1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #define LV_NAME "loop-vectorize" 46 #define DEBUG_TYPE LV_NAME 47 48 #include "llvm/Transforms/Vectorize.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/EquivalenceClasses.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/Analysis/AliasAnalysis.h" 59 #include "llvm/Analysis/LoopInfo.h" 60 #include "llvm/Analysis/LoopIterator.h" 61 #include "llvm/Analysis/LoopPass.h" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/Analysis/ScalarEvolutionExpander.h" 64 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/Analysis/ValueTracking.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/LLVMContext.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/IR/Type.h" 78 #include "llvm/IR/Value.h" 79 #include "llvm/IR/Verifier.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/PatternMatch.h" 84 #include "llvm/Support/ValueHandle.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetLibraryInfo.h" 87 #include "llvm/Transforms/Scalar.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include <algorithm> 91 #include <map> 92 93 using namespace llvm; 94 using namespace llvm::PatternMatch; 95 96 static cl::opt<unsigned> 97 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 98 cl::desc("Sets the SIMD width. Zero is autoselect.")); 99 100 static cl::opt<unsigned> 101 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 102 cl::desc("Sets the vectorization unroll count. " 103 "Zero is autoselect.")); 104 105 static cl::opt<bool> 106 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 107 cl::desc("Enable if-conversion during vectorization.")); 108 109 /// We don't vectorize loops with a known constant trip count below this number. 110 static cl::opt<unsigned> 111 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 112 cl::Hidden, 113 cl::desc("Don't vectorize loops with a constant " 114 "trip count that is smaller than this " 115 "value.")); 116 117 /// This enables versioning on the strides of symbolically striding memory 118 /// accesses in code like the following. 119 /// for (i = 0; i < N; ++i) 120 /// A[i * Stride1] += B[i * Stride2] ... 121 /// 122 /// Will be roughly translated to 123 /// if (Stride1 == 1 && Stride2 == 1) { 124 /// for (i = 0; i < N; i+=4) 125 /// A[i:i+3] += ... 126 /// } else 127 /// ... 128 static cl::opt<bool> EnableMemAccessVersioning( 129 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 130 cl::desc("Enable symblic stride memory access versioning")); 131 132 /// We don't unroll loops with a known constant trip count below this number. 133 static const unsigned TinyTripCountUnrollThreshold = 128; 134 135 /// When performing memory disambiguation checks at runtime do not make more 136 /// than this number of comparisons. 137 static const unsigned RuntimeMemoryCheckThreshold = 8; 138 139 /// Maximum simd width. 140 static const unsigned MaxVectorWidth = 64; 141 142 /// Maximum vectorization unroll count. 143 static const unsigned MaxUnrollFactor = 16; 144 145 /// The cost of a loop that is considered 'small' by the unroller. 146 static const unsigned SmallLoopCost = 20; 147 148 namespace { 149 150 // Forward declarations. 151 class LoopVectorizationLegality; 152 class LoopVectorizationCostModel; 153 154 /// InnerLoopVectorizer vectorizes loops which contain only one basic 155 /// block to a specified vectorization factor (VF). 156 /// This class performs the widening of scalars into vectors, or multiple 157 /// scalars. This class also implements the following features: 158 /// * It inserts an epilogue loop for handling loops that don't have iteration 159 /// counts that are known to be a multiple of the vectorization factor. 160 /// * It handles the code generation for reduction variables. 161 /// * Scalarization (implementation using scalars) of un-vectorizable 162 /// instructions. 163 /// InnerLoopVectorizer does not perform any vectorization-legality 164 /// checks, and relies on the caller to check for the different legality 165 /// aspects. The InnerLoopVectorizer relies on the 166 /// LoopVectorizationLegality class to provide information about the induction 167 /// and reduction variables that were found to a given vectorization factor. 168 class InnerLoopVectorizer { 169 public: 170 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 171 DominatorTree *DT, DataLayout *DL, 172 const TargetLibraryInfo *TLI, unsigned VecWidth, 173 unsigned UnrollFactor) 174 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 175 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0), 176 OldInduction(0), WidenMap(UnrollFactor), Legal(0) {} 177 178 // Perform the actual loop widening (vectorization). 179 void vectorize(LoopVectorizationLegality *L) { 180 Legal = L; 181 // Create a new empty loop. Unlink the old loop and connect the new one. 182 createEmptyLoop(); 183 // Widen each instruction in the old loop to a new one in the new loop. 184 // Use the Legality module to find the induction and reduction variables. 185 vectorizeLoop(); 186 // Register the new loop and update the analysis passes. 187 updateAnalysis(); 188 } 189 190 virtual ~InnerLoopVectorizer() {} 191 192 protected: 193 /// A small list of PHINodes. 194 typedef SmallVector<PHINode*, 4> PhiVector; 195 /// When we unroll loops we have multiple vector values for each scalar. 196 /// This data structure holds the unrolled and vectorized values that 197 /// originated from one scalar instruction. 198 typedef SmallVector<Value*, 2> VectorParts; 199 200 // When we if-convert we need create edge masks. We have to cache values so 201 // that we don't end up with exponential recursion/IR. 202 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 203 VectorParts> EdgeMaskCache; 204 205 /// \brief Add code that checks at runtime if the accessed arrays overlap. 206 /// 207 /// Returns a pair of instructions where the first element is the first 208 /// instruction generated in possibly a sequence of instructions and the 209 /// second value is the final comparator value or NULL if no check is needed. 210 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 211 212 /// \brief Add checks for strides that where assumed to be 1. 213 /// 214 /// Returns the last check instruction and the first check instruction in the 215 /// pair as (first, last). 216 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 217 218 /// Create an empty loop, based on the loop ranges of the old loop. 219 void createEmptyLoop(); 220 /// Copy and widen the instructions from the old loop. 221 virtual void vectorizeLoop(); 222 223 /// \brief The Loop exit block may have single value PHI nodes where the 224 /// incoming value is 'Undef'. While vectorizing we only handled real values 225 /// that were defined inside the loop. Here we fix the 'undef case'. 226 /// See PR14725. 227 void fixLCSSAPHIs(); 228 229 /// A helper function that computes the predicate of the block BB, assuming 230 /// that the header block of the loop is set to True. It returns the *entry* 231 /// mask for the block BB. 232 VectorParts createBlockInMask(BasicBlock *BB); 233 /// A helper function that computes the predicate of the edge between SRC 234 /// and DST. 235 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 236 237 /// A helper function to vectorize a single BB within the innermost loop. 238 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 239 240 /// Vectorize a single PHINode in a block. This method handles the induction 241 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 242 /// arbitrary length vectors. 243 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 244 unsigned UF, unsigned VF, PhiVector *PV); 245 246 /// Insert the new loop to the loop hierarchy and pass manager 247 /// and update the analysis passes. 248 void updateAnalysis(); 249 250 /// This instruction is un-vectorizable. Implement it as a sequence 251 /// of scalars. 252 virtual void scalarizeInstruction(Instruction *Instr); 253 254 /// Vectorize Load and Store instructions, 255 virtual void vectorizeMemoryInstruction(Instruction *Instr); 256 257 /// Create a broadcast instruction. This method generates a broadcast 258 /// instruction (shuffle) for loop invariant values and for the induction 259 /// value. If this is the induction variable then we extend it to N, N+1, ... 260 /// this is needed because each iteration in the loop corresponds to a SIMD 261 /// element. 262 virtual Value *getBroadcastInstrs(Value *V); 263 264 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 265 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 266 /// The sequence starts at StartIndex. 267 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 268 269 /// When we go over instructions in the basic block we rely on previous 270 /// values within the current basic block or on loop invariant values. 271 /// When we widen (vectorize) values we place them in the map. If the values 272 /// are not within the map, they have to be loop invariant, so we simply 273 /// broadcast them into a vector. 274 VectorParts &getVectorValue(Value *V); 275 276 /// Generate a shuffle sequence that will reverse the vector Vec. 277 virtual Value *reverseVector(Value *Vec); 278 279 /// This is a helper class that holds the vectorizer state. It maps scalar 280 /// instructions to vector instructions. When the code is 'unrolled' then 281 /// then a single scalar value is mapped to multiple vector parts. The parts 282 /// are stored in the VectorPart type. 283 struct ValueMap { 284 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 285 /// are mapped. 286 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 287 288 /// \return True if 'Key' is saved in the Value Map. 289 bool has(Value *Key) const { return MapStorage.count(Key); } 290 291 /// Initializes a new entry in the map. Sets all of the vector parts to the 292 /// save value in 'Val'. 293 /// \return A reference to a vector with splat values. 294 VectorParts &splat(Value *Key, Value *Val) { 295 VectorParts &Entry = MapStorage[Key]; 296 Entry.assign(UF, Val); 297 return Entry; 298 } 299 300 ///\return A reference to the value that is stored at 'Key'. 301 VectorParts &get(Value *Key) { 302 VectorParts &Entry = MapStorage[Key]; 303 if (Entry.empty()) 304 Entry.resize(UF); 305 assert(Entry.size() == UF); 306 return Entry; 307 } 308 309 private: 310 /// The unroll factor. Each entry in the map stores this number of vector 311 /// elements. 312 unsigned UF; 313 314 /// Map storage. We use std::map and not DenseMap because insertions to a 315 /// dense map invalidates its iterators. 316 std::map<Value *, VectorParts> MapStorage; 317 }; 318 319 /// The original loop. 320 Loop *OrigLoop; 321 /// Scev analysis to use. 322 ScalarEvolution *SE; 323 /// Loop Info. 324 LoopInfo *LI; 325 /// Dominator Tree. 326 DominatorTree *DT; 327 /// Data Layout. 328 DataLayout *DL; 329 /// Target Library Info. 330 const TargetLibraryInfo *TLI; 331 332 /// The vectorization SIMD factor to use. Each vector will have this many 333 /// vector elements. 334 unsigned VF; 335 336 protected: 337 /// The vectorization unroll factor to use. Each scalar is vectorized to this 338 /// many different vector instructions. 339 unsigned UF; 340 341 /// The builder that we use 342 IRBuilder<> Builder; 343 344 // --- Vectorization state --- 345 346 /// The vector-loop preheader. 347 BasicBlock *LoopVectorPreHeader; 348 /// The scalar-loop preheader. 349 BasicBlock *LoopScalarPreHeader; 350 /// Middle Block between the vector and the scalar. 351 BasicBlock *LoopMiddleBlock; 352 ///The ExitBlock of the scalar loop. 353 BasicBlock *LoopExitBlock; 354 ///The vector loop body. 355 BasicBlock *LoopVectorBody; 356 ///The scalar loop body. 357 BasicBlock *LoopScalarBody; 358 /// A list of all bypass blocks. The first block is the entry of the loop. 359 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 360 361 /// The new Induction variable which was added to the new block. 362 PHINode *Induction; 363 /// The induction variable of the old basic block. 364 PHINode *OldInduction; 365 /// Holds the extended (to the widest induction type) start index. 366 Value *ExtendedIdx; 367 /// Maps scalars to widened vectors. 368 ValueMap WidenMap; 369 EdgeMaskCache MaskCache; 370 371 LoopVectorizationLegality *Legal; 372 }; 373 374 class InnerLoopUnroller : public InnerLoopVectorizer { 375 public: 376 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 377 DominatorTree *DT, DataLayout *DL, 378 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 379 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 380 381 private: 382 virtual void scalarizeInstruction(Instruction *Instr); 383 virtual void vectorizeMemoryInstruction(Instruction *Instr); 384 virtual Value *getBroadcastInstrs(Value *V); 385 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 386 virtual Value *reverseVector(Value *Vec); 387 }; 388 389 /// \brief Look for a meaningful debug location on the instruction or it's 390 /// operands. 391 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 392 if (!I) 393 return I; 394 395 DebugLoc Empty; 396 if (I->getDebugLoc() != Empty) 397 return I; 398 399 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 400 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 401 if (OpInst->getDebugLoc() != Empty) 402 return OpInst; 403 } 404 405 return I; 406 } 407 408 /// \brief Set the debug location in the builder using the debug location in the 409 /// instruction. 410 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 411 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 412 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 413 else 414 B.SetCurrentDebugLocation(DebugLoc()); 415 } 416 417 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 418 /// to what vectorization factor. 419 /// This class does not look at the profitability of vectorization, only the 420 /// legality. This class has two main kinds of checks: 421 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 422 /// will change the order of memory accesses in a way that will change the 423 /// correctness of the program. 424 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 425 /// checks for a number of different conditions, such as the availability of a 426 /// single induction variable, that all types are supported and vectorize-able, 427 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 428 /// This class is also used by InnerLoopVectorizer for identifying 429 /// induction variable and the different reduction variables. 430 class LoopVectorizationLegality { 431 public: 432 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL, 433 DominatorTree *DT, TargetLibraryInfo *TLI) 434 : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI), 435 Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false), 436 MaxSafeDepDistBytes(-1U) {} 437 438 /// This enum represents the kinds of reductions that we support. 439 enum ReductionKind { 440 RK_NoReduction, ///< Not a reduction. 441 RK_IntegerAdd, ///< Sum of integers. 442 RK_IntegerMult, ///< Product of integers. 443 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 444 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 445 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 446 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 447 RK_FloatAdd, ///< Sum of floats. 448 RK_FloatMult, ///< Product of floats. 449 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 450 }; 451 452 /// This enum represents the kinds of inductions that we support. 453 enum InductionKind { 454 IK_NoInduction, ///< Not an induction variable. 455 IK_IntInduction, ///< Integer induction variable. Step = 1. 456 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 457 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 458 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 459 }; 460 461 // This enum represents the kind of minmax reduction. 462 enum MinMaxReductionKind { 463 MRK_Invalid, 464 MRK_UIntMin, 465 MRK_UIntMax, 466 MRK_SIntMin, 467 MRK_SIntMax, 468 MRK_FloatMin, 469 MRK_FloatMax 470 }; 471 472 /// This struct holds information about reduction variables. 473 struct ReductionDescriptor { 474 ReductionDescriptor() : StartValue(0), LoopExitInstr(0), 475 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 476 477 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 478 MinMaxReductionKind MK) 479 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 480 481 // The starting value of the reduction. 482 // It does not have to be zero! 483 TrackingVH<Value> StartValue; 484 // The instruction who's value is used outside the loop. 485 Instruction *LoopExitInstr; 486 // The kind of the reduction. 487 ReductionKind Kind; 488 // If this a min/max reduction the kind of reduction. 489 MinMaxReductionKind MinMaxKind; 490 }; 491 492 /// This POD struct holds information about a potential reduction operation. 493 struct ReductionInstDesc { 494 ReductionInstDesc(bool IsRedux, Instruction *I) : 495 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 496 497 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 498 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 499 500 // Is this instruction a reduction candidate. 501 bool IsReduction; 502 // The last instruction in a min/max pattern (select of the select(icmp()) 503 // pattern), or the current reduction instruction otherwise. 504 Instruction *PatternLastInst; 505 // If this is a min/max pattern the comparison predicate. 506 MinMaxReductionKind MinMaxKind; 507 }; 508 509 /// This struct holds information about the memory runtime legality 510 /// check that a group of pointers do not overlap. 511 struct RuntimePointerCheck { 512 RuntimePointerCheck() : Need(false) {} 513 514 /// Reset the state of the pointer runtime information. 515 void reset() { 516 Need = false; 517 Pointers.clear(); 518 Starts.clear(); 519 Ends.clear(); 520 IsWritePtr.clear(); 521 DependencySetId.clear(); 522 } 523 524 /// Insert a pointer and calculate the start and end SCEVs. 525 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 526 unsigned DepSetId, ValueToValueMap &Strides); 527 528 /// This flag indicates if we need to add the runtime check. 529 bool Need; 530 /// Holds the pointers that we need to check. 531 SmallVector<TrackingVH<Value>, 2> Pointers; 532 /// Holds the pointer value at the beginning of the loop. 533 SmallVector<const SCEV*, 2> Starts; 534 /// Holds the pointer value at the end of the loop. 535 SmallVector<const SCEV*, 2> Ends; 536 /// Holds the information if this pointer is used for writing to memory. 537 SmallVector<bool, 2> IsWritePtr; 538 /// Holds the id of the set of pointers that could be dependent because of a 539 /// shared underlying object. 540 SmallVector<unsigned, 2> DependencySetId; 541 }; 542 543 /// A struct for saving information about induction variables. 544 struct InductionInfo { 545 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 546 InductionInfo() : StartValue(0), IK(IK_NoInduction) {} 547 /// Start value. 548 TrackingVH<Value> StartValue; 549 /// Induction kind. 550 InductionKind IK; 551 }; 552 553 /// ReductionList contains the reduction descriptors for all 554 /// of the reductions that were found in the loop. 555 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 556 557 /// InductionList saves induction variables and maps them to the 558 /// induction descriptor. 559 typedef MapVector<PHINode*, InductionInfo> InductionList; 560 561 /// Returns true if it is legal to vectorize this loop. 562 /// This does not mean that it is profitable to vectorize this 563 /// loop, only that it is legal to do so. 564 bool canVectorize(); 565 566 /// Returns the Induction variable. 567 PHINode *getInduction() { return Induction; } 568 569 /// Returns the reduction variables found in the loop. 570 ReductionList *getReductionVars() { return &Reductions; } 571 572 /// Returns the induction variables found in the loop. 573 InductionList *getInductionVars() { return &Inductions; } 574 575 /// Returns the widest induction type. 576 Type *getWidestInductionType() { return WidestIndTy; } 577 578 /// Returns True if V is an induction variable in this loop. 579 bool isInductionVariable(const Value *V); 580 581 /// Return true if the block BB needs to be predicated in order for the loop 582 /// to be vectorized. 583 bool blockNeedsPredication(BasicBlock *BB); 584 585 /// Check if this pointer is consecutive when vectorizing. This happens 586 /// when the last index of the GEP is the induction variable, or that the 587 /// pointer itself is an induction variable. 588 /// This check allows us to vectorize A[idx] into a wide load/store. 589 /// Returns: 590 /// 0 - Stride is unknown or non-consecutive. 591 /// 1 - Address is consecutive. 592 /// -1 - Address is consecutive, and decreasing. 593 int isConsecutivePtr(Value *Ptr); 594 595 /// Returns true if the value V is uniform within the loop. 596 bool isUniform(Value *V); 597 598 /// Returns true if this instruction will remain scalar after vectorization. 599 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 600 601 /// Returns the information that we collected about runtime memory check. 602 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 603 604 /// This function returns the identity element (or neutral element) for 605 /// the operation K. 606 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 607 608 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 609 610 bool hasStride(Value *V) { return StrideSet.count(V); } 611 bool mustCheckStrides() { return !StrideSet.empty(); } 612 SmallPtrSet<Value *, 8>::iterator strides_begin() { 613 return StrideSet.begin(); 614 } 615 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 616 617 private: 618 /// Check if a single basic block loop is vectorizable. 619 /// At this point we know that this is a loop with a constant trip count 620 /// and we only need to check individual instructions. 621 bool canVectorizeInstrs(); 622 623 /// When we vectorize loops we may change the order in which 624 /// we read and write from memory. This method checks if it is 625 /// legal to vectorize the code, considering only memory constrains. 626 /// Returns true if the loop is vectorizable 627 bool canVectorizeMemory(); 628 629 /// Return true if we can vectorize this loop using the IF-conversion 630 /// transformation. 631 bool canVectorizeWithIfConvert(); 632 633 /// Collect the variables that need to stay uniform after vectorization. 634 void collectLoopUniforms(); 635 636 /// Return true if all of the instructions in the block can be speculatively 637 /// executed. \p SafePtrs is a list of addresses that are known to be legal 638 /// and we know that we can read from them without segfault. 639 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs); 640 641 /// Returns True, if 'Phi' is the kind of reduction variable for type 642 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 643 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 644 /// Returns a struct describing if the instruction 'I' can be a reduction 645 /// variable of type 'Kind'. If the reduction is a min/max pattern of 646 /// select(icmp()) this function advances the instruction pointer 'I' from the 647 /// compare instruction to the select instruction and stores this pointer in 648 /// 'PatternLastInst' member of the returned struct. 649 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 650 ReductionInstDesc &Desc); 651 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 652 /// pattern corresponding to a min(X, Y) or max(X, Y). 653 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 654 ReductionInstDesc &Prev); 655 /// Returns the induction kind of Phi. This function may return NoInduction 656 /// if the PHI is not an induction variable. 657 InductionKind isInductionVariable(PHINode *Phi); 658 659 /// \brief Collect memory access with loop invariant strides. 660 /// 661 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 662 /// invariant. 663 void collectStridedAcccess(Value *LoadOrStoreInst); 664 665 /// The loop that we evaluate. 666 Loop *TheLoop; 667 /// Scev analysis. 668 ScalarEvolution *SE; 669 /// DataLayout analysis. 670 DataLayout *DL; 671 /// Dominators. 672 DominatorTree *DT; 673 /// Target Library Info. 674 TargetLibraryInfo *TLI; 675 676 // --- vectorization state --- // 677 678 /// Holds the integer induction variable. This is the counter of the 679 /// loop. 680 PHINode *Induction; 681 /// Holds the reduction variables. 682 ReductionList Reductions; 683 /// Holds all of the induction variables that we found in the loop. 684 /// Notice that inductions don't need to start at zero and that induction 685 /// variables can be pointers. 686 InductionList Inductions; 687 /// Holds the widest induction type encountered. 688 Type *WidestIndTy; 689 690 /// Allowed outside users. This holds the reduction 691 /// vars which can be accessed from outside the loop. 692 SmallPtrSet<Value*, 4> AllowedExit; 693 /// This set holds the variables which are known to be uniform after 694 /// vectorization. 695 SmallPtrSet<Instruction*, 4> Uniforms; 696 /// We need to check that all of the pointers in this list are disjoint 697 /// at runtime. 698 RuntimePointerCheck PtrRtCheck; 699 /// Can we assume the absence of NaNs. 700 bool HasFunNoNaNAttr; 701 702 unsigned MaxSafeDepDistBytes; 703 704 ValueToValueMap Strides; 705 SmallPtrSet<Value *, 8> StrideSet; 706 }; 707 708 /// LoopVectorizationCostModel - estimates the expected speedups due to 709 /// vectorization. 710 /// In many cases vectorization is not profitable. This can happen because of 711 /// a number of reasons. In this class we mainly attempt to predict the 712 /// expected speedup/slowdowns due to the supported instruction set. We use the 713 /// TargetTransformInfo to query the different backends for the cost of 714 /// different operations. 715 class LoopVectorizationCostModel { 716 public: 717 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 718 LoopVectorizationLegality *Legal, 719 const TargetTransformInfo &TTI, 720 DataLayout *DL, const TargetLibraryInfo *TLI) 721 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 722 723 /// Information about vectorization costs 724 struct VectorizationFactor { 725 unsigned Width; // Vector width with best cost 726 unsigned Cost; // Cost of the loop with that width 727 }; 728 /// \return The most profitable vectorization factor and the cost of that VF. 729 /// This method checks every power of two up to VF. If UserVF is not ZERO 730 /// then this vectorization factor will be selected if vectorization is 731 /// possible. 732 VectorizationFactor selectVectorizationFactor(bool OptForSize, 733 unsigned UserVF); 734 735 /// \return The size (in bits) of the widest type in the code that 736 /// needs to be vectorized. We ignore values that remain scalar such as 737 /// 64 bit loop indices. 738 unsigned getWidestType(); 739 740 /// \return The most profitable unroll factor. 741 /// If UserUF is non-zero then this method finds the best unroll-factor 742 /// based on register pressure and other parameters. 743 /// VF and LoopCost are the selected vectorization factor and the cost of the 744 /// selected VF. 745 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 746 unsigned LoopCost); 747 748 /// \brief A struct that represents some properties of the register usage 749 /// of a loop. 750 struct RegisterUsage { 751 /// Holds the number of loop invariant values that are used in the loop. 752 unsigned LoopInvariantRegs; 753 /// Holds the maximum number of concurrent live intervals in the loop. 754 unsigned MaxLocalUsers; 755 /// Holds the number of instructions in the loop. 756 unsigned NumInstructions; 757 }; 758 759 /// \return information about the register usage of the loop. 760 RegisterUsage calculateRegisterUsage(); 761 762 private: 763 /// Returns the expected execution cost. The unit of the cost does 764 /// not matter because we use the 'cost' units to compare different 765 /// vector widths. The cost that is returned is *not* normalized by 766 /// the factor width. 767 unsigned expectedCost(unsigned VF); 768 769 /// Returns the execution time cost of an instruction for a given vector 770 /// width. Vector width of one means scalar. 771 unsigned getInstructionCost(Instruction *I, unsigned VF); 772 773 /// A helper function for converting Scalar types to vector types. 774 /// If the incoming type is void, we return void. If the VF is 1, we return 775 /// the scalar type. 776 static Type* ToVectorTy(Type *Scalar, unsigned VF); 777 778 /// Returns whether the instruction is a load or store and will be a emitted 779 /// as a vector operation. 780 bool isConsecutiveLoadOrStore(Instruction *I); 781 782 /// The loop that we evaluate. 783 Loop *TheLoop; 784 /// Scev analysis. 785 ScalarEvolution *SE; 786 /// Loop Info analysis. 787 LoopInfo *LI; 788 /// Vectorization legality. 789 LoopVectorizationLegality *Legal; 790 /// Vector target information. 791 const TargetTransformInfo &TTI; 792 /// Target data layout information. 793 DataLayout *DL; 794 /// Target Library Info. 795 const TargetLibraryInfo *TLI; 796 }; 797 798 /// Utility class for getting and setting loop vectorizer hints in the form 799 /// of loop metadata. 800 struct LoopVectorizeHints { 801 /// Vectorization width. 802 unsigned Width; 803 /// Vectorization unroll factor. 804 unsigned Unroll; 805 /// Vectorization forced (-1 not selected, 0 force disabled, 1 force enabled) 806 int Force; 807 808 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 809 : Width(VectorizationFactor) 810 , Unroll(DisableUnrolling ? 1 : VectorizationUnroll) 811 , Force(-1) 812 , LoopID(L->getLoopID()) { 813 getHints(L); 814 // The command line options override any loop metadata except for when 815 // width == 1 which is used to indicate the loop is already vectorized. 816 if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1) 817 Width = VectorizationFactor; 818 if (VectorizationUnroll.getNumOccurrences() > 0) 819 Unroll = VectorizationUnroll; 820 821 DEBUG(if (DisableUnrolling && Unroll == 1) 822 dbgs() << "LV: Unrolling disabled by the pass manager\n"); 823 } 824 825 /// Return the loop vectorizer metadata prefix. 826 static StringRef Prefix() { return "llvm.vectorizer."; } 827 828 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) { 829 SmallVector<Value*, 2> Vals; 830 Vals.push_back(MDString::get(Context, Name)); 831 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 832 return MDNode::get(Context, Vals); 833 } 834 835 /// Mark the loop L as already vectorized by setting the width to 1. 836 void setAlreadyVectorized(Loop *L) { 837 LLVMContext &Context = L->getHeader()->getContext(); 838 839 Width = 1; 840 841 // Create a new loop id with one more operand for the already_vectorized 842 // hint. If the loop already has a loop id then copy the existing operands. 843 SmallVector<Value*, 4> Vals(1); 844 if (LoopID) 845 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 846 Vals.push_back(LoopID->getOperand(i)); 847 848 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 849 Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1)); 850 851 MDNode *NewLoopID = MDNode::get(Context, Vals); 852 // Set operand 0 to refer to the loop id itself. 853 NewLoopID->replaceOperandWith(0, NewLoopID); 854 855 L->setLoopID(NewLoopID); 856 if (LoopID) 857 LoopID->replaceAllUsesWith(NewLoopID); 858 859 LoopID = NewLoopID; 860 } 861 862 private: 863 MDNode *LoopID; 864 865 /// Find hints specified in the loop metadata. 866 void getHints(const Loop *L) { 867 if (!LoopID) 868 return; 869 870 // First operand should refer to the loop id itself. 871 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 872 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 873 874 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 875 const MDString *S = 0; 876 SmallVector<Value*, 4> Args; 877 878 // The expected hint is either a MDString or a MDNode with the first 879 // operand a MDString. 880 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 881 if (!MD || MD->getNumOperands() == 0) 882 continue; 883 S = dyn_cast<MDString>(MD->getOperand(0)); 884 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 885 Args.push_back(MD->getOperand(i)); 886 } else { 887 S = dyn_cast<MDString>(LoopID->getOperand(i)); 888 assert(Args.size() == 0 && "too many arguments for MDString"); 889 } 890 891 if (!S) 892 continue; 893 894 // Check if the hint starts with the vectorizer prefix. 895 StringRef Hint = S->getString(); 896 if (!Hint.startswith(Prefix())) 897 continue; 898 // Remove the prefix. 899 Hint = Hint.substr(Prefix().size(), StringRef::npos); 900 901 if (Args.size() == 1) 902 getHint(Hint, Args[0]); 903 } 904 } 905 906 // Check string hint with one operand. 907 void getHint(StringRef Hint, Value *Arg) { 908 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 909 if (!C) return; 910 unsigned Val = C->getZExtValue(); 911 912 if (Hint == "width") { 913 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth) 914 Width = Val; 915 else 916 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n"); 917 } else if (Hint == "unroll") { 918 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor) 919 Unroll = Val; 920 else 921 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n"); 922 } else if (Hint == "enable") { 923 if (C->getBitWidth() == 1) 924 Force = Val; 925 else 926 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n"); 927 } else { 928 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n'); 929 } 930 } 931 }; 932 933 /// The LoopVectorize Pass. 934 struct LoopVectorize : public LoopPass { 935 /// Pass identification, replacement for typeid 936 static char ID; 937 938 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 939 : LoopPass(ID), 940 DisableUnrolling(NoUnrolling), 941 AlwaysVectorize(AlwaysVectorize) { 942 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 943 } 944 945 ScalarEvolution *SE; 946 DataLayout *DL; 947 LoopInfo *LI; 948 TargetTransformInfo *TTI; 949 DominatorTree *DT; 950 TargetLibraryInfo *TLI; 951 bool DisableUnrolling; 952 bool AlwaysVectorize; 953 954 virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { 955 // We only vectorize innermost loops. 956 if (!L->empty()) 957 return false; 958 959 SE = &getAnalysis<ScalarEvolution>(); 960 DL = getAnalysisIfAvailable<DataLayout>(); 961 LI = &getAnalysis<LoopInfo>(); 962 TTI = &getAnalysis<TargetTransformInfo>(); 963 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 964 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 965 966 // If the target claims to have no vector registers don't attempt 967 // vectorization. 968 if (!TTI->getNumberOfRegisters(true)) 969 return false; 970 971 if (DL == NULL) { 972 DEBUG(dbgs() << "LV: Not vectorizing: Missing data layout\n"); 973 return false; 974 } 975 976 DEBUG(dbgs() << "LV: Checking a loop in \"" << 977 L->getHeader()->getParent()->getName() << "\"\n"); 978 979 LoopVectorizeHints Hints(L, DisableUnrolling); 980 981 if (Hints.Force == 0) { 982 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 983 return false; 984 } 985 986 if (!AlwaysVectorize && Hints.Force != 1) { 987 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 988 return false; 989 } 990 991 if (Hints.Width == 1 && Hints.Unroll == 1) { 992 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 993 return false; 994 } 995 996 // Check if it is legal to vectorize the loop. 997 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI); 998 if (!LVL.canVectorize()) { 999 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1000 return false; 1001 } 1002 1003 // Use the cost model. 1004 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 1005 1006 // Check the function attributes to find out if this function should be 1007 // optimized for size. 1008 Function *F = L->getHeader()->getParent(); 1009 Attribute::AttrKind SzAttr = Attribute::OptimizeForSize; 1010 Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat; 1011 unsigned FnIndex = AttributeSet::FunctionIndex; 1012 bool OptForSize = Hints.Force != 1 && 1013 F->getAttributes().hasAttribute(FnIndex, SzAttr); 1014 bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr); 1015 1016 if (NoFloat) { 1017 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1018 "attribute is used.\n"); 1019 return false; 1020 } 1021 1022 // Select the optimal vectorization factor. 1023 LoopVectorizationCostModel::VectorizationFactor VF; 1024 VF = CM.selectVectorizationFactor(OptForSize, Hints.Width); 1025 // Select the unroll factor. 1026 unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width, 1027 VF.Cost); 1028 1029 DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<< 1030 F->getParent()->getModuleIdentifier() << '\n'); 1031 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1032 1033 if (VF.Width == 1) { 1034 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1035 if (UF == 1) 1036 return false; 1037 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1038 // We decided not to vectorize, but we may want to unroll. 1039 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1040 Unroller.vectorize(&LVL); 1041 } else { 1042 // If we decided that it is *legal* to vectorize the loop then do it. 1043 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1044 LB.vectorize(&LVL); 1045 } 1046 1047 // Mark the loop as already vectorized to avoid vectorizing again. 1048 Hints.setAlreadyVectorized(L); 1049 1050 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1051 return true; 1052 } 1053 1054 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1055 LoopPass::getAnalysisUsage(AU); 1056 AU.addRequiredID(LoopSimplifyID); 1057 AU.addRequiredID(LCSSAID); 1058 AU.addRequired<DominatorTreeWrapperPass>(); 1059 AU.addRequired<LoopInfo>(); 1060 AU.addRequired<ScalarEvolution>(); 1061 AU.addRequired<TargetTransformInfo>(); 1062 AU.addPreserved<LoopInfo>(); 1063 AU.addPreserved<DominatorTreeWrapperPass>(); 1064 } 1065 1066 }; 1067 1068 } // end anonymous namespace 1069 1070 //===----------------------------------------------------------------------===// 1071 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1072 // LoopVectorizationCostModel. 1073 //===----------------------------------------------------------------------===// 1074 1075 static Value *stripIntegerCast(Value *V) { 1076 if (CastInst *CI = dyn_cast<CastInst>(V)) 1077 if (CI->getOperand(0)->getType()->isIntegerTy()) 1078 return CI->getOperand(0); 1079 return V; 1080 } 1081 1082 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1083 /// 1084 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1085 /// \p Ptr. 1086 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1087 ValueToValueMap &PtrToStride, 1088 Value *Ptr, Value *OrigPtr = 0) { 1089 1090 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1091 1092 // If there is an entry in the map return the SCEV of the pointer with the 1093 // symbolic stride replaced by one. 1094 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1095 if (SI != PtrToStride.end()) { 1096 Value *StrideVal = SI->second; 1097 1098 // Strip casts. 1099 StrideVal = stripIntegerCast(StrideVal); 1100 1101 // Replace symbolic stride by one. 1102 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1103 ValueToValueMap RewriteMap; 1104 RewriteMap[StrideVal] = One; 1105 1106 const SCEV *ByOne = 1107 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1108 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1109 << "\n"); 1110 return ByOne; 1111 } 1112 1113 // Otherwise, just return the SCEV of the original pointer. 1114 return SE->getSCEV(Ptr); 1115 } 1116 1117 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1118 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1119 ValueToValueMap &Strides) { 1120 // Get the stride replaced scev. 1121 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1122 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1123 assert(AR && "Invalid addrec expression"); 1124 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1125 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1126 Pointers.push_back(Ptr); 1127 Starts.push_back(AR->getStart()); 1128 Ends.push_back(ScEnd); 1129 IsWritePtr.push_back(WritePtr); 1130 DependencySetId.push_back(DepSetId); 1131 } 1132 1133 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1134 // We need to place the broadcast of invariant variables outside the loop. 1135 Instruction *Instr = dyn_cast<Instruction>(V); 1136 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 1137 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1138 1139 // Place the code for broadcasting invariant variables in the new preheader. 1140 IRBuilder<>::InsertPointGuard Guard(Builder); 1141 if (Invariant) 1142 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1143 1144 // Broadcast the scalar into all locations in the vector. 1145 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1146 1147 return Shuf; 1148 } 1149 1150 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1151 bool Negate) { 1152 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1153 assert(Val->getType()->getScalarType()->isIntegerTy() && 1154 "Elem must be an integer"); 1155 // Create the types. 1156 Type *ITy = Val->getType()->getScalarType(); 1157 VectorType *Ty = cast<VectorType>(Val->getType()); 1158 int VLen = Ty->getNumElements(); 1159 SmallVector<Constant*, 8> Indices; 1160 1161 // Create a vector of consecutive numbers from zero to VF. 1162 for (int i = 0; i < VLen; ++i) { 1163 int64_t Idx = Negate ? (-i) : i; 1164 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1165 } 1166 1167 // Add the consecutive indices to the vector value. 1168 Constant *Cv = ConstantVector::get(Indices); 1169 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1170 return Builder.CreateAdd(Val, Cv, "induction"); 1171 } 1172 1173 /// \brief Find the operand of the GEP that should be checked for consecutive 1174 /// stores. This ignores trailing indices that have no effect on the final 1175 /// pointer. 1176 static unsigned getGEPInductionOperand(DataLayout *DL, 1177 const GetElementPtrInst *Gep) { 1178 unsigned LastOperand = Gep->getNumOperands() - 1; 1179 unsigned GEPAllocSize = DL->getTypeAllocSize( 1180 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1181 1182 // Walk backwards and try to peel off zeros. 1183 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1184 // Find the type we're currently indexing into. 1185 gep_type_iterator GEPTI = gep_type_begin(Gep); 1186 std::advance(GEPTI, LastOperand - 1); 1187 1188 // If it's a type with the same allocation size as the result of the GEP we 1189 // can peel off the zero index. 1190 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1191 break; 1192 --LastOperand; 1193 } 1194 1195 return LastOperand; 1196 } 1197 1198 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1199 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1200 // Make sure that the pointer does not point to structs. 1201 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1202 return 0; 1203 1204 // If this value is a pointer induction variable we know it is consecutive. 1205 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1206 if (Phi && Inductions.count(Phi)) { 1207 InductionInfo II = Inductions[Phi]; 1208 if (IK_PtrInduction == II.IK) 1209 return 1; 1210 else if (IK_ReversePtrInduction == II.IK) 1211 return -1; 1212 } 1213 1214 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1215 if (!Gep) 1216 return 0; 1217 1218 unsigned NumOperands = Gep->getNumOperands(); 1219 Value *GpPtr = Gep->getPointerOperand(); 1220 // If this GEP value is a consecutive pointer induction variable and all of 1221 // the indices are constant then we know it is consecutive. We can 1222 Phi = dyn_cast<PHINode>(GpPtr); 1223 if (Phi && Inductions.count(Phi)) { 1224 1225 // Make sure that the pointer does not point to structs. 1226 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1227 if (GepPtrType->getElementType()->isAggregateType()) 1228 return 0; 1229 1230 // Make sure that all of the index operands are loop invariant. 1231 for (unsigned i = 1; i < NumOperands; ++i) 1232 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1233 return 0; 1234 1235 InductionInfo II = Inductions[Phi]; 1236 if (IK_PtrInduction == II.IK) 1237 return 1; 1238 else if (IK_ReversePtrInduction == II.IK) 1239 return -1; 1240 } 1241 1242 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1243 1244 // Check that all of the gep indices are uniform except for our induction 1245 // operand. 1246 for (unsigned i = 0; i != NumOperands; ++i) 1247 if (i != InductionOperand && 1248 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1249 return 0; 1250 1251 // We can emit wide load/stores only if the last non-zero index is the 1252 // induction variable. 1253 const SCEV *Last = 0; 1254 if (!Strides.count(Gep)) 1255 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1256 else { 1257 // Because of the multiplication by a stride we can have a s/zext cast. 1258 // We are going to replace this stride by 1 so the cast is safe to ignore. 1259 // 1260 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1261 // %0 = trunc i64 %indvars.iv to i32 1262 // %mul = mul i32 %0, %Stride1 1263 // %idxprom = zext i32 %mul to i64 << Safe cast. 1264 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1265 // 1266 Last = replaceSymbolicStrideSCEV(SE, Strides, 1267 Gep->getOperand(InductionOperand), Gep); 1268 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1269 Last = 1270 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1271 ? C->getOperand() 1272 : Last; 1273 } 1274 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1275 const SCEV *Step = AR->getStepRecurrence(*SE); 1276 1277 // The memory is consecutive because the last index is consecutive 1278 // and all other indices are loop invariant. 1279 if (Step->isOne()) 1280 return 1; 1281 if (Step->isAllOnesValue()) 1282 return -1; 1283 } 1284 1285 return 0; 1286 } 1287 1288 bool LoopVectorizationLegality::isUniform(Value *V) { 1289 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1290 } 1291 1292 InnerLoopVectorizer::VectorParts& 1293 InnerLoopVectorizer::getVectorValue(Value *V) { 1294 assert(V != Induction && "The new induction variable should not be used."); 1295 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1296 1297 // If we have a stride that is replaced by one, do it here. 1298 if (Legal->hasStride(V)) 1299 V = ConstantInt::get(V->getType(), 1); 1300 1301 // If we have this scalar in the map, return it. 1302 if (WidenMap.has(V)) 1303 return WidenMap.get(V); 1304 1305 // If this scalar is unknown, assume that it is a constant or that it is 1306 // loop invariant. Broadcast V and save the value for future uses. 1307 Value *B = getBroadcastInstrs(V); 1308 return WidenMap.splat(V, B); 1309 } 1310 1311 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1312 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1313 SmallVector<Constant*, 8> ShuffleMask; 1314 for (unsigned i = 0; i < VF; ++i) 1315 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1316 1317 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1318 ConstantVector::get(ShuffleMask), 1319 "reverse"); 1320 } 1321 1322 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1323 // Attempt to issue a wide load. 1324 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1325 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1326 1327 assert((LI || SI) && "Invalid Load/Store instruction"); 1328 1329 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1330 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1331 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1332 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1333 // An alignment of 0 means target abi alignment. We need to use the scalar's 1334 // target abi alignment in such a case. 1335 if (!Alignment) 1336 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1337 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1338 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1339 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1340 1341 if (ScalarAllocatedSize != VectorElementSize) 1342 return scalarizeInstruction(Instr); 1343 1344 // If the pointer is loop invariant or if it is non-consecutive, 1345 // scalarize the load. 1346 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1347 bool Reverse = ConsecutiveStride < 0; 1348 bool UniformLoad = LI && Legal->isUniform(Ptr); 1349 if (!ConsecutiveStride || UniformLoad) 1350 return scalarizeInstruction(Instr); 1351 1352 Constant *Zero = Builder.getInt32(0); 1353 VectorParts &Entry = WidenMap.get(Instr); 1354 1355 // Handle consecutive loads/stores. 1356 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1357 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1358 setDebugLocFromInst(Builder, Gep); 1359 Value *PtrOperand = Gep->getPointerOperand(); 1360 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1361 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1362 1363 // Create the new GEP with the new induction variable. 1364 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1365 Gep2->setOperand(0, FirstBasePtr); 1366 Gep2->setName("gep.indvar.base"); 1367 Ptr = Builder.Insert(Gep2); 1368 } else if (Gep) { 1369 setDebugLocFromInst(Builder, Gep); 1370 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1371 OrigLoop) && "Base ptr must be invariant"); 1372 1373 // The last index does not have to be the induction. It can be 1374 // consecutive and be a function of the index. For example A[I+1]; 1375 unsigned NumOperands = Gep->getNumOperands(); 1376 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1377 // Create the new GEP with the new induction variable. 1378 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1379 1380 for (unsigned i = 0; i < NumOperands; ++i) { 1381 Value *GepOperand = Gep->getOperand(i); 1382 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1383 1384 // Update last index or loop invariant instruction anchored in loop. 1385 if (i == InductionOperand || 1386 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1387 assert((i == InductionOperand || 1388 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1389 "Must be last index or loop invariant"); 1390 1391 VectorParts &GEPParts = getVectorValue(GepOperand); 1392 Value *Index = GEPParts[0]; 1393 Index = Builder.CreateExtractElement(Index, Zero); 1394 Gep2->setOperand(i, Index); 1395 Gep2->setName("gep.indvar.idx"); 1396 } 1397 } 1398 Ptr = Builder.Insert(Gep2); 1399 } else { 1400 // Use the induction element ptr. 1401 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1402 setDebugLocFromInst(Builder, Ptr); 1403 VectorParts &PtrVal = getVectorValue(Ptr); 1404 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1405 } 1406 1407 // Handle Stores: 1408 if (SI) { 1409 assert(!Legal->isUniform(SI->getPointerOperand()) && 1410 "We do not allow storing to uniform addresses"); 1411 setDebugLocFromInst(Builder, SI); 1412 // We don't want to update the value in the map as it might be used in 1413 // another expression. So don't use a reference type for "StoredVal". 1414 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1415 1416 for (unsigned Part = 0; Part < UF; ++Part) { 1417 // Calculate the pointer for the specific unroll-part. 1418 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1419 1420 if (Reverse) { 1421 // If we store to reverse consecutive memory locations then we need 1422 // to reverse the order of elements in the stored value. 1423 StoredVal[Part] = reverseVector(StoredVal[Part]); 1424 // If the address is consecutive but reversed, then the 1425 // wide store needs to start at the last vector element. 1426 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1427 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1428 } 1429 1430 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1431 DataTy->getPointerTo(AddressSpace)); 1432 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1433 } 1434 return; 1435 } 1436 1437 // Handle loads. 1438 assert(LI && "Must have a load instruction"); 1439 setDebugLocFromInst(Builder, LI); 1440 for (unsigned Part = 0; Part < UF; ++Part) { 1441 // Calculate the pointer for the specific unroll-part. 1442 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1443 1444 if (Reverse) { 1445 // If the address is consecutive but reversed, then the 1446 // wide store needs to start at the last vector element. 1447 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1448 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1449 } 1450 1451 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1452 DataTy->getPointerTo(AddressSpace)); 1453 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1454 cast<LoadInst>(LI)->setAlignment(Alignment); 1455 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1456 } 1457 } 1458 1459 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) { 1460 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1461 // Holds vector parameters or scalars, in case of uniform vals. 1462 SmallVector<VectorParts, 4> Params; 1463 1464 setDebugLocFromInst(Builder, Instr); 1465 1466 // Find all of the vectorized parameters. 1467 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1468 Value *SrcOp = Instr->getOperand(op); 1469 1470 // If we are accessing the old induction variable, use the new one. 1471 if (SrcOp == OldInduction) { 1472 Params.push_back(getVectorValue(SrcOp)); 1473 continue; 1474 } 1475 1476 // Try using previously calculated values. 1477 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1478 1479 // If the src is an instruction that appeared earlier in the basic block 1480 // then it should already be vectorized. 1481 if (SrcInst && OrigLoop->contains(SrcInst)) { 1482 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1483 // The parameter is a vector value from earlier. 1484 Params.push_back(WidenMap.get(SrcInst)); 1485 } else { 1486 // The parameter is a scalar from outside the loop. Maybe even a constant. 1487 VectorParts Scalars; 1488 Scalars.append(UF, SrcOp); 1489 Params.push_back(Scalars); 1490 } 1491 } 1492 1493 assert(Params.size() == Instr->getNumOperands() && 1494 "Invalid number of operands"); 1495 1496 // Does this instruction return a value ? 1497 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1498 1499 Value *UndefVec = IsVoidRetTy ? 0 : 1500 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1501 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1502 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1503 1504 // For each vector unroll 'part': 1505 for (unsigned Part = 0; Part < UF; ++Part) { 1506 // For each scalar that we create: 1507 for (unsigned Width = 0; Width < VF; ++Width) { 1508 Instruction *Cloned = Instr->clone(); 1509 if (!IsVoidRetTy) 1510 Cloned->setName(Instr->getName() + ".cloned"); 1511 // Replace the operands of the cloned instructions with extracted scalars. 1512 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1513 Value *Op = Params[op][Part]; 1514 // Param is a vector. Need to extract the right lane. 1515 if (Op->getType()->isVectorTy()) 1516 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1517 Cloned->setOperand(op, Op); 1518 } 1519 1520 // Place the cloned scalar in the new loop. 1521 Builder.Insert(Cloned); 1522 1523 // If the original scalar returns a value we need to place it in a vector 1524 // so that future users will be able to use it. 1525 if (!IsVoidRetTy) 1526 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1527 Builder.getInt32(Width)); 1528 } 1529 } 1530 } 1531 1532 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1533 Instruction *Loc) { 1534 if (FirstInst) 1535 return FirstInst; 1536 if (Instruction *I = dyn_cast<Instruction>(V)) 1537 return I->getParent() == Loc->getParent() ? I : 0; 1538 return 0; 1539 } 1540 1541 std::pair<Instruction *, Instruction *> 1542 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1543 Instruction *tnullptr = 0; 1544 if (!Legal->mustCheckStrides()) 1545 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1546 1547 IRBuilder<> ChkBuilder(Loc); 1548 1549 // Emit checks. 1550 Value *Check = 0; 1551 Instruction *FirstInst = 0; 1552 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1553 SE = Legal->strides_end(); 1554 SI != SE; ++SI) { 1555 Value *Ptr = stripIntegerCast(*SI); 1556 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 1557 "stride.chk"); 1558 // Store the first instruction we create. 1559 FirstInst = getFirstInst(FirstInst, C, Loc); 1560 if (Check) 1561 Check = ChkBuilder.CreateOr(Check, C); 1562 else 1563 Check = C; 1564 } 1565 1566 // We have to do this trickery because the IRBuilder might fold the check to a 1567 // constant expression in which case there is no Instruction anchored in a 1568 // the block. 1569 LLVMContext &Ctx = Loc->getContext(); 1570 Instruction *TheCheck = 1571 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 1572 ChkBuilder.Insert(TheCheck, "stride.not.one"); 1573 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 1574 1575 return std::make_pair(FirstInst, TheCheck); 1576 } 1577 1578 std::pair<Instruction *, Instruction *> 1579 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 1580 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1581 Legal->getRuntimePointerCheck(); 1582 1583 Instruction *tnullptr = 0; 1584 if (!PtrRtCheck->Need) 1585 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1586 1587 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1588 SmallVector<TrackingVH<Value> , 2> Starts; 1589 SmallVector<TrackingVH<Value> , 2> Ends; 1590 1591 LLVMContext &Ctx = Loc->getContext(); 1592 SCEVExpander Exp(*SE, "induction"); 1593 Instruction *FirstInst = 0; 1594 1595 for (unsigned i = 0; i < NumPointers; ++i) { 1596 Value *Ptr = PtrRtCheck->Pointers[i]; 1597 const SCEV *Sc = SE->getSCEV(Ptr); 1598 1599 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1600 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1601 *Ptr <<"\n"); 1602 Starts.push_back(Ptr); 1603 Ends.push_back(Ptr); 1604 } else { 1605 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 1606 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 1607 1608 // Use this type for pointer arithmetic. 1609 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 1610 1611 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1612 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1613 Starts.push_back(Start); 1614 Ends.push_back(End); 1615 } 1616 } 1617 1618 IRBuilder<> ChkBuilder(Loc); 1619 // Our instructions might fold to a constant. 1620 Value *MemoryRuntimeCheck = 0; 1621 for (unsigned i = 0; i < NumPointers; ++i) { 1622 for (unsigned j = i+1; j < NumPointers; ++j) { 1623 // No need to check if two readonly pointers intersect. 1624 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1625 continue; 1626 1627 // Only need to check pointers between two different dependency sets. 1628 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1629 continue; 1630 1631 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 1632 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 1633 1634 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 1635 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 1636 "Trying to bounds check pointers with different address spaces"); 1637 1638 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 1639 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 1640 1641 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 1642 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 1643 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 1644 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 1645 1646 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1647 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 1648 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1649 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 1650 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1651 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1652 if (MemoryRuntimeCheck) { 1653 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1654 "conflict.rdx"); 1655 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 1656 } 1657 MemoryRuntimeCheck = IsConflict; 1658 } 1659 } 1660 1661 // We have to do this trickery because the IRBuilder might fold the check to a 1662 // constant expression in which case there is no Instruction anchored in a 1663 // the block. 1664 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1665 ConstantInt::getTrue(Ctx)); 1666 ChkBuilder.Insert(Check, "memcheck.conflict"); 1667 FirstInst = getFirstInst(FirstInst, Check, Loc); 1668 return std::make_pair(FirstInst, Check); 1669 } 1670 1671 void InnerLoopVectorizer::createEmptyLoop() { 1672 /* 1673 In this function we generate a new loop. The new loop will contain 1674 the vectorized instructions while the old loop will continue to run the 1675 scalar remainder. 1676 1677 [ ] <-- vector loop bypass (may consist of multiple blocks). 1678 / | 1679 / v 1680 | [ ] <-- vector pre header. 1681 | | 1682 | v 1683 | [ ] \ 1684 | [ ]_| <-- vector loop. 1685 | | 1686 \ v 1687 >[ ] <--- middle-block. 1688 / | 1689 / v 1690 | [ ] <--- new preheader. 1691 | | 1692 | v 1693 | [ ] \ 1694 | [ ]_| <-- old scalar loop to handle remainder. 1695 \ | 1696 \ v 1697 >[ ] <-- exit block. 1698 ... 1699 */ 1700 1701 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 1702 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 1703 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 1704 assert(ExitBlock && "Must have an exit block"); 1705 1706 // Some loops have a single integer induction variable, while other loops 1707 // don't. One example is c++ iterators that often have multiple pointer 1708 // induction variables. In the code below we also support a case where we 1709 // don't have a single induction variable. 1710 OldInduction = Legal->getInduction(); 1711 Type *IdxTy = Legal->getWidestInductionType(); 1712 1713 // Find the loop boundaries. 1714 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 1715 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 1716 1717 // The exit count might have the type of i64 while the phi is i32. This can 1718 // happen if we have an induction variable that is sign extended before the 1719 // compare. The only way that we get a backedge taken count is that the 1720 // induction variable was signed and as such will not overflow. In such a case 1721 // truncation is legal. 1722 if (ExitCount->getType()->getPrimitiveSizeInBits() > 1723 IdxTy->getPrimitiveSizeInBits()) 1724 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 1725 1726 ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 1727 // Get the total trip count from the count by adding 1. 1728 ExitCount = SE->getAddExpr(ExitCount, 1729 SE->getConstant(ExitCount->getType(), 1)); 1730 1731 // Expand the trip count and place the new instructions in the preheader. 1732 // Notice that the pre-header does not change, only the loop body. 1733 SCEVExpander Exp(*SE, "induction"); 1734 1735 // Count holds the overall loop count (N). 1736 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 1737 BypassBlock->getTerminator()); 1738 1739 // The loop index does not have to start at Zero. Find the original start 1740 // value from the induction PHI node. If we don't have an induction variable 1741 // then we know that it starts at zero. 1742 Builder.SetInsertPoint(BypassBlock->getTerminator()); 1743 Value *StartIdx = ExtendedIdx = OldInduction ? 1744 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 1745 IdxTy): 1746 ConstantInt::get(IdxTy, 0); 1747 1748 assert(BypassBlock && "Invalid loop structure"); 1749 LoopBypassBlocks.push_back(BypassBlock); 1750 1751 // Split the single block loop into the two loop structure described above. 1752 BasicBlock *VectorPH = 1753 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 1754 BasicBlock *VecBody = 1755 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 1756 BasicBlock *MiddleBlock = 1757 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 1758 BasicBlock *ScalarPH = 1759 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 1760 1761 // Create and register the new vector loop. 1762 Loop* Lp = new Loop(); 1763 Loop *ParentLoop = OrigLoop->getParentLoop(); 1764 1765 // Insert the new loop into the loop nest and register the new basic blocks 1766 // before calling any utilities such as SCEV that require valid LoopInfo. 1767 if (ParentLoop) { 1768 ParentLoop->addChildLoop(Lp); 1769 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 1770 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 1771 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 1772 } else { 1773 LI->addTopLevelLoop(Lp); 1774 } 1775 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 1776 1777 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 1778 // inside the loop. 1779 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 1780 1781 // Generate the induction variable. 1782 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 1783 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 1784 // The loop step is equal to the vectorization factor (num of SIMD elements) 1785 // times the unroll factor (num of SIMD instructions). 1786 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 1787 1788 // This is the IR builder that we use to add all of the logic for bypassing 1789 // the new vector loop. 1790 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 1791 setDebugLocFromInst(BypassBuilder, 1792 getDebugLocFromInstOrOperands(OldInduction)); 1793 1794 // We may need to extend the index in case there is a type mismatch. 1795 // We know that the count starts at zero and does not overflow. 1796 if (Count->getType() != IdxTy) { 1797 // The exit count can be of pointer type. Convert it to the correct 1798 // integer type. 1799 if (ExitCount->getType()->isPointerTy()) 1800 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 1801 else 1802 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 1803 } 1804 1805 // Add the start index to the loop count to get the new end index. 1806 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 1807 1808 // Now we need to generate the expression for N - (N % VF), which is 1809 // the part that the vectorized body will execute. 1810 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 1811 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 1812 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 1813 "end.idx.rnd.down"); 1814 1815 // Now, compare the new count to zero. If it is zero skip the vector loop and 1816 // jump to the scalar loop. 1817 Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, 1818 "cmp.zero"); 1819 1820 BasicBlock *LastBypassBlock = BypassBlock; 1821 1822 // Generate the code to check that the strides we assumed to be one are really 1823 // one. We want the new basic block to start at the first instruction in a 1824 // sequence of instructions that form a check. 1825 Instruction *StrideCheck; 1826 Instruction *FirstCheckInst; 1827 tie(FirstCheckInst, StrideCheck) = 1828 addStrideCheck(BypassBlock->getTerminator()); 1829 if (StrideCheck) { 1830 // Create a new block containing the stride check. 1831 BasicBlock *CheckBlock = 1832 BypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 1833 if (ParentLoop) 1834 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 1835 LoopBypassBlocks.push_back(CheckBlock); 1836 1837 // Replace the branch into the memory check block with a conditional branch 1838 // for the "few elements case". 1839 Instruction *OldTerm = BypassBlock->getTerminator(); 1840 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 1841 OldTerm->eraseFromParent(); 1842 1843 Cmp = StrideCheck; 1844 LastBypassBlock = CheckBlock; 1845 } 1846 1847 // Generate the code that checks in runtime if arrays overlap. We put the 1848 // checks into a separate block to make the more common case of few elements 1849 // faster. 1850 Instruction *MemRuntimeCheck; 1851 tie(FirstCheckInst, MemRuntimeCheck) = 1852 addRuntimeCheck(LastBypassBlock->getTerminator()); 1853 if (MemRuntimeCheck) { 1854 // Create a new block containing the memory check. 1855 BasicBlock *CheckBlock = 1856 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 1857 if (ParentLoop) 1858 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 1859 LoopBypassBlocks.push_back(CheckBlock); 1860 1861 // Replace the branch into the memory check block with a conditional branch 1862 // for the "few elements case". 1863 Instruction *OldTerm = LastBypassBlock->getTerminator(); 1864 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 1865 OldTerm->eraseFromParent(); 1866 1867 Cmp = MemRuntimeCheck; 1868 LastBypassBlock = CheckBlock; 1869 } 1870 1871 LastBypassBlock->getTerminator()->eraseFromParent(); 1872 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 1873 LastBypassBlock); 1874 1875 // We are going to resume the execution of the scalar loop. 1876 // Go over all of the induction variables that we found and fix the 1877 // PHIs that are left in the scalar version of the loop. 1878 // The starting values of PHI nodes depend on the counter of the last 1879 // iteration in the vectorized loop. 1880 // If we come from a bypass edge then we need to start from the original 1881 // start value. 1882 1883 // This variable saves the new starting index for the scalar loop. 1884 PHINode *ResumeIndex = 0; 1885 LoopVectorizationLegality::InductionList::iterator I, E; 1886 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 1887 // Set builder to point to last bypass block. 1888 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 1889 for (I = List->begin(), E = List->end(); I != E; ++I) { 1890 PHINode *OrigPhi = I->first; 1891 LoopVectorizationLegality::InductionInfo II = I->second; 1892 1893 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 1894 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 1895 MiddleBlock->getTerminator()); 1896 // We might have extended the type of the induction variable but we need a 1897 // truncated version for the scalar loop. 1898 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 1899 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 1900 MiddleBlock->getTerminator()) : 0; 1901 1902 Value *EndValue = 0; 1903 switch (II.IK) { 1904 case LoopVectorizationLegality::IK_NoInduction: 1905 llvm_unreachable("Unknown induction"); 1906 case LoopVectorizationLegality::IK_IntInduction: { 1907 // Handle the integer induction counter. 1908 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 1909 1910 // We have the canonical induction variable. 1911 if (OrigPhi == OldInduction) { 1912 // Create a truncated version of the resume value for the scalar loop, 1913 // we might have promoted the type to a larger width. 1914 EndValue = 1915 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 1916 // The new PHI merges the original incoming value, in case of a bypass, 1917 // or the value at the end of the vectorized loop. 1918 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 1919 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 1920 TruncResumeVal->addIncoming(EndValue, VecBody); 1921 1922 // We know what the end value is. 1923 EndValue = IdxEndRoundDown; 1924 // We also know which PHI node holds it. 1925 ResumeIndex = ResumeVal; 1926 break; 1927 } 1928 1929 // Not the canonical induction variable - add the vector loop count to the 1930 // start value. 1931 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 1932 II.StartValue->getType(), 1933 "cast.crd"); 1934 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 1935 break; 1936 } 1937 case LoopVectorizationLegality::IK_ReverseIntInduction: { 1938 // Convert the CountRoundDown variable to the PHI size. 1939 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 1940 II.StartValue->getType(), 1941 "cast.crd"); 1942 // Handle reverse integer induction counter. 1943 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 1944 break; 1945 } 1946 case LoopVectorizationLegality::IK_PtrInduction: { 1947 // For pointer induction variables, calculate the offset using 1948 // the end index. 1949 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 1950 "ptr.ind.end"); 1951 break; 1952 } 1953 case LoopVectorizationLegality::IK_ReversePtrInduction: { 1954 // The value at the end of the loop for the reverse pointer is calculated 1955 // by creating a GEP with a negative index starting from the start value. 1956 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 1957 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 1958 "rev.ind.end"); 1959 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 1960 "rev.ptr.ind.end"); 1961 break; 1962 } 1963 }// end of case 1964 1965 // The new PHI merges the original incoming value, in case of a bypass, 1966 // or the value at the end of the vectorized loop. 1967 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) { 1968 if (OrigPhi == OldInduction) 1969 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 1970 else 1971 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 1972 } 1973 ResumeVal->addIncoming(EndValue, VecBody); 1974 1975 // Fix the scalar body counter (PHI node). 1976 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 1977 // The old inductions phi node in the scalar body needs the truncated value. 1978 if (OrigPhi == OldInduction) 1979 OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal); 1980 else 1981 OrigPhi->setIncomingValue(BlockIdx, ResumeVal); 1982 } 1983 1984 // If we are generating a new induction variable then we also need to 1985 // generate the code that calculates the exit value. This value is not 1986 // simply the end of the counter because we may skip the vectorized body 1987 // in case of a runtime check. 1988 if (!OldInduction){ 1989 assert(!ResumeIndex && "Unexpected resume value found"); 1990 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 1991 MiddleBlock->getTerminator()); 1992 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 1993 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 1994 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 1995 } 1996 1997 // Make sure that we found the index where scalar loop needs to continue. 1998 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 1999 "Invalid resume Index"); 2000 2001 // Add a check in the middle block to see if we have completed 2002 // all of the iterations in the first vector loop. 2003 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2004 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2005 ResumeIndex, "cmp.n", 2006 MiddleBlock->getTerminator()); 2007 2008 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2009 // Remove the old terminator. 2010 MiddleBlock->getTerminator()->eraseFromParent(); 2011 2012 // Create i+1 and fill the PHINode. 2013 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2014 Induction->addIncoming(StartIdx, VectorPH); 2015 Induction->addIncoming(NextIdx, VecBody); 2016 // Create the compare. 2017 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2018 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2019 2020 // Now we have two terminators. Remove the old one from the block. 2021 VecBody->getTerminator()->eraseFromParent(); 2022 2023 // Get ready to start creating new instructions into the vectorized body. 2024 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2025 2026 // Save the state. 2027 LoopVectorPreHeader = VectorPH; 2028 LoopScalarPreHeader = ScalarPH; 2029 LoopMiddleBlock = MiddleBlock; 2030 LoopExitBlock = ExitBlock; 2031 LoopVectorBody = VecBody; 2032 LoopScalarBody = OldBasicBlock; 2033 2034 LoopVectorizeHints Hints(Lp, true); 2035 Hints.setAlreadyVectorized(Lp); 2036 } 2037 2038 /// This function returns the identity element (or neutral element) for 2039 /// the operation K. 2040 Constant* 2041 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2042 switch (K) { 2043 case RK_IntegerXor: 2044 case RK_IntegerAdd: 2045 case RK_IntegerOr: 2046 // Adding, Xoring, Oring zero to a number does not change it. 2047 return ConstantInt::get(Tp, 0); 2048 case RK_IntegerMult: 2049 // Multiplying a number by 1 does not change it. 2050 return ConstantInt::get(Tp, 1); 2051 case RK_IntegerAnd: 2052 // AND-ing a number with an all-1 value does not change it. 2053 return ConstantInt::get(Tp, -1, true); 2054 case RK_FloatMult: 2055 // Multiplying a number by 1 does not change it. 2056 return ConstantFP::get(Tp, 1.0L); 2057 case RK_FloatAdd: 2058 // Adding zero to a number does not change it. 2059 return ConstantFP::get(Tp, 0.0L); 2060 default: 2061 llvm_unreachable("Unknown reduction kind"); 2062 } 2063 } 2064 2065 static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I, 2066 Intrinsic::ID ValidIntrinsicID) { 2067 if (I.getNumArgOperands() != 1 || 2068 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 2069 I.getType() != I.getArgOperand(0)->getType() || 2070 !I.onlyReadsMemory()) 2071 return Intrinsic::not_intrinsic; 2072 2073 return ValidIntrinsicID; 2074 } 2075 2076 static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I, 2077 Intrinsic::ID ValidIntrinsicID) { 2078 if (I.getNumArgOperands() != 2 || 2079 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 2080 !I.getArgOperand(1)->getType()->isFloatingPointTy() || 2081 I.getType() != I.getArgOperand(0)->getType() || 2082 I.getType() != I.getArgOperand(1)->getType() || 2083 !I.onlyReadsMemory()) 2084 return Intrinsic::not_intrinsic; 2085 2086 return ValidIntrinsicID; 2087 } 2088 2089 2090 static Intrinsic::ID 2091 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) { 2092 // If we have an intrinsic call, check if it is trivially vectorizable. 2093 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2094 switch (II->getIntrinsicID()) { 2095 case Intrinsic::sqrt: 2096 case Intrinsic::sin: 2097 case Intrinsic::cos: 2098 case Intrinsic::exp: 2099 case Intrinsic::exp2: 2100 case Intrinsic::log: 2101 case Intrinsic::log10: 2102 case Intrinsic::log2: 2103 case Intrinsic::fabs: 2104 case Intrinsic::copysign: 2105 case Intrinsic::floor: 2106 case Intrinsic::ceil: 2107 case Intrinsic::trunc: 2108 case Intrinsic::rint: 2109 case Intrinsic::nearbyint: 2110 case Intrinsic::round: 2111 case Intrinsic::pow: 2112 case Intrinsic::fma: 2113 case Intrinsic::fmuladd: 2114 case Intrinsic::lifetime_start: 2115 case Intrinsic::lifetime_end: 2116 return II->getIntrinsicID(); 2117 default: 2118 return Intrinsic::not_intrinsic; 2119 } 2120 } 2121 2122 if (!TLI) 2123 return Intrinsic::not_intrinsic; 2124 2125 LibFunc::Func Func; 2126 Function *F = CI->getCalledFunction(); 2127 // We're going to make assumptions on the semantics of the functions, check 2128 // that the target knows that it's available in this environment and it does 2129 // not have local linkage. 2130 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func)) 2131 return Intrinsic::not_intrinsic; 2132 2133 // Otherwise check if we have a call to a function that can be turned into a 2134 // vector intrinsic. 2135 switch (Func) { 2136 default: 2137 break; 2138 case LibFunc::sin: 2139 case LibFunc::sinf: 2140 case LibFunc::sinl: 2141 return checkUnaryFloatSignature(*CI, Intrinsic::sin); 2142 case LibFunc::cos: 2143 case LibFunc::cosf: 2144 case LibFunc::cosl: 2145 return checkUnaryFloatSignature(*CI, Intrinsic::cos); 2146 case LibFunc::exp: 2147 case LibFunc::expf: 2148 case LibFunc::expl: 2149 return checkUnaryFloatSignature(*CI, Intrinsic::exp); 2150 case LibFunc::exp2: 2151 case LibFunc::exp2f: 2152 case LibFunc::exp2l: 2153 return checkUnaryFloatSignature(*CI, Intrinsic::exp2); 2154 case LibFunc::log: 2155 case LibFunc::logf: 2156 case LibFunc::logl: 2157 return checkUnaryFloatSignature(*CI, Intrinsic::log); 2158 case LibFunc::log10: 2159 case LibFunc::log10f: 2160 case LibFunc::log10l: 2161 return checkUnaryFloatSignature(*CI, Intrinsic::log10); 2162 case LibFunc::log2: 2163 case LibFunc::log2f: 2164 case LibFunc::log2l: 2165 return checkUnaryFloatSignature(*CI, Intrinsic::log2); 2166 case LibFunc::fabs: 2167 case LibFunc::fabsf: 2168 case LibFunc::fabsl: 2169 return checkUnaryFloatSignature(*CI, Intrinsic::fabs); 2170 case LibFunc::copysign: 2171 case LibFunc::copysignf: 2172 case LibFunc::copysignl: 2173 return checkBinaryFloatSignature(*CI, Intrinsic::copysign); 2174 case LibFunc::floor: 2175 case LibFunc::floorf: 2176 case LibFunc::floorl: 2177 return checkUnaryFloatSignature(*CI, Intrinsic::floor); 2178 case LibFunc::ceil: 2179 case LibFunc::ceilf: 2180 case LibFunc::ceill: 2181 return checkUnaryFloatSignature(*CI, Intrinsic::ceil); 2182 case LibFunc::trunc: 2183 case LibFunc::truncf: 2184 case LibFunc::truncl: 2185 return checkUnaryFloatSignature(*CI, Intrinsic::trunc); 2186 case LibFunc::rint: 2187 case LibFunc::rintf: 2188 case LibFunc::rintl: 2189 return checkUnaryFloatSignature(*CI, Intrinsic::rint); 2190 case LibFunc::nearbyint: 2191 case LibFunc::nearbyintf: 2192 case LibFunc::nearbyintl: 2193 return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint); 2194 case LibFunc::round: 2195 case LibFunc::roundf: 2196 case LibFunc::roundl: 2197 return checkUnaryFloatSignature(*CI, Intrinsic::round); 2198 case LibFunc::pow: 2199 case LibFunc::powf: 2200 case LibFunc::powl: 2201 return checkBinaryFloatSignature(*CI, Intrinsic::pow); 2202 } 2203 2204 return Intrinsic::not_intrinsic; 2205 } 2206 2207 /// This function translates the reduction kind to an LLVM binary operator. 2208 static unsigned 2209 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2210 switch (Kind) { 2211 case LoopVectorizationLegality::RK_IntegerAdd: 2212 return Instruction::Add; 2213 case LoopVectorizationLegality::RK_IntegerMult: 2214 return Instruction::Mul; 2215 case LoopVectorizationLegality::RK_IntegerOr: 2216 return Instruction::Or; 2217 case LoopVectorizationLegality::RK_IntegerAnd: 2218 return Instruction::And; 2219 case LoopVectorizationLegality::RK_IntegerXor: 2220 return Instruction::Xor; 2221 case LoopVectorizationLegality::RK_FloatMult: 2222 return Instruction::FMul; 2223 case LoopVectorizationLegality::RK_FloatAdd: 2224 return Instruction::FAdd; 2225 case LoopVectorizationLegality::RK_IntegerMinMax: 2226 return Instruction::ICmp; 2227 case LoopVectorizationLegality::RK_FloatMinMax: 2228 return Instruction::FCmp; 2229 default: 2230 llvm_unreachable("Unknown reduction operation"); 2231 } 2232 } 2233 2234 Value *createMinMaxOp(IRBuilder<> &Builder, 2235 LoopVectorizationLegality::MinMaxReductionKind RK, 2236 Value *Left, 2237 Value *Right) { 2238 CmpInst::Predicate P = CmpInst::ICMP_NE; 2239 switch (RK) { 2240 default: 2241 llvm_unreachable("Unknown min/max reduction kind"); 2242 case LoopVectorizationLegality::MRK_UIntMin: 2243 P = CmpInst::ICMP_ULT; 2244 break; 2245 case LoopVectorizationLegality::MRK_UIntMax: 2246 P = CmpInst::ICMP_UGT; 2247 break; 2248 case LoopVectorizationLegality::MRK_SIntMin: 2249 P = CmpInst::ICMP_SLT; 2250 break; 2251 case LoopVectorizationLegality::MRK_SIntMax: 2252 P = CmpInst::ICMP_SGT; 2253 break; 2254 case LoopVectorizationLegality::MRK_FloatMin: 2255 P = CmpInst::FCMP_OLT; 2256 break; 2257 case LoopVectorizationLegality::MRK_FloatMax: 2258 P = CmpInst::FCMP_OGT; 2259 break; 2260 } 2261 2262 Value *Cmp; 2263 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2264 RK == LoopVectorizationLegality::MRK_FloatMax) 2265 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2266 else 2267 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2268 2269 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2270 return Select; 2271 } 2272 2273 namespace { 2274 struct CSEDenseMapInfo { 2275 static bool canHandle(Instruction *I) { 2276 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2277 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2278 } 2279 static inline Instruction *getEmptyKey() { 2280 return DenseMapInfo<Instruction *>::getEmptyKey(); 2281 } 2282 static inline Instruction *getTombstoneKey() { 2283 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2284 } 2285 static unsigned getHashValue(Instruction *I) { 2286 assert(canHandle(I) && "Unknown instruction!"); 2287 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2288 I->value_op_end())); 2289 } 2290 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2291 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2292 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2293 return LHS == RHS; 2294 return LHS->isIdenticalTo(RHS); 2295 } 2296 }; 2297 } 2298 2299 ///\brief Perform cse of induction variable instructions. 2300 static void cse(BasicBlock *BB) { 2301 // Perform simple cse. 2302 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2303 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2304 Instruction *In = I++; 2305 2306 if (!CSEDenseMapInfo::canHandle(In)) 2307 continue; 2308 2309 // Check if we can replace this instruction with any of the 2310 // visited instructions. 2311 if (Instruction *V = CSEMap.lookup(In)) { 2312 In->replaceAllUsesWith(V); 2313 In->eraseFromParent(); 2314 continue; 2315 } 2316 2317 CSEMap[In] = In; 2318 } 2319 } 2320 2321 void InnerLoopVectorizer::vectorizeLoop() { 2322 //===------------------------------------------------===// 2323 // 2324 // Notice: any optimization or new instruction that go 2325 // into the code below should be also be implemented in 2326 // the cost-model. 2327 // 2328 //===------------------------------------------------===// 2329 Constant *Zero = Builder.getInt32(0); 2330 2331 // In order to support reduction variables we need to be able to vectorize 2332 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2333 // stages. First, we create a new vector PHI node with no incoming edges. 2334 // We use this value when we vectorize all of the instructions that use the 2335 // PHI. Next, after all of the instructions in the block are complete we 2336 // add the new incoming edges to the PHI. At this point all of the 2337 // instructions in the basic block are vectorized, so we can use them to 2338 // construct the PHI. 2339 PhiVector RdxPHIsToFix; 2340 2341 // Scan the loop in a topological order to ensure that defs are vectorized 2342 // before users. 2343 LoopBlocksDFS DFS(OrigLoop); 2344 DFS.perform(LI); 2345 2346 // Vectorize all of the blocks in the original loop. 2347 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2348 be = DFS.endRPO(); bb != be; ++bb) 2349 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2350 2351 // At this point every instruction in the original loop is widened to 2352 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2353 // that we vectorized. The PHI nodes are currently empty because we did 2354 // not want to introduce cycles. Notice that the remaining PHI nodes 2355 // that we need to fix are reduction variables. 2356 2357 // Create the 'reduced' values for each of the induction vars. 2358 // The reduced values are the vector values that we scalarize and combine 2359 // after the loop is finished. 2360 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2361 it != e; ++it) { 2362 PHINode *RdxPhi = *it; 2363 assert(RdxPhi && "Unable to recover vectorized PHI"); 2364 2365 // Find the reduction variable descriptor. 2366 assert(Legal->getReductionVars()->count(RdxPhi) && 2367 "Unable to find the reduction variable"); 2368 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2369 (*Legal->getReductionVars())[RdxPhi]; 2370 2371 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2372 2373 // We need to generate a reduction vector from the incoming scalar. 2374 // To do so, we need to generate the 'identity' vector and overide 2375 // one of the elements with the incoming scalar reduction. We need 2376 // to do it in the vector-loop preheader. 2377 Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator()); 2378 2379 // This is the vector-clone of the value that leaves the loop. 2380 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2381 Type *VecTy = VectorExit[0]->getType(); 2382 2383 // Find the reduction identity variable. Zero for addition, or, xor, 2384 // one for multiplication, -1 for And. 2385 Value *Identity; 2386 Value *VectorStart; 2387 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2388 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2389 // MinMax reduction have the start value as their identify. 2390 if (VF == 1) { 2391 VectorStart = Identity = RdxDesc.StartValue; 2392 } else { 2393 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2394 RdxDesc.StartValue, 2395 "minmax.ident"); 2396 } 2397 } else { 2398 // Handle other reduction kinds: 2399 Constant *Iden = 2400 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2401 VecTy->getScalarType()); 2402 if (VF == 1) { 2403 Identity = Iden; 2404 // This vector is the Identity vector where the first element is the 2405 // incoming scalar reduction. 2406 VectorStart = RdxDesc.StartValue; 2407 } else { 2408 Identity = ConstantVector::getSplat(VF, Iden); 2409 2410 // This vector is the Identity vector where the first element is the 2411 // incoming scalar reduction. 2412 VectorStart = Builder.CreateInsertElement(Identity, 2413 RdxDesc.StartValue, Zero); 2414 } 2415 } 2416 2417 // Fix the vector-loop phi. 2418 // We created the induction variable so we know that the 2419 // preheader is the first entry. 2420 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2421 2422 // Reductions do not have to start at zero. They can start with 2423 // any loop invariant values. 2424 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2425 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2426 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2427 VectorParts &Val = getVectorValue(LoopVal); 2428 for (unsigned part = 0; part < UF; ++part) { 2429 // Make sure to add the reduction stat value only to the 2430 // first unroll part. 2431 Value *StartVal = (part == 0) ? VectorStart : Identity; 2432 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2433 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody); 2434 } 2435 2436 // Before each round, move the insertion point right between 2437 // the PHIs and the values we are going to write. 2438 // This allows us to write both PHINodes and the extractelement 2439 // instructions. 2440 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2441 2442 VectorParts RdxParts; 2443 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2444 for (unsigned part = 0; part < UF; ++part) { 2445 // This PHINode contains the vectorized reduction variable, or 2446 // the initial value vector, if we bypass the vector loop. 2447 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2448 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2449 Value *StartVal = (part == 0) ? VectorStart : Identity; 2450 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2451 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2452 NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody); 2453 RdxParts.push_back(NewPhi); 2454 } 2455 2456 // Reduce all of the unrolled parts into a single vector. 2457 Value *ReducedPartRdx = RdxParts[0]; 2458 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2459 setDebugLocFromInst(Builder, ReducedPartRdx); 2460 for (unsigned part = 1; part < UF; ++part) { 2461 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2462 ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op, 2463 RdxParts[part], ReducedPartRdx, 2464 "bin.rdx"); 2465 else 2466 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2467 ReducedPartRdx, RdxParts[part]); 2468 } 2469 2470 if (VF > 1) { 2471 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2472 // and vector ops, reducing the set of values being computed by half each 2473 // round. 2474 assert(isPowerOf2_32(VF) && 2475 "Reduction emission only supported for pow2 vectors!"); 2476 Value *TmpVec = ReducedPartRdx; 2477 SmallVector<Constant*, 32> ShuffleMask(VF, 0); 2478 for (unsigned i = VF; i != 1; i >>= 1) { 2479 // Move the upper half of the vector to the lower half. 2480 for (unsigned j = 0; j != i/2; ++j) 2481 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2482 2483 // Fill the rest of the mask with undef. 2484 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2485 UndefValue::get(Builder.getInt32Ty())); 2486 2487 Value *Shuf = 2488 Builder.CreateShuffleVector(TmpVec, 2489 UndefValue::get(TmpVec->getType()), 2490 ConstantVector::get(ShuffleMask), 2491 "rdx.shuf"); 2492 2493 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2494 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 2495 "bin.rdx"); 2496 else 2497 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2498 } 2499 2500 // The result is in the first element of the vector. 2501 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2502 Builder.getInt32(0)); 2503 } 2504 2505 // Now, we need to fix the users of the reduction variable 2506 // inside and outside of the scalar remainder loop. 2507 // We know that the loop is in LCSSA form. We need to update the 2508 // PHI nodes in the exit blocks. 2509 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2510 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2511 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2512 if (!LCSSAPhi) break; 2513 2514 // All PHINodes need to have a single entry edge, or two if 2515 // we already fixed them. 2516 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2517 2518 // We found our reduction value exit-PHI. Update it with the 2519 // incoming bypass edge. 2520 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2521 // Add an edge coming from the bypass. 2522 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2523 break; 2524 } 2525 }// end of the LCSSA phi scan. 2526 2527 // Fix the scalar loop reduction variable with the incoming reduction sum 2528 // from the vector body and from the backedge value. 2529 int IncomingEdgeBlockIdx = 2530 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2531 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2532 // Pick the other block. 2533 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2534 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx); 2535 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2536 }// end of for each redux variable. 2537 2538 fixLCSSAPHIs(); 2539 2540 // Remove redundant induction instructions. 2541 cse(LoopVectorBody); 2542 } 2543 2544 void InnerLoopVectorizer::fixLCSSAPHIs() { 2545 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2546 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2547 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2548 if (!LCSSAPhi) break; 2549 if (LCSSAPhi->getNumIncomingValues() == 1) 2550 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2551 LoopMiddleBlock); 2552 } 2553 } 2554 2555 InnerLoopVectorizer::VectorParts 2556 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2557 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2558 "Invalid edge"); 2559 2560 // Look for cached value. 2561 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2562 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2563 if (ECEntryIt != MaskCache.end()) 2564 return ECEntryIt->second; 2565 2566 VectorParts SrcMask = createBlockInMask(Src); 2567 2568 // The terminator has to be a branch inst! 2569 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2570 assert(BI && "Unexpected terminator found"); 2571 2572 if (BI->isConditional()) { 2573 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2574 2575 if (BI->getSuccessor(0) != Dst) 2576 for (unsigned part = 0; part < UF; ++part) 2577 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2578 2579 for (unsigned part = 0; part < UF; ++part) 2580 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2581 2582 MaskCache[Edge] = EdgeMask; 2583 return EdgeMask; 2584 } 2585 2586 MaskCache[Edge] = SrcMask; 2587 return SrcMask; 2588 } 2589 2590 InnerLoopVectorizer::VectorParts 2591 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2592 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2593 2594 // Loop incoming mask is all-one. 2595 if (OrigLoop->getHeader() == BB) { 2596 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2597 return getVectorValue(C); 2598 } 2599 2600 // This is the block mask. We OR all incoming edges, and with zero. 2601 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2602 VectorParts BlockMask = getVectorValue(Zero); 2603 2604 // For each pred: 2605 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2606 VectorParts EM = createEdgeMask(*it, BB); 2607 for (unsigned part = 0; part < UF; ++part) 2608 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2609 } 2610 2611 return BlockMask; 2612 } 2613 2614 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2615 InnerLoopVectorizer::VectorParts &Entry, 2616 unsigned UF, unsigned VF, PhiVector *PV) { 2617 PHINode* P = cast<PHINode>(PN); 2618 // Handle reduction variables: 2619 if (Legal->getReductionVars()->count(P)) { 2620 for (unsigned part = 0; part < UF; ++part) { 2621 // This is phase one of vectorizing PHIs. 2622 Type *VecTy = (VF == 1) ? PN->getType() : 2623 VectorType::get(PN->getType(), VF); 2624 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2625 LoopVectorBody-> getFirstInsertionPt()); 2626 } 2627 PV->push_back(P); 2628 return; 2629 } 2630 2631 setDebugLocFromInst(Builder, P); 2632 // Check for PHI nodes that are lowered to vector selects. 2633 if (P->getParent() != OrigLoop->getHeader()) { 2634 // We know that all PHIs in non-header blocks are converted into 2635 // selects, so we don't have to worry about the insertion order and we 2636 // can just use the builder. 2637 // At this point we generate the predication tree. There may be 2638 // duplications since this is a simple recursive scan, but future 2639 // optimizations will clean it up. 2640 2641 unsigned NumIncoming = P->getNumIncomingValues(); 2642 2643 // Generate a sequence of selects of the form: 2644 // SELECT(Mask3, In3, 2645 // SELECT(Mask2, In2, 2646 // ( ...))) 2647 for (unsigned In = 0; In < NumIncoming; In++) { 2648 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2649 P->getParent()); 2650 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2651 2652 for (unsigned part = 0; part < UF; ++part) { 2653 // We might have single edge PHIs (blocks) - use an identity 2654 // 'select' for the first PHI operand. 2655 if (In == 0) 2656 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2657 In0[part]); 2658 else 2659 // Select between the current value and the previous incoming edge 2660 // based on the incoming mask. 2661 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2662 Entry[part], "predphi"); 2663 } 2664 } 2665 return; 2666 } 2667 2668 // This PHINode must be an induction variable. 2669 // Make sure that we know about it. 2670 assert(Legal->getInductionVars()->count(P) && 2671 "Not an induction variable"); 2672 2673 LoopVectorizationLegality::InductionInfo II = 2674 Legal->getInductionVars()->lookup(P); 2675 2676 switch (II.IK) { 2677 case LoopVectorizationLegality::IK_NoInduction: 2678 llvm_unreachable("Unknown induction"); 2679 case LoopVectorizationLegality::IK_IntInduction: { 2680 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2681 Type *PhiTy = P->getType(); 2682 Value *Broadcasted; 2683 if (P == OldInduction) { 2684 // Handle the canonical induction variable. We might have had to 2685 // extend the type. 2686 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2687 } else { 2688 // Handle other induction variables that are now based on the 2689 // canonical one. 2690 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2691 "normalized.idx"); 2692 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2693 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2694 "offset.idx"); 2695 } 2696 Broadcasted = getBroadcastInstrs(Broadcasted); 2697 // After broadcasting the induction variable we need to make the vector 2698 // consecutive by adding 0, 1, 2, etc. 2699 for (unsigned part = 0; part < UF; ++part) 2700 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 2701 return; 2702 } 2703 case LoopVectorizationLegality::IK_ReverseIntInduction: 2704 case LoopVectorizationLegality::IK_PtrInduction: 2705 case LoopVectorizationLegality::IK_ReversePtrInduction: 2706 // Handle reverse integer and pointer inductions. 2707 Value *StartIdx = ExtendedIdx; 2708 // This is the normalized GEP that starts counting at zero. 2709 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 2710 "normalized.idx"); 2711 2712 // Handle the reverse integer induction variable case. 2713 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 2714 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 2715 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 2716 "resize.norm.idx"); 2717 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 2718 "reverse.idx"); 2719 2720 // This is a new value so do not hoist it out. 2721 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 2722 // After broadcasting the induction variable we need to make the 2723 // vector consecutive by adding ... -3, -2, -1, 0. 2724 for (unsigned part = 0; part < UF; ++part) 2725 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 2726 true); 2727 return; 2728 } 2729 2730 // Handle the pointer induction variable case. 2731 assert(P->getType()->isPointerTy() && "Unexpected type."); 2732 2733 // Is this a reverse induction ptr or a consecutive induction ptr. 2734 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 2735 II.IK); 2736 2737 // This is the vector of results. Notice that we don't generate 2738 // vector geps because scalar geps result in better code. 2739 for (unsigned part = 0; part < UF; ++part) { 2740 if (VF == 1) { 2741 int EltIndex = (part) * (Reverse ? -1 : 1); 2742 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2743 Value *GlobalIdx; 2744 if (Reverse) 2745 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2746 else 2747 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2748 2749 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2750 "next.gep"); 2751 Entry[part] = SclrGep; 2752 continue; 2753 } 2754 2755 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 2756 for (unsigned int i = 0; i < VF; ++i) { 2757 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 2758 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2759 Value *GlobalIdx; 2760 if (!Reverse) 2761 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2762 else 2763 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2764 2765 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2766 "next.gep"); 2767 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 2768 Builder.getInt32(i), 2769 "insert.gep"); 2770 } 2771 Entry[part] = VecVal; 2772 } 2773 return; 2774 } 2775 } 2776 2777 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 2778 // For each instruction in the old loop. 2779 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2780 VectorParts &Entry = WidenMap.get(it); 2781 switch (it->getOpcode()) { 2782 case Instruction::Br: 2783 // Nothing to do for PHIs and BR, since we already took care of the 2784 // loop control flow instructions. 2785 continue; 2786 case Instruction::PHI:{ 2787 // Vectorize PHINodes. 2788 widenPHIInstruction(it, Entry, UF, VF, PV); 2789 continue; 2790 }// End of PHI. 2791 2792 case Instruction::Add: 2793 case Instruction::FAdd: 2794 case Instruction::Sub: 2795 case Instruction::FSub: 2796 case Instruction::Mul: 2797 case Instruction::FMul: 2798 case Instruction::UDiv: 2799 case Instruction::SDiv: 2800 case Instruction::FDiv: 2801 case Instruction::URem: 2802 case Instruction::SRem: 2803 case Instruction::FRem: 2804 case Instruction::Shl: 2805 case Instruction::LShr: 2806 case Instruction::AShr: 2807 case Instruction::And: 2808 case Instruction::Or: 2809 case Instruction::Xor: { 2810 // Just widen binops. 2811 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 2812 setDebugLocFromInst(Builder, BinOp); 2813 VectorParts &A = getVectorValue(it->getOperand(0)); 2814 VectorParts &B = getVectorValue(it->getOperand(1)); 2815 2816 // Use this vector value for all users of the original instruction. 2817 for (unsigned Part = 0; Part < UF; ++Part) { 2818 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 2819 2820 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 2821 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 2822 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 2823 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 2824 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 2825 } 2826 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 2827 VecOp->setIsExact(BinOp->isExact()); 2828 2829 Entry[Part] = V; 2830 } 2831 break; 2832 } 2833 case Instruction::Select: { 2834 // Widen selects. 2835 // If the selector is loop invariant we can create a select 2836 // instruction with a scalar condition. Otherwise, use vector-select. 2837 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 2838 OrigLoop); 2839 setDebugLocFromInst(Builder, it); 2840 2841 // The condition can be loop invariant but still defined inside the 2842 // loop. This means that we can't just use the original 'cond' value. 2843 // We have to take the 'vectorized' value and pick the first lane. 2844 // Instcombine will make this a no-op. 2845 VectorParts &Cond = getVectorValue(it->getOperand(0)); 2846 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 2847 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 2848 2849 Value *ScalarCond = (VF == 1) ? Cond[0] : 2850 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 2851 2852 for (unsigned Part = 0; Part < UF; ++Part) { 2853 Entry[Part] = Builder.CreateSelect( 2854 InvariantCond ? ScalarCond : Cond[Part], 2855 Op0[Part], 2856 Op1[Part]); 2857 } 2858 break; 2859 } 2860 2861 case Instruction::ICmp: 2862 case Instruction::FCmp: { 2863 // Widen compares. Generate vector compares. 2864 bool FCmp = (it->getOpcode() == Instruction::FCmp); 2865 CmpInst *Cmp = dyn_cast<CmpInst>(it); 2866 setDebugLocFromInst(Builder, it); 2867 VectorParts &A = getVectorValue(it->getOperand(0)); 2868 VectorParts &B = getVectorValue(it->getOperand(1)); 2869 for (unsigned Part = 0; Part < UF; ++Part) { 2870 Value *C = 0; 2871 if (FCmp) 2872 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 2873 else 2874 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 2875 Entry[Part] = C; 2876 } 2877 break; 2878 } 2879 2880 case Instruction::Store: 2881 case Instruction::Load: 2882 vectorizeMemoryInstruction(it); 2883 break; 2884 case Instruction::ZExt: 2885 case Instruction::SExt: 2886 case Instruction::FPToUI: 2887 case Instruction::FPToSI: 2888 case Instruction::FPExt: 2889 case Instruction::PtrToInt: 2890 case Instruction::IntToPtr: 2891 case Instruction::SIToFP: 2892 case Instruction::UIToFP: 2893 case Instruction::Trunc: 2894 case Instruction::FPTrunc: 2895 case Instruction::BitCast: { 2896 CastInst *CI = dyn_cast<CastInst>(it); 2897 setDebugLocFromInst(Builder, it); 2898 /// Optimize the special case where the source is the induction 2899 /// variable. Notice that we can only optimize the 'trunc' case 2900 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 2901 /// c. other casts depend on pointer size. 2902 if (CI->getOperand(0) == OldInduction && 2903 it->getOpcode() == Instruction::Trunc) { 2904 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 2905 CI->getType()); 2906 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 2907 for (unsigned Part = 0; Part < UF; ++Part) 2908 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 2909 break; 2910 } 2911 /// Vectorize casts. 2912 Type *DestTy = (VF == 1) ? CI->getType() : 2913 VectorType::get(CI->getType(), VF); 2914 2915 VectorParts &A = getVectorValue(it->getOperand(0)); 2916 for (unsigned Part = 0; Part < UF; ++Part) 2917 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 2918 break; 2919 } 2920 2921 case Instruction::Call: { 2922 // Ignore dbg intrinsics. 2923 if (isa<DbgInfoIntrinsic>(it)) 2924 break; 2925 setDebugLocFromInst(Builder, it); 2926 2927 Module *M = BB->getParent()->getParent(); 2928 CallInst *CI = cast<CallInst>(it); 2929 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2930 assert(ID && "Not an intrinsic call!"); 2931 switch (ID) { 2932 case Intrinsic::lifetime_end: 2933 case Intrinsic::lifetime_start: 2934 scalarizeInstruction(it); 2935 break; 2936 default: 2937 for (unsigned Part = 0; Part < UF; ++Part) { 2938 SmallVector<Value *, 4> Args; 2939 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 2940 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 2941 Args.push_back(Arg[Part]); 2942 } 2943 Type *Tys[] = {CI->getType()}; 2944 if (VF > 1) 2945 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 2946 2947 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 2948 Entry[Part] = Builder.CreateCall(F, Args); 2949 } 2950 break; 2951 } 2952 break; 2953 } 2954 2955 default: 2956 // All other instructions are unsupported. Scalarize them. 2957 scalarizeInstruction(it); 2958 break; 2959 }// end of switch. 2960 }// end of for_each instr. 2961 } 2962 2963 void InnerLoopVectorizer::updateAnalysis() { 2964 // Forget the original basic block. 2965 SE->forgetLoop(OrigLoop); 2966 2967 // Update the dominator tree information. 2968 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 2969 "Entry does not dominate exit."); 2970 2971 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2972 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 2973 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 2974 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 2975 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front()); 2976 DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock); 2977 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 2978 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2979 2980 DEBUG(DT->verifyDomTree()); 2981 } 2982 2983 /// \brief Check whether it is safe to if-convert this phi node. 2984 /// 2985 /// Phi nodes with constant expressions that can trap are not safe to if 2986 /// convert. 2987 static bool canIfConvertPHINodes(BasicBlock *BB) { 2988 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 2989 PHINode *Phi = dyn_cast<PHINode>(I); 2990 if (!Phi) 2991 return true; 2992 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 2993 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 2994 if (C->canTrap()) 2995 return false; 2996 } 2997 return true; 2998 } 2999 3000 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3001 if (!EnableIfConversion) 3002 return false; 3003 3004 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3005 3006 // A list of pointers that we can safely read and write to. 3007 SmallPtrSet<Value *, 8> SafePointes; 3008 3009 // Collect safe addresses. 3010 for (Loop::block_iterator BI = TheLoop->block_begin(), 3011 BE = TheLoop->block_end(); BI != BE; ++BI) { 3012 BasicBlock *BB = *BI; 3013 3014 if (blockNeedsPredication(BB)) 3015 continue; 3016 3017 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3018 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3019 SafePointes.insert(LI->getPointerOperand()); 3020 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3021 SafePointes.insert(SI->getPointerOperand()); 3022 } 3023 } 3024 3025 // Collect the blocks that need predication. 3026 BasicBlock *Header = TheLoop->getHeader(); 3027 for (Loop::block_iterator BI = TheLoop->block_begin(), 3028 BE = TheLoop->block_end(); BI != BE; ++BI) { 3029 BasicBlock *BB = *BI; 3030 3031 // We don't support switch statements inside loops. 3032 if (!isa<BranchInst>(BB->getTerminator())) 3033 return false; 3034 3035 // We must be able to predicate all blocks that need to be predicated. 3036 if (blockNeedsPredication(BB)) { 3037 if (!blockCanBePredicated(BB, SafePointes)) 3038 return false; 3039 } else if (BB != Header && !canIfConvertPHINodes(BB)) 3040 return false; 3041 3042 } 3043 3044 // We can if-convert this loop. 3045 return true; 3046 } 3047 3048 bool LoopVectorizationLegality::canVectorize() { 3049 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3050 // be canonicalized. 3051 if (!TheLoop->getLoopPreheader()) 3052 return false; 3053 3054 // We can only vectorize innermost loops. 3055 if (TheLoop->getSubLoopsVector().size()) 3056 return false; 3057 3058 // We must have a single backedge. 3059 if (TheLoop->getNumBackEdges() != 1) 3060 return false; 3061 3062 // We must have a single exiting block. 3063 if (!TheLoop->getExitingBlock()) 3064 return false; 3065 3066 // We need to have a loop header. 3067 DEBUG(dbgs() << "LV: Found a loop: " << 3068 TheLoop->getHeader()->getName() << '\n'); 3069 3070 // Check if we can if-convert non-single-bb loops. 3071 unsigned NumBlocks = TheLoop->getNumBlocks(); 3072 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3073 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3074 return false; 3075 } 3076 3077 // ScalarEvolution needs to be able to find the exit count. 3078 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3079 if (ExitCount == SE->getCouldNotCompute()) { 3080 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3081 return false; 3082 } 3083 3084 // Do not loop-vectorize loops with a tiny trip count. 3085 BasicBlock *Latch = TheLoop->getLoopLatch(); 3086 unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch); 3087 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 3088 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << 3089 "This loop is not worth vectorizing.\n"); 3090 return false; 3091 } 3092 3093 // Check if we can vectorize the instructions and CFG in this loop. 3094 if (!canVectorizeInstrs()) { 3095 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3096 return false; 3097 } 3098 3099 // Go over each instruction and look at memory deps. 3100 if (!canVectorizeMemory()) { 3101 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3102 return false; 3103 } 3104 3105 // Collect all of the variables that remain uniform after vectorization. 3106 collectLoopUniforms(); 3107 3108 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3109 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3110 <<"!\n"); 3111 3112 // Okay! We can vectorize. At this point we don't have any other mem analysis 3113 // which may limit our maximum vectorization factor, so just return true with 3114 // no restrictions. 3115 return true; 3116 } 3117 3118 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) { 3119 if (Ty->isPointerTy()) 3120 return DL.getIntPtrType(Ty); 3121 3122 // It is possible that char's or short's overflow when we ask for the loop's 3123 // trip count, work around this by changing the type size. 3124 if (Ty->getScalarSizeInBits() < 32) 3125 return Type::getInt32Ty(Ty->getContext()); 3126 3127 return Ty; 3128 } 3129 3130 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) { 3131 Ty0 = convertPointerToIntegerType(DL, Ty0); 3132 Ty1 = convertPointerToIntegerType(DL, Ty1); 3133 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3134 return Ty0; 3135 return Ty1; 3136 } 3137 3138 /// \brief Check that the instruction has outside loop users and is not an 3139 /// identified reduction variable. 3140 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3141 SmallPtrSet<Value *, 4> &Reductions) { 3142 // Reduction instructions are allowed to have exit users. All other 3143 // instructions must not have external users. 3144 if (!Reductions.count(Inst)) 3145 //Check that all of the users of the loop are inside the BB. 3146 for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); 3147 I != E; ++I) { 3148 Instruction *U = cast<Instruction>(*I); 3149 // This user may be a reduction exit value. 3150 if (!TheLoop->contains(U)) { 3151 DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n'); 3152 return true; 3153 } 3154 } 3155 return false; 3156 } 3157 3158 bool LoopVectorizationLegality::canVectorizeInstrs() { 3159 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3160 BasicBlock *Header = TheLoop->getHeader(); 3161 3162 // Look for the attribute signaling the absence of NaNs. 3163 Function &F = *Header->getParent(); 3164 if (F.hasFnAttribute("no-nans-fp-math")) 3165 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3166 AttributeSet::FunctionIndex, 3167 "no-nans-fp-math").getValueAsString() == "true"; 3168 3169 // For each block in the loop. 3170 for (Loop::block_iterator bb = TheLoop->block_begin(), 3171 be = TheLoop->block_end(); bb != be; ++bb) { 3172 3173 // Scan the instructions in the block and look for hazards. 3174 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3175 ++it) { 3176 3177 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3178 Type *PhiTy = Phi->getType(); 3179 // Check that this PHI type is allowed. 3180 if (!PhiTy->isIntegerTy() && 3181 !PhiTy->isFloatingPointTy() && 3182 !PhiTy->isPointerTy()) { 3183 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3184 return false; 3185 } 3186 3187 // If this PHINode is not in the header block, then we know that we 3188 // can convert it to select during if-conversion. No need to check if 3189 // the PHIs in this block are induction or reduction variables. 3190 if (*bb != Header) { 3191 // Check that this instruction has no outside users or is an 3192 // identified reduction value with an outside user. 3193 if(!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3194 continue; 3195 return false; 3196 } 3197 3198 // We only allow if-converted PHIs with more than two incoming values. 3199 if (Phi->getNumIncomingValues() != 2) { 3200 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3201 return false; 3202 } 3203 3204 // This is the value coming from the preheader. 3205 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3206 // Check if this is an induction variable. 3207 InductionKind IK = isInductionVariable(Phi); 3208 3209 if (IK_NoInduction != IK) { 3210 // Get the widest type. 3211 if (!WidestIndTy) 3212 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3213 else 3214 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3215 3216 // Int inductions are special because we only allow one IV. 3217 if (IK == IK_IntInduction) { 3218 // Use the phi node with the widest type as induction. Use the last 3219 // one if there are multiple (no good reason for doing this other 3220 // than it is expedient). 3221 if (!Induction || PhiTy == WidestIndTy) 3222 Induction = Phi; 3223 } 3224 3225 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3226 Inductions[Phi] = InductionInfo(StartValue, IK); 3227 3228 // Until we explicitly handle the case of an induction variable with 3229 // an outside loop user we have to give up vectorizing this loop. 3230 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3231 return false; 3232 3233 continue; 3234 } 3235 3236 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3237 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3238 continue; 3239 } 3240 if (AddReductionVar(Phi, RK_IntegerMult)) { 3241 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3242 continue; 3243 } 3244 if (AddReductionVar(Phi, RK_IntegerOr)) { 3245 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3246 continue; 3247 } 3248 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3249 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3250 continue; 3251 } 3252 if (AddReductionVar(Phi, RK_IntegerXor)) { 3253 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3254 continue; 3255 } 3256 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3257 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3258 continue; 3259 } 3260 if (AddReductionVar(Phi, RK_FloatMult)) { 3261 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3262 continue; 3263 } 3264 if (AddReductionVar(Phi, RK_FloatAdd)) { 3265 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3266 continue; 3267 } 3268 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3269 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3270 "\n"); 3271 continue; 3272 } 3273 3274 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3275 return false; 3276 }// end of PHI handling 3277 3278 // We still don't handle functions. However, we can ignore dbg intrinsic 3279 // calls and we do handle certain intrinsic and libm functions. 3280 CallInst *CI = dyn_cast<CallInst>(it); 3281 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3282 DEBUG(dbgs() << "LV: Found a call site.\n"); 3283 return false; 3284 } 3285 3286 // Check that the instruction return type is vectorizable. 3287 // Also, we can't vectorize extractelement instructions. 3288 if ((!VectorType::isValidElementType(it->getType()) && 3289 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3290 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3291 return false; 3292 } 3293 3294 // Check that the stored type is vectorizable. 3295 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3296 Type *T = ST->getValueOperand()->getType(); 3297 if (!VectorType::isValidElementType(T)) 3298 return false; 3299 if (EnableMemAccessVersioning) 3300 collectStridedAcccess(ST); 3301 } 3302 3303 if (EnableMemAccessVersioning) 3304 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3305 collectStridedAcccess(LI); 3306 3307 // Reduction instructions are allowed to have exit users. 3308 // All other instructions must not have external users. 3309 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3310 return false; 3311 3312 } // next instr. 3313 3314 } 3315 3316 if (!Induction) { 3317 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3318 if (Inductions.empty()) 3319 return false; 3320 } 3321 3322 return true; 3323 } 3324 3325 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3326 /// return the induction operand of the gep pointer. 3327 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3328 DataLayout *DL, Loop *Lp) { 3329 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3330 if (!GEP) 3331 return Ptr; 3332 3333 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3334 3335 // Check that all of the gep indices are uniform except for our induction 3336 // operand. 3337 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3338 if (i != InductionOperand && 3339 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3340 return Ptr; 3341 return GEP->getOperand(InductionOperand); 3342 } 3343 3344 ///\brief Look for a cast use of the passed value. 3345 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3346 Value *UniqueCast = 0; 3347 for (Value::use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end(); UI != UE; 3348 ++UI) { 3349 CastInst *CI = dyn_cast<CastInst>(*UI); 3350 if (CI && CI->getType() == Ty) { 3351 if (!UniqueCast) 3352 UniqueCast = CI; 3353 else 3354 return 0; 3355 } 3356 } 3357 return UniqueCast; 3358 } 3359 3360 ///\brief Get the stride of a pointer access in a loop. 3361 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3362 /// pointer to the Value, or null otherwise. 3363 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3364 DataLayout *DL, Loop *Lp) { 3365 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3366 if (!PtrTy || PtrTy->isAggregateType()) 3367 return 0; 3368 3369 // Try to remove a gep instruction to make the pointer (actually index at this 3370 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3371 // pointer, otherwise, we are analyzing the index. 3372 Value *OrigPtr = Ptr; 3373 3374 // The size of the pointer access. 3375 int64_t PtrAccessSize = 1; 3376 3377 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3378 const SCEV *V = SE->getSCEV(Ptr); 3379 3380 if (Ptr != OrigPtr) 3381 // Strip off casts. 3382 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3383 V = C->getOperand(); 3384 3385 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3386 if (!S) 3387 return 0; 3388 3389 V = S->getStepRecurrence(*SE); 3390 if (!V) 3391 return 0; 3392 3393 // Strip off the size of access multiplication if we are still analyzing the 3394 // pointer. 3395 if (OrigPtr == Ptr) { 3396 DL->getTypeAllocSize(PtrTy->getElementType()); 3397 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3398 if (M->getOperand(0)->getSCEVType() != scConstant) 3399 return 0; 3400 3401 const APInt &APStepVal = 3402 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3403 3404 // Huge step value - give up. 3405 if (APStepVal.getBitWidth() > 64) 3406 return 0; 3407 3408 int64_t StepVal = APStepVal.getSExtValue(); 3409 if (PtrAccessSize != StepVal) 3410 return 0; 3411 V = M->getOperand(1); 3412 } 3413 } 3414 3415 // Strip off casts. 3416 Type *StripedOffRecurrenceCast = 0; 3417 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3418 StripedOffRecurrenceCast = C->getType(); 3419 V = C->getOperand(); 3420 } 3421 3422 // Look for the loop invariant symbolic value. 3423 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3424 if (!U) 3425 return 0; 3426 3427 Value *Stride = U->getValue(); 3428 if (!Lp->isLoopInvariant(Stride)) 3429 return 0; 3430 3431 // If we have stripped off the recurrence cast we have to make sure that we 3432 // return the value that is used in this loop so that we can replace it later. 3433 if (StripedOffRecurrenceCast) 3434 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3435 3436 return Stride; 3437 } 3438 3439 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3440 Value *Ptr = 0; 3441 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3442 Ptr = LI->getPointerOperand(); 3443 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3444 Ptr = SI->getPointerOperand(); 3445 else 3446 return; 3447 3448 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3449 if (!Stride) 3450 return; 3451 3452 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3453 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3454 Strides[Ptr] = Stride; 3455 StrideSet.insert(Stride); 3456 } 3457 3458 void LoopVectorizationLegality::collectLoopUniforms() { 3459 // We now know that the loop is vectorizable! 3460 // Collect variables that will remain uniform after vectorization. 3461 std::vector<Value*> Worklist; 3462 BasicBlock *Latch = TheLoop->getLoopLatch(); 3463 3464 // Start with the conditional branch and walk up the block. 3465 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3466 3467 while (Worklist.size()) { 3468 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3469 Worklist.pop_back(); 3470 3471 // Look at instructions inside this loop. 3472 // Stop when reaching PHI nodes. 3473 // TODO: we need to follow values all over the loop, not only in this block. 3474 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3475 continue; 3476 3477 // This is a known uniform. 3478 Uniforms.insert(I); 3479 3480 // Insert all operands. 3481 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3482 } 3483 } 3484 3485 namespace { 3486 /// \brief Analyses memory accesses in a loop. 3487 /// 3488 /// Checks whether run time pointer checks are needed and builds sets for data 3489 /// dependence checking. 3490 class AccessAnalysis { 3491 public: 3492 /// \brief Read or write access location. 3493 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3494 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3495 3496 /// \brief Set of potential dependent memory accesses. 3497 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 3498 3499 AccessAnalysis(DataLayout *Dl, DepCandidates &DA) : 3500 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 3501 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 3502 3503 /// \brief Register a load and whether it is only read from. 3504 void addLoad(Value *Ptr, bool IsReadOnly) { 3505 Accesses.insert(MemAccessInfo(Ptr, false)); 3506 if (IsReadOnly) 3507 ReadOnlyPtr.insert(Ptr); 3508 } 3509 3510 /// \brief Register a store. 3511 void addStore(Value *Ptr) { 3512 Accesses.insert(MemAccessInfo(Ptr, true)); 3513 } 3514 3515 /// \brief Check whether we can check the pointers at runtime for 3516 /// non-intersection. 3517 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3518 unsigned &NumComparisons, ScalarEvolution *SE, 3519 Loop *TheLoop, ValueToValueMap &Strides, 3520 bool ShouldCheckStride = false); 3521 3522 /// \brief Goes over all memory accesses, checks whether a RT check is needed 3523 /// and builds sets of dependent accesses. 3524 void buildDependenceSets() { 3525 // Process read-write pointers first. 3526 processMemAccesses(false); 3527 // Next, process read pointers. 3528 processMemAccesses(true); 3529 } 3530 3531 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 3532 3533 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 3534 void resetDepChecks() { CheckDeps.clear(); } 3535 3536 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 3537 3538 private: 3539 typedef SetVector<MemAccessInfo> PtrAccessSet; 3540 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 3541 3542 /// \brief Go over all memory access or only the deferred ones if 3543 /// \p UseDeferred is true and check whether runtime pointer checks are needed 3544 /// and build sets of dependency check candidates. 3545 void processMemAccesses(bool UseDeferred); 3546 3547 /// Set of all accesses. 3548 PtrAccessSet Accesses; 3549 3550 /// Set of access to check after all writes have been processed. 3551 PtrAccessSet DeferredAccesses; 3552 3553 /// Map of pointers to last access encountered. 3554 UnderlyingObjToAccessMap ObjToLastAccess; 3555 3556 /// Set of accesses that need a further dependence check. 3557 MemAccessInfoSet CheckDeps; 3558 3559 /// Set of pointers that are read only. 3560 SmallPtrSet<Value*, 16> ReadOnlyPtr; 3561 3562 /// Set of underlying objects already written to. 3563 SmallPtrSet<Value*, 16> WriteObjects; 3564 3565 DataLayout *DL; 3566 3567 /// Sets of potentially dependent accesses - members of one set share an 3568 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 3569 /// dependence check. 3570 DepCandidates &DepCands; 3571 3572 bool AreAllWritesIdentified; 3573 bool AreAllReadsIdentified; 3574 bool IsRTCheckNeeded; 3575 }; 3576 3577 } // end anonymous namespace 3578 3579 /// \brief Check whether a pointer can participate in a runtime bounds check. 3580 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 3581 Value *Ptr) { 3582 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 3583 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3584 if (!AR) 3585 return false; 3586 3587 return AR->isAffine(); 3588 } 3589 3590 /// \brief Check the stride of the pointer and ensure that it does not wrap in 3591 /// the address space. 3592 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr, 3593 const Loop *Lp, ValueToValueMap &StridesMap); 3594 3595 bool AccessAnalysis::canCheckPtrAtRT( 3596 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 3597 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 3598 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 3599 // Find pointers with computable bounds. We are going to use this information 3600 // to place a runtime bound check. 3601 unsigned NumReadPtrChecks = 0; 3602 unsigned NumWritePtrChecks = 0; 3603 bool CanDoRT = true; 3604 3605 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 3606 // We assign consecutive id to access from different dependence sets. 3607 // Accesses within the same set don't need a runtime check. 3608 unsigned RunningDepId = 1; 3609 DenseMap<Value *, unsigned> DepSetId; 3610 3611 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 3612 AI != AE; ++AI) { 3613 const MemAccessInfo &Access = *AI; 3614 Value *Ptr = Access.getPointer(); 3615 bool IsWrite = Access.getInt(); 3616 3617 // Just add write checks if we have both. 3618 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true))) 3619 continue; 3620 3621 if (IsWrite) 3622 ++NumWritePtrChecks; 3623 else 3624 ++NumReadPtrChecks; 3625 3626 if (hasComputableBounds(SE, StridesMap, Ptr) && 3627 // When we run after a failing dependency check we have to make sure we 3628 // don't have wrapping pointers. 3629 (!ShouldCheckStride || 3630 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 3631 // The id of the dependence set. 3632 unsigned DepId; 3633 3634 if (IsDepCheckNeeded) { 3635 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 3636 unsigned &LeaderId = DepSetId[Leader]; 3637 if (!LeaderId) 3638 LeaderId = RunningDepId++; 3639 DepId = LeaderId; 3640 } else 3641 // Each access has its own dependence set. 3642 DepId = RunningDepId++; 3643 3644 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap); 3645 3646 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 3647 } else { 3648 CanDoRT = false; 3649 } 3650 } 3651 3652 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 3653 NumComparisons = 0; // Only one dependence set. 3654 else { 3655 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 3656 NumWritePtrChecks - 1)); 3657 } 3658 3659 // If the pointers that we would use for the bounds comparison have different 3660 // address spaces, assume the values aren't directly comparable, so we can't 3661 // use them for the runtime check. We also have to assume they could 3662 // overlap. In the future there should be metadata for whether address spaces 3663 // are disjoint. 3664 unsigned NumPointers = RtCheck.Pointers.size(); 3665 for (unsigned i = 0; i < NumPointers; ++i) { 3666 for (unsigned j = i + 1; j < NumPointers; ++j) { 3667 // Only need to check pointers between two different dependency sets. 3668 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 3669 continue; 3670 3671 Value *PtrI = RtCheck.Pointers[i]; 3672 Value *PtrJ = RtCheck.Pointers[j]; 3673 3674 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 3675 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 3676 if (ASi != ASj) { 3677 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 3678 " different address spaces\n"); 3679 return false; 3680 } 3681 } 3682 } 3683 3684 return CanDoRT; 3685 } 3686 3687 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 3688 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 3689 } 3690 3691 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 3692 // We process the set twice: first we process read-write pointers, last we 3693 // process read-only pointers. This allows us to skip dependence tests for 3694 // read-only pointers. 3695 3696 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 3697 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 3698 const MemAccessInfo &Access = *AI; 3699 Value *Ptr = Access.getPointer(); 3700 bool IsWrite = Access.getInt(); 3701 3702 DepCands.insert(Access); 3703 3704 // Memorize read-only pointers for later processing and skip them in the 3705 // first round (they need to be checked after we have seen all write 3706 // pointers). Note: we also mark pointer that are not consecutive as 3707 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 3708 // second check for "!IsWrite". 3709 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 3710 if (!UseDeferred && IsReadOnlyPtr) { 3711 DeferredAccesses.insert(Access); 3712 continue; 3713 } 3714 3715 bool NeedDepCheck = false; 3716 // Check whether there is the possiblity of dependency because of underlying 3717 // objects being the same. 3718 typedef SmallVector<Value*, 16> ValueVector; 3719 ValueVector TempObjects; 3720 GetUnderlyingObjects(Ptr, TempObjects, DL); 3721 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 3722 UI != UE; ++UI) { 3723 Value *UnderlyingObj = *UI; 3724 3725 // If this is a write then it needs to be an identified object. If this a 3726 // read and all writes (so far) are identified function scope objects we 3727 // don't need an identified underlying object but only an Argument (the 3728 // next write is going to invalidate this assumption if it is 3729 // unidentified). 3730 // This is a micro-optimization for the case where all writes are 3731 // identified and we have one argument pointer. 3732 // Otherwise, we do need a runtime check. 3733 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 3734 (!IsWrite && (!AreAllWritesIdentified || 3735 !isa<Argument>(UnderlyingObj)) && 3736 !isIdentifiedObject(UnderlyingObj))) { 3737 DEBUG(dbgs() << "LV: Found an unidentified " << 3738 (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj << 3739 "\n"); 3740 IsRTCheckNeeded = (IsRTCheckNeeded || 3741 !isIdentifiedObject(UnderlyingObj) || 3742 !AreAllReadsIdentified); 3743 3744 if (IsWrite) 3745 AreAllWritesIdentified = false; 3746 if (!IsWrite) 3747 AreAllReadsIdentified = false; 3748 } 3749 3750 // If this is a write - check other reads and writes for conflicts. If 3751 // this is a read only check other writes for conflicts (but only if there 3752 // is no other write to the ptr - this is an optimization to catch "a[i] = 3753 // a[i] + " without having to do a dependence check). 3754 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 3755 NeedDepCheck = true; 3756 3757 if (IsWrite) 3758 WriteObjects.insert(UnderlyingObj); 3759 3760 // Create sets of pointers connected by shared underlying objects. 3761 UnderlyingObjToAccessMap::iterator Prev = 3762 ObjToLastAccess.find(UnderlyingObj); 3763 if (Prev != ObjToLastAccess.end()) 3764 DepCands.unionSets(Access, Prev->second); 3765 3766 ObjToLastAccess[UnderlyingObj] = Access; 3767 } 3768 3769 if (NeedDepCheck) 3770 CheckDeps.insert(Access); 3771 } 3772 } 3773 3774 namespace { 3775 /// \brief Checks memory dependences among accesses to the same underlying 3776 /// object to determine whether there vectorization is legal or not (and at 3777 /// which vectorization factor). 3778 /// 3779 /// This class works under the assumption that we already checked that memory 3780 /// locations with different underlying pointers are "must-not alias". 3781 /// We use the ScalarEvolution framework to symbolically evalutate access 3782 /// functions pairs. Since we currently don't restructure the loop we can rely 3783 /// on the program order of memory accesses to determine their safety. 3784 /// At the moment we will only deem accesses as safe for: 3785 /// * A negative constant distance assuming program order. 3786 /// 3787 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 3788 /// a[i] = tmp; y = a[i]; 3789 /// 3790 /// The latter case is safe because later checks guarantuee that there can't 3791 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 3792 /// the same variable: a header phi can only be an induction or a reduction, a 3793 /// reduction can't have a memory sink, an induction can't have a memory 3794 /// source). This is important and must not be violated (or we have to 3795 /// resort to checking for cycles through memory). 3796 /// 3797 /// * A positive constant distance assuming program order that is bigger 3798 /// than the biggest memory access. 3799 /// 3800 /// tmp = a[i] OR b[i] = x 3801 /// a[i+2] = tmp y = b[i+2]; 3802 /// 3803 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 3804 /// 3805 /// * Zero distances and all accesses have the same size. 3806 /// 3807 class MemoryDepChecker { 3808 public: 3809 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 3810 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 3811 3812 MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) 3813 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 3814 ShouldRetryWithRuntimeCheck(false) {} 3815 3816 /// \brief Register the location (instructions are given increasing numbers) 3817 /// of a write access. 3818 void addAccess(StoreInst *SI) { 3819 Value *Ptr = SI->getPointerOperand(); 3820 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 3821 InstMap.push_back(SI); 3822 ++AccessIdx; 3823 } 3824 3825 /// \brief Register the location (instructions are given increasing numbers) 3826 /// of a write access. 3827 void addAccess(LoadInst *LI) { 3828 Value *Ptr = LI->getPointerOperand(); 3829 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 3830 InstMap.push_back(LI); 3831 ++AccessIdx; 3832 } 3833 3834 /// \brief Check whether the dependencies between the accesses are safe. 3835 /// 3836 /// Only checks sets with elements in \p CheckDeps. 3837 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 3838 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 3839 3840 /// \brief The maximum number of bytes of a vector register we can vectorize 3841 /// the accesses safely with. 3842 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 3843 3844 /// \brief In same cases when the dependency check fails we can still 3845 /// vectorize the loop with a dynamic array access check. 3846 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 3847 3848 private: 3849 ScalarEvolution *SE; 3850 DataLayout *DL; 3851 const Loop *InnermostLoop; 3852 3853 /// \brief Maps access locations (ptr, read/write) to program order. 3854 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 3855 3856 /// \brief Memory access instructions in program order. 3857 SmallVector<Instruction *, 16> InstMap; 3858 3859 /// \brief The program order index to be used for the next instruction. 3860 unsigned AccessIdx; 3861 3862 // We can access this many bytes in parallel safely. 3863 unsigned MaxSafeDepDistBytes; 3864 3865 /// \brief If we see a non-constant dependence distance we can still try to 3866 /// vectorize this loop with runtime checks. 3867 bool ShouldRetryWithRuntimeCheck; 3868 3869 /// \brief Check whether there is a plausible dependence between the two 3870 /// accesses. 3871 /// 3872 /// Access \p A must happen before \p B in program order. The two indices 3873 /// identify the index into the program order map. 3874 /// 3875 /// This function checks whether there is a plausible dependence (or the 3876 /// absence of such can't be proved) between the two accesses. If there is a 3877 /// plausible dependence but the dependence distance is bigger than one 3878 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 3879 /// distance is smaller than any other distance encountered so far). 3880 /// Otherwise, this function returns true signaling a possible dependence. 3881 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 3882 const MemAccessInfo &B, unsigned BIdx, 3883 ValueToValueMap &Strides); 3884 3885 /// \brief Check whether the data dependence could prevent store-load 3886 /// forwarding. 3887 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 3888 }; 3889 3890 } // end anonymous namespace 3891 3892 static bool isInBoundsGep(Value *Ptr) { 3893 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 3894 return GEP->isInBounds(); 3895 return false; 3896 } 3897 3898 /// \brief Check whether the access through \p Ptr has a constant stride. 3899 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr, 3900 const Loop *Lp, ValueToValueMap &StridesMap) { 3901 const Type *Ty = Ptr->getType(); 3902 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 3903 3904 // Make sure that the pointer does not point to aggregate types. 3905 const PointerType *PtrTy = cast<PointerType>(Ty); 3906 if (PtrTy->getElementType()->isAggregateType()) { 3907 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 3908 "\n"); 3909 return 0; 3910 } 3911 3912 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 3913 3914 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3915 if (!AR) { 3916 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 3917 << *Ptr << " SCEV: " << *PtrScev << "\n"); 3918 return 0; 3919 } 3920 3921 // The accesss function must stride over the innermost loop. 3922 if (Lp != AR->getLoop()) { 3923 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 3924 *Ptr << " SCEV: " << *PtrScev << "\n"); 3925 } 3926 3927 // The address calculation must not wrap. Otherwise, a dependence could be 3928 // inverted. 3929 // An inbounds getelementptr that is a AddRec with a unit stride 3930 // cannot wrap per definition. The unit stride requirement is checked later. 3931 // An getelementptr without an inbounds attribute and unit stride would have 3932 // to access the pointer value "0" which is undefined behavior in address 3933 // space 0, therefore we can also vectorize this case. 3934 bool IsInBoundsGEP = isInBoundsGep(Ptr); 3935 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 3936 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 3937 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 3938 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 3939 << *Ptr << " SCEV: " << *PtrScev << "\n"); 3940 return 0; 3941 } 3942 3943 // Check the step is constant. 3944 const SCEV *Step = AR->getStepRecurrence(*SE); 3945 3946 // Calculate the pointer stride and check if it is consecutive. 3947 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 3948 if (!C) { 3949 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 3950 " SCEV: " << *PtrScev << "\n"); 3951 return 0; 3952 } 3953 3954 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 3955 const APInt &APStepVal = C->getValue()->getValue(); 3956 3957 // Huge step value - give up. 3958 if (APStepVal.getBitWidth() > 64) 3959 return 0; 3960 3961 int64_t StepVal = APStepVal.getSExtValue(); 3962 3963 // Strided access. 3964 int64_t Stride = StepVal / Size; 3965 int64_t Rem = StepVal % Size; 3966 if (Rem) 3967 return 0; 3968 3969 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 3970 // know we can't "wrap around the address space". In case of address space 3971 // zero we know that this won't happen without triggering undefined behavior. 3972 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 3973 Stride != 1 && Stride != -1) 3974 return 0; 3975 3976 return Stride; 3977 } 3978 3979 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 3980 unsigned TypeByteSize) { 3981 // If loads occur at a distance that is not a multiple of a feasible vector 3982 // factor store-load forwarding does not take place. 3983 // Positive dependences might cause troubles because vectorizing them might 3984 // prevent store-load forwarding making vectorized code run a lot slower. 3985 // a[i] = a[i-3] ^ a[i-8]; 3986 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 3987 // hence on your typical architecture store-load forwarding does not take 3988 // place. Vectorizing in such cases does not make sense. 3989 // Store-load forwarding distance. 3990 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 3991 // Maximum vector factor. 3992 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 3993 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 3994 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 3995 3996 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 3997 vf *= 2) { 3998 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 3999 MaxVFWithoutSLForwardIssues = (vf >>=1); 4000 break; 4001 } 4002 } 4003 4004 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4005 DEBUG(dbgs() << "LV: Distance " << Distance << 4006 " that could cause a store-load forwarding conflict\n"); 4007 return true; 4008 } 4009 4010 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4011 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4012 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4013 return false; 4014 } 4015 4016 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4017 const MemAccessInfo &B, unsigned BIdx, 4018 ValueToValueMap &Strides) { 4019 assert (AIdx < BIdx && "Must pass arguments in program order"); 4020 4021 Value *APtr = A.getPointer(); 4022 Value *BPtr = B.getPointer(); 4023 bool AIsWrite = A.getInt(); 4024 bool BIsWrite = B.getInt(); 4025 4026 // Two reads are independent. 4027 if (!AIsWrite && !BIsWrite) 4028 return false; 4029 4030 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4031 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4032 4033 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4034 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4035 4036 const SCEV *Src = AScev; 4037 const SCEV *Sink = BScev; 4038 4039 // If the induction step is negative we have to invert source and sink of the 4040 // dependence. 4041 if (StrideAPtr < 0) { 4042 //Src = BScev; 4043 //Sink = AScev; 4044 std::swap(APtr, BPtr); 4045 std::swap(Src, Sink); 4046 std::swap(AIsWrite, BIsWrite); 4047 std::swap(AIdx, BIdx); 4048 std::swap(StrideAPtr, StrideBPtr); 4049 } 4050 4051 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4052 4053 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4054 << "(Induction step: " << StrideAPtr << ")\n"); 4055 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4056 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4057 4058 // Need consecutive accesses. We don't want to vectorize 4059 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4060 // the address space. 4061 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4062 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4063 return true; 4064 } 4065 4066 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4067 if (!C) { 4068 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4069 ShouldRetryWithRuntimeCheck = true; 4070 return true; 4071 } 4072 4073 Type *ATy = APtr->getType()->getPointerElementType(); 4074 Type *BTy = BPtr->getType()->getPointerElementType(); 4075 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4076 4077 // Negative distances are not plausible dependencies. 4078 const APInt &Val = C->getValue()->getValue(); 4079 if (Val.isNegative()) { 4080 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4081 if (IsTrueDataDependence && 4082 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4083 ATy != BTy)) 4084 return true; 4085 4086 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4087 return false; 4088 } 4089 4090 // Write to the same location with the same size. 4091 // Could be improved to assert type sizes are the same (i32 == float, etc). 4092 if (Val == 0) { 4093 if (ATy == BTy) 4094 return false; 4095 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4096 return true; 4097 } 4098 4099 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4100 4101 // Positive distance bigger than max vectorization factor. 4102 if (ATy != BTy) { 4103 DEBUG(dbgs() << 4104 "LV: ReadWrite-Write positive dependency with different types\n"); 4105 return false; 4106 } 4107 4108 unsigned Distance = (unsigned) Val.getZExtValue(); 4109 4110 // Bail out early if passed-in parameters make vectorization not feasible. 4111 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4112 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4113 4114 // The distance must be bigger than the size needed for a vectorized version 4115 // of the operation and the size of the vectorized operation must not be 4116 // bigger than the currrent maximum size. 4117 if (Distance < 2*TypeByteSize || 4118 2*TypeByteSize > MaxSafeDepDistBytes || 4119 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4120 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4121 << Val.getSExtValue() << '\n'); 4122 return true; 4123 } 4124 4125 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4126 Distance : MaxSafeDepDistBytes; 4127 4128 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4129 if (IsTrueDataDependence && 4130 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4131 return true; 4132 4133 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4134 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4135 4136 return false; 4137 } 4138 4139 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4140 MemAccessInfoSet &CheckDeps, 4141 ValueToValueMap &Strides) { 4142 4143 MaxSafeDepDistBytes = -1U; 4144 while (!CheckDeps.empty()) { 4145 MemAccessInfo CurAccess = *CheckDeps.begin(); 4146 4147 // Get the relevant memory access set. 4148 EquivalenceClasses<MemAccessInfo>::iterator I = 4149 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4150 4151 // Check accesses within this set. 4152 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4153 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4154 4155 // Check every access pair. 4156 while (AI != AE) { 4157 CheckDeps.erase(*AI); 4158 EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI); 4159 while (OI != AE) { 4160 // Check every accessing instruction pair in program order. 4161 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4162 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4163 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4164 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4165 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4166 return false; 4167 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4168 return false; 4169 } 4170 ++OI; 4171 } 4172 AI++; 4173 } 4174 } 4175 return true; 4176 } 4177 4178 bool LoopVectorizationLegality::canVectorizeMemory() { 4179 4180 typedef SmallVector<Value*, 16> ValueVector; 4181 typedef SmallPtrSet<Value*, 16> ValueSet; 4182 4183 // Holds the Load and Store *instructions*. 4184 ValueVector Loads; 4185 ValueVector Stores; 4186 4187 // Holds all the different accesses in the loop. 4188 unsigned NumReads = 0; 4189 unsigned NumReadWrites = 0; 4190 4191 PtrRtCheck.Pointers.clear(); 4192 PtrRtCheck.Need = false; 4193 4194 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4195 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4196 4197 // For each block. 4198 for (Loop::block_iterator bb = TheLoop->block_begin(), 4199 be = TheLoop->block_end(); bb != be; ++bb) { 4200 4201 // Scan the BB and collect legal loads and stores. 4202 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4203 ++it) { 4204 4205 // If this is a load, save it. If this instruction can read from memory 4206 // but is not a load, then we quit. Notice that we don't handle function 4207 // calls that read or write. 4208 if (it->mayReadFromMemory()) { 4209 // Many math library functions read the rounding mode. We will only 4210 // vectorize a loop if it contains known function calls that don't set 4211 // the flag. Therefore, it is safe to ignore this read from memory. 4212 CallInst *Call = dyn_cast<CallInst>(it); 4213 if (Call && getIntrinsicIDForCall(Call, TLI)) 4214 continue; 4215 4216 LoadInst *Ld = dyn_cast<LoadInst>(it); 4217 if (!Ld) return false; 4218 if (!Ld->isSimple() && !IsAnnotatedParallel) { 4219 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4220 return false; 4221 } 4222 Loads.push_back(Ld); 4223 DepChecker.addAccess(Ld); 4224 continue; 4225 } 4226 4227 // Save 'store' instructions. Abort if other instructions write to memory. 4228 if (it->mayWriteToMemory()) { 4229 StoreInst *St = dyn_cast<StoreInst>(it); 4230 if (!St) return false; 4231 if (!St->isSimple() && !IsAnnotatedParallel) { 4232 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4233 return false; 4234 } 4235 Stores.push_back(St); 4236 DepChecker.addAccess(St); 4237 } 4238 } // Next instr. 4239 } // Next block. 4240 4241 // Now we have two lists that hold the loads and the stores. 4242 // Next, we find the pointers that they use. 4243 4244 // Check if we see any stores. If there are no stores, then we don't 4245 // care if the pointers are *restrict*. 4246 if (!Stores.size()) { 4247 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4248 return true; 4249 } 4250 4251 AccessAnalysis::DepCandidates DependentAccesses; 4252 AccessAnalysis Accesses(DL, DependentAccesses); 4253 4254 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4255 // multiple times on the same object. If the ptr is accessed twice, once 4256 // for read and once for write, it will only appear once (on the write 4257 // list). This is okay, since we are going to check for conflicts between 4258 // writes and between reads and writes, but not between reads and reads. 4259 ValueSet Seen; 4260 4261 ValueVector::iterator I, IE; 4262 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4263 StoreInst *ST = cast<StoreInst>(*I); 4264 Value* Ptr = ST->getPointerOperand(); 4265 4266 if (isUniform(Ptr)) { 4267 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4268 return false; 4269 } 4270 4271 // If we did *not* see this pointer before, insert it to the read-write 4272 // list. At this phase it is only a 'write' list. 4273 if (Seen.insert(Ptr)) { 4274 ++NumReadWrites; 4275 Accesses.addStore(Ptr); 4276 } 4277 } 4278 4279 if (IsAnnotatedParallel) { 4280 DEBUG(dbgs() 4281 << "LV: A loop annotated parallel, ignore memory dependency " 4282 << "checks.\n"); 4283 return true; 4284 } 4285 4286 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4287 LoadInst *LD = cast<LoadInst>(*I); 4288 Value* Ptr = LD->getPointerOperand(); 4289 // If we did *not* see this pointer before, insert it to the 4290 // read list. If we *did* see it before, then it is already in 4291 // the read-write list. This allows us to vectorize expressions 4292 // such as A[i] += x; Because the address of A[i] is a read-write 4293 // pointer. This only works if the index of A[i] is consecutive. 4294 // If the address of i is unknown (for example A[B[i]]) then we may 4295 // read a few words, modify, and write a few words, and some of the 4296 // words may be written to the same address. 4297 bool IsReadOnlyPtr = false; 4298 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4299 ++NumReads; 4300 IsReadOnlyPtr = true; 4301 } 4302 Accesses.addLoad(Ptr, IsReadOnlyPtr); 4303 } 4304 4305 // If we write (or read-write) to a single destination and there are no 4306 // other reads in this loop then is it safe to vectorize. 4307 if (NumReadWrites == 1 && NumReads == 0) { 4308 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4309 return true; 4310 } 4311 4312 // Build dependence sets and check whether we need a runtime pointer bounds 4313 // check. 4314 Accesses.buildDependenceSets(); 4315 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4316 4317 // Find pointers with computable bounds. We are going to use this information 4318 // to place a runtime bound check. 4319 unsigned NumComparisons = 0; 4320 bool CanDoRT = false; 4321 if (NeedRTCheck) 4322 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4323 Strides); 4324 4325 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4326 " pointer comparisons.\n"); 4327 4328 // If we only have one set of dependences to check pointers among we don't 4329 // need a runtime check. 4330 if (NumComparisons == 0 && NeedRTCheck) 4331 NeedRTCheck = false; 4332 4333 // Check that we did not collect too many pointers or found an unsizeable 4334 // pointer. 4335 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4336 PtrRtCheck.reset(); 4337 CanDoRT = false; 4338 } 4339 4340 if (CanDoRT) { 4341 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4342 } 4343 4344 if (NeedRTCheck && !CanDoRT) { 4345 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4346 "the array bounds.\n"); 4347 PtrRtCheck.reset(); 4348 return false; 4349 } 4350 4351 PtrRtCheck.Need = NeedRTCheck; 4352 4353 bool CanVecMem = true; 4354 if (Accesses.isDependencyCheckNeeded()) { 4355 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4356 CanVecMem = DepChecker.areDepsSafe( 4357 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4358 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4359 4360 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4361 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4362 NeedRTCheck = true; 4363 4364 // Clear the dependency checks. We assume they are not needed. 4365 Accesses.resetDepChecks(); 4366 4367 PtrRtCheck.reset(); 4368 PtrRtCheck.Need = true; 4369 4370 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4371 TheLoop, Strides, true); 4372 // Check that we did not collect too many pointers or found an unsizeable 4373 // pointer. 4374 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4375 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4376 PtrRtCheck.reset(); 4377 return false; 4378 } 4379 4380 CanVecMem = true; 4381 } 4382 } 4383 4384 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4385 " need a runtime memory check.\n"); 4386 4387 return CanVecMem; 4388 } 4389 4390 static bool hasMultipleUsesOf(Instruction *I, 4391 SmallPtrSet<Instruction *, 8> &Insts) { 4392 unsigned NumUses = 0; 4393 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4394 if (Insts.count(dyn_cast<Instruction>(*Use))) 4395 ++NumUses; 4396 if (NumUses > 1) 4397 return true; 4398 } 4399 4400 return false; 4401 } 4402 4403 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 4404 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4405 if (!Set.count(dyn_cast<Instruction>(*Use))) 4406 return false; 4407 return true; 4408 } 4409 4410 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4411 ReductionKind Kind) { 4412 if (Phi->getNumIncomingValues() != 2) 4413 return false; 4414 4415 // Reduction variables are only found in the loop header block. 4416 if (Phi->getParent() != TheLoop->getHeader()) 4417 return false; 4418 4419 // Obtain the reduction start value from the value that comes from the loop 4420 // preheader. 4421 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4422 4423 // ExitInstruction is the single value which is used outside the loop. 4424 // We only allow for a single reduction value to be used outside the loop. 4425 // This includes users of the reduction, variables (which form a cycle 4426 // which ends in the phi node). 4427 Instruction *ExitInstruction = 0; 4428 // Indicates that we found a reduction operation in our scan. 4429 bool FoundReduxOp = false; 4430 4431 // We start with the PHI node and scan for all of the users of this 4432 // instruction. All users must be instructions that can be used as reduction 4433 // variables (such as ADD). We must have a single out-of-block user. The cycle 4434 // must include the original PHI. 4435 bool FoundStartPHI = false; 4436 4437 // To recognize min/max patterns formed by a icmp select sequence, we store 4438 // the number of instruction we saw from the recognized min/max pattern, 4439 // to make sure we only see exactly the two instructions. 4440 unsigned NumCmpSelectPatternInst = 0; 4441 ReductionInstDesc ReduxDesc(false, 0); 4442 4443 SmallPtrSet<Instruction *, 8> VisitedInsts; 4444 SmallVector<Instruction *, 8> Worklist; 4445 Worklist.push_back(Phi); 4446 VisitedInsts.insert(Phi); 4447 4448 // A value in the reduction can be used: 4449 // - By the reduction: 4450 // - Reduction operation: 4451 // - One use of reduction value (safe). 4452 // - Multiple use of reduction value (not safe). 4453 // - PHI: 4454 // - All uses of the PHI must be the reduction (safe). 4455 // - Otherwise, not safe. 4456 // - By one instruction outside of the loop (safe). 4457 // - By further instructions outside of the loop (not safe). 4458 // - By an instruction that is not part of the reduction (not safe). 4459 // This is either: 4460 // * An instruction type other than PHI or the reduction operation. 4461 // * A PHI in the header other than the initial PHI. 4462 while (!Worklist.empty()) { 4463 Instruction *Cur = Worklist.back(); 4464 Worklist.pop_back(); 4465 4466 // No Users. 4467 // If the instruction has no users then this is a broken chain and can't be 4468 // a reduction variable. 4469 if (Cur->use_empty()) 4470 return false; 4471 4472 bool IsAPhi = isa<PHINode>(Cur); 4473 4474 // A header PHI use other than the original PHI. 4475 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 4476 return false; 4477 4478 // Reductions of instructions such as Div, and Sub is only possible if the 4479 // LHS is the reduction variable. 4480 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 4481 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 4482 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 4483 return false; 4484 4485 // Any reduction instruction must be of one of the allowed kinds. 4486 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 4487 if (!ReduxDesc.IsReduction) 4488 return false; 4489 4490 // A reduction operation must only have one use of the reduction value. 4491 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 4492 hasMultipleUsesOf(Cur, VisitedInsts)) 4493 return false; 4494 4495 // All inputs to a PHI node must be a reduction value. 4496 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 4497 return false; 4498 4499 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 4500 isa<SelectInst>(Cur))) 4501 ++NumCmpSelectPatternInst; 4502 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 4503 isa<SelectInst>(Cur))) 4504 ++NumCmpSelectPatternInst; 4505 4506 // Check whether we found a reduction operator. 4507 FoundReduxOp |= !IsAPhi; 4508 4509 // Process users of current instruction. Push non-PHI nodes after PHI nodes 4510 // onto the stack. This way we are going to have seen all inputs to PHI 4511 // nodes once we get to them. 4512 SmallVector<Instruction *, 8> NonPHIs; 4513 SmallVector<Instruction *, 8> PHIs; 4514 for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E; 4515 ++UI) { 4516 Instruction *Usr = cast<Instruction>(*UI); 4517 4518 // Check if we found the exit user. 4519 BasicBlock *Parent = Usr->getParent(); 4520 if (!TheLoop->contains(Parent)) { 4521 // Exit if you find multiple outside users or if the header phi node is 4522 // being used. In this case the user uses the value of the previous 4523 // iteration, in which case we would loose "VF-1" iterations of the 4524 // reduction operation if we vectorize. 4525 if (ExitInstruction != 0 || Cur == Phi) 4526 return false; 4527 4528 // The instruction used by an outside user must be the last instruction 4529 // before we feed back to the reduction phi. Otherwise, we loose VF-1 4530 // operations on the value. 4531 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 4532 return false; 4533 4534 ExitInstruction = Cur; 4535 continue; 4536 } 4537 4538 // Process instructions only once (termination). 4539 if (VisitedInsts.insert(Usr)) { 4540 if (isa<PHINode>(Usr)) 4541 PHIs.push_back(Usr); 4542 else 4543 NonPHIs.push_back(Usr); 4544 } 4545 // Remember that we completed the cycle. 4546 if (Usr == Phi) 4547 FoundStartPHI = true; 4548 } 4549 Worklist.append(PHIs.begin(), PHIs.end()); 4550 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4551 } 4552 4553 // This means we have seen one but not the other instruction of the 4554 // pattern or more than just a select and cmp. 4555 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4556 NumCmpSelectPatternInst != 2) 4557 return false; 4558 4559 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4560 return false; 4561 4562 // We found a reduction var if we have reached the original phi node and we 4563 // only have a single instruction with out-of-loop users. 4564 4565 // This instruction is allowed to have out-of-loop users. 4566 AllowedExit.insert(ExitInstruction); 4567 4568 // Save the description of this reduction variable. 4569 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4570 ReduxDesc.MinMaxKind); 4571 Reductions[Phi] = RD; 4572 // We've ended the cycle. This is a reduction variable if we have an 4573 // outside user and it has a binary op. 4574 4575 return true; 4576 } 4577 4578 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4579 /// pattern corresponding to a min(X, Y) or max(X, Y). 4580 LoopVectorizationLegality::ReductionInstDesc 4581 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4582 ReductionInstDesc &Prev) { 4583 4584 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4585 "Expect a select instruction"); 4586 Instruction *Cmp = 0; 4587 SelectInst *Select = 0; 4588 4589 // We must handle the select(cmp()) as a single instruction. Advance to the 4590 // select. 4591 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4592 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin()))) 4593 return ReductionInstDesc(false, I); 4594 return ReductionInstDesc(Select, Prev.MinMaxKind); 4595 } 4596 4597 // Only handle single use cases for now. 4598 if (!(Select = dyn_cast<SelectInst>(I))) 4599 return ReductionInstDesc(false, I); 4600 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4601 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4602 return ReductionInstDesc(false, I); 4603 if (!Cmp->hasOneUse()) 4604 return ReductionInstDesc(false, I); 4605 4606 Value *CmpLeft; 4607 Value *CmpRight; 4608 4609 // Look for a min/max pattern. 4610 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4611 return ReductionInstDesc(Select, MRK_UIntMin); 4612 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4613 return ReductionInstDesc(Select, MRK_UIntMax); 4614 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4615 return ReductionInstDesc(Select, MRK_SIntMax); 4616 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4617 return ReductionInstDesc(Select, MRK_SIntMin); 4618 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4619 return ReductionInstDesc(Select, MRK_FloatMin); 4620 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4621 return ReductionInstDesc(Select, MRK_FloatMax); 4622 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4623 return ReductionInstDesc(Select, MRK_FloatMin); 4624 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4625 return ReductionInstDesc(Select, MRK_FloatMax); 4626 4627 return ReductionInstDesc(false, I); 4628 } 4629 4630 LoopVectorizationLegality::ReductionInstDesc 4631 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4632 ReductionKind Kind, 4633 ReductionInstDesc &Prev) { 4634 bool FP = I->getType()->isFloatingPointTy(); 4635 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 4636 switch (I->getOpcode()) { 4637 default: 4638 return ReductionInstDesc(false, I); 4639 case Instruction::PHI: 4640 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4641 Kind != RK_FloatMinMax)) 4642 return ReductionInstDesc(false, I); 4643 return ReductionInstDesc(I, Prev.MinMaxKind); 4644 case Instruction::Sub: 4645 case Instruction::Add: 4646 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4647 case Instruction::Mul: 4648 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4649 case Instruction::And: 4650 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4651 case Instruction::Or: 4652 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4653 case Instruction::Xor: 4654 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4655 case Instruction::FMul: 4656 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4657 case Instruction::FAdd: 4658 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4659 case Instruction::FCmp: 4660 case Instruction::ICmp: 4661 case Instruction::Select: 4662 if (Kind != RK_IntegerMinMax && 4663 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4664 return ReductionInstDesc(false, I); 4665 return isMinMaxSelectCmpPattern(I, Prev); 4666 } 4667 } 4668 4669 LoopVectorizationLegality::InductionKind 4670 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 4671 Type *PhiTy = Phi->getType(); 4672 // We only handle integer and pointer inductions variables. 4673 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4674 return IK_NoInduction; 4675 4676 // Check that the PHI is consecutive. 4677 const SCEV *PhiScev = SE->getSCEV(Phi); 4678 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4679 if (!AR) { 4680 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4681 return IK_NoInduction; 4682 } 4683 const SCEV *Step = AR->getStepRecurrence(*SE); 4684 4685 // Integer inductions need to have a stride of one. 4686 if (PhiTy->isIntegerTy()) { 4687 if (Step->isOne()) 4688 return IK_IntInduction; 4689 if (Step->isAllOnesValue()) 4690 return IK_ReverseIntInduction; 4691 return IK_NoInduction; 4692 } 4693 4694 // Calculate the pointer stride and check if it is consecutive. 4695 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4696 if (!C) 4697 return IK_NoInduction; 4698 4699 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4700 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 4701 if (C->getValue()->equalsInt(Size)) 4702 return IK_PtrInduction; 4703 else if (C->getValue()->equalsInt(0 - Size)) 4704 return IK_ReversePtrInduction; 4705 4706 return IK_NoInduction; 4707 } 4708 4709 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4710 Value *In0 = const_cast<Value*>(V); 4711 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4712 if (!PN) 4713 return false; 4714 4715 return Inductions.count(PN); 4716 } 4717 4718 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4719 assert(TheLoop->contains(BB) && "Unknown block used"); 4720 4721 // Blocks that do not dominate the latch need predication. 4722 BasicBlock* Latch = TheLoop->getLoopLatch(); 4723 return !DT->dominates(BB, Latch); 4724 } 4725 4726 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4727 SmallPtrSet<Value *, 8>& SafePtrs) { 4728 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4729 // We might be able to hoist the load. 4730 if (it->mayReadFromMemory()) { 4731 LoadInst *LI = dyn_cast<LoadInst>(it); 4732 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 4733 return false; 4734 } 4735 4736 // We don't predicate stores at the moment. 4737 if (it->mayWriteToMemory() || it->mayThrow()) 4738 return false; 4739 4740 // Check that we don't have a constant expression that can trap as operand. 4741 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4742 OI != OE; ++OI) { 4743 if (Constant *C = dyn_cast<Constant>(*OI)) 4744 if (C->canTrap()) 4745 return false; 4746 } 4747 4748 // The instructions below can trap. 4749 switch (it->getOpcode()) { 4750 default: continue; 4751 case Instruction::UDiv: 4752 case Instruction::SDiv: 4753 case Instruction::URem: 4754 case Instruction::SRem: 4755 return false; 4756 } 4757 } 4758 4759 return true; 4760 } 4761 4762 LoopVectorizationCostModel::VectorizationFactor 4763 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 4764 unsigned UserVF) { 4765 // Width 1 means no vectorize 4766 VectorizationFactor Factor = { 1U, 0U }; 4767 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4768 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4769 return Factor; 4770 } 4771 4772 // Find the trip count. 4773 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 4774 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4775 4776 unsigned WidestType = getWidestType(); 4777 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4778 unsigned MaxSafeDepDist = -1U; 4779 if (Legal->getMaxSafeDepDistBytes() != -1U) 4780 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4781 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4782 WidestRegister : MaxSafeDepDist); 4783 unsigned MaxVectorSize = WidestRegister / WidestType; 4784 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4785 DEBUG(dbgs() << "LV: The Widest register is: " 4786 << WidestRegister << " bits.\n"); 4787 4788 if (MaxVectorSize == 0) { 4789 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4790 MaxVectorSize = 1; 4791 } 4792 4793 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 4794 " into one vector!"); 4795 4796 unsigned VF = MaxVectorSize; 4797 4798 // If we optimize the program for size, avoid creating the tail loop. 4799 if (OptForSize) { 4800 // If we are unable to calculate the trip count then don't try to vectorize. 4801 if (TC < 2) { 4802 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4803 return Factor; 4804 } 4805 4806 // Find the maximum SIMD width that can fit within the trip count. 4807 VF = TC % MaxVectorSize; 4808 4809 if (VF == 0) 4810 VF = MaxVectorSize; 4811 4812 // If the trip count that we found modulo the vectorization factor is not 4813 // zero then we require a tail. 4814 if (VF < 2) { 4815 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4816 return Factor; 4817 } 4818 } 4819 4820 if (UserVF != 0) { 4821 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4822 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4823 4824 Factor.Width = UserVF; 4825 return Factor; 4826 } 4827 4828 float Cost = expectedCost(1); 4829 unsigned Width = 1; 4830 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n"); 4831 for (unsigned i=2; i <= VF; i*=2) { 4832 // Notice that the vector loop needs to be executed less times, so 4833 // we need to divide the cost of the vector loops by the width of 4834 // the vector elements. 4835 float VectorCost = expectedCost(i) / (float)i; 4836 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4837 (int)VectorCost << ".\n"); 4838 if (VectorCost < Cost) { 4839 Cost = VectorCost; 4840 Width = i; 4841 } 4842 } 4843 4844 DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n"); 4845 Factor.Width = Width; 4846 Factor.Cost = Width * Cost; 4847 return Factor; 4848 } 4849 4850 unsigned LoopVectorizationCostModel::getWidestType() { 4851 unsigned MaxWidth = 8; 4852 4853 // For each block. 4854 for (Loop::block_iterator bb = TheLoop->block_begin(), 4855 be = TheLoop->block_end(); bb != be; ++bb) { 4856 BasicBlock *BB = *bb; 4857 4858 // For each instruction in the loop. 4859 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4860 Type *T = it->getType(); 4861 4862 // Only examine Loads, Stores and PHINodes. 4863 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4864 continue; 4865 4866 // Examine PHI nodes that are reduction variables. 4867 if (PHINode *PN = dyn_cast<PHINode>(it)) 4868 if (!Legal->getReductionVars()->count(PN)) 4869 continue; 4870 4871 // Examine the stored values. 4872 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4873 T = ST->getValueOperand()->getType(); 4874 4875 // Ignore loaded pointer types and stored pointer types that are not 4876 // consecutive. However, we do want to take consecutive stores/loads of 4877 // pointer vectors into account. 4878 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4879 continue; 4880 4881 MaxWidth = std::max(MaxWidth, 4882 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 4883 } 4884 } 4885 4886 return MaxWidth; 4887 } 4888 4889 unsigned 4890 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4891 unsigned UserUF, 4892 unsigned VF, 4893 unsigned LoopCost) { 4894 4895 // -- The unroll heuristics -- 4896 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4897 // There are many micro-architectural considerations that we can't predict 4898 // at this level. For example frontend pressure (on decode or fetch) due to 4899 // code size, or the number and capabilities of the execution ports. 4900 // 4901 // We use the following heuristics to select the unroll factor: 4902 // 1. If the code has reductions the we unroll in order to break the cross 4903 // iteration dependency. 4904 // 2. If the loop is really small then we unroll in order to reduce the loop 4905 // overhead. 4906 // 3. We don't unroll if we think that we will spill registers to memory due 4907 // to the increased register pressure. 4908 4909 // Use the user preference, unless 'auto' is selected. 4910 if (UserUF != 0) 4911 return UserUF; 4912 4913 // When we optimize for size we don't unroll. 4914 if (OptForSize) 4915 return 1; 4916 4917 // We used the distance for the unroll factor. 4918 if (Legal->getMaxSafeDepDistBytes() != -1U) 4919 return 1; 4920 4921 // Do not unroll loops with a relatively small trip count. 4922 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 4923 TheLoop->getLoopLatch()); 4924 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4925 return 1; 4926 4927 unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true); 4928 DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters << 4929 " vector registers\n"); 4930 4931 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4932 // We divide by these constants so assume that we have at least one 4933 // instruction that uses at least one register. 4934 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4935 R.NumInstructions = std::max(R.NumInstructions, 1U); 4936 4937 // We calculate the unroll factor using the following formula. 4938 // Subtract the number of loop invariants from the number of available 4939 // registers. These registers are used by all of the unrolled instances. 4940 // Next, divide the remaining registers by the number of registers that is 4941 // required by the loop, in order to estimate how many parallel instances 4942 // fit without causing spills. 4943 unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers; 4944 4945 // Clamp the unroll factor ranges to reasonable factors. 4946 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 4947 4948 // If we did not calculate the cost for VF (because the user selected the VF) 4949 // then we calculate the cost of VF here. 4950 if (LoopCost == 0) 4951 LoopCost = expectedCost(VF); 4952 4953 // Clamp the calculated UF to be between the 1 and the max unroll factor 4954 // that the target allows. 4955 if (UF > MaxUnrollSize) 4956 UF = MaxUnrollSize; 4957 else if (UF < 1) 4958 UF = 1; 4959 4960 bool HasReductions = Legal->getReductionVars()->size(); 4961 4962 // Decide if we want to unroll if we decided that it is legal to vectorize 4963 // but not profitable. 4964 if (VF == 1) { 4965 if (TheLoop->getNumBlocks() > 1 || !HasReductions || 4966 LoopCost > SmallLoopCost) 4967 return 1; 4968 4969 return UF; 4970 } 4971 4972 if (HasReductions) { 4973 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4974 return UF; 4975 } 4976 4977 // We want to unroll tiny loops in order to reduce the loop overhead. 4978 // We assume that the cost overhead is 1 and we use the cost model 4979 // to estimate the cost of the loop and unroll until the cost of the 4980 // loop overhead is about 5% of the cost of the loop. 4981 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4982 if (LoopCost < SmallLoopCost) { 4983 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4984 unsigned NewUF = SmallLoopCost / (LoopCost + 1); 4985 return std::min(NewUF, UF); 4986 } 4987 4988 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4989 return 1; 4990 } 4991 4992 LoopVectorizationCostModel::RegisterUsage 4993 LoopVectorizationCostModel::calculateRegisterUsage() { 4994 // This function calculates the register usage by measuring the highest number 4995 // of values that are alive at a single location. Obviously, this is a very 4996 // rough estimation. We scan the loop in a topological order in order and 4997 // assign a number to each instruction. We use RPO to ensure that defs are 4998 // met before their users. We assume that each instruction that has in-loop 4999 // users starts an interval. We record every time that an in-loop value is 5000 // used, so we have a list of the first and last occurrences of each 5001 // instruction. Next, we transpose this data structure into a multi map that 5002 // holds the list of intervals that *end* at a specific location. This multi 5003 // map allows us to perform a linear search. We scan the instructions linearly 5004 // and record each time that a new interval starts, by placing it in a set. 5005 // If we find this value in the multi-map then we remove it from the set. 5006 // The max register usage is the maximum size of the set. 5007 // We also search for instructions that are defined outside the loop, but are 5008 // used inside the loop. We need this number separately from the max-interval 5009 // usage number because when we unroll, loop-invariant values do not take 5010 // more register. 5011 LoopBlocksDFS DFS(TheLoop); 5012 DFS.perform(LI); 5013 5014 RegisterUsage R; 5015 R.NumInstructions = 0; 5016 5017 // Each 'key' in the map opens a new interval. The values 5018 // of the map are the index of the 'last seen' usage of the 5019 // instruction that is the key. 5020 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5021 // Maps instruction to its index. 5022 DenseMap<unsigned, Instruction*> IdxToInstr; 5023 // Marks the end of each interval. 5024 IntervalMap EndPoint; 5025 // Saves the list of instruction indices that are used in the loop. 5026 SmallSet<Instruction*, 8> Ends; 5027 // Saves the list of values that are used in the loop but are 5028 // defined outside the loop, such as arguments and constants. 5029 SmallPtrSet<Value*, 8> LoopInvariants; 5030 5031 unsigned Index = 0; 5032 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5033 be = DFS.endRPO(); bb != be; ++bb) { 5034 R.NumInstructions += (*bb)->size(); 5035 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5036 ++it) { 5037 Instruction *I = it; 5038 IdxToInstr[Index++] = I; 5039 5040 // Save the end location of each USE. 5041 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5042 Value *U = I->getOperand(i); 5043 Instruction *Instr = dyn_cast<Instruction>(U); 5044 5045 // Ignore non-instruction values such as arguments, constants, etc. 5046 if (!Instr) continue; 5047 5048 // If this instruction is outside the loop then record it and continue. 5049 if (!TheLoop->contains(Instr)) { 5050 LoopInvariants.insert(Instr); 5051 continue; 5052 } 5053 5054 // Overwrite previous end points. 5055 EndPoint[Instr] = Index; 5056 Ends.insert(Instr); 5057 } 5058 } 5059 } 5060 5061 // Saves the list of intervals that end with the index in 'key'. 5062 typedef SmallVector<Instruction*, 2> InstrList; 5063 DenseMap<unsigned, InstrList> TransposeEnds; 5064 5065 // Transpose the EndPoints to a list of values that end at each index. 5066 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5067 it != e; ++it) 5068 TransposeEnds[it->second].push_back(it->first); 5069 5070 SmallSet<Instruction*, 8> OpenIntervals; 5071 unsigned MaxUsage = 0; 5072 5073 5074 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5075 for (unsigned int i = 0; i < Index; ++i) { 5076 Instruction *I = IdxToInstr[i]; 5077 // Ignore instructions that are never used within the loop. 5078 if (!Ends.count(I)) continue; 5079 5080 // Remove all of the instructions that end at this location. 5081 InstrList &List = TransposeEnds[i]; 5082 for (unsigned int j=0, e = List.size(); j < e; ++j) 5083 OpenIntervals.erase(List[j]); 5084 5085 // Count the number of live interals. 5086 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5087 5088 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5089 OpenIntervals.size() << '\n'); 5090 5091 // Add the current instruction to the list of open intervals. 5092 OpenIntervals.insert(I); 5093 } 5094 5095 unsigned Invariant = LoopInvariants.size(); 5096 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5097 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5098 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5099 5100 R.LoopInvariantRegs = Invariant; 5101 R.MaxLocalUsers = MaxUsage; 5102 return R; 5103 } 5104 5105 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5106 unsigned Cost = 0; 5107 5108 // For each block. 5109 for (Loop::block_iterator bb = TheLoop->block_begin(), 5110 be = TheLoop->block_end(); bb != be; ++bb) { 5111 unsigned BlockCost = 0; 5112 BasicBlock *BB = *bb; 5113 5114 // For each instruction in the old loop. 5115 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5116 // Skip dbg intrinsics. 5117 if (isa<DbgInfoIntrinsic>(it)) 5118 continue; 5119 5120 unsigned C = getInstructionCost(it, VF); 5121 BlockCost += C; 5122 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5123 VF << " For instruction: " << *it << '\n'); 5124 } 5125 5126 // We assume that if-converted blocks have a 50% chance of being executed. 5127 // When the code is scalar then some of the blocks are avoided due to CF. 5128 // When the code is vectorized we execute all code paths. 5129 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5130 BlockCost /= 2; 5131 5132 Cost += BlockCost; 5133 } 5134 5135 return Cost; 5136 } 5137 5138 /// \brief Check whether the address computation for a non-consecutive memory 5139 /// access looks like an unlikely candidate for being merged into the indexing 5140 /// mode. 5141 /// 5142 /// We look for a GEP which has one index that is an induction variable and all 5143 /// other indices are loop invariant. If the stride of this access is also 5144 /// within a small bound we decide that this address computation can likely be 5145 /// merged into the addressing mode. 5146 /// In all other cases, we identify the address computation as complex. 5147 static bool isLikelyComplexAddressComputation(Value *Ptr, 5148 LoopVectorizationLegality *Legal, 5149 ScalarEvolution *SE, 5150 const Loop *TheLoop) { 5151 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5152 if (!Gep) 5153 return true; 5154 5155 // We are looking for a gep with all loop invariant indices except for one 5156 // which should be an induction variable. 5157 unsigned NumOperands = Gep->getNumOperands(); 5158 for (unsigned i = 1; i < NumOperands; ++i) { 5159 Value *Opd = Gep->getOperand(i); 5160 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5161 !Legal->isInductionVariable(Opd)) 5162 return true; 5163 } 5164 5165 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5166 // can likely be merged into the address computation. 5167 unsigned MaxMergeDistance = 64; 5168 5169 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5170 if (!AddRec) 5171 return true; 5172 5173 // Check the step is constant. 5174 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5175 // Calculate the pointer stride and check if it is consecutive. 5176 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5177 if (!C) 5178 return true; 5179 5180 const APInt &APStepVal = C->getValue()->getValue(); 5181 5182 // Huge step value - give up. 5183 if (APStepVal.getBitWidth() > 64) 5184 return true; 5185 5186 int64_t StepVal = APStepVal.getSExtValue(); 5187 5188 return StepVal > MaxMergeDistance; 5189 } 5190 5191 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5192 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5193 return true; 5194 return false; 5195 } 5196 5197 unsigned 5198 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5199 // If we know that this instruction will remain uniform, check the cost of 5200 // the scalar version. 5201 if (Legal->isUniformAfterVectorization(I)) 5202 VF = 1; 5203 5204 Type *RetTy = I->getType(); 5205 Type *VectorTy = ToVectorTy(RetTy, VF); 5206 5207 // TODO: We need to estimate the cost of intrinsic calls. 5208 switch (I->getOpcode()) { 5209 case Instruction::GetElementPtr: 5210 // We mark this instruction as zero-cost because the cost of GEPs in 5211 // vectorized code depends on whether the corresponding memory instruction 5212 // is scalarized or not. Therefore, we handle GEPs with the memory 5213 // instruction cost. 5214 return 0; 5215 case Instruction::Br: { 5216 return TTI.getCFInstrCost(I->getOpcode()); 5217 } 5218 case Instruction::PHI: 5219 //TODO: IF-converted IFs become selects. 5220 return 0; 5221 case Instruction::Add: 5222 case Instruction::FAdd: 5223 case Instruction::Sub: 5224 case Instruction::FSub: 5225 case Instruction::Mul: 5226 case Instruction::FMul: 5227 case Instruction::UDiv: 5228 case Instruction::SDiv: 5229 case Instruction::FDiv: 5230 case Instruction::URem: 5231 case Instruction::SRem: 5232 case Instruction::FRem: 5233 case Instruction::Shl: 5234 case Instruction::LShr: 5235 case Instruction::AShr: 5236 case Instruction::And: 5237 case Instruction::Or: 5238 case Instruction::Xor: { 5239 // Since we will replace the stride by 1 the multiplication should go away. 5240 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5241 return 0; 5242 // Certain instructions can be cheaper to vectorize if they have a constant 5243 // second vector operand. One example of this are shifts on x86. 5244 TargetTransformInfo::OperandValueKind Op1VK = 5245 TargetTransformInfo::OK_AnyValue; 5246 TargetTransformInfo::OperandValueKind Op2VK = 5247 TargetTransformInfo::OK_AnyValue; 5248 5249 if (isa<ConstantInt>(I->getOperand(1))) 5250 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5251 5252 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 5253 } 5254 case Instruction::Select: { 5255 SelectInst *SI = cast<SelectInst>(I); 5256 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5257 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5258 Type *CondTy = SI->getCondition()->getType(); 5259 if (!ScalarCond) 5260 CondTy = VectorType::get(CondTy, VF); 5261 5262 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5263 } 5264 case Instruction::ICmp: 5265 case Instruction::FCmp: { 5266 Type *ValTy = I->getOperand(0)->getType(); 5267 VectorTy = ToVectorTy(ValTy, VF); 5268 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5269 } 5270 case Instruction::Store: 5271 case Instruction::Load: { 5272 StoreInst *SI = dyn_cast<StoreInst>(I); 5273 LoadInst *LI = dyn_cast<LoadInst>(I); 5274 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5275 LI->getType()); 5276 VectorTy = ToVectorTy(ValTy, VF); 5277 5278 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5279 unsigned AS = SI ? SI->getPointerAddressSpace() : 5280 LI->getPointerAddressSpace(); 5281 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5282 // We add the cost of address computation here instead of with the gep 5283 // instruction because only here we know whether the operation is 5284 // scalarized. 5285 if (VF == 1) 5286 return TTI.getAddressComputationCost(VectorTy) + 5287 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5288 5289 // Scalarized loads/stores. 5290 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5291 bool Reverse = ConsecutiveStride < 0; 5292 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5293 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5294 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5295 bool IsComplexComputation = 5296 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5297 unsigned Cost = 0; 5298 // The cost of extracting from the value vector and pointer vector. 5299 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5300 for (unsigned i = 0; i < VF; ++i) { 5301 // The cost of extracting the pointer operand. 5302 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5303 // In case of STORE, the cost of ExtractElement from the vector. 5304 // In case of LOAD, the cost of InsertElement into the returned 5305 // vector. 5306 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5307 Instruction::InsertElement, 5308 VectorTy, i); 5309 } 5310 5311 // The cost of the scalar loads/stores. 5312 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5313 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5314 Alignment, AS); 5315 return Cost; 5316 } 5317 5318 // Wide load/stores. 5319 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5320 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5321 5322 if (Reverse) 5323 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5324 VectorTy, 0); 5325 return Cost; 5326 } 5327 case Instruction::ZExt: 5328 case Instruction::SExt: 5329 case Instruction::FPToUI: 5330 case Instruction::FPToSI: 5331 case Instruction::FPExt: 5332 case Instruction::PtrToInt: 5333 case Instruction::IntToPtr: 5334 case Instruction::SIToFP: 5335 case Instruction::UIToFP: 5336 case Instruction::Trunc: 5337 case Instruction::FPTrunc: 5338 case Instruction::BitCast: { 5339 // We optimize the truncation of induction variable. 5340 // The cost of these is the same as the scalar operation. 5341 if (I->getOpcode() == Instruction::Trunc && 5342 Legal->isInductionVariable(I->getOperand(0))) 5343 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5344 I->getOperand(0)->getType()); 5345 5346 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5347 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5348 } 5349 case Instruction::Call: { 5350 CallInst *CI = cast<CallInst>(I); 5351 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 5352 assert(ID && "Not an intrinsic call!"); 5353 Type *RetTy = ToVectorTy(CI->getType(), VF); 5354 SmallVector<Type*, 4> Tys; 5355 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 5356 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 5357 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 5358 } 5359 default: { 5360 // We are scalarizing the instruction. Return the cost of the scalar 5361 // instruction, plus the cost of insert and extract into vector 5362 // elements, times the vector width. 5363 unsigned Cost = 0; 5364 5365 if (!RetTy->isVoidTy() && VF != 1) { 5366 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5367 VectorTy); 5368 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5369 VectorTy); 5370 5371 // The cost of inserting the results plus extracting each one of the 5372 // operands. 5373 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5374 } 5375 5376 // The cost of executing VF copies of the scalar instruction. This opcode 5377 // is unknown. Assume that it is the same as 'mul'. 5378 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5379 return Cost; 5380 } 5381 }// end of switch. 5382 } 5383 5384 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 5385 if (Scalar->isVoidTy() || VF == 1) 5386 return Scalar; 5387 return VectorType::get(Scalar, VF); 5388 } 5389 5390 char LoopVectorize::ID = 0; 5391 static const char lv_name[] = "Loop Vectorization"; 5392 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5393 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 5394 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5395 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5396 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5397 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 5398 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5399 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5400 5401 namespace llvm { 5402 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5403 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5404 } 5405 } 5406 5407 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5408 // Check for a store. 5409 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5410 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5411 5412 // Check for a load. 5413 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5414 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5415 5416 return false; 5417 } 5418 5419 5420 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) { 5421 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5422 // Holds vector parameters or scalars, in case of uniform vals. 5423 SmallVector<VectorParts, 4> Params; 5424 5425 setDebugLocFromInst(Builder, Instr); 5426 5427 // Find all of the vectorized parameters. 5428 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5429 Value *SrcOp = Instr->getOperand(op); 5430 5431 // If we are accessing the old induction variable, use the new one. 5432 if (SrcOp == OldInduction) { 5433 Params.push_back(getVectorValue(SrcOp)); 5434 continue; 5435 } 5436 5437 // Try using previously calculated values. 5438 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5439 5440 // If the src is an instruction that appeared earlier in the basic block 5441 // then it should already be vectorized. 5442 if (SrcInst && OrigLoop->contains(SrcInst)) { 5443 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5444 // The parameter is a vector value from earlier. 5445 Params.push_back(WidenMap.get(SrcInst)); 5446 } else { 5447 // The parameter is a scalar from outside the loop. Maybe even a constant. 5448 VectorParts Scalars; 5449 Scalars.append(UF, SrcOp); 5450 Params.push_back(Scalars); 5451 } 5452 } 5453 5454 assert(Params.size() == Instr->getNumOperands() && 5455 "Invalid number of operands"); 5456 5457 // Does this instruction return a value ? 5458 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5459 5460 Value *UndefVec = IsVoidRetTy ? 0 : 5461 UndefValue::get(Instr->getType()); 5462 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5463 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5464 5465 // For each vector unroll 'part': 5466 for (unsigned Part = 0; Part < UF; ++Part) { 5467 // For each scalar that we create: 5468 5469 Instruction *Cloned = Instr->clone(); 5470 if (!IsVoidRetTy) 5471 Cloned->setName(Instr->getName() + ".cloned"); 5472 // Replace the operands of the cloned instructions with extracted scalars. 5473 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5474 Value *Op = Params[op][Part]; 5475 Cloned->setOperand(op, Op); 5476 } 5477 5478 // Place the cloned scalar in the new loop. 5479 Builder.Insert(Cloned); 5480 5481 // If the original scalar returns a value we need to place it in a vector 5482 // so that future users will be able to use it. 5483 if (!IsVoidRetTy) 5484 VecResults[Part] = Cloned; 5485 } 5486 } 5487 5488 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5489 return scalarizeInstruction(Instr); 5490 } 5491 5492 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5493 return Vec; 5494 } 5495 5496 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5497 return V; 5498 } 5499 5500 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 5501 bool Negate) { 5502 // When unrolling and the VF is 1, we only need to add a simple scalar. 5503 Type *ITy = Val->getType(); 5504 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5505 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 5506 return Builder.CreateAdd(Val, C, "induction"); 5507 } 5508 5509