1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = FixedVectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 399 ProfileSummaryInfo *PSI) 400 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 401 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 402 Builder(PSE.getSE()->getContext()), 403 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 404 BFI(BFI), PSI(PSI) {} 405 virtual ~InnerLoopVectorizer() = default; 406 407 /// Create a new empty loop. Unlink the old loop and connect the new one. 408 /// Return the pre-header block of the new loop. 409 BasicBlock *createVectorizedLoopSkeleton(); 410 411 /// Widen a single instruction within the innermost loop. 412 void widenInstruction(Instruction &I, VPUser &Operands, 413 VPTransformState &State); 414 415 /// Widen a single call instruction within the innermost loop. 416 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 417 VPTransformState &State); 418 419 /// Widen a single select instruction within the innermost loop. 420 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 421 bool InvariantCond, VPTransformState &State); 422 423 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 424 void fixVectorizedLoop(); 425 426 // Return true if any runtime check is added. 427 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 428 429 /// A type for vectorized values in the new loop. Each value from the 430 /// original loop, when vectorized, is represented by UF vector values in the 431 /// new unrolled loop, where UF is the unroll factor. 432 using VectorParts = SmallVector<Value *, 2>; 433 434 /// Vectorize a single GetElementPtrInst based on information gathered and 435 /// decisions taken during planning. 436 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 437 unsigned VF, bool IsPtrLoopInvariant, 438 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 439 440 /// Vectorize a single PHINode in a block. This method handles the induction 441 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 442 /// arbitrary length vectors. 443 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 444 445 /// A helper function to scalarize a single Instruction in the innermost loop. 446 /// Generates a sequence of scalar instances for each lane between \p MinLane 447 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 448 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 449 /// Instr's operands. 450 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 451 const VPIteration &Instance, bool IfPredicateInstr, 452 VPTransformState &State); 453 454 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 455 /// is provided, the integer induction variable will first be truncated to 456 /// the corresponding type. 457 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 458 459 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 460 /// vector or scalar value on-demand if one is not yet available. When 461 /// vectorizing a loop, we visit the definition of an instruction before its 462 /// uses. When visiting the definition, we either vectorize or scalarize the 463 /// instruction, creating an entry for it in the corresponding map. (In some 464 /// cases, such as induction variables, we will create both vector and scalar 465 /// entries.) Then, as we encounter uses of the definition, we derive values 466 /// for each scalar or vector use unless such a value is already available. 467 /// For example, if we scalarize a definition and one of its uses is vector, 468 /// we build the required vector on-demand with an insertelement sequence 469 /// when visiting the use. Otherwise, if the use is scalar, we can use the 470 /// existing scalar definition. 471 /// 472 /// Return a value in the new loop corresponding to \p V from the original 473 /// loop at unroll index \p Part. If the value has already been vectorized, 474 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 475 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 476 /// a new vector value on-demand by inserting the scalar values into a vector 477 /// with an insertelement sequence. If the value has been neither vectorized 478 /// nor scalarized, it must be loop invariant, so we simply broadcast the 479 /// value into a vector. 480 Value *getOrCreateVectorValue(Value *V, unsigned Part); 481 482 /// Return a value in the new loop corresponding to \p V from the original 483 /// loop at unroll and vector indices \p Instance. If the value has been 484 /// vectorized but not scalarized, the necessary extractelement instruction 485 /// will be generated. 486 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 487 488 /// Construct the vector value of a scalarized value \p V one lane at a time. 489 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 490 491 /// Try to vectorize interleaved access group \p Group with the base address 492 /// given in \p Addr, optionally masking the vector operations if \p 493 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 494 /// values in the vectorized loop. 495 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 496 VPTransformState &State, VPValue *Addr, 497 VPValue *BlockInMask = nullptr); 498 499 /// Vectorize Load and Store instructions with the base address given in \p 500 /// Addr, optionally masking the vector operations if \p BlockInMask is 501 /// non-null. Use \p State to translate given VPValues to IR values in the 502 /// vectorized loop. 503 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 504 VPValue *Addr, VPValue *StoredValue, 505 VPValue *BlockInMask); 506 507 /// Set the debug location in the builder using the debug location in 508 /// the instruction. 509 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 510 511 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 512 void fixNonInductionPHIs(void); 513 514 protected: 515 friend class LoopVectorizationPlanner; 516 517 /// A small list of PHINodes. 518 using PhiVector = SmallVector<PHINode *, 4>; 519 520 /// A type for scalarized values in the new loop. Each value from the 521 /// original loop, when scalarized, is represented by UF x VF scalar values 522 /// in the new unrolled loop, where UF is the unroll factor and VF is the 523 /// vectorization factor. 524 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 525 526 /// Set up the values of the IVs correctly when exiting the vector loop. 527 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 528 Value *CountRoundDown, Value *EndValue, 529 BasicBlock *MiddleBlock); 530 531 /// Create a new induction variable inside L. 532 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 533 Value *Step, Instruction *DL); 534 535 /// Handle all cross-iteration phis in the header. 536 void fixCrossIterationPHIs(); 537 538 /// Fix a first-order recurrence. This is the second phase of vectorizing 539 /// this phi node. 540 void fixFirstOrderRecurrence(PHINode *Phi); 541 542 /// Fix a reduction cross-iteration phi. This is the second phase of 543 /// vectorizing this phi node. 544 void fixReduction(PHINode *Phi); 545 546 /// Clear NSW/NUW flags from reduction instructions if necessary. 547 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 548 549 /// The Loop exit block may have single value PHI nodes with some 550 /// incoming value. While vectorizing we only handled real values 551 /// that were defined inside the loop and we should have one value for 552 /// each predecessor of its parent basic block. See PR14725. 553 void fixLCSSAPHIs(); 554 555 /// Iteratively sink the scalarized operands of a predicated instruction into 556 /// the block that was created for it. 557 void sinkScalarOperands(Instruction *PredInst); 558 559 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 560 /// represented as. 561 void truncateToMinimalBitwidths(); 562 563 /// Create a broadcast instruction. This method generates a broadcast 564 /// instruction (shuffle) for loop invariant values and for the induction 565 /// value. If this is the induction variable then we extend it to N, N+1, ... 566 /// this is needed because each iteration in the loop corresponds to a SIMD 567 /// element. 568 virtual Value *getBroadcastInstrs(Value *V); 569 570 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 571 /// to each vector element of Val. The sequence starts at StartIndex. 572 /// \p Opcode is relevant for FP induction variable. 573 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 574 Instruction::BinaryOps Opcode = 575 Instruction::BinaryOpsEnd); 576 577 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 578 /// variable on which to base the steps, \p Step is the size of the step, and 579 /// \p EntryVal is the value from the original loop that maps to the steps. 580 /// Note that \p EntryVal doesn't have to be an induction variable - it 581 /// can also be a truncate instruction. 582 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 583 const InductionDescriptor &ID); 584 585 /// Create a vector induction phi node based on an existing scalar one. \p 586 /// EntryVal is the value from the original loop that maps to the vector phi 587 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 588 /// truncate instruction, instead of widening the original IV, we widen a 589 /// version of the IV truncated to \p EntryVal's type. 590 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 591 Value *Step, Instruction *EntryVal); 592 593 /// Returns true if an instruction \p I should be scalarized instead of 594 /// vectorized for the chosen vectorization factor. 595 bool shouldScalarizeInstruction(Instruction *I) const; 596 597 /// Returns true if we should generate a scalar version of \p IV. 598 bool needsScalarInduction(Instruction *IV) const; 599 600 /// If there is a cast involved in the induction variable \p ID, which should 601 /// be ignored in the vectorized loop body, this function records the 602 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 603 /// cast. We had already proved that the casted Phi is equal to the uncasted 604 /// Phi in the vectorized loop (under a runtime guard), and therefore 605 /// there is no need to vectorize the cast - the same value can be used in the 606 /// vector loop for both the Phi and the cast. 607 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 608 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 609 /// 610 /// \p EntryVal is the value from the original loop that maps to the vector 611 /// phi node and is used to distinguish what is the IV currently being 612 /// processed - original one (if \p EntryVal is a phi corresponding to the 613 /// original IV) or the "newly-created" one based on the proof mentioned above 614 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 615 /// latter case \p EntryVal is a TruncInst and we must not record anything for 616 /// that IV, but it's error-prone to expect callers of this routine to care 617 /// about that, hence this explicit parameter. 618 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 619 const Instruction *EntryVal, 620 Value *VectorLoopValue, 621 unsigned Part, 622 unsigned Lane = UINT_MAX); 623 624 /// Generate a shuffle sequence that will reverse the vector Vec. 625 virtual Value *reverseVector(Value *Vec); 626 627 /// Returns (and creates if needed) the original loop trip count. 628 Value *getOrCreateTripCount(Loop *NewLoop); 629 630 /// Returns (and creates if needed) the trip count of the widened loop. 631 Value *getOrCreateVectorTripCount(Loop *NewLoop); 632 633 /// Returns a bitcasted value to the requested vector type. 634 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 635 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 636 const DataLayout &DL); 637 638 /// Emit a bypass check to see if the vector trip count is zero, including if 639 /// it overflows. 640 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 641 642 /// Emit a bypass check to see if all of the SCEV assumptions we've 643 /// had to make are correct. 644 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 645 646 /// Emit bypass checks to check any memory assumptions we may have made. 647 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 648 649 /// Compute the transformed value of Index at offset StartValue using step 650 /// StepValue. 651 /// For integer induction, returns StartValue + Index * StepValue. 652 /// For pointer induction, returns StartValue[Index * StepValue]. 653 /// FIXME: The newly created binary instructions should contain nsw/nuw 654 /// flags, which can be found from the original scalar operations. 655 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 656 const DataLayout &DL, 657 const InductionDescriptor &ID) const; 658 659 /// Add additional metadata to \p To that was not present on \p Orig. 660 /// 661 /// Currently this is used to add the noalias annotations based on the 662 /// inserted memchecks. Use this for instructions that are *cloned* into the 663 /// vector loop. 664 void addNewMetadata(Instruction *To, const Instruction *Orig); 665 666 /// Add metadata from one instruction to another. 667 /// 668 /// This includes both the original MDs from \p From and additional ones (\see 669 /// addNewMetadata). Use this for *newly created* instructions in the vector 670 /// loop. 671 void addMetadata(Instruction *To, Instruction *From); 672 673 /// Similar to the previous function but it adds the metadata to a 674 /// vector of instructions. 675 void addMetadata(ArrayRef<Value *> To, Instruction *From); 676 677 /// The original loop. 678 Loop *OrigLoop; 679 680 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 681 /// dynamic knowledge to simplify SCEV expressions and converts them to a 682 /// more usable form. 683 PredicatedScalarEvolution &PSE; 684 685 /// Loop Info. 686 LoopInfo *LI; 687 688 /// Dominator Tree. 689 DominatorTree *DT; 690 691 /// Alias Analysis. 692 AAResults *AA; 693 694 /// Target Library Info. 695 const TargetLibraryInfo *TLI; 696 697 /// Target Transform Info. 698 const TargetTransformInfo *TTI; 699 700 /// Assumption Cache. 701 AssumptionCache *AC; 702 703 /// Interface to emit optimization remarks. 704 OptimizationRemarkEmitter *ORE; 705 706 /// LoopVersioning. It's only set up (non-null) if memchecks were 707 /// used. 708 /// 709 /// This is currently only used to add no-alias metadata based on the 710 /// memchecks. The actually versioning is performed manually. 711 std::unique_ptr<LoopVersioning> LVer; 712 713 /// The vectorization SIMD factor to use. Each vector will have this many 714 /// vector elements. 715 unsigned VF; 716 717 /// The vectorization unroll factor to use. Each scalar is vectorized to this 718 /// many different vector instructions. 719 unsigned UF; 720 721 /// The builder that we use 722 IRBuilder<> Builder; 723 724 // --- Vectorization state --- 725 726 /// The vector-loop preheader. 727 BasicBlock *LoopVectorPreHeader; 728 729 /// The scalar-loop preheader. 730 BasicBlock *LoopScalarPreHeader; 731 732 /// Middle Block between the vector and the scalar. 733 BasicBlock *LoopMiddleBlock; 734 735 /// The ExitBlock of the scalar loop. 736 BasicBlock *LoopExitBlock; 737 738 /// The vector loop body. 739 BasicBlock *LoopVectorBody; 740 741 /// The scalar loop body. 742 BasicBlock *LoopScalarBody; 743 744 /// A list of all bypass blocks. The first block is the entry of the loop. 745 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 746 747 /// The new Induction variable which was added to the new block. 748 PHINode *Induction = nullptr; 749 750 /// The induction variable of the old basic block. 751 PHINode *OldInduction = nullptr; 752 753 /// Maps values from the original loop to their corresponding values in the 754 /// vectorized loop. A key value can map to either vector values, scalar 755 /// values or both kinds of values, depending on whether the key was 756 /// vectorized and scalarized. 757 VectorizerValueMap VectorLoopValueMap; 758 759 /// Store instructions that were predicated. 760 SmallVector<Instruction *, 4> PredicatedInstructions; 761 762 /// Trip count of the original loop. 763 Value *TripCount = nullptr; 764 765 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 766 Value *VectorTripCount = nullptr; 767 768 /// The legality analysis. 769 LoopVectorizationLegality *Legal; 770 771 /// The profitablity analysis. 772 LoopVectorizationCostModel *Cost; 773 774 // Record whether runtime checks are added. 775 bool AddedSafetyChecks = false; 776 777 // Holds the end values for each induction variable. We save the end values 778 // so we can later fix-up the external users of the induction variables. 779 DenseMap<PHINode *, Value *> IVEndValues; 780 781 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 782 // fixed up at the end of vector code generation. 783 SmallVector<PHINode *, 8> OrigPHIsToFix; 784 785 /// BFI and PSI are used to check for profile guided size optimizations. 786 BlockFrequencyInfo *BFI; 787 ProfileSummaryInfo *PSI; 788 }; 789 790 class InnerLoopUnroller : public InnerLoopVectorizer { 791 public: 792 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 793 LoopInfo *LI, DominatorTree *DT, 794 const TargetLibraryInfo *TLI, 795 const TargetTransformInfo *TTI, AssumptionCache *AC, 796 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 797 LoopVectorizationLegality *LVL, 798 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 799 ProfileSummaryInfo *PSI) 800 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 801 UnrollFactor, LVL, CM, BFI, PSI) {} 802 803 private: 804 Value *getBroadcastInstrs(Value *V) override; 805 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 806 Instruction::BinaryOps Opcode = 807 Instruction::BinaryOpsEnd) override; 808 Value *reverseVector(Value *Vec) override; 809 }; 810 811 } // end namespace llvm 812 813 /// Look for a meaningful debug location on the instruction or it's 814 /// operands. 815 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 816 if (!I) 817 return I; 818 819 DebugLoc Empty; 820 if (I->getDebugLoc() != Empty) 821 return I; 822 823 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 824 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 825 if (OpInst->getDebugLoc() != Empty) 826 return OpInst; 827 } 828 829 return I; 830 } 831 832 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 833 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 834 const DILocation *DIL = Inst->getDebugLoc(); 835 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 836 !isa<DbgInfoIntrinsic>(Inst)) { 837 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 838 if (NewDIL) 839 B.SetCurrentDebugLocation(NewDIL.getValue()); 840 else 841 LLVM_DEBUG(dbgs() 842 << "Failed to create new discriminator: " 843 << DIL->getFilename() << " Line: " << DIL->getLine()); 844 } 845 else 846 B.SetCurrentDebugLocation(DIL); 847 } else 848 B.SetCurrentDebugLocation(DebugLoc()); 849 } 850 851 /// Write a record \p DebugMsg about vectorization failure to the debug 852 /// output stream. If \p I is passed, it is an instruction that prevents 853 /// vectorization. 854 #ifndef NDEBUG 855 static void debugVectorizationFailure(const StringRef DebugMsg, 856 Instruction *I) { 857 dbgs() << "LV: Not vectorizing: " << DebugMsg; 858 if (I != nullptr) 859 dbgs() << " " << *I; 860 else 861 dbgs() << '.'; 862 dbgs() << '\n'; 863 } 864 #endif 865 866 /// Create an analysis remark that explains why vectorization failed 867 /// 868 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 869 /// RemarkName is the identifier for the remark. If \p I is passed it is an 870 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 871 /// the location of the remark. \return the remark object that can be 872 /// streamed to. 873 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 874 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 875 Value *CodeRegion = TheLoop->getHeader(); 876 DebugLoc DL = TheLoop->getStartLoc(); 877 878 if (I) { 879 CodeRegion = I->getParent(); 880 // If there is no debug location attached to the instruction, revert back to 881 // using the loop's. 882 if (I->getDebugLoc()) 883 DL = I->getDebugLoc(); 884 } 885 886 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 887 R << "loop not vectorized: "; 888 return R; 889 } 890 891 namespace llvm { 892 893 void reportVectorizationFailure(const StringRef DebugMsg, 894 const StringRef OREMsg, const StringRef ORETag, 895 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 896 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 897 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 898 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 899 ORETag, TheLoop, I) << OREMsg); 900 } 901 902 } // end namespace llvm 903 904 #ifndef NDEBUG 905 /// \return string containing a file name and a line # for the given loop. 906 static std::string getDebugLocString(const Loop *L) { 907 std::string Result; 908 if (L) { 909 raw_string_ostream OS(Result); 910 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 911 LoopDbgLoc.print(OS); 912 else 913 // Just print the module name. 914 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 915 OS.flush(); 916 } 917 return Result; 918 } 919 #endif 920 921 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 922 const Instruction *Orig) { 923 // If the loop was versioned with memchecks, add the corresponding no-alias 924 // metadata. 925 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 926 LVer->annotateInstWithNoAlias(To, Orig); 927 } 928 929 void InnerLoopVectorizer::addMetadata(Instruction *To, 930 Instruction *From) { 931 propagateMetadata(To, From); 932 addNewMetadata(To, From); 933 } 934 935 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 936 Instruction *From) { 937 for (Value *V : To) { 938 if (Instruction *I = dyn_cast<Instruction>(V)) 939 addMetadata(I, From); 940 } 941 } 942 943 namespace llvm { 944 945 // Loop vectorization cost-model hints how the scalar epilogue loop should be 946 // lowered. 947 enum ScalarEpilogueLowering { 948 949 // The default: allowing scalar epilogues. 950 CM_ScalarEpilogueAllowed, 951 952 // Vectorization with OptForSize: don't allow epilogues. 953 CM_ScalarEpilogueNotAllowedOptSize, 954 955 // A special case of vectorisation with OptForSize: loops with a very small 956 // trip count are considered for vectorization under OptForSize, thereby 957 // making sure the cost of their loop body is dominant, free of runtime 958 // guards and scalar iteration overheads. 959 CM_ScalarEpilogueNotAllowedLowTripLoop, 960 961 // Loop hint predicate indicating an epilogue is undesired. 962 CM_ScalarEpilogueNotNeededUsePredicate 963 }; 964 965 /// LoopVectorizationCostModel - estimates the expected speedups due to 966 /// vectorization. 967 /// In many cases vectorization is not profitable. This can happen because of 968 /// a number of reasons. In this class we mainly attempt to predict the 969 /// expected speedup/slowdowns due to the supported instruction set. We use the 970 /// TargetTransformInfo to query the different backends for the cost of 971 /// different operations. 972 class LoopVectorizationCostModel { 973 public: 974 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 975 PredicatedScalarEvolution &PSE, LoopInfo *LI, 976 LoopVectorizationLegality *Legal, 977 const TargetTransformInfo &TTI, 978 const TargetLibraryInfo *TLI, DemandedBits *DB, 979 AssumptionCache *AC, 980 OptimizationRemarkEmitter *ORE, const Function *F, 981 const LoopVectorizeHints *Hints, 982 InterleavedAccessInfo &IAI) 983 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 984 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 985 Hints(Hints), InterleaveInfo(IAI) {} 986 987 /// \return An upper bound for the vectorization factor, or None if 988 /// vectorization and interleaving should be avoided up front. 989 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 990 991 /// \return True if runtime checks are required for vectorization, and false 992 /// otherwise. 993 bool runtimeChecksRequired(); 994 995 /// \return The most profitable vectorization factor and the cost of that VF. 996 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 997 /// then this vectorization factor will be selected if vectorization is 998 /// possible. 999 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1000 1001 /// Setup cost-based decisions for user vectorization factor. 1002 void selectUserVectorizationFactor(unsigned UserVF) { 1003 collectUniformsAndScalars(UserVF); 1004 collectInstsToScalarize(UserVF); 1005 } 1006 1007 /// \return The size (in bits) of the smallest and widest types in the code 1008 /// that needs to be vectorized. We ignore values that remain scalar such as 1009 /// 64 bit loop indices. 1010 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1011 1012 /// \return The desired interleave count. 1013 /// If interleave count has been specified by metadata it will be returned. 1014 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1015 /// are the selected vectorization factor and the cost of the selected VF. 1016 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1017 1018 /// Memory access instruction may be vectorized in more than one way. 1019 /// Form of instruction after vectorization depends on cost. 1020 /// This function takes cost-based decisions for Load/Store instructions 1021 /// and collects them in a map. This decisions map is used for building 1022 /// the lists of loop-uniform and loop-scalar instructions. 1023 /// The calculated cost is saved with widening decision in order to 1024 /// avoid redundant calculations. 1025 void setCostBasedWideningDecision(unsigned VF); 1026 1027 /// A struct that represents some properties of the register usage 1028 /// of a loop. 1029 struct RegisterUsage { 1030 /// Holds the number of loop invariant values that are used in the loop. 1031 /// The key is ClassID of target-provided register class. 1032 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1033 /// Holds the maximum number of concurrent live intervals in the loop. 1034 /// The key is ClassID of target-provided register class. 1035 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1036 }; 1037 1038 /// \return Returns information about the register usages of the loop for the 1039 /// given vectorization factors. 1040 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1041 1042 /// Collect values we want to ignore in the cost model. 1043 void collectValuesToIgnore(); 1044 1045 /// \returns The smallest bitwidth each instruction can be represented with. 1046 /// The vector equivalents of these instructions should be truncated to this 1047 /// type. 1048 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1049 return MinBWs; 1050 } 1051 1052 /// \returns True if it is more profitable to scalarize instruction \p I for 1053 /// vectorization factor \p VF. 1054 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1055 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1056 1057 // Cost model is not run in the VPlan-native path - return conservative 1058 // result until this changes. 1059 if (EnableVPlanNativePath) 1060 return false; 1061 1062 auto Scalars = InstsToScalarize.find(VF); 1063 assert(Scalars != InstsToScalarize.end() && 1064 "VF not yet analyzed for scalarization profitability"); 1065 return Scalars->second.find(I) != Scalars->second.end(); 1066 } 1067 1068 /// Returns true if \p I is known to be uniform after vectorization. 1069 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1070 if (VF == 1) 1071 return true; 1072 1073 // Cost model is not run in the VPlan-native path - return conservative 1074 // result until this changes. 1075 if (EnableVPlanNativePath) 1076 return false; 1077 1078 auto UniformsPerVF = Uniforms.find(VF); 1079 assert(UniformsPerVF != Uniforms.end() && 1080 "VF not yet analyzed for uniformity"); 1081 return UniformsPerVF->second.count(I); 1082 } 1083 1084 /// Returns true if \p I is known to be scalar after vectorization. 1085 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1086 if (VF == 1) 1087 return true; 1088 1089 // Cost model is not run in the VPlan-native path - return conservative 1090 // result until this changes. 1091 if (EnableVPlanNativePath) 1092 return false; 1093 1094 auto ScalarsPerVF = Scalars.find(VF); 1095 assert(ScalarsPerVF != Scalars.end() && 1096 "Scalar values are not calculated for VF"); 1097 return ScalarsPerVF->second.count(I); 1098 } 1099 1100 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1101 /// for vectorization factor \p VF. 1102 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1103 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1104 !isProfitableToScalarize(I, VF) && 1105 !isScalarAfterVectorization(I, VF); 1106 } 1107 1108 /// Decision that was taken during cost calculation for memory instruction. 1109 enum InstWidening { 1110 CM_Unknown, 1111 CM_Widen, // For consecutive accesses with stride +1. 1112 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1113 CM_Interleave, 1114 CM_GatherScatter, 1115 CM_Scalarize 1116 }; 1117 1118 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1119 /// instruction \p I and vector width \p VF. 1120 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1121 unsigned Cost) { 1122 assert(VF >= 2 && "Expected VF >=2"); 1123 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1124 } 1125 1126 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1127 /// interleaving group \p Grp and vector width \p VF. 1128 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1129 InstWidening W, unsigned Cost) { 1130 assert(VF >= 2 && "Expected VF >=2"); 1131 /// Broadcast this decicion to all instructions inside the group. 1132 /// But the cost will be assigned to one instruction only. 1133 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1134 if (auto *I = Grp->getMember(i)) { 1135 if (Grp->getInsertPos() == I) 1136 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1137 else 1138 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1139 } 1140 } 1141 } 1142 1143 /// Return the cost model decision for the given instruction \p I and vector 1144 /// width \p VF. Return CM_Unknown if this instruction did not pass 1145 /// through the cost modeling. 1146 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1147 assert(VF >= 2 && "Expected VF >=2"); 1148 1149 // Cost model is not run in the VPlan-native path - return conservative 1150 // result until this changes. 1151 if (EnableVPlanNativePath) 1152 return CM_GatherScatter; 1153 1154 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1155 auto Itr = WideningDecisions.find(InstOnVF); 1156 if (Itr == WideningDecisions.end()) 1157 return CM_Unknown; 1158 return Itr->second.first; 1159 } 1160 1161 /// Return the vectorization cost for the given instruction \p I and vector 1162 /// width \p VF. 1163 unsigned getWideningCost(Instruction *I, unsigned VF) { 1164 assert(VF >= 2 && "Expected VF >=2"); 1165 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1166 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1167 "The cost is not calculated"); 1168 return WideningDecisions[InstOnVF].second; 1169 } 1170 1171 /// Return True if instruction \p I is an optimizable truncate whose operand 1172 /// is an induction variable. Such a truncate will be removed by adding a new 1173 /// induction variable with the destination type. 1174 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1175 // If the instruction is not a truncate, return false. 1176 auto *Trunc = dyn_cast<TruncInst>(I); 1177 if (!Trunc) 1178 return false; 1179 1180 // Get the source and destination types of the truncate. 1181 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1182 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1183 1184 // If the truncate is free for the given types, return false. Replacing a 1185 // free truncate with an induction variable would add an induction variable 1186 // update instruction to each iteration of the loop. We exclude from this 1187 // check the primary induction variable since it will need an update 1188 // instruction regardless. 1189 Value *Op = Trunc->getOperand(0); 1190 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1191 return false; 1192 1193 // If the truncated value is not an induction variable, return false. 1194 return Legal->isInductionPhi(Op); 1195 } 1196 1197 /// Collects the instructions to scalarize for each predicated instruction in 1198 /// the loop. 1199 void collectInstsToScalarize(unsigned VF); 1200 1201 /// Collect Uniform and Scalar values for the given \p VF. 1202 /// The sets depend on CM decision for Load/Store instructions 1203 /// that may be vectorized as interleave, gather-scatter or scalarized. 1204 void collectUniformsAndScalars(unsigned VF) { 1205 // Do the analysis once. 1206 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1207 return; 1208 setCostBasedWideningDecision(VF); 1209 collectLoopUniforms(VF); 1210 collectLoopScalars(VF); 1211 } 1212 1213 /// Returns true if the target machine supports masked store operation 1214 /// for the given \p DataType and kind of access to \p Ptr. 1215 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1216 return Legal->isConsecutivePtr(Ptr) && 1217 TTI.isLegalMaskedStore(DataType, Alignment); 1218 } 1219 1220 /// Returns true if the target machine supports masked load operation 1221 /// for the given \p DataType and kind of access to \p Ptr. 1222 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1223 return Legal->isConsecutivePtr(Ptr) && 1224 TTI.isLegalMaskedLoad(DataType, Alignment); 1225 } 1226 1227 /// Returns true if the target machine supports masked scatter operation 1228 /// for the given \p DataType. 1229 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1230 return TTI.isLegalMaskedScatter(DataType, Alignment); 1231 } 1232 1233 /// Returns true if the target machine supports masked gather operation 1234 /// for the given \p DataType. 1235 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1236 return TTI.isLegalMaskedGather(DataType, Alignment); 1237 } 1238 1239 /// Returns true if the target machine can represent \p V as a masked gather 1240 /// or scatter operation. 1241 bool isLegalGatherOrScatter(Value *V) { 1242 bool LI = isa<LoadInst>(V); 1243 bool SI = isa<StoreInst>(V); 1244 if (!LI && !SI) 1245 return false; 1246 auto *Ty = getMemInstValueType(V); 1247 Align Align = getLoadStoreAlignment(V); 1248 return (LI && isLegalMaskedGather(Ty, Align)) || 1249 (SI && isLegalMaskedScatter(Ty, Align)); 1250 } 1251 1252 /// Returns true if \p I is an instruction that will be scalarized with 1253 /// predication. Such instructions include conditional stores and 1254 /// instructions that may divide by zero. 1255 /// If a non-zero VF has been calculated, we check if I will be scalarized 1256 /// predication for that VF. 1257 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1258 1259 // Returns true if \p I is an instruction that will be predicated either 1260 // through scalar predication or masked load/store or masked gather/scatter. 1261 // Superset of instructions that return true for isScalarWithPredication. 1262 bool isPredicatedInst(Instruction *I) { 1263 if (!blockNeedsPredication(I->getParent())) 1264 return false; 1265 // Loads and stores that need some form of masked operation are predicated 1266 // instructions. 1267 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1268 return Legal->isMaskRequired(I); 1269 return isScalarWithPredication(I); 1270 } 1271 1272 /// Returns true if \p I is a memory instruction with consecutive memory 1273 /// access that can be widened. 1274 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1275 1276 /// Returns true if \p I is a memory instruction in an interleaved-group 1277 /// of memory accesses that can be vectorized with wide vector loads/stores 1278 /// and shuffles. 1279 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1280 1281 /// Check if \p Instr belongs to any interleaved access group. 1282 bool isAccessInterleaved(Instruction *Instr) { 1283 return InterleaveInfo.isInterleaved(Instr); 1284 } 1285 1286 /// Get the interleaved access group that \p Instr belongs to. 1287 const InterleaveGroup<Instruction> * 1288 getInterleavedAccessGroup(Instruction *Instr) { 1289 return InterleaveInfo.getInterleaveGroup(Instr); 1290 } 1291 1292 /// Returns true if an interleaved group requires a scalar iteration 1293 /// to handle accesses with gaps, and there is nothing preventing us from 1294 /// creating a scalar epilogue. 1295 bool requiresScalarEpilogue() const { 1296 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1297 } 1298 1299 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1300 /// loop hint annotation. 1301 bool isScalarEpilogueAllowed() const { 1302 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1303 } 1304 1305 /// Returns true if all loop blocks should be masked to fold tail loop. 1306 bool foldTailByMasking() const { return FoldTailByMasking; } 1307 1308 bool blockNeedsPredication(BasicBlock *BB) { 1309 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1310 } 1311 1312 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1313 /// with factor VF. Return the cost of the instruction, including 1314 /// scalarization overhead if it's needed. 1315 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1316 1317 /// Estimate cost of a call instruction CI if it were vectorized with factor 1318 /// VF. Return the cost of the instruction, including scalarization overhead 1319 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1320 /// scalarized - 1321 /// i.e. either vector version isn't available, or is too expensive. 1322 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1323 1324 /// Invalidates decisions already taken by the cost model. 1325 void invalidateCostModelingDecisions() { 1326 WideningDecisions.clear(); 1327 Uniforms.clear(); 1328 Scalars.clear(); 1329 } 1330 1331 private: 1332 unsigned NumPredStores = 0; 1333 1334 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1335 /// than zero. One is returned if vectorization should best be avoided due 1336 /// to cost. 1337 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1338 1339 /// The vectorization cost is a combination of the cost itself and a boolean 1340 /// indicating whether any of the contributing operations will actually 1341 /// operate on 1342 /// vector values after type legalization in the backend. If this latter value 1343 /// is 1344 /// false, then all operations will be scalarized (i.e. no vectorization has 1345 /// actually taken place). 1346 using VectorizationCostTy = std::pair<unsigned, bool>; 1347 1348 /// Returns the expected execution cost. The unit of the cost does 1349 /// not matter because we use the 'cost' units to compare different 1350 /// vector widths. The cost that is returned is *not* normalized by 1351 /// the factor width. 1352 VectorizationCostTy expectedCost(unsigned VF); 1353 1354 /// Returns the execution time cost of an instruction for a given vector 1355 /// width. Vector width of one means scalar. 1356 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1357 1358 /// The cost-computation logic from getInstructionCost which provides 1359 /// the vector type as an output parameter. 1360 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1361 1362 /// Calculate vectorization cost of memory instruction \p I. 1363 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1364 1365 /// The cost computation for scalarized memory instruction. 1366 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1367 1368 /// The cost computation for interleaving group of memory instructions. 1369 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1370 1371 /// The cost computation for Gather/Scatter instruction. 1372 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1373 1374 /// The cost computation for widening instruction \p I with consecutive 1375 /// memory access. 1376 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1377 1378 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1379 /// Load: scalar load + broadcast. 1380 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1381 /// element) 1382 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1383 1384 /// Estimate the overhead of scalarizing an instruction. This is a 1385 /// convenience wrapper for the type-based getScalarizationOverhead API. 1386 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1387 1388 /// Returns whether the instruction is a load or store and will be a emitted 1389 /// as a vector operation. 1390 bool isConsecutiveLoadOrStore(Instruction *I); 1391 1392 /// Returns true if an artificially high cost for emulated masked memrefs 1393 /// should be used. 1394 bool useEmulatedMaskMemRefHack(Instruction *I); 1395 1396 /// Map of scalar integer values to the smallest bitwidth they can be legally 1397 /// represented as. The vector equivalents of these values should be truncated 1398 /// to this type. 1399 MapVector<Instruction *, uint64_t> MinBWs; 1400 1401 /// A type representing the costs for instructions if they were to be 1402 /// scalarized rather than vectorized. The entries are Instruction-Cost 1403 /// pairs. 1404 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1405 1406 /// A set containing all BasicBlocks that are known to present after 1407 /// vectorization as a predicated block. 1408 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1409 1410 /// Records whether it is allowed to have the original scalar loop execute at 1411 /// least once. This may be needed as a fallback loop in case runtime 1412 /// aliasing/dependence checks fail, or to handle the tail/remainder 1413 /// iterations when the trip count is unknown or doesn't divide by the VF, 1414 /// or as a peel-loop to handle gaps in interleave-groups. 1415 /// Under optsize and when the trip count is very small we don't allow any 1416 /// iterations to execute in the scalar loop. 1417 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1418 1419 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1420 bool FoldTailByMasking = false; 1421 1422 /// A map holding scalar costs for different vectorization factors. The 1423 /// presence of a cost for an instruction in the mapping indicates that the 1424 /// instruction will be scalarized when vectorizing with the associated 1425 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1426 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1427 1428 /// Holds the instructions known to be uniform after vectorization. 1429 /// The data is collected per VF. 1430 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1431 1432 /// Holds the instructions known to be scalar after vectorization. 1433 /// The data is collected per VF. 1434 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1435 1436 /// Holds the instructions (address computations) that are forced to be 1437 /// scalarized. 1438 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1439 1440 /// Returns the expected difference in cost from scalarizing the expression 1441 /// feeding a predicated instruction \p PredInst. The instructions to 1442 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1443 /// non-negative return value implies the expression will be scalarized. 1444 /// Currently, only single-use chains are considered for scalarization. 1445 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1446 unsigned VF); 1447 1448 /// Collect the instructions that are uniform after vectorization. An 1449 /// instruction is uniform if we represent it with a single scalar value in 1450 /// the vectorized loop corresponding to each vector iteration. Examples of 1451 /// uniform instructions include pointer operands of consecutive or 1452 /// interleaved memory accesses. Note that although uniformity implies an 1453 /// instruction will be scalar, the reverse is not true. In general, a 1454 /// scalarized instruction will be represented by VF scalar values in the 1455 /// vectorized loop, each corresponding to an iteration of the original 1456 /// scalar loop. 1457 void collectLoopUniforms(unsigned VF); 1458 1459 /// Collect the instructions that are scalar after vectorization. An 1460 /// instruction is scalar if it is known to be uniform or will be scalarized 1461 /// during vectorization. Non-uniform scalarized instructions will be 1462 /// represented by VF values in the vectorized loop, each corresponding to an 1463 /// iteration of the original scalar loop. 1464 void collectLoopScalars(unsigned VF); 1465 1466 /// Keeps cost model vectorization decision and cost for instructions. 1467 /// Right now it is used for memory instructions only. 1468 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1469 std::pair<InstWidening, unsigned>>; 1470 1471 DecisionList WideningDecisions; 1472 1473 /// Returns true if \p V is expected to be vectorized and it needs to be 1474 /// extracted. 1475 bool needsExtract(Value *V, unsigned VF) const { 1476 Instruction *I = dyn_cast<Instruction>(V); 1477 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1478 return false; 1479 1480 // Assume we can vectorize V (and hence we need extraction) if the 1481 // scalars are not computed yet. This can happen, because it is called 1482 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1483 // the scalars are collected. That should be a safe assumption in most 1484 // cases, because we check if the operands have vectorizable types 1485 // beforehand in LoopVectorizationLegality. 1486 return Scalars.find(VF) == Scalars.end() || 1487 !isScalarAfterVectorization(I, VF); 1488 }; 1489 1490 /// Returns a range containing only operands needing to be extracted. 1491 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1492 unsigned VF) { 1493 return SmallVector<Value *, 4>(make_filter_range( 1494 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1495 } 1496 1497 public: 1498 /// The loop that we evaluate. 1499 Loop *TheLoop; 1500 1501 /// Predicated scalar evolution analysis. 1502 PredicatedScalarEvolution &PSE; 1503 1504 /// Loop Info analysis. 1505 LoopInfo *LI; 1506 1507 /// Vectorization legality. 1508 LoopVectorizationLegality *Legal; 1509 1510 /// Vector target information. 1511 const TargetTransformInfo &TTI; 1512 1513 /// Target Library Info. 1514 const TargetLibraryInfo *TLI; 1515 1516 /// Demanded bits analysis. 1517 DemandedBits *DB; 1518 1519 /// Assumption cache. 1520 AssumptionCache *AC; 1521 1522 /// Interface to emit optimization remarks. 1523 OptimizationRemarkEmitter *ORE; 1524 1525 const Function *TheFunction; 1526 1527 /// Loop Vectorize Hint. 1528 const LoopVectorizeHints *Hints; 1529 1530 /// The interleave access information contains groups of interleaved accesses 1531 /// with the same stride and close to each other. 1532 InterleavedAccessInfo &InterleaveInfo; 1533 1534 /// Values to ignore in the cost model. 1535 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1536 1537 /// Values to ignore in the cost model when VF > 1. 1538 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1539 }; 1540 1541 } // end namespace llvm 1542 1543 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1544 // vectorization. The loop needs to be annotated with #pragma omp simd 1545 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1546 // vector length information is not provided, vectorization is not considered 1547 // explicit. Interleave hints are not allowed either. These limitations will be 1548 // relaxed in the future. 1549 // Please, note that we are currently forced to abuse the pragma 'clang 1550 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1551 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1552 // provides *explicit vectorization hints* (LV can bypass legal checks and 1553 // assume that vectorization is legal). However, both hints are implemented 1554 // using the same metadata (llvm.loop.vectorize, processed by 1555 // LoopVectorizeHints). This will be fixed in the future when the native IR 1556 // representation for pragma 'omp simd' is introduced. 1557 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1558 OptimizationRemarkEmitter *ORE) { 1559 assert(!OuterLp->empty() && "This is not an outer loop"); 1560 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1561 1562 // Only outer loops with an explicit vectorization hint are supported. 1563 // Unannotated outer loops are ignored. 1564 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1565 return false; 1566 1567 Function *Fn = OuterLp->getHeader()->getParent(); 1568 if (!Hints.allowVectorization(Fn, OuterLp, 1569 true /*VectorizeOnlyWhenForced*/)) { 1570 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1571 return false; 1572 } 1573 1574 if (Hints.getInterleave() > 1) { 1575 // TODO: Interleave support is future work. 1576 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1577 "outer loops.\n"); 1578 Hints.emitRemarkWithHints(); 1579 return false; 1580 } 1581 1582 return true; 1583 } 1584 1585 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1586 OptimizationRemarkEmitter *ORE, 1587 SmallVectorImpl<Loop *> &V) { 1588 // Collect inner loops and outer loops without irreducible control flow. For 1589 // now, only collect outer loops that have explicit vectorization hints. If we 1590 // are stress testing the VPlan H-CFG construction, we collect the outermost 1591 // loop of every loop nest. 1592 if (L.empty() || VPlanBuildStressTest || 1593 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1594 LoopBlocksRPO RPOT(&L); 1595 RPOT.perform(LI); 1596 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1597 V.push_back(&L); 1598 // TODO: Collect inner loops inside marked outer loops in case 1599 // vectorization fails for the outer loop. Do not invoke 1600 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1601 // already known to be reducible. We can use an inherited attribute for 1602 // that. 1603 return; 1604 } 1605 } 1606 for (Loop *InnerL : L) 1607 collectSupportedLoops(*InnerL, LI, ORE, V); 1608 } 1609 1610 namespace { 1611 1612 /// The LoopVectorize Pass. 1613 struct LoopVectorize : public FunctionPass { 1614 /// Pass identification, replacement for typeid 1615 static char ID; 1616 1617 LoopVectorizePass Impl; 1618 1619 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1620 bool VectorizeOnlyWhenForced = false) 1621 : FunctionPass(ID), 1622 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1623 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1624 } 1625 1626 bool runOnFunction(Function &F) override { 1627 if (skipFunction(F)) 1628 return false; 1629 1630 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1631 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1632 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1633 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1634 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1635 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1636 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1637 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1638 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1639 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1640 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1641 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1642 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1643 1644 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1645 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1646 1647 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1648 GetLAA, *ORE, PSI).MadeAnyChange; 1649 } 1650 1651 void getAnalysisUsage(AnalysisUsage &AU) const override { 1652 AU.addRequired<AssumptionCacheTracker>(); 1653 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1654 AU.addRequired<DominatorTreeWrapperPass>(); 1655 AU.addRequired<LoopInfoWrapperPass>(); 1656 AU.addRequired<ScalarEvolutionWrapperPass>(); 1657 AU.addRequired<TargetTransformInfoWrapperPass>(); 1658 AU.addRequired<AAResultsWrapperPass>(); 1659 AU.addRequired<LoopAccessLegacyAnalysis>(); 1660 AU.addRequired<DemandedBitsWrapperPass>(); 1661 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1662 AU.addRequired<InjectTLIMappingsLegacy>(); 1663 1664 // We currently do not preserve loopinfo/dominator analyses with outer loop 1665 // vectorization. Until this is addressed, mark these analyses as preserved 1666 // only for non-VPlan-native path. 1667 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1668 if (!EnableVPlanNativePath) { 1669 AU.addPreserved<LoopInfoWrapperPass>(); 1670 AU.addPreserved<DominatorTreeWrapperPass>(); 1671 } 1672 1673 AU.addPreserved<BasicAAWrapperPass>(); 1674 AU.addPreserved<GlobalsAAWrapperPass>(); 1675 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1676 } 1677 }; 1678 1679 } // end anonymous namespace 1680 1681 //===----------------------------------------------------------------------===// 1682 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1683 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1684 //===----------------------------------------------------------------------===// 1685 1686 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1687 // We need to place the broadcast of invariant variables outside the loop, 1688 // but only if it's proven safe to do so. Else, broadcast will be inside 1689 // vector loop body. 1690 Instruction *Instr = dyn_cast<Instruction>(V); 1691 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1692 (!Instr || 1693 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1694 // Place the code for broadcasting invariant variables in the new preheader. 1695 IRBuilder<>::InsertPointGuard Guard(Builder); 1696 if (SafeToHoist) 1697 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1698 1699 // Broadcast the scalar into all locations in the vector. 1700 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1701 1702 return Shuf; 1703 } 1704 1705 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1706 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1707 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1708 "Expected either an induction phi-node or a truncate of it!"); 1709 Value *Start = II.getStartValue(); 1710 1711 // Construct the initial value of the vector IV in the vector loop preheader 1712 auto CurrIP = Builder.saveIP(); 1713 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1714 if (isa<TruncInst>(EntryVal)) { 1715 assert(Start->getType()->isIntegerTy() && 1716 "Truncation requires an integer type"); 1717 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1718 Step = Builder.CreateTrunc(Step, TruncType); 1719 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1720 } 1721 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1722 Value *SteppedStart = 1723 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1724 1725 // We create vector phi nodes for both integer and floating-point induction 1726 // variables. Here, we determine the kind of arithmetic we will perform. 1727 Instruction::BinaryOps AddOp; 1728 Instruction::BinaryOps MulOp; 1729 if (Step->getType()->isIntegerTy()) { 1730 AddOp = Instruction::Add; 1731 MulOp = Instruction::Mul; 1732 } else { 1733 AddOp = II.getInductionOpcode(); 1734 MulOp = Instruction::FMul; 1735 } 1736 1737 // Multiply the vectorization factor by the step using integer or 1738 // floating-point arithmetic as appropriate. 1739 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1740 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1741 1742 // Create a vector splat to use in the induction update. 1743 // 1744 // FIXME: If the step is non-constant, we create the vector splat with 1745 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1746 // handle a constant vector splat. 1747 Value *SplatVF = 1748 isa<Constant>(Mul) 1749 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1750 : Builder.CreateVectorSplat(VF, Mul); 1751 Builder.restoreIP(CurrIP); 1752 1753 // We may need to add the step a number of times, depending on the unroll 1754 // factor. The last of those goes into the PHI. 1755 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1756 &*LoopVectorBody->getFirstInsertionPt()); 1757 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1758 Instruction *LastInduction = VecInd; 1759 for (unsigned Part = 0; Part < UF; ++Part) { 1760 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1761 1762 if (isa<TruncInst>(EntryVal)) 1763 addMetadata(LastInduction, EntryVal); 1764 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1765 1766 LastInduction = cast<Instruction>(addFastMathFlag( 1767 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1768 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1769 } 1770 1771 // Move the last step to the end of the latch block. This ensures consistent 1772 // placement of all induction updates. 1773 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1774 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1775 auto *ICmp = cast<Instruction>(Br->getCondition()); 1776 LastInduction->moveBefore(ICmp); 1777 LastInduction->setName("vec.ind.next"); 1778 1779 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1780 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1781 } 1782 1783 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1784 return Cost->isScalarAfterVectorization(I, VF) || 1785 Cost->isProfitableToScalarize(I, VF); 1786 } 1787 1788 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1789 if (shouldScalarizeInstruction(IV)) 1790 return true; 1791 auto isScalarInst = [&](User *U) -> bool { 1792 auto *I = cast<Instruction>(U); 1793 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1794 }; 1795 return llvm::any_of(IV->users(), isScalarInst); 1796 } 1797 1798 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1799 const InductionDescriptor &ID, const Instruction *EntryVal, 1800 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1801 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1802 "Expected either an induction phi-node or a truncate of it!"); 1803 1804 // This induction variable is not the phi from the original loop but the 1805 // newly-created IV based on the proof that casted Phi is equal to the 1806 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1807 // re-uses the same InductionDescriptor that original IV uses but we don't 1808 // have to do any recording in this case - that is done when original IV is 1809 // processed. 1810 if (isa<TruncInst>(EntryVal)) 1811 return; 1812 1813 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1814 if (Casts.empty()) 1815 return; 1816 // Only the first Cast instruction in the Casts vector is of interest. 1817 // The rest of the Casts (if exist) have no uses outside the 1818 // induction update chain itself. 1819 Instruction *CastInst = *Casts.begin(); 1820 if (Lane < UINT_MAX) 1821 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1822 else 1823 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1824 } 1825 1826 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1827 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1828 "Primary induction variable must have an integer type"); 1829 1830 auto II = Legal->getInductionVars().find(IV); 1831 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1832 1833 auto ID = II->second; 1834 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1835 1836 // The value from the original loop to which we are mapping the new induction 1837 // variable. 1838 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1839 1840 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1841 1842 // Generate code for the induction step. Note that induction steps are 1843 // required to be loop-invariant 1844 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1845 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1846 "Induction step should be loop invariant"); 1847 if (PSE.getSE()->isSCEVable(IV->getType())) { 1848 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1849 return Exp.expandCodeFor(Step, Step->getType(), 1850 LoopVectorPreHeader->getTerminator()); 1851 } 1852 return cast<SCEVUnknown>(Step)->getValue(); 1853 }; 1854 1855 // The scalar value to broadcast. This is derived from the canonical 1856 // induction variable. If a truncation type is given, truncate the canonical 1857 // induction variable and step. Otherwise, derive these values from the 1858 // induction descriptor. 1859 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1860 Value *ScalarIV = Induction; 1861 if (IV != OldInduction) { 1862 ScalarIV = IV->getType()->isIntegerTy() 1863 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1864 : Builder.CreateCast(Instruction::SIToFP, Induction, 1865 IV->getType()); 1866 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1867 ScalarIV->setName("offset.idx"); 1868 } 1869 if (Trunc) { 1870 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1871 assert(Step->getType()->isIntegerTy() && 1872 "Truncation requires an integer step"); 1873 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1874 Step = Builder.CreateTrunc(Step, TruncType); 1875 } 1876 return ScalarIV; 1877 }; 1878 1879 // Create the vector values from the scalar IV, in the absence of creating a 1880 // vector IV. 1881 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1882 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1883 for (unsigned Part = 0; Part < UF; ++Part) { 1884 Value *EntryPart = 1885 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1886 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1887 if (Trunc) 1888 addMetadata(EntryPart, Trunc); 1889 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1890 } 1891 }; 1892 1893 // Now do the actual transformations, and start with creating the step value. 1894 Value *Step = CreateStepValue(ID.getStep()); 1895 if (VF <= 1) { 1896 Value *ScalarIV = CreateScalarIV(Step); 1897 CreateSplatIV(ScalarIV, Step); 1898 return; 1899 } 1900 1901 // Determine if we want a scalar version of the induction variable. This is 1902 // true if the induction variable itself is not widened, or if it has at 1903 // least one user in the loop that is not widened. 1904 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1905 if (!NeedsScalarIV) { 1906 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1907 return; 1908 } 1909 1910 // Try to create a new independent vector induction variable. If we can't 1911 // create the phi node, we will splat the scalar induction variable in each 1912 // loop iteration. 1913 if (!shouldScalarizeInstruction(EntryVal)) { 1914 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1915 Value *ScalarIV = CreateScalarIV(Step); 1916 // Create scalar steps that can be used by instructions we will later 1917 // scalarize. Note that the addition of the scalar steps will not increase 1918 // the number of instructions in the loop in the common case prior to 1919 // InstCombine. We will be trading one vector extract for each scalar step. 1920 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1921 return; 1922 } 1923 1924 // All IV users are scalar instructions, so only emit a scalar IV, not a 1925 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 1926 // predicate used by the masked loads/stores. 1927 Value *ScalarIV = CreateScalarIV(Step); 1928 if (!Cost->isScalarEpilogueAllowed()) 1929 CreateSplatIV(ScalarIV, Step); 1930 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1931 } 1932 1933 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1934 Instruction::BinaryOps BinOp) { 1935 // Create and check the types. 1936 auto *ValVTy = cast<VectorType>(Val->getType()); 1937 int VLen = ValVTy->getNumElements(); 1938 1939 Type *STy = Val->getType()->getScalarType(); 1940 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1941 "Induction Step must be an integer or FP"); 1942 assert(Step->getType() == STy && "Step has wrong type"); 1943 1944 SmallVector<Constant *, 8> Indices; 1945 1946 if (STy->isIntegerTy()) { 1947 // Create a vector of consecutive numbers from zero to VF. 1948 for (int i = 0; i < VLen; ++i) 1949 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1950 1951 // Add the consecutive indices to the vector value. 1952 Constant *Cv = ConstantVector::get(Indices); 1953 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1954 Step = Builder.CreateVectorSplat(VLen, Step); 1955 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1956 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1957 // which can be found from the original scalar operations. 1958 Step = Builder.CreateMul(Cv, Step); 1959 return Builder.CreateAdd(Val, Step, "induction"); 1960 } 1961 1962 // Floating point induction. 1963 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1964 "Binary Opcode should be specified for FP induction"); 1965 // Create a vector of consecutive numbers from zero to VF. 1966 for (int i = 0; i < VLen; ++i) 1967 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1968 1969 // Add the consecutive indices to the vector value. 1970 Constant *Cv = ConstantVector::get(Indices); 1971 1972 Step = Builder.CreateVectorSplat(VLen, Step); 1973 1974 // Floating point operations had to be 'fast' to enable the induction. 1975 FastMathFlags Flags; 1976 Flags.setFast(); 1977 1978 Value *MulOp = Builder.CreateFMul(Cv, Step); 1979 if (isa<Instruction>(MulOp)) 1980 // Have to check, MulOp may be a constant 1981 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1982 1983 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1984 if (isa<Instruction>(BOp)) 1985 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1986 return BOp; 1987 } 1988 1989 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1990 Instruction *EntryVal, 1991 const InductionDescriptor &ID) { 1992 // We shouldn't have to build scalar steps if we aren't vectorizing. 1993 assert(VF > 1 && "VF should be greater than one"); 1994 1995 // Get the value type and ensure it and the step have the same integer type. 1996 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1997 assert(ScalarIVTy == Step->getType() && 1998 "Val and Step should have the same type"); 1999 2000 // We build scalar steps for both integer and floating-point induction 2001 // variables. Here, we determine the kind of arithmetic we will perform. 2002 Instruction::BinaryOps AddOp; 2003 Instruction::BinaryOps MulOp; 2004 if (ScalarIVTy->isIntegerTy()) { 2005 AddOp = Instruction::Add; 2006 MulOp = Instruction::Mul; 2007 } else { 2008 AddOp = ID.getInductionOpcode(); 2009 MulOp = Instruction::FMul; 2010 } 2011 2012 // Determine the number of scalars we need to generate for each unroll 2013 // iteration. If EntryVal is uniform, we only need to generate the first 2014 // lane. Otherwise, we generate all VF values. 2015 unsigned Lanes = 2016 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2017 : VF; 2018 // Compute the scalar steps and save the results in VectorLoopValueMap. 2019 for (unsigned Part = 0; Part < UF; ++Part) { 2020 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2021 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2022 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2023 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2024 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2025 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2026 } 2027 } 2028 } 2029 2030 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2031 assert(V != Induction && "The new induction variable should not be used."); 2032 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2033 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2034 2035 // If we have a stride that is replaced by one, do it here. Defer this for 2036 // the VPlan-native path until we start running Legal checks in that path. 2037 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2038 V = ConstantInt::get(V->getType(), 1); 2039 2040 // If we have a vector mapped to this value, return it. 2041 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2042 return VectorLoopValueMap.getVectorValue(V, Part); 2043 2044 // If the value has not been vectorized, check if it has been scalarized 2045 // instead. If it has been scalarized, and we actually need the value in 2046 // vector form, we will construct the vector values on demand. 2047 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2048 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2049 2050 // If we've scalarized a value, that value should be an instruction. 2051 auto *I = cast<Instruction>(V); 2052 2053 // If we aren't vectorizing, we can just copy the scalar map values over to 2054 // the vector map. 2055 if (VF == 1) { 2056 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2057 return ScalarValue; 2058 } 2059 2060 // Get the last scalar instruction we generated for V and Part. If the value 2061 // is known to be uniform after vectorization, this corresponds to lane zero 2062 // of the Part unroll iteration. Otherwise, the last instruction is the one 2063 // we created for the last vector lane of the Part unroll iteration. 2064 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2065 auto *LastInst = cast<Instruction>( 2066 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2067 2068 // Set the insert point after the last scalarized instruction. This ensures 2069 // the insertelement sequence will directly follow the scalar definitions. 2070 auto OldIP = Builder.saveIP(); 2071 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2072 Builder.SetInsertPoint(&*NewIP); 2073 2074 // However, if we are vectorizing, we need to construct the vector values. 2075 // If the value is known to be uniform after vectorization, we can just 2076 // broadcast the scalar value corresponding to lane zero for each unroll 2077 // iteration. Otherwise, we construct the vector values using insertelement 2078 // instructions. Since the resulting vectors are stored in 2079 // VectorLoopValueMap, we will only generate the insertelements once. 2080 Value *VectorValue = nullptr; 2081 if (Cost->isUniformAfterVectorization(I, VF)) { 2082 VectorValue = getBroadcastInstrs(ScalarValue); 2083 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2084 } else { 2085 // Initialize packing with insertelements to start from undef. 2086 Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF)); 2087 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2088 for (unsigned Lane = 0; Lane < VF; ++Lane) 2089 packScalarIntoVectorValue(V, {Part, Lane}); 2090 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2091 } 2092 Builder.restoreIP(OldIP); 2093 return VectorValue; 2094 } 2095 2096 // If this scalar is unknown, assume that it is a constant or that it is 2097 // loop invariant. Broadcast V and save the value for future uses. 2098 Value *B = getBroadcastInstrs(V); 2099 VectorLoopValueMap.setVectorValue(V, Part, B); 2100 return B; 2101 } 2102 2103 Value * 2104 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2105 const VPIteration &Instance) { 2106 // If the value is not an instruction contained in the loop, it should 2107 // already be scalar. 2108 if (OrigLoop->isLoopInvariant(V)) 2109 return V; 2110 2111 assert(Instance.Lane > 0 2112 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2113 : true && "Uniform values only have lane zero"); 2114 2115 // If the value from the original loop has not been vectorized, it is 2116 // represented by UF x VF scalar values in the new loop. Return the requested 2117 // scalar value. 2118 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2119 return VectorLoopValueMap.getScalarValue(V, Instance); 2120 2121 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2122 // for the given unroll part. If this entry is not a vector type (i.e., the 2123 // vectorization factor is one), there is no need to generate an 2124 // extractelement instruction. 2125 auto *U = getOrCreateVectorValue(V, Instance.Part); 2126 if (!U->getType()->isVectorTy()) { 2127 assert(VF == 1 && "Value not scalarized has non-vector type"); 2128 return U; 2129 } 2130 2131 // Otherwise, the value from the original loop has been vectorized and is 2132 // represented by UF vector values. Extract and return the requested scalar 2133 // value from the appropriate vector lane. 2134 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2135 } 2136 2137 void InnerLoopVectorizer::packScalarIntoVectorValue( 2138 Value *V, const VPIteration &Instance) { 2139 assert(V != Induction && "The new induction variable should not be used."); 2140 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2141 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2142 2143 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2144 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2145 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2146 Builder.getInt32(Instance.Lane)); 2147 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2148 } 2149 2150 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2151 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2152 SmallVector<int, 8> ShuffleMask; 2153 for (unsigned i = 0; i < VF; ++i) 2154 ShuffleMask.push_back(VF - i - 1); 2155 2156 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2157 ShuffleMask, "reverse"); 2158 } 2159 2160 // Return whether we allow using masked interleave-groups (for dealing with 2161 // strided loads/stores that reside in predicated blocks, or for dealing 2162 // with gaps). 2163 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2164 // If an override option has been passed in for interleaved accesses, use it. 2165 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2166 return EnableMaskedInterleavedMemAccesses; 2167 2168 return TTI.enableMaskedInterleavedAccessVectorization(); 2169 } 2170 2171 // Try to vectorize the interleave group that \p Instr belongs to. 2172 // 2173 // E.g. Translate following interleaved load group (factor = 3): 2174 // for (i = 0; i < N; i+=3) { 2175 // R = Pic[i]; // Member of index 0 2176 // G = Pic[i+1]; // Member of index 1 2177 // B = Pic[i+2]; // Member of index 2 2178 // ... // do something to R, G, B 2179 // } 2180 // To: 2181 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2182 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2183 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2184 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2185 // 2186 // Or translate following interleaved store group (factor = 3): 2187 // for (i = 0; i < N; i+=3) { 2188 // ... do something to R, G, B 2189 // Pic[i] = R; // Member of index 0 2190 // Pic[i+1] = G; // Member of index 1 2191 // Pic[i+2] = B; // Member of index 2 2192 // } 2193 // To: 2194 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2195 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2196 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2197 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2198 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2199 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2200 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2201 VPValue *Addr, VPValue *BlockInMask) { 2202 Instruction *Instr = Group->getInsertPos(); 2203 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2204 2205 // Prepare for the vector type of the interleaved load/store. 2206 Type *ScalarTy = getMemInstValueType(Instr); 2207 unsigned InterleaveFactor = Group->getFactor(); 2208 auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF); 2209 2210 // Prepare for the new pointers. 2211 SmallVector<Value *, 2> AddrParts; 2212 unsigned Index = Group->getIndex(Instr); 2213 2214 // TODO: extend the masked interleaved-group support to reversed access. 2215 assert((!BlockInMask || !Group->isReverse()) && 2216 "Reversed masked interleave-group not supported."); 2217 2218 // If the group is reverse, adjust the index to refer to the last vector lane 2219 // instead of the first. We adjust the index from the first vector lane, 2220 // rather than directly getting the pointer for lane VF - 1, because the 2221 // pointer operand of the interleaved access is supposed to be uniform. For 2222 // uniform instructions, we're only required to generate a value for the 2223 // first vector lane in each unroll iteration. 2224 if (Group->isReverse()) 2225 Index += (VF - 1) * Group->getFactor(); 2226 2227 for (unsigned Part = 0; Part < UF; Part++) { 2228 Value *AddrPart = State.get(Addr, {Part, 0}); 2229 setDebugLocFromInst(Builder, AddrPart); 2230 2231 // Notice current instruction could be any index. Need to adjust the address 2232 // to the member of index 0. 2233 // 2234 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2235 // b = A[i]; // Member of index 0 2236 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2237 // 2238 // E.g. A[i+1] = a; // Member of index 1 2239 // A[i] = b; // Member of index 0 2240 // A[i+2] = c; // Member of index 2 (Current instruction) 2241 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2242 2243 bool InBounds = false; 2244 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2245 InBounds = gep->isInBounds(); 2246 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2247 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2248 2249 // Cast to the vector pointer type. 2250 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2251 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2252 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2253 } 2254 2255 setDebugLocFromInst(Builder, Instr); 2256 Value *UndefVec = UndefValue::get(VecTy); 2257 2258 Value *MaskForGaps = nullptr; 2259 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2260 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2261 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2262 } 2263 2264 // Vectorize the interleaved load group. 2265 if (isa<LoadInst>(Instr)) { 2266 // For each unroll part, create a wide load for the group. 2267 SmallVector<Value *, 2> NewLoads; 2268 for (unsigned Part = 0; Part < UF; Part++) { 2269 Instruction *NewLoad; 2270 if (BlockInMask || MaskForGaps) { 2271 assert(useMaskedInterleavedAccesses(*TTI) && 2272 "masked interleaved groups are not allowed."); 2273 Value *GroupMask = MaskForGaps; 2274 if (BlockInMask) { 2275 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2276 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2277 Value *ShuffledMask = Builder.CreateShuffleVector( 2278 BlockInMaskPart, Undefs, 2279 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2280 GroupMask = MaskForGaps 2281 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2282 MaskForGaps) 2283 : ShuffledMask; 2284 } 2285 NewLoad = 2286 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2287 GroupMask, UndefVec, "wide.masked.vec"); 2288 } 2289 else 2290 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2291 Group->getAlign(), "wide.vec"); 2292 Group->addMetadata(NewLoad); 2293 NewLoads.push_back(NewLoad); 2294 } 2295 2296 // For each member in the group, shuffle out the appropriate data from the 2297 // wide loads. 2298 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2299 Instruction *Member = Group->getMember(I); 2300 2301 // Skip the gaps in the group. 2302 if (!Member) 2303 continue; 2304 2305 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2306 for (unsigned Part = 0; Part < UF; Part++) { 2307 Value *StridedVec = Builder.CreateShuffleVector( 2308 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2309 2310 // If this member has different type, cast the result type. 2311 if (Member->getType() != ScalarTy) { 2312 VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF); 2313 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2314 } 2315 2316 if (Group->isReverse()) 2317 StridedVec = reverseVector(StridedVec); 2318 2319 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2320 } 2321 } 2322 return; 2323 } 2324 2325 // The sub vector type for current instruction. 2326 auto *SubVT = FixedVectorType::get(ScalarTy, VF); 2327 2328 // Vectorize the interleaved store group. 2329 for (unsigned Part = 0; Part < UF; Part++) { 2330 // Collect the stored vector from each member. 2331 SmallVector<Value *, 4> StoredVecs; 2332 for (unsigned i = 0; i < InterleaveFactor; i++) { 2333 // Interleaved store group doesn't allow a gap, so each index has a member 2334 Instruction *Member = Group->getMember(i); 2335 assert(Member && "Fail to get a member from an interleaved store group"); 2336 2337 Value *StoredVec = getOrCreateVectorValue( 2338 cast<StoreInst>(Member)->getValueOperand(), Part); 2339 if (Group->isReverse()) 2340 StoredVec = reverseVector(StoredVec); 2341 2342 // If this member has different type, cast it to a unified type. 2343 2344 if (StoredVec->getType() != SubVT) 2345 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2346 2347 StoredVecs.push_back(StoredVec); 2348 } 2349 2350 // Concatenate all vectors into a wide vector. 2351 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2352 2353 // Interleave the elements in the wide vector. 2354 Value *IVec = Builder.CreateShuffleVector( 2355 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2356 "interleaved.vec"); 2357 2358 Instruction *NewStoreInstr; 2359 if (BlockInMask) { 2360 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2361 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2362 Value *ShuffledMask = Builder.CreateShuffleVector( 2363 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2364 "interleaved.mask"); 2365 NewStoreInstr = Builder.CreateMaskedStore( 2366 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2367 } 2368 else 2369 NewStoreInstr = 2370 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2371 2372 Group->addMetadata(NewStoreInstr); 2373 } 2374 } 2375 2376 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2377 VPTransformState &State, 2378 VPValue *Addr, 2379 VPValue *StoredValue, 2380 VPValue *BlockInMask) { 2381 // Attempt to issue a wide load. 2382 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2383 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2384 2385 assert((LI || SI) && "Invalid Load/Store instruction"); 2386 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2387 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2388 2389 LoopVectorizationCostModel::InstWidening Decision = 2390 Cost->getWideningDecision(Instr, VF); 2391 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2392 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2393 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2394 "CM decision is not to widen the memory instruction"); 2395 2396 Type *ScalarDataTy = getMemInstValueType(Instr); 2397 auto *DataTy = FixedVectorType::get(ScalarDataTy, VF); 2398 const Align Alignment = getLoadStoreAlignment(Instr); 2399 2400 // Determine if the pointer operand of the access is either consecutive or 2401 // reverse consecutive. 2402 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2403 bool ConsecutiveStride = 2404 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2405 bool CreateGatherScatter = 2406 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2407 2408 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2409 // gather/scatter. Otherwise Decision should have been to Scalarize. 2410 assert((ConsecutiveStride || CreateGatherScatter) && 2411 "The instruction should be scalarized"); 2412 (void)ConsecutiveStride; 2413 2414 VectorParts BlockInMaskParts(UF); 2415 bool isMaskRequired = BlockInMask; 2416 if (isMaskRequired) 2417 for (unsigned Part = 0; Part < UF; ++Part) 2418 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2419 2420 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2421 // Calculate the pointer for the specific unroll-part. 2422 GetElementPtrInst *PartPtr = nullptr; 2423 2424 bool InBounds = false; 2425 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2426 InBounds = gep->isInBounds(); 2427 2428 if (Reverse) { 2429 // If the address is consecutive but reversed, then the 2430 // wide store needs to start at the last vector element. 2431 PartPtr = cast<GetElementPtrInst>( 2432 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2433 PartPtr->setIsInBounds(InBounds); 2434 PartPtr = cast<GetElementPtrInst>( 2435 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2436 PartPtr->setIsInBounds(InBounds); 2437 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2438 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2439 } else { 2440 PartPtr = cast<GetElementPtrInst>( 2441 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2442 PartPtr->setIsInBounds(InBounds); 2443 } 2444 2445 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2446 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2447 }; 2448 2449 // Handle Stores: 2450 if (SI) { 2451 setDebugLocFromInst(Builder, SI); 2452 2453 for (unsigned Part = 0; Part < UF; ++Part) { 2454 Instruction *NewSI = nullptr; 2455 Value *StoredVal = State.get(StoredValue, Part); 2456 if (CreateGatherScatter) { 2457 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2458 Value *VectorGep = State.get(Addr, Part); 2459 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2460 MaskPart); 2461 } else { 2462 if (Reverse) { 2463 // If we store to reverse consecutive memory locations, then we need 2464 // to reverse the order of elements in the stored value. 2465 StoredVal = reverseVector(StoredVal); 2466 // We don't want to update the value in the map as it might be used in 2467 // another expression. So don't call resetVectorValue(StoredVal). 2468 } 2469 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2470 if (isMaskRequired) 2471 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2472 BlockInMaskParts[Part]); 2473 else 2474 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2475 } 2476 addMetadata(NewSI, SI); 2477 } 2478 return; 2479 } 2480 2481 // Handle loads. 2482 assert(LI && "Must have a load instruction"); 2483 setDebugLocFromInst(Builder, LI); 2484 for (unsigned Part = 0; Part < UF; ++Part) { 2485 Value *NewLI; 2486 if (CreateGatherScatter) { 2487 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2488 Value *VectorGep = State.get(Addr, Part); 2489 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2490 nullptr, "wide.masked.gather"); 2491 addMetadata(NewLI, LI); 2492 } else { 2493 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2494 if (isMaskRequired) 2495 NewLI = Builder.CreateMaskedLoad( 2496 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2497 "wide.masked.load"); 2498 else 2499 NewLI = 2500 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2501 2502 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2503 addMetadata(NewLI, LI); 2504 if (Reverse) 2505 NewLI = reverseVector(NewLI); 2506 } 2507 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2508 } 2509 } 2510 2511 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2512 const VPIteration &Instance, 2513 bool IfPredicateInstr, 2514 VPTransformState &State) { 2515 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2516 2517 setDebugLocFromInst(Builder, Instr); 2518 2519 // Does this instruction return a value ? 2520 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2521 2522 Instruction *Cloned = Instr->clone(); 2523 if (!IsVoidRetTy) 2524 Cloned->setName(Instr->getName() + ".cloned"); 2525 2526 // Replace the operands of the cloned instructions with their scalar 2527 // equivalents in the new loop. 2528 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2529 auto *NewOp = State.get(User.getOperand(op), Instance); 2530 Cloned->setOperand(op, NewOp); 2531 } 2532 addNewMetadata(Cloned, Instr); 2533 2534 // Place the cloned scalar in the new loop. 2535 Builder.Insert(Cloned); 2536 2537 // Add the cloned scalar to the scalar map entry. 2538 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2539 2540 // If we just cloned a new assumption, add it the assumption cache. 2541 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2542 if (II->getIntrinsicID() == Intrinsic::assume) 2543 AC->registerAssumption(II); 2544 2545 // End if-block. 2546 if (IfPredicateInstr) 2547 PredicatedInstructions.push_back(Cloned); 2548 } 2549 2550 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2551 Value *End, Value *Step, 2552 Instruction *DL) { 2553 BasicBlock *Header = L->getHeader(); 2554 BasicBlock *Latch = L->getLoopLatch(); 2555 // As we're just creating this loop, it's possible no latch exists 2556 // yet. If so, use the header as this will be a single block loop. 2557 if (!Latch) 2558 Latch = Header; 2559 2560 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2561 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2562 setDebugLocFromInst(Builder, OldInst); 2563 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2564 2565 Builder.SetInsertPoint(Latch->getTerminator()); 2566 setDebugLocFromInst(Builder, OldInst); 2567 2568 // Create i+1 and fill the PHINode. 2569 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2570 Induction->addIncoming(Start, L->getLoopPreheader()); 2571 Induction->addIncoming(Next, Latch); 2572 // Create the compare. 2573 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2574 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2575 2576 // Now we have two terminators. Remove the old one from the block. 2577 Latch->getTerminator()->eraseFromParent(); 2578 2579 return Induction; 2580 } 2581 2582 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2583 if (TripCount) 2584 return TripCount; 2585 2586 assert(L && "Create Trip Count for null loop."); 2587 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2588 // Find the loop boundaries. 2589 ScalarEvolution *SE = PSE.getSE(); 2590 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2591 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2592 "Invalid loop count"); 2593 2594 Type *IdxTy = Legal->getWidestInductionType(); 2595 assert(IdxTy && "No type for induction"); 2596 2597 // The exit count might have the type of i64 while the phi is i32. This can 2598 // happen if we have an induction variable that is sign extended before the 2599 // compare. The only way that we get a backedge taken count is that the 2600 // induction variable was signed and as such will not overflow. In such a case 2601 // truncation is legal. 2602 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2603 IdxTy->getPrimitiveSizeInBits()) 2604 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2605 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2606 2607 // Get the total trip count from the count by adding 1. 2608 const SCEV *ExitCount = SE->getAddExpr( 2609 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2610 2611 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2612 2613 // Expand the trip count and place the new instructions in the preheader. 2614 // Notice that the pre-header does not change, only the loop body. 2615 SCEVExpander Exp(*SE, DL, "induction"); 2616 2617 // Count holds the overall loop count (N). 2618 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2619 L->getLoopPreheader()->getTerminator()); 2620 2621 if (TripCount->getType()->isPointerTy()) 2622 TripCount = 2623 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2624 L->getLoopPreheader()->getTerminator()); 2625 2626 return TripCount; 2627 } 2628 2629 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2630 if (VectorTripCount) 2631 return VectorTripCount; 2632 2633 Value *TC = getOrCreateTripCount(L); 2634 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2635 2636 Type *Ty = TC->getType(); 2637 Constant *Step = ConstantInt::get(Ty, VF * UF); 2638 2639 // If the tail is to be folded by masking, round the number of iterations N 2640 // up to a multiple of Step instead of rounding down. This is done by first 2641 // adding Step-1 and then rounding down. Note that it's ok if this addition 2642 // overflows: the vector induction variable will eventually wrap to zero given 2643 // that it starts at zero and its Step is a power of two; the loop will then 2644 // exit, with the last early-exit vector comparison also producing all-true. 2645 if (Cost->foldTailByMasking()) { 2646 assert(isPowerOf2_32(VF * UF) && 2647 "VF*UF must be a power of 2 when folding tail by masking"); 2648 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2649 } 2650 2651 // Now we need to generate the expression for the part of the loop that the 2652 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2653 // iterations are not required for correctness, or N - Step, otherwise. Step 2654 // is equal to the vectorization factor (number of SIMD elements) times the 2655 // unroll factor (number of SIMD instructions). 2656 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2657 2658 // If there is a non-reversed interleaved group that may speculatively access 2659 // memory out-of-bounds, we need to ensure that there will be at least one 2660 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2661 // the trip count, we set the remainder to be equal to the step. If the step 2662 // does not evenly divide the trip count, no adjustment is necessary since 2663 // there will already be scalar iterations. Note that the minimum iterations 2664 // check ensures that N >= Step. 2665 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2666 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2667 R = Builder.CreateSelect(IsZero, Step, R); 2668 } 2669 2670 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2671 2672 return VectorTripCount; 2673 } 2674 2675 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2676 const DataLayout &DL) { 2677 // Verify that V is a vector type with same number of elements as DstVTy. 2678 unsigned VF = DstVTy->getNumElements(); 2679 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2680 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2681 Type *SrcElemTy = SrcVecTy->getElementType(); 2682 Type *DstElemTy = DstVTy->getElementType(); 2683 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2684 "Vector elements must have same size"); 2685 2686 // Do a direct cast if element types are castable. 2687 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2688 return Builder.CreateBitOrPointerCast(V, DstVTy); 2689 } 2690 // V cannot be directly casted to desired vector type. 2691 // May happen when V is a floating point vector but DstVTy is a vector of 2692 // pointers or vice-versa. Handle this using a two-step bitcast using an 2693 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2694 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2695 "Only one type should be a pointer type"); 2696 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2697 "Only one type should be a floating point type"); 2698 Type *IntTy = 2699 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2700 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2701 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2702 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2703 } 2704 2705 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2706 BasicBlock *Bypass) { 2707 Value *Count = getOrCreateTripCount(L); 2708 // Reuse existing vector loop preheader for TC checks. 2709 // Note that new preheader block is generated for vector loop. 2710 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2711 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2712 2713 // Generate code to check if the loop's trip count is less than VF * UF, or 2714 // equal to it in case a scalar epilogue is required; this implies that the 2715 // vector trip count is zero. This check also covers the case where adding one 2716 // to the backedge-taken count overflowed leading to an incorrect trip count 2717 // of zero. In this case we will also jump to the scalar loop. 2718 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2719 : ICmpInst::ICMP_ULT; 2720 2721 // If tail is to be folded, vector loop takes care of all iterations. 2722 Value *CheckMinIters = Builder.getFalse(); 2723 if (!Cost->foldTailByMasking()) 2724 CheckMinIters = Builder.CreateICmp( 2725 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2726 "min.iters.check"); 2727 2728 // Create new preheader for vector loop. 2729 LoopVectorPreHeader = 2730 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2731 "vector.ph"); 2732 2733 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2734 DT->getNode(Bypass)->getIDom()) && 2735 "TC check is expected to dominate Bypass"); 2736 2737 // Update dominator for Bypass & LoopExit. 2738 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2739 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2740 2741 ReplaceInstWithInst( 2742 TCCheckBlock->getTerminator(), 2743 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2744 LoopBypassBlocks.push_back(TCCheckBlock); 2745 } 2746 2747 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2748 // Reuse existing vector loop preheader for SCEV checks. 2749 // Note that new preheader block is generated for vector loop. 2750 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2751 2752 // Generate the code to check that the SCEV assumptions that we made. 2753 // We want the new basic block to start at the first instruction in a 2754 // sequence of instructions that form a check. 2755 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2756 "scev.check"); 2757 Value *SCEVCheck = Exp.expandCodeForPredicate( 2758 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2759 2760 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2761 if (C->isZero()) 2762 return; 2763 2764 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2765 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 2766 PGSOQueryType::IRPass)) && 2767 "Cannot SCEV check stride or overflow when optimizing for size"); 2768 2769 SCEVCheckBlock->setName("vector.scevcheck"); 2770 // Create new preheader for vector loop. 2771 LoopVectorPreHeader = 2772 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2773 nullptr, "vector.ph"); 2774 2775 // Update dominator only if this is first RT check. 2776 if (LoopBypassBlocks.empty()) { 2777 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2778 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2779 } 2780 2781 ReplaceInstWithInst( 2782 SCEVCheckBlock->getTerminator(), 2783 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2784 LoopBypassBlocks.push_back(SCEVCheckBlock); 2785 AddedSafetyChecks = true; 2786 } 2787 2788 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2789 // VPlan-native path does not do any analysis for runtime checks currently. 2790 if (EnableVPlanNativePath) 2791 return; 2792 2793 // Reuse existing vector loop preheader for runtime memory checks. 2794 // Note that new preheader block is generated for vector loop. 2795 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2796 2797 // Generate the code that checks in runtime if arrays overlap. We put the 2798 // checks into a separate block to make the more common case of few elements 2799 // faster. 2800 auto *LAI = Legal->getLAI(); 2801 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2802 if (!RtPtrChecking.Need) 2803 return; 2804 Instruction *FirstCheckInst; 2805 Instruction *MemRuntimeCheck; 2806 std::tie(FirstCheckInst, MemRuntimeCheck) = 2807 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2808 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2809 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2810 "claimed checks are required"); 2811 2812 if (MemCheckBlock->getParent()->hasOptSize() || 2813 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 2814 PGSOQueryType::IRPass)) { 2815 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2816 "Cannot emit memory checks when optimizing for size, unless forced " 2817 "to vectorize."); 2818 ORE->emit([&]() { 2819 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2820 L->getStartLoc(), L->getHeader()) 2821 << "Code-size may be reduced by not forcing " 2822 "vectorization, or by source-code modifications " 2823 "eliminating the need for runtime checks " 2824 "(e.g., adding 'restrict')."; 2825 }); 2826 } 2827 2828 MemCheckBlock->setName("vector.memcheck"); 2829 // Create new preheader for vector loop. 2830 LoopVectorPreHeader = 2831 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2832 "vector.ph"); 2833 2834 // Update dominator only if this is first RT check. 2835 if (LoopBypassBlocks.empty()) { 2836 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2837 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2838 } 2839 2840 ReplaceInstWithInst( 2841 MemCheckBlock->getTerminator(), 2842 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2843 LoopBypassBlocks.push_back(MemCheckBlock); 2844 AddedSafetyChecks = true; 2845 2846 // We currently don't use LoopVersioning for the actual loop cloning but we 2847 // still use it to add the noalias metadata. 2848 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2849 PSE.getSE()); 2850 LVer->prepareNoAliasMetadata(); 2851 } 2852 2853 Value *InnerLoopVectorizer::emitTransformedIndex( 2854 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2855 const InductionDescriptor &ID) const { 2856 2857 SCEVExpander Exp(*SE, DL, "induction"); 2858 auto Step = ID.getStep(); 2859 auto StartValue = ID.getStartValue(); 2860 assert(Index->getType() == Step->getType() && 2861 "Index type does not match StepValue type"); 2862 2863 // Note: the IR at this point is broken. We cannot use SE to create any new 2864 // SCEV and then expand it, hoping that SCEV's simplification will give us 2865 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2866 // lead to various SCEV crashes. So all we can do is to use builder and rely 2867 // on InstCombine for future simplifications. Here we handle some trivial 2868 // cases only. 2869 auto CreateAdd = [&B](Value *X, Value *Y) { 2870 assert(X->getType() == Y->getType() && "Types don't match!"); 2871 if (auto *CX = dyn_cast<ConstantInt>(X)) 2872 if (CX->isZero()) 2873 return Y; 2874 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2875 if (CY->isZero()) 2876 return X; 2877 return B.CreateAdd(X, Y); 2878 }; 2879 2880 auto CreateMul = [&B](Value *X, Value *Y) { 2881 assert(X->getType() == Y->getType() && "Types don't match!"); 2882 if (auto *CX = dyn_cast<ConstantInt>(X)) 2883 if (CX->isOne()) 2884 return Y; 2885 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2886 if (CY->isOne()) 2887 return X; 2888 return B.CreateMul(X, Y); 2889 }; 2890 2891 // Get a suitable insert point for SCEV expansion. For blocks in the vector 2892 // loop, choose the end of the vector loop header (=LoopVectorBody), because 2893 // the DomTree is not kept up-to-date for additional blocks generated in the 2894 // vector loop. By using the header as insertion point, we guarantee that the 2895 // expanded instructions dominate all their uses. 2896 auto GetInsertPoint = [this, &B]() { 2897 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 2898 if (InsertBB != LoopVectorBody && 2899 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 2900 return LoopVectorBody->getTerminator(); 2901 return &*B.GetInsertPoint(); 2902 }; 2903 switch (ID.getKind()) { 2904 case InductionDescriptor::IK_IntInduction: { 2905 assert(Index->getType() == StartValue->getType() && 2906 "Index type does not match StartValue type"); 2907 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2908 return B.CreateSub(StartValue, Index); 2909 auto *Offset = CreateMul( 2910 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 2911 return CreateAdd(StartValue, Offset); 2912 } 2913 case InductionDescriptor::IK_PtrInduction: { 2914 assert(isa<SCEVConstant>(Step) && 2915 "Expected constant step for pointer induction"); 2916 return B.CreateGEP( 2917 StartValue->getType()->getPointerElementType(), StartValue, 2918 CreateMul(Index, 2919 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 2920 } 2921 case InductionDescriptor::IK_FpInduction: { 2922 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2923 auto InductionBinOp = ID.getInductionBinOp(); 2924 assert(InductionBinOp && 2925 (InductionBinOp->getOpcode() == Instruction::FAdd || 2926 InductionBinOp->getOpcode() == Instruction::FSub) && 2927 "Original bin op should be defined for FP induction"); 2928 2929 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2930 2931 // Floating point operations had to be 'fast' to enable the induction. 2932 FastMathFlags Flags; 2933 Flags.setFast(); 2934 2935 Value *MulExp = B.CreateFMul(StepValue, Index); 2936 if (isa<Instruction>(MulExp)) 2937 // We have to check, the MulExp may be a constant. 2938 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2939 2940 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2941 "induction"); 2942 if (isa<Instruction>(BOp)) 2943 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2944 2945 return BOp; 2946 } 2947 case InductionDescriptor::IK_NoInduction: 2948 return nullptr; 2949 } 2950 llvm_unreachable("invalid enum"); 2951 } 2952 2953 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2954 /* 2955 In this function we generate a new loop. The new loop will contain 2956 the vectorized instructions while the old loop will continue to run the 2957 scalar remainder. 2958 2959 [ ] <-- loop iteration number check. 2960 / | 2961 / v 2962 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2963 | / | 2964 | / v 2965 || [ ] <-- vector pre header. 2966 |/ | 2967 | v 2968 | [ ] \ 2969 | [ ]_| <-- vector loop. 2970 | | 2971 | v 2972 | -[ ] <--- middle-block. 2973 | / | 2974 | / v 2975 -|- >[ ] <--- new preheader. 2976 | | 2977 | v 2978 | [ ] \ 2979 | [ ]_| <-- old scalar loop to handle remainder. 2980 \ | 2981 \ v 2982 >[ ] <-- exit block. 2983 ... 2984 */ 2985 2986 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2987 2988 // Some loops have a single integer induction variable, while other loops 2989 // don't. One example is c++ iterators that often have multiple pointer 2990 // induction variables. In the code below we also support a case where we 2991 // don't have a single induction variable. 2992 // 2993 // We try to obtain an induction variable from the original loop as hard 2994 // as possible. However if we don't find one that: 2995 // - is an integer 2996 // - counts from zero, stepping by one 2997 // - is the size of the widest induction variable type 2998 // then we create a new one. 2999 OldInduction = Legal->getPrimaryInduction(); 3000 Type *IdxTy = Legal->getWidestInductionType(); 3001 3002 // Split the single block loop into the two loop structure described above. 3003 LoopScalarBody = OrigLoop->getHeader(); 3004 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3005 LoopExitBlock = OrigLoop->getExitBlock(); 3006 assert(LoopExitBlock && "Must have an exit block"); 3007 assert(LoopVectorPreHeader && "Invalid loop structure"); 3008 3009 LoopMiddleBlock = 3010 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3011 LI, nullptr, "middle.block"); 3012 LoopScalarPreHeader = 3013 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3014 nullptr, "scalar.ph"); 3015 // We intentionally don't let SplitBlock to update LoopInfo since 3016 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3017 // LoopVectorBody is explicitly added to the correct place few lines later. 3018 LoopVectorBody = 3019 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3020 nullptr, nullptr, "vector.body"); 3021 3022 // Update dominator for loop exit. 3023 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3024 3025 // Create and register the new vector loop. 3026 Loop *Lp = LI->AllocateLoop(); 3027 Loop *ParentLoop = OrigLoop->getParentLoop(); 3028 3029 // Insert the new loop into the loop nest and register the new basic blocks 3030 // before calling any utilities such as SCEV that require valid LoopInfo. 3031 if (ParentLoop) { 3032 ParentLoop->addChildLoop(Lp); 3033 } else { 3034 LI->addTopLevelLoop(Lp); 3035 } 3036 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3037 3038 // Find the loop boundaries. 3039 Value *Count = getOrCreateTripCount(Lp); 3040 3041 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3042 3043 // Now, compare the new count to zero. If it is zero skip the vector loop and 3044 // jump to the scalar loop. This check also covers the case where the 3045 // backedge-taken count is uint##_max: adding one to it will overflow leading 3046 // to an incorrect trip count of zero. In this (rare) case we will also jump 3047 // to the scalar loop. 3048 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3049 3050 // Generate the code to check any assumptions that we've made for SCEV 3051 // expressions. 3052 emitSCEVChecks(Lp, LoopScalarPreHeader); 3053 3054 // Generate the code that checks in runtime if arrays overlap. We put the 3055 // checks into a separate block to make the more common case of few elements 3056 // faster. 3057 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3058 3059 // Generate the induction variable. 3060 // The loop step is equal to the vectorization factor (num of SIMD elements) 3061 // times the unroll factor (num of SIMD instructions). 3062 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3063 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3064 Induction = 3065 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3066 getDebugLocFromInstOrOperands(OldInduction)); 3067 3068 // We are going to resume the execution of the scalar loop. 3069 // Go over all of the induction variables that we found and fix the 3070 // PHIs that are left in the scalar version of the loop. 3071 // The starting values of PHI nodes depend on the counter of the last 3072 // iteration in the vectorized loop. 3073 // If we come from a bypass edge then we need to start from the original 3074 // start value. 3075 3076 // This variable saves the new starting index for the scalar loop. It is used 3077 // to test if there are any tail iterations left once the vector loop has 3078 // completed. 3079 for (auto &InductionEntry : Legal->getInductionVars()) { 3080 PHINode *OrigPhi = InductionEntry.first; 3081 InductionDescriptor II = InductionEntry.second; 3082 3083 // Create phi nodes to merge from the backedge-taken check block. 3084 PHINode *BCResumeVal = 3085 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3086 LoopScalarPreHeader->getTerminator()); 3087 // Copy original phi DL over to the new one. 3088 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3089 Value *&EndValue = IVEndValues[OrigPhi]; 3090 if (OrigPhi == OldInduction) { 3091 // We know what the end value is. 3092 EndValue = CountRoundDown; 3093 } else { 3094 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3095 Type *StepType = II.getStep()->getType(); 3096 Instruction::CastOps CastOp = 3097 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3098 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3099 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3100 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3101 EndValue->setName("ind.end"); 3102 } 3103 3104 // The new PHI merges the original incoming value, in case of a bypass, 3105 // or the value at the end of the vectorized loop. 3106 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3107 3108 // Fix the scalar body counter (PHI node). 3109 // The old induction's phi node in the scalar body needs the truncated 3110 // value. 3111 for (BasicBlock *BB : LoopBypassBlocks) 3112 BCResumeVal->addIncoming(II.getStartValue(), BB); 3113 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3114 } 3115 3116 // We need the OrigLoop (scalar loop part) latch terminator to help 3117 // produce correct debug info for the middle block BB instructions. 3118 // The legality check stage guarantees that the loop will have a single 3119 // latch. 3120 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3121 "Scalar loop latch terminator isn't a branch"); 3122 BranchInst *ScalarLatchBr = 3123 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3124 3125 // Add a check in the middle block to see if we have completed 3126 // all of the iterations in the first vector loop. 3127 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3128 // If tail is to be folded, we know we don't need to run the remainder. 3129 Value *CmpN = Builder.getTrue(); 3130 if (!Cost->foldTailByMasking()) { 3131 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3132 CountRoundDown, "cmp.n", 3133 LoopMiddleBlock->getTerminator()); 3134 3135 // Here we use the same DebugLoc as the scalar loop latch branch instead 3136 // of the corresponding compare because they may have ended up with 3137 // different line numbers and we want to avoid awkward line stepping while 3138 // debugging. Eg. if the compare has got a line number inside the loop. 3139 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3140 } 3141 3142 BranchInst *BrInst = 3143 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3144 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3145 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3146 3147 // Get ready to start creating new instructions into the vectorized body. 3148 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3149 "Inconsistent vector loop preheader"); 3150 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3151 3152 Optional<MDNode *> VectorizedLoopID = 3153 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3154 LLVMLoopVectorizeFollowupVectorized}); 3155 if (VectorizedLoopID.hasValue()) { 3156 Lp->setLoopID(VectorizedLoopID.getValue()); 3157 3158 // Do not setAlreadyVectorized if loop attributes have been defined 3159 // explicitly. 3160 return LoopVectorPreHeader; 3161 } 3162 3163 // Keep all loop hints from the original loop on the vector loop (we'll 3164 // replace the vectorizer-specific hints below). 3165 if (MDNode *LID = OrigLoop->getLoopID()) 3166 Lp->setLoopID(LID); 3167 3168 LoopVectorizeHints Hints(Lp, true, *ORE); 3169 Hints.setAlreadyVectorized(); 3170 3171 #ifdef EXPENSIVE_CHECKS 3172 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3173 LI->verify(*DT); 3174 #endif 3175 3176 return LoopVectorPreHeader; 3177 } 3178 3179 // Fix up external users of the induction variable. At this point, we are 3180 // in LCSSA form, with all external PHIs that use the IV having one input value, 3181 // coming from the remainder loop. We need those PHIs to also have a correct 3182 // value for the IV when arriving directly from the middle block. 3183 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3184 const InductionDescriptor &II, 3185 Value *CountRoundDown, Value *EndValue, 3186 BasicBlock *MiddleBlock) { 3187 // There are two kinds of external IV usages - those that use the value 3188 // computed in the last iteration (the PHI) and those that use the penultimate 3189 // value (the value that feeds into the phi from the loop latch). 3190 // We allow both, but they, obviously, have different values. 3191 3192 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3193 3194 DenseMap<Value *, Value *> MissingVals; 3195 3196 // An external user of the last iteration's value should see the value that 3197 // the remainder loop uses to initialize its own IV. 3198 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3199 for (User *U : PostInc->users()) { 3200 Instruction *UI = cast<Instruction>(U); 3201 if (!OrigLoop->contains(UI)) { 3202 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3203 MissingVals[UI] = EndValue; 3204 } 3205 } 3206 3207 // An external user of the penultimate value need to see EndValue - Step. 3208 // The simplest way to get this is to recompute it from the constituent SCEVs, 3209 // that is Start + (Step * (CRD - 1)). 3210 for (User *U : OrigPhi->users()) { 3211 auto *UI = cast<Instruction>(U); 3212 if (!OrigLoop->contains(UI)) { 3213 const DataLayout &DL = 3214 OrigLoop->getHeader()->getModule()->getDataLayout(); 3215 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3216 3217 IRBuilder<> B(MiddleBlock->getTerminator()); 3218 Value *CountMinusOne = B.CreateSub( 3219 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3220 Value *CMO = 3221 !II.getStep()->getType()->isIntegerTy() 3222 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3223 II.getStep()->getType()) 3224 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3225 CMO->setName("cast.cmo"); 3226 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3227 Escape->setName("ind.escape"); 3228 MissingVals[UI] = Escape; 3229 } 3230 } 3231 3232 for (auto &I : MissingVals) { 3233 PHINode *PHI = cast<PHINode>(I.first); 3234 // One corner case we have to handle is two IVs "chasing" each-other, 3235 // that is %IV2 = phi [...], [ %IV1, %latch ] 3236 // In this case, if IV1 has an external use, we need to avoid adding both 3237 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3238 // don't already have an incoming value for the middle block. 3239 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3240 PHI->addIncoming(I.second, MiddleBlock); 3241 } 3242 } 3243 3244 namespace { 3245 3246 struct CSEDenseMapInfo { 3247 static bool canHandle(const Instruction *I) { 3248 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3249 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3250 } 3251 3252 static inline Instruction *getEmptyKey() { 3253 return DenseMapInfo<Instruction *>::getEmptyKey(); 3254 } 3255 3256 static inline Instruction *getTombstoneKey() { 3257 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3258 } 3259 3260 static unsigned getHashValue(const Instruction *I) { 3261 assert(canHandle(I) && "Unknown instruction!"); 3262 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3263 I->value_op_end())); 3264 } 3265 3266 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3267 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3268 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3269 return LHS == RHS; 3270 return LHS->isIdenticalTo(RHS); 3271 } 3272 }; 3273 3274 } // end anonymous namespace 3275 3276 ///Perform cse of induction variable instructions. 3277 static void cse(BasicBlock *BB) { 3278 // Perform simple cse. 3279 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3280 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3281 Instruction *In = &*I++; 3282 3283 if (!CSEDenseMapInfo::canHandle(In)) 3284 continue; 3285 3286 // Check if we can replace this instruction with any of the 3287 // visited instructions. 3288 if (Instruction *V = CSEMap.lookup(In)) { 3289 In->replaceAllUsesWith(V); 3290 In->eraseFromParent(); 3291 continue; 3292 } 3293 3294 CSEMap[In] = In; 3295 } 3296 } 3297 3298 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3299 unsigned VF, 3300 bool &NeedToScalarize) { 3301 Function *F = CI->getCalledFunction(); 3302 Type *ScalarRetTy = CI->getType(); 3303 SmallVector<Type *, 4> Tys, ScalarTys; 3304 for (auto &ArgOp : CI->arg_operands()) 3305 ScalarTys.push_back(ArgOp->getType()); 3306 3307 // Estimate cost of scalarized vector call. The source operands are assumed 3308 // to be vectors, so we need to extract individual elements from there, 3309 // execute VF scalar calls, and then gather the result into the vector return 3310 // value. 3311 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3312 TTI::TCK_RecipThroughput); 3313 if (VF == 1) 3314 return ScalarCallCost; 3315 3316 // Compute corresponding vector type for return value and arguments. 3317 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3318 for (Type *ScalarTy : ScalarTys) 3319 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3320 3321 // Compute costs of unpacking argument values for the scalar calls and 3322 // packing the return values to a vector. 3323 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3324 3325 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3326 3327 // If we can't emit a vector call for this function, then the currently found 3328 // cost is the cost we need to return. 3329 NeedToScalarize = true; 3330 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3331 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3332 3333 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3334 return Cost; 3335 3336 // If the corresponding vector cost is cheaper, return its cost. 3337 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3338 TTI::TCK_RecipThroughput); 3339 if (VectorCallCost < Cost) { 3340 NeedToScalarize = false; 3341 return VectorCallCost; 3342 } 3343 return Cost; 3344 } 3345 3346 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3347 unsigned VF) { 3348 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3349 assert(ID && "Expected intrinsic call!"); 3350 3351 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3352 return TTI.getIntrinsicInstrCost(CostAttrs, 3353 TargetTransformInfo::TCK_RecipThroughput); 3354 } 3355 3356 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3357 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3358 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3359 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3360 } 3361 3362 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3363 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3364 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3365 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3366 } 3367 3368 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3369 // For every instruction `I` in MinBWs, truncate the operands, create a 3370 // truncated version of `I` and reextend its result. InstCombine runs 3371 // later and will remove any ext/trunc pairs. 3372 SmallPtrSet<Value *, 4> Erased; 3373 for (const auto &KV : Cost->getMinimalBitwidths()) { 3374 // If the value wasn't vectorized, we must maintain the original scalar 3375 // type. The absence of the value from VectorLoopValueMap indicates that it 3376 // wasn't vectorized. 3377 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3378 continue; 3379 for (unsigned Part = 0; Part < UF; ++Part) { 3380 Value *I = getOrCreateVectorValue(KV.first, Part); 3381 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3382 continue; 3383 Type *OriginalTy = I->getType(); 3384 Type *ScalarTruncatedTy = 3385 IntegerType::get(OriginalTy->getContext(), KV.second); 3386 auto *TruncatedTy = FixedVectorType::get( 3387 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3388 if (TruncatedTy == OriginalTy) 3389 continue; 3390 3391 IRBuilder<> B(cast<Instruction>(I)); 3392 auto ShrinkOperand = [&](Value *V) -> Value * { 3393 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3394 if (ZI->getSrcTy() == TruncatedTy) 3395 return ZI->getOperand(0); 3396 return B.CreateZExtOrTrunc(V, TruncatedTy); 3397 }; 3398 3399 // The actual instruction modification depends on the instruction type, 3400 // unfortunately. 3401 Value *NewI = nullptr; 3402 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3403 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3404 ShrinkOperand(BO->getOperand(1))); 3405 3406 // Any wrapping introduced by shrinking this operation shouldn't be 3407 // considered undefined behavior. So, we can't unconditionally copy 3408 // arithmetic wrapping flags to NewI. 3409 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3410 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3411 NewI = 3412 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3413 ShrinkOperand(CI->getOperand(1))); 3414 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3415 NewI = B.CreateSelect(SI->getCondition(), 3416 ShrinkOperand(SI->getTrueValue()), 3417 ShrinkOperand(SI->getFalseValue())); 3418 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3419 switch (CI->getOpcode()) { 3420 default: 3421 llvm_unreachable("Unhandled cast!"); 3422 case Instruction::Trunc: 3423 NewI = ShrinkOperand(CI->getOperand(0)); 3424 break; 3425 case Instruction::SExt: 3426 NewI = B.CreateSExtOrTrunc( 3427 CI->getOperand(0), 3428 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3429 break; 3430 case Instruction::ZExt: 3431 NewI = B.CreateZExtOrTrunc( 3432 CI->getOperand(0), 3433 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3434 break; 3435 } 3436 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3437 auto Elements0 = 3438 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3439 auto *O0 = B.CreateZExtOrTrunc( 3440 SI->getOperand(0), 3441 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3442 auto Elements1 = 3443 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3444 auto *O1 = B.CreateZExtOrTrunc( 3445 SI->getOperand(1), 3446 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3447 3448 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3449 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3450 // Don't do anything with the operands, just extend the result. 3451 continue; 3452 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3453 auto Elements = 3454 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3455 auto *O0 = B.CreateZExtOrTrunc( 3456 IE->getOperand(0), 3457 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3458 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3459 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3460 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3461 auto Elements = 3462 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3463 auto *O0 = B.CreateZExtOrTrunc( 3464 EE->getOperand(0), 3465 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3466 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3467 } else { 3468 // If we don't know what to do, be conservative and don't do anything. 3469 continue; 3470 } 3471 3472 // Lastly, extend the result. 3473 NewI->takeName(cast<Instruction>(I)); 3474 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3475 I->replaceAllUsesWith(Res); 3476 cast<Instruction>(I)->eraseFromParent(); 3477 Erased.insert(I); 3478 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3479 } 3480 } 3481 3482 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3483 for (const auto &KV : Cost->getMinimalBitwidths()) { 3484 // If the value wasn't vectorized, we must maintain the original scalar 3485 // type. The absence of the value from VectorLoopValueMap indicates that it 3486 // wasn't vectorized. 3487 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3488 continue; 3489 for (unsigned Part = 0; Part < UF; ++Part) { 3490 Value *I = getOrCreateVectorValue(KV.first, Part); 3491 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3492 if (Inst && Inst->use_empty()) { 3493 Value *NewI = Inst->getOperand(0); 3494 Inst->eraseFromParent(); 3495 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3496 } 3497 } 3498 } 3499 } 3500 3501 void InnerLoopVectorizer::fixVectorizedLoop() { 3502 // Insert truncates and extends for any truncated instructions as hints to 3503 // InstCombine. 3504 if (VF > 1) 3505 truncateToMinimalBitwidths(); 3506 3507 // Fix widened non-induction PHIs by setting up the PHI operands. 3508 if (OrigPHIsToFix.size()) { 3509 assert(EnableVPlanNativePath && 3510 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3511 fixNonInductionPHIs(); 3512 } 3513 3514 // At this point every instruction in the original loop is widened to a 3515 // vector form. Now we need to fix the recurrences in the loop. These PHI 3516 // nodes are currently empty because we did not want to introduce cycles. 3517 // This is the second stage of vectorizing recurrences. 3518 fixCrossIterationPHIs(); 3519 3520 // Forget the original basic block. 3521 PSE.getSE()->forgetLoop(OrigLoop); 3522 3523 // Fix-up external users of the induction variables. 3524 for (auto &Entry : Legal->getInductionVars()) 3525 fixupIVUsers(Entry.first, Entry.second, 3526 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3527 IVEndValues[Entry.first], LoopMiddleBlock); 3528 3529 fixLCSSAPHIs(); 3530 for (Instruction *PI : PredicatedInstructions) 3531 sinkScalarOperands(&*PI); 3532 3533 // Remove redundant induction instructions. 3534 cse(LoopVectorBody); 3535 3536 // Set/update profile weights for the vector and remainder loops as original 3537 // loop iterations are now distributed among them. Note that original loop 3538 // represented by LoopScalarBody becomes remainder loop after vectorization. 3539 // 3540 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3541 // end up getting slightly roughened result but that should be OK since 3542 // profile is not inherently precise anyway. Note also possible bypass of 3543 // vector code caused by legality checks is ignored, assigning all the weight 3544 // to the vector loop, optimistically. 3545 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3546 LI->getLoopFor(LoopVectorBody), 3547 LI->getLoopFor(LoopScalarBody), VF * UF); 3548 } 3549 3550 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3551 // In order to support recurrences we need to be able to vectorize Phi nodes. 3552 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3553 // stage #2: We now need to fix the recurrences by adding incoming edges to 3554 // the currently empty PHI nodes. At this point every instruction in the 3555 // original loop is widened to a vector form so we can use them to construct 3556 // the incoming edges. 3557 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3558 // Handle first-order recurrences and reductions that need to be fixed. 3559 if (Legal->isFirstOrderRecurrence(&Phi)) 3560 fixFirstOrderRecurrence(&Phi); 3561 else if (Legal->isReductionVariable(&Phi)) 3562 fixReduction(&Phi); 3563 } 3564 } 3565 3566 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3567 // This is the second phase of vectorizing first-order recurrences. An 3568 // overview of the transformation is described below. Suppose we have the 3569 // following loop. 3570 // 3571 // for (int i = 0; i < n; ++i) 3572 // b[i] = a[i] - a[i - 1]; 3573 // 3574 // There is a first-order recurrence on "a". For this loop, the shorthand 3575 // scalar IR looks like: 3576 // 3577 // scalar.ph: 3578 // s_init = a[-1] 3579 // br scalar.body 3580 // 3581 // scalar.body: 3582 // i = phi [0, scalar.ph], [i+1, scalar.body] 3583 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3584 // s2 = a[i] 3585 // b[i] = s2 - s1 3586 // br cond, scalar.body, ... 3587 // 3588 // In this example, s1 is a recurrence because it's value depends on the 3589 // previous iteration. In the first phase of vectorization, we created a 3590 // temporary value for s1. We now complete the vectorization and produce the 3591 // shorthand vector IR shown below (for VF = 4, UF = 1). 3592 // 3593 // vector.ph: 3594 // v_init = vector(..., ..., ..., a[-1]) 3595 // br vector.body 3596 // 3597 // vector.body 3598 // i = phi [0, vector.ph], [i+4, vector.body] 3599 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3600 // v2 = a[i, i+1, i+2, i+3]; 3601 // v3 = vector(v1(3), v2(0, 1, 2)) 3602 // b[i, i+1, i+2, i+3] = v2 - v3 3603 // br cond, vector.body, middle.block 3604 // 3605 // middle.block: 3606 // x = v2(3) 3607 // br scalar.ph 3608 // 3609 // scalar.ph: 3610 // s_init = phi [x, middle.block], [a[-1], otherwise] 3611 // br scalar.body 3612 // 3613 // After execution completes the vector loop, we extract the next value of 3614 // the recurrence (x) to use as the initial value in the scalar loop. 3615 3616 // Get the original loop preheader and single loop latch. 3617 auto *Preheader = OrigLoop->getLoopPreheader(); 3618 auto *Latch = OrigLoop->getLoopLatch(); 3619 3620 // Get the initial and previous values of the scalar recurrence. 3621 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3622 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3623 3624 // Create a vector from the initial value. 3625 auto *VectorInit = ScalarInit; 3626 if (VF > 1) { 3627 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3628 VectorInit = Builder.CreateInsertElement( 3629 UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)), 3630 VectorInit, Builder.getInt32(VF - 1), "vector.recur.init"); 3631 } 3632 3633 // We constructed a temporary phi node in the first phase of vectorization. 3634 // This phi node will eventually be deleted. 3635 Builder.SetInsertPoint( 3636 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3637 3638 // Create a phi node for the new recurrence. The current value will either be 3639 // the initial value inserted into a vector or loop-varying vector value. 3640 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3641 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3642 3643 // Get the vectorized previous value of the last part UF - 1. It appears last 3644 // among all unrolled iterations, due to the order of their construction. 3645 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3646 3647 // Find and set the insertion point after the previous value if it is an 3648 // instruction. 3649 BasicBlock::iterator InsertPt; 3650 // Note that the previous value may have been constant-folded so it is not 3651 // guaranteed to be an instruction in the vector loop. 3652 // FIXME: Loop invariant values do not form recurrences. We should deal with 3653 // them earlier. 3654 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3655 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3656 else { 3657 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3658 if (isa<PHINode>(PreviousLastPart)) 3659 // If the previous value is a phi node, we should insert after all the phi 3660 // nodes in the block containing the PHI to avoid breaking basic block 3661 // verification. Note that the basic block may be different to 3662 // LoopVectorBody, in case we predicate the loop. 3663 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3664 else 3665 InsertPt = ++PreviousInst->getIterator(); 3666 } 3667 Builder.SetInsertPoint(&*InsertPt); 3668 3669 // We will construct a vector for the recurrence by combining the values for 3670 // the current and previous iterations. This is the required shuffle mask. 3671 SmallVector<int, 8> ShuffleMask(VF); 3672 ShuffleMask[0] = VF - 1; 3673 for (unsigned I = 1; I < VF; ++I) 3674 ShuffleMask[I] = I + VF - 1; 3675 3676 // The vector from which to take the initial value for the current iteration 3677 // (actual or unrolled). Initially, this is the vector phi node. 3678 Value *Incoming = VecPhi; 3679 3680 // Shuffle the current and previous vector and update the vector parts. 3681 for (unsigned Part = 0; Part < UF; ++Part) { 3682 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3683 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3684 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3685 ShuffleMask) 3686 : Incoming; 3687 PhiPart->replaceAllUsesWith(Shuffle); 3688 cast<Instruction>(PhiPart)->eraseFromParent(); 3689 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3690 Incoming = PreviousPart; 3691 } 3692 3693 // Fix the latch value of the new recurrence in the vector loop. 3694 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3695 3696 // Extract the last vector element in the middle block. This will be the 3697 // initial value for the recurrence when jumping to the scalar loop. 3698 auto *ExtractForScalar = Incoming; 3699 if (VF > 1) { 3700 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3701 ExtractForScalar = Builder.CreateExtractElement( 3702 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3703 } 3704 // Extract the second last element in the middle block if the 3705 // Phi is used outside the loop. We need to extract the phi itself 3706 // and not the last element (the phi update in the current iteration). This 3707 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3708 // when the scalar loop is not run at all. 3709 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3710 if (VF > 1) 3711 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3712 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3713 // When loop is unrolled without vectorizing, initialize 3714 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3715 // `Incoming`. This is analogous to the vectorized case above: extracting the 3716 // second last element when VF > 1. 3717 else if (UF > 1) 3718 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3719 3720 // Fix the initial value of the original recurrence in the scalar loop. 3721 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3722 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3723 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3724 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3725 Start->addIncoming(Incoming, BB); 3726 } 3727 3728 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3729 Phi->setName("scalar.recur"); 3730 3731 // Finally, fix users of the recurrence outside the loop. The users will need 3732 // either the last value of the scalar recurrence or the last value of the 3733 // vector recurrence we extracted in the middle block. Since the loop is in 3734 // LCSSA form, we just need to find all the phi nodes for the original scalar 3735 // recurrence in the exit block, and then add an edge for the middle block. 3736 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3737 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3738 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3739 } 3740 } 3741 } 3742 3743 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3744 Constant *Zero = Builder.getInt32(0); 3745 3746 // Get it's reduction variable descriptor. 3747 assert(Legal->isReductionVariable(Phi) && 3748 "Unable to find the reduction variable"); 3749 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3750 3751 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3752 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3753 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3754 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3755 RdxDesc.getMinMaxRecurrenceKind(); 3756 setDebugLocFromInst(Builder, ReductionStartValue); 3757 3758 // We need to generate a reduction vector from the incoming scalar. 3759 // To do so, we need to generate the 'identity' vector and override 3760 // one of the elements with the incoming scalar reduction. We need 3761 // to do it in the vector-loop preheader. 3762 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3763 3764 // This is the vector-clone of the value that leaves the loop. 3765 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3766 3767 // Find the reduction identity variable. Zero for addition, or, xor, 3768 // one for multiplication, -1 for And. 3769 Value *Identity; 3770 Value *VectorStart; 3771 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3772 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3773 // MinMax reduction have the start value as their identify. 3774 if (VF == 1) { 3775 VectorStart = Identity = ReductionStartValue; 3776 } else { 3777 VectorStart = Identity = 3778 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3779 } 3780 } else { 3781 // Handle other reduction kinds: 3782 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3783 RK, VecTy->getScalarType()); 3784 if (VF == 1) { 3785 Identity = Iden; 3786 // This vector is the Identity vector where the first element is the 3787 // incoming scalar reduction. 3788 VectorStart = ReductionStartValue; 3789 } else { 3790 Identity = ConstantVector::getSplat({VF, false}, Iden); 3791 3792 // This vector is the Identity vector where the first element is the 3793 // incoming scalar reduction. 3794 VectorStart = 3795 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3796 } 3797 } 3798 3799 // Wrap flags are in general invalid after vectorization, clear them. 3800 clearReductionWrapFlags(RdxDesc); 3801 3802 // Fix the vector-loop phi. 3803 3804 // Reductions do not have to start at zero. They can start with 3805 // any loop invariant values. 3806 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3807 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3808 3809 for (unsigned Part = 0; Part < UF; ++Part) { 3810 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3811 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3812 // Make sure to add the reduction start value only to the 3813 // first unroll part. 3814 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3815 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3816 cast<PHINode>(VecRdxPhi) 3817 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3818 } 3819 3820 // Before each round, move the insertion point right between 3821 // the PHIs and the values we are going to write. 3822 // This allows us to write both PHINodes and the extractelement 3823 // instructions. 3824 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3825 3826 setDebugLocFromInst(Builder, LoopExitInst); 3827 3828 // If tail is folded by masking, the vector value to leave the loop should be 3829 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3830 // instead of the former. 3831 if (Cost->foldTailByMasking()) { 3832 for (unsigned Part = 0; Part < UF; ++Part) { 3833 Value *VecLoopExitInst = 3834 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3835 Value *Sel = nullptr; 3836 for (User *U : VecLoopExitInst->users()) { 3837 if (isa<SelectInst>(U)) { 3838 assert(!Sel && "Reduction exit feeding two selects"); 3839 Sel = U; 3840 } else 3841 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3842 } 3843 assert(Sel && "Reduction exit feeds no select"); 3844 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3845 } 3846 } 3847 3848 // If the vector reduction can be performed in a smaller type, we truncate 3849 // then extend the loop exit value to enable InstCombine to evaluate the 3850 // entire expression in the smaller type. 3851 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3852 Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF); 3853 Builder.SetInsertPoint( 3854 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3855 VectorParts RdxParts(UF); 3856 for (unsigned Part = 0; Part < UF; ++Part) { 3857 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3858 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3859 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3860 : Builder.CreateZExt(Trunc, VecTy); 3861 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3862 UI != RdxParts[Part]->user_end();) 3863 if (*UI != Trunc) { 3864 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3865 RdxParts[Part] = Extnd; 3866 } else { 3867 ++UI; 3868 } 3869 } 3870 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3871 for (unsigned Part = 0; Part < UF; ++Part) { 3872 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3873 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3874 } 3875 } 3876 3877 // Reduce all of the unrolled parts into a single vector. 3878 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3879 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3880 3881 // The middle block terminator has already been assigned a DebugLoc here (the 3882 // OrigLoop's single latch terminator). We want the whole middle block to 3883 // appear to execute on this line because: (a) it is all compiler generated, 3884 // (b) these instructions are always executed after evaluating the latch 3885 // conditional branch, and (c) other passes may add new predecessors which 3886 // terminate on this line. This is the easiest way to ensure we don't 3887 // accidentally cause an extra step back into the loop while debugging. 3888 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3889 for (unsigned Part = 1; Part < UF; ++Part) { 3890 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3891 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3892 // Floating point operations had to be 'fast' to enable the reduction. 3893 ReducedPartRdx = addFastMathFlag( 3894 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3895 ReducedPartRdx, "bin.rdx"), 3896 RdxDesc.getFastMathFlags()); 3897 else 3898 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3899 RdxPart); 3900 } 3901 3902 if (VF > 1) { 3903 bool NoNaN = Legal->hasFunNoNaNAttr(); 3904 ReducedPartRdx = 3905 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3906 // If the reduction can be performed in a smaller type, we need to extend 3907 // the reduction to the wider type before we branch to the original loop. 3908 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3909 ReducedPartRdx = 3910 RdxDesc.isSigned() 3911 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3912 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3913 } 3914 3915 // Create a phi node that merges control-flow from the backedge-taken check 3916 // block and the middle block. 3917 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3918 LoopScalarPreHeader->getTerminator()); 3919 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3920 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3921 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3922 3923 // Now, we need to fix the users of the reduction variable 3924 // inside and outside of the scalar remainder loop. 3925 // We know that the loop is in LCSSA form. We need to update the 3926 // PHI nodes in the exit blocks. 3927 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3928 // All PHINodes need to have a single entry edge, or two if 3929 // we already fixed them. 3930 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3931 3932 // We found a reduction value exit-PHI. Update it with the 3933 // incoming bypass edge. 3934 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3935 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3936 } // end of the LCSSA phi scan. 3937 3938 // Fix the scalar loop reduction variable with the incoming reduction sum 3939 // from the vector body and from the backedge value. 3940 int IncomingEdgeBlockIdx = 3941 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3942 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3943 // Pick the other block. 3944 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3945 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3946 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3947 } 3948 3949 void InnerLoopVectorizer::clearReductionWrapFlags( 3950 RecurrenceDescriptor &RdxDesc) { 3951 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3952 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3953 RK != RecurrenceDescriptor::RK_IntegerMult) 3954 return; 3955 3956 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3957 assert(LoopExitInstr && "null loop exit instruction"); 3958 SmallVector<Instruction *, 8> Worklist; 3959 SmallPtrSet<Instruction *, 8> Visited; 3960 Worklist.push_back(LoopExitInstr); 3961 Visited.insert(LoopExitInstr); 3962 3963 while (!Worklist.empty()) { 3964 Instruction *Cur = Worklist.pop_back_val(); 3965 if (isa<OverflowingBinaryOperator>(Cur)) 3966 for (unsigned Part = 0; Part < UF; ++Part) { 3967 Value *V = getOrCreateVectorValue(Cur, Part); 3968 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3969 } 3970 3971 for (User *U : Cur->users()) { 3972 Instruction *UI = cast<Instruction>(U); 3973 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3974 Visited.insert(UI).second) 3975 Worklist.push_back(UI); 3976 } 3977 } 3978 } 3979 3980 void InnerLoopVectorizer::fixLCSSAPHIs() { 3981 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3982 if (LCSSAPhi.getNumIncomingValues() == 1) { 3983 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3984 // Non-instruction incoming values will have only one value. 3985 unsigned LastLane = 0; 3986 if (isa<Instruction>(IncomingValue)) 3987 LastLane = Cost->isUniformAfterVectorization( 3988 cast<Instruction>(IncomingValue), VF) 3989 ? 0 3990 : VF - 1; 3991 // Can be a loop invariant incoming value or the last scalar value to be 3992 // extracted from the vectorized loop. 3993 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3994 Value *lastIncomingValue = 3995 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3996 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3997 } 3998 } 3999 } 4000 4001 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4002 // The basic block and loop containing the predicated instruction. 4003 auto *PredBB = PredInst->getParent(); 4004 auto *VectorLoop = LI->getLoopFor(PredBB); 4005 4006 // Initialize a worklist with the operands of the predicated instruction. 4007 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4008 4009 // Holds instructions that we need to analyze again. An instruction may be 4010 // reanalyzed if we don't yet know if we can sink it or not. 4011 SmallVector<Instruction *, 8> InstsToReanalyze; 4012 4013 // Returns true if a given use occurs in the predicated block. Phi nodes use 4014 // their operands in their corresponding predecessor blocks. 4015 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4016 auto *I = cast<Instruction>(U.getUser()); 4017 BasicBlock *BB = I->getParent(); 4018 if (auto *Phi = dyn_cast<PHINode>(I)) 4019 BB = Phi->getIncomingBlock( 4020 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4021 return BB == PredBB; 4022 }; 4023 4024 // Iteratively sink the scalarized operands of the predicated instruction 4025 // into the block we created for it. When an instruction is sunk, it's 4026 // operands are then added to the worklist. The algorithm ends after one pass 4027 // through the worklist doesn't sink a single instruction. 4028 bool Changed; 4029 do { 4030 // Add the instructions that need to be reanalyzed to the worklist, and 4031 // reset the changed indicator. 4032 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4033 InstsToReanalyze.clear(); 4034 Changed = false; 4035 4036 while (!Worklist.empty()) { 4037 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4038 4039 // We can't sink an instruction if it is a phi node, is already in the 4040 // predicated block, is not in the loop, or may have side effects. 4041 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4042 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4043 continue; 4044 4045 // It's legal to sink the instruction if all its uses occur in the 4046 // predicated block. Otherwise, there's nothing to do yet, and we may 4047 // need to reanalyze the instruction. 4048 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4049 InstsToReanalyze.push_back(I); 4050 continue; 4051 } 4052 4053 // Move the instruction to the beginning of the predicated block, and add 4054 // it's operands to the worklist. 4055 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4056 Worklist.insert(I->op_begin(), I->op_end()); 4057 4058 // The sinking may have enabled other instructions to be sunk, so we will 4059 // need to iterate. 4060 Changed = true; 4061 } 4062 } while (Changed); 4063 } 4064 4065 void InnerLoopVectorizer::fixNonInductionPHIs() { 4066 for (PHINode *OrigPhi : OrigPHIsToFix) { 4067 PHINode *NewPhi = 4068 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4069 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4070 4071 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4072 predecessors(OrigPhi->getParent())); 4073 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4074 predecessors(NewPhi->getParent())); 4075 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4076 "Scalar and Vector BB should have the same number of predecessors"); 4077 4078 // The insertion point in Builder may be invalidated by the time we get 4079 // here. Force the Builder insertion point to something valid so that we do 4080 // not run into issues during insertion point restore in 4081 // getOrCreateVectorValue calls below. 4082 Builder.SetInsertPoint(NewPhi); 4083 4084 // The predecessor order is preserved and we can rely on mapping between 4085 // scalar and vector block predecessors. 4086 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4087 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4088 4089 // When looking up the new scalar/vector values to fix up, use incoming 4090 // values from original phi. 4091 Value *ScIncV = 4092 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4093 4094 // Scalar incoming value may need a broadcast 4095 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4096 NewPhi->addIncoming(NewIncV, NewPredBB); 4097 } 4098 } 4099 } 4100 4101 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4102 unsigned UF, unsigned VF, 4103 bool IsPtrLoopInvariant, 4104 SmallBitVector &IsIndexLoopInvariant, 4105 VPTransformState &State) { 4106 // Construct a vector GEP by widening the operands of the scalar GEP as 4107 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4108 // results in a vector of pointers when at least one operand of the GEP 4109 // is vector-typed. Thus, to keep the representation compact, we only use 4110 // vector-typed operands for loop-varying values. 4111 4112 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4113 // If we are vectorizing, but the GEP has only loop-invariant operands, 4114 // the GEP we build (by only using vector-typed operands for 4115 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4116 // produce a vector of pointers, we need to either arbitrarily pick an 4117 // operand to broadcast, or broadcast a clone of the original GEP. 4118 // Here, we broadcast a clone of the original. 4119 // 4120 // TODO: If at some point we decide to scalarize instructions having 4121 // loop-invariant operands, this special case will no longer be 4122 // required. We would add the scalarization decision to 4123 // collectLoopScalars() and teach getVectorValue() to broadcast 4124 // the lane-zero scalar value. 4125 auto *Clone = Builder.Insert(GEP->clone()); 4126 for (unsigned Part = 0; Part < UF; ++Part) { 4127 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4128 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4129 addMetadata(EntryPart, GEP); 4130 } 4131 } else { 4132 // If the GEP has at least one loop-varying operand, we are sure to 4133 // produce a vector of pointers. But if we are only unrolling, we want 4134 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4135 // produce with the code below will be scalar (if VF == 1) or vector 4136 // (otherwise). Note that for the unroll-only case, we still maintain 4137 // values in the vector mapping with initVector, as we do for other 4138 // instructions. 4139 for (unsigned Part = 0; Part < UF; ++Part) { 4140 // The pointer operand of the new GEP. If it's loop-invariant, we 4141 // won't broadcast it. 4142 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4143 : State.get(Operands.getOperand(0), Part); 4144 4145 // Collect all the indices for the new GEP. If any index is 4146 // loop-invariant, we won't broadcast it. 4147 SmallVector<Value *, 4> Indices; 4148 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4149 VPValue *Operand = Operands.getOperand(I); 4150 if (IsIndexLoopInvariant[I - 1]) 4151 Indices.push_back(State.get(Operand, {0, 0})); 4152 else 4153 Indices.push_back(State.get(Operand, Part)); 4154 } 4155 4156 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4157 // but it should be a vector, otherwise. 4158 auto *NewGEP = 4159 GEP->isInBounds() 4160 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4161 Indices) 4162 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4163 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4164 "NewGEP is not a pointer vector"); 4165 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4166 addMetadata(NewGEP, GEP); 4167 } 4168 } 4169 } 4170 4171 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4172 unsigned VF) { 4173 PHINode *P = cast<PHINode>(PN); 4174 if (EnableVPlanNativePath) { 4175 // Currently we enter here in the VPlan-native path for non-induction 4176 // PHIs where all control flow is uniform. We simply widen these PHIs. 4177 // Create a vector phi with no operands - the vector phi operands will be 4178 // set at the end of vector code generation. 4179 Type *VecTy = 4180 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4181 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4182 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4183 OrigPHIsToFix.push_back(P); 4184 4185 return; 4186 } 4187 4188 assert(PN->getParent() == OrigLoop->getHeader() && 4189 "Non-header phis should have been handled elsewhere"); 4190 4191 // In order to support recurrences we need to be able to vectorize Phi nodes. 4192 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4193 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4194 // this value when we vectorize all of the instructions that use the PHI. 4195 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4196 for (unsigned Part = 0; Part < UF; ++Part) { 4197 // This is phase one of vectorizing PHIs. 4198 Type *VecTy = 4199 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4200 Value *EntryPart = PHINode::Create( 4201 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4202 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4203 } 4204 return; 4205 } 4206 4207 setDebugLocFromInst(Builder, P); 4208 4209 // This PHINode must be an induction variable. 4210 // Make sure that we know about it. 4211 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4212 4213 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4214 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4215 4216 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4217 // which can be found from the original scalar operations. 4218 switch (II.getKind()) { 4219 case InductionDescriptor::IK_NoInduction: 4220 llvm_unreachable("Unknown induction"); 4221 case InductionDescriptor::IK_IntInduction: 4222 case InductionDescriptor::IK_FpInduction: 4223 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4224 case InductionDescriptor::IK_PtrInduction: { 4225 // Handle the pointer induction variable case. 4226 assert(P->getType()->isPointerTy() && "Unexpected type."); 4227 // This is the normalized GEP that starts counting at zero. 4228 Value *PtrInd = Induction; 4229 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4230 // Determine the number of scalars we need to generate for each unroll 4231 // iteration. If the instruction is uniform, we only need to generate the 4232 // first lane. Otherwise, we generate all VF values. 4233 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4234 // These are the scalar results. Notice that we don't generate vector GEPs 4235 // because scalar GEPs result in better code. 4236 for (unsigned Part = 0; Part < UF; ++Part) { 4237 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4238 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4239 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4240 Value *SclrGep = 4241 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4242 SclrGep->setName("next.gep"); 4243 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4244 } 4245 } 4246 return; 4247 } 4248 } 4249 } 4250 4251 /// A helper function for checking whether an integer division-related 4252 /// instruction may divide by zero (in which case it must be predicated if 4253 /// executed conditionally in the scalar code). 4254 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4255 /// Non-zero divisors that are non compile-time constants will not be 4256 /// converted into multiplication, so we will still end up scalarizing 4257 /// the division, but can do so w/o predication. 4258 static bool mayDivideByZero(Instruction &I) { 4259 assert((I.getOpcode() == Instruction::UDiv || 4260 I.getOpcode() == Instruction::SDiv || 4261 I.getOpcode() == Instruction::URem || 4262 I.getOpcode() == Instruction::SRem) && 4263 "Unexpected instruction"); 4264 Value *Divisor = I.getOperand(1); 4265 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4266 return !CInt || CInt->isZero(); 4267 } 4268 4269 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4270 VPTransformState &State) { 4271 switch (I.getOpcode()) { 4272 case Instruction::Call: 4273 case Instruction::Br: 4274 case Instruction::PHI: 4275 case Instruction::GetElementPtr: 4276 case Instruction::Select: 4277 llvm_unreachable("This instruction is handled by a different recipe."); 4278 case Instruction::UDiv: 4279 case Instruction::SDiv: 4280 case Instruction::SRem: 4281 case Instruction::URem: 4282 case Instruction::Add: 4283 case Instruction::FAdd: 4284 case Instruction::Sub: 4285 case Instruction::FSub: 4286 case Instruction::FNeg: 4287 case Instruction::Mul: 4288 case Instruction::FMul: 4289 case Instruction::FDiv: 4290 case Instruction::FRem: 4291 case Instruction::Shl: 4292 case Instruction::LShr: 4293 case Instruction::AShr: 4294 case Instruction::And: 4295 case Instruction::Or: 4296 case Instruction::Xor: { 4297 // Just widen unops and binops. 4298 setDebugLocFromInst(Builder, &I); 4299 4300 for (unsigned Part = 0; Part < UF; ++Part) { 4301 SmallVector<Value *, 2> Ops; 4302 for (VPValue *VPOp : User.operands()) 4303 Ops.push_back(State.get(VPOp, Part)); 4304 4305 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4306 4307 if (auto *VecOp = dyn_cast<Instruction>(V)) 4308 VecOp->copyIRFlags(&I); 4309 4310 // Use this vector value for all users of the original instruction. 4311 VectorLoopValueMap.setVectorValue(&I, Part, V); 4312 addMetadata(V, &I); 4313 } 4314 4315 break; 4316 } 4317 case Instruction::ICmp: 4318 case Instruction::FCmp: { 4319 // Widen compares. Generate vector compares. 4320 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4321 auto *Cmp = cast<CmpInst>(&I); 4322 setDebugLocFromInst(Builder, Cmp); 4323 for (unsigned Part = 0; Part < UF; ++Part) { 4324 Value *A = State.get(User.getOperand(0), Part); 4325 Value *B = State.get(User.getOperand(1), Part); 4326 Value *C = nullptr; 4327 if (FCmp) { 4328 // Propagate fast math flags. 4329 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4330 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4331 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4332 } else { 4333 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4334 } 4335 VectorLoopValueMap.setVectorValue(&I, Part, C); 4336 addMetadata(C, &I); 4337 } 4338 4339 break; 4340 } 4341 4342 case Instruction::ZExt: 4343 case Instruction::SExt: 4344 case Instruction::FPToUI: 4345 case Instruction::FPToSI: 4346 case Instruction::FPExt: 4347 case Instruction::PtrToInt: 4348 case Instruction::IntToPtr: 4349 case Instruction::SIToFP: 4350 case Instruction::UIToFP: 4351 case Instruction::Trunc: 4352 case Instruction::FPTrunc: 4353 case Instruction::BitCast: { 4354 auto *CI = cast<CastInst>(&I); 4355 setDebugLocFromInst(Builder, CI); 4356 4357 /// Vectorize casts. 4358 Type *DestTy = 4359 (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF); 4360 4361 for (unsigned Part = 0; Part < UF; ++Part) { 4362 Value *A = State.get(User.getOperand(0), Part); 4363 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4364 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4365 addMetadata(Cast, &I); 4366 } 4367 break; 4368 } 4369 default: 4370 // This instruction is not vectorized by simple widening. 4371 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4372 llvm_unreachable("Unhandled instruction!"); 4373 } // end of switch. 4374 } 4375 4376 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4377 VPTransformState &State) { 4378 assert(!isa<DbgInfoIntrinsic>(I) && 4379 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4380 setDebugLocFromInst(Builder, &I); 4381 4382 Module *M = I.getParent()->getParent()->getParent(); 4383 auto *CI = cast<CallInst>(&I); 4384 4385 SmallVector<Type *, 4> Tys; 4386 for (Value *ArgOperand : CI->arg_operands()) 4387 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4388 4389 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4390 4391 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4392 // version of the instruction. 4393 // Is it beneficial to perform intrinsic call compared to lib call? 4394 bool NeedToScalarize = false; 4395 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4396 bool UseVectorIntrinsic = 4397 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4398 assert((UseVectorIntrinsic || !NeedToScalarize) && 4399 "Instruction should be scalarized elsewhere."); 4400 4401 for (unsigned Part = 0; Part < UF; ++Part) { 4402 SmallVector<Value *, 4> Args; 4403 for (auto &I : enumerate(ArgOperands.operands())) { 4404 // Some intrinsics have a scalar argument - don't replace it with a 4405 // vector. 4406 Value *Arg; 4407 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4408 Arg = State.get(I.value(), Part); 4409 else 4410 Arg = State.get(I.value(), {0, 0}); 4411 Args.push_back(Arg); 4412 } 4413 4414 Function *VectorF; 4415 if (UseVectorIntrinsic) { 4416 // Use vector version of the intrinsic. 4417 Type *TysForDecl[] = {CI->getType()}; 4418 if (VF > 1) 4419 TysForDecl[0] = 4420 FixedVectorType::get(CI->getType()->getScalarType(), VF); 4421 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4422 assert(VectorF && "Can't retrieve vector intrinsic."); 4423 } else { 4424 // Use vector version of the function call. 4425 const VFShape Shape = 4426 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4427 #ifndef NDEBUG 4428 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4429 "Can't create vector function."); 4430 #endif 4431 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4432 } 4433 SmallVector<OperandBundleDef, 1> OpBundles; 4434 CI->getOperandBundlesAsDefs(OpBundles); 4435 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4436 4437 if (isa<FPMathOperator>(V)) 4438 V->copyFastMathFlags(CI); 4439 4440 VectorLoopValueMap.setVectorValue(&I, Part, V); 4441 addMetadata(V, &I); 4442 } 4443 } 4444 4445 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4446 VPUser &Operands, 4447 bool InvariantCond, 4448 VPTransformState &State) { 4449 setDebugLocFromInst(Builder, &I); 4450 4451 // The condition can be loop invariant but still defined inside the 4452 // loop. This means that we can't just use the original 'cond' value. 4453 // We have to take the 'vectorized' value and pick the first lane. 4454 // Instcombine will make this a no-op. 4455 auto *InvarCond = 4456 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4457 4458 for (unsigned Part = 0; Part < UF; ++Part) { 4459 Value *Cond = 4460 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4461 Value *Op0 = State.get(Operands.getOperand(1), Part); 4462 Value *Op1 = State.get(Operands.getOperand(2), Part); 4463 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4464 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4465 addMetadata(Sel, &I); 4466 } 4467 } 4468 4469 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4470 // We should not collect Scalars more than once per VF. Right now, this 4471 // function is called from collectUniformsAndScalars(), which already does 4472 // this check. Collecting Scalars for VF=1 does not make any sense. 4473 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4474 "This function should not be visited twice for the same VF"); 4475 4476 SmallSetVector<Instruction *, 8> Worklist; 4477 4478 // These sets are used to seed the analysis with pointers used by memory 4479 // accesses that will remain scalar. 4480 SmallSetVector<Instruction *, 8> ScalarPtrs; 4481 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4482 4483 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4484 // The pointer operands of loads and stores will be scalar as long as the 4485 // memory access is not a gather or scatter operation. The value operand of a 4486 // store will remain scalar if the store is scalarized. 4487 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4488 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4489 assert(WideningDecision != CM_Unknown && 4490 "Widening decision should be ready at this moment"); 4491 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4492 if (Ptr == Store->getValueOperand()) 4493 return WideningDecision == CM_Scalarize; 4494 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4495 "Ptr is neither a value or pointer operand"); 4496 return WideningDecision != CM_GatherScatter; 4497 }; 4498 4499 // A helper that returns true if the given value is a bitcast or 4500 // getelementptr instruction contained in the loop. 4501 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4502 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4503 isa<GetElementPtrInst>(V)) && 4504 !TheLoop->isLoopInvariant(V); 4505 }; 4506 4507 // A helper that evaluates a memory access's use of a pointer. If the use 4508 // will be a scalar use, and the pointer is only used by memory accesses, we 4509 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4510 // PossibleNonScalarPtrs. 4511 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4512 // We only care about bitcast and getelementptr instructions contained in 4513 // the loop. 4514 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4515 return; 4516 4517 // If the pointer has already been identified as scalar (e.g., if it was 4518 // also identified as uniform), there's nothing to do. 4519 auto *I = cast<Instruction>(Ptr); 4520 if (Worklist.count(I)) 4521 return; 4522 4523 // If the use of the pointer will be a scalar use, and all users of the 4524 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4525 // place the pointer in PossibleNonScalarPtrs. 4526 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4527 return isa<LoadInst>(U) || isa<StoreInst>(U); 4528 })) 4529 ScalarPtrs.insert(I); 4530 else 4531 PossibleNonScalarPtrs.insert(I); 4532 }; 4533 4534 // We seed the scalars analysis with three classes of instructions: (1) 4535 // instructions marked uniform-after-vectorization, (2) bitcast and 4536 // getelementptr instructions used by memory accesses requiring a scalar use, 4537 // and (3) pointer induction variables and their update instructions (we 4538 // currently only scalarize these). 4539 // 4540 // (1) Add to the worklist all instructions that have been identified as 4541 // uniform-after-vectorization. 4542 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4543 4544 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4545 // memory accesses requiring a scalar use. The pointer operands of loads and 4546 // stores will be scalar as long as the memory accesses is not a gather or 4547 // scatter operation. The value operand of a store will remain scalar if the 4548 // store is scalarized. 4549 for (auto *BB : TheLoop->blocks()) 4550 for (auto &I : *BB) { 4551 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4552 evaluatePtrUse(Load, Load->getPointerOperand()); 4553 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4554 evaluatePtrUse(Store, Store->getPointerOperand()); 4555 evaluatePtrUse(Store, Store->getValueOperand()); 4556 } 4557 } 4558 for (auto *I : ScalarPtrs) 4559 if (!PossibleNonScalarPtrs.count(I)) { 4560 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4561 Worklist.insert(I); 4562 } 4563 4564 // (3) Add to the worklist all pointer induction variables and their update 4565 // instructions. 4566 // 4567 // TODO: Once we are able to vectorize pointer induction variables we should 4568 // no longer insert them into the worklist here. 4569 auto *Latch = TheLoop->getLoopLatch(); 4570 for (auto &Induction : Legal->getInductionVars()) { 4571 auto *Ind = Induction.first; 4572 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4573 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4574 continue; 4575 Worklist.insert(Ind); 4576 Worklist.insert(IndUpdate); 4577 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4578 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4579 << "\n"); 4580 } 4581 4582 // Insert the forced scalars. 4583 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4584 // induction variable when the PHI user is scalarized. 4585 auto ForcedScalar = ForcedScalars.find(VF); 4586 if (ForcedScalar != ForcedScalars.end()) 4587 for (auto *I : ForcedScalar->second) 4588 Worklist.insert(I); 4589 4590 // Expand the worklist by looking through any bitcasts and getelementptr 4591 // instructions we've already identified as scalar. This is similar to the 4592 // expansion step in collectLoopUniforms(); however, here we're only 4593 // expanding to include additional bitcasts and getelementptr instructions. 4594 unsigned Idx = 0; 4595 while (Idx != Worklist.size()) { 4596 Instruction *Dst = Worklist[Idx++]; 4597 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4598 continue; 4599 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4600 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4601 auto *J = cast<Instruction>(U); 4602 return !TheLoop->contains(J) || Worklist.count(J) || 4603 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4604 isScalarUse(J, Src)); 4605 })) { 4606 Worklist.insert(Src); 4607 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4608 } 4609 } 4610 4611 // An induction variable will remain scalar if all users of the induction 4612 // variable and induction variable update remain scalar. 4613 for (auto &Induction : Legal->getInductionVars()) { 4614 auto *Ind = Induction.first; 4615 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4616 4617 // We already considered pointer induction variables, so there's no reason 4618 // to look at their users again. 4619 // 4620 // TODO: Once we are able to vectorize pointer induction variables we 4621 // should no longer skip over them here. 4622 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4623 continue; 4624 4625 // If tail-folding is applied, the primary induction variable will be used 4626 // to feed a vector compare. 4627 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4628 continue; 4629 4630 // Determine if all users of the induction variable are scalar after 4631 // vectorization. 4632 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4633 auto *I = cast<Instruction>(U); 4634 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4635 }); 4636 if (!ScalarInd) 4637 continue; 4638 4639 // Determine if all users of the induction variable update instruction are 4640 // scalar after vectorization. 4641 auto ScalarIndUpdate = 4642 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4643 auto *I = cast<Instruction>(U); 4644 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4645 }); 4646 if (!ScalarIndUpdate) 4647 continue; 4648 4649 // The induction variable and its update instruction will remain scalar. 4650 Worklist.insert(Ind); 4651 Worklist.insert(IndUpdate); 4652 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4653 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4654 << "\n"); 4655 } 4656 4657 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4658 } 4659 4660 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4661 if (!blockNeedsPredication(I->getParent())) 4662 return false; 4663 switch(I->getOpcode()) { 4664 default: 4665 break; 4666 case Instruction::Load: 4667 case Instruction::Store: { 4668 if (!Legal->isMaskRequired(I)) 4669 return false; 4670 auto *Ptr = getLoadStorePointerOperand(I); 4671 auto *Ty = getMemInstValueType(I); 4672 // We have already decided how to vectorize this instruction, get that 4673 // result. 4674 if (VF > 1) { 4675 InstWidening WideningDecision = getWideningDecision(I, VF); 4676 assert(WideningDecision != CM_Unknown && 4677 "Widening decision should be ready at this moment"); 4678 return WideningDecision == CM_Scalarize; 4679 } 4680 const Align Alignment = getLoadStoreAlignment(I); 4681 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4682 isLegalMaskedGather(Ty, Alignment)) 4683 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4684 isLegalMaskedScatter(Ty, Alignment)); 4685 } 4686 case Instruction::UDiv: 4687 case Instruction::SDiv: 4688 case Instruction::SRem: 4689 case Instruction::URem: 4690 return mayDivideByZero(*I); 4691 } 4692 return false; 4693 } 4694 4695 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4696 unsigned VF) { 4697 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4698 assert(getWideningDecision(I, VF) == CM_Unknown && 4699 "Decision should not be set yet."); 4700 auto *Group = getInterleavedAccessGroup(I); 4701 assert(Group && "Must have a group."); 4702 4703 // If the instruction's allocated size doesn't equal it's type size, it 4704 // requires padding and will be scalarized. 4705 auto &DL = I->getModule()->getDataLayout(); 4706 auto *ScalarTy = getMemInstValueType(I); 4707 if (hasIrregularType(ScalarTy, DL, VF)) 4708 return false; 4709 4710 // Check if masking is required. 4711 // A Group may need masking for one of two reasons: it resides in a block that 4712 // needs predication, or it was decided to use masking to deal with gaps. 4713 bool PredicatedAccessRequiresMasking = 4714 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4715 bool AccessWithGapsRequiresMasking = 4716 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4717 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4718 return true; 4719 4720 // If masked interleaving is required, we expect that the user/target had 4721 // enabled it, because otherwise it either wouldn't have been created or 4722 // it should have been invalidated by the CostModel. 4723 assert(useMaskedInterleavedAccesses(TTI) && 4724 "Masked interleave-groups for predicated accesses are not enabled."); 4725 4726 auto *Ty = getMemInstValueType(I); 4727 const Align Alignment = getLoadStoreAlignment(I); 4728 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4729 : TTI.isLegalMaskedStore(Ty, Alignment); 4730 } 4731 4732 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4733 unsigned VF) { 4734 // Get and ensure we have a valid memory instruction. 4735 LoadInst *LI = dyn_cast<LoadInst>(I); 4736 StoreInst *SI = dyn_cast<StoreInst>(I); 4737 assert((LI || SI) && "Invalid memory instruction"); 4738 4739 auto *Ptr = getLoadStorePointerOperand(I); 4740 4741 // In order to be widened, the pointer should be consecutive, first of all. 4742 if (!Legal->isConsecutivePtr(Ptr)) 4743 return false; 4744 4745 // If the instruction is a store located in a predicated block, it will be 4746 // scalarized. 4747 if (isScalarWithPredication(I)) 4748 return false; 4749 4750 // If the instruction's allocated size doesn't equal it's type size, it 4751 // requires padding and will be scalarized. 4752 auto &DL = I->getModule()->getDataLayout(); 4753 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4754 if (hasIrregularType(ScalarTy, DL, VF)) 4755 return false; 4756 4757 return true; 4758 } 4759 4760 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4761 // We should not collect Uniforms more than once per VF. Right now, 4762 // this function is called from collectUniformsAndScalars(), which 4763 // already does this check. Collecting Uniforms for VF=1 does not make any 4764 // sense. 4765 4766 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4767 "This function should not be visited twice for the same VF"); 4768 4769 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4770 // not analyze again. Uniforms.count(VF) will return 1. 4771 Uniforms[VF].clear(); 4772 4773 // We now know that the loop is vectorizable! 4774 // Collect instructions inside the loop that will remain uniform after 4775 // vectorization. 4776 4777 // Global values, params and instructions outside of current loop are out of 4778 // scope. 4779 auto isOutOfScope = [&](Value *V) -> bool { 4780 Instruction *I = dyn_cast<Instruction>(V); 4781 return (!I || !TheLoop->contains(I)); 4782 }; 4783 4784 SetVector<Instruction *> Worklist; 4785 BasicBlock *Latch = TheLoop->getLoopLatch(); 4786 4787 // Instructions that are scalar with predication must not be considered 4788 // uniform after vectorization, because that would create an erroneous 4789 // replicating region where only a single instance out of VF should be formed. 4790 // TODO: optimize such seldom cases if found important, see PR40816. 4791 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4792 if (isScalarWithPredication(I, VF)) { 4793 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4794 << *I << "\n"); 4795 return; 4796 } 4797 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4798 Worklist.insert(I); 4799 }; 4800 4801 // Start with the conditional branch. If the branch condition is an 4802 // instruction contained in the loop that is only used by the branch, it is 4803 // uniform. 4804 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4805 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4806 addToWorklistIfAllowed(Cmp); 4807 4808 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4809 // are pointers that are treated like consecutive pointers during 4810 // vectorization. The pointer operands of interleaved accesses are an 4811 // example. 4812 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4813 4814 // Holds pointer operands of instructions that are possibly non-uniform. 4815 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4816 4817 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4818 InstWidening WideningDecision = getWideningDecision(I, VF); 4819 assert(WideningDecision != CM_Unknown && 4820 "Widening decision should be ready at this moment"); 4821 4822 return (WideningDecision == CM_Widen || 4823 WideningDecision == CM_Widen_Reverse || 4824 WideningDecision == CM_Interleave); 4825 }; 4826 // Iterate over the instructions in the loop, and collect all 4827 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4828 // that a consecutive-like pointer operand will be scalarized, we collect it 4829 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4830 // getelementptr instruction can be used by both vectorized and scalarized 4831 // memory instructions. For example, if a loop loads and stores from the same 4832 // location, but the store is conditional, the store will be scalarized, and 4833 // the getelementptr won't remain uniform. 4834 for (auto *BB : TheLoop->blocks()) 4835 for (auto &I : *BB) { 4836 // If there's no pointer operand, there's nothing to do. 4837 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4838 if (!Ptr) 4839 continue; 4840 4841 // True if all users of Ptr are memory accesses that have Ptr as their 4842 // pointer operand. 4843 auto UsersAreMemAccesses = 4844 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4845 return getLoadStorePointerOperand(U) == Ptr; 4846 }); 4847 4848 // Ensure the memory instruction will not be scalarized or used by 4849 // gather/scatter, making its pointer operand non-uniform. If the pointer 4850 // operand is used by any instruction other than a memory access, we 4851 // conservatively assume the pointer operand may be non-uniform. 4852 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4853 PossibleNonUniformPtrs.insert(Ptr); 4854 4855 // If the memory instruction will be vectorized and its pointer operand 4856 // is consecutive-like, or interleaving - the pointer operand should 4857 // remain uniform. 4858 else 4859 ConsecutiveLikePtrs.insert(Ptr); 4860 } 4861 4862 // Add to the Worklist all consecutive and consecutive-like pointers that 4863 // aren't also identified as possibly non-uniform. 4864 for (auto *V : ConsecutiveLikePtrs) 4865 if (!PossibleNonUniformPtrs.count(V)) 4866 addToWorklistIfAllowed(V); 4867 4868 // Expand Worklist in topological order: whenever a new instruction 4869 // is added , its users should be already inside Worklist. It ensures 4870 // a uniform instruction will only be used by uniform instructions. 4871 unsigned idx = 0; 4872 while (idx != Worklist.size()) { 4873 Instruction *I = Worklist[idx++]; 4874 4875 for (auto OV : I->operand_values()) { 4876 // isOutOfScope operands cannot be uniform instructions. 4877 if (isOutOfScope(OV)) 4878 continue; 4879 // First order recurrence Phi's should typically be considered 4880 // non-uniform. 4881 auto *OP = dyn_cast<PHINode>(OV); 4882 if (OP && Legal->isFirstOrderRecurrence(OP)) 4883 continue; 4884 // If all the users of the operand are uniform, then add the 4885 // operand into the uniform worklist. 4886 auto *OI = cast<Instruction>(OV); 4887 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4888 auto *J = cast<Instruction>(U); 4889 return Worklist.count(J) || 4890 (OI == getLoadStorePointerOperand(J) && 4891 isUniformDecision(J, VF)); 4892 })) 4893 addToWorklistIfAllowed(OI); 4894 } 4895 } 4896 4897 // Returns true if Ptr is the pointer operand of a memory access instruction 4898 // I, and I is known to not require scalarization. 4899 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4900 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4901 }; 4902 4903 // For an instruction to be added into Worklist above, all its users inside 4904 // the loop should also be in Worklist. However, this condition cannot be 4905 // true for phi nodes that form a cyclic dependence. We must process phi 4906 // nodes separately. An induction variable will remain uniform if all users 4907 // of the induction variable and induction variable update remain uniform. 4908 // The code below handles both pointer and non-pointer induction variables. 4909 for (auto &Induction : Legal->getInductionVars()) { 4910 auto *Ind = Induction.first; 4911 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4912 4913 // Determine if all users of the induction variable are uniform after 4914 // vectorization. 4915 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4916 auto *I = cast<Instruction>(U); 4917 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4918 isVectorizedMemAccessUse(I, Ind); 4919 }); 4920 if (!UniformInd) 4921 continue; 4922 4923 // Determine if all users of the induction variable update instruction are 4924 // uniform after vectorization. 4925 auto UniformIndUpdate = 4926 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4927 auto *I = cast<Instruction>(U); 4928 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4929 isVectorizedMemAccessUse(I, IndUpdate); 4930 }); 4931 if (!UniformIndUpdate) 4932 continue; 4933 4934 // The induction variable and its update instruction will remain uniform. 4935 addToWorklistIfAllowed(Ind); 4936 addToWorklistIfAllowed(IndUpdate); 4937 } 4938 4939 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4940 } 4941 4942 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4943 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4944 4945 if (Legal->getRuntimePointerChecking()->Need) { 4946 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4947 "runtime pointer checks needed. Enable vectorization of this " 4948 "loop with '#pragma clang loop vectorize(enable)' when " 4949 "compiling with -Os/-Oz", 4950 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4951 return true; 4952 } 4953 4954 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4955 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4956 "runtime SCEV checks needed. Enable vectorization of this " 4957 "loop with '#pragma clang loop vectorize(enable)' when " 4958 "compiling with -Os/-Oz", 4959 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4960 return true; 4961 } 4962 4963 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4964 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4965 reportVectorizationFailure("Runtime stride check for small trip count", 4966 "runtime stride == 1 checks needed. Enable vectorization of " 4967 "this loop without such check by compiling with -Os/-Oz", 4968 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4969 return true; 4970 } 4971 4972 return false; 4973 } 4974 4975 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 4976 unsigned UserIC) { 4977 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4978 // TODO: It may by useful to do since it's still likely to be dynamically 4979 // uniform if the target can skip. 4980 reportVectorizationFailure( 4981 "Not inserting runtime ptr check for divergent target", 4982 "runtime pointer checks needed. Not enabled for divergent target", 4983 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4984 return None; 4985 } 4986 4987 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4988 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4989 if (TC == 1) { 4990 reportVectorizationFailure("Single iteration (non) loop", 4991 "loop trip count is one, irrelevant for vectorization", 4992 "SingleIterationLoop", ORE, TheLoop); 4993 return None; 4994 } 4995 4996 switch (ScalarEpilogueStatus) { 4997 case CM_ScalarEpilogueAllowed: 4998 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 4999 case CM_ScalarEpilogueNotNeededUsePredicate: 5000 LLVM_DEBUG( 5001 dbgs() << "LV: vector predicate hint/switch found.\n" 5002 << "LV: Not allowing scalar epilogue, creating predicated " 5003 << "vector loop.\n"); 5004 break; 5005 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5006 // fallthrough as a special case of OptForSize 5007 case CM_ScalarEpilogueNotAllowedOptSize: 5008 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5009 LLVM_DEBUG( 5010 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5011 else 5012 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5013 << "count.\n"); 5014 5015 // Bail if runtime checks are required, which are not good when optimising 5016 // for size. 5017 if (runtimeChecksRequired()) 5018 return None; 5019 break; 5020 } 5021 5022 // Now try the tail folding 5023 5024 // Invalidate interleave groups that require an epilogue if we can't mask 5025 // the interleave-group. 5026 if (!useMaskedInterleavedAccesses(TTI)) { 5027 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5028 "No decisions should have been taken at this point"); 5029 // Note: There is no need to invalidate any cost modeling decisions here, as 5030 // non where taken so far. 5031 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5032 } 5033 5034 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5035 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5036 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5037 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5038 // Accept MaxVF if we do not have a tail. 5039 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5040 return MaxVF; 5041 } 5042 5043 // If we don't know the precise trip count, or if the trip count that we 5044 // found modulo the vectorization factor is not zero, try to fold the tail 5045 // by masking. 5046 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5047 if (Legal->prepareToFoldTailByMasking()) { 5048 FoldTailByMasking = true; 5049 return MaxVF; 5050 } 5051 5052 if (TC == 0) { 5053 reportVectorizationFailure( 5054 "Unable to calculate the loop count due to complex control flow", 5055 "unable to calculate the loop count due to complex control flow", 5056 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5057 return None; 5058 } 5059 5060 reportVectorizationFailure( 5061 "Cannot optimize for size and vectorize at the same time.", 5062 "cannot optimize for size and vectorize at the same time. " 5063 "Enable vectorization of this loop with '#pragma clang loop " 5064 "vectorize(enable)' when compiling with -Os/-Oz", 5065 "NoTailLoopWithOptForSize", ORE, TheLoop); 5066 return None; 5067 } 5068 5069 unsigned 5070 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5071 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5072 unsigned SmallestType, WidestType; 5073 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5074 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5075 5076 // Get the maximum safe dependence distance in bits computed by LAA. 5077 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5078 // the memory accesses that is most restrictive (involved in the smallest 5079 // dependence distance). 5080 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5081 5082 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5083 5084 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5085 // Note that both WidestRegister and WidestType may not be a powers of 2. 5086 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5087 5088 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5089 << " / " << WidestType << " bits.\n"); 5090 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5091 << WidestRegister << " bits.\n"); 5092 5093 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5094 " into one vector!"); 5095 if (MaxVectorSize == 0) { 5096 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5097 MaxVectorSize = 1; 5098 return MaxVectorSize; 5099 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5100 isPowerOf2_32(ConstTripCount)) { 5101 // We need to clamp the VF to be the ConstTripCount. There is no point in 5102 // choosing a higher viable VF as done in the loop below. 5103 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5104 << ConstTripCount << "\n"); 5105 MaxVectorSize = ConstTripCount; 5106 return MaxVectorSize; 5107 } 5108 5109 unsigned MaxVF = MaxVectorSize; 5110 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5111 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5112 // Collect all viable vectorization factors larger than the default MaxVF 5113 // (i.e. MaxVectorSize). 5114 SmallVector<unsigned, 8> VFs; 5115 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5116 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5117 VFs.push_back(VS); 5118 5119 // For each VF calculate its register usage. 5120 auto RUs = calculateRegisterUsage(VFs); 5121 5122 // Select the largest VF which doesn't require more registers than existing 5123 // ones. 5124 for (int i = RUs.size() - 1; i >= 0; --i) { 5125 bool Selected = true; 5126 for (auto& pair : RUs[i].MaxLocalUsers) { 5127 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5128 if (pair.second > TargetNumRegisters) 5129 Selected = false; 5130 } 5131 if (Selected) { 5132 MaxVF = VFs[i]; 5133 break; 5134 } 5135 } 5136 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5137 if (MaxVF < MinVF) { 5138 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5139 << ") with target's minimum: " << MinVF << '\n'); 5140 MaxVF = MinVF; 5141 } 5142 } 5143 } 5144 return MaxVF; 5145 } 5146 5147 VectorizationFactor 5148 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5149 float Cost = expectedCost(1).first; 5150 const float ScalarCost = Cost; 5151 unsigned Width = 1; 5152 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5153 5154 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5155 if (ForceVectorization && MaxVF > 1) { 5156 // Ignore scalar width, because the user explicitly wants vectorization. 5157 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5158 // evaluation. 5159 Cost = std::numeric_limits<float>::max(); 5160 } 5161 5162 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5163 // Notice that the vector loop needs to be executed less times, so 5164 // we need to divide the cost of the vector loops by the width of 5165 // the vector elements. 5166 VectorizationCostTy C = expectedCost(i); 5167 float VectorCost = C.first / (float)i; 5168 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5169 << " costs: " << (int)VectorCost << ".\n"); 5170 if (!C.second && !ForceVectorization) { 5171 LLVM_DEBUG( 5172 dbgs() << "LV: Not considering vector loop of width " << i 5173 << " because it will not generate any vector instructions.\n"); 5174 continue; 5175 } 5176 if (VectorCost < Cost) { 5177 Cost = VectorCost; 5178 Width = i; 5179 } 5180 } 5181 5182 if (!EnableCondStoresVectorization && NumPredStores) { 5183 reportVectorizationFailure("There are conditional stores.", 5184 "store that is conditionally executed prevents vectorization", 5185 "ConditionalStore", ORE, TheLoop); 5186 Width = 1; 5187 Cost = ScalarCost; 5188 } 5189 5190 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5191 << "LV: Vectorization seems to be not beneficial, " 5192 << "but was forced by a user.\n"); 5193 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5194 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5195 return Factor; 5196 } 5197 5198 std::pair<unsigned, unsigned> 5199 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5200 unsigned MinWidth = -1U; 5201 unsigned MaxWidth = 8; 5202 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5203 5204 // For each block. 5205 for (BasicBlock *BB : TheLoop->blocks()) { 5206 // For each instruction in the loop. 5207 for (Instruction &I : BB->instructionsWithoutDebug()) { 5208 Type *T = I.getType(); 5209 5210 // Skip ignored values. 5211 if (ValuesToIgnore.count(&I)) 5212 continue; 5213 5214 // Only examine Loads, Stores and PHINodes. 5215 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5216 continue; 5217 5218 // Examine PHI nodes that are reduction variables. Update the type to 5219 // account for the recurrence type. 5220 if (auto *PN = dyn_cast<PHINode>(&I)) { 5221 if (!Legal->isReductionVariable(PN)) 5222 continue; 5223 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5224 T = RdxDesc.getRecurrenceType(); 5225 } 5226 5227 // Examine the stored values. 5228 if (auto *ST = dyn_cast<StoreInst>(&I)) 5229 T = ST->getValueOperand()->getType(); 5230 5231 // Ignore loaded pointer types and stored pointer types that are not 5232 // vectorizable. 5233 // 5234 // FIXME: The check here attempts to predict whether a load or store will 5235 // be vectorized. We only know this for certain after a VF has 5236 // been selected. Here, we assume that if an access can be 5237 // vectorized, it will be. We should also look at extending this 5238 // optimization to non-pointer types. 5239 // 5240 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5241 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5242 continue; 5243 5244 MinWidth = std::min(MinWidth, 5245 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5246 MaxWidth = std::max(MaxWidth, 5247 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5248 } 5249 } 5250 5251 return {MinWidth, MaxWidth}; 5252 } 5253 5254 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5255 unsigned LoopCost) { 5256 // -- The interleave heuristics -- 5257 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5258 // There are many micro-architectural considerations that we can't predict 5259 // at this level. For example, frontend pressure (on decode or fetch) due to 5260 // code size, or the number and capabilities of the execution ports. 5261 // 5262 // We use the following heuristics to select the interleave count: 5263 // 1. If the code has reductions, then we interleave to break the cross 5264 // iteration dependency. 5265 // 2. If the loop is really small, then we interleave to reduce the loop 5266 // overhead. 5267 // 3. We don't interleave if we think that we will spill registers to memory 5268 // due to the increased register pressure. 5269 5270 if (!isScalarEpilogueAllowed()) 5271 return 1; 5272 5273 // We used the distance for the interleave count. 5274 if (Legal->getMaxSafeDepDistBytes() != -1U) 5275 return 1; 5276 5277 // Do not interleave loops with a relatively small known or estimated trip 5278 // count. 5279 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5280 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5281 return 1; 5282 5283 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5284 // We divide by these constants so assume that we have at least one 5285 // instruction that uses at least one register. 5286 for (auto& pair : R.MaxLocalUsers) { 5287 pair.second = std::max(pair.second, 1U); 5288 } 5289 5290 // We calculate the interleave count using the following formula. 5291 // Subtract the number of loop invariants from the number of available 5292 // registers. These registers are used by all of the interleaved instances. 5293 // Next, divide the remaining registers by the number of registers that is 5294 // required by the loop, in order to estimate how many parallel instances 5295 // fit without causing spills. All of this is rounded down if necessary to be 5296 // a power of two. We want power of two interleave count to simplify any 5297 // addressing operations or alignment considerations. 5298 // We also want power of two interleave counts to ensure that the induction 5299 // variable of the vector loop wraps to zero, when tail is folded by masking; 5300 // this currently happens when OptForSize, in which case IC is set to 1 above. 5301 unsigned IC = UINT_MAX; 5302 5303 for (auto& pair : R.MaxLocalUsers) { 5304 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5305 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5306 << " registers of " 5307 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5308 if (VF == 1) { 5309 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5310 TargetNumRegisters = ForceTargetNumScalarRegs; 5311 } else { 5312 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5313 TargetNumRegisters = ForceTargetNumVectorRegs; 5314 } 5315 unsigned MaxLocalUsers = pair.second; 5316 unsigned LoopInvariantRegs = 0; 5317 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5318 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5319 5320 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5321 // Don't count the induction variable as interleaved. 5322 if (EnableIndVarRegisterHeur) { 5323 TmpIC = 5324 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5325 std::max(1U, (MaxLocalUsers - 1))); 5326 } 5327 5328 IC = std::min(IC, TmpIC); 5329 } 5330 5331 // Clamp the interleave ranges to reasonable counts. 5332 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5333 5334 // Check if the user has overridden the max. 5335 if (VF == 1) { 5336 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5337 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5338 } else { 5339 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5340 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5341 } 5342 5343 // If trip count is known or estimated compile time constant, limit the 5344 // interleave count to be less than the trip count divided by VF. 5345 if (BestKnownTC) { 5346 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5347 } 5348 5349 // If we did not calculate the cost for VF (because the user selected the VF) 5350 // then we calculate the cost of VF here. 5351 if (LoopCost == 0) 5352 LoopCost = expectedCost(VF).first; 5353 5354 assert(LoopCost && "Non-zero loop cost expected"); 5355 5356 // Clamp the calculated IC to be between the 1 and the max interleave count 5357 // that the target and trip count allows. 5358 if (IC > MaxInterleaveCount) 5359 IC = MaxInterleaveCount; 5360 else if (IC < 1) 5361 IC = 1; 5362 5363 // Interleave if we vectorized this loop and there is a reduction that could 5364 // benefit from interleaving. 5365 if (VF > 1 && !Legal->getReductionVars().empty()) { 5366 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5367 return IC; 5368 } 5369 5370 // Note that if we've already vectorized the loop we will have done the 5371 // runtime check and so interleaving won't require further checks. 5372 bool InterleavingRequiresRuntimePointerCheck = 5373 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5374 5375 // We want to interleave small loops in order to reduce the loop overhead and 5376 // potentially expose ILP opportunities. 5377 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5378 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5379 // We assume that the cost overhead is 1 and we use the cost model 5380 // to estimate the cost of the loop and interleave until the cost of the 5381 // loop overhead is about 5% of the cost of the loop. 5382 unsigned SmallIC = 5383 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5384 5385 // Interleave until store/load ports (estimated by max interleave count) are 5386 // saturated. 5387 unsigned NumStores = Legal->getNumStores(); 5388 unsigned NumLoads = Legal->getNumLoads(); 5389 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5390 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5391 5392 // If we have a scalar reduction (vector reductions are already dealt with 5393 // by this point), we can increase the critical path length if the loop 5394 // we're interleaving is inside another loop. Limit, by default to 2, so the 5395 // critical path only gets increased by one reduction operation. 5396 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5397 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5398 SmallIC = std::min(SmallIC, F); 5399 StoresIC = std::min(StoresIC, F); 5400 LoadsIC = std::min(LoadsIC, F); 5401 } 5402 5403 if (EnableLoadStoreRuntimeInterleave && 5404 std::max(StoresIC, LoadsIC) > SmallIC) { 5405 LLVM_DEBUG( 5406 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5407 return std::max(StoresIC, LoadsIC); 5408 } 5409 5410 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5411 return SmallIC; 5412 } 5413 5414 // Interleave if this is a large loop (small loops are already dealt with by 5415 // this point) that could benefit from interleaving. 5416 bool HasReductions = !Legal->getReductionVars().empty(); 5417 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5418 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5419 return IC; 5420 } 5421 5422 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5423 return 1; 5424 } 5425 5426 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5427 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5428 // This function calculates the register usage by measuring the highest number 5429 // of values that are alive at a single location. Obviously, this is a very 5430 // rough estimation. We scan the loop in a topological order in order and 5431 // assign a number to each instruction. We use RPO to ensure that defs are 5432 // met before their users. We assume that each instruction that has in-loop 5433 // users starts an interval. We record every time that an in-loop value is 5434 // used, so we have a list of the first and last occurrences of each 5435 // instruction. Next, we transpose this data structure into a multi map that 5436 // holds the list of intervals that *end* at a specific location. This multi 5437 // map allows us to perform a linear search. We scan the instructions linearly 5438 // and record each time that a new interval starts, by placing it in a set. 5439 // If we find this value in the multi-map then we remove it from the set. 5440 // The max register usage is the maximum size of the set. 5441 // We also search for instructions that are defined outside the loop, but are 5442 // used inside the loop. We need this number separately from the max-interval 5443 // usage number because when we unroll, loop-invariant values do not take 5444 // more register. 5445 LoopBlocksDFS DFS(TheLoop); 5446 DFS.perform(LI); 5447 5448 RegisterUsage RU; 5449 5450 // Each 'key' in the map opens a new interval. The values 5451 // of the map are the index of the 'last seen' usage of the 5452 // instruction that is the key. 5453 using IntervalMap = DenseMap<Instruction *, unsigned>; 5454 5455 // Maps instruction to its index. 5456 SmallVector<Instruction *, 64> IdxToInstr; 5457 // Marks the end of each interval. 5458 IntervalMap EndPoint; 5459 // Saves the list of instruction indices that are used in the loop. 5460 SmallPtrSet<Instruction *, 8> Ends; 5461 // Saves the list of values that are used in the loop but are 5462 // defined outside the loop, such as arguments and constants. 5463 SmallPtrSet<Value *, 8> LoopInvariants; 5464 5465 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5466 for (Instruction &I : BB->instructionsWithoutDebug()) { 5467 IdxToInstr.push_back(&I); 5468 5469 // Save the end location of each USE. 5470 for (Value *U : I.operands()) { 5471 auto *Instr = dyn_cast<Instruction>(U); 5472 5473 // Ignore non-instruction values such as arguments, constants, etc. 5474 if (!Instr) 5475 continue; 5476 5477 // If this instruction is outside the loop then record it and continue. 5478 if (!TheLoop->contains(Instr)) { 5479 LoopInvariants.insert(Instr); 5480 continue; 5481 } 5482 5483 // Overwrite previous end points. 5484 EndPoint[Instr] = IdxToInstr.size(); 5485 Ends.insert(Instr); 5486 } 5487 } 5488 } 5489 5490 // Saves the list of intervals that end with the index in 'key'. 5491 using InstrList = SmallVector<Instruction *, 2>; 5492 DenseMap<unsigned, InstrList> TransposeEnds; 5493 5494 // Transpose the EndPoints to a list of values that end at each index. 5495 for (auto &Interval : EndPoint) 5496 TransposeEnds[Interval.second].push_back(Interval.first); 5497 5498 SmallPtrSet<Instruction *, 8> OpenIntervals; 5499 5500 // Get the size of the widest register. 5501 unsigned MaxSafeDepDist = -1U; 5502 if (Legal->getMaxSafeDepDistBytes() != -1U) 5503 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5504 unsigned WidestRegister = 5505 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5506 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5507 5508 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5509 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5510 5511 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5512 5513 // A lambda that gets the register usage for the given type and VF. 5514 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5515 if (Ty->isTokenTy()) 5516 return 0U; 5517 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5518 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5519 }; 5520 5521 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5522 Instruction *I = IdxToInstr[i]; 5523 5524 // Remove all of the instructions that end at this location. 5525 InstrList &List = TransposeEnds[i]; 5526 for (Instruction *ToRemove : List) 5527 OpenIntervals.erase(ToRemove); 5528 5529 // Ignore instructions that are never used within the loop. 5530 if (!Ends.count(I)) 5531 continue; 5532 5533 // Skip ignored values. 5534 if (ValuesToIgnore.count(I)) 5535 continue; 5536 5537 // For each VF find the maximum usage of registers. 5538 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5539 // Count the number of live intervals. 5540 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5541 5542 if (VFs[j] == 1) { 5543 for (auto Inst : OpenIntervals) { 5544 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5545 if (RegUsage.find(ClassID) == RegUsage.end()) 5546 RegUsage[ClassID] = 1; 5547 else 5548 RegUsage[ClassID] += 1; 5549 } 5550 } else { 5551 collectUniformsAndScalars(VFs[j]); 5552 for (auto Inst : OpenIntervals) { 5553 // Skip ignored values for VF > 1. 5554 if (VecValuesToIgnore.count(Inst)) 5555 continue; 5556 if (isScalarAfterVectorization(Inst, VFs[j])) { 5557 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5558 if (RegUsage.find(ClassID) == RegUsage.end()) 5559 RegUsage[ClassID] = 1; 5560 else 5561 RegUsage[ClassID] += 1; 5562 } else { 5563 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5564 if (RegUsage.find(ClassID) == RegUsage.end()) 5565 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5566 else 5567 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5568 } 5569 } 5570 } 5571 5572 for (auto& pair : RegUsage) { 5573 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5574 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5575 else 5576 MaxUsages[j][pair.first] = pair.second; 5577 } 5578 } 5579 5580 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5581 << OpenIntervals.size() << '\n'); 5582 5583 // Add the current instruction to the list of open intervals. 5584 OpenIntervals.insert(I); 5585 } 5586 5587 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5588 SmallMapVector<unsigned, unsigned, 4> Invariant; 5589 5590 for (auto Inst : LoopInvariants) { 5591 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5592 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5593 if (Invariant.find(ClassID) == Invariant.end()) 5594 Invariant[ClassID] = Usage; 5595 else 5596 Invariant[ClassID] += Usage; 5597 } 5598 5599 LLVM_DEBUG({ 5600 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5601 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5602 << " item\n"; 5603 for (const auto &pair : MaxUsages[i]) { 5604 dbgs() << "LV(REG): RegisterClass: " 5605 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5606 << " registers\n"; 5607 } 5608 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5609 << " item\n"; 5610 for (const auto &pair : Invariant) { 5611 dbgs() << "LV(REG): RegisterClass: " 5612 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5613 << " registers\n"; 5614 } 5615 }); 5616 5617 RU.LoopInvariantRegs = Invariant; 5618 RU.MaxLocalUsers = MaxUsages[i]; 5619 RUs[i] = RU; 5620 } 5621 5622 return RUs; 5623 } 5624 5625 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5626 // TODO: Cost model for emulated masked load/store is completely 5627 // broken. This hack guides the cost model to use an artificially 5628 // high enough value to practically disable vectorization with such 5629 // operations, except where previously deployed legality hack allowed 5630 // using very low cost values. This is to avoid regressions coming simply 5631 // from moving "masked load/store" check from legality to cost model. 5632 // Masked Load/Gather emulation was previously never allowed. 5633 // Limited number of Masked Store/Scatter emulation was allowed. 5634 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5635 return isa<LoadInst>(I) || 5636 (isa<StoreInst>(I) && 5637 NumPredStores > NumberOfStoresToPredicate); 5638 } 5639 5640 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5641 // If we aren't vectorizing the loop, or if we've already collected the 5642 // instructions to scalarize, there's nothing to do. Collection may already 5643 // have occurred if we have a user-selected VF and are now computing the 5644 // expected cost for interleaving. 5645 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5646 return; 5647 5648 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5649 // not profitable to scalarize any instructions, the presence of VF in the 5650 // map will indicate that we've analyzed it already. 5651 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5652 5653 // Find all the instructions that are scalar with predication in the loop and 5654 // determine if it would be better to not if-convert the blocks they are in. 5655 // If so, we also record the instructions to scalarize. 5656 for (BasicBlock *BB : TheLoop->blocks()) { 5657 if (!blockNeedsPredication(BB)) 5658 continue; 5659 for (Instruction &I : *BB) 5660 if (isScalarWithPredication(&I)) { 5661 ScalarCostsTy ScalarCosts; 5662 // Do not apply discount logic if hacked cost is needed 5663 // for emulated masked memrefs. 5664 if (!useEmulatedMaskMemRefHack(&I) && 5665 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5666 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5667 // Remember that BB will remain after vectorization. 5668 PredicatedBBsAfterVectorization.insert(BB); 5669 } 5670 } 5671 } 5672 5673 int LoopVectorizationCostModel::computePredInstDiscount( 5674 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5675 unsigned VF) { 5676 assert(!isUniformAfterVectorization(PredInst, VF) && 5677 "Instruction marked uniform-after-vectorization will be predicated"); 5678 5679 // Initialize the discount to zero, meaning that the scalar version and the 5680 // vector version cost the same. 5681 int Discount = 0; 5682 5683 // Holds instructions to analyze. The instructions we visit are mapped in 5684 // ScalarCosts. Those instructions are the ones that would be scalarized if 5685 // we find that the scalar version costs less. 5686 SmallVector<Instruction *, 8> Worklist; 5687 5688 // Returns true if the given instruction can be scalarized. 5689 auto canBeScalarized = [&](Instruction *I) -> bool { 5690 // We only attempt to scalarize instructions forming a single-use chain 5691 // from the original predicated block that would otherwise be vectorized. 5692 // Although not strictly necessary, we give up on instructions we know will 5693 // already be scalar to avoid traversing chains that are unlikely to be 5694 // beneficial. 5695 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5696 isScalarAfterVectorization(I, VF)) 5697 return false; 5698 5699 // If the instruction is scalar with predication, it will be analyzed 5700 // separately. We ignore it within the context of PredInst. 5701 if (isScalarWithPredication(I)) 5702 return false; 5703 5704 // If any of the instruction's operands are uniform after vectorization, 5705 // the instruction cannot be scalarized. This prevents, for example, a 5706 // masked load from being scalarized. 5707 // 5708 // We assume we will only emit a value for lane zero of an instruction 5709 // marked uniform after vectorization, rather than VF identical values. 5710 // Thus, if we scalarize an instruction that uses a uniform, we would 5711 // create uses of values corresponding to the lanes we aren't emitting code 5712 // for. This behavior can be changed by allowing getScalarValue to clone 5713 // the lane zero values for uniforms rather than asserting. 5714 for (Use &U : I->operands()) 5715 if (auto *J = dyn_cast<Instruction>(U.get())) 5716 if (isUniformAfterVectorization(J, VF)) 5717 return false; 5718 5719 // Otherwise, we can scalarize the instruction. 5720 return true; 5721 }; 5722 5723 // Compute the expected cost discount from scalarizing the entire expression 5724 // feeding the predicated instruction. We currently only consider expressions 5725 // that are single-use instruction chains. 5726 Worklist.push_back(PredInst); 5727 while (!Worklist.empty()) { 5728 Instruction *I = Worklist.pop_back_val(); 5729 5730 // If we've already analyzed the instruction, there's nothing to do. 5731 if (ScalarCosts.find(I) != ScalarCosts.end()) 5732 continue; 5733 5734 // Compute the cost of the vector instruction. Note that this cost already 5735 // includes the scalarization overhead of the predicated instruction. 5736 unsigned VectorCost = getInstructionCost(I, VF).first; 5737 5738 // Compute the cost of the scalarized instruction. This cost is the cost of 5739 // the instruction as if it wasn't if-converted and instead remained in the 5740 // predicated block. We will scale this cost by block probability after 5741 // computing the scalarization overhead. 5742 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5743 5744 // Compute the scalarization overhead of needed insertelement instructions 5745 // and phi nodes. 5746 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5747 ScalarCost += TTI.getScalarizationOverhead( 5748 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5749 APInt::getAllOnesValue(VF), true, false); 5750 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI, 5751 TTI::TCK_RecipThroughput); 5752 } 5753 5754 // Compute the scalarization overhead of needed extractelement 5755 // instructions. For each of the instruction's operands, if the operand can 5756 // be scalarized, add it to the worklist; otherwise, account for the 5757 // overhead. 5758 for (Use &U : I->operands()) 5759 if (auto *J = dyn_cast<Instruction>(U.get())) { 5760 assert(VectorType::isValidElementType(J->getType()) && 5761 "Instruction has non-scalar type"); 5762 if (canBeScalarized(J)) 5763 Worklist.push_back(J); 5764 else if (needsExtract(J, VF)) 5765 ScalarCost += TTI.getScalarizationOverhead( 5766 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5767 APInt::getAllOnesValue(VF), false, true); 5768 } 5769 5770 // Scale the total scalar cost by block probability. 5771 ScalarCost /= getReciprocalPredBlockProb(); 5772 5773 // Compute the discount. A non-negative discount means the vector version 5774 // of the instruction costs more, and scalarizing would be beneficial. 5775 Discount += VectorCost - ScalarCost; 5776 ScalarCosts[I] = ScalarCost; 5777 } 5778 5779 return Discount; 5780 } 5781 5782 LoopVectorizationCostModel::VectorizationCostTy 5783 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5784 VectorizationCostTy Cost; 5785 5786 // For each block. 5787 for (BasicBlock *BB : TheLoop->blocks()) { 5788 VectorizationCostTy BlockCost; 5789 5790 // For each instruction in the old loop. 5791 for (Instruction &I : BB->instructionsWithoutDebug()) { 5792 // Skip ignored values. 5793 if (ValuesToIgnore.count(&I) || (VF > 1 && VecValuesToIgnore.count(&I))) 5794 continue; 5795 5796 VectorizationCostTy C = getInstructionCost(&I, VF); 5797 5798 // Check if we should override the cost. 5799 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5800 C.first = ForceTargetInstructionCost; 5801 5802 BlockCost.first += C.first; 5803 BlockCost.second |= C.second; 5804 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5805 << " for VF " << VF << " For instruction: " << I 5806 << '\n'); 5807 } 5808 5809 // If we are vectorizing a predicated block, it will have been 5810 // if-converted. This means that the block's instructions (aside from 5811 // stores and instructions that may divide by zero) will now be 5812 // unconditionally executed. For the scalar case, we may not always execute 5813 // the predicated block. Thus, scale the block's cost by the probability of 5814 // executing it. 5815 if (VF == 1 && blockNeedsPredication(BB)) 5816 BlockCost.first /= getReciprocalPredBlockProb(); 5817 5818 Cost.first += BlockCost.first; 5819 Cost.second |= BlockCost.second; 5820 } 5821 5822 return Cost; 5823 } 5824 5825 /// Gets Address Access SCEV after verifying that the access pattern 5826 /// is loop invariant except the induction variable dependence. 5827 /// 5828 /// This SCEV can be sent to the Target in order to estimate the address 5829 /// calculation cost. 5830 static const SCEV *getAddressAccessSCEV( 5831 Value *Ptr, 5832 LoopVectorizationLegality *Legal, 5833 PredicatedScalarEvolution &PSE, 5834 const Loop *TheLoop) { 5835 5836 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5837 if (!Gep) 5838 return nullptr; 5839 5840 // We are looking for a gep with all loop invariant indices except for one 5841 // which should be an induction variable. 5842 auto SE = PSE.getSE(); 5843 unsigned NumOperands = Gep->getNumOperands(); 5844 for (unsigned i = 1; i < NumOperands; ++i) { 5845 Value *Opd = Gep->getOperand(i); 5846 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5847 !Legal->isInductionVariable(Opd)) 5848 return nullptr; 5849 } 5850 5851 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5852 return PSE.getSCEV(Ptr); 5853 } 5854 5855 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5856 return Legal->hasStride(I->getOperand(0)) || 5857 Legal->hasStride(I->getOperand(1)); 5858 } 5859 5860 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5861 unsigned VF) { 5862 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5863 Type *ValTy = getMemInstValueType(I); 5864 auto SE = PSE.getSE(); 5865 5866 unsigned AS = getLoadStoreAddressSpace(I); 5867 Value *Ptr = getLoadStorePointerOperand(I); 5868 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5869 5870 // Figure out whether the access is strided and get the stride value 5871 // if it's known in compile time 5872 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5873 5874 // Get the cost of the scalar memory instruction and address computation. 5875 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5876 5877 // Don't pass *I here, since it is scalar but will actually be part of a 5878 // vectorized loop where the user of it is a vectorized instruction. 5879 const Align Alignment = getLoadStoreAlignment(I); 5880 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5881 Alignment, AS, 5882 TTI::TCK_RecipThroughput); 5883 5884 // Get the overhead of the extractelement and insertelement instructions 5885 // we might create due to scalarization. 5886 Cost += getScalarizationOverhead(I, VF); 5887 5888 // If we have a predicated store, it may not be executed for each vector 5889 // lane. Scale the cost by the probability of executing the predicated 5890 // block. 5891 if (isPredicatedInst(I)) { 5892 Cost /= getReciprocalPredBlockProb(); 5893 5894 if (useEmulatedMaskMemRefHack(I)) 5895 // Artificially setting to a high enough value to practically disable 5896 // vectorization with such operations. 5897 Cost = 3000000; 5898 } 5899 5900 return Cost; 5901 } 5902 5903 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5904 unsigned VF) { 5905 Type *ValTy = getMemInstValueType(I); 5906 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5907 Value *Ptr = getLoadStorePointerOperand(I); 5908 unsigned AS = getLoadStoreAddressSpace(I); 5909 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5910 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5911 5912 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5913 "Stride should be 1 or -1 for consecutive memory access"); 5914 const Align Alignment = getLoadStoreAlignment(I); 5915 unsigned Cost = 0; 5916 if (Legal->isMaskRequired(I)) 5917 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5918 CostKind); 5919 else 5920 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5921 CostKind, I); 5922 5923 bool Reverse = ConsecutiveStride < 0; 5924 if (Reverse) 5925 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5926 return Cost; 5927 } 5928 5929 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5930 unsigned VF) { 5931 Type *ValTy = getMemInstValueType(I); 5932 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5933 const Align Alignment = getLoadStoreAlignment(I); 5934 unsigned AS = getLoadStoreAddressSpace(I); 5935 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5936 if (isa<LoadInst>(I)) { 5937 return TTI.getAddressComputationCost(ValTy) + 5938 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5939 CostKind) + 5940 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5941 } 5942 StoreInst *SI = cast<StoreInst>(I); 5943 5944 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5945 return TTI.getAddressComputationCost(ValTy) + 5946 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5947 CostKind) + 5948 (isLoopInvariantStoreValue 5949 ? 0 5950 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5951 VF - 1)); 5952 } 5953 5954 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5955 unsigned VF) { 5956 Type *ValTy = getMemInstValueType(I); 5957 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5958 const Align Alignment = getLoadStoreAlignment(I); 5959 const Value *Ptr = getLoadStorePointerOperand(I); 5960 5961 return TTI.getAddressComputationCost(VectorTy) + 5962 TTI.getGatherScatterOpCost( 5963 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 5964 TargetTransformInfo::TCK_RecipThroughput, I); 5965 } 5966 5967 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5968 unsigned VF) { 5969 Type *ValTy = getMemInstValueType(I); 5970 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5971 unsigned AS = getLoadStoreAddressSpace(I); 5972 5973 auto Group = getInterleavedAccessGroup(I); 5974 assert(Group && "Fail to get an interleaved access group."); 5975 5976 unsigned InterleaveFactor = Group->getFactor(); 5977 auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor); 5978 5979 // Holds the indices of existing members in an interleaved load group. 5980 // An interleaved store group doesn't need this as it doesn't allow gaps. 5981 SmallVector<unsigned, 4> Indices; 5982 if (isa<LoadInst>(I)) { 5983 for (unsigned i = 0; i < InterleaveFactor; i++) 5984 if (Group->getMember(i)) 5985 Indices.push_back(i); 5986 } 5987 5988 // Calculate the cost of the whole interleaved group. 5989 bool UseMaskForGaps = 5990 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5991 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5992 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 5993 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 5994 5995 if (Group->isReverse()) { 5996 // TODO: Add support for reversed masked interleaved access. 5997 assert(!Legal->isMaskRequired(I) && 5998 "Reverse masked interleaved access not supported."); 5999 Cost += Group->getNumMembers() * 6000 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6001 } 6002 return Cost; 6003 } 6004 6005 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6006 unsigned VF) { 6007 // Calculate scalar cost only. Vectorization cost should be ready at this 6008 // moment. 6009 if (VF == 1) { 6010 Type *ValTy = getMemInstValueType(I); 6011 const Align Alignment = getLoadStoreAlignment(I); 6012 unsigned AS = getLoadStoreAddressSpace(I); 6013 6014 return TTI.getAddressComputationCost(ValTy) + 6015 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6016 TTI::TCK_RecipThroughput, I); 6017 } 6018 return getWideningCost(I, VF); 6019 } 6020 6021 LoopVectorizationCostModel::VectorizationCostTy 6022 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6023 // If we know that this instruction will remain uniform, check the cost of 6024 // the scalar version. 6025 if (isUniformAfterVectorization(I, VF)) 6026 VF = 1; 6027 6028 if (VF > 1 && isProfitableToScalarize(I, VF)) 6029 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6030 6031 // Forced scalars do not have any scalarization overhead. 6032 auto ForcedScalar = ForcedScalars.find(VF); 6033 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 6034 auto InstSet = ForcedScalar->second; 6035 if (InstSet.count(I)) 6036 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6037 } 6038 6039 Type *VectorTy; 6040 unsigned C = getInstructionCost(I, VF, VectorTy); 6041 6042 bool TypeNotScalarized = 6043 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6044 return VectorizationCostTy(C, TypeNotScalarized); 6045 } 6046 6047 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6048 unsigned VF) { 6049 6050 if (VF == 1) 6051 return 0; 6052 6053 unsigned Cost = 0; 6054 Type *RetTy = ToVectorTy(I->getType(), VF); 6055 if (!RetTy->isVoidTy() && 6056 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6057 Cost += TTI.getScalarizationOverhead( 6058 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6059 6060 // Some targets keep addresses scalar. 6061 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6062 return Cost; 6063 6064 // Some targets support efficient element stores. 6065 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6066 return Cost; 6067 6068 // Collect operands to consider. 6069 CallInst *CI = dyn_cast<CallInst>(I); 6070 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6071 6072 // Skip operands that do not require extraction/scalarization and do not incur 6073 // any overhead. 6074 return Cost + TTI.getOperandsScalarizationOverhead( 6075 filterExtractingOperands(Ops, VF), VF); 6076 } 6077 6078 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6079 if (VF == 1) 6080 return; 6081 NumPredStores = 0; 6082 for (BasicBlock *BB : TheLoop->blocks()) { 6083 // For each instruction in the old loop. 6084 for (Instruction &I : *BB) { 6085 Value *Ptr = getLoadStorePointerOperand(&I); 6086 if (!Ptr) 6087 continue; 6088 6089 // TODO: We should generate better code and update the cost model for 6090 // predicated uniform stores. Today they are treated as any other 6091 // predicated store (see added test cases in 6092 // invariant-store-vectorization.ll). 6093 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6094 NumPredStores++; 6095 6096 if (Legal->isUniform(Ptr) && 6097 // Conditional loads and stores should be scalarized and predicated. 6098 // isScalarWithPredication cannot be used here since masked 6099 // gather/scatters are not considered scalar with predication. 6100 !Legal->blockNeedsPredication(I.getParent())) { 6101 // TODO: Avoid replicating loads and stores instead of 6102 // relying on instcombine to remove them. 6103 // Load: Scalar load + broadcast 6104 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6105 unsigned Cost = getUniformMemOpCost(&I, VF); 6106 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6107 continue; 6108 } 6109 6110 // We assume that widening is the best solution when possible. 6111 if (memoryInstructionCanBeWidened(&I, VF)) { 6112 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6113 int ConsecutiveStride = 6114 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6115 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6116 "Expected consecutive stride."); 6117 InstWidening Decision = 6118 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6119 setWideningDecision(&I, VF, Decision, Cost); 6120 continue; 6121 } 6122 6123 // Choose between Interleaving, Gather/Scatter or Scalarization. 6124 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6125 unsigned NumAccesses = 1; 6126 if (isAccessInterleaved(&I)) { 6127 auto Group = getInterleavedAccessGroup(&I); 6128 assert(Group && "Fail to get an interleaved access group."); 6129 6130 // Make one decision for the whole group. 6131 if (getWideningDecision(&I, VF) != CM_Unknown) 6132 continue; 6133 6134 NumAccesses = Group->getNumMembers(); 6135 if (interleavedAccessCanBeWidened(&I, VF)) 6136 InterleaveCost = getInterleaveGroupCost(&I, VF); 6137 } 6138 6139 unsigned GatherScatterCost = 6140 isLegalGatherOrScatter(&I) 6141 ? getGatherScatterCost(&I, VF) * NumAccesses 6142 : std::numeric_limits<unsigned>::max(); 6143 6144 unsigned ScalarizationCost = 6145 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6146 6147 // Choose better solution for the current VF, 6148 // write down this decision and use it during vectorization. 6149 unsigned Cost; 6150 InstWidening Decision; 6151 if (InterleaveCost <= GatherScatterCost && 6152 InterleaveCost < ScalarizationCost) { 6153 Decision = CM_Interleave; 6154 Cost = InterleaveCost; 6155 } else if (GatherScatterCost < ScalarizationCost) { 6156 Decision = CM_GatherScatter; 6157 Cost = GatherScatterCost; 6158 } else { 6159 Decision = CM_Scalarize; 6160 Cost = ScalarizationCost; 6161 } 6162 // If the instructions belongs to an interleave group, the whole group 6163 // receives the same decision. The whole group receives the cost, but 6164 // the cost will actually be assigned to one instruction. 6165 if (auto Group = getInterleavedAccessGroup(&I)) 6166 setWideningDecision(Group, VF, Decision, Cost); 6167 else 6168 setWideningDecision(&I, VF, Decision, Cost); 6169 } 6170 } 6171 6172 // Make sure that any load of address and any other address computation 6173 // remains scalar unless there is gather/scatter support. This avoids 6174 // inevitable extracts into address registers, and also has the benefit of 6175 // activating LSR more, since that pass can't optimize vectorized 6176 // addresses. 6177 if (TTI.prefersVectorizedAddressing()) 6178 return; 6179 6180 // Start with all scalar pointer uses. 6181 SmallPtrSet<Instruction *, 8> AddrDefs; 6182 for (BasicBlock *BB : TheLoop->blocks()) 6183 for (Instruction &I : *BB) { 6184 Instruction *PtrDef = 6185 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6186 if (PtrDef && TheLoop->contains(PtrDef) && 6187 getWideningDecision(&I, VF) != CM_GatherScatter) 6188 AddrDefs.insert(PtrDef); 6189 } 6190 6191 // Add all instructions used to generate the addresses. 6192 SmallVector<Instruction *, 4> Worklist; 6193 for (auto *I : AddrDefs) 6194 Worklist.push_back(I); 6195 while (!Worklist.empty()) { 6196 Instruction *I = Worklist.pop_back_val(); 6197 for (auto &Op : I->operands()) 6198 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6199 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6200 AddrDefs.insert(InstOp).second) 6201 Worklist.push_back(InstOp); 6202 } 6203 6204 for (auto *I : AddrDefs) { 6205 if (isa<LoadInst>(I)) { 6206 // Setting the desired widening decision should ideally be handled in 6207 // by cost functions, but since this involves the task of finding out 6208 // if the loaded register is involved in an address computation, it is 6209 // instead changed here when we know this is the case. 6210 InstWidening Decision = getWideningDecision(I, VF); 6211 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6212 // Scalarize a widened load of address. 6213 setWideningDecision(I, VF, CM_Scalarize, 6214 (VF * getMemoryInstructionCost(I, 1))); 6215 else if (auto Group = getInterleavedAccessGroup(I)) { 6216 // Scalarize an interleave group of address loads. 6217 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6218 if (Instruction *Member = Group->getMember(I)) 6219 setWideningDecision(Member, VF, CM_Scalarize, 6220 (VF * getMemoryInstructionCost(Member, 1))); 6221 } 6222 } 6223 } else 6224 // Make sure I gets scalarized and a cost estimate without 6225 // scalarization overhead. 6226 ForcedScalars[VF].insert(I); 6227 } 6228 } 6229 6230 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6231 unsigned VF, 6232 Type *&VectorTy) { 6233 Type *RetTy = I->getType(); 6234 if (canTruncateToMinimalBitwidth(I, VF)) 6235 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6236 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6237 auto SE = PSE.getSE(); 6238 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6239 6240 // TODO: We need to estimate the cost of intrinsic calls. 6241 switch (I->getOpcode()) { 6242 case Instruction::GetElementPtr: 6243 // We mark this instruction as zero-cost because the cost of GEPs in 6244 // vectorized code depends on whether the corresponding memory instruction 6245 // is scalarized or not. Therefore, we handle GEPs with the memory 6246 // instruction cost. 6247 return 0; 6248 case Instruction::Br: { 6249 // In cases of scalarized and predicated instructions, there will be VF 6250 // predicated blocks in the vectorized loop. Each branch around these 6251 // blocks requires also an extract of its vector compare i1 element. 6252 bool ScalarPredicatedBB = false; 6253 BranchInst *BI = cast<BranchInst>(I); 6254 if (VF > 1 && BI->isConditional() && 6255 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6256 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6257 ScalarPredicatedBB = true; 6258 6259 if (ScalarPredicatedBB) { 6260 // Return cost for branches around scalarized and predicated blocks. 6261 auto *Vec_i1Ty = 6262 FixedVectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6263 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6264 false, true) + 6265 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF)); 6266 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6267 // The back-edge branch will remain, as will all scalar branches. 6268 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6269 else 6270 // This branch will be eliminated by if-conversion. 6271 return 0; 6272 // Note: We currently assume zero cost for an unconditional branch inside 6273 // a predicated block since it will become a fall-through, although we 6274 // may decide in the future to call TTI for all branches. 6275 } 6276 case Instruction::PHI: { 6277 auto *Phi = cast<PHINode>(I); 6278 6279 // First-order recurrences are replaced by vector shuffles inside the loop. 6280 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6281 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6282 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6283 cast<VectorType>(VectorTy), VF - 1, 6284 FixedVectorType::get(RetTy, 1)); 6285 6286 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6287 // converted into select instructions. We require N - 1 selects per phi 6288 // node, where N is the number of incoming values. 6289 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6290 return (Phi->getNumIncomingValues() - 1) * 6291 TTI.getCmpSelInstrCost( 6292 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6293 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6294 CostKind); 6295 6296 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6297 } 6298 case Instruction::UDiv: 6299 case Instruction::SDiv: 6300 case Instruction::URem: 6301 case Instruction::SRem: 6302 // If we have a predicated instruction, it may not be executed for each 6303 // vector lane. Get the scalarization cost and scale this amount by the 6304 // probability of executing the predicated block. If the instruction is not 6305 // predicated, we fall through to the next case. 6306 if (VF > 1 && isScalarWithPredication(I)) { 6307 unsigned Cost = 0; 6308 6309 // These instructions have a non-void type, so account for the phi nodes 6310 // that we will create. This cost is likely to be zero. The phi node 6311 // cost, if any, should be scaled by the block probability because it 6312 // models a copy at the end of each predicated block. 6313 Cost += VF * TTI.getCFInstrCost(Instruction::PHI, CostKind); 6314 6315 // The cost of the non-predicated instruction. 6316 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6317 6318 // The cost of insertelement and extractelement instructions needed for 6319 // scalarization. 6320 Cost += getScalarizationOverhead(I, VF); 6321 6322 // Scale the cost by the probability of executing the predicated blocks. 6323 // This assumes the predicated block for each vector lane is equally 6324 // likely. 6325 return Cost / getReciprocalPredBlockProb(); 6326 } 6327 LLVM_FALLTHROUGH; 6328 case Instruction::Add: 6329 case Instruction::FAdd: 6330 case Instruction::Sub: 6331 case Instruction::FSub: 6332 case Instruction::Mul: 6333 case Instruction::FMul: 6334 case Instruction::FDiv: 6335 case Instruction::FRem: 6336 case Instruction::Shl: 6337 case Instruction::LShr: 6338 case Instruction::AShr: 6339 case Instruction::And: 6340 case Instruction::Or: 6341 case Instruction::Xor: { 6342 // Since we will replace the stride by 1 the multiplication should go away. 6343 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6344 return 0; 6345 // Certain instructions can be cheaper to vectorize if they have a constant 6346 // second vector operand. One example of this are shifts on x86. 6347 Value *Op2 = I->getOperand(1); 6348 TargetTransformInfo::OperandValueProperties Op2VP; 6349 TargetTransformInfo::OperandValueKind Op2VK = 6350 TTI.getOperandInfo(Op2, Op2VP); 6351 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6352 Op2VK = TargetTransformInfo::OK_UniformValue; 6353 6354 SmallVector<const Value *, 4> Operands(I->operand_values()); 6355 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6356 return N * TTI.getArithmeticInstrCost( 6357 I->getOpcode(), VectorTy, CostKind, 6358 TargetTransformInfo::OK_AnyValue, 6359 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6360 } 6361 case Instruction::FNeg: { 6362 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6363 return N * TTI.getArithmeticInstrCost( 6364 I->getOpcode(), VectorTy, CostKind, 6365 TargetTransformInfo::OK_AnyValue, 6366 TargetTransformInfo::OK_AnyValue, 6367 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6368 I->getOperand(0), I); 6369 } 6370 case Instruction::Select: { 6371 SelectInst *SI = cast<SelectInst>(I); 6372 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6373 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6374 Type *CondTy = SI->getCondition()->getType(); 6375 if (!ScalarCond) 6376 CondTy = FixedVectorType::get(CondTy, VF); 6377 6378 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6379 CostKind, I); 6380 } 6381 case Instruction::ICmp: 6382 case Instruction::FCmp: { 6383 Type *ValTy = I->getOperand(0)->getType(); 6384 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6385 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6386 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6387 VectorTy = ToVectorTy(ValTy, VF); 6388 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6389 I); 6390 } 6391 case Instruction::Store: 6392 case Instruction::Load: { 6393 unsigned Width = VF; 6394 if (Width > 1) { 6395 InstWidening Decision = getWideningDecision(I, Width); 6396 assert(Decision != CM_Unknown && 6397 "CM decision should be taken at this point"); 6398 if (Decision == CM_Scalarize) 6399 Width = 1; 6400 } 6401 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6402 return getMemoryInstructionCost(I, VF); 6403 } 6404 case Instruction::ZExt: 6405 case Instruction::SExt: 6406 case Instruction::FPToUI: 6407 case Instruction::FPToSI: 6408 case Instruction::FPExt: 6409 case Instruction::PtrToInt: 6410 case Instruction::IntToPtr: 6411 case Instruction::SIToFP: 6412 case Instruction::UIToFP: 6413 case Instruction::Trunc: 6414 case Instruction::FPTrunc: 6415 case Instruction::BitCast: { 6416 // We optimize the truncation of induction variables having constant 6417 // integer steps. The cost of these truncations is the same as the scalar 6418 // operation. 6419 if (isOptimizableIVTruncate(I, VF)) { 6420 auto *Trunc = cast<TruncInst>(I); 6421 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6422 Trunc->getSrcTy(), CostKind, Trunc); 6423 } 6424 6425 Type *SrcScalarTy = I->getOperand(0)->getType(); 6426 Type *SrcVecTy = 6427 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6428 if (canTruncateToMinimalBitwidth(I, VF)) { 6429 // This cast is going to be shrunk. This may remove the cast or it might 6430 // turn it into slightly different cast. For example, if MinBW == 16, 6431 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6432 // 6433 // Calculate the modified src and dest types. 6434 Type *MinVecTy = VectorTy; 6435 if (I->getOpcode() == Instruction::Trunc) { 6436 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6437 VectorTy = 6438 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6439 } else if (I->getOpcode() == Instruction::ZExt || 6440 I->getOpcode() == Instruction::SExt) { 6441 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6442 VectorTy = 6443 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6444 } 6445 } 6446 6447 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6448 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6449 CostKind, I); 6450 } 6451 case Instruction::Call: { 6452 bool NeedToScalarize; 6453 CallInst *CI = cast<CallInst>(I); 6454 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6455 if (getVectorIntrinsicIDForCall(CI, TLI)) 6456 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6457 return CallCost; 6458 } 6459 default: 6460 // The cost of executing VF copies of the scalar instruction. This opcode 6461 // is unknown. Assume that it is the same as 'mul'. 6462 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6463 CostKind) + 6464 getScalarizationOverhead(I, VF); 6465 } // end of switch. 6466 } 6467 6468 char LoopVectorize::ID = 0; 6469 6470 static const char lv_name[] = "Loop Vectorization"; 6471 6472 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6473 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6474 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6475 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6476 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6477 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6478 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6479 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6480 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6481 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6482 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6483 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6484 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6485 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6486 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6487 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6488 6489 namespace llvm { 6490 6491 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6492 6493 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6494 bool VectorizeOnlyWhenForced) { 6495 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6496 } 6497 6498 } // end namespace llvm 6499 6500 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6501 // Check if the pointer operand of a load or store instruction is 6502 // consecutive. 6503 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6504 return Legal->isConsecutivePtr(Ptr); 6505 return false; 6506 } 6507 6508 void LoopVectorizationCostModel::collectValuesToIgnore() { 6509 // Ignore ephemeral values. 6510 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6511 6512 // Ignore type-promoting instructions we identified during reduction 6513 // detection. 6514 for (auto &Reduction : Legal->getReductionVars()) { 6515 RecurrenceDescriptor &RedDes = Reduction.second; 6516 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6517 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6518 } 6519 // Ignore type-casting instructions we identified during induction 6520 // detection. 6521 for (auto &Induction : Legal->getInductionVars()) { 6522 InductionDescriptor &IndDes = Induction.second; 6523 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6524 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6525 } 6526 } 6527 6528 // TODO: we could return a pair of values that specify the max VF and 6529 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6530 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6531 // doesn't have a cost model that can choose which plan to execute if 6532 // more than one is generated. 6533 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6534 LoopVectorizationCostModel &CM) { 6535 unsigned WidestType; 6536 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6537 return WidestVectorRegBits / WidestType; 6538 } 6539 6540 VectorizationFactor 6541 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6542 unsigned VF = UserVF; 6543 // Outer loop handling: They may require CFG and instruction level 6544 // transformations before even evaluating whether vectorization is profitable. 6545 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6546 // the vectorization pipeline. 6547 if (!OrigLoop->empty()) { 6548 // If the user doesn't provide a vectorization factor, determine a 6549 // reasonable one. 6550 if (!UserVF) { 6551 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6552 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6553 6554 // Make sure we have a VF > 1 for stress testing. 6555 if (VPlanBuildStressTest && VF < 2) { 6556 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6557 << "overriding computed VF.\n"); 6558 VF = 4; 6559 } 6560 } 6561 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6562 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6563 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6564 << " to build VPlans.\n"); 6565 buildVPlans(VF, VF); 6566 6567 // For VPlan build stress testing, we bail out after VPlan construction. 6568 if (VPlanBuildStressTest) 6569 return VectorizationFactor::Disabled(); 6570 6571 return {VF, 0}; 6572 } 6573 6574 LLVM_DEBUG( 6575 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6576 "VPlan-native path.\n"); 6577 return VectorizationFactor::Disabled(); 6578 } 6579 6580 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF, 6581 unsigned UserIC) { 6582 assert(OrigLoop->empty() && "Inner loop expected."); 6583 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 6584 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6585 return None; 6586 6587 // Invalidate interleave groups if all blocks of loop will be predicated. 6588 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6589 !useMaskedInterleavedAccesses(*TTI)) { 6590 LLVM_DEBUG( 6591 dbgs() 6592 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6593 "which requires masked-interleaved support.\n"); 6594 if (CM.InterleaveInfo.invalidateGroups()) 6595 // Invalidating interleave groups also requires invalidating all decisions 6596 // based on them, which includes widening decisions and uniform and scalar 6597 // values. 6598 CM.invalidateCostModelingDecisions(); 6599 } 6600 6601 if (UserVF) { 6602 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6603 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6604 // Collect the instructions (and their associated costs) that will be more 6605 // profitable to scalarize. 6606 CM.selectUserVectorizationFactor(UserVF); 6607 buildVPlansWithVPRecipes(UserVF, UserVF); 6608 LLVM_DEBUG(printPlans(dbgs())); 6609 return {{UserVF, 0}}; 6610 } 6611 6612 unsigned MaxVF = MaybeMaxVF.getValue(); 6613 assert(MaxVF != 0 && "MaxVF is zero."); 6614 6615 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6616 // Collect Uniform and Scalar instructions after vectorization with VF. 6617 CM.collectUniformsAndScalars(VF); 6618 6619 // Collect the instructions (and their associated costs) that will be more 6620 // profitable to scalarize. 6621 if (VF > 1) 6622 CM.collectInstsToScalarize(VF); 6623 } 6624 6625 buildVPlansWithVPRecipes(1, MaxVF); 6626 LLVM_DEBUG(printPlans(dbgs())); 6627 if (MaxVF == 1) 6628 return VectorizationFactor::Disabled(); 6629 6630 // Select the optimal vectorization factor. 6631 return CM.selectVectorizationFactor(MaxVF); 6632 } 6633 6634 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6635 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6636 << '\n'); 6637 BestVF = VF; 6638 BestUF = UF; 6639 6640 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6641 return !Plan->hasVF(VF); 6642 }); 6643 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6644 } 6645 6646 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6647 DominatorTree *DT) { 6648 // Perform the actual loop transformation. 6649 6650 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6651 VPCallbackILV CallbackILV(ILV); 6652 6653 VPTransformState State{BestVF, BestUF, LI, 6654 DT, ILV.Builder, ILV.VectorLoopValueMap, 6655 &ILV, CallbackILV}; 6656 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6657 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6658 State.CanonicalIV = ILV.Induction; 6659 6660 //===------------------------------------------------===// 6661 // 6662 // Notice: any optimization or new instruction that go 6663 // into the code below should also be implemented in 6664 // the cost-model. 6665 // 6666 //===------------------------------------------------===// 6667 6668 // 2. Copy and widen instructions from the old loop into the new loop. 6669 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6670 VPlans.front()->execute(&State); 6671 6672 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6673 // predication, updating analyses. 6674 ILV.fixVectorizedLoop(); 6675 } 6676 6677 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6678 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6679 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6680 6681 // We create new control-flow for the vectorized loop, so the original 6682 // condition will be dead after vectorization if it's only used by the 6683 // branch. 6684 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6685 if (Cmp && Cmp->hasOneUse()) 6686 DeadInstructions.insert(Cmp); 6687 6688 // We create new "steps" for induction variable updates to which the original 6689 // induction variables map. An original update instruction will be dead if 6690 // all its users except the induction variable are dead. 6691 for (auto &Induction : Legal->getInductionVars()) { 6692 PHINode *Ind = Induction.first; 6693 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6694 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6695 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6696 })) 6697 DeadInstructions.insert(IndUpdate); 6698 6699 // We record as "Dead" also the type-casting instructions we had identified 6700 // during induction analysis. We don't need any handling for them in the 6701 // vectorized loop because we have proven that, under a proper runtime 6702 // test guarding the vectorized loop, the value of the phi, and the casted 6703 // value of the phi, are the same. The last instruction in this casting chain 6704 // will get its scalar/vector/widened def from the scalar/vector/widened def 6705 // of the respective phi node. Any other casts in the induction def-use chain 6706 // have no other uses outside the phi update chain, and will be ignored. 6707 InductionDescriptor &IndDes = Induction.second; 6708 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6709 DeadInstructions.insert(Casts.begin(), Casts.end()); 6710 } 6711 } 6712 6713 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6714 6715 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6716 6717 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6718 Instruction::BinaryOps BinOp) { 6719 // When unrolling and the VF is 1, we only need to add a simple scalar. 6720 Type *Ty = Val->getType(); 6721 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6722 6723 if (Ty->isFloatingPointTy()) { 6724 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6725 6726 // Floating point operations had to be 'fast' to enable the unrolling. 6727 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6728 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6729 } 6730 Constant *C = ConstantInt::get(Ty, StartIdx); 6731 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6732 } 6733 6734 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6735 SmallVector<Metadata *, 4> MDs; 6736 // Reserve first location for self reference to the LoopID metadata node. 6737 MDs.push_back(nullptr); 6738 bool IsUnrollMetadata = false; 6739 MDNode *LoopID = L->getLoopID(); 6740 if (LoopID) { 6741 // First find existing loop unrolling disable metadata. 6742 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6743 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6744 if (MD) { 6745 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6746 IsUnrollMetadata = 6747 S && S->getString().startswith("llvm.loop.unroll.disable"); 6748 } 6749 MDs.push_back(LoopID->getOperand(i)); 6750 } 6751 } 6752 6753 if (!IsUnrollMetadata) { 6754 // Add runtime unroll disable metadata. 6755 LLVMContext &Context = L->getHeader()->getContext(); 6756 SmallVector<Metadata *, 1> DisableOperands; 6757 DisableOperands.push_back( 6758 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6759 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6760 MDs.push_back(DisableNode); 6761 MDNode *NewLoopID = MDNode::get(Context, MDs); 6762 // Set operand 0 to refer to the loop id itself. 6763 NewLoopID->replaceOperandWith(0, NewLoopID); 6764 L->setLoopID(NewLoopID); 6765 } 6766 } 6767 6768 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6769 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6770 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6771 bool PredicateAtRangeStart = Predicate(Range.Start); 6772 6773 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6774 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6775 Range.End = TmpVF; 6776 break; 6777 } 6778 6779 return PredicateAtRangeStart; 6780 } 6781 6782 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6783 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6784 /// of VF's starting at a given VF and extending it as much as possible. Each 6785 /// vectorization decision can potentially shorten this sub-range during 6786 /// buildVPlan(). 6787 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6788 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6789 VFRange SubRange = {VF, MaxVF + 1}; 6790 VPlans.push_back(buildVPlan(SubRange)); 6791 VF = SubRange.End; 6792 } 6793 } 6794 6795 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6796 VPlanPtr &Plan) { 6797 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6798 6799 // Look for cached value. 6800 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6801 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6802 if (ECEntryIt != EdgeMaskCache.end()) 6803 return ECEntryIt->second; 6804 6805 VPValue *SrcMask = createBlockInMask(Src, Plan); 6806 6807 // The terminator has to be a branch inst! 6808 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6809 assert(BI && "Unexpected terminator found"); 6810 6811 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6812 return EdgeMaskCache[Edge] = SrcMask; 6813 6814 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6815 assert(EdgeMask && "No Edge Mask found for condition"); 6816 6817 if (BI->getSuccessor(0) != Dst) 6818 EdgeMask = Builder.createNot(EdgeMask); 6819 6820 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6821 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6822 6823 return EdgeMaskCache[Edge] = EdgeMask; 6824 } 6825 6826 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6827 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6828 6829 // Look for cached value. 6830 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6831 if (BCEntryIt != BlockMaskCache.end()) 6832 return BCEntryIt->second; 6833 6834 // All-one mask is modelled as no-mask following the convention for masked 6835 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6836 VPValue *BlockMask = nullptr; 6837 6838 if (OrigLoop->getHeader() == BB) { 6839 if (!CM.blockNeedsPredication(BB)) 6840 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6841 6842 // Introduce the early-exit compare IV <= BTC to form header block mask. 6843 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6844 // Start by constructing the desired canonical IV. 6845 VPValue *IV = nullptr; 6846 if (Legal->getPrimaryInduction()) 6847 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6848 else { 6849 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6850 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6851 IV = IVRecipe->getVPValue(); 6852 } 6853 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6854 bool TailFolded = !CM.isScalarEpilogueAllowed(); 6855 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) 6856 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, BTC}); 6857 else 6858 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6859 return BlockMaskCache[BB] = BlockMask; 6860 } 6861 6862 // This is the block mask. We OR all incoming edges. 6863 for (auto *Predecessor : predecessors(BB)) { 6864 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6865 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6866 return BlockMaskCache[BB] = EdgeMask; 6867 6868 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6869 BlockMask = EdgeMask; 6870 continue; 6871 } 6872 6873 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6874 } 6875 6876 return BlockMaskCache[BB] = BlockMask; 6877 } 6878 6879 VPWidenMemoryInstructionRecipe * 6880 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6881 VPlanPtr &Plan) { 6882 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6883 "Must be called with either a load or store"); 6884 6885 auto willWiden = [&](unsigned VF) -> bool { 6886 if (VF == 1) 6887 return false; 6888 LoopVectorizationCostModel::InstWidening Decision = 6889 CM.getWideningDecision(I, VF); 6890 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6891 "CM decision should be taken at this point."); 6892 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6893 return true; 6894 if (CM.isScalarAfterVectorization(I, VF) || 6895 CM.isProfitableToScalarize(I, VF)) 6896 return false; 6897 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6898 }; 6899 6900 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6901 return nullptr; 6902 6903 VPValue *Mask = nullptr; 6904 if (Legal->isMaskRequired(I)) 6905 Mask = createBlockInMask(I->getParent(), Plan); 6906 6907 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6908 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6909 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6910 6911 StoreInst *Store = cast<StoreInst>(I); 6912 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6913 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6914 } 6915 6916 VPWidenIntOrFpInductionRecipe * 6917 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6918 // Check if this is an integer or fp induction. If so, build the recipe that 6919 // produces its scalar and vector values. 6920 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6921 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6922 II.getKind() == InductionDescriptor::IK_FpInduction) 6923 return new VPWidenIntOrFpInductionRecipe(Phi); 6924 6925 return nullptr; 6926 } 6927 6928 VPWidenIntOrFpInductionRecipe * 6929 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6930 VFRange &Range) const { 6931 // Optimize the special case where the source is a constant integer 6932 // induction variable. Notice that we can only optimize the 'trunc' case 6933 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6934 // (c) other casts depend on pointer size. 6935 6936 // Determine whether \p K is a truncation based on an induction variable that 6937 // can be optimized. 6938 auto isOptimizableIVTruncate = 6939 [&](Instruction *K) -> std::function<bool(unsigned)> { 6940 return 6941 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6942 }; 6943 6944 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6945 isOptimizableIVTruncate(I), Range)) 6946 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6947 I); 6948 return nullptr; 6949 } 6950 6951 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6952 // We know that all PHIs in non-header blocks are converted into selects, so 6953 // we don't have to worry about the insertion order and we can just use the 6954 // builder. At this point we generate the predication tree. There may be 6955 // duplications since this is a simple recursive scan, but future 6956 // optimizations will clean it up. 6957 6958 SmallVector<VPValue *, 2> Operands; 6959 unsigned NumIncoming = Phi->getNumIncomingValues(); 6960 for (unsigned In = 0; In < NumIncoming; In++) { 6961 VPValue *EdgeMask = 6962 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6963 assert((EdgeMask || NumIncoming == 1) && 6964 "Multiple predecessors with one having a full mask"); 6965 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 6966 if (EdgeMask) 6967 Operands.push_back(EdgeMask); 6968 } 6969 return new VPBlendRecipe(Phi, Operands); 6970 } 6971 6972 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 6973 VPlan &Plan) const { 6974 6975 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6976 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 6977 Range); 6978 6979 if (IsPredicated) 6980 return nullptr; 6981 6982 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6983 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6984 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6985 return nullptr; 6986 6987 auto willWiden = [&](unsigned VF) -> bool { 6988 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6989 // The following case may be scalarized depending on the VF. 6990 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6991 // version of the instruction. 6992 // Is it beneficial to perform intrinsic call compared to lib call? 6993 bool NeedToScalarize = false; 6994 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6995 bool UseVectorIntrinsic = 6996 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6997 return UseVectorIntrinsic || !NeedToScalarize; 6998 }; 6999 7000 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7001 return nullptr; 7002 7003 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7004 } 7005 7006 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7007 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7008 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7009 // Instruction should be widened, unless it is scalar after vectorization, 7010 // scalarization is profitable or it is predicated. 7011 auto WillScalarize = [this, I](unsigned VF) -> bool { 7012 return CM.isScalarAfterVectorization(I, VF) || 7013 CM.isProfitableToScalarize(I, VF) || 7014 CM.isScalarWithPredication(I, VF); 7015 }; 7016 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7017 Range); 7018 } 7019 7020 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7021 auto IsVectorizableOpcode = [](unsigned Opcode) { 7022 switch (Opcode) { 7023 case Instruction::Add: 7024 case Instruction::And: 7025 case Instruction::AShr: 7026 case Instruction::BitCast: 7027 case Instruction::FAdd: 7028 case Instruction::FCmp: 7029 case Instruction::FDiv: 7030 case Instruction::FMul: 7031 case Instruction::FNeg: 7032 case Instruction::FPExt: 7033 case Instruction::FPToSI: 7034 case Instruction::FPToUI: 7035 case Instruction::FPTrunc: 7036 case Instruction::FRem: 7037 case Instruction::FSub: 7038 case Instruction::ICmp: 7039 case Instruction::IntToPtr: 7040 case Instruction::LShr: 7041 case Instruction::Mul: 7042 case Instruction::Or: 7043 case Instruction::PtrToInt: 7044 case Instruction::SDiv: 7045 case Instruction::Select: 7046 case Instruction::SExt: 7047 case Instruction::Shl: 7048 case Instruction::SIToFP: 7049 case Instruction::SRem: 7050 case Instruction::Sub: 7051 case Instruction::Trunc: 7052 case Instruction::UDiv: 7053 case Instruction::UIToFP: 7054 case Instruction::URem: 7055 case Instruction::Xor: 7056 case Instruction::ZExt: 7057 return true; 7058 } 7059 return false; 7060 }; 7061 7062 if (!IsVectorizableOpcode(I->getOpcode())) 7063 return nullptr; 7064 7065 // Success: widen this instruction. 7066 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7067 } 7068 7069 VPBasicBlock *VPRecipeBuilder::handleReplication( 7070 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7071 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7072 VPlanPtr &Plan) { 7073 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7074 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7075 Range); 7076 7077 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7078 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7079 7080 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7081 IsUniform, IsPredicated); 7082 setRecipe(I, Recipe); 7083 7084 // Find if I uses a predicated instruction. If so, it will use its scalar 7085 // value. Avoid hoisting the insert-element which packs the scalar value into 7086 // a vector value, as that happens iff all users use the vector value. 7087 for (auto &Op : I->operands()) 7088 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7089 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7090 PredInst2Recipe[PredInst]->setAlsoPack(false); 7091 7092 // Finalize the recipe for Instr, first if it is not predicated. 7093 if (!IsPredicated) { 7094 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7095 VPBB->appendRecipe(Recipe); 7096 return VPBB; 7097 } 7098 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7099 assert(VPBB->getSuccessors().empty() && 7100 "VPBB has successors when handling predicated replication."); 7101 // Record predicated instructions for above packing optimizations. 7102 PredInst2Recipe[I] = Recipe; 7103 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7104 VPBlockUtils::insertBlockAfter(Region, VPBB); 7105 auto *RegSucc = new VPBasicBlock(); 7106 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7107 return RegSucc; 7108 } 7109 7110 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7111 VPRecipeBase *PredRecipe, 7112 VPlanPtr &Plan) { 7113 // Instructions marked for predication are replicated and placed under an 7114 // if-then construct to prevent side-effects. 7115 7116 // Generate recipes to compute the block mask for this region. 7117 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7118 7119 // Build the triangular if-then region. 7120 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7121 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7122 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7123 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7124 auto *PHIRecipe = 7125 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7126 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7127 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7128 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7129 7130 // Note: first set Entry as region entry and then connect successors starting 7131 // from it in order, to propagate the "parent" of each VPBasicBlock. 7132 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7133 VPBlockUtils::connectBlocks(Pred, Exit); 7134 7135 return Region; 7136 } 7137 7138 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7139 VFRange &Range, 7140 VPlanPtr &Plan) { 7141 // First, check for specific widening recipes that deal with calls, memory 7142 // operations, inductions and Phi nodes. 7143 if (auto *CI = dyn_cast<CallInst>(Instr)) 7144 return tryToWidenCall(CI, Range, *Plan); 7145 7146 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7147 return tryToWidenMemory(Instr, Range, Plan); 7148 7149 VPRecipeBase *Recipe; 7150 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7151 if (Phi->getParent() != OrigLoop->getHeader()) 7152 return tryToBlend(Phi, Plan); 7153 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7154 return Recipe; 7155 return new VPWidenPHIRecipe(Phi); 7156 } 7157 7158 if (isa<TruncInst>(Instr) && 7159 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7160 return Recipe; 7161 7162 if (!shouldWiden(Instr, Range)) 7163 return nullptr; 7164 7165 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7166 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7167 OrigLoop); 7168 7169 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7170 bool InvariantCond = 7171 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7172 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7173 InvariantCond); 7174 } 7175 7176 return tryToWiden(Instr, *Plan); 7177 } 7178 7179 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7180 unsigned MaxVF) { 7181 assert(OrigLoop->empty() && "Inner loop expected."); 7182 7183 // Collect conditions feeding internal conditional branches; they need to be 7184 // represented in VPlan for it to model masking. 7185 SmallPtrSet<Value *, 1> NeedDef; 7186 7187 auto *Latch = OrigLoop->getLoopLatch(); 7188 for (BasicBlock *BB : OrigLoop->blocks()) { 7189 if (BB == Latch) 7190 continue; 7191 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7192 if (Branch && Branch->isConditional()) 7193 NeedDef.insert(Branch->getCondition()); 7194 } 7195 7196 // If the tail is to be folded by masking, the primary induction variable, if 7197 // exists needs to be represented in VPlan for it to model early-exit masking. 7198 // Also, both the Phi and the live-out instruction of each reduction are 7199 // required in order to introduce a select between them in VPlan. 7200 if (CM.foldTailByMasking()) { 7201 if (Legal->getPrimaryInduction()) 7202 NeedDef.insert(Legal->getPrimaryInduction()); 7203 for (auto &Reduction : Legal->getReductionVars()) { 7204 NeedDef.insert(Reduction.first); 7205 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7206 } 7207 } 7208 7209 // Collect instructions from the original loop that will become trivially dead 7210 // in the vectorized loop. We don't need to vectorize these instructions. For 7211 // example, original induction update instructions can become dead because we 7212 // separately emit induction "steps" when generating code for the new loop. 7213 // Similarly, we create a new latch condition when setting up the structure 7214 // of the new loop, so the old one can become dead. 7215 SmallPtrSet<Instruction *, 4> DeadInstructions; 7216 collectTriviallyDeadInstructions(DeadInstructions); 7217 7218 // Add assume instructions we need to drop to DeadInstructions, to prevent 7219 // them from being added to the VPlan. 7220 // TODO: We only need to drop assumes in blocks that get flattend. If the 7221 // control flow is preserved, we should keep them. 7222 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7223 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7224 7225 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7226 // Dead instructions do not need sinking. Remove them from SinkAfter. 7227 for (Instruction *I : DeadInstructions) 7228 SinkAfter.erase(I); 7229 7230 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7231 VFRange SubRange = {VF, MaxVF + 1}; 7232 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7233 DeadInstructions, SinkAfter)); 7234 VF = SubRange.End; 7235 } 7236 } 7237 7238 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7239 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7240 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7241 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7242 7243 // Hold a mapping from predicated instructions to their recipes, in order to 7244 // fix their AlsoPack behavior if a user is determined to replicate and use a 7245 // scalar instead of vector value. 7246 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7247 7248 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7249 7250 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7251 7252 // --------------------------------------------------------------------------- 7253 // Pre-construction: record ingredients whose recipes we'll need to further 7254 // process after constructing the initial VPlan. 7255 // --------------------------------------------------------------------------- 7256 7257 // Mark instructions we'll need to sink later and their targets as 7258 // ingredients whose recipe we'll need to record. 7259 for (auto &Entry : SinkAfter) { 7260 RecipeBuilder.recordRecipeOf(Entry.first); 7261 RecipeBuilder.recordRecipeOf(Entry.second); 7262 } 7263 7264 // For each interleave group which is relevant for this (possibly trimmed) 7265 // Range, add it to the set of groups to be later applied to the VPlan and add 7266 // placeholders for its members' Recipes which we'll be replacing with a 7267 // single VPInterleaveRecipe. 7268 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7269 auto applyIG = [IG, this](unsigned VF) -> bool { 7270 return (VF >= 2 && // Query is illegal for VF == 1 7271 CM.getWideningDecision(IG->getInsertPos(), VF) == 7272 LoopVectorizationCostModel::CM_Interleave); 7273 }; 7274 if (!getDecisionAndClampRange(applyIG, Range)) 7275 continue; 7276 InterleaveGroups.insert(IG); 7277 for (unsigned i = 0; i < IG->getFactor(); i++) 7278 if (Instruction *Member = IG->getMember(i)) 7279 RecipeBuilder.recordRecipeOf(Member); 7280 }; 7281 7282 // --------------------------------------------------------------------------- 7283 // Build initial VPlan: Scan the body of the loop in a topological order to 7284 // visit each basic block after having visited its predecessor basic blocks. 7285 // --------------------------------------------------------------------------- 7286 7287 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7288 auto Plan = std::make_unique<VPlan>(); 7289 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7290 Plan->setEntry(VPBB); 7291 7292 // Represent values that will have defs inside VPlan. 7293 for (Value *V : NeedDef) 7294 Plan->addVPValue(V); 7295 7296 // Scan the body of the loop in a topological order to visit each basic block 7297 // after having visited its predecessor basic blocks. 7298 LoopBlocksDFS DFS(OrigLoop); 7299 DFS.perform(LI); 7300 7301 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7302 // Relevant instructions from basic block BB will be grouped into VPRecipe 7303 // ingredients and fill a new VPBasicBlock. 7304 unsigned VPBBsForBB = 0; 7305 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7306 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7307 VPBB = FirstVPBBForBB; 7308 Builder.setInsertPoint(VPBB); 7309 7310 // Introduce each ingredient into VPlan. 7311 // TODO: Model and preserve debug instrinsics in VPlan. 7312 for (Instruction &I : BB->instructionsWithoutDebug()) { 7313 Instruction *Instr = &I; 7314 7315 // First filter out irrelevant instructions, to ensure no recipes are 7316 // built for them. 7317 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7318 continue; 7319 7320 if (auto Recipe = 7321 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7322 RecipeBuilder.setRecipe(Instr, Recipe); 7323 VPBB->appendRecipe(Recipe); 7324 continue; 7325 } 7326 7327 // Otherwise, if all widening options failed, Instruction is to be 7328 // replicated. This may create a successor for VPBB. 7329 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7330 Instr, Range, VPBB, PredInst2Recipe, Plan); 7331 if (NextVPBB != VPBB) { 7332 VPBB = NextVPBB; 7333 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7334 : ""); 7335 } 7336 } 7337 } 7338 7339 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7340 // may also be empty, such as the last one VPBB, reflecting original 7341 // basic-blocks with no recipes. 7342 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7343 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7344 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7345 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7346 delete PreEntry; 7347 7348 // --------------------------------------------------------------------------- 7349 // Transform initial VPlan: Apply previously taken decisions, in order, to 7350 // bring the VPlan to its final state. 7351 // --------------------------------------------------------------------------- 7352 7353 // Apply Sink-After legal constraints. 7354 for (auto &Entry : SinkAfter) { 7355 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7356 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7357 Sink->moveAfter(Target); 7358 } 7359 7360 // Interleave memory: for each Interleave Group we marked earlier as relevant 7361 // for this VPlan, replace the Recipes widening its memory instructions with a 7362 // single VPInterleaveRecipe at its insertion point. 7363 for (auto IG : InterleaveGroups) { 7364 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7365 RecipeBuilder.getRecipe(IG->getInsertPos())); 7366 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7367 ->insertBefore(Recipe); 7368 7369 for (unsigned i = 0; i < IG->getFactor(); ++i) 7370 if (Instruction *Member = IG->getMember(i)) { 7371 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7372 } 7373 } 7374 7375 // Finally, if tail is folded by masking, introduce selects between the phi 7376 // and the live-out instruction of each reduction, at the end of the latch. 7377 if (CM.foldTailByMasking()) { 7378 Builder.setInsertPoint(VPBB); 7379 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7380 for (auto &Reduction : Legal->getReductionVars()) { 7381 VPValue *Phi = Plan->getVPValue(Reduction.first); 7382 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7383 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7384 } 7385 } 7386 7387 std::string PlanName; 7388 raw_string_ostream RSO(PlanName); 7389 unsigned VF = Range.Start; 7390 Plan->addVF(VF); 7391 RSO << "Initial VPlan for VF={" << VF; 7392 for (VF *= 2; VF < Range.End; VF *= 2) { 7393 Plan->addVF(VF); 7394 RSO << "," << VF; 7395 } 7396 RSO << "},UF>=1"; 7397 RSO.flush(); 7398 Plan->setName(PlanName); 7399 7400 return Plan; 7401 } 7402 7403 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7404 // Outer loop handling: They may require CFG and instruction level 7405 // transformations before even evaluating whether vectorization is profitable. 7406 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7407 // the vectorization pipeline. 7408 assert(!OrigLoop->empty()); 7409 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7410 7411 // Create new empty VPlan 7412 auto Plan = std::make_unique<VPlan>(); 7413 7414 // Build hierarchical CFG 7415 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7416 HCFGBuilder.buildHierarchicalCFG(); 7417 7418 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7419 Plan->addVF(VF); 7420 7421 if (EnableVPlanPredication) { 7422 VPlanPredicator VPP(*Plan); 7423 VPP.predicate(); 7424 7425 // Avoid running transformation to recipes until masked code generation in 7426 // VPlan-native path is in place. 7427 return Plan; 7428 } 7429 7430 SmallPtrSet<Instruction *, 1> DeadInstructions; 7431 VPlanTransforms::VPInstructionsToVPRecipes( 7432 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7433 return Plan; 7434 } 7435 7436 Value* LoopVectorizationPlanner::VPCallbackILV:: 7437 getOrCreateVectorValues(Value *V, unsigned Part) { 7438 return ILV.getOrCreateVectorValue(V, Part); 7439 } 7440 7441 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7442 Value *V, const VPIteration &Instance) { 7443 return ILV.getOrCreateScalarValue(V, Instance); 7444 } 7445 7446 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7447 VPSlotTracker &SlotTracker) const { 7448 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7449 IG->getInsertPos()->printAsOperand(O, false); 7450 O << ", "; 7451 getAddr()->printAsOperand(O, SlotTracker); 7452 VPValue *Mask = getMask(); 7453 if (Mask) { 7454 O << ", "; 7455 Mask->printAsOperand(O, SlotTracker); 7456 } 7457 for (unsigned i = 0; i < IG->getFactor(); ++i) 7458 if (Instruction *I = IG->getMember(i)) 7459 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7460 } 7461 7462 void VPWidenCallRecipe::execute(VPTransformState &State) { 7463 State.ILV->widenCallInstruction(Ingredient, User, State); 7464 } 7465 7466 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7467 State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State); 7468 } 7469 7470 void VPWidenRecipe::execute(VPTransformState &State) { 7471 State.ILV->widenInstruction(Ingredient, User, State); 7472 } 7473 7474 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7475 State.ILV->widenGEP(GEP, User, State.UF, State.VF, IsPtrLoopInvariant, 7476 IsIndexLoopInvariant, State); 7477 } 7478 7479 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7480 assert(!State.Instance && "Int or FP induction being replicated."); 7481 State.ILV->widenIntOrFpInduction(IV, Trunc); 7482 } 7483 7484 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7485 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7486 } 7487 7488 void VPBlendRecipe::execute(VPTransformState &State) { 7489 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7490 // We know that all PHIs in non-header blocks are converted into 7491 // selects, so we don't have to worry about the insertion order and we 7492 // can just use the builder. 7493 // At this point we generate the predication tree. There may be 7494 // duplications since this is a simple recursive scan, but future 7495 // optimizations will clean it up. 7496 7497 unsigned NumIncoming = getNumIncomingValues(); 7498 7499 // Generate a sequence of selects of the form: 7500 // SELECT(Mask3, In3, 7501 // SELECT(Mask2, In2, 7502 // SELECT(Mask1, In1, 7503 // In0))) 7504 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7505 // are essentially undef are taken from In0. 7506 InnerLoopVectorizer::VectorParts Entry(State.UF); 7507 for (unsigned In = 0; In < NumIncoming; ++In) { 7508 for (unsigned Part = 0; Part < State.UF; ++Part) { 7509 // We might have single edge PHIs (blocks) - use an identity 7510 // 'select' for the first PHI operand. 7511 Value *In0 = State.get(getIncomingValue(In), Part); 7512 if (In == 0) 7513 Entry[Part] = In0; // Initialize with the first incoming value. 7514 else { 7515 // Select between the current value and the previous incoming edge 7516 // based on the incoming mask. 7517 Value *Cond = State.get(getMask(In), Part); 7518 Entry[Part] = 7519 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7520 } 7521 } 7522 } 7523 for (unsigned Part = 0; Part < State.UF; ++Part) 7524 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7525 } 7526 7527 void VPInterleaveRecipe::execute(VPTransformState &State) { 7528 assert(!State.Instance && "Interleave group being replicated."); 7529 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7530 } 7531 7532 void VPReplicateRecipe::execute(VPTransformState &State) { 7533 if (State.Instance) { // Generate a single instance. 7534 State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance, 7535 IsPredicated, State); 7536 // Insert scalar instance packing it into a vector. 7537 if (AlsoPack && State.VF > 1) { 7538 // If we're constructing lane 0, initialize to start from undef. 7539 if (State.Instance->Lane == 0) { 7540 Value *Undef = UndefValue::get( 7541 FixedVectorType::get(Ingredient->getType(), State.VF)); 7542 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7543 } 7544 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7545 } 7546 return; 7547 } 7548 7549 // Generate scalar instances for all VF lanes of all UF parts, unless the 7550 // instruction is uniform inwhich case generate only the first lane for each 7551 // of the UF parts. 7552 unsigned EndLane = IsUniform ? 1 : State.VF; 7553 for (unsigned Part = 0; Part < State.UF; ++Part) 7554 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7555 State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane}, 7556 IsPredicated, State); 7557 } 7558 7559 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7560 assert(State.Instance && "Branch on Mask works only on single instance."); 7561 7562 unsigned Part = State.Instance->Part; 7563 unsigned Lane = State.Instance->Lane; 7564 7565 Value *ConditionBit = nullptr; 7566 VPValue *BlockInMask = getMask(); 7567 if (BlockInMask) { 7568 ConditionBit = State.get(BlockInMask, Part); 7569 if (ConditionBit->getType()->isVectorTy()) 7570 ConditionBit = State.Builder.CreateExtractElement( 7571 ConditionBit, State.Builder.getInt32(Lane)); 7572 } else // Block in mask is all-one. 7573 ConditionBit = State.Builder.getTrue(); 7574 7575 // Replace the temporary unreachable terminator with a new conditional branch, 7576 // whose two destinations will be set later when they are created. 7577 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7578 assert(isa<UnreachableInst>(CurrentTerminator) && 7579 "Expected to replace unreachable terminator with conditional branch."); 7580 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7581 CondBr->setSuccessor(0, nullptr); 7582 ReplaceInstWithInst(CurrentTerminator, CondBr); 7583 } 7584 7585 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7586 assert(State.Instance && "Predicated instruction PHI works per instance."); 7587 Instruction *ScalarPredInst = cast<Instruction>( 7588 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7589 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7590 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7591 assert(PredicatingBB && "Predicated block has no single predecessor."); 7592 7593 // By current pack/unpack logic we need to generate only a single phi node: if 7594 // a vector value for the predicated instruction exists at this point it means 7595 // the instruction has vector users only, and a phi for the vector value is 7596 // needed. In this case the recipe of the predicated instruction is marked to 7597 // also do that packing, thereby "hoisting" the insert-element sequence. 7598 // Otherwise, a phi node for the scalar value is needed. 7599 unsigned Part = State.Instance->Part; 7600 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7601 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7602 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7603 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7604 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7605 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7606 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7607 } else { 7608 Type *PredInstType = PredInst->getType(); 7609 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7610 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7611 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7612 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7613 } 7614 } 7615 7616 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7617 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7618 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7619 getMask()); 7620 } 7621 7622 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7623 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7624 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7625 // for predication. 7626 static ScalarEpilogueLowering getScalarEpilogueLowering( 7627 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7628 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7629 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7630 LoopVectorizationLegality &LVL) { 7631 bool OptSize = 7632 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7633 PGSOQueryType::IRPass); 7634 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7635 // don't look at hints or options, and don't request a scalar epilogue. 7636 if (OptSize) 7637 return CM_ScalarEpilogueNotAllowedOptSize; 7638 7639 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7640 !PreferPredicateOverEpilog; 7641 7642 // 2) Next, if disabling predication is requested on the command line, honour 7643 // this and request a scalar epilogue. 7644 if (PredicateOptDisabled) 7645 return CM_ScalarEpilogueAllowed; 7646 7647 // 3) and 4) look if enabling predication is requested on the command line, 7648 // with a loop hint, or if the TTI hook indicates this is profitable, request 7649 // predication . 7650 if (PreferPredicateOverEpilog || 7651 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7652 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7653 LVL.getLAI()) && 7654 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7655 return CM_ScalarEpilogueNotNeededUsePredicate; 7656 7657 return CM_ScalarEpilogueAllowed; 7658 } 7659 7660 // Process the loop in the VPlan-native vectorization path. This path builds 7661 // VPlan upfront in the vectorization pipeline, which allows to apply 7662 // VPlan-to-VPlan transformations from the very beginning without modifying the 7663 // input LLVM IR. 7664 static bool processLoopInVPlanNativePath( 7665 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7666 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7667 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7668 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7669 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7670 7671 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 7672 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 7673 return false; 7674 } 7675 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7676 Function *F = L->getHeader()->getParent(); 7677 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7678 7679 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7680 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7681 7682 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7683 &Hints, IAI); 7684 // Use the planner for outer loop vectorization. 7685 // TODO: CM is not used at this point inside the planner. Turn CM into an 7686 // optional argument if we don't need it in the future. 7687 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7688 7689 // Get user vectorization factor. 7690 const unsigned UserVF = Hints.getWidth(); 7691 7692 // Plan how to best vectorize, return the best VF and its cost. 7693 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7694 7695 // If we are stress testing VPlan builds, do not attempt to generate vector 7696 // code. Masked vector code generation support will follow soon. 7697 // Also, do not attempt to vectorize if no vector code will be produced. 7698 if (VPlanBuildStressTest || EnableVPlanPredication || 7699 VectorizationFactor::Disabled() == VF) 7700 return false; 7701 7702 LVP.setBestPlan(VF.Width, 1); 7703 7704 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7705 &CM, BFI, PSI); 7706 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7707 << L->getHeader()->getParent()->getName() << "\"\n"); 7708 LVP.executePlan(LB, DT); 7709 7710 // Mark the loop as already vectorized to avoid vectorizing again. 7711 Hints.setAlreadyVectorized(); 7712 7713 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 7714 return true; 7715 } 7716 7717 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7718 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7719 !EnableLoopInterleaving), 7720 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7721 !EnableLoopVectorization) {} 7722 7723 bool LoopVectorizePass::processLoop(Loop *L) { 7724 assert((EnableVPlanNativePath || L->empty()) && 7725 "VPlan-native path is not enabled. Only process inner loops."); 7726 7727 #ifndef NDEBUG 7728 const std::string DebugLocStr = getDebugLocString(L); 7729 #endif /* NDEBUG */ 7730 7731 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7732 << L->getHeader()->getParent()->getName() << "\" from " 7733 << DebugLocStr << "\n"); 7734 7735 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7736 7737 LLVM_DEBUG( 7738 dbgs() << "LV: Loop hints:" 7739 << " force=" 7740 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7741 ? "disabled" 7742 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7743 ? "enabled" 7744 : "?")) 7745 << " width=" << Hints.getWidth() 7746 << " unroll=" << Hints.getInterleave() << "\n"); 7747 7748 // Function containing loop 7749 Function *F = L->getHeader()->getParent(); 7750 7751 // Looking at the diagnostic output is the only way to determine if a loop 7752 // was vectorized (other than looking at the IR or machine code), so it 7753 // is important to generate an optimization remark for each loop. Most of 7754 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7755 // generated as OptimizationRemark and OptimizationRemarkMissed are 7756 // less verbose reporting vectorized loops and unvectorized loops that may 7757 // benefit from vectorization, respectively. 7758 7759 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7760 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7761 return false; 7762 } 7763 7764 PredicatedScalarEvolution PSE(*SE, *L); 7765 7766 // Check if it is legal to vectorize the loop. 7767 LoopVectorizationRequirements Requirements(*ORE); 7768 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7769 &Requirements, &Hints, DB, AC, BFI, PSI); 7770 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7771 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7772 Hints.emitRemarkWithHints(); 7773 return false; 7774 } 7775 7776 // Check the function attributes and profiles to find out if this function 7777 // should be optimized for size. 7778 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7779 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7780 7781 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7782 // here. They may require CFG and instruction level transformations before 7783 // even evaluating whether vectorization is profitable. Since we cannot modify 7784 // the incoming IR, we need to build VPlan upfront in the vectorization 7785 // pipeline. 7786 if (!L->empty()) 7787 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7788 ORE, BFI, PSI, Hints); 7789 7790 assert(L->empty() && "Inner loop expected."); 7791 7792 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7793 // count by optimizing for size, to minimize overheads. 7794 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7795 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7796 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7797 << "This loop is worth vectorizing only if no scalar " 7798 << "iteration overheads are incurred."); 7799 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7800 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7801 else { 7802 LLVM_DEBUG(dbgs() << "\n"); 7803 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7804 } 7805 } 7806 7807 // Check the function attributes to see if implicit floats are allowed. 7808 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7809 // an integer loop and the vector instructions selected are purely integer 7810 // vector instructions? 7811 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7812 reportVectorizationFailure( 7813 "Can't vectorize when the NoImplicitFloat attribute is used", 7814 "loop not vectorized due to NoImplicitFloat attribute", 7815 "NoImplicitFloat", ORE, L); 7816 Hints.emitRemarkWithHints(); 7817 return false; 7818 } 7819 7820 // Check if the target supports potentially unsafe FP vectorization. 7821 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7822 // for the target we're vectorizing for, to make sure none of the 7823 // additional fp-math flags can help. 7824 if (Hints.isPotentiallyUnsafe() && 7825 TTI->isFPVectorizationPotentiallyUnsafe()) { 7826 reportVectorizationFailure( 7827 "Potentially unsafe FP op prevents vectorization", 7828 "loop not vectorized due to unsafe FP support.", 7829 "UnsafeFP", ORE, L); 7830 Hints.emitRemarkWithHints(); 7831 return false; 7832 } 7833 7834 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7835 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7836 7837 // If an override option has been passed in for interleaved accesses, use it. 7838 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7839 UseInterleaved = EnableInterleavedMemAccesses; 7840 7841 // Analyze interleaved memory accesses. 7842 if (UseInterleaved) { 7843 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7844 } 7845 7846 // Use the cost model. 7847 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7848 F, &Hints, IAI); 7849 CM.collectValuesToIgnore(); 7850 7851 // Use the planner for vectorization. 7852 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7853 7854 // Get user vectorization factor and interleave count. 7855 unsigned UserVF = Hints.getWidth(); 7856 unsigned UserIC = Hints.getInterleave(); 7857 7858 // Plan how to best vectorize, return the best VF and its cost. 7859 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 7860 7861 VectorizationFactor VF = VectorizationFactor::Disabled(); 7862 unsigned IC = 1; 7863 7864 if (MaybeVF) { 7865 VF = *MaybeVF; 7866 // Select the interleave count. 7867 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7868 } 7869 7870 // Identify the diagnostic messages that should be produced. 7871 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7872 bool VectorizeLoop = true, InterleaveLoop = true; 7873 if (Requirements.doesNotMeet(F, L, Hints)) { 7874 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7875 "requirements.\n"); 7876 Hints.emitRemarkWithHints(); 7877 return false; 7878 } 7879 7880 if (VF.Width == 1) { 7881 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7882 VecDiagMsg = std::make_pair( 7883 "VectorizationNotBeneficial", 7884 "the cost-model indicates that vectorization is not beneficial"); 7885 VectorizeLoop = false; 7886 } 7887 7888 if (!MaybeVF && UserIC > 1) { 7889 // Tell the user interleaving was avoided up-front, despite being explicitly 7890 // requested. 7891 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7892 "interleaving should be avoided up front\n"); 7893 IntDiagMsg = std::make_pair( 7894 "InterleavingAvoided", 7895 "Ignoring UserIC, because interleaving was avoided up front"); 7896 InterleaveLoop = false; 7897 } else if (IC == 1 && UserIC <= 1) { 7898 // Tell the user interleaving is not beneficial. 7899 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7900 IntDiagMsg = std::make_pair( 7901 "InterleavingNotBeneficial", 7902 "the cost-model indicates that interleaving is not beneficial"); 7903 InterleaveLoop = false; 7904 if (UserIC == 1) { 7905 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7906 IntDiagMsg.second += 7907 " and is explicitly disabled or interleave count is set to 1"; 7908 } 7909 } else if (IC > 1 && UserIC == 1) { 7910 // Tell the user interleaving is beneficial, but it explicitly disabled. 7911 LLVM_DEBUG( 7912 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7913 IntDiagMsg = std::make_pair( 7914 "InterleavingBeneficialButDisabled", 7915 "the cost-model indicates that interleaving is beneficial " 7916 "but is explicitly disabled or interleave count is set to 1"); 7917 InterleaveLoop = false; 7918 } 7919 7920 // Override IC if user provided an interleave count. 7921 IC = UserIC > 0 ? UserIC : IC; 7922 7923 // Emit diagnostic messages, if any. 7924 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7925 if (!VectorizeLoop && !InterleaveLoop) { 7926 // Do not vectorize or interleaving the loop. 7927 ORE->emit([&]() { 7928 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7929 L->getStartLoc(), L->getHeader()) 7930 << VecDiagMsg.second; 7931 }); 7932 ORE->emit([&]() { 7933 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7934 L->getStartLoc(), L->getHeader()) 7935 << IntDiagMsg.second; 7936 }); 7937 return false; 7938 } else if (!VectorizeLoop && InterleaveLoop) { 7939 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7940 ORE->emit([&]() { 7941 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7942 L->getStartLoc(), L->getHeader()) 7943 << VecDiagMsg.second; 7944 }); 7945 } else if (VectorizeLoop && !InterleaveLoop) { 7946 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7947 << ") in " << DebugLocStr << '\n'); 7948 ORE->emit([&]() { 7949 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7950 L->getStartLoc(), L->getHeader()) 7951 << IntDiagMsg.second; 7952 }); 7953 } else if (VectorizeLoop && InterleaveLoop) { 7954 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7955 << ") in " << DebugLocStr << '\n'); 7956 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7957 } 7958 7959 LVP.setBestPlan(VF.Width, IC); 7960 7961 using namespace ore; 7962 bool DisableRuntimeUnroll = false; 7963 MDNode *OrigLoopID = L->getLoopID(); 7964 7965 if (!VectorizeLoop) { 7966 assert(IC > 1 && "interleave count should not be 1 or 0"); 7967 // If we decided that it is not legal to vectorize the loop, then 7968 // interleave it. 7969 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 7970 BFI, PSI); 7971 LVP.executePlan(Unroller, DT); 7972 7973 ORE->emit([&]() { 7974 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7975 L->getHeader()) 7976 << "interleaved loop (interleaved count: " 7977 << NV("InterleaveCount", IC) << ")"; 7978 }); 7979 } else { 7980 // If we decided that it is *legal* to vectorize the loop, then do it. 7981 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7982 &LVL, &CM, BFI, PSI); 7983 LVP.executePlan(LB, DT); 7984 ++LoopsVectorized; 7985 7986 // Add metadata to disable runtime unrolling a scalar loop when there are 7987 // no runtime checks about strides and memory. A scalar loop that is 7988 // rarely used is not worth unrolling. 7989 if (!LB.areSafetyChecksAdded()) 7990 DisableRuntimeUnroll = true; 7991 7992 // Report the vectorization decision. 7993 ORE->emit([&]() { 7994 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7995 L->getHeader()) 7996 << "vectorized loop (vectorization width: " 7997 << NV("VectorizationFactor", VF.Width) 7998 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7999 }); 8000 } 8001 8002 Optional<MDNode *> RemainderLoopID = 8003 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8004 LLVMLoopVectorizeFollowupEpilogue}); 8005 if (RemainderLoopID.hasValue()) { 8006 L->setLoopID(RemainderLoopID.getValue()); 8007 } else { 8008 if (DisableRuntimeUnroll) 8009 AddRuntimeUnrollDisableMetaData(L); 8010 8011 // Mark the loop as already vectorized to avoid vectorizing again. 8012 Hints.setAlreadyVectorized(); 8013 } 8014 8015 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8016 return true; 8017 } 8018 8019 LoopVectorizeResult LoopVectorizePass::runImpl( 8020 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8021 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8022 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8023 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8024 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8025 SE = &SE_; 8026 LI = &LI_; 8027 TTI = &TTI_; 8028 DT = &DT_; 8029 BFI = &BFI_; 8030 TLI = TLI_; 8031 AA = &AA_; 8032 AC = &AC_; 8033 GetLAA = &GetLAA_; 8034 DB = &DB_; 8035 ORE = &ORE_; 8036 PSI = PSI_; 8037 8038 // Don't attempt if 8039 // 1. the target claims to have no vector registers, and 8040 // 2. interleaving won't help ILP. 8041 // 8042 // The second condition is necessary because, even if the target has no 8043 // vector registers, loop vectorization may still enable scalar 8044 // interleaving. 8045 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8046 TTI->getMaxInterleaveFactor(1) < 2) 8047 return LoopVectorizeResult(false, false); 8048 8049 bool Changed = false, CFGChanged = false; 8050 8051 // The vectorizer requires loops to be in simplified form. 8052 // Since simplification may add new inner loops, it has to run before the 8053 // legality and profitability checks. This means running the loop vectorizer 8054 // will simplify all loops, regardless of whether anything end up being 8055 // vectorized. 8056 for (auto &L : *LI) 8057 Changed |= CFGChanged |= 8058 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8059 8060 // Build up a worklist of inner-loops to vectorize. This is necessary as 8061 // the act of vectorizing or partially unrolling a loop creates new loops 8062 // and can invalidate iterators across the loops. 8063 SmallVector<Loop *, 8> Worklist; 8064 8065 for (Loop *L : *LI) 8066 collectSupportedLoops(*L, LI, ORE, Worklist); 8067 8068 LoopsAnalyzed += Worklist.size(); 8069 8070 // Now walk the identified inner loops. 8071 while (!Worklist.empty()) { 8072 Loop *L = Worklist.pop_back_val(); 8073 8074 // For the inner loops we actually process, form LCSSA to simplify the 8075 // transform. 8076 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8077 8078 Changed |= CFGChanged |= processLoop(L); 8079 } 8080 8081 // Process each loop nest in the function. 8082 return LoopVectorizeResult(Changed, CFGChanged); 8083 } 8084 8085 PreservedAnalyses LoopVectorizePass::run(Function &F, 8086 FunctionAnalysisManager &AM) { 8087 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8088 auto &LI = AM.getResult<LoopAnalysis>(F); 8089 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8090 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8091 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8092 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8093 auto &AA = AM.getResult<AAManager>(F); 8094 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8095 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8096 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8097 MemorySSA *MSSA = EnableMSSALoopDependency 8098 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8099 : nullptr; 8100 8101 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8102 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8103 [&](Loop &L) -> const LoopAccessInfo & { 8104 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8105 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8106 }; 8107 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8108 ProfileSummaryInfo *PSI = 8109 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8110 LoopVectorizeResult Result = 8111 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8112 if (!Result.MadeAnyChange) 8113 return PreservedAnalyses::all(); 8114 PreservedAnalyses PA; 8115 8116 // We currently do not preserve loopinfo/dominator analyses with outer loop 8117 // vectorization. Until this is addressed, mark these analyses as preserved 8118 // only for non-VPlan-native path. 8119 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8120 if (!EnableVPlanNativePath) { 8121 PA.preserve<LoopAnalysis>(); 8122 PA.preserve<DominatorTreeAnalysis>(); 8123 } 8124 PA.preserve<BasicAA>(); 8125 PA.preserve<GlobalsAA>(); 8126 if (!Result.MadeCFGChange) 8127 PA.preserveSet<CFGAnalyses>(); 8128 return PA; 8129 } 8130