 // replace the vectorizer-specific hints below). 2909 if (MDNode *LID = OrigLoop->getLoopID()) 2910 Lp->setLoopID(LID); 2911 2912 LoopVectorizeHints Hints(Lp, true, *ORE); 2913 Hints.setAlreadyVectorized(); 2914 2915 return LoopVectorPreHeader; 2916 } 2917 2918 // Fix up external users of the induction variable. At this point, we are 2919 // in LCSSA form, with all external PHIs that use the IV having one input value, 2920 // coming from the remainder loop. We need those PHIs to also have a correct 2921 // value for the IV when arriving directly from the middle block. 2922 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2923 const InductionDescriptor &II, 2924 Value *CountRoundDown, Value *EndValue, 2925 BasicBlock *MiddleBlock) { 2926 // There are two kinds of external IV usages - those that use the value 2927 // computed in the last iteration (the PHI) and those that use the penultimate 2928 // value (the value that feeds into the phi from the loop latch). 2929 // We allow both, but they, obviously, have different values. 2930 2931 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2932 2933 DenseMap<Value *, Value *> MissingVals; 2934 2935 // An external user of the last iteration's value should see the value that 2936 // the remainder loop uses to initialize its own IV. 2937 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2938 for (User *U : PostInc->users()) { 2939 Instruction *UI = cast<Instruction>(U); 2940 if (!OrigLoop->contains(UI)) { 2941 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2942 MissingVals[UI] = EndValue; 2943 } 2944 } 2945 2946 // An external user of the penultimate value need to see EndValue - Step. 2947 // The simplest way to get this is to recompute it from the constituent SCEVs, 2948 // that is Start + (Step * (CRD - 1)). 2949 for (User *U : OrigPhi->users()) { 2950 auto *UI = cast<Instruction>(U); 2951 if (!OrigLoop->contains(UI)) { 2952 const DataLayout &DL = 2953 OrigLoop->getHeader()->getModule()->getDataLayout(); 2954 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2955 2956 IRBuilder<> B(MiddleBlock->getTerminator()); 2957 Value *CountMinusOne = B.CreateSub( 2958 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2959 Value *CMO = 2960 !II.getStep()->getType()->isIntegerTy() 2961 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 2962 II.getStep()->getType()) 2963 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 2964 CMO->setName("cast.cmo"); 2965 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 2966 Escape->setName("ind.escape"); 2967 MissingVals[UI] = Escape; 2968 } 2969 } 2970 2971 for (auto &I : MissingVals) { 2972 PHINode *PHI = cast<PHINode>(I.first); 2973 // One corner case we have to handle is two IVs "chasing" each-other, 2974 // that is %IV2 = phi [...], [ %IV1, %latch ] 2975 // In this case, if IV1 has an external use, we need to avoid adding both 2976 // "last value of IV1" and "penultimate value of IV2". So, verify that we 2977 // don't already have an incoming value for the middle block. 2978 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 2979 PHI->addIncoming(I.second, MiddleBlock); 2980 } 2981 } 2982 2983 namespace { 2984 2985 struct CSEDenseMapInfo { 2986 static bool canHandle(const Instruction *I) { 2987 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2988 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2989 } 2990 2991 static inline Instruction *getEmptyKey() { 2992 return DenseMapInfo<Instruction *>::getEmptyKey(); 2993 } 2994 2995 static inline Instruction *getTombstoneKey() { 2996 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2997 } 2998 2999 static unsigned getHashValue(const Instruction *I) { 3000 assert(canHandle(I) && "Unknown instruction!"); 3001 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3002 I->value_op_end())); 3003 } 3004 3005 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3006 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3007 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3008 return LHS == RHS; 3009 return LHS->isIdenticalTo(RHS); 3010 } 3011 }; 3012 3013 } // end anonymous namespace 3014 3015 ///Perform cse of induction variable instructions. 3016 static void cse(BasicBlock *BB) { 3017 // Perform simple cse. 3018 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3019 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3020 Instruction *In = &*I++; 3021 3022 if (!CSEDenseMapInfo::canHandle(In)) 3023 continue; 3024 3025 // Check if we can replace this instruction with any of the 3026 // visited instructions. 3027 if (Instruction *V = CSEMap.lookup(In)) { 3028 In->replaceAllUsesWith(V); 3029 In->eraseFromParent(); 3030 continue; 3031 } 3032 3033 CSEMap[In] = In; 3034 } 3035 } 3036 3037 /// Estimate the overhead of scalarizing an instruction. This is a 3038 /// convenience wrapper for the type-based getScalarizationOverhead API. 3039 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3040 const TargetTransformInfo &TTI) { 3041 if (VF == 1) 3042 return 0; 3043 3044 unsigned Cost = 0; 3045 Type *RetTy = ToVectorTy(I->getType(), VF); 3046 if (!RetTy->isVoidTy() && 3047 (!isa<LoadInst>(I) || 3048 !TTI.supportsEfficientVectorElementLoadStore())) 3049 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3050 3051 // Some targets keep addresses scalar. 3052 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 3053 return Cost; 3054 3055 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3056 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3057 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3058 } 3059 else if (!isa<StoreInst>(I) || 3060 !TTI.supportsEfficientVectorElementLoadStore()) { 3061 SmallVector<const Value *, 4> Operands(I->operand_values()); 3062 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3063 } 3064 3065 return Cost; 3066 } 3067 3068 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3069 // Return the cost of the instruction, including scalarization overhead if it's 3070 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3071 // i.e. either vector version isn't available, or is too expensive. 3072 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3073 const TargetTransformInfo &TTI, 3074 const TargetLibraryInfo *TLI, 3075 bool &NeedToScalarize) { 3076 Function *F = CI->getCalledFunction(); 3077 StringRef FnName = CI->getCalledFunction()->getName(); 3078 Type *ScalarRetTy = CI->getType(); 3079 SmallVector<Type *, 4> Tys, ScalarTys; 3080 for (auto &ArgOp : CI->arg_operands()) 3081 ScalarTys.push_back(ArgOp->getType()); 3082 3083 // Estimate cost of scalarized vector call. The source operands are assumed 3084 // to be vectors, so we need to extract individual elements from there, 3085 // execute VF scalar calls, and then gather the result into the vector return 3086 // value. 3087 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3088 if (VF == 1) 3089 return ScalarCallCost; 3090 3091 // Compute corresponding vector type for return value and arguments. 3092 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3093 for (Type *ScalarTy : ScalarTys) 3094 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3095 3096 // Compute costs of unpacking argument values for the scalar calls and 3097 // packing the return values to a vector. 3098 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3099 3100 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3101 3102 // If we can't emit a vector call for this function, then the currently found 3103 // cost is the cost we need to return. 3104 NeedToScalarize = true; 3105 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3106 return Cost; 3107 3108 // If the corresponding vector cost is cheaper, return its cost. 3109 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3110 if (VectorCallCost < Cost) { 3111 NeedToScalarize = false; 3112 return VectorCallCost; 3113 } 3114 return Cost; 3115 } 3116 3117 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3118 // factor VF. Return the cost of the instruction, including scalarization 3119 // overhead if it's needed. 3120 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3121 const TargetTransformInfo &TTI, 3122 const TargetLibraryInfo *TLI) { 3123 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3124 assert(ID && "Expected intrinsic call!"); 3125 3126 FastMathFlags FMF; 3127 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3128 FMF = FPMO->getFastMathFlags(); 3129 3130 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3131 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3132 } 3133 3134 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3135 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3136 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3137 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3138 } 3139 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3140 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3141 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3142 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3143 } 3144 3145 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3146 // For every instruction `I` in MinBWs, truncate the operands, create a 3147 // truncated version of `I` and reextend its result. InstCombine runs 3148 // later and will remove any ext/trunc pairs. 3149 SmallPtrSet<Value *, 4> Erased; 3150 for (const auto &KV : Cost->getMinimalBitwidths()) { 3151 // If the value wasn't vectorized, we must maintain the original scalar 3152 // type. The absence of the value from VectorLoopValueMap indicates that it 3153 // wasn't vectorized. 3154 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3155 continue; 3156 for (unsigned Part = 0; Part < UF; ++Part) { 3157 Value *I = getOrCreateVectorValue(KV.first, Part); 3158 if (Erased.find(I) != Erased.end() || I->use_empty() || 3159 !isa<Instruction>(I)) 3160 continue; 3161 Type *OriginalTy = I->getType(); 3162 Type *ScalarTruncatedTy = 3163 IntegerType::get(OriginalTy->getContext(), KV.second); 3164 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3165 OriginalTy->getVectorNumElements()); 3166 if (TruncatedTy == OriginalTy) 3167 continue; 3168 3169 IRBuilder<> B(cast<Instruction>(I)); 3170 auto ShrinkOperand = [&](Value *V) -> Value * { 3171 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3172 if (ZI->getSrcTy() == TruncatedTy) 3173 return ZI->getOperand(0); 3174 return B.CreateZExtOrTrunc(V, TruncatedTy); 3175 }; 3176 3177 // The actual instruction modification depends on the instruction type, 3178 // unfortunately. 3179 Value *NewI = nullptr; 3180 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3181 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3182 ShrinkOperand(BO->getOperand(1))); 3183 3184 // Any wrapping introduced by shrinking this operation shouldn't be 3185 // considered undefined behavior. So, we can't unconditionally copy 3186 // arithmetic wrapping flags to NewI. 3187 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3188 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3189 NewI = 3190 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3191 ShrinkOperand(CI->getOperand(1))); 3192 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3193 NewI = B.CreateSelect(SI->getCondition(), 3194 ShrinkOperand(SI->getTrueValue()), 3195 ShrinkOperand(SI->getFalseValue())); 3196 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3197 switch (CI->getOpcode()) { 3198 default: 3199 llvm_unreachable("Unhandled cast!"); 3200 case Instruction::Trunc: 3201 NewI = ShrinkOperand(CI->getOperand(0)); 3202 break; 3203 case Instruction::SExt: 3204 NewI = B.CreateSExtOrTrunc( 3205 CI->getOperand(0), 3206 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3207 break; 3208 case Instruction::ZExt: 3209 NewI = B.CreateZExtOrTrunc( 3210 CI->getOperand(0), 3211 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3212 break; 3213 } 3214 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3215 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3216 auto *O0 = B.CreateZExtOrTrunc( 3217 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3218 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3219 auto *O1 = B.CreateZExtOrTrunc( 3220 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3221 3222 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3223 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3224 // Don't do anything with the operands, just extend the result. 3225 continue; 3226 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3227 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3228 auto *O0 = B.CreateZExtOrTrunc( 3229 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3230 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3231 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3232 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3233 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3234 auto *O0 = B.CreateZExtOrTrunc( 3235 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3236 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3237 } else { 3238 // If we don't know what to do, be conservative and don't do anything. 3239 continue; 3240 } 3241 3242 // Lastly, extend the result. 3243 NewI->takeName(cast<Instruction>(I)); 3244 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3245 I->replaceAllUsesWith(Res); 3246 cast<Instruction>(I)->eraseFromParent(); 3247 Erased.insert(I); 3248 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3249 } 3250 } 3251 3252 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3253 for (const auto &KV : Cost->getMinimalBitwidths()) { 3254 // If the value wasn't vectorized, we must maintain the original scalar 3255 // type. The absence of the value from VectorLoopValueMap indicates that it 3256 // wasn't vectorized. 3257 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3258 continue; 3259 for (unsigned Part = 0; Part < UF; ++Part) { 3260 Value *I = getOrCreateVectorValue(KV.first, Part); 3261 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3262 if (Inst && Inst->use_empty()) { 3263 Value *NewI = Inst->getOperand(0); 3264 Inst->eraseFromParent(); 3265 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3266 } 3267 } 3268 } 3269 } 3270 3271 void InnerLoopVectorizer::fixVectorizedLoop() { 3272 // Insert truncates and extends for any truncated instructions as hints to 3273 // InstCombine. 3274 if (VF > 1) 3275 truncateToMinimalBitwidths(); 3276 3277 // Fix widened non-induction PHIs by setting up the PHI operands. 3278 if (OrigPHIsToFix.size()) { 3279 assert(EnableVPlanNativePath && 3280 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3281 fixNonInductionPHIs(); 3282 } 3283 3284 // At this point every instruction in the original loop is widened to a 3285 // vector form. Now we need to fix the recurrences in the loop. These PHI 3286 // nodes are currently empty because we did not want to introduce cycles. 3287 // This is the second stage of vectorizing recurrences. 3288 fixCrossIterationPHIs(); 3289 3290 // Update the dominator tree. 3291 // 3292 // FIXME: After creating the structure of the new loop, the dominator tree is 3293 // no longer up-to-date, and it remains that way until we update it 3294 // here. An out-of-date dominator tree is problematic for SCEV, 3295 // because SCEVExpander uses it to guide code generation. The 3296 // vectorizer use SCEVExpanders in several places. Instead, we should 3297 // keep the dominator tree up-to-date as we go. 3298 updateAnalysis(); 3299 3300 // Fix-up external users of the induction variables. 3301 for (auto &Entry : *Legal->getInductionVars()) 3302 fixupIVUsers(Entry.first, Entry.second, 3303 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3304 IVEndValues[Entry.first], LoopMiddleBlock); 3305 3306 fixLCSSAPHIs(); 3307 for (Instruction *PI : PredicatedInstructions) 3308 sinkScalarOperands(&*PI); 3309 3310 // Remove redundant induction instructions. 3311 cse(LoopVectorBody); 3312 } 3313 3314 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3315 // In order to support recurrences we need to be able to vectorize Phi nodes. 3316 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3317 // stage #2: We now need to fix the recurrences by adding incoming edges to 3318 // the currently empty PHI nodes. At this point every instruction in the 3319 // original loop is widened to a vector form so we can use them to construct 3320 // the incoming edges. 3321 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3322 // Handle first-order recurrences and reductions that need to be fixed. 3323 if (Legal->isFirstOrderRecurrence(&Phi)) 3324 fixFirstOrderRecurrence(&Phi); 3325 else if (Legal->isReductionVariable(&Phi)) 3326 fixReduction(&Phi); 3327 } 3328 } 3329 3330 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3331 // This is the second phase of vectorizing first-order recurrences. An 3332 // overview of the transformation is described below. Suppose we have the 3333 // following loop. 3334 // 3335 // for (int i = 0; i < n; ++i) 3336 // b[i] = a[i] - a[i - 1]; 3337 // 3338 // There is a first-order recurrence on "a". For this loop, the shorthand 3339 // scalar IR looks like: 3340 // 3341 // scalar.ph: 3342 // s_init = a[-1] 3343 // br scalar.body 3344 // 3345 // scalar.body: 3346 // i = phi [0, scalar.ph], [i+1, scalar.body] 3347 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3348 // s2 = a[i] 3349 // b[i] = s2 - s1 3350 // br cond, scalar.body, ... 3351 // 3352 // In this example, s1 is a recurrence because it's value depends on the 3353 // previous iteration. In the first phase of vectorization, we created a 3354 // temporary value for s1. We now complete the vectorization and produce the 3355 // shorthand vector IR shown below (for VF = 4, UF = 1). 3356 // 3357 // vector.ph: 3358 // v_init = vector(..., ..., ..., a[-1]) 3359 // br vector.body 3360 // 3361 // vector.body 3362 // i = phi [0, vector.ph], [i+4, vector.body] 3363 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3364 // v2 = a[i, i+1, i+2, i+3]; 3365 // v3 = vector(v1(3), v2(0, 1, 2)) 3366 // b[i, i+1, i+2, i+3] = v2 - v3 3367 // br cond, vector.body, middle.block 3368 // 3369 // middle.block: 3370 // x = v2(3) 3371 // br scalar.ph 3372 // 3373 // scalar.ph: 3374 // s_init = phi [x, middle.block], [a[-1], otherwise] 3375 // br scalar.body 3376 // 3377 // After execution completes the vector loop, we extract the next value of 3378 // the recurrence (x) to use as the initial value in the scalar loop. 3379 3380 // Get the original loop preheader and single loop latch. 3381 auto *Preheader = OrigLoop->getLoopPreheader(); 3382 auto *Latch = OrigLoop->getLoopLatch(); 3383 3384 // Get the initial and previous values of the scalar recurrence. 3385 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3386 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3387 3388 // Create a vector from the initial value. 3389 auto *VectorInit = ScalarInit; 3390 if (VF > 1) { 3391 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3392 VectorInit = Builder.CreateInsertElement( 3393 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3394 Builder.getInt32(VF - 1), "vector.recur.init"); 3395 } 3396 3397 // We constructed a temporary phi node in the first phase of vectorization. 3398 // This phi node will eventually be deleted. 3399 Builder.SetInsertPoint( 3400 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3401 3402 // Create a phi node for the new recurrence. The current value will either be 3403 // the initial value inserted into a vector or loop-varying vector value. 3404 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3405 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3406 3407 // Get the vectorized previous value of the last part UF - 1. It appears last 3408 // among all unrolled iterations, due to the order of their construction. 3409 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3410 3411 // Set the insertion point after the previous value if it is an instruction. 3412 // Note that the previous value may have been constant-folded so it is not 3413 // guaranteed to be an instruction in the vector loop. Also, if the previous 3414 // value is a phi node, we should insert after all the phi nodes to avoid 3415 // breaking basic block verification. 3416 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3417 isa<PHINode>(PreviousLastPart)) 3418 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3419 else 3420 Builder.SetInsertPoint( 3421 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3422 3423 // We will construct a vector for the recurrence by combining the values for 3424 // the current and previous iterations. This is the required shuffle mask. 3425 SmallVector<Constant *, 8> ShuffleMask(VF); 3426 ShuffleMask[0] = Builder.getInt32(VF - 1); 3427 for (unsigned I = 1; I < VF; ++I) 3428 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3429 3430 // The vector from which to take the initial value for the current iteration 3431 // (actual or unrolled). Initially, this is the vector phi node. 3432 Value *Incoming = VecPhi; 3433 3434 // Shuffle the current and previous vector and update the vector parts. 3435 for (unsigned Part = 0; Part < UF; ++Part) { 3436 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3437 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3438 auto *Shuffle = 3439 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3440 ConstantVector::get(ShuffleMask)) 3441 : Incoming; 3442 PhiPart->replaceAllUsesWith(Shuffle); 3443 cast<Instruction>(PhiPart)->eraseFromParent(); 3444 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3445 Incoming = PreviousPart; 3446 } 3447 3448 // Fix the latch value of the new recurrence in the vector loop. 3449 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3450 3451 // Extract the last vector element in the middle block. This will be the 3452 // initial value for the recurrence when jumping to the scalar loop. 3453 auto *ExtractForScalar = Incoming; 3454 if (VF > 1) { 3455 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3456 ExtractForScalar = Builder.CreateExtractElement( 3457 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3458 } 3459 // Extract the second last element in the middle block if the 3460 // Phi is used outside the loop. We need to extract the phi itself 3461 // and not the last element (the phi update in the current iteration). This 3462 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3463 // when the scalar loop is not run at all. 3464 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3465 if (VF > 1) 3466 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3467 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3468 // When loop is unrolled without vectorizing, initialize 3469 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3470 // `Incoming`. This is analogous to the vectorized case above: extracting the 3471 // second last element when VF > 1. 3472 else if (UF > 1) 3473 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3474 3475 // Fix the initial value of the original recurrence in the scalar loop. 3476 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3477 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3478 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3479 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3480 Start->addIncoming(Incoming, BB); 3481 } 3482 3483 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3484 Phi->setName("scalar.recur"); 3485 3486 // Finally, fix users of the recurrence outside the loop. The users will need 3487 // either the last value of the scalar recurrence or the last value of the 3488 // vector recurrence we extracted in the middle block. Since the loop is in 3489 // LCSSA form, we just need to find all the phi nodes for the original scalar 3490 // recurrence in the exit block, and then add an edge for the middle block. 3491 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3492 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3493 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3494 } 3495 } 3496 } 3497 3498 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3499 Constant *Zero = Builder.getInt32(0); 3500 3501 // Get it's reduction variable descriptor. 3502 assert(Legal->isReductionVariable(Phi) && 3503 "Unable to find the reduction variable"); 3504 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3505 3506 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3507 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3508 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3509 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3510 RdxDesc.getMinMaxRecurrenceKind(); 3511 setDebugLocFromInst(Builder, ReductionStartValue); 3512 3513 // We need to generate a reduction vector from the incoming scalar. 3514 // To do so, we need to generate the 'identity' vector and override 3515 // one of the elements with the incoming scalar reduction. We need 3516 // to do it in the vector-loop preheader. 3517 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3518 3519 // This is the vector-clone of the value that leaves the loop. 3520 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3521 3522 // Find the reduction identity variable. Zero for addition, or, xor, 3523 // one for multiplication, -1 for And. 3524 Value *Identity; 3525 Value *VectorStart; 3526 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3527 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3528 // MinMax reduction have the start value as their identify. 3529 if (VF == 1) { 3530 VectorStart = Identity = ReductionStartValue; 3531 } else { 3532 VectorStart = Identity = 3533 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3534 } 3535 } else { 3536 // Handle other reduction kinds: 3537 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3538 RK, VecTy->getScalarType()); 3539 if (VF == 1) { 3540 Identity = Iden; 3541 // This vector is the Identity vector where the first element is the 3542 // incoming scalar reduction. 3543 VectorStart = ReductionStartValue; 3544 } else { 3545 Identity = ConstantVector::getSplat(VF, Iden); 3546 3547 // This vector is the Identity vector where the first element is the 3548 // incoming scalar reduction. 3549 VectorStart = 3550 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3551 } 3552 } 3553 3554 // Fix the vector-loop phi. 3555 3556 // Reductions do not have to start at zero. They can start with 3557 // any loop invariant values. 3558 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3559 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3560 for (unsigned Part = 0; Part < UF; ++Part) { 3561 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3562 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3563 // Make sure to add the reduction stat value only to the 3564 // first unroll part. 3565 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3566 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3567 cast<PHINode>(VecRdxPhi) 3568 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3569 } 3570 3571 // Before each round, move the insertion point right between 3572 // the PHIs and the values we are going to write. 3573 // This allows us to write both PHINodes and the extractelement 3574 // instructions. 3575 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3576 3577 setDebugLocFromInst(Builder, LoopExitInst); 3578 3579 // If the vector reduction can be performed in a smaller type, we truncate 3580 // then extend the loop exit value to enable InstCombine to evaluate the 3581 // entire expression in the smaller type. 3582 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3583 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3584 Builder.SetInsertPoint( 3585 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3586 VectorParts RdxParts(UF); 3587 for (unsigned Part = 0; Part < UF; ++Part) { 3588 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3589 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3590 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3591 : Builder.CreateZExt(Trunc, VecTy); 3592 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3593 UI != RdxParts[Part]->user_end();) 3594 if (*UI != Trunc) { 3595 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3596 RdxParts[Part] = Extnd; 3597 } else { 3598 ++UI; 3599 } 3600 } 3601 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3602 for (unsigned Part = 0; Part < UF; ++Part) { 3603 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3604 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3605 } 3606 } 3607 3608 // Reduce all of the unrolled parts into a single vector. 3609 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3610 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3611 setDebugLocFromInst(Builder, ReducedPartRdx); 3612 for (unsigned Part = 1; Part < UF; ++Part) { 3613 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3614 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3615 // Floating point operations had to be 'fast' to enable the reduction. 3616 ReducedPartRdx = addFastMathFlag( 3617 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3618 ReducedPartRdx, "bin.rdx"), 3619 RdxDesc.getFastMathFlags()); 3620 else 3621 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3622 RdxPart); 3623 } 3624 3625 if (VF > 1) { 3626 bool NoNaN = Legal->hasFunNoNaNAttr(); 3627 ReducedPartRdx = 3628 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3629 // If the reduction can be performed in a smaller type, we need to extend 3630 // the reduction to the wider type before we branch to the original loop. 3631 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3632 ReducedPartRdx = 3633 RdxDesc.isSigned() 3634 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3635 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3636 } 3637 3638 // Create a phi node that merges control-flow from the backedge-taken check 3639 // block and the middle block. 3640 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3641 LoopScalarPreHeader->getTerminator()); 3642 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3643 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3644 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3645 3646 // Now, we need to fix the users of the reduction variable 3647 // inside and outside of the scalar remainder loop. 3648 // We know that the loop is in LCSSA form. We need to update the 3649 // PHI nodes in the exit blocks. 3650 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3651 // All PHINodes need to have a single entry edge, or two if 3652 // we already fixed them. 3653 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3654 3655 // We found a reduction value exit-PHI. Update it with the 3656 // incoming bypass edge. 3657 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3658 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3659 } // end of the LCSSA phi scan. 3660 3661 // Fix the scalar loop reduction variable with the incoming reduction sum 3662 // from the vector body and from the backedge value. 3663 int IncomingEdgeBlockIdx = 3664 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3665 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3666 // Pick the other block. 3667 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3668 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3669 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3670 } 3671 3672 void InnerLoopVectorizer::fixLCSSAPHIs() { 3673 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3674 if (LCSSAPhi.getNumIncomingValues() == 1) { 3675 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3676 // Non-instruction incoming values will have only one value. 3677 unsigned LastLane = 0; 3678 if (isa<Instruction>(IncomingValue)) 3679 LastLane = Cost->isUniformAfterVectorization( 3680 cast<Instruction>(IncomingValue), VF) 3681 ? 0 3682 : VF - 1; 3683 // Can be a loop invariant incoming value or the last scalar value to be 3684 // extracted from the vectorized loop. 3685 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3686 Value *lastIncomingValue = 3687 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3688 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3689 } 3690 } 3691 } 3692 3693 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3694 // The basic block and loop containing the predicated instruction. 3695 auto *PredBB = PredInst->getParent(); 3696 auto *VectorLoop = LI->getLoopFor(PredBB); 3697 3698 // Initialize a worklist with the operands of the predicated instruction. 3699 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3700 3701 // Holds instructions that we need to analyze again. An instruction may be 3702 // reanalyzed if we don't yet know if we can sink it or not. 3703 SmallVector<Instruction *, 8> InstsToReanalyze; 3704 3705 // Returns true if a given use occurs in the predicated block. Phi nodes use 3706 // their operands in their corresponding predecessor blocks. 3707 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3708 auto *I = cast<Instruction>(U.getUser()); 3709 BasicBlock *BB = I->getParent(); 3710 if (auto *Phi = dyn_cast<PHINode>(I)) 3711 BB = Phi->getIncomingBlock( 3712 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3713 return BB == PredBB; 3714 }; 3715 3716 // Iteratively sink the scalarized operands of the predicated instruction 3717 // into the block we created for it. When an instruction is sunk, it's 3718 // operands are then added to the worklist. The algorithm ends after one pass 3719 // through the worklist doesn't sink a single instruction. 3720 bool Changed; 3721 do { 3722 // Add the instructions that need to be reanalyzed to the worklist, and 3723 // reset the changed indicator. 3724 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3725 InstsToReanalyze.clear(); 3726 Changed = false; 3727 3728 while (!Worklist.empty()) { 3729 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3730 3731 // We can't sink an instruction if it is a phi node, is already in the 3732 // predicated block, is not in the loop, or may have side effects. 3733 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3734 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3735 continue; 3736 3737 // It's legal to sink the instruction if all its uses occur in the 3738 // predicated block. Otherwise, there's nothing to do yet, and we may 3739 // need to reanalyze the instruction. 3740 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3741 InstsToReanalyze.push_back(I); 3742 continue; 3743 } 3744 3745 // Move the instruction to the beginning of the predicated block, and add 3746 // it's operands to the worklist. 3747 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3748 Worklist.insert(I->op_begin(), I->op_end()); 3749 3750 // The sinking may have enabled other instructions to be sunk, so we will 3751 // need to iterate. 3752 Changed = true; 3753 } 3754 } while (Changed); 3755 } 3756 3757 void InnerLoopVectorizer::fixNonInductionPHIs() { 3758 for (PHINode *OrigPhi : OrigPHIsToFix) { 3759 PHINode *NewPhi = 3760 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3761 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3762 3763 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3764 predecessors(OrigPhi->getParent())); 3765 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3766 predecessors(NewPhi->getParent())); 3767 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3768 "Scalar and Vector BB should have the same number of predecessors"); 3769 3770 // The insertion point in Builder may be invalidated by the time we get 3771 // here. Force the Builder insertion point to something valid so that we do 3772 // not run into issues during insertion point restore in 3773 // getOrCreateVectorValue calls below. 3774 Builder.SetInsertPoint(NewPhi); 3775 3776 // The predecessor order is preserved and we can rely on mapping between 3777 // scalar and vector block predecessors. 3778 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3779 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3780 3781 // When looking up the new scalar/vector values to fix up, use incoming 3782 // values from original phi. 3783 Value *ScIncV = 3784 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3785 3786 // Scalar incoming value may need a broadcast 3787 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3788 NewPhi->addIncoming(NewIncV, NewPredBB); 3789 } 3790 } 3791 } 3792 3793 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3794 unsigned VF) { 3795 PHINode *P = cast<PHINode>(PN); 3796 if (EnableVPlanNativePath) { 3797 // Currently we enter here in the VPlan-native path for non-induction 3798 // PHIs where all control flow is uniform. We simply widen these PHIs. 3799 // Create a vector phi with no operands - the vector phi operands will be 3800 // set at the end of vector code generation. 3801 Type *VecTy = 3802 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3803 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3804 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3805 OrigPHIsToFix.push_back(P); 3806 3807 return; 3808 } 3809 3810 assert(PN->getParent() == OrigLoop->getHeader() && 3811 "Non-header phis should have been handled elsewhere"); 3812 3813 // In order to support recurrences we need to be able to vectorize Phi nodes. 3814 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3815 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3816 // this value when we vectorize all of the instructions that use the PHI. 3817 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3818 for (unsigned Part = 0; Part < UF; ++Part) { 3819 // This is phase one of vectorizing PHIs. 3820 Type *VecTy = 3821 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3822 Value *EntryPart = PHINode::Create( 3823 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3824 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3825 } 3826 return; 3827 } 3828 3829 setDebugLocFromInst(Builder, P); 3830 3831 // This PHINode must be an induction variable. 3832 // Make sure that we know about it. 3833 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3834 3835 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3836 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3837 3838 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3839 // which can be found from the original scalar operations. 3840 switch (II.getKind()) { 3841 case InductionDescriptor::IK_NoInduction: 3842 llvm_unreachable("Unknown induction"); 3843 case InductionDescriptor::IK_IntInduction: 3844 case InductionDescriptor::IK_FpInduction: 3845 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3846 case InductionDescriptor::IK_PtrInduction: { 3847 // Handle the pointer induction variable case. 3848 assert(P->getType()->isPointerTy() && "Unexpected type."); 3849 // This is the normalized GEP that starts counting at zero. 3850 Value *PtrInd = Induction; 3851 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3852 // Determine the number of scalars we need to generate for each unroll 3853 // iteration. If the instruction is uniform, we only need to generate the 3854 // first lane. Otherwise, we generate all VF values. 3855 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3856 // These are the scalar results. Notice that we don't generate vector GEPs 3857 // because scalar GEPs result in better code. 3858 for (unsigned Part = 0; Part < UF; ++Part) { 3859 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3860 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3861 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3862 Value *SclrGep = 3863 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3864 SclrGep->setName("next.gep"); 3865 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3866 } 3867 } 3868 return; 3869 } 3870 } 3871 } 3872 3873 /// A helper function for checking whether an integer division-related 3874 /// instruction may divide by zero (in which case it must be predicated if 3875 /// executed conditionally in the scalar code). 3876 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3877 /// Non-zero divisors that are non compile-time constants will not be 3878 /// converted into multiplication, so we will still end up scalarizing 3879 /// the division, but can do so w/o predication. 3880 static bool mayDivideByZero(Instruction &I) { 3881 assert((I.getOpcode() == Instruction::UDiv || 3882 I.getOpcode() == Instruction::SDiv || 3883 I.getOpcode() == Instruction::URem || 3884 I.getOpcode() == Instruction::SRem) && 3885 "Unexpected instruction"); 3886 Value *Divisor = I.getOperand(1); 3887 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3888 return !CInt || CInt->isZero(); 3889 } 3890 3891 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3892 switch (I.getOpcode()) { 3893 case Instruction::Br: 3894 case Instruction::PHI: 3895 llvm_unreachable("This instruction is handled by a different recipe."); 3896 case Instruction::GetElementPtr: { 3897 // Construct a vector GEP by widening the operands of the scalar GEP as 3898 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3899 // results in a vector of pointers when at least one operand of the GEP 3900 // is vector-typed. Thus, to keep the representation compact, we only use 3901 // vector-typed operands for loop-varying values. 3902 auto *GEP = cast<GetElementPtrInst>(&I); 3903 3904 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3905 // If we are vectorizing, but the GEP has only loop-invariant operands, 3906 // the GEP we build (by only using vector-typed operands for 3907 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3908 // produce a vector of pointers, we need to either arbitrarily pick an 3909 // operand to broadcast, or broadcast a clone of the original GEP. 3910 // Here, we broadcast a clone of the original. 3911 // 3912 // TODO: If at some point we decide to scalarize instructions having 3913 // loop-invariant operands, this special case will no longer be 3914 // required. We would add the scalarization decision to 3915 // collectLoopScalars() and teach getVectorValue() to broadcast 3916 // the lane-zero scalar value. 3917 auto *Clone = Builder.Insert(GEP->clone()); 3918 for (unsigned Part = 0; Part < UF; ++Part) { 3919 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3920 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3921 addMetadata(EntryPart, GEP); 3922 } 3923 } else { 3924 // If the GEP has at least one loop-varying operand, we are sure to 3925 // produce a vector of pointers. But if we are only unrolling, we want 3926 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3927 // produce with the code below will be scalar (if VF == 1) or vector 3928 // (otherwise). Note that for the unroll-only case, we still maintain 3929 // values in the vector mapping with initVector, as we do for other 3930 // instructions. 3931 for (unsigned Part = 0; Part < UF; ++Part) { 3932 // The pointer operand of the new GEP. If it's loop-invariant, we 3933 // won't broadcast it. 3934 auto *Ptr = 3935 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3936 ? GEP->getPointerOperand() 3937 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3938 3939 // Collect all the indices for the new GEP. If any index is 3940 // loop-invariant, we won't broadcast it. 3941 SmallVector<Value *, 4> Indices; 3942 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3943 if (OrigLoop->isLoopInvariant(U.get())) 3944 Indices.push_back(U.get()); 3945 else 3946 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3947 } 3948 3949 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3950 // but it should be a vector, otherwise. 3951 auto *NewGEP = 3952 GEP->isInBounds() 3953 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 3954 Indices) 3955 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 3956 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3957 "NewGEP is not a pointer vector"); 3958 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3959 addMetadata(NewGEP, GEP); 3960 } 3961 } 3962 3963 break; 3964 } 3965 case Instruction::UDiv: 3966 case Instruction::SDiv: 3967 case Instruction::SRem: 3968 case Instruction::URem: 3969 case Instruction::Add: 3970 case Instruction::FAdd: 3971 case Instruction::Sub: 3972 case Instruction::FSub: 3973 case Instruction::Mul: 3974 case Instruction::FMul: 3975 case Instruction::FDiv: 3976 case Instruction::FRem: 3977 case Instruction::Shl: 3978 case Instruction::LShr: 3979 case Instruction::AShr: 3980 case Instruction::And: 3981 case Instruction::Or: 3982 case Instruction::Xor: { 3983 // Just widen binops. 3984 auto *BinOp = cast<BinaryOperator>(&I); 3985 setDebugLocFromInst(Builder, BinOp); 3986 3987 for (unsigned Part = 0; Part < UF; ++Part) { 3988 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3989 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3990 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3991 3992 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3993 VecOp->copyIRFlags(BinOp); 3994 3995 // Use this vector value for all users of the original instruction. 3996 VectorLoopValueMap.setVectorValue(&I, Part, V); 3997 addMetadata(V, BinOp); 3998 } 3999 4000 break; 4001 } 4002 case Instruction::Select: { 4003 // Widen selects. 4004 // If the selector is loop invariant we can create a select 4005 // instruction with a scalar condition. Otherwise, use vector-select. 4006 auto *SE = PSE.getSE(); 4007 bool InvariantCond = 4008 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4009 setDebugLocFromInst(Builder, &I); 4010 4011 // The condition can be loop invariant but still defined inside the 4012 // loop. This means that we can't just use the original 'cond' value. 4013 // We have to take the 'vectorized' value and pick the first lane. 4014 // Instcombine will make this a no-op. 4015 4016 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4017 4018 for (unsigned Part = 0; Part < UF; ++Part) { 4019 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4020 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4021 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4022 Value *Sel = 4023 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4024 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4025 addMetadata(Sel, &I); 4026 } 4027 4028 break; 4029 } 4030 4031 case Instruction::ICmp: 4032 case Instruction::FCmp: { 4033 // Widen compares. Generate vector compares. 4034 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4035 auto *Cmp = dyn_cast<CmpInst>(&I); 4036 setDebugLocFromInst(Builder, Cmp); 4037 for (unsigned Part = 0; Part < UF; ++Part) { 4038 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4039 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4040 Value *C = nullptr; 4041 if (FCmp) { 4042 // Propagate fast math flags. 4043 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4044 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4045 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4046 } else { 4047 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4048 } 4049 VectorLoopValueMap.setVectorValue(&I, Part, C); 4050 addMetadata(C, &I); 4051 } 4052 4053 break; 4054 } 4055 4056 case Instruction::ZExt: 4057 case Instruction::SExt: 4058 case Instruction::FPToUI: 4059 case Instruction::FPToSI: 4060 case Instruction::FPExt: 4061 case Instruction::PtrToInt: 4062 case Instruction::IntToPtr: 4063 case Instruction::SIToFP: 4064 case Instruction::UIToFP: 4065 case Instruction::Trunc: 4066 case Instruction::FPTrunc: 4067 case Instruction::BitCast: { 4068 auto *CI = dyn_cast<CastInst>(&I); 4069 setDebugLocFromInst(Builder, CI); 4070 4071 /// Vectorize casts. 4072 Type *DestTy = 4073 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4074 4075 for (unsigned Part = 0; Part < UF; ++Part) { 4076 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4077 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4078 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4079 addMetadata(Cast, &I); 4080 } 4081 break; 4082 } 4083 4084 case Instruction::Call: { 4085 // Ignore dbg intrinsics. 4086 if (isa<DbgInfoIntrinsic>(I)) 4087 break; 4088 setDebugLocFromInst(Builder, &I); 4089 4090 Module *M = I.getParent()->getParent()->getParent(); 4091 auto *CI = cast<CallInst>(&I); 4092 4093 StringRef FnName = CI->getCalledFunction()->getName(); 4094 Function *F = CI->getCalledFunction(); 4095 Type *RetTy = ToVectorTy(CI->getType(), VF); 4096 SmallVector<Type *, 4> Tys; 4097 for (Value *ArgOperand : CI->arg_operands()) 4098 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4099 4100 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4101 4102 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4103 // version of the instruction. 4104 // Is it beneficial to perform intrinsic call compared to lib call? 4105 bool NeedToScalarize; 4106 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4107 bool UseVectorIntrinsic = 4108 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4109 assert((UseVectorIntrinsic || !NeedToScalarize) && 4110 "Instruction should be scalarized elsewhere."); 4111 4112 for (unsigned Part = 0; Part < UF; ++Part) { 4113 SmallVector<Value *, 4> Args; 4114 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4115 Value *Arg = CI->getArgOperand(i); 4116 // Some intrinsics have a scalar argument - don't replace it with a 4117 // vector. 4118 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4119 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4120 Args.push_back(Arg); 4121 } 4122 4123 Function *VectorF; 4124 if (UseVectorIntrinsic) { 4125 // Use vector version of the intrinsic. 4126 Type *TysForDecl[] = {CI->getType()}; 4127 if (VF > 1) 4128 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4129 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4130 } else { 4131 // Use vector version of the library call. 4132 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4133 assert(!VFnName.empty() && "Vector function name is empty."); 4134 VectorF = M->getFunction(VFnName); 4135 if (!VectorF) { 4136 // Generate a declaration 4137 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4138 VectorF = 4139 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4140 VectorF->copyAttributesFrom(F); 4141 } 4142 } 4143 assert(VectorF && "Can't create vector function."); 4144 4145 SmallVector<OperandBundleDef, 1> OpBundles; 4146 CI->getOperandBundlesAsDefs(OpBundles); 4147 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4148 4149 if (isa<FPMathOperator>(V)) 4150 V->copyFastMathFlags(CI); 4151 4152 VectorLoopValueMap.setVectorValue(&I, Part, V); 4153 addMetadata(V, &I); 4154 } 4155 4156 break; 4157 } 4158 4159 default: 4160 // This instruction is not vectorized by simple widening. 4161 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4162 llvm_unreachable("Unhandled instruction!"); 4163 } // end of switch. 4164 } 4165 4166 void InnerLoopVectorizer::updateAnalysis() { 4167 // Forget the original basic block. 4168 PSE.getSE()->forgetLoop(OrigLoop); 4169 4170 // DT is not kept up-to-date for outer loop vectorization 4171 if (EnableVPlanNativePath) 4172 return; 4173 4174 // Update the dominator tree information. 4175 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4176 "Entry does not dominate exit."); 4177 4178 DT->addNewBlock(LoopMiddleBlock, 4179 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4180 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4181 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4182 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4183 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4184 } 4185 4186 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4187 // We should not collect Scalars more than once per VF. Right now, this 4188 // function is called from collectUniformsAndScalars(), which already does 4189 // this check. Collecting Scalars for VF=1 does not make any sense. 4190 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4191 "This function should not be visited twice for the same VF"); 4192 4193 SmallSetVector<Instruction *, 8> Worklist; 4194 4195 // These sets are used to seed the analysis with pointers used by memory 4196 // accesses that will remain scalar. 4197 SmallSetVector<Instruction *, 8> ScalarPtrs; 4198 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4199 4200 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4201 // The pointer operands of loads and stores will be scalar as long as the 4202 // memory access is not a gather or scatter operation. The value operand of a 4203 // store will remain scalar if the store is scalarized. 4204 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4205 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4206 assert(WideningDecision != CM_Unknown && 4207 "Widening decision should be ready at this moment"); 4208 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4209 if (Ptr == Store->getValueOperand()) 4210 return WideningDecision == CM_Scalarize; 4211 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4212 "Ptr is neither a value or pointer operand"); 4213 return WideningDecision != CM_GatherScatter; 4214 }; 4215 4216 // A helper that returns true if the given value is a bitcast or 4217 // getelementptr instruction contained in the loop. 4218 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4219 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4220 isa<GetElementPtrInst>(V)) && 4221 !TheLoop->isLoopInvariant(V); 4222 }; 4223 4224 // A helper that evaluates a memory access's use of a pointer. If the use 4225 // will be a scalar use, and the pointer is only used by memory accesses, we 4226 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4227 // PossibleNonScalarPtrs. 4228 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4229 // We only care about bitcast and getelementptr instructions contained in 4230 // the loop. 4231 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4232 return; 4233 4234 // If the pointer has already been identified as scalar (e.g., if it was 4235 // also identified as uniform), there's nothing to do. 4236 auto *I = cast<Instruction>(Ptr); 4237 if (Worklist.count(I)) 4238 return; 4239 4240 // If the use of the pointer will be a scalar use, and all users of the 4241 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4242 // place the pointer in PossibleNonScalarPtrs. 4243 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4244 return isa<LoadInst>(U) || isa<StoreInst>(U); 4245 })) 4246 ScalarPtrs.insert(I); 4247 else 4248 PossibleNonScalarPtrs.insert(I); 4249 }; 4250 4251 // We seed the scalars analysis with three classes of instructions: (1) 4252 // instructions marked uniform-after-vectorization, (2) bitcast and 4253 // getelementptr instructions used by memory accesses requiring a scalar use, 4254 // and (3) pointer induction variables and their update instructions (we 4255 // currently only scalarize these). 4256 // 4257 // (1) Add to the worklist all instructions that have been identified as 4258 // uniform-after-vectorization. 4259 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4260 4261 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4262 // memory accesses requiring a scalar use. The pointer operands of loads and 4263 // stores will be scalar as long as the memory accesses is not a gather or 4264 // scatter operation. The value operand of a store will remain scalar if the 4265 // store is scalarized. 4266 for (auto *BB : TheLoop->blocks()) 4267 for (auto &I : *BB) { 4268 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4269 evaluatePtrUse(Load, Load->getPointerOperand()); 4270 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4271 evaluatePtrUse(Store, Store->getPointerOperand()); 4272 evaluatePtrUse(Store, Store->getValueOperand()); 4273 } 4274 } 4275 for (auto *I : ScalarPtrs) 4276 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4277 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4278 Worklist.insert(I); 4279 } 4280 4281 // (3) Add to the worklist all pointer induction variables and their update 4282 // instructions. 4283 // 4284 // TODO: Once we are able to vectorize pointer induction variables we should 4285 // no longer insert them into the worklist here. 4286 auto *Latch = TheLoop->getLoopLatch(); 4287 for (auto &Induction : *Legal->getInductionVars()) { 4288 auto *Ind = Induction.first; 4289 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4290 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4291 continue; 4292 Worklist.insert(Ind); 4293 Worklist.insert(IndUpdate); 4294 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4295 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4296 << "\n"); 4297 } 4298 4299 // Insert the forced scalars. 4300 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4301 // induction variable when the PHI user is scalarized. 4302 auto ForcedScalar = ForcedScalars.find(VF); 4303 if (ForcedScalar != ForcedScalars.end()) 4304 for (auto *I : ForcedScalar->second) 4305 Worklist.insert(I); 4306 4307 // Expand the worklist by looking through any bitcasts and getelementptr 4308 // instructions we've already identified as scalar. This is similar to the 4309 // expansion step in collectLoopUniforms(); however, here we're only 4310 // expanding to include additional bitcasts and getelementptr instructions. 4311 unsigned Idx = 0; 4312 while (Idx != Worklist.size()) { 4313 Instruction *Dst = Worklist[Idx++]; 4314 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4315 continue; 4316 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4317 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4318 auto *J = cast<Instruction>(U); 4319 return !TheLoop->contains(J) || Worklist.count(J) || 4320 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4321 isScalarUse(J, Src)); 4322 })) { 4323 Worklist.insert(Src); 4324 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4325 } 4326 } 4327 4328 // An induction variable will remain scalar if all users of the induction 4329 // variable and induction variable update remain scalar. 4330 for (auto &Induction : *Legal->getInductionVars()) { 4331 auto *Ind = Induction.first; 4332 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4333 4334 // We already considered pointer induction variables, so there's no reason 4335 // to look at their users again. 4336 // 4337 // TODO: Once we are able to vectorize pointer induction variables we 4338 // should no longer skip over them here. 4339 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4340 continue; 4341 4342 // Determine if all users of the induction variable are scalar after 4343 // vectorization. 4344 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4345 auto *I = cast<Instruction>(U); 4346 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4347 }); 4348 if (!ScalarInd) 4349 continue; 4350 4351 // Determine if all users of the induction variable update instruction are 4352 // scalar after vectorization. 4353 auto ScalarIndUpdate = 4354 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4355 auto *I = cast<Instruction>(U); 4356 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4357 }); 4358 if (!ScalarIndUpdate) 4359 continue; 4360 4361 // The induction variable and its update instruction will remain scalar. 4362 Worklist.insert(Ind); 4363 Worklist.insert(IndUpdate); 4364 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4365 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4366 << "\n"); 4367 } 4368 4369 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4370 } 4371 4372 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4373 if (!blockNeedsPredication(I->getParent())) 4374 return false; 4375 switch(I->getOpcode()) { 4376 default: 4377 break; 4378 case Instruction::Load: 4379 case Instruction::Store: { 4380 if (!Legal->isMaskRequired(I)) 4381 return false; 4382 auto *Ptr = getLoadStorePointerOperand(I); 4383 auto *Ty = getMemInstValueType(I); 4384 // We have already decided how to vectorize this instruction, get that 4385 // result. 4386 if (VF > 1) { 4387 InstWidening WideningDecision = getWideningDecision(I, VF); 4388 assert(WideningDecision != CM_Unknown && 4389 "Widening decision should be ready at this moment"); 4390 return WideningDecision == CM_Scalarize; 4391 } 4392 return isa<LoadInst>(I) ? 4393 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4394 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4395 } 4396 case Instruction::UDiv: 4397 case Instruction::SDiv: 4398 case Instruction::SRem: 4399 case Instruction::URem: 4400 return mayDivideByZero(*I); 4401 } 4402 return false; 4403 } 4404 4405 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4406 unsigned VF) { 4407 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4408 assert(getWideningDecision(I, VF) == CM_Unknown && 4409 "Decision should not be set yet."); 4410 auto *Group = getInterleavedAccessGroup(I); 4411 assert(Group && "Must have a group."); 4412 4413 // Check if masking is required. 4414 // A Group may need masking for one of two reasons: it resides in a block that 4415 // needs predication, or it was decided to use masking to deal with gaps. 4416 bool PredicatedAccessRequiresMasking = 4417 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4418 bool AccessWithGapsRequiresMasking = 4419 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4420 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4421 return true; 4422 4423 // If masked interleaving is required, we expect that the user/target had 4424 // enabled it, because otherwise it either wouldn't have been created or 4425 // it should have been invalidated by the CostModel. 4426 assert(useMaskedInterleavedAccesses(TTI) && 4427 "Masked interleave-groups for predicated accesses are not enabled."); 4428 4429 auto *Ty = getMemInstValueType(I); 4430 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4431 : TTI.isLegalMaskedStore(Ty); 4432 } 4433 4434 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4435 unsigned VF) { 4436 // Get and ensure we have a valid memory instruction. 4437 LoadInst *LI = dyn_cast<LoadInst>(I); 4438 StoreInst *SI = dyn_cast<StoreInst>(I); 4439 assert((LI || SI) && "Invalid memory instruction"); 4440 4441 auto *Ptr = getLoadStorePointerOperand(I); 4442 4443 // In order to be widened, the pointer should be consecutive, first of all. 4444 if (!Legal->isConsecutivePtr(Ptr)) 4445 return false; 4446 4447 // If the instruction is a store located in a predicated block, it will be 4448 // scalarized. 4449 if (isScalarWithPredication(I)) 4450 return false; 4451 4452 // If the instruction's allocated size doesn't equal it's type size, it 4453 // requires padding and will be scalarized. 4454 auto &DL = I->getModule()->getDataLayout(); 4455 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4456 if (hasIrregularType(ScalarTy, DL, VF)) 4457 return false; 4458 4459 return true; 4460 } 4461 4462 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4463 // We should not collect Uniforms more than once per VF. Right now, 4464 // this function is called from collectUniformsAndScalars(), which 4465 // already does this check. Collecting Uniforms for VF=1 does not make any 4466 // sense. 4467 4468 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4469 "This function should not be visited twice for the same VF"); 4470 4471 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4472 // not analyze again. Uniforms.count(VF) will return 1. 4473 Uniforms[VF].clear(); 4474 4475 // We now know that the loop is vectorizable! 4476 // Collect instructions inside the loop that will remain uniform after 4477 // vectorization. 4478 4479 // Global values, params and instructions outside of current loop are out of 4480 // scope. 4481 auto isOutOfScope = [&](Value *V) -> bool { 4482 Instruction *I = dyn_cast<Instruction>(V); 4483 return (!I || !TheLoop->contains(I)); 4484 }; 4485 4486 SetVector<Instruction *> Worklist; 4487 BasicBlock *Latch = TheLoop->getLoopLatch(); 4488 4489 // Start with the conditional branch. If the branch condition is an 4490 // instruction contained in the loop that is only used by the branch, it is 4491 // uniform. 4492 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4493 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4494 Worklist.insert(Cmp); 4495 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4496 } 4497 4498 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4499 // are pointers that are treated like consecutive pointers during 4500 // vectorization. The pointer operands of interleaved accesses are an 4501 // example. 4502 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4503 4504 // Holds pointer operands of instructions that are possibly non-uniform. 4505 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4506 4507 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4508 InstWidening WideningDecision = getWideningDecision(I, VF); 4509 assert(WideningDecision != CM_Unknown && 4510 "Widening decision should be ready at this moment"); 4511 4512 return (WideningDecision == CM_Widen || 4513 WideningDecision == CM_Widen_Reverse || 4514 WideningDecision == CM_Interleave); 4515 }; 4516 // Iterate over the instructions in the loop, and collect all 4517 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4518 // that a consecutive-like pointer operand will be scalarized, we collect it 4519 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4520 // getelementptr instruction can be used by both vectorized and scalarized 4521 // memory instructions. For example, if a loop loads and stores from the same 4522 // location, but the store is conditional, the store will be scalarized, and 4523 // the getelementptr won't remain uniform. 4524 for (auto *BB : TheLoop->blocks()) 4525 for (auto &I : *BB) { 4526 // If there's no pointer operand, there's nothing to do. 4527 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4528 if (!Ptr) 4529 continue; 4530 4531 // True if all users of Ptr are memory accesses that have Ptr as their 4532 // pointer operand. 4533 auto UsersAreMemAccesses = 4534 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4535 return getLoadStorePointerOperand(U) == Ptr; 4536 }); 4537 4538 // Ensure the memory instruction will not be scalarized or used by 4539 // gather/scatter, making its pointer operand non-uniform. If the pointer 4540 // operand is used by any instruction other than a memory access, we 4541 // conservatively assume the pointer operand may be non-uniform. 4542 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4543 PossibleNonUniformPtrs.insert(Ptr); 4544 4545 // If the memory instruction will be vectorized and its pointer operand 4546 // is consecutive-like, or interleaving - the pointer operand should 4547 // remain uniform. 4548 else 4549 ConsecutiveLikePtrs.insert(Ptr); 4550 } 4551 4552 // Add to the Worklist all consecutive and consecutive-like pointers that 4553 // aren't also identified as possibly non-uniform. 4554 for (auto *V : ConsecutiveLikePtrs) 4555 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4556 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4557 Worklist.insert(V); 4558 } 4559 4560 // Expand Worklist in topological order: whenever a new instruction 4561 // is added , its users should be already inside Worklist. It ensures 4562 // a uniform instruction will only be used by uniform instructions. 4563 unsigned idx = 0; 4564 while (idx != Worklist.size()) { 4565 Instruction *I = Worklist[idx++]; 4566 4567 for (auto OV : I->operand_values()) { 4568 // isOutOfScope operands cannot be uniform instructions. 4569 if (isOutOfScope(OV)) 4570 continue; 4571 // First order recurrence Phi's should typically be considered 4572 // non-uniform. 4573 auto *OP = dyn_cast<PHINode>(OV); 4574 if (OP && Legal->isFirstOrderRecurrence(OP)) 4575 continue; 4576 // If all the users of the operand are uniform, then add the 4577 // operand into the uniform worklist. 4578 auto *OI = cast<Instruction>(OV); 4579 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4580 auto *J = cast<Instruction>(U); 4581 return Worklist.count(J) || 4582 (OI == getLoadStorePointerOperand(J) && 4583 isUniformDecision(J, VF)); 4584 })) { 4585 Worklist.insert(OI); 4586 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4587 } 4588 } 4589 } 4590 4591 // Returns true if Ptr is the pointer operand of a memory access instruction 4592 // I, and I is known to not require scalarization. 4593 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4594 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4595 }; 4596 4597 // For an instruction to be added into Worklist above, all its users inside 4598 // the loop should also be in Worklist. However, this condition cannot be 4599 // true for phi nodes that form a cyclic dependence. We must process phi 4600 // nodes separately. An induction variable will remain uniform if all users 4601 // of the induction variable and induction variable update remain uniform. 4602 // The code below handles both pointer and non-pointer induction variables. 4603 for (auto &Induction : *Legal->getInductionVars()) { 4604 auto *Ind = Induction.first; 4605 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4606 4607 // Determine if all users of the induction variable are uniform after 4608 // vectorization. 4609 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4610 auto *I = cast<Instruction>(U); 4611 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4612 isVectorizedMemAccessUse(I, Ind); 4613 }); 4614 if (!UniformInd) 4615 continue; 4616 4617 // Determine if all users of the induction variable update instruction are 4618 // uniform after vectorization. 4619 auto UniformIndUpdate = 4620 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4621 auto *I = cast<Instruction>(U); 4622 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4623 isVectorizedMemAccessUse(I, IndUpdate); 4624 }); 4625 if (!UniformIndUpdate) 4626 continue; 4627 4628 // The induction variable and its update instruction will remain uniform. 4629 Worklist.insert(Ind); 4630 Worklist.insert(IndUpdate); 4631 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4632 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4633 << "\n"); 4634 } 4635 4636 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4637 } 4638 4639 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4640 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4641 // TODO: It may by useful to do since it's still likely to be dynamically 4642 // uniform if the target can skip. 4643 LLVM_DEBUG( 4644 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4645 4646 ORE->emit( 4647 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4648 << "runtime pointer checks needed. Not enabled for divergent target"); 4649 4650 return None; 4651 } 4652 4653 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4654 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4655 return computeFeasibleMaxVF(OptForSize, TC); 4656 4657 if (Legal->getRuntimePointerChecking()->Need) { 4658 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4659 << "runtime pointer checks needed. Enable vectorization of this " 4660 "loop with '#pragma clang loop vectorize(enable)' when " 4661 "compiling with -Os/-Oz"); 4662 LLVM_DEBUG( 4663 dbgs() 4664 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4665 return None; 4666 } 4667 4668 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4669 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4670 << "runtime SCEV checks needed. Enable vectorization of this " 4671 "loop with '#pragma clang loop vectorize(enable)' when " 4672 "compiling with -Os/-Oz"); 4673 LLVM_DEBUG( 4674 dbgs() 4675 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4676 return None; 4677 } 4678 4679 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4680 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4681 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4682 << "runtime stride == 1 checks needed. Enable vectorization of " 4683 "this loop with '#pragma clang loop vectorize(enable)' when " 4684 "compiling with -Os/-Oz"); 4685 LLVM_DEBUG( 4686 dbgs() 4687 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4688 return None; 4689 } 4690 4691 // If we optimize the program for size, avoid creating the tail loop. 4692 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4693 4694 if (TC == 1) { 4695 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4696 << "loop trip count is one, irrelevant for vectorization"); 4697 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4698 return None; 4699 } 4700 4701 // Record that scalar epilogue is not allowed. 4702 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4703 4704 IsScalarEpilogueAllowed = !OptForSize; 4705 4706 // We don't create an epilogue when optimizing for size. 4707 // Invalidate interleave groups that require an epilogue if we can't mask 4708 // the interleave-group. 4709 if (!useMaskedInterleavedAccesses(TTI)) 4710 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4711 4712 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4713 4714 if (TC > 0 && TC % MaxVF == 0) { 4715 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4716 return MaxVF; 4717 } 4718 4719 // If we don't know the precise trip count, or if the trip count that we 4720 // found modulo the vectorization factor is not zero, try to fold the tail 4721 // by masking. 4722 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4723 if (Legal->canFoldTailByMasking()) { 4724 FoldTailByMasking = true; 4725 return MaxVF; 4726 } 4727 4728 if (TC == 0) { 4729 ORE->emit( 4730 createMissedAnalysis("UnknownLoopCountComplexCFG") 4731 << "unable to calculate the loop count due to complex control flow"); 4732 return None; 4733 } 4734 4735 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4736 << "cannot optimize for size and vectorize at the same time. " 4737 "Enable vectorization of this loop with '#pragma clang loop " 4738 "vectorize(enable)' when compiling with -Os/-Oz"); 4739 return None; 4740 } 4741 4742 unsigned 4743 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4744 unsigned ConstTripCount) { 4745 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4746 unsigned SmallestType, WidestType; 4747 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4748 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4749 4750 // Get the maximum safe dependence distance in bits computed by LAA. 4751 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4752 // the memory accesses that is most restrictive (involved in the smallest 4753 // dependence distance). 4754 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4755 4756 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4757 4758 unsigned MaxVectorSize = WidestRegister / WidestType; 4759 4760 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4761 << " / " << WidestType << " bits.\n"); 4762 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4763 << WidestRegister << " bits.\n"); 4764 4765 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4766 " into one vector!"); 4767 if (MaxVectorSize == 0) { 4768 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4769 MaxVectorSize = 1; 4770 return MaxVectorSize; 4771 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4772 isPowerOf2_32(ConstTripCount)) { 4773 // We need to clamp the VF to be the ConstTripCount. There is no point in 4774 // choosing a higher viable VF as done in the loop below. 4775 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4776 << ConstTripCount << "\n"); 4777 MaxVectorSize = ConstTripCount; 4778 return MaxVectorSize; 4779 } 4780 4781 unsigned MaxVF = MaxVectorSize; 4782 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4783 (MaximizeBandwidth && !OptForSize)) { 4784 // Collect all viable vectorization factors larger than the default MaxVF 4785 // (i.e. MaxVectorSize). 4786 SmallVector<unsigned, 8> VFs; 4787 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4788 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4789 VFs.push_back(VS); 4790 4791 // For each VF calculate its register usage. 4792 auto RUs = calculateRegisterUsage(VFs); 4793 4794 // Select the largest VF which doesn't require more registers than existing 4795 // ones. 4796 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4797 for (int i = RUs.size() - 1; i >= 0; --i) { 4798 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4799 MaxVF = VFs[i]; 4800 break; 4801 } 4802 } 4803 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4804 if (MaxVF < MinVF) { 4805 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4806 << ") with target's minimum: " << MinVF << '\n'); 4807 MaxVF = MinVF; 4808 } 4809 } 4810 } 4811 return MaxVF; 4812 } 4813 4814 VectorizationFactor 4815 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4816 float Cost = expectedCost(1).first; 4817 const float ScalarCost = Cost; 4818 unsigned Width = 1; 4819 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4820 4821 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4822 if (ForceVectorization && MaxVF > 1) { 4823 // Ignore scalar width, because the user explicitly wants vectorization. 4824 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4825 // evaluation. 4826 Cost = std::numeric_limits<float>::max(); 4827 } 4828 4829 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4830 // Notice that the vector loop needs to be executed less times, so 4831 // we need to divide the cost of the vector loops by the width of 4832 // the vector elements. 4833 VectorizationCostTy C = expectedCost(i); 4834 float VectorCost = C.first / (float)i; 4835 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4836 << " costs: " << (int)VectorCost << ".\n"); 4837 if (!C.second && !ForceVectorization) { 4838 LLVM_DEBUG( 4839 dbgs() << "LV: Not considering vector loop of width " << i 4840 << " because it will not generate any vector instructions.\n"); 4841 continue; 4842 } 4843 if (VectorCost < Cost) { 4844 Cost = VectorCost; 4845 Width = i; 4846 } 4847 } 4848 4849 if (!EnableCondStoresVectorization && NumPredStores) { 4850 ORE->emit(createMissedAnalysis("ConditionalStore") 4851 << "store that is conditionally executed prevents vectorization"); 4852 LLVM_DEBUG( 4853 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4854 Width = 1; 4855 Cost = ScalarCost; 4856 } 4857 4858 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4859 << "LV: Vectorization seems to be not beneficial, " 4860 << "but was forced by a user.\n"); 4861 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4862 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4863 return Factor; 4864 } 4865 4866 std::pair<unsigned, unsigned> 4867 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4868 unsigned MinWidth = -1U; 4869 unsigned MaxWidth = 8; 4870 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4871 4872 // For each block. 4873 for (BasicBlock *BB : TheLoop->blocks()) { 4874 // For each instruction in the loop. 4875 for (Instruction &I : BB->instructionsWithoutDebug()) { 4876 Type *T = I.getType(); 4877 4878 // Skip ignored values. 4879 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4880 continue; 4881 4882 // Only examine Loads, Stores and PHINodes. 4883 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4884 continue; 4885 4886 // Examine PHI nodes that are reduction variables. Update the type to 4887 // account for the recurrence type. 4888 if (auto *PN = dyn_cast<PHINode>(&I)) { 4889 if (!Legal->isReductionVariable(PN)) 4890 continue; 4891 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4892 T = RdxDesc.getRecurrenceType(); 4893 } 4894 4895 // Examine the stored values. 4896 if (auto *ST = dyn_cast<StoreInst>(&I)) 4897 T = ST->getValueOperand()->getType(); 4898 4899 // Ignore loaded pointer types and stored pointer types that are not 4900 // vectorizable. 4901 // 4902 // FIXME: The check here attempts to predict whether a load or store will 4903 // be vectorized. We only know this for certain after a VF has 4904 // been selected. Here, we assume that if an access can be 4905 // vectorized, it will be. We should also look at extending this 4906 // optimization to non-pointer types. 4907 // 4908 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4909 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4910 continue; 4911 4912 MinWidth = std::min(MinWidth, 4913 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4914 MaxWidth = std::max(MaxWidth, 4915 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4916 } 4917 } 4918 4919 return {MinWidth, MaxWidth}; 4920 } 4921 4922 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4923 unsigned VF, 4924 unsigned LoopCost) { 4925 // -- The interleave heuristics -- 4926 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4927 // There are many micro-architectural considerations that we can't predict 4928 // at this level. For example, frontend pressure (on decode or fetch) due to 4929 // code size, or the number and capabilities of the execution ports. 4930 // 4931 // We use the following heuristics to select the interleave count: 4932 // 1. If the code has reductions, then we interleave to break the cross 4933 // iteration dependency. 4934 // 2. If the loop is really small, then we interleave to reduce the loop 4935 // overhead. 4936 // 3. We don't interleave if we think that we will spill registers to memory 4937 // due to the increased register pressure. 4938 4939 // When we optimize for size, we don't interleave. 4940 if (OptForSize) 4941 return 1; 4942 4943 // We used the distance for the interleave count. 4944 if (Legal->getMaxSafeDepDistBytes() != -1U) 4945 return 1; 4946 4947 // Do not interleave loops with a relatively small trip count. 4948 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4949 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4950 return 1; 4951 4952 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4953 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4954 << " registers\n"); 4955 4956 if (VF == 1) { 4957 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4958 TargetNumRegisters = ForceTargetNumScalarRegs; 4959 } else { 4960 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4961 TargetNumRegisters = ForceTargetNumVectorRegs; 4962 } 4963 4964 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4965 // We divide by these constants so assume that we have at least one 4966 // instruction that uses at least one register. 4967 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4968 4969 // We calculate the interleave count using the following formula. 4970 // Subtract the number of loop invariants from the number of available 4971 // registers. These registers are used by all of the interleaved instances. 4972 // Next, divide the remaining registers by the number of registers that is 4973 // required by the loop, in order to estimate how many parallel instances 4974 // fit without causing spills. All of this is rounded down if necessary to be 4975 // a power of two. We want power of two interleave count to simplify any 4976 // addressing operations or alignment considerations. 4977 // We also want power of two interleave counts to ensure that the induction 4978 // variable of the vector loop wraps to zero, when tail is folded by masking; 4979 // this currently happens when OptForSize, in which case IC is set to 1 above. 4980 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4981 R.MaxLocalUsers); 4982 4983 // Don't count the induction variable as interleaved. 4984 if (EnableIndVarRegisterHeur) 4985 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4986 std::max(1U, (R.MaxLocalUsers - 1))); 4987 4988 // Clamp the interleave ranges to reasonable counts. 4989 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4990 4991 // Check if the user has overridden the max. 4992 if (VF == 1) { 4993 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4994 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4995 } else { 4996 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4997 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4998 } 4999 5000 // If we did not calculate the cost for VF (because the user selected the VF) 5001 // then we calculate the cost of VF here. 5002 if (LoopCost == 0) 5003 LoopCost = expectedCost(VF).first; 5004 5005 // Clamp the calculated IC to be between the 1 and the max interleave count 5006 // that the target allows. 5007 if (IC > MaxInterleaveCount) 5008 IC = MaxInterleaveCount; 5009 else if (IC < 1) 5010 IC = 1; 5011 5012 // Interleave if we vectorized this loop and there is a reduction that could 5013 // benefit from interleaving. 5014 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5015 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5016 return IC; 5017 } 5018 5019 // Note that if we've already vectorized the loop we will have done the 5020 // runtime check and so interleaving won't require further checks. 5021 bool InterleavingRequiresRuntimePointerCheck = 5022 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5023 5024 // We want to interleave small loops in order to reduce the loop overhead and 5025 // potentially expose ILP opportunities. 5026 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5027 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5028 // We assume that the cost overhead is 1 and we use the cost model 5029 // to estimate the cost of the loop and interleave until the cost of the 5030 // loop overhead is about 5% of the cost of the loop. 5031 unsigned SmallIC = 5032 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5033 5034 // Interleave until store/load ports (estimated by max interleave count) are 5035 // saturated. 5036 unsigned NumStores = Legal->getNumStores(); 5037 unsigned NumLoads = Legal->getNumLoads(); 5038 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5039 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5040 5041 // If we have a scalar reduction (vector reductions are already dealt with 5042 // by this point), we can increase the critical path length if the loop 5043 // we're interleaving is inside another loop. Limit, by default to 2, so the 5044 // critical path only gets increased by one reduction operation. 5045 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5046 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5047 SmallIC = std::min(SmallIC, F); 5048 StoresIC = std::min(StoresIC, F); 5049 LoadsIC = std::min(LoadsIC, F); 5050 } 5051 5052 if (EnableLoadStoreRuntimeInterleave && 5053 std::max(StoresIC, LoadsIC) > SmallIC) { 5054 LLVM_DEBUG( 5055 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5056 return std::max(StoresIC, LoadsIC); 5057 } 5058 5059 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5060 return SmallIC; 5061 } 5062 5063 // Interleave if this is a large loop (small loops are already dealt with by 5064 // this point) that could benefit from interleaving. 5065 bool HasReductions = !Legal->getReductionVars()->empty(); 5066 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5067 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5068 return IC; 5069 } 5070 5071 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5072 return 1; 5073 } 5074 5075 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5076 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5077 // This function calculates the register usage by measuring the highest number 5078 // of values that are alive at a single location. Obviously, this is a very 5079 // rough estimation. We scan the loop in a topological order in order and 5080 // assign a number to each instruction. We use RPO to ensure that defs are 5081 // met before their users. We assume that each instruction that has in-loop 5082 // users starts an interval. We record every time that an in-loop value is 5083 // used, so we have a list of the first and last occurrences of each 5084 // instruction. Next, we transpose this data structure into a multi map that 5085 // holds the list of intervals that *end* at a specific location. This multi 5086 // map allows us to perform a linear search. We scan the instructions linearly 5087 // and record each time that a new interval starts, by placing it in a set. 5088 // If we find this value in the multi-map then we remove it from the set. 5089 // The max register usage is the maximum size of the set. 5090 // We also search for instructions that are defined outside the loop, but are 5091 // used inside the loop. We need this number separately from the max-interval 5092 // usage number because when we unroll, loop-invariant values do not take 5093 // more register. 5094 LoopBlocksDFS DFS(TheLoop); 5095 DFS.perform(LI); 5096 5097 RegisterUsage RU; 5098 5099 // Each 'key' in the map opens a new interval. The values 5100 // of the map are the index of the 'last seen' usage of the 5101 // instruction that is the key. 5102 using IntervalMap = DenseMap<Instruction *, unsigned>; 5103 5104 // Maps instruction to its index. 5105 SmallVector<Instruction *, 64> IdxToInstr; 5106 // Marks the end of each interval. 5107 IntervalMap EndPoint; 5108 // Saves the list of instruction indices that are used in the loop. 5109 SmallPtrSet<Instruction *, 8> Ends; 5110 // Saves the list of values that are used in the loop but are 5111 // defined outside the loop, such as arguments and constants. 5112 SmallPtrSet<Value *, 8> LoopInvariants; 5113 5114 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5115 for (Instruction &I : BB->instructionsWithoutDebug()) { 5116 IdxToInstr.push_back(&I); 5117 5118 // Save the end location of each USE. 5119 for (Value *U : I.operands()) { 5120 auto *Instr = dyn_cast<Instruction>(U); 5121 5122 // Ignore non-instruction values such as arguments, constants, etc. 5123 if (!Instr) 5124 continue; 5125 5126 // If this instruction is outside the loop then record it and continue. 5127 if (!TheLoop->contains(Instr)) { 5128 LoopInvariants.insert(Instr); 5129 continue; 5130 } 5131 5132 // Overwrite previous end points. 5133 EndPoint[Instr] = IdxToInstr.size(); 5134 Ends.insert(Instr); 5135 } 5136 } 5137 } 5138 5139 // Saves the list of intervals that end with the index in 'key'. 5140 using InstrList = SmallVector<Instruction *, 2>; 5141 DenseMap<unsigned, InstrList> TransposeEnds; 5142 5143 // Transpose the EndPoints to a list of values that end at each index. 5144 for (auto &Interval : EndPoint) 5145 TransposeEnds[Interval.second].push_back(Interval.first); 5146 5147 SmallPtrSet<Instruction *, 8> OpenIntervals; 5148 5149 // Get the size of the widest register. 5150 unsigned MaxSafeDepDist = -1U; 5151 if (Legal->getMaxSafeDepDistBytes() != -1U) 5152 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5153 unsigned WidestRegister = 5154 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5155 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5156 5157 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5158 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5159 5160 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5161 5162 // A lambda that gets the register usage for the given type and VF. 5163 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5164 if (Ty->isTokenTy()) 5165 return 0U; 5166 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5167 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5168 }; 5169 5170 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5171 Instruction *I = IdxToInstr[i]; 5172 5173 // Remove all of the instructions that end at this location. 5174 InstrList &List = TransposeEnds[i]; 5175 for (Instruction *ToRemove : List) 5176 OpenIntervals.erase(ToRemove); 5177 5178 // Ignore instructions that are never used within the loop. 5179 if (Ends.find(I) == Ends.end()) 5180 continue; 5181 5182 // Skip ignored values. 5183 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5184 continue; 5185 5186 // For each VF find the maximum usage of registers. 5187 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5188 if (VFs[j] == 1) { 5189 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5190 continue; 5191 } 5192 collectUniformsAndScalars(VFs[j]); 5193 // Count the number of live intervals. 5194 unsigned RegUsage = 0; 5195 for (auto Inst : OpenIntervals) { 5196 // Skip ignored values for VF > 1. 5197 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5198 isScalarAfterVectorization(Inst, VFs[j])) 5199 continue; 5200 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5201 } 5202 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5203 } 5204 5205 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5206 << OpenIntervals.size() << '\n'); 5207 5208 // Add the current instruction to the list of open intervals. 5209 OpenIntervals.insert(I); 5210 } 5211 5212 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5213 unsigned Invariant = 0; 5214 if (VFs[i] == 1) 5215 Invariant = LoopInvariants.size(); 5216 else { 5217 for (auto Inst : LoopInvariants) 5218 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5219 } 5220 5221 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5222 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5223 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5224 << '\n'); 5225 5226 RU.LoopInvariantRegs = Invariant; 5227 RU.MaxLocalUsers = MaxUsages[i]; 5228 RUs[i] = RU; 5229 } 5230 5231 return RUs; 5232 } 5233 5234 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5235 // TODO: Cost model for emulated masked load/store is completely 5236 // broken. This hack guides the cost model to use an artificially 5237 // high enough value to practically disable vectorization with such 5238 // operations, except where previously deployed legality hack allowed 5239 // using very low cost values. This is to avoid regressions coming simply 5240 // from moving "masked load/store" check from legality to cost model. 5241 // Masked Load/Gather emulation was previously never allowed. 5242 // Limited number of Masked Store/Scatter emulation was allowed. 5243 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5244 return isa<LoadInst>(I) || 5245 (isa<StoreInst>(I) && 5246 NumPredStores > NumberOfStoresToPredicate); 5247 } 5248 5249 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5250 // If we aren't vectorizing the loop, or if we've already collected the 5251 // instructions to scalarize, there's nothing to do. Collection may already 5252 // have occurred if we have a user-selected VF and are now computing the 5253 // expected cost for interleaving. 5254 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5255 return; 5256 5257 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5258 // not profitable to scalarize any instructions, the presence of VF in the 5259 // map will indicate that we've analyzed it already. 5260 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5261 5262 // Find all the instructions that are scalar with predication in the loop and 5263 // determine if it would be better to not if-convert the blocks they are in. 5264 // If so, we also record the instructions to scalarize. 5265 for (BasicBlock *BB : TheLoop->blocks()) { 5266 if (!blockNeedsPredication(BB)) 5267 continue; 5268 for (Instruction &I : *BB) 5269 if (isScalarWithPredication(&I)) { 5270 ScalarCostsTy ScalarCosts; 5271 // Do not apply discount logic if hacked cost is needed 5272 // for emulated masked memrefs. 5273 if (!useEmulatedMaskMemRefHack(&I) && 5274 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5275 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5276 // Remember that BB will remain after vectorization. 5277 PredicatedBBsAfterVectorization.insert(BB); 5278 } 5279 } 5280 } 5281 5282 int LoopVectorizationCostModel::computePredInstDiscount( 5283 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5284 unsigned VF) { 5285 assert(!isUniformAfterVectorization(PredInst, VF) && 5286 "Instruction marked uniform-after-vectorization will be predicated"); 5287 5288 // Initialize the discount to zero, meaning that the scalar version and the 5289 // vector version cost the same. 5290 int Discount = 0; 5291 5292 // Holds instructions to analyze. The instructions we visit are mapped in 5293 // ScalarCosts. Those instructions are the ones that would be scalarized if 5294 // we find that the scalar version costs less. 5295 SmallVector<Instruction *, 8> Worklist; 5296 5297 // Returns true if the given instruction can be scalarized. 5298 auto canBeScalarized = [&](Instruction *I) -> bool { 5299 // We only attempt to scalarize instructions forming a single-use chain 5300 // from the original predicated block that would otherwise be vectorized. 5301 // Although not strictly necessary, we give up on instructions we know will 5302 // already be scalar to avoid traversing chains that are unlikely to be 5303 // beneficial. 5304 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5305 isScalarAfterVectorization(I, VF)) 5306 return false; 5307 5308 // If the instruction is scalar with predication, it will be analyzed 5309 // separately. We ignore it within the context of PredInst. 5310 if (isScalarWithPredication(I)) 5311 return false; 5312 5313 // If any of the instruction's operands are uniform after vectorization, 5314 // the instruction cannot be scalarized. This prevents, for example, a 5315 // masked load from being scalarized. 5316 // 5317 // We assume we will only emit a value for lane zero of an instruction 5318 // marked uniform after vectorization, rather than VF identical values. 5319 // Thus, if we scalarize an instruction that uses a uniform, we would 5320 // create uses of values corresponding to the lanes we aren't emitting code 5321 // for. This behavior can be changed by allowing getScalarValue to clone 5322 // the lane zero values for uniforms rather than asserting. 5323 for (Use &U : I->operands()) 5324 if (auto *J = dyn_cast<Instruction>(U.get())) 5325 if (isUniformAfterVectorization(J, VF)) 5326 return false; 5327 5328 // Otherwise, we can scalarize the instruction. 5329 return true; 5330 }; 5331 5332 // Returns true if an operand that cannot be scalarized must be extracted 5333 // from a vector. We will account for this scalarization overhead below. Note 5334 // that the non-void predicated instructions are placed in their own blocks, 5335 // and their return values are inserted into vectors. Thus, an extract would 5336 // still be required. 5337 auto needsExtract = [&](Instruction *I) -> bool { 5338 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5339 }; 5340 5341 // Compute the expected cost discount from scalarizing the entire expression 5342 // feeding the predicated instruction. We currently only consider expressions 5343 // that are single-use instruction chains. 5344 Worklist.push_back(PredInst); 5345 while (!Worklist.empty()) { 5346 Instruction *I = Worklist.pop_back_val(); 5347 5348 // If we've already analyzed the instruction, there's nothing to do. 5349 if (ScalarCosts.find(I) != ScalarCosts.end()) 5350 continue; 5351 5352 // Compute the cost of the vector instruction. Note that this cost already 5353 // includes the scalarization overhead of the predicated instruction. 5354 unsigned VectorCost = getInstructionCost(I, VF).first; 5355 5356 // Compute the cost of the scalarized instruction. This cost is the cost of 5357 // the instruction as if it wasn't if-converted and instead remained in the 5358 // predicated block. We will scale this cost by block probability after 5359 // computing the scalarization overhead. 5360 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5361 5362 // Compute the scalarization overhead of needed insertelement instructions 5363 // and phi nodes. 5364 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5365 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5366 true, false); 5367 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5368 } 5369 5370 // Compute the scalarization overhead of needed extractelement 5371 // instructions. For each of the instruction's operands, if the operand can 5372 // be scalarized, add it to the worklist; otherwise, account for the 5373 // overhead. 5374 for (Use &U : I->operands()) 5375 if (auto *J = dyn_cast<Instruction>(U.get())) { 5376 assert(VectorType::isValidElementType(J->getType()) && 5377 "Instruction has non-scalar type"); 5378 if (canBeScalarized(J)) 5379 Worklist.push_back(J); 5380 else if (needsExtract(J)) 5381 ScalarCost += TTI.getScalarizationOverhead( 5382 ToVectorTy(J->getType(),VF), false, true); 5383 } 5384 5385 // Scale the total scalar cost by block probability. 5386 ScalarCost /= getReciprocalPredBlockProb(); 5387 5388 // Compute the discount. A non-negative discount means the vector version 5389 // of the instruction costs more, and scalarizing would be beneficial. 5390 Discount += VectorCost - ScalarCost; 5391 ScalarCosts[I] = ScalarCost; 5392 } 5393 5394 return Discount; 5395 } 5396 5397 LoopVectorizationCostModel::VectorizationCostTy 5398 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5399 VectorizationCostTy Cost; 5400 5401 // For each block. 5402 for (BasicBlock *BB : TheLoop->blocks()) { 5403 VectorizationCostTy BlockCost; 5404 5405 // For each instruction in the old loop. 5406 for (Instruction &I : BB->instructionsWithoutDebug()) { 5407 // Skip ignored values. 5408 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5409 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5410 continue; 5411 5412 VectorizationCostTy C = getInstructionCost(&I, VF); 5413 5414 // Check if we should override the cost. 5415 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5416 C.first = ForceTargetInstructionCost; 5417 5418 BlockCost.first += C.first; 5419 BlockCost.second |= C.second; 5420 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5421 << " for VF " << VF << " For instruction: " << I 5422 << '\n'); 5423 } 5424 5425 // If we are vectorizing a predicated block, it will have been 5426 // if-converted. This means that the block's instructions (aside from 5427 // stores and instructions that may divide by zero) will now be 5428 // unconditionally executed. For the scalar case, we may not always execute 5429 // the predicated block. Thus, scale the block's cost by the probability of 5430 // executing it. 5431 if (VF == 1 && blockNeedsPredication(BB)) 5432 BlockCost.first /= getReciprocalPredBlockProb(); 5433 5434 Cost.first += BlockCost.first; 5435 Cost.second |= BlockCost.second; 5436 } 5437 5438 return Cost; 5439 } 5440 5441 /// Gets Address Access SCEV after verifying that the access pattern 5442 /// is loop invariant except the induction variable dependence. 5443 /// 5444 /// This SCEV can be sent to the Target in order to estimate the address 5445 /// calculation cost. 5446 static const SCEV *getAddressAccessSCEV( 5447 Value *Ptr, 5448 LoopVectorizationLegality *Legal, 5449 PredicatedScalarEvolution &PSE, 5450 const Loop *TheLoop) { 5451 5452 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5453 if (!Gep) 5454 return nullptr; 5455 5456 // We are looking for a gep with all loop invariant indices except for one 5457 // which should be an induction variable. 5458 auto SE = PSE.getSE(); 5459 unsigned NumOperands = Gep->getNumOperands(); 5460 for (unsigned i = 1; i < NumOperands; ++i) { 5461 Value *Opd = Gep->getOperand(i); 5462 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5463 !Legal->isInductionVariable(Opd)) 5464 return nullptr; 5465 } 5466 5467 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5468 return PSE.getSCEV(Ptr); 5469 } 5470 5471 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5472 return Legal->hasStride(I->getOperand(0)) || 5473 Legal->hasStride(I->getOperand(1)); 5474 } 5475 5476 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5477 unsigned VF) { 5478 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5479 Type *ValTy = getMemInstValueType(I); 5480 auto SE = PSE.getSE(); 5481 5482 unsigned Alignment = getLoadStoreAlignment(I); 5483 unsigned AS = getLoadStoreAddressSpace(I); 5484 Value *Ptr = getLoadStorePointerOperand(I); 5485 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5486 5487 // Figure out whether the access is strided and get the stride value 5488 // if it's known in compile time 5489 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5490 5491 // Get the cost of the scalar memory instruction and address computation. 5492 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5493 5494 // Don't pass *I here, since it is scalar but will actually be part of a 5495 // vectorized loop where the user of it is a vectorized instruction. 5496 Cost += VF * 5497 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5498 AS); 5499 5500 // Get the overhead of the extractelement and insertelement instructions 5501 // we might create due to scalarization. 5502 Cost += getScalarizationOverhead(I, VF, TTI); 5503 5504 // If we have a predicated store, it may not be executed for each vector 5505 // lane. Scale the cost by the probability of executing the predicated 5506 // block. 5507 if (isPredicatedInst(I)) { 5508 Cost /= getReciprocalPredBlockProb(); 5509 5510 if (useEmulatedMaskMemRefHack(I)) 5511 // Artificially setting to a high enough value to practically disable 5512 // vectorization with such operations. 5513 Cost = 3000000; 5514 } 5515 5516 return Cost; 5517 } 5518 5519 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5520 unsigned VF) { 5521 Type *ValTy = getMemInstValueType(I); 5522 Type *VectorTy = ToVectorTy(ValTy, VF); 5523 unsigned Alignment = getLoadStoreAlignment(I); 5524 Value *Ptr = getLoadStorePointerOperand(I); 5525 unsigned AS = getLoadStoreAddressSpace(I); 5526 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5527 5528 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5529 "Stride should be 1 or -1 for consecutive memory access"); 5530 unsigned Cost = 0; 5531 if (Legal->isMaskRequired(I)) 5532 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5533 else 5534 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5535 5536 bool Reverse = ConsecutiveStride < 0; 5537 if (Reverse) 5538 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5539 return Cost; 5540 } 5541 5542 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5543 unsigned VF) { 5544 Type *ValTy = getMemInstValueType(I); 5545 Type *VectorTy = ToVectorTy(ValTy, VF); 5546 unsigned Alignment = getLoadStoreAlignment(I); 5547 unsigned AS = getLoadStoreAddressSpace(I); 5548 if (isa<LoadInst>(I)) { 5549 return TTI.getAddressComputationCost(ValTy) + 5550 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5551 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5552 } 5553 StoreInst *SI = cast<StoreInst>(I); 5554 5555 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5556 return TTI.getAddressComputationCost(ValTy) + 5557 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5558 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5559 Instruction::ExtractElement, 5560 VectorTy, VF - 1)); 5561 } 5562 5563 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5564 unsigned VF) { 5565 Type *ValTy = getMemInstValueType(I); 5566 Type *VectorTy = ToVectorTy(ValTy, VF); 5567 unsigned Alignment = getLoadStoreAlignment(I); 5568 Value *Ptr = getLoadStorePointerOperand(I); 5569 5570 return TTI.getAddressComputationCost(VectorTy) + 5571 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5572 Legal->isMaskRequired(I), Alignment); 5573 } 5574 5575 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5576 unsigned VF) { 5577 Type *ValTy = getMemInstValueType(I); 5578 Type *VectorTy = ToVectorTy(ValTy, VF); 5579 unsigned AS = getLoadStoreAddressSpace(I); 5580 5581 auto Group = getInterleavedAccessGroup(I); 5582 assert(Group && "Fail to get an interleaved access group."); 5583 5584 unsigned InterleaveFactor = Group->getFactor(); 5585 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5586 5587 // Holds the indices of existing members in an interleaved load group. 5588 // An interleaved store group doesn't need this as it doesn't allow gaps. 5589 SmallVector<unsigned, 4> Indices; 5590 if (isa<LoadInst>(I)) { 5591 for (unsigned i = 0; i < InterleaveFactor; i++) 5592 if (Group->getMember(i)) 5593 Indices.push_back(i); 5594 } 5595 5596 // Calculate the cost of the whole interleaved group. 5597 bool UseMaskForGaps = 5598 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5599 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5600 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5601 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5602 5603 if (Group->isReverse()) { 5604 // TODO: Add support for reversed masked interleaved access. 5605 assert(!Legal->isMaskRequired(I) && 5606 "Reverse masked interleaved access not supported."); 5607 Cost += Group->getNumMembers() * 5608 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5609 } 5610 return Cost; 5611 } 5612 5613 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5614 unsigned VF) { 5615 // Calculate scalar cost only. Vectorization cost should be ready at this 5616 // moment. 5617 if (VF == 1) { 5618 Type *ValTy = getMemInstValueType(I); 5619 unsigned Alignment = getLoadStoreAlignment(I); 5620 unsigned AS = getLoadStoreAddressSpace(I); 5621 5622 return TTI.getAddressComputationCost(ValTy) + 5623 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5624 } 5625 return getWideningCost(I, VF); 5626 } 5627 5628 LoopVectorizationCostModel::VectorizationCostTy 5629 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5630 // If we know that this instruction will remain uniform, check the cost of 5631 // the scalar version. 5632 if (isUniformAfterVectorization(I, VF)) 5633 VF = 1; 5634 5635 if (VF > 1 && isProfitableToScalarize(I, VF)) 5636 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5637 5638 // Forced scalars do not have any scalarization overhead. 5639 auto ForcedScalar = ForcedScalars.find(VF); 5640 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5641 auto InstSet = ForcedScalar->second; 5642 if (InstSet.find(I) != InstSet.end()) 5643 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5644 } 5645 5646 Type *VectorTy; 5647 unsigned C = getInstructionCost(I, VF, VectorTy); 5648 5649 bool TypeNotScalarized = 5650 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5651 return VectorizationCostTy(C, TypeNotScalarized); 5652 } 5653 5654 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5655 if (VF == 1) 5656 return; 5657 NumPredStores = 0; 5658 for (BasicBlock *BB : TheLoop->blocks()) { 5659 // For each instruction in the old loop. 5660 for (Instruction &I : *BB) { 5661 Value *Ptr = getLoadStorePointerOperand(&I); 5662 if (!Ptr) 5663 continue; 5664 5665 // TODO: We should generate better code and update the cost model for 5666 // predicated uniform stores. Today they are treated as any other 5667 // predicated store (see added test cases in 5668 // invariant-store-vectorization.ll). 5669 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5670 NumPredStores++; 5671 5672 if (Legal->isUniform(Ptr) && 5673 // Conditional loads and stores should be scalarized and predicated. 5674 // isScalarWithPredication cannot be used here since masked 5675 // gather/scatters are not considered scalar with predication. 5676 !Legal->blockNeedsPredication(I.getParent())) { 5677 // TODO: Avoid replicating loads and stores instead of 5678 // relying on instcombine to remove them. 5679 // Load: Scalar load + broadcast 5680 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5681 unsigned Cost = getUniformMemOpCost(&I, VF); 5682 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5683 continue; 5684 } 5685 5686 // We assume that widening is the best solution when possible. 5687 if (memoryInstructionCanBeWidened(&I, VF)) { 5688 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5689 int ConsecutiveStride = 5690 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5691 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5692 "Expected consecutive stride."); 5693 InstWidening Decision = 5694 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5695 setWideningDecision(&I, VF, Decision, Cost); 5696 continue; 5697 } 5698 5699 // Choose between Interleaving, Gather/Scatter or Scalarization. 5700 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5701 unsigned NumAccesses = 1; 5702 if (isAccessInterleaved(&I)) { 5703 auto Group = getInterleavedAccessGroup(&I); 5704 assert(Group && "Fail to get an interleaved access group."); 5705 5706 // Make one decision for the whole group. 5707 if (getWideningDecision(&I, VF) != CM_Unknown) 5708 continue; 5709 5710 NumAccesses = Group->getNumMembers(); 5711 if (interleavedAccessCanBeWidened(&I, VF)) 5712 InterleaveCost = getInterleaveGroupCost(&I, VF); 5713 } 5714 5715 unsigned GatherScatterCost = 5716 isLegalGatherOrScatter(&I) 5717 ? getGatherScatterCost(&I, VF) * NumAccesses 5718 : std::numeric_limits<unsigned>::max(); 5719 5720 unsigned ScalarizationCost = 5721 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5722 5723 // Choose better solution for the current VF, 5724 // write down this decision and use it during vectorization. 5725 unsigned Cost; 5726 InstWidening Decision; 5727 if (InterleaveCost <= GatherScatterCost && 5728 InterleaveCost < ScalarizationCost) { 5729 Decision = CM_Interleave; 5730 Cost = InterleaveCost; 5731 } else if (GatherScatterCost < ScalarizationCost) { 5732 Decision = CM_GatherScatter; 5733 Cost = GatherScatterCost; 5734 } else { 5735 Decision = CM_Scalarize; 5736 Cost = ScalarizationCost; 5737 } 5738 // If the instructions belongs to an interleave group, the whole group 5739 // receives the same decision. The whole group receives the cost, but 5740 // the cost will actually be assigned to one instruction. 5741 if (auto Group = getInterleavedAccessGroup(&I)) 5742 setWideningDecision(Group, VF, Decision, Cost); 5743 else 5744 setWideningDecision(&I, VF, Decision, Cost); 5745 } 5746 } 5747 5748 // Make sure that any load of address and any other address computation 5749 // remains scalar unless there is gather/scatter support. This avoids 5750 // inevitable extracts into address registers, and also has the benefit of 5751 // activating LSR more, since that pass can't optimize vectorized 5752 // addresses. 5753 if (TTI.prefersVectorizedAddressing()) 5754 return; 5755 5756 // Start with all scalar pointer uses. 5757 SmallPtrSet<Instruction *, 8> AddrDefs; 5758 for (BasicBlock *BB : TheLoop->blocks()) 5759 for (Instruction &I : *BB) { 5760 Instruction *PtrDef = 5761 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5762 if (PtrDef && TheLoop->contains(PtrDef) && 5763 getWideningDecision(&I, VF) != CM_GatherScatter) 5764 AddrDefs.insert(PtrDef); 5765 } 5766 5767 // Add all instructions used to generate the addresses. 5768 SmallVector<Instruction *, 4> Worklist; 5769 for (auto *I : AddrDefs) 5770 Worklist.push_back(I); 5771 while (!Worklist.empty()) { 5772 Instruction *I = Worklist.pop_back_val(); 5773 for (auto &Op : I->operands()) 5774 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5775 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5776 AddrDefs.insert(InstOp).second) 5777 Worklist.push_back(InstOp); 5778 } 5779 5780 for (auto *I : AddrDefs) { 5781 if (isa<LoadInst>(I)) { 5782 // Setting the desired widening decision should ideally be handled in 5783 // by cost functions, but since this involves the task of finding out 5784 // if the loaded register is involved in an address computation, it is 5785 // instead changed here when we know this is the case. 5786 InstWidening Decision = getWideningDecision(I, VF); 5787 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5788 // Scalarize a widened load of address. 5789 setWideningDecision(I, VF, CM_Scalarize, 5790 (VF * getMemoryInstructionCost(I, 1))); 5791 else if (auto Group = getInterleavedAccessGroup(I)) { 5792 // Scalarize an interleave group of address loads. 5793 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5794 if (Instruction *Member = Group->getMember(I)) 5795 setWideningDecision(Member, VF, CM_Scalarize, 5796 (VF * getMemoryInstructionCost(Member, 1))); 5797 } 5798 } 5799 } else 5800 // Make sure I gets scalarized and a cost estimate without 5801 // scalarization overhead. 5802 ForcedScalars[VF].insert(I); 5803 } 5804 } 5805 5806 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5807 unsigned VF, 5808 Type *&VectorTy) { 5809 Type *RetTy = I->getType(); 5810 if (canTruncateToMinimalBitwidth(I, VF)) 5811 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5812 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5813 auto SE = PSE.getSE(); 5814 5815 // TODO: We need to estimate the cost of intrinsic calls. 5816 switch (I->getOpcode()) { 5817 case Instruction::GetElementPtr: 5818 // We mark this instruction as zero-cost because the cost of GEPs in 5819 // vectorized code depends on whether the corresponding memory instruction 5820 // is scalarized or not. Therefore, we handle GEPs with the memory 5821 // instruction cost. 5822 return 0; 5823 case Instruction::Br: { 5824 // In cases of scalarized and predicated instructions, there will be VF 5825 // predicated blocks in the vectorized loop. Each branch around these 5826 // blocks requires also an extract of its vector compare i1 element. 5827 bool ScalarPredicatedBB = false; 5828 BranchInst *BI = cast<BranchInst>(I); 5829 if (VF > 1 && BI->isConditional() && 5830 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5831 PredicatedBBsAfterVectorization.end() || 5832 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5833 PredicatedBBsAfterVectorization.end())) 5834 ScalarPredicatedBB = true; 5835 5836 if (ScalarPredicatedBB) { 5837 // Return cost for branches around scalarized and predicated blocks. 5838 Type *Vec_i1Ty = 5839 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5840 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5841 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5842 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5843 // The back-edge branch will remain, as will all scalar branches. 5844 return TTI.getCFInstrCost(Instruction::Br); 5845 else 5846 // This branch will be eliminated by if-conversion. 5847 return 0; 5848 // Note: We currently assume zero cost for an unconditional branch inside 5849 // a predicated block since it will become a fall-through, although we 5850 // may decide in the future to call TTI for all branches. 5851 } 5852 case Instruction::PHI: { 5853 auto *Phi = cast<PHINode>(I); 5854 5855 // First-order recurrences are replaced by vector shuffles inside the loop. 5856 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5857 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5858 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5859 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5860 5861 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5862 // converted into select instructions. We require N - 1 selects per phi 5863 // node, where N is the number of incoming values. 5864 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5865 return (Phi->getNumIncomingValues() - 1) * 5866 TTI.getCmpSelInstrCost( 5867 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5868 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5869 5870 return TTI.getCFInstrCost(Instruction::PHI); 5871 } 5872 case Instruction::UDiv: 5873 case Instruction::SDiv: 5874 case Instruction::URem: 5875 case Instruction::SRem: 5876 // If we have a predicated instruction, it may not be executed for each 5877 // vector lane. Get the scalarization cost and scale this amount by the 5878 // probability of executing the predicated block. If the instruction is not 5879 // predicated, we fall through to the next case. 5880 if (VF > 1 && isScalarWithPredication(I)) { 5881 unsigned Cost = 0; 5882 5883 // These instructions have a non-void type, so account for the phi nodes 5884 // that we will create. This cost is likely to be zero. The phi node 5885 // cost, if any, should be scaled by the block probability because it 5886 // models a copy at the end of each predicated block. 5887 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5888 5889 // The cost of the non-predicated instruction. 5890 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5891 5892 // The cost of insertelement and extractelement instructions needed for 5893 // scalarization. 5894 Cost += getScalarizationOverhead(I, VF, TTI); 5895 5896 // Scale the cost by the probability of executing the predicated blocks. 5897 // This assumes the predicated block for each vector lane is equally 5898 // likely. 5899 return Cost / getReciprocalPredBlockProb(); 5900 } 5901 LLVM_FALLTHROUGH; 5902 case Instruction::Add: 5903 case Instruction::FAdd: 5904 case Instruction::Sub: 5905 case Instruction::FSub: 5906 case Instruction::Mul: 5907 case Instruction::FMul: 5908 case Instruction::FDiv: 5909 case Instruction::FRem: 5910 case Instruction::Shl: 5911 case Instruction::LShr: 5912 case Instruction::AShr: 5913 case Instruction::And: 5914 case Instruction::Or: 5915 case Instruction::Xor: { 5916 // Since we will replace the stride by 1 the multiplication should go away. 5917 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5918 return 0; 5919 // Certain instructions can be cheaper to vectorize if they have a constant 5920 // second vector operand. One example of this are shifts on x86. 5921 Value *Op2 = I->getOperand(1); 5922 TargetTransformInfo::OperandValueProperties Op2VP; 5923 TargetTransformInfo::OperandValueKind Op2VK = 5924 TTI.getOperandInfo(Op2, Op2VP); 5925 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5926 Op2VK = TargetTransformInfo::OK_UniformValue; 5927 5928 SmallVector<const Value *, 4> Operands(I->operand_values()); 5929 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5930 return N * TTI.getArithmeticInstrCost( 5931 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5932 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5933 } 5934 case Instruction::Select: { 5935 SelectInst *SI = cast<SelectInst>(I); 5936 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5937 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5938 Type *CondTy = SI->getCondition()->getType(); 5939 if (!ScalarCond) 5940 CondTy = VectorType::get(CondTy, VF); 5941 5942 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5943 } 5944 case Instruction::ICmp: 5945 case Instruction::FCmp: { 5946 Type *ValTy = I->getOperand(0)->getType(); 5947 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5948 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5949 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5950 VectorTy = ToVectorTy(ValTy, VF); 5951 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5952 } 5953 case Instruction::Store: 5954 case Instruction::Load: { 5955 unsigned Width = VF; 5956 if (Width > 1) { 5957 InstWidening Decision = getWideningDecision(I, Width); 5958 assert(Decision != CM_Unknown && 5959 "CM decision should be taken at this point"); 5960 if (Decision == CM_Scalarize) 5961 Width = 1; 5962 } 5963 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5964 return getMemoryInstructionCost(I, VF); 5965 } 5966 case Instruction::ZExt: 5967 case Instruction::SExt: 5968 case Instruction::FPToUI: 5969 case Instruction::FPToSI: 5970 case Instruction::FPExt: 5971 case Instruction::PtrToInt: 5972 case Instruction::IntToPtr: 5973 case Instruction::SIToFP: 5974 case Instruction::UIToFP: 5975 case Instruction::Trunc: 5976 case Instruction::FPTrunc: 5977 case Instruction::BitCast: { 5978 // We optimize the truncation of induction variables having constant 5979 // integer steps. The cost of these truncations is the same as the scalar 5980 // operation. 5981 if (isOptimizableIVTruncate(I, VF)) { 5982 auto *Trunc = cast<TruncInst>(I); 5983 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 5984 Trunc->getSrcTy(), Trunc); 5985 } 5986 5987 Type *SrcScalarTy = I->getOperand(0)->getType(); 5988 Type *SrcVecTy = 5989 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 5990 if (canTruncateToMinimalBitwidth(I, VF)) { 5991 // This cast is going to be shrunk. This may remove the cast or it might 5992 // turn it into slightly different cast. For example, if MinBW == 16, 5993 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5994 // 5995 // Calculate the modified src and dest types. 5996 Type *MinVecTy = VectorTy; 5997 if (I->getOpcode() == Instruction::Trunc) { 5998 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5999 VectorTy = 6000 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6001 } else if (I->getOpcode() == Instruction::ZExt || 6002 I->getOpcode() == Instruction::SExt) { 6003 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6004 VectorTy = 6005 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6006 } 6007 } 6008 6009 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6010 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6011 } 6012 case Instruction::Call: { 6013 bool NeedToScalarize; 6014 CallInst *CI = cast<CallInst>(I); 6015 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6016 if (getVectorIntrinsicIDForCall(CI, TLI)) 6017 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6018 return CallCost; 6019 } 6020 default: 6021 // The cost of executing VF copies of the scalar instruction. This opcode 6022 // is unknown. Assume that it is the same as 'mul'. 6023 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6024 getScalarizationOverhead(I, VF, TTI); 6025 } // end of switch. 6026 } 6027 6028 char LoopVectorize::ID = 0; 6029 6030 static const char lv_name[] = "Loop Vectorization"; 6031 6032 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6033 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6034 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6035 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6036 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6037 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6038 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6039 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6040 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6041 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6042 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6043 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6044 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6045 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6046 6047 namespace llvm { 6048 6049 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6050 bool VectorizeOnlyWhenForced) { 6051 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6052 } 6053 6054 } // end namespace llvm 6055 6056 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6057 // Check if the pointer operand of a load or store instruction is 6058 // consecutive. 6059 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6060 return Legal->isConsecutivePtr(Ptr); 6061 return false; 6062 } 6063 6064 void LoopVectorizationCostModel::collectValuesToIgnore() { 6065 // Ignore ephemeral values. 6066 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6067 6068 // Ignore type-promoting instructions we identified during reduction 6069 // detection. 6070 for (auto &Reduction : *Legal->getReductionVars()) { 6071 RecurrenceDescriptor &RedDes = Reduction.second; 6072 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6073 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6074 } 6075 // Ignore type-casting instructions we identified during induction 6076 // detection. 6077 for (auto &Induction : *Legal->getInductionVars()) { 6078 InductionDescriptor &IndDes = Induction.second; 6079 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6080 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6081 } 6082 } 6083 6084 VectorizationFactor 6085 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6086 unsigned UserVF) { 6087 // Outer loop handling: They may require CFG and instruction level 6088 // transformations before even evaluating whether vectorization is profitable. 6089 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6090 // the vectorization pipeline. 6091 if (!OrigLoop->empty()) { 6092 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6093 // This won't be necessary when UserVF is not required in the VPlan-native 6094 // path. 6095 if (VPlanBuildStressTest && !UserVF) 6096 UserVF = 4; 6097 6098 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6099 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6100 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6101 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6102 buildVPlans(UserVF, UserVF); 6103 6104 // For VPlan build stress testing, we bail out after VPlan construction. 6105 if (VPlanBuildStressTest) 6106 return VectorizationFactor::Disabled(); 6107 6108 return {UserVF, 0}; 6109 } 6110 6111 LLVM_DEBUG( 6112 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6113 "VPlan-native path.\n"); 6114 return VectorizationFactor::Disabled(); 6115 } 6116 6117 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize, 6118 unsigned UserVF) { 6119 assert(OrigLoop->empty() && "Inner loop expected."); 6120 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6121 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6122 return None; 6123 6124 // Invalidate interleave groups if all blocks of loop will be predicated. 6125 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6126 !useMaskedInterleavedAccesses(*TTI)) { 6127 LLVM_DEBUG( 6128 dbgs() 6129 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6130 "which requires masked-interleaved support.\n"); 6131 CM.InterleaveInfo.reset(); 6132 } 6133 6134 if (UserVF) { 6135 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6136 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6137 // Collect the instructions (and their associated costs) that will be more 6138 // profitable to scalarize. 6139 CM.selectUserVectorizationFactor(UserVF); 6140 buildVPlansWithVPRecipes(UserVF, UserVF); 6141 LLVM_DEBUG(printPlans(dbgs())); 6142 return {{UserVF, 0}}; 6143 } 6144 6145 unsigned MaxVF = MaybeMaxVF.getValue(); 6146 assert(MaxVF != 0 && "MaxVF is zero."); 6147 6148 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6149 // Collect Uniform and Scalar instructions after vectorization with VF. 6150 CM.collectUniformsAndScalars(VF); 6151 6152 // Collect the instructions (and their associated costs) that will be more 6153 // profitable to scalarize. 6154 if (VF > 1) 6155 CM.collectInstsToScalarize(VF); 6156 } 6157 6158 buildVPlansWithVPRecipes(1, MaxVF); 6159 LLVM_DEBUG(printPlans(dbgs())); 6160 if (MaxVF == 1) 6161 return VectorizationFactor::Disabled(); 6162 6163 // Select the optimal vectorization factor. 6164 return CM.selectVectorizationFactor(MaxVF); 6165 } 6166 6167 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6168 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6169 << '\n'); 6170 BestVF = VF; 6171 BestUF = UF; 6172 6173 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6174 return !Plan->hasVF(VF); 6175 }); 6176 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6177 } 6178 6179 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6180 DominatorTree *DT) { 6181 // Perform the actual loop transformation. 6182 6183 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6184 VPCallbackILV CallbackILV(ILV); 6185 6186 VPTransformState State{BestVF, BestUF, LI, 6187 DT, ILV.Builder, ILV.VectorLoopValueMap, 6188 &ILV, CallbackILV}; 6189 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6190 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6191 6192 //===------------------------------------------------===// 6193 // 6194 // Notice: any optimization or new instruction that go 6195 // into the code below should also be implemented in 6196 // the cost-model. 6197 // 6198 //===------------------------------------------------===// 6199 6200 // 2. Copy and widen instructions from the old loop into the new loop. 6201 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6202 VPlans.front()->execute(&State); 6203 6204 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6205 // predication, updating analyses. 6206 ILV.fixVectorizedLoop(); 6207 } 6208 6209 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6210 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6211 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6212 6213 // We create new control-flow for the vectorized loop, so the original 6214 // condition will be dead after vectorization if it's only used by the 6215 // branch. 6216 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6217 if (Cmp && Cmp->hasOneUse()) 6218 DeadInstructions.insert(Cmp); 6219 6220 // We create new "steps" for induction variable updates to which the original 6221 // induction variables map. An original update instruction will be dead if 6222 // all its users except the induction variable are dead. 6223 for (auto &Induction : *Legal->getInductionVars()) { 6224 PHINode *Ind = Induction.first; 6225 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6226 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6227 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6228 DeadInstructions.end(); 6229 })) 6230 DeadInstructions.insert(IndUpdate); 6231 6232 // We record as "Dead" also the type-casting instructions we had identified 6233 // during induction analysis. We don't need any handling for them in the 6234 // vectorized loop because we have proven that, under a proper runtime 6235 // test guarding the vectorized loop, the value of the phi, and the casted 6236 // value of the phi, are the same. The last instruction in this casting chain 6237 // will get its scalar/vector/widened def from the scalar/vector/widened def 6238 // of the respective phi node. Any other casts in the induction def-use chain 6239 // have no other uses outside the phi update chain, and will be ignored. 6240 InductionDescriptor &IndDes = Induction.second; 6241 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6242 DeadInstructions.insert(Casts.begin(), Casts.end()); 6243 } 6244 } 6245 6246 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6247 6248 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6249 6250 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6251 Instruction::BinaryOps BinOp) { 6252 // When unrolling and the VF is 1, we only need to add a simple scalar. 6253 Type *Ty = Val->getType(); 6254 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6255 6256 if (Ty->isFloatingPointTy()) { 6257 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6258 6259 // Floating point operations had to be 'fast' to enable the unrolling. 6260 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6261 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6262 } 6263 Constant *C = ConstantInt::get(Ty, StartIdx); 6264 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6265 } 6266 6267 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6268 SmallVector<Metadata *, 4> MDs; 6269 // Reserve first location for self reference to the LoopID metadata node. 6270 MDs.push_back(nullptr); 6271 bool IsUnrollMetadata = false; 6272 MDNode *LoopID = L->getLoopID(); 6273 if (LoopID) { 6274 // First find existing loop unrolling disable metadata. 6275 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6276 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6277 if (MD) { 6278 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6279 IsUnrollMetadata = 6280 S && S->getString().startswith("llvm.loop.unroll.disable"); 6281 } 6282 MDs.push_back(LoopID->getOperand(i)); 6283 } 6284 } 6285 6286 if (!IsUnrollMetadata) { 6287 // Add runtime unroll disable metadata. 6288 LLVMContext &Context = L->getHeader()->getContext(); 6289 SmallVector<Metadata *, 1> DisableOperands; 6290 DisableOperands.push_back( 6291 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6292 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6293 MDs.push_back(DisableNode); 6294 MDNode *NewLoopID = MDNode::get(Context, MDs); 6295 // Set operand 0 to refer to the loop id itself. 6296 NewLoopID->replaceOperandWith(0, NewLoopID); 6297 L->setLoopID(NewLoopID); 6298 } 6299 } 6300 6301 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6302 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6303 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6304 bool PredicateAtRangeStart = Predicate(Range.Start); 6305 6306 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6307 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6308 Range.End = TmpVF; 6309 break; 6310 } 6311 6312 return PredicateAtRangeStart; 6313 } 6314 6315 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6316 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6317 /// of VF's starting at a given VF and extending it as much as possible. Each 6318 /// vectorization decision can potentially shorten this sub-range during 6319 /// buildVPlan(). 6320 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6321 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6322 VFRange SubRange = {VF, MaxVF + 1}; 6323 VPlans.push_back(buildVPlan(SubRange)); 6324 VF = SubRange.End; 6325 } 6326 } 6327 6328 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6329 VPlanPtr &Plan) { 6330 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6331 6332 // Look for cached value. 6333 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6334 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6335 if (ECEntryIt != EdgeMaskCache.end()) 6336 return ECEntryIt->second; 6337 6338 VPValue *SrcMask = createBlockInMask(Src, Plan); 6339 6340 // The terminator has to be a branch inst! 6341 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6342 assert(BI && "Unexpected terminator found"); 6343 6344 if (!BI->isConditional()) 6345 return EdgeMaskCache[Edge] = SrcMask; 6346 6347 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6348 assert(EdgeMask && "No Edge Mask found for condition"); 6349 6350 if (BI->getSuccessor(0) != Dst) 6351 EdgeMask = Builder.createNot(EdgeMask); 6352 6353 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6354 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6355 6356 return EdgeMaskCache[Edge] = EdgeMask; 6357 } 6358 6359 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6360 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6361 6362 // Look for cached value. 6363 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6364 if (BCEntryIt != BlockMaskCache.end()) 6365 return BCEntryIt->second; 6366 6367 // All-one mask is modelled as no-mask following the convention for masked 6368 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6369 VPValue *BlockMask = nullptr; 6370 6371 if (OrigLoop->getHeader() == BB) { 6372 if (!CM.blockNeedsPredication(BB)) 6373 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6374 6375 // Introduce the early-exit compare IV <= BTC to form header block mask. 6376 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6377 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6378 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6379 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6380 return BlockMaskCache[BB] = BlockMask; 6381 } 6382 6383 // This is the block mask. We OR all incoming edges. 6384 for (auto *Predecessor : predecessors(BB)) { 6385 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6386 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6387 return BlockMaskCache[BB] = EdgeMask; 6388 6389 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6390 BlockMask = EdgeMask; 6391 continue; 6392 } 6393 6394 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6395 } 6396 6397 return BlockMaskCache[BB] = BlockMask; 6398 } 6399 6400 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6401 VFRange &Range, 6402 VPlanPtr &Plan) { 6403 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6404 if (!IG) 6405 return nullptr; 6406 6407 // Now check if IG is relevant for VF's in the given range. 6408 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6409 return [=](unsigned VF) -> bool { 6410 return (VF >= 2 && // Query is illegal for VF == 1 6411 CM.getWideningDecision(I, VF) == 6412 LoopVectorizationCostModel::CM_Interleave); 6413 }; 6414 }; 6415 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6416 return nullptr; 6417 6418 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6419 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6420 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6421 assert(I == IG->getInsertPos() && 6422 "Generating a recipe for an adjunct member of an interleave group"); 6423 6424 VPValue *Mask = nullptr; 6425 if (Legal->isMaskRequired(I)) 6426 Mask = createBlockInMask(I->getParent(), Plan); 6427 6428 return new VPInterleaveRecipe(IG, Mask); 6429 } 6430 6431 VPWidenMemoryInstructionRecipe * 6432 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6433 VPlanPtr &Plan) { 6434 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6435 return nullptr; 6436 6437 auto willWiden = [&](unsigned VF) -> bool { 6438 if (VF == 1) 6439 return false; 6440 if (CM.isScalarAfterVectorization(I, VF) || 6441 CM.isProfitableToScalarize(I, VF)) 6442 return false; 6443 LoopVectorizationCostModel::InstWidening Decision = 6444 CM.getWideningDecision(I, VF); 6445 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6446 "CM decision should be taken at this point."); 6447 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6448 "Interleave memory opportunity should be caught earlier."); 6449 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6450 }; 6451 6452 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6453 return nullptr; 6454 6455 VPValue *Mask = nullptr; 6456 if (Legal->isMaskRequired(I)) 6457 Mask = createBlockInMask(I->getParent(), Plan); 6458 6459 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6460 } 6461 6462 VPWidenIntOrFpInductionRecipe * 6463 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6464 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6465 // Check if this is an integer or fp induction. If so, build the recipe that 6466 // produces its scalar and vector values. 6467 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6468 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6469 II.getKind() == InductionDescriptor::IK_FpInduction) 6470 return new VPWidenIntOrFpInductionRecipe(Phi); 6471 6472 return nullptr; 6473 } 6474 6475 // Optimize the special case where the source is a constant integer 6476 // induction variable. Notice that we can only optimize the 'trunc' case 6477 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6478 // (c) other casts depend on pointer size. 6479 6480 // Determine whether \p K is a truncation based on an induction variable that 6481 // can be optimized. 6482 auto isOptimizableIVTruncate = 6483 [&](Instruction *K) -> std::function<bool(unsigned)> { 6484 return 6485 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6486 }; 6487 6488 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6489 isOptimizableIVTruncate(I), Range)) 6490 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6491 cast<TruncInst>(I)); 6492 return nullptr; 6493 } 6494 6495 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6496 PHINode *Phi = dyn_cast<PHINode>(I); 6497 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6498 return nullptr; 6499 6500 // We know that all PHIs in non-header blocks are converted into selects, so 6501 // we don't have to worry about the insertion order and we can just use the 6502 // builder. At this point we generate the predication tree. There may be 6503 // duplications since this is a simple recursive scan, but future 6504 // optimizations will clean it up. 6505 6506 SmallVector<VPValue *, 2> Masks; 6507 unsigned NumIncoming = Phi->getNumIncomingValues(); 6508 for (unsigned In = 0; In < NumIncoming; In++) { 6509 VPValue *EdgeMask = 6510 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6511 assert((EdgeMask || NumIncoming == 1) && 6512 "Multiple predecessors with one having a full mask"); 6513 if (EdgeMask) 6514 Masks.push_back(EdgeMask); 6515 } 6516 return new VPBlendRecipe(Phi, Masks); 6517 } 6518 6519 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6520 VFRange &Range) { 6521 6522 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6523 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6524 6525 if (IsPredicated) 6526 return false; 6527 6528 auto IsVectorizableOpcode = [](unsigned Opcode) { 6529 switch (Opcode) { 6530 case Instruction::Add: 6531 case Instruction::And: 6532 case Instruction::AShr: 6533 case Instruction::BitCast: 6534 case Instruction::Br: 6535 case Instruction::Call: 6536 case Instruction::FAdd: 6537 case Instruction::FCmp: 6538 case Instruction::FDiv: 6539 case Instruction::FMul: 6540 case Instruction::FPExt: 6541 case Instruction::FPToSI: 6542 case Instruction::FPToUI: 6543 case Instruction::FPTrunc: 6544 case Instruction::FRem: 6545 case Instruction::FSub: 6546 case Instruction::GetElementPtr: 6547 case Instruction::ICmp: 6548 case Instruction::IntToPtr: 6549 case Instruction::Load: 6550 case Instruction::LShr: 6551 case Instruction::Mul: 6552 case Instruction::Or: 6553 case Instruction::PHI: 6554 case Instruction::PtrToInt: 6555 case Instruction::SDiv: 6556 case Instruction::Select: 6557 case Instruction::SExt: 6558 case Instruction::Shl: 6559 case Instruction::SIToFP: 6560 case Instruction::SRem: 6561 case Instruction::Store: 6562 case Instruction::Sub: 6563 case Instruction::Trunc: 6564 case Instruction::UDiv: 6565 case Instruction::UIToFP: 6566 case Instruction::URem: 6567 case Instruction::Xor: 6568 case Instruction::ZExt: 6569 return true; 6570 } 6571 return false; 6572 }; 6573 6574 if (!IsVectorizableOpcode(I->getOpcode())) 6575 return false; 6576 6577 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6578 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6579 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6580 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6581 return false; 6582 } 6583 6584 auto willWiden = [&](unsigned VF) -> bool { 6585 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6586 CM.isProfitableToScalarize(I, VF))) 6587 return false; 6588 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6589 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6590 // The following case may be scalarized depending on the VF. 6591 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6592 // version of the instruction. 6593 // Is it beneficial to perform intrinsic call compared to lib call? 6594 bool NeedToScalarize; 6595 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6596 bool UseVectorIntrinsic = 6597 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6598 return UseVectorIntrinsic || !NeedToScalarize; 6599 } 6600 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6601 assert(CM.getWideningDecision(I, VF) == 6602 LoopVectorizationCostModel::CM_Scalarize && 6603 "Memory widening decisions should have been taken care by now"); 6604 return false; 6605 } 6606 return true; 6607 }; 6608 6609 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6610 return false; 6611 6612 // Success: widen this instruction. We optimize the common case where 6613 // consecutive instructions can be represented by a single recipe. 6614 if (!VPBB->empty()) { 6615 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6616 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6617 return true; 6618 } 6619 6620 VPBB->appendRecipe(new VPWidenRecipe(I)); 6621 return true; 6622 } 6623 6624 VPBasicBlock *VPRecipeBuilder::handleReplication( 6625 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6626 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6627 VPlanPtr &Plan) { 6628 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6629 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6630 Range); 6631 6632 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6633 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6634 6635 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6636 6637 // Find if I uses a predicated instruction. If so, it will use its scalar 6638 // value. Avoid hoisting the insert-element which packs the scalar value into 6639 // a vector value, as that happens iff all users use the vector value. 6640 for (auto &Op : I->operands()) 6641 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6642 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6643 PredInst2Recipe[PredInst]->setAlsoPack(false); 6644 6645 // Finalize the recipe for Instr, first if it is not predicated. 6646 if (!IsPredicated) { 6647 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6648 VPBB->appendRecipe(Recipe); 6649 return VPBB; 6650 } 6651 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6652 assert(VPBB->getSuccessors().empty() && 6653 "VPBB has successors when handling predicated replication."); 6654 // Record predicated instructions for above packing optimizations. 6655 PredInst2Recipe[I] = Recipe; 6656 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6657 VPBlockUtils::insertBlockAfter(Region, VPBB); 6658 auto *RegSucc = new VPBasicBlock(); 6659 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6660 return RegSucc; 6661 } 6662 6663 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6664 VPRecipeBase *PredRecipe, 6665 VPlanPtr &Plan) { 6666 // Instructions marked for predication are replicated and placed under an 6667 // if-then construct to prevent side-effects. 6668 6669 // Generate recipes to compute the block mask for this region. 6670 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6671 6672 // Build the triangular if-then region. 6673 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6674 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6675 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6676 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6677 auto *PHIRecipe = 6678 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6679 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6680 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6681 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6682 6683 // Note: first set Entry as region entry and then connect successors starting 6684 // from it in order, to propagate the "parent" of each VPBasicBlock. 6685 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6686 VPBlockUtils::connectBlocks(Pred, Exit); 6687 6688 return Region; 6689 } 6690 6691 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6692 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6693 VPRecipeBase *Recipe = nullptr; 6694 // Check if Instr should belong to an interleave memory recipe, or already 6695 // does. In the latter case Instr is irrelevant. 6696 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6697 VPBB->appendRecipe(Recipe); 6698 return true; 6699 } 6700 6701 // Check if Instr is a memory operation that should be widened. 6702 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6703 VPBB->appendRecipe(Recipe); 6704 return true; 6705 } 6706 6707 // Check if Instr should form some PHI recipe. 6708 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6709 VPBB->appendRecipe(Recipe); 6710 return true; 6711 } 6712 if ((Recipe = tryToBlend(Instr, Plan))) { 6713 VPBB->appendRecipe(Recipe); 6714 return true; 6715 } 6716 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6717 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6718 return true; 6719 } 6720 6721 // Check if Instr is to be widened by a general VPWidenRecipe, after 6722 // having first checked for specific widening recipes that deal with 6723 // Interleave Groups, Inductions and Phi nodes. 6724 if (tryToWiden(Instr, VPBB, Range)) 6725 return true; 6726 6727 return false; 6728 } 6729 6730 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6731 unsigned MaxVF) { 6732 assert(OrigLoop->empty() && "Inner loop expected."); 6733 6734 // Collect conditions feeding internal conditional branches; they need to be 6735 // represented in VPlan for it to model masking. 6736 SmallPtrSet<Value *, 1> NeedDef; 6737 6738 auto *Latch = OrigLoop->getLoopLatch(); 6739 for (BasicBlock *BB : OrigLoop->blocks()) { 6740 if (BB == Latch) 6741 continue; 6742 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6743 if (Branch && Branch->isConditional()) 6744 NeedDef.insert(Branch->getCondition()); 6745 } 6746 6747 // If the tail is to be folded by masking, the primary induction variable 6748 // needs to be represented in VPlan for it to model early-exit masking. 6749 if (CM.foldTailByMasking()) 6750 NeedDef.insert(Legal->getPrimaryInduction()); 6751 6752 // Collect instructions from the original loop that will become trivially dead 6753 // in the vectorized loop. We don't need to vectorize these instructions. For 6754 // example, original induction update instructions can become dead because we 6755 // separately emit induction "steps" when generating code for the new loop. 6756 // Similarly, we create a new latch condition when setting up the structure 6757 // of the new loop, so the old one can become dead. 6758 SmallPtrSet<Instruction *, 4> DeadInstructions; 6759 collectTriviallyDeadInstructions(DeadInstructions); 6760 6761 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6762 VFRange SubRange = {VF, MaxVF + 1}; 6763 VPlans.push_back( 6764 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6765 VF = SubRange.End; 6766 } 6767 } 6768 6769 LoopVectorizationPlanner::VPlanPtr 6770 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6771 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6772 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6773 // Hold a mapping from predicated instructions to their recipes, in order to 6774 // fix their AlsoPack behavior if a user is determined to replicate and use a 6775 // scalar instead of vector value. 6776 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6777 6778 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6779 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6780 6781 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6782 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6783 auto Plan = llvm::make_unique<VPlan>(VPBB); 6784 6785 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6786 // Represent values that will have defs inside VPlan. 6787 for (Value *V : NeedDef) 6788 Plan->addVPValue(V); 6789 6790 // Scan the body of the loop in a topological order to visit each basic block 6791 // after having visited its predecessor basic blocks. 6792 LoopBlocksDFS DFS(OrigLoop); 6793 DFS.perform(LI); 6794 6795 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6796 // Relevant instructions from basic block BB will be grouped into VPRecipe 6797 // ingredients and fill a new VPBasicBlock. 6798 unsigned VPBBsForBB = 0; 6799 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6800 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6801 VPBB = FirstVPBBForBB; 6802 Builder.setInsertPoint(VPBB); 6803 6804 std::vector<Instruction *> Ingredients; 6805 6806 // Organize the ingredients to vectorize from current basic block in the 6807 // right order. 6808 for (Instruction &I : BB->instructionsWithoutDebug()) { 6809 Instruction *Instr = &I; 6810 6811 // First filter out irrelevant instructions, to ensure no recipes are 6812 // built for them. 6813 if (isa<BranchInst>(Instr) || 6814 DeadInstructions.find(Instr) != DeadInstructions.end()) 6815 continue; 6816 6817 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6818 // member of the IG, do not construct any Recipe for it. 6819 const InterleaveGroup<Instruction> *IG = 6820 CM.getInterleavedAccessGroup(Instr); 6821 if (IG && Instr != IG->getInsertPos() && 6822 Range.Start >= 2 && // Query is illegal for VF == 1 6823 CM.getWideningDecision(Instr, Range.Start) == 6824 LoopVectorizationCostModel::CM_Interleave) { 6825 auto SinkCandidate = SinkAfterInverse.find(Instr); 6826 if (SinkCandidate != SinkAfterInverse.end()) 6827 Ingredients.push_back(SinkCandidate->second); 6828 continue; 6829 } 6830 6831 // Move instructions to handle first-order recurrences, step 1: avoid 6832 // handling this instruction until after we've handled the instruction it 6833 // should follow. 6834 auto SAIt = SinkAfter.find(Instr); 6835 if (SAIt != SinkAfter.end()) { 6836 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6837 << *SAIt->second 6838 << " to vectorize a 1st order recurrence.\n"); 6839 SinkAfterInverse[SAIt->second] = Instr; 6840 continue; 6841 } 6842 6843 Ingredients.push_back(Instr); 6844 6845 // Move instructions to handle first-order recurrences, step 2: push the 6846 // instruction to be sunk at its insertion point. 6847 auto SAInvIt = SinkAfterInverse.find(Instr); 6848 if (SAInvIt != SinkAfterInverse.end()) 6849 Ingredients.push_back(SAInvIt->second); 6850 } 6851 6852 // Introduce each ingredient into VPlan. 6853 for (Instruction *Instr : Ingredients) { 6854 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6855 continue; 6856 6857 // Otherwise, if all widening options failed, Instruction is to be 6858 // replicated. This may create a successor for VPBB. 6859 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6860 Instr, Range, VPBB, PredInst2Recipe, Plan); 6861 if (NextVPBB != VPBB) { 6862 VPBB = NextVPBB; 6863 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6864 : ""); 6865 } 6866 } 6867 } 6868 6869 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6870 // may also be empty, such as the last one VPBB, reflecting original 6871 // basic-blocks with no recipes. 6872 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6873 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6874 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6875 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6876 delete PreEntry; 6877 6878 std::string PlanName; 6879 raw_string_ostream RSO(PlanName); 6880 unsigned VF = Range.Start; 6881 Plan->addVF(VF); 6882 RSO << "Initial VPlan for VF={" << VF; 6883 for (VF *= 2; VF < Range.End; VF *= 2) { 6884 Plan->addVF(VF); 6885 RSO << "," << VF; 6886 } 6887 RSO << "},UF>=1"; 6888 RSO.flush(); 6889 Plan->setName(PlanName); 6890 6891 return Plan; 6892 } 6893 6894 LoopVectorizationPlanner::VPlanPtr 6895 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6896 // Outer loop handling: They may require CFG and instruction level 6897 // transformations before even evaluating whether vectorization is profitable. 6898 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6899 // the vectorization pipeline. 6900 assert(!OrigLoop->empty()); 6901 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6902 6903 // Create new empty VPlan 6904 auto Plan = llvm::make_unique<VPlan>(); 6905 6906 // Build hierarchical CFG 6907 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6908 HCFGBuilder.buildHierarchicalCFG(); 6909 6910 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6911 Plan->addVF(VF); 6912 6913 if (EnableVPlanPredication) { 6914 VPlanPredicator VPP(*Plan); 6915 VPP.predicate(); 6916 6917 // Avoid running transformation to recipes until masked code generation in 6918 // VPlan-native path is in place. 6919 return Plan; 6920 } 6921 6922 SmallPtrSet<Instruction *, 1> DeadInstructions; 6923 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6924 Plan, Legal->getInductionVars(), DeadInstructions); 6925 6926 return Plan; 6927 } 6928 6929 Value* LoopVectorizationPlanner::VPCallbackILV:: 6930 getOrCreateVectorValues(Value *V, unsigned Part) { 6931 return ILV.getOrCreateVectorValue(V, Part); 6932 } 6933 6934 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6935 O << " +\n" 6936 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6937 IG->getInsertPos()->printAsOperand(O, false); 6938 if (User) { 6939 O << ", "; 6940 User->getOperand(0)->printAsOperand(O); 6941 } 6942 O << "\\l\""; 6943 for (unsigned i = 0; i < IG->getFactor(); ++i) 6944 if (Instruction *I = IG->getMember(i)) 6945 O << " +\n" 6946 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6947 } 6948 6949 void VPWidenRecipe::execute(VPTransformState &State) { 6950 for (auto &Instr : make_range(Begin, End)) 6951 State.ILV->widenInstruction(Instr); 6952 } 6953 6954 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 6955 assert(!State.Instance && "Int or FP induction being replicated."); 6956 State.ILV->widenIntOrFpInduction(IV, Trunc); 6957 } 6958 6959 void VPWidenPHIRecipe::execute(VPTransformState &State) { 6960 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 6961 } 6962 6963 void VPBlendRecipe::execute(VPTransformState &State) { 6964 State.ILV->setDebugLocFromInst(State.Builder, Phi); 6965 // We know that all PHIs in non-header blocks are converted into 6966 // selects, so we don't have to worry about the insertion order and we 6967 // can just use the builder. 6968 // At this point we generate the predication tree. There may be 6969 // duplications since this is a simple recursive scan, but future 6970 // optimizations will clean it up. 6971 6972 unsigned NumIncoming = Phi->getNumIncomingValues(); 6973 6974 assert((User || NumIncoming == 1) && 6975 "Multiple predecessors with predecessors having a full mask"); 6976 // Generate a sequence of selects of the form: 6977 // SELECT(Mask3, In3, 6978 // SELECT(Mask2, In2, 6979 // ( ...))) 6980 InnerLoopVectorizer::VectorParts Entry(State.UF); 6981 for (unsigned In = 0; In < NumIncoming; ++In) { 6982 for (unsigned Part = 0; Part < State.UF; ++Part) { 6983 // We might have single edge PHIs (blocks) - use an identity 6984 // 'select' for the first PHI operand. 6985 Value *In0 = 6986 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 6987 if (In == 0) 6988 Entry[Part] = In0; // Initialize with the first incoming value. 6989 else { 6990 // Select between the current value and the previous incoming edge 6991 // based on the incoming mask. 6992 Value *Cond = State.get(User->getOperand(In), Part); 6993 Entry[Part] = 6994 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 6995 } 6996 } 6997 } 6998 for (unsigned Part = 0; Part < State.UF; ++Part) 6999 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7000 } 7001 7002 void VPInterleaveRecipe::execute(VPTransformState &State) { 7003 assert(!State.Instance && "Interleave group being replicated."); 7004 if (!User) 7005 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7006 7007 // Last (and currently only) operand is a mask. 7008 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7009 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7010 for (unsigned Part = 0; Part < State.UF; ++Part) 7011 MaskValues[Part] = State.get(Mask, Part); 7012 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7013 } 7014 7015 void VPReplicateRecipe::execute(VPTransformState &State) { 7016 if (State.Instance) { // Generate a single instance. 7017 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7018 // Insert scalar instance packing it into a vector. 7019 if (AlsoPack && State.VF > 1) { 7020 // If we're constructing lane 0, initialize to start from undef. 7021 if (State.Instance->Lane == 0) { 7022 Value *Undef = 7023 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7024 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7025 } 7026 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7027 } 7028 return; 7029 } 7030 7031 // Generate scalar instances for all VF lanes of all UF parts, unless the 7032 // instruction is uniform inwhich case generate only the first lane for each 7033 // of the UF parts. 7034 unsigned EndLane = IsUniform ? 1 : State.VF; 7035 for (unsigned Part = 0; Part < State.UF; ++Part) 7036 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7037 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7038 } 7039 7040 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7041 assert(State.Instance && "Branch on Mask works only on single instance."); 7042 7043 unsigned Part = State.Instance->Part; 7044 unsigned Lane = State.Instance->Lane; 7045 7046 Value *ConditionBit = nullptr; 7047 if (!User) // Block in mask is all-one. 7048 ConditionBit = State.Builder.getTrue(); 7049 else { 7050 VPValue *BlockInMask = User->getOperand(0); 7051 ConditionBit = State.get(BlockInMask, Part); 7052 if (ConditionBit->getType()->isVectorTy()) 7053 ConditionBit = State.Builder.CreateExtractElement( 7054 ConditionBit, State.Builder.getInt32(Lane)); 7055 } 7056 7057 // Replace the temporary unreachable terminator with a new conditional branch, 7058 // whose two destinations will be set later when they are created. 7059 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7060 assert(isa<UnreachableInst>(CurrentTerminator) && 7061 "Expected to replace unreachable terminator with conditional branch."); 7062 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7063 CondBr->setSuccessor(0, nullptr); 7064 ReplaceInstWithInst(CurrentTerminator, CondBr); 7065 } 7066 7067 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7068 assert(State.Instance && "Predicated instruction PHI works per instance."); 7069 Instruction *ScalarPredInst = cast<Instruction>( 7070 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7071 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7072 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7073 assert(PredicatingBB && "Predicated block has no single predecessor."); 7074 7075 // By current pack/unpack logic we need to generate only a single phi node: if 7076 // a vector value for the predicated instruction exists at this point it means 7077 // the instruction has vector users only, and a phi for the vector value is 7078 // needed. In this case the recipe of the predicated instruction is marked to 7079 // also do that packing, thereby "hoisting" the insert-element sequence. 7080 // Otherwise, a phi node for the scalar value is needed. 7081 unsigned Part = State.Instance->Part; 7082 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7083 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7084 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7085 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7086 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7087 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7088 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7089 } else { 7090 Type *PredInstType = PredInst->getType(); 7091 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7092 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7093 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7094 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7095 } 7096 } 7097 7098 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7099 if (!User) 7100 return State.ILV->vectorizeMemoryInstruction(&Instr); 7101 7102 // Last (and currently only) operand is a mask. 7103 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7104 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7105 for (unsigned Part = 0; Part < State.UF; ++Part) 7106 MaskValues[Part] = State.get(Mask, Part); 7107 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7108 } 7109 7110 // Process the loop in the VPlan-native vectorization path. This path builds 7111 // VPlan upfront in the vectorization pipeline, which allows to apply 7112 // VPlan-to-VPlan transformations from the very beginning without modifying the 7113 // input LLVM IR. 7114 static bool processLoopInVPlanNativePath( 7115 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7116 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7117 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7118 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7119 7120 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7121 Function *F = L->getHeader()->getParent(); 7122 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7123 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7124 &Hints, IAI); 7125 // Use the planner for outer loop vectorization. 7126 // TODO: CM is not used at this point inside the planner. Turn CM into an 7127 // optional argument if we don't need it in the future. 7128 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7129 7130 // Get user vectorization factor. 7131 unsigned UserVF = Hints.getWidth(); 7132 7133 // Check the function attributes to find out if this function should be 7134 // optimized for size. 7135 bool OptForSize = 7136 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7137 7138 // Plan how to best vectorize, return the best VF and its cost. 7139 VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7140 7141 // If we are stress testing VPlan builds, do not attempt to generate vector 7142 // code. Masked vector code generation support will follow soon. 7143 if (VPlanBuildStressTest || EnableVPlanPredication) 7144 return false; 7145 7146 LVP.setBestPlan(VF.Width, 1); 7147 7148 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, UserVF, 1, LVL, 7149 &CM); 7150 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7151 << L->getHeader()->getParent()->getName() << "\"\n"); 7152 LVP.executePlan(LB, DT); 7153 7154 // Mark the loop as already vectorized to avoid vectorizing again. 7155 Hints.setAlreadyVectorized(); 7156 7157 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7158 return true; 7159 } 7160 7161 bool LoopVectorizePass::processLoop(Loop *L) { 7162 assert((EnableVPlanNativePath || L->empty()) && 7163 "VPlan-native path is not enabled. Only process inner loops."); 7164 7165 #ifndef NDEBUG 7166 const std::string DebugLocStr = getDebugLocString(L); 7167 #endif /* NDEBUG */ 7168 7169 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7170 << L->getHeader()->getParent()->getName() << "\" from " 7171 << DebugLocStr << "\n"); 7172 7173 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7174 7175 LLVM_DEBUG( 7176 dbgs() << "LV: Loop hints:" 7177 << " force=" 7178 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7179 ? "disabled" 7180 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7181 ? "enabled" 7182 : "?")) 7183 << " width=" << Hints.getWidth() 7184 << " unroll=" << Hints.getInterleave() << "\n"); 7185 7186 // Function containing loop 7187 Function *F = L->getHeader()->getParent(); 7188 7189 // Looking at the diagnostic output is the only way to determine if a loop 7190 // was vectorized (other than looking at the IR or machine code), so it 7191 // is important to generate an optimization remark for each loop. Most of 7192 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7193 // generated as OptimizationRemark and OptimizationRemarkMissed are 7194 // less verbose reporting vectorized loops and unvectorized loops that may 7195 // benefit from vectorization, respectively. 7196 7197 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7198 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7199 return false; 7200 } 7201 7202 PredicatedScalarEvolution PSE(*SE, *L); 7203 7204 // Check if it is legal to vectorize the loop. 7205 LoopVectorizationRequirements Requirements(*ORE); 7206 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7207 &Requirements, &Hints, DB, AC); 7208 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7209 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7210 Hints.emitRemarkWithHints(); 7211 return false; 7212 } 7213 7214 // Check the function attributes to find out if this function should be 7215 // optimized for size. 7216 bool OptForSize = 7217 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7218 7219 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7220 // here. They may require CFG and instruction level transformations before 7221 // even evaluating whether vectorization is profitable. Since we cannot modify 7222 // the incoming IR, we need to build VPlan upfront in the vectorization 7223 // pipeline. 7224 if (!L->empty()) 7225 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7226 ORE, Hints); 7227 7228 assert(L->empty() && "Inner loop expected."); 7229 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7230 // count by optimizing for size, to minimize overheads. 7231 // Prefer constant trip counts over profile data, over upper bound estimate. 7232 unsigned ExpectedTC = 0; 7233 bool HasExpectedTC = false; 7234 if (const SCEVConstant *ConstExits = 7235 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7236 const APInt &ExitsCount = ConstExits->getAPInt(); 7237 // We are interested in small values for ExpectedTC. Skip over those that 7238 // can't fit an unsigned. 7239 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7240 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7241 HasExpectedTC = true; 7242 } 7243 } 7244 // ExpectedTC may be large because it's bound by a variable. Check 7245 // profiling information to validate we should vectorize. 7246 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7247 auto EstimatedTC = getLoopEstimatedTripCount(L); 7248 if (EstimatedTC) { 7249 ExpectedTC = *EstimatedTC; 7250 HasExpectedTC = true; 7251 } 7252 } 7253 if (!HasExpectedTC) { 7254 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7255 HasExpectedTC = (ExpectedTC > 0); 7256 } 7257 7258 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7259 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7260 << "This loop is worth vectorizing only if no scalar " 7261 << "iteration overheads are incurred."); 7262 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7263 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7264 else { 7265 LLVM_DEBUG(dbgs() << "\n"); 7266 // Loops with a very small trip count are considered for vectorization 7267 // under OptForSize, thereby making sure the cost of their loop body is 7268 // dominant, free of runtime guards and scalar iteration overheads. 7269 OptForSize = true; 7270 } 7271 } 7272 7273 // Check the function attributes to see if implicit floats are allowed. 7274 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7275 // an integer loop and the vector instructions selected are purely integer 7276 // vector instructions? 7277 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7278 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7279 "attribute is used.\n"); 7280 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7281 "NoImplicitFloat", L) 7282 << "loop not vectorized due to NoImplicitFloat attribute"); 7283 Hints.emitRemarkWithHints(); 7284 return false; 7285 } 7286 7287 // Check if the target supports potentially unsafe FP vectorization. 7288 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7289 // for the target we're vectorizing for, to make sure none of the 7290 // additional fp-math flags can help. 7291 if (Hints.isPotentiallyUnsafe() && 7292 TTI->isFPVectorizationPotentiallyUnsafe()) { 7293 LLVM_DEBUG( 7294 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7295 ORE->emit( 7296 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7297 << "loop not vectorized due to unsafe FP support."); 7298 Hints.emitRemarkWithHints(); 7299 return false; 7300 } 7301 7302 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7303 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7304 7305 // If an override option has been passed in for interleaved accesses, use it. 7306 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7307 UseInterleaved = EnableInterleavedMemAccesses; 7308 7309 // Analyze interleaved memory accesses. 7310 if (UseInterleaved) { 7311 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7312 } 7313 7314 // Use the cost model. 7315 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7316 &Hints, IAI); 7317 CM.collectValuesToIgnore(); 7318 7319 // Use the planner for vectorization. 7320 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7321 7322 // Get user vectorization factor. 7323 unsigned UserVF = Hints.getWidth(); 7324 7325 // Plan how to best vectorize, return the best VF and its cost. 7326 Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF); 7327 7328 VectorizationFactor VF = VectorizationFactor::Disabled(); 7329 unsigned IC = 1; 7330 unsigned UserIC = Hints.getInterleave(); 7331 7332 if (MaybeVF) { 7333 VF = *MaybeVF; 7334 // Select the interleave count. 7335 IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7336 } 7337 7338 // Identify the diagnostic messages that should be produced. 7339 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7340 bool VectorizeLoop = true, InterleaveLoop = true; 7341 if (Requirements.doesNotMeet(F, L, Hints)) { 7342 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7343 "requirements.\n"); 7344 Hints.emitRemarkWithHints(); 7345 return false; 7346 } 7347 7348 if (VF.Width == 1) { 7349 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7350 VecDiagMsg = std::make_pair( 7351 "VectorizationNotBeneficial", 7352 "the cost-model indicates that vectorization is not beneficial"); 7353 VectorizeLoop = false; 7354 } 7355 7356 if (!MaybeVF && UserIC > 1) { 7357 // Tell the user interleaving was avoided up-front, despite being explicitly 7358 // requested. 7359 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7360 "interleaving should be avoided up front\n"); 7361 IntDiagMsg = std::make_pair( 7362 "InterleavingAvoided", 7363 "Ignoring UserIC, because interleaving was avoided up front"); 7364 InterleaveLoop = false; 7365 } else if (IC == 1 && UserIC <= 1) { 7366 // Tell the user interleaving is not beneficial. 7367 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7368 IntDiagMsg = std::make_pair( 7369 "InterleavingNotBeneficial", 7370 "the cost-model indicates that interleaving is not beneficial"); 7371 InterleaveLoop = false; 7372 if (UserIC == 1) { 7373 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7374 IntDiagMsg.second += 7375 " and is explicitly disabled or interleave count is set to 1"; 7376 } 7377 } else if (IC > 1 && UserIC == 1) { 7378 // Tell the user interleaving is beneficial, but it explicitly disabled. 7379 LLVM_DEBUG( 7380 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7381 IntDiagMsg = std::make_pair( 7382 "InterleavingBeneficialButDisabled", 7383 "the cost-model indicates that interleaving is beneficial " 7384 "but is explicitly disabled or interleave count is set to 1"); 7385 InterleaveLoop = false; 7386 } 7387 7388 // Override IC if user provided an interleave count. 7389 IC = UserIC > 0 ? UserIC : IC; 7390 7391 // Emit diagnostic messages, if any. 7392 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7393 if (!VectorizeLoop && !InterleaveLoop) { 7394 // Do not vectorize or interleaving the loop. 7395 ORE->emit([&]() { 7396 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7397 L->getStartLoc(), L->getHeader()) 7398 << VecDiagMsg.second; 7399 }); 7400 ORE->emit([&]() { 7401 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7402 L->getStartLoc(), L->getHeader()) 7403 << IntDiagMsg.second; 7404 }); 7405 return false; 7406 } else if (!VectorizeLoop && InterleaveLoop) { 7407 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7408 ORE->emit([&]() { 7409 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7410 L->getStartLoc(), L->getHeader()) 7411 << VecDiagMsg.second; 7412 }); 7413 } else if (VectorizeLoop && !InterleaveLoop) { 7414 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7415 << ") in " << DebugLocStr << '\n'); 7416 ORE->emit([&]() { 7417 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7418 L->getStartLoc(), L->getHeader()) 7419 << IntDiagMsg.second; 7420 }); 7421 } else if (VectorizeLoop && InterleaveLoop) { 7422 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7423 << ") in " << DebugLocStr << '\n'); 7424 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7425 } 7426 7427 LVP.setBestPlan(VF.Width, IC); 7428 7429 using namespace ore; 7430 bool DisableRuntimeUnroll = false; 7431 MDNode *OrigLoopID = L->getLoopID(); 7432 7433 if (!VectorizeLoop) { 7434 assert(IC > 1 && "interleave count should not be 1 or 0"); 7435 // If we decided that it is not legal to vectorize the loop, then 7436 // interleave it. 7437 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7438 &CM); 7439 LVP.executePlan(Unroller, DT); 7440 7441 ORE->emit([&]() { 7442 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7443 L->getHeader()) 7444 << "interleaved loop (interleaved count: " 7445 << NV("InterleaveCount", IC) << ")"; 7446 }); 7447 } else { 7448 // If we decided that it is *legal* to vectorize the loop, then do it. 7449 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7450 &LVL, &CM); 7451 LVP.executePlan(LB, DT); 7452 ++LoopsVectorized; 7453 7454 // Add metadata to disable runtime unrolling a scalar loop when there are 7455 // no runtime checks about strides and memory. A scalar loop that is 7456 // rarely used is not worth unrolling. 7457 if (!LB.areSafetyChecksAdded()) 7458 DisableRuntimeUnroll = true; 7459 7460 // Report the vectorization decision. 7461 ORE->emit([&]() { 7462 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7463 L->getHeader()) 7464 << "vectorized loop (vectorization width: " 7465 << NV("VectorizationFactor", VF.Width) 7466 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7467 }); 7468 } 7469 7470 Optional<MDNode *> RemainderLoopID = 7471 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7472 LLVMLoopVectorizeFollowupEpilogue}); 7473 if (RemainderLoopID.hasValue()) { 7474 L->setLoopID(RemainderLoopID.getValue()); 7475 } else { 7476 if (DisableRuntimeUnroll) 7477 AddRuntimeUnrollDisableMetaData(L); 7478 7479 // Mark the loop as already vectorized to avoid vectorizing again. 7480 Hints.setAlreadyVectorized(); 7481 } 7482 7483 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7484 return true; 7485 } 7486 7487 bool LoopVectorizePass::runImpl( 7488 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7489 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7490 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7491 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7492 OptimizationRemarkEmitter &ORE_) { 7493 SE = &SE_; 7494 LI = &LI_; 7495 TTI = &TTI_; 7496 DT = &DT_; 7497 BFI = &BFI_; 7498 TLI = TLI_; 7499 AA = &AA_; 7500 AC = &AC_; 7501 GetLAA = &GetLAA_; 7502 DB = &DB_; 7503 ORE = &ORE_; 7504 7505 // Don't attempt if 7506 // 1. the target claims to have no vector registers, and 7507 // 2. interleaving won't help ILP. 7508 // 7509 // The second condition is necessary because, even if the target has no 7510 // vector registers, loop vectorization may still enable scalar 7511 // interleaving. 7512 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7513 return false; 7514 7515 bool Changed = false; 7516 7517 // The vectorizer requires loops to be in simplified form. 7518 // Since simplification may add new inner loops, it has to run before the 7519 // legality and profitability checks. This means running the loop vectorizer 7520 // will simplify all loops, regardless of whether anything end up being 7521 // vectorized. 7522 for (auto &L : *LI) 7523 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7524 7525 // Build up a worklist of inner-loops to vectorize. This is necessary as 7526 // the act of vectorizing or partially unrolling a loop creates new loops 7527 // and can invalidate iterators across the loops. 7528 SmallVector<Loop *, 8> Worklist; 7529 7530 for (Loop *L : *LI) 7531 collectSupportedLoops(*L, LI, ORE, Worklist); 7532 7533 LoopsAnalyzed += Worklist.size(); 7534 7535 // Now walk the identified inner loops. 7536 while (!Worklist.empty()) { 7537 Loop *L = Worklist.pop_back_val(); 7538 7539 // For the inner loops we actually process, form LCSSA to simplify the 7540 // transform. 7541 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7542 7543 Changed |= processLoop(L); 7544 } 7545 7546 // Process each loop nest in the function. 7547 return Changed; 7548 } 7549 7550 PreservedAnalyses LoopVectorizePass::run(Function &F, 7551 FunctionAnalysisManager &AM) { 7552 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7553 auto &LI = AM.getResult<LoopAnalysis>(F); 7554 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7555 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7556 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7557 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7558 auto &AA = AM.getResult<AAManager>(F); 7559 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7560 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7561 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7562 MemorySSA *MSSA = EnableMSSALoopDependency 7563 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7564 : nullptr; 7565 7566 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7567 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7568 [&](Loop &L) -> const LoopAccessInfo & { 7569 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7570 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7571 }; 7572 bool Changed = 7573 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7574 if (!Changed) 7575 return PreservedAnalyses::all(); 7576 PreservedAnalyses PA; 7577 7578 // We currently do not preserve loopinfo/dominator analyses with outer loop 7579 // vectorization. Until this is addressed, mark these analyses as preserved 7580 // only for non-VPlan-native path. 7581 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7582 if (!EnableVPlanNativePath) { 7583 PA.preserve<LoopAnalysis>(); 7584 PA.preserve<DominatorTreeAnalysis>(); 7585 } 7586 PA.preserve<BasicAA>(); 7587 PA.preserve<GlobalsAA>(); 7588 return PA; 7589 } 7590