1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/Metadata.h"
116 #include "llvm/IR/Module.h"
117 #include "llvm/IR/Operator.h"
118 #include "llvm/IR/PatternMatch.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <functional>
147 #include <iterator>
148 #include <limits>
149 #include <map>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 #ifndef NDEBUG
161 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
162 #endif
163 
164 /// @{
165 /// Metadata attribute names
166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
167 const char LLVMLoopVectorizeFollowupVectorized[] =
168     "llvm.loop.vectorize.followup_vectorized";
169 const char LLVMLoopVectorizeFollowupEpilogue[] =
170     "llvm.loop.vectorize.followup_epilogue";
171 /// @}
172 
173 STATISTIC(LoopsVectorized, "Number of loops vectorized");
174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
176 
177 static cl::opt<bool> EnableEpilogueVectorization(
178     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
179     cl::desc("Enable vectorization of epilogue loops."));
180 
181 static cl::opt<unsigned> EpilogueVectorizationForceVF(
182     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
183     cl::desc("When epilogue vectorization is enabled, and a value greater than "
184              "1 is specified, forces the given VF for all applicable epilogue "
185              "loops."));
186 
187 static cl::opt<unsigned> EpilogueVectorizationMinVF(
188     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
189     cl::desc("Only loops with vectorization factor equal to or larger than "
190              "the specified value are considered for epilogue vectorization."));
191 
192 /// Loops with a known constant trip count below this number are vectorized only
193 /// if no scalar iteration overheads are incurred.
194 static cl::opt<unsigned> TinyTripCountVectorThreshold(
195     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
196     cl::desc("Loops with a constant trip count that is smaller than this "
197              "value are vectorized only if no scalar iteration overheads "
198              "are incurred."));
199 
200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
201     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
202     cl::desc("The maximum allowed number of runtime memory checks with a "
203              "vectorize(enable) pragma."));
204 
205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
206 // that predication is preferred, and this lists all options. I.e., the
207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
208 // and predicate the instructions accordingly. If tail-folding fails, there are
209 // different fallback strategies depending on these values:
210 namespace PreferPredicateTy {
211   enum Option {
212     ScalarEpilogue = 0,
213     PredicateElseScalarEpilogue,
214     PredicateOrDontVectorize
215   };
216 } // namespace PreferPredicateTy
217 
218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
219     "prefer-predicate-over-epilogue",
220     cl::init(PreferPredicateTy::ScalarEpilogue),
221     cl::Hidden,
222     cl::desc("Tail-folding and predication preferences over creating a scalar "
223              "epilogue loop."),
224     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
225                          "scalar-epilogue",
226                          "Don't tail-predicate loops, create scalar epilogue"),
227               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
228                          "predicate-else-scalar-epilogue",
229                          "prefer tail-folding, create scalar epilogue if tail "
230                          "folding fails."),
231               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
232                          "predicate-dont-vectorize",
233                          "prefers tail-folding, don't attempt vectorization if "
234                          "tail-folding fails.")));
235 
236 static cl::opt<bool> MaximizeBandwidth(
237     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
238     cl::desc("Maximize bandwidth when selecting vectorization factor which "
239              "will be determined by the smallest type in loop."));
240 
241 static cl::opt<bool> EnableInterleavedMemAccesses(
242     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
243     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
244 
245 /// An interleave-group may need masking if it resides in a block that needs
246 /// predication, or in order to mask away gaps.
247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
248     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
249     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
250 
251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
252     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
253     cl::desc("We don't interleave loops with a estimated constant trip count "
254              "below this number"));
255 
256 static cl::opt<unsigned> ForceTargetNumScalarRegs(
257     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
258     cl::desc("A flag that overrides the target's number of scalar registers."));
259 
260 static cl::opt<unsigned> ForceTargetNumVectorRegs(
261     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
262     cl::desc("A flag that overrides the target's number of vector registers."));
263 
264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
265     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
266     cl::desc("A flag that overrides the target's max interleave factor for "
267              "scalar loops."));
268 
269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
270     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
271     cl::desc("A flag that overrides the target's max interleave factor for "
272              "vectorized loops."));
273 
274 static cl::opt<unsigned> ForceTargetInstructionCost(
275     "force-target-instruction-cost", cl::init(0), cl::Hidden,
276     cl::desc("A flag that overrides the target's expected cost for "
277              "an instruction to a single constant value. Mostly "
278              "useful for getting consistent testing."));
279 
280 static cl::opt<bool> ForceTargetSupportsScalableVectors(
281     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
282     cl::desc(
283         "Pretend that scalable vectors are supported, even if the target does "
284         "not support them. This flag should only be used for testing."));
285 
286 static cl::opt<unsigned> SmallLoopCost(
287     "small-loop-cost", cl::init(20), cl::Hidden,
288     cl::desc(
289         "The cost of a loop that is considered 'small' by the interleaver."));
290 
291 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
292     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
293     cl::desc("Enable the use of the block frequency analysis to access PGO "
294              "heuristics minimizing code growth in cold regions and being more "
295              "aggressive in hot regions."));
296 
297 // Runtime interleave loops for load/store throughput.
298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
299     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
300     cl::desc(
301         "Enable runtime interleaving until load/store ports are saturated"));
302 
303 /// Interleave small loops with scalar reductions.
304 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
305     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
306     cl::desc("Enable interleaving for loops with small iteration counts that "
307              "contain scalar reductions to expose ILP."));
308 
309 /// The number of stores in a loop that are allowed to need predication.
310 static cl::opt<unsigned> NumberOfStoresToPredicate(
311     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
312     cl::desc("Max number of stores to be predicated behind an if."));
313 
314 static cl::opt<bool> EnableIndVarRegisterHeur(
315     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
316     cl::desc("Count the induction variable only once when interleaving"));
317 
318 static cl::opt<bool> EnableCondStoresVectorization(
319     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
320     cl::desc("Enable if predication of stores during vectorization."));
321 
322 static cl::opt<unsigned> MaxNestedScalarReductionIC(
323     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
324     cl::desc("The maximum interleave count to use when interleaving a scalar "
325              "reduction in a nested loop."));
326 
327 static cl::opt<bool>
328     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
329                            cl::Hidden,
330                            cl::desc("Prefer in-loop vector reductions, "
331                                     "overriding the targets preference."));
332 
333 static cl::opt<bool> ForceOrderedReductions(
334     "force-ordered-reductions", cl::init(false), cl::Hidden,
335     cl::desc("Enable the vectorisation of loops with in-order (strict) "
336              "FP reductions"));
337 
338 static cl::opt<bool> PreferPredicatedReductionSelect(
339     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
340     cl::desc(
341         "Prefer predicating a reduction operation over an after loop select."));
342 
343 cl::opt<bool> EnableVPlanNativePath(
344     "enable-vplan-native-path", cl::init(false), cl::Hidden,
345     cl::desc("Enable VPlan-native vectorization path with "
346              "support for outer loop vectorization."));
347 
348 // FIXME: Remove this switch once we have divergence analysis. Currently we
349 // assume divergent non-backedge branches when this switch is true.
350 cl::opt<bool> EnableVPlanPredication(
351     "enable-vplan-predication", cl::init(false), cl::Hidden,
352     cl::desc("Enable VPlan-native vectorization path predicator with "
353              "support for outer loop vectorization."));
354 
355 // This flag enables the stress testing of the VPlan H-CFG construction in the
356 // VPlan-native vectorization path. It must be used in conjuction with
357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
358 // verification of the H-CFGs built.
359 static cl::opt<bool> VPlanBuildStressTest(
360     "vplan-build-stress-test", cl::init(false), cl::Hidden,
361     cl::desc(
362         "Build VPlan for every supported loop nest in the function and bail "
363         "out right after the build (stress test the VPlan H-CFG construction "
364         "in the VPlan-native vectorization path)."));
365 
366 cl::opt<bool> llvm::EnableLoopInterleaving(
367     "interleave-loops", cl::init(true), cl::Hidden,
368     cl::desc("Enable loop interleaving in Loop vectorization passes"));
369 cl::opt<bool> llvm::EnableLoopVectorization(
370     "vectorize-loops", cl::init(true), cl::Hidden,
371     cl::desc("Run the Loop vectorization passes"));
372 
373 cl::opt<bool> PrintVPlansInDotFormat(
374     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
375     cl::desc("Use dot format instead of plain text when dumping VPlans"));
376 
377 /// A helper function that returns true if the given type is irregular. The
378 /// type is irregular if its allocated size doesn't equal the store size of an
379 /// element of the corresponding vector type.
380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
381   // Determine if an array of N elements of type Ty is "bitcast compatible"
382   // with a <N x Ty> vector.
383   // This is only true if there is no padding between the array elements.
384   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
385 }
386 
387 /// A helper function that returns the reciprocal of the block probability of
388 /// predicated blocks. If we return X, we are assuming the predicated block
389 /// will execute once for every X iterations of the loop header.
390 ///
391 /// TODO: We should use actual block probability here, if available. Currently,
392 ///       we always assume predicated blocks have a 50% chance of executing.
393 static unsigned getReciprocalPredBlockProb() { return 2; }
394 
395 /// A helper function that returns an integer or floating-point constant with
396 /// value C.
397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
398   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
399                            : ConstantFP::get(Ty, C);
400 }
401 
402 /// Returns "best known" trip count for the specified loop \p L as defined by
403 /// the following procedure:
404 ///   1) Returns exact trip count if it is known.
405 ///   2) Returns expected trip count according to profile data if any.
406 ///   3) Returns upper bound estimate if it is known.
407 ///   4) Returns None if all of the above failed.
408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
409   // Check if exact trip count is known.
410   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
411     return ExpectedTC;
412 
413   // Check if there is an expected trip count available from profile data.
414   if (LoopVectorizeWithBlockFrequency)
415     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
416       return EstimatedTC;
417 
418   // Check if upper bound estimate is known.
419   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
420     return ExpectedTC;
421 
422   return None;
423 }
424 
425 // Forward declare GeneratedRTChecks.
426 class GeneratedRTChecks;
427 
428 namespace llvm {
429 
430 AnalysisKey ShouldRunExtraVectorPasses::Key;
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop and the start value for the canonical induction, if it is != 0. The
473   /// latter is the case when vectorizing the epilogue loop. In the case of
474   /// epilogue vectorization, this function is overriden to handle the more
475   /// complex control flow around the loops.
476   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
477 
478   /// Widen a single call instruction within the innermost loop.
479   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
480                             VPTransformState &State);
481 
482   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
483   void fixVectorizedLoop(VPTransformState &State);
484 
485   // Return true if any runtime check is added.
486   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
487 
488   /// A type for vectorized values in the new loop. Each value from the
489   /// original loop, when vectorized, is represented by UF vector values in the
490   /// new unrolled loop, where UF is the unroll factor.
491   using VectorParts = SmallVector<Value *, 2>;
492 
493   /// Vectorize a single vector PHINode in a block in the VPlan-native path
494   /// only.
495   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
496                            VPTransformState &State);
497 
498   /// A helper function to scalarize a single Instruction in the innermost loop.
499   /// Generates a sequence of scalar instances for each lane between \p MinLane
500   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
501   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
502   /// Instr's operands.
503   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
504                             const VPIteration &Instance, bool IfPredicateInstr,
505                             VPTransformState &State);
506 
507   /// Construct the vector value of a scalarized value \p V one lane at a time.
508   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
509                                  VPTransformState &State);
510 
511   /// Try to vectorize interleaved access group \p Group with the base address
512   /// given in \p Addr, optionally masking the vector operations if \p
513   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
514   /// values in the vectorized loop.
515   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
516                                 ArrayRef<VPValue *> VPDefs,
517                                 VPTransformState &State, VPValue *Addr,
518                                 ArrayRef<VPValue *> StoredValues,
519                                 VPValue *BlockInMask = nullptr);
520 
521   /// Set the debug location in the builder \p Ptr using the debug location in
522   /// \p V. If \p Ptr is None then it uses the class member's Builder.
523   void setDebugLocFromInst(const Value *V,
524                            Optional<IRBuilderBase *> CustomBuilder = None);
525 
526   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
527   void fixNonInductionPHIs(VPTransformState &State);
528 
529   /// Returns true if the reordering of FP operations is not allowed, but we are
530   /// able to vectorize with strict in-order reductions for the given RdxDesc.
531   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
532 
533   /// Create a broadcast instruction. This method generates a broadcast
534   /// instruction (shuffle) for loop invariant values and for the induction
535   /// value. If this is the induction variable then we extend it to N, N+1, ...
536   /// this is needed because each iteration in the loop corresponds to a SIMD
537   /// element.
538   virtual Value *getBroadcastInstrs(Value *V);
539 
540   /// Add metadata from one instruction to another.
541   ///
542   /// This includes both the original MDs from \p From and additional ones (\see
543   /// addNewMetadata).  Use this for *newly created* instructions in the vector
544   /// loop.
545   void addMetadata(Instruction *To, Instruction *From);
546 
547   /// Similar to the previous function but it adds the metadata to a
548   /// vector of instructions.
549   void addMetadata(ArrayRef<Value *> To, Instruction *From);
550 
551   // Returns the resume value (bc.merge.rdx) for a reduction as
552   // generated by fixReduction.
553   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
554 
555 protected:
556   friend class LoopVectorizationPlanner;
557 
558   /// A small list of PHINodes.
559   using PhiVector = SmallVector<PHINode *, 4>;
560 
561   /// A type for scalarized values in the new loop. Each value from the
562   /// original loop, when scalarized, is represented by UF x VF scalar values
563   /// in the new unrolled loop, where UF is the unroll factor and VF is the
564   /// vectorization factor.
565   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
566 
567   /// Set up the values of the IVs correctly when exiting the vector loop.
568   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
569                     Value *CountRoundDown, Value *EndValue,
570                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader);
571 
572   /// Handle all cross-iteration phis in the header.
573   void fixCrossIterationPHIs(VPTransformState &State);
574 
575   /// Create the exit value of first order recurrences in the middle block and
576   /// update their users.
577   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
578                                VPTransformState &State);
579 
580   /// Create code for the loop exit value of the reduction.
581   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
582 
583   /// Clear NSW/NUW flags from reduction instructions if necessary.
584   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
585                                VPTransformState &State);
586 
587   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
588   /// means we need to add the appropriate incoming value from the middle
589   /// block as exiting edges from the scalar epilogue loop (if present) are
590   /// already in place, and we exit the vector loop exclusively to the middle
591   /// block.
592   void fixLCSSAPHIs(VPTransformState &State);
593 
594   /// Iteratively sink the scalarized operands of a predicated instruction into
595   /// the block that was created for it.
596   void sinkScalarOperands(Instruction *PredInst);
597 
598   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
599   /// represented as.
600   void truncateToMinimalBitwidths(VPTransformState &State);
601 
602   /// Returns (and creates if needed) the original loop trip count.
603   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
604 
605   /// Returns (and creates if needed) the trip count of the widened loop.
606   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
607 
608   /// Returns a bitcasted value to the requested vector type.
609   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
610   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
611                                 const DataLayout &DL);
612 
613   /// Emit a bypass check to see if the vector trip count is zero, including if
614   /// it overflows.
615   void emitMinimumIterationCountCheck(BasicBlock *Bypass);
616 
617   /// Emit a bypass check to see if all of the SCEV assumptions we've
618   /// had to make are correct. Returns the block containing the checks or
619   /// nullptr if no checks have been added.
620   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
621 
622   /// Emit bypass checks to check any memory assumptions we may have made.
623   /// Returns the block containing the checks or nullptr if no checks have been
624   /// added.
625   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
626 
627   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
628   /// vector loop preheader, middle block and scalar preheader.
629   void createVectorLoopSkeleton(StringRef Prefix);
630 
631   /// Create new phi nodes for the induction variables to resume iteration count
632   /// in the scalar epilogue, from where the vectorized loop left off.
633   /// In cases where the loop skeleton is more complicated (eg. epilogue
634   /// vectorization) and the resume values can come from an additional bypass
635   /// block, the \p AdditionalBypass pair provides information about the bypass
636   /// block and the end value on the edge from bypass to this loop.
637   void createInductionResumeValues(
638       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
639 
640   /// Complete the loop skeleton by adding debug MDs, creating appropriate
641   /// conditional branches in the middle block, preparing the builder and
642   /// running the verifier. Return the preheader of the completed vector loop.
643   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
644 
645   /// Add additional metadata to \p To that was not present on \p Orig.
646   ///
647   /// Currently this is used to add the noalias annotations based on the
648   /// inserted memchecks.  Use this for instructions that are *cloned* into the
649   /// vector loop.
650   void addNewMetadata(Instruction *To, const Instruction *Orig);
651 
652   /// Collect poison-generating recipes that may generate a poison value that is
653   /// used after vectorization, even when their operands are not poison. Those
654   /// recipes meet the following conditions:
655   ///  * Contribute to the address computation of a recipe generating a widen
656   ///    memory load/store (VPWidenMemoryInstructionRecipe or
657   ///    VPInterleaveRecipe).
658   ///  * Such a widen memory load/store has at least one underlying Instruction
659   ///    that is in a basic block that needs predication and after vectorization
660   ///    the generated instruction won't be predicated.
661   void collectPoisonGeneratingRecipes(VPTransformState &State);
662 
663   /// Allow subclasses to override and print debug traces before/after vplan
664   /// execution, when trace information is requested.
665   virtual void printDebugTracesAtStart(){};
666   virtual void printDebugTracesAtEnd(){};
667 
668   /// The original loop.
669   Loop *OrigLoop;
670 
671   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
672   /// dynamic knowledge to simplify SCEV expressions and converts them to a
673   /// more usable form.
674   PredicatedScalarEvolution &PSE;
675 
676   /// Loop Info.
677   LoopInfo *LI;
678 
679   /// Dominator Tree.
680   DominatorTree *DT;
681 
682   /// Alias Analysis.
683   AAResults *AA;
684 
685   /// Target Library Info.
686   const TargetLibraryInfo *TLI;
687 
688   /// Target Transform Info.
689   const TargetTransformInfo *TTI;
690 
691   /// Assumption Cache.
692   AssumptionCache *AC;
693 
694   /// Interface to emit optimization remarks.
695   OptimizationRemarkEmitter *ORE;
696 
697   /// LoopVersioning.  It's only set up (non-null) if memchecks were
698   /// used.
699   ///
700   /// This is currently only used to add no-alias metadata based on the
701   /// memchecks.  The actually versioning is performed manually.
702   std::unique_ptr<LoopVersioning> LVer;
703 
704   /// The vectorization SIMD factor to use. Each vector will have this many
705   /// vector elements.
706   ElementCount VF;
707 
708   /// The vectorization unroll factor to use. Each scalar is vectorized to this
709   /// many different vector instructions.
710   unsigned UF;
711 
712   /// The builder that we use
713   IRBuilder<> Builder;
714 
715   // --- Vectorization state ---
716 
717   /// The vector-loop preheader.
718   BasicBlock *LoopVectorPreHeader;
719 
720   /// The scalar-loop preheader.
721   BasicBlock *LoopScalarPreHeader;
722 
723   /// Middle Block between the vector and the scalar.
724   BasicBlock *LoopMiddleBlock;
725 
726   /// The unique ExitBlock of the scalar loop if one exists.  Note that
727   /// there can be multiple exiting edges reaching this block.
728   BasicBlock *LoopExitBlock;
729 
730   /// The scalar loop body.
731   BasicBlock *LoopScalarBody;
732 
733   /// A list of all bypass blocks. The first block is the entry of the loop.
734   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
735 
736   /// Store instructions that were predicated.
737   SmallVector<Instruction *, 4> PredicatedInstructions;
738 
739   /// Trip count of the original loop.
740   Value *TripCount = nullptr;
741 
742   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
743   Value *VectorTripCount = nullptr;
744 
745   /// The legality analysis.
746   LoopVectorizationLegality *Legal;
747 
748   /// The profitablity analysis.
749   LoopVectorizationCostModel *Cost;
750 
751   // Record whether runtime checks are added.
752   bool AddedSafetyChecks = false;
753 
754   // Holds the end values for each induction variable. We save the end values
755   // so we can later fix-up the external users of the induction variables.
756   DenseMap<PHINode *, Value *> IVEndValues;
757 
758   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
759   // fixed up at the end of vector code generation.
760   SmallVector<PHINode *, 8> OrigPHIsToFix;
761 
762   /// BFI and PSI are used to check for profile guided size optimizations.
763   BlockFrequencyInfo *BFI;
764   ProfileSummaryInfo *PSI;
765 
766   // Whether this loop should be optimized for size based on profile guided size
767   // optimizatios.
768   bool OptForSizeBasedOnProfile;
769 
770   /// Structure to hold information about generated runtime checks, responsible
771   /// for cleaning the checks, if vectorization turns out unprofitable.
772   GeneratedRTChecks &RTChecks;
773 
774   // Holds the resume values for reductions in the loops, used to set the
775   // correct start value of reduction PHIs when vectorizing the epilogue.
776   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
777       ReductionResumeValues;
778 };
779 
780 class InnerLoopUnroller : public InnerLoopVectorizer {
781 public:
782   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
783                     LoopInfo *LI, DominatorTree *DT,
784                     const TargetLibraryInfo *TLI,
785                     const TargetTransformInfo *TTI, AssumptionCache *AC,
786                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
787                     LoopVectorizationLegality *LVL,
788                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
789                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
790       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
791                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
792                             BFI, PSI, Check) {}
793 
794 private:
795   Value *getBroadcastInstrs(Value *V) override;
796 };
797 
798 /// Encapsulate information regarding vectorization of a loop and its epilogue.
799 /// This information is meant to be updated and used across two stages of
800 /// epilogue vectorization.
801 struct EpilogueLoopVectorizationInfo {
802   ElementCount MainLoopVF = ElementCount::getFixed(0);
803   unsigned MainLoopUF = 0;
804   ElementCount EpilogueVF = ElementCount::getFixed(0);
805   unsigned EpilogueUF = 0;
806   BasicBlock *MainLoopIterationCountCheck = nullptr;
807   BasicBlock *EpilogueIterationCountCheck = nullptr;
808   BasicBlock *SCEVSafetyCheck = nullptr;
809   BasicBlock *MemSafetyCheck = nullptr;
810   Value *TripCount = nullptr;
811   Value *VectorTripCount = nullptr;
812 
813   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
814                                 ElementCount EVF, unsigned EUF)
815       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
816     assert(EUF == 1 &&
817            "A high UF for the epilogue loop is likely not beneficial.");
818   }
819 };
820 
821 /// An extension of the inner loop vectorizer that creates a skeleton for a
822 /// vectorized loop that has its epilogue (residual) also vectorized.
823 /// The idea is to run the vplan on a given loop twice, firstly to setup the
824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
825 /// from the first step and vectorize the epilogue.  This is achieved by
826 /// deriving two concrete strategy classes from this base class and invoking
827 /// them in succession from the loop vectorizer planner.
828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
829 public:
830   InnerLoopAndEpilogueVectorizer(
831       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
832       DominatorTree *DT, const TargetLibraryInfo *TLI,
833       const TargetTransformInfo *TTI, AssumptionCache *AC,
834       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
835       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
836       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
837       GeneratedRTChecks &Checks)
838       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
839                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
840                             Checks),
841         EPI(EPI) {}
842 
843   // Override this function to handle the more complex control flow around the
844   // three loops.
845   std::pair<BasicBlock *, Value *>
846   createVectorizedLoopSkeleton() final override {
847     return createEpilogueVectorizedLoopSkeleton();
848   }
849 
850   /// The interface for creating a vectorized skeleton using one of two
851   /// different strategies, each corresponding to one execution of the vplan
852   /// as described above.
853   virtual std::pair<BasicBlock *, Value *>
854   createEpilogueVectorizedLoopSkeleton() = 0;
855 
856   /// Holds and updates state information required to vectorize the main loop
857   /// and its epilogue in two separate passes. This setup helps us avoid
858   /// regenerating and recomputing runtime safety checks. It also helps us to
859   /// shorten the iteration-count-check path length for the cases where the
860   /// iteration count of the loop is so small that the main vector loop is
861   /// completely skipped.
862   EpilogueLoopVectorizationInfo &EPI;
863 };
864 
865 /// A specialized derived class of inner loop vectorizer that performs
866 /// vectorization of *main* loops in the process of vectorizing loops and their
867 /// epilogues.
868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
869 public:
870   EpilogueVectorizerMainLoop(
871       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
872       DominatorTree *DT, const TargetLibraryInfo *TLI,
873       const TargetTransformInfo *TTI, AssumptionCache *AC,
874       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
875       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
876       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
877       GeneratedRTChecks &Check)
878       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
879                                        EPI, LVL, CM, BFI, PSI, Check) {}
880   /// Implements the interface for creating a vectorized skeleton using the
881   /// *main loop* strategy (ie the first pass of vplan execution).
882   std::pair<BasicBlock *, Value *>
883   createEpilogueVectorizedLoopSkeleton() final override;
884 
885 protected:
886   /// Emits an iteration count bypass check once for the main loop (when \p
887   /// ForEpilogue is false) and once for the epilogue loop (when \p
888   /// ForEpilogue is true).
889   BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass,
890                                              bool ForEpilogue);
891   void printDebugTracesAtStart() override;
892   void printDebugTracesAtEnd() override;
893 };
894 
895 // A specialized derived class of inner loop vectorizer that performs
896 // vectorization of *epilogue* loops in the process of vectorizing loops and
897 // their epilogues.
898 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
899 public:
900   EpilogueVectorizerEpilogueLoop(
901       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
902       DominatorTree *DT, const TargetLibraryInfo *TLI,
903       const TargetTransformInfo *TTI, AssumptionCache *AC,
904       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
905       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
906       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
907       GeneratedRTChecks &Checks)
908       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
909                                        EPI, LVL, CM, BFI, PSI, Checks) {
910     TripCount = EPI.TripCount;
911   }
912   /// Implements the interface for creating a vectorized skeleton using the
913   /// *epilogue loop* strategy (ie the second pass of vplan execution).
914   std::pair<BasicBlock *, Value *>
915   createEpilogueVectorizedLoopSkeleton() final override;
916 
917 protected:
918   /// Emits an iteration count bypass check after the main vector loop has
919   /// finished to see if there are any iterations left to execute by either
920   /// the vector epilogue or the scalar epilogue.
921   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
922                                                       BasicBlock *Bypass,
923                                                       BasicBlock *Insert);
924   void printDebugTracesAtStart() override;
925   void printDebugTracesAtEnd() override;
926 };
927 } // end namespace llvm
928 
929 /// Look for a meaningful debug location on the instruction or it's
930 /// operands.
931 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
932   if (!I)
933     return I;
934 
935   DebugLoc Empty;
936   if (I->getDebugLoc() != Empty)
937     return I;
938 
939   for (Use &Op : I->operands()) {
940     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
941       if (OpInst->getDebugLoc() != Empty)
942         return OpInst;
943   }
944 
945   return I;
946 }
947 
948 void InnerLoopVectorizer::setDebugLocFromInst(
949     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
950   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
951   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
952     const DILocation *DIL = Inst->getDebugLoc();
953 
954     // When a FSDiscriminator is enabled, we don't need to add the multiply
955     // factors to the discriminators.
956     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
957         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
958       // FIXME: For scalable vectors, assume vscale=1.
959       auto NewDIL =
960           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
961       if (NewDIL)
962         B->SetCurrentDebugLocation(NewDIL.getValue());
963       else
964         LLVM_DEBUG(dbgs()
965                    << "Failed to create new discriminator: "
966                    << DIL->getFilename() << " Line: " << DIL->getLine());
967     } else
968       B->SetCurrentDebugLocation(DIL);
969   } else
970     B->SetCurrentDebugLocation(DebugLoc());
971 }
972 
973 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
974 /// is passed, the message relates to that particular instruction.
975 #ifndef NDEBUG
976 static void debugVectorizationMessage(const StringRef Prefix,
977                                       const StringRef DebugMsg,
978                                       Instruction *I) {
979   dbgs() << "LV: " << Prefix << DebugMsg;
980   if (I != nullptr)
981     dbgs() << " " << *I;
982   else
983     dbgs() << '.';
984   dbgs() << '\n';
985 }
986 #endif
987 
988 /// Create an analysis remark that explains why vectorization failed
989 ///
990 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
991 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
992 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
993 /// the location of the remark.  \return the remark object that can be
994 /// streamed to.
995 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
996     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
997   Value *CodeRegion = TheLoop->getHeader();
998   DebugLoc DL = TheLoop->getStartLoc();
999 
1000   if (I) {
1001     CodeRegion = I->getParent();
1002     // If there is no debug location attached to the instruction, revert back to
1003     // using the loop's.
1004     if (I->getDebugLoc())
1005       DL = I->getDebugLoc();
1006   }
1007 
1008   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1009 }
1010 
1011 namespace llvm {
1012 
1013 /// Return a value for Step multiplied by VF.
1014 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1015                        int64_t Step) {
1016   assert(Ty->isIntegerTy() && "Expected an integer step");
1017   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1018   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1019 }
1020 
1021 /// Return the runtime value for VF.
1022 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1023   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1024   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1025 }
1026 
1027 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1028                                   ElementCount VF) {
1029   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1030   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1031   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1032   return B.CreateUIToFP(RuntimeVF, FTy);
1033 }
1034 
1035 void reportVectorizationFailure(const StringRef DebugMsg,
1036                                 const StringRef OREMsg, const StringRef ORETag,
1037                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1038                                 Instruction *I) {
1039   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1040   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1041   ORE->emit(
1042       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1043       << "loop not vectorized: " << OREMsg);
1044 }
1045 
1046 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1047                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1048                              Instruction *I) {
1049   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1050   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1051   ORE->emit(
1052       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1053       << Msg);
1054 }
1055 
1056 } // end namespace llvm
1057 
1058 #ifndef NDEBUG
1059 /// \return string containing a file name and a line # for the given loop.
1060 static std::string getDebugLocString(const Loop *L) {
1061   std::string Result;
1062   if (L) {
1063     raw_string_ostream OS(Result);
1064     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1065       LoopDbgLoc.print(OS);
1066     else
1067       // Just print the module name.
1068       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1069     OS.flush();
1070   }
1071   return Result;
1072 }
1073 #endif
1074 
1075 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1076                                          const Instruction *Orig) {
1077   // If the loop was versioned with memchecks, add the corresponding no-alias
1078   // metadata.
1079   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1080     LVer->annotateInstWithNoAlias(To, Orig);
1081 }
1082 
1083 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1084     VPTransformState &State) {
1085 
1086   // Collect recipes in the backward slice of `Root` that may generate a poison
1087   // value that is used after vectorization.
1088   SmallPtrSet<VPRecipeBase *, 16> Visited;
1089   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1090     SmallVector<VPRecipeBase *, 16> Worklist;
1091     Worklist.push_back(Root);
1092 
1093     // Traverse the backward slice of Root through its use-def chain.
1094     while (!Worklist.empty()) {
1095       VPRecipeBase *CurRec = Worklist.back();
1096       Worklist.pop_back();
1097 
1098       if (!Visited.insert(CurRec).second)
1099         continue;
1100 
1101       // Prune search if we find another recipe generating a widen memory
1102       // instruction. Widen memory instructions involved in address computation
1103       // will lead to gather/scatter instructions, which don't need to be
1104       // handled.
1105       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1106           isa<VPInterleaveRecipe>(CurRec) ||
1107           isa<VPScalarIVStepsRecipe>(CurRec) ||
1108           isa<VPCanonicalIVPHIRecipe>(CurRec))
1109         continue;
1110 
1111       // This recipe contributes to the address computation of a widen
1112       // load/store. Collect recipe if its underlying instruction has
1113       // poison-generating flags.
1114       Instruction *Instr = CurRec->getUnderlyingInstr();
1115       if (Instr && Instr->hasPoisonGeneratingFlags())
1116         State.MayGeneratePoisonRecipes.insert(CurRec);
1117 
1118       // Add new definitions to the worklist.
1119       for (VPValue *operand : CurRec->operands())
1120         if (VPDef *OpDef = operand->getDef())
1121           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1122     }
1123   });
1124 
1125   // Traverse all the recipes in the VPlan and collect the poison-generating
1126   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1127   // VPInterleaveRecipe.
1128   auto Iter = depth_first(
1129       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1130   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1131     for (VPRecipeBase &Recipe : *VPBB) {
1132       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1133         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1134         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1135         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1136             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1137           collectPoisonGeneratingInstrsInBackwardSlice(
1138               cast<VPRecipeBase>(AddrDef));
1139       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1140         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1141         if (AddrDef) {
1142           // Check if any member of the interleave group needs predication.
1143           const InterleaveGroup<Instruction> *InterGroup =
1144               InterleaveRec->getInterleaveGroup();
1145           bool NeedPredication = false;
1146           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1147                I < NumMembers; ++I) {
1148             Instruction *Member = InterGroup->getMember(I);
1149             if (Member)
1150               NeedPredication |=
1151                   Legal->blockNeedsPredication(Member->getParent());
1152           }
1153 
1154           if (NeedPredication)
1155             collectPoisonGeneratingInstrsInBackwardSlice(
1156                 cast<VPRecipeBase>(AddrDef));
1157         }
1158       }
1159     }
1160   }
1161 }
1162 
1163 void InnerLoopVectorizer::addMetadata(Instruction *To,
1164                                       Instruction *From) {
1165   propagateMetadata(To, From);
1166   addNewMetadata(To, From);
1167 }
1168 
1169 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1170                                       Instruction *From) {
1171   for (Value *V : To) {
1172     if (Instruction *I = dyn_cast<Instruction>(V))
1173       addMetadata(I, From);
1174   }
1175 }
1176 
1177 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1178     const RecurrenceDescriptor &RdxDesc) {
1179   auto It = ReductionResumeValues.find(&RdxDesc);
1180   assert(It != ReductionResumeValues.end() &&
1181          "Expected to find a resume value for the reduction.");
1182   return It->second;
1183 }
1184 
1185 namespace llvm {
1186 
1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1188 // lowered.
1189 enum ScalarEpilogueLowering {
1190 
1191   // The default: allowing scalar epilogues.
1192   CM_ScalarEpilogueAllowed,
1193 
1194   // Vectorization with OptForSize: don't allow epilogues.
1195   CM_ScalarEpilogueNotAllowedOptSize,
1196 
1197   // A special case of vectorisation with OptForSize: loops with a very small
1198   // trip count are considered for vectorization under OptForSize, thereby
1199   // making sure the cost of their loop body is dominant, free of runtime
1200   // guards and scalar iteration overheads.
1201   CM_ScalarEpilogueNotAllowedLowTripLoop,
1202 
1203   // Loop hint predicate indicating an epilogue is undesired.
1204   CM_ScalarEpilogueNotNeededUsePredicate,
1205 
1206   // Directive indicating we must either tail fold or not vectorize
1207   CM_ScalarEpilogueNotAllowedUsePredicate
1208 };
1209 
1210 /// ElementCountComparator creates a total ordering for ElementCount
1211 /// for the purposes of using it in a set structure.
1212 struct ElementCountComparator {
1213   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1214     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1215            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1216   }
1217 };
1218 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1219 
1220 /// LoopVectorizationCostModel - estimates the expected speedups due to
1221 /// vectorization.
1222 /// In many cases vectorization is not profitable. This can happen because of
1223 /// a number of reasons. In this class we mainly attempt to predict the
1224 /// expected speedup/slowdowns due to the supported instruction set. We use the
1225 /// TargetTransformInfo to query the different backends for the cost of
1226 /// different operations.
1227 class LoopVectorizationCostModel {
1228 public:
1229   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1230                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1231                              LoopVectorizationLegality *Legal,
1232                              const TargetTransformInfo &TTI,
1233                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1234                              AssumptionCache *AC,
1235                              OptimizationRemarkEmitter *ORE, const Function *F,
1236                              const LoopVectorizeHints *Hints,
1237                              InterleavedAccessInfo &IAI)
1238       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1239         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1240         Hints(Hints), InterleaveInfo(IAI) {}
1241 
1242   /// \return An upper bound for the vectorization factors (both fixed and
1243   /// scalable). If the factors are 0, vectorization and interleaving should be
1244   /// avoided up front.
1245   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1246 
1247   /// \return True if runtime checks are required for vectorization, and false
1248   /// otherwise.
1249   bool runtimeChecksRequired();
1250 
1251   /// \return The most profitable vectorization factor and the cost of that VF.
1252   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1253   /// then this vectorization factor will be selected if vectorization is
1254   /// possible.
1255   VectorizationFactor
1256   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1257 
1258   VectorizationFactor
1259   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1260                                     const LoopVectorizationPlanner &LVP);
1261 
1262   /// Setup cost-based decisions for user vectorization factor.
1263   /// \return true if the UserVF is a feasible VF to be chosen.
1264   bool selectUserVectorizationFactor(ElementCount UserVF) {
1265     collectUniformsAndScalars(UserVF);
1266     collectInstsToScalarize(UserVF);
1267     return expectedCost(UserVF).first.isValid();
1268   }
1269 
1270   /// \return The size (in bits) of the smallest and widest types in the code
1271   /// that needs to be vectorized. We ignore values that remain scalar such as
1272   /// 64 bit loop indices.
1273   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1274 
1275   /// \return The desired interleave count.
1276   /// If interleave count has been specified by metadata it will be returned.
1277   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1278   /// are the selected vectorization factor and the cost of the selected VF.
1279   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1280 
1281   /// Memory access instruction may be vectorized in more than one way.
1282   /// Form of instruction after vectorization depends on cost.
1283   /// This function takes cost-based decisions for Load/Store instructions
1284   /// and collects them in a map. This decisions map is used for building
1285   /// the lists of loop-uniform and loop-scalar instructions.
1286   /// The calculated cost is saved with widening decision in order to
1287   /// avoid redundant calculations.
1288   void setCostBasedWideningDecision(ElementCount VF);
1289 
1290   /// A struct that represents some properties of the register usage
1291   /// of a loop.
1292   struct RegisterUsage {
1293     /// Holds the number of loop invariant values that are used in the loop.
1294     /// The key is ClassID of target-provided register class.
1295     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1296     /// Holds the maximum number of concurrent live intervals in the loop.
1297     /// The key is ClassID of target-provided register class.
1298     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1299   };
1300 
1301   /// \return Returns information about the register usages of the loop for the
1302   /// given vectorization factors.
1303   SmallVector<RegisterUsage, 8>
1304   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1305 
1306   /// Collect values we want to ignore in the cost model.
1307   void collectValuesToIgnore();
1308 
1309   /// Collect all element types in the loop for which widening is needed.
1310   void collectElementTypesForWidening();
1311 
1312   /// Split reductions into those that happen in the loop, and those that happen
1313   /// outside. In loop reductions are collected into InLoopReductionChains.
1314   void collectInLoopReductions();
1315 
1316   /// Returns true if we should use strict in-order reductions for the given
1317   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1318   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1319   /// of FP operations.
1320   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1321     return !Hints->allowReordering() && RdxDesc.isOrdered();
1322   }
1323 
1324   /// \returns The smallest bitwidth each instruction can be represented with.
1325   /// The vector equivalents of these instructions should be truncated to this
1326   /// type.
1327   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1328     return MinBWs;
1329   }
1330 
1331   /// \returns True if it is more profitable to scalarize instruction \p I for
1332   /// vectorization factor \p VF.
1333   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1334     assert(VF.isVector() &&
1335            "Profitable to scalarize relevant only for VF > 1.");
1336 
1337     // Cost model is not run in the VPlan-native path - return conservative
1338     // result until this changes.
1339     if (EnableVPlanNativePath)
1340       return false;
1341 
1342     auto Scalars = InstsToScalarize.find(VF);
1343     assert(Scalars != InstsToScalarize.end() &&
1344            "VF not yet analyzed for scalarization profitability");
1345     return Scalars->second.find(I) != Scalars->second.end();
1346   }
1347 
1348   /// Returns true if \p I is known to be uniform after vectorization.
1349   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1350     if (VF.isScalar())
1351       return true;
1352 
1353     // Cost model is not run in the VPlan-native path - return conservative
1354     // result until this changes.
1355     if (EnableVPlanNativePath)
1356       return false;
1357 
1358     auto UniformsPerVF = Uniforms.find(VF);
1359     assert(UniformsPerVF != Uniforms.end() &&
1360            "VF not yet analyzed for uniformity");
1361     return UniformsPerVF->second.count(I);
1362   }
1363 
1364   /// Returns true if \p I is known to be scalar after vectorization.
1365   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1366     if (VF.isScalar())
1367       return true;
1368 
1369     // Cost model is not run in the VPlan-native path - return conservative
1370     // result until this changes.
1371     if (EnableVPlanNativePath)
1372       return false;
1373 
1374     auto ScalarsPerVF = Scalars.find(VF);
1375     assert(ScalarsPerVF != Scalars.end() &&
1376            "Scalar values are not calculated for VF");
1377     return ScalarsPerVF->second.count(I);
1378   }
1379 
1380   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1381   /// for vectorization factor \p VF.
1382   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1383     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1384            !isProfitableToScalarize(I, VF) &&
1385            !isScalarAfterVectorization(I, VF);
1386   }
1387 
1388   /// Decision that was taken during cost calculation for memory instruction.
1389   enum InstWidening {
1390     CM_Unknown,
1391     CM_Widen,         // For consecutive accesses with stride +1.
1392     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1393     CM_Interleave,
1394     CM_GatherScatter,
1395     CM_Scalarize
1396   };
1397 
1398   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1399   /// instruction \p I and vector width \p VF.
1400   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1401                            InstructionCost Cost) {
1402     assert(VF.isVector() && "Expected VF >=2");
1403     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1404   }
1405 
1406   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1407   /// interleaving group \p Grp and vector width \p VF.
1408   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1409                            ElementCount VF, InstWidening W,
1410                            InstructionCost Cost) {
1411     assert(VF.isVector() && "Expected VF >=2");
1412     /// Broadcast this decicion to all instructions inside the group.
1413     /// But the cost will be assigned to one instruction only.
1414     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1415       if (auto *I = Grp->getMember(i)) {
1416         if (Grp->getInsertPos() == I)
1417           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1418         else
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1420       }
1421     }
1422   }
1423 
1424   /// Return the cost model decision for the given instruction \p I and vector
1425   /// width \p VF. Return CM_Unknown if this instruction did not pass
1426   /// through the cost modeling.
1427   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1428     assert(VF.isVector() && "Expected VF to be a vector VF");
1429     // Cost model is not run in the VPlan-native path - return conservative
1430     // result until this changes.
1431     if (EnableVPlanNativePath)
1432       return CM_GatherScatter;
1433 
1434     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1435     auto Itr = WideningDecisions.find(InstOnVF);
1436     if (Itr == WideningDecisions.end())
1437       return CM_Unknown;
1438     return Itr->second.first;
1439   }
1440 
1441   /// Return the vectorization cost for the given instruction \p I and vector
1442   /// width \p VF.
1443   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1444     assert(VF.isVector() && "Expected VF >=2");
1445     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1446     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1447            "The cost is not calculated");
1448     return WideningDecisions[InstOnVF].second;
1449   }
1450 
1451   /// Return True if instruction \p I is an optimizable truncate whose operand
1452   /// is an induction variable. Such a truncate will be removed by adding a new
1453   /// induction variable with the destination type.
1454   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1455     // If the instruction is not a truncate, return false.
1456     auto *Trunc = dyn_cast<TruncInst>(I);
1457     if (!Trunc)
1458       return false;
1459 
1460     // Get the source and destination types of the truncate.
1461     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1462     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1463 
1464     // If the truncate is free for the given types, return false. Replacing a
1465     // free truncate with an induction variable would add an induction variable
1466     // update instruction to each iteration of the loop. We exclude from this
1467     // check the primary induction variable since it will need an update
1468     // instruction regardless.
1469     Value *Op = Trunc->getOperand(0);
1470     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1471       return false;
1472 
1473     // If the truncated value is not an induction variable, return false.
1474     return Legal->isInductionPhi(Op);
1475   }
1476 
1477   /// Collects the instructions to scalarize for each predicated instruction in
1478   /// the loop.
1479   void collectInstsToScalarize(ElementCount VF);
1480 
1481   /// Collect Uniform and Scalar values for the given \p VF.
1482   /// The sets depend on CM decision for Load/Store instructions
1483   /// that may be vectorized as interleave, gather-scatter or scalarized.
1484   void collectUniformsAndScalars(ElementCount VF) {
1485     // Do the analysis once.
1486     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1487       return;
1488     setCostBasedWideningDecision(VF);
1489     collectLoopUniforms(VF);
1490     collectLoopScalars(VF);
1491   }
1492 
1493   /// Returns true if the target machine supports masked store operation
1494   /// for the given \p DataType and kind of access to \p Ptr.
1495   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1496     return Legal->isConsecutivePtr(DataType, Ptr) &&
1497            TTI.isLegalMaskedStore(DataType, Alignment);
1498   }
1499 
1500   /// Returns true if the target machine supports masked load operation
1501   /// for the given \p DataType and kind of access to \p Ptr.
1502   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1503     return Legal->isConsecutivePtr(DataType, Ptr) &&
1504            TTI.isLegalMaskedLoad(DataType, Alignment);
1505   }
1506 
1507   /// Returns true if the target machine can represent \p V as a masked gather
1508   /// or scatter operation.
1509   bool isLegalGatherOrScatter(Value *V,
1510                               ElementCount VF = ElementCount::getFixed(1)) {
1511     bool LI = isa<LoadInst>(V);
1512     bool SI = isa<StoreInst>(V);
1513     if (!LI && !SI)
1514       return false;
1515     auto *Ty = getLoadStoreType(V);
1516     Align Align = getLoadStoreAlignment(V);
1517     if (VF.isVector())
1518       Ty = VectorType::get(Ty, VF);
1519     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1520            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1521   }
1522 
1523   /// Returns true if the target machine supports all of the reduction
1524   /// variables found for the given VF.
1525   bool canVectorizeReductions(ElementCount VF) const {
1526     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1527       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1528       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1529     }));
1530   }
1531 
1532   /// Returns true if \p I is an instruction that will be scalarized with
1533   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1534   /// instructions include conditional stores and instructions that may divide
1535   /// by zero.
1536   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // \p VF is the vectorization factor that will be used to vectorize \p I.
1541   // Superset of instructions that return true for isScalarWithPredication.
1542   bool isPredicatedInst(Instruction *I, ElementCount VF,
1543                         bool IsKnownUniform = false) {
1544     // When we know the load is uniform and the original scalar loop was not
1545     // predicated we don't need to mark it as a predicated instruction. Any
1546     // vectorised blocks created when tail-folding are something artificial we
1547     // have introduced and we know there is always at least one active lane.
1548     // That's why we call Legal->blockNeedsPredication here because it doesn't
1549     // query tail-folding.
1550     if (IsKnownUniform && isa<LoadInst>(I) &&
1551         !Legal->blockNeedsPredication(I->getParent()))
1552       return false;
1553     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1554       return false;
1555     // Loads and stores that need some form of masked operation are predicated
1556     // instructions.
1557     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1558       return Legal->isMaskRequired(I);
1559     return isScalarWithPredication(I, VF);
1560   }
1561 
1562   /// Returns true if \p I is a memory instruction with consecutive memory
1563   /// access that can be widened.
1564   bool
1565   memoryInstructionCanBeWidened(Instruction *I,
1566                                 ElementCount VF = ElementCount::getFixed(1));
1567 
1568   /// Returns true if \p I is a memory instruction in an interleaved-group
1569   /// of memory accesses that can be vectorized with wide vector loads/stores
1570   /// and shuffles.
1571   bool
1572   interleavedAccessCanBeWidened(Instruction *I,
1573                                 ElementCount VF = ElementCount::getFixed(1));
1574 
1575   /// Check if \p Instr belongs to any interleaved access group.
1576   bool isAccessInterleaved(Instruction *Instr) {
1577     return InterleaveInfo.isInterleaved(Instr);
1578   }
1579 
1580   /// Get the interleaved access group that \p Instr belongs to.
1581   const InterleaveGroup<Instruction> *
1582   getInterleavedAccessGroup(Instruction *Instr) {
1583     return InterleaveInfo.getInterleaveGroup(Instr);
1584   }
1585 
1586   /// Returns true if we're required to use a scalar epilogue for at least
1587   /// the final iteration of the original loop.
1588   bool requiresScalarEpilogue(ElementCount VF) const {
1589     if (!isScalarEpilogueAllowed())
1590       return false;
1591     // If we might exit from anywhere but the latch, must run the exiting
1592     // iteration in scalar form.
1593     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1594       return true;
1595     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1596   }
1597 
1598   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1599   /// loop hint annotation.
1600   bool isScalarEpilogueAllowed() const {
1601     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1602   }
1603 
1604   /// Returns true if all loop blocks should be masked to fold tail loop.
1605   bool foldTailByMasking() const { return FoldTailByMasking; }
1606 
1607   /// Returns true if the instructions in this block requires predication
1608   /// for any reason, e.g. because tail folding now requires a predicate
1609   /// or because the block in the original loop was predicated.
1610   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1611     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1612   }
1613 
1614   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1615   /// nodes to the chain of instructions representing the reductions. Uses a
1616   /// MapVector to ensure deterministic iteration order.
1617   using ReductionChainMap =
1618       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1619 
1620   /// Return the chain of instructions representing an inloop reduction.
1621   const ReductionChainMap &getInLoopReductionChains() const {
1622     return InLoopReductionChains;
1623   }
1624 
1625   /// Returns true if the Phi is part of an inloop reduction.
1626   bool isInLoopReduction(PHINode *Phi) const {
1627     return InLoopReductionChains.count(Phi);
1628   }
1629 
1630   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1631   /// with factor VF.  Return the cost of the instruction, including
1632   /// scalarization overhead if it's needed.
1633   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1634 
1635   /// Estimate cost of a call instruction CI if it were vectorized with factor
1636   /// VF. Return the cost of the instruction, including scalarization overhead
1637   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1638   /// scalarized -
1639   /// i.e. either vector version isn't available, or is too expensive.
1640   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1641                                     bool &NeedToScalarize) const;
1642 
1643   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1644   /// that of B.
1645   bool isMoreProfitable(const VectorizationFactor &A,
1646                         const VectorizationFactor &B) const;
1647 
1648   /// Invalidates decisions already taken by the cost model.
1649   void invalidateCostModelingDecisions() {
1650     WideningDecisions.clear();
1651     Uniforms.clear();
1652     Scalars.clear();
1653   }
1654 
1655 private:
1656   unsigned NumPredStores = 0;
1657 
1658   /// Convenience function that returns the value of vscale_range iff
1659   /// vscale_range.min == vscale_range.max or otherwise returns the value
1660   /// returned by the corresponding TLI method.
1661   Optional<unsigned> getVScaleForTuning() const;
1662 
1663   /// \return An upper bound for the vectorization factors for both
1664   /// fixed and scalable vectorization, where the minimum-known number of
1665   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1666   /// disabled or unsupported, then the scalable part will be equal to
1667   /// ElementCount::getScalable(0).
1668   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1669                                            ElementCount UserVF,
1670                                            bool FoldTailByMasking);
1671 
1672   /// \return the maximized element count based on the targets vector
1673   /// registers and the loop trip-count, but limited to a maximum safe VF.
1674   /// This is a helper function of computeFeasibleMaxVF.
1675   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1676   /// issue that occurred on one of the buildbots which cannot be reproduced
1677   /// without having access to the properietary compiler (see comments on
1678   /// D98509). The issue is currently under investigation and this workaround
1679   /// will be removed as soon as possible.
1680   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1681                                        unsigned SmallestType,
1682                                        unsigned WidestType,
1683                                        const ElementCount &MaxSafeVF,
1684                                        bool FoldTailByMasking);
1685 
1686   /// \return the maximum legal scalable VF, based on the safe max number
1687   /// of elements.
1688   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1689 
1690   /// The vectorization cost is a combination of the cost itself and a boolean
1691   /// indicating whether any of the contributing operations will actually
1692   /// operate on vector values after type legalization in the backend. If this
1693   /// latter value is false, then all operations will be scalarized (i.e. no
1694   /// vectorization has actually taken place).
1695   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1696 
1697   /// Returns the expected execution cost. The unit of the cost does
1698   /// not matter because we use the 'cost' units to compare different
1699   /// vector widths. The cost that is returned is *not* normalized by
1700   /// the factor width. If \p Invalid is not nullptr, this function
1701   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1702   /// each instruction that has an Invalid cost for the given VF.
1703   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1704   VectorizationCostTy
1705   expectedCost(ElementCount VF,
1706                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1707 
1708   /// Returns the execution time cost of an instruction for a given vector
1709   /// width. Vector width of one means scalar.
1710   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1711 
1712   /// The cost-computation logic from getInstructionCost which provides
1713   /// the vector type as an output parameter.
1714   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1715                                      Type *&VectorTy);
1716 
1717   /// Return the cost of instructions in an inloop reduction pattern, if I is
1718   /// part of that pattern.
1719   Optional<InstructionCost>
1720   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1721                           TTI::TargetCostKind CostKind);
1722 
1723   /// Calculate vectorization cost of memory instruction \p I.
1724   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1725 
1726   /// The cost computation for scalarized memory instruction.
1727   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1728 
1729   /// The cost computation for interleaving group of memory instructions.
1730   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1731 
1732   /// The cost computation for Gather/Scatter instruction.
1733   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1734 
1735   /// The cost computation for widening instruction \p I with consecutive
1736   /// memory access.
1737   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1738 
1739   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1740   /// Load: scalar load + broadcast.
1741   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1742   /// element)
1743   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1744 
1745   /// Estimate the overhead of scalarizing an instruction. This is a
1746   /// convenience wrapper for the type-based getScalarizationOverhead API.
1747   InstructionCost getScalarizationOverhead(Instruction *I,
1748                                            ElementCount VF) const;
1749 
1750   /// Returns whether the instruction is a load or store and will be a emitted
1751   /// as a vector operation.
1752   bool isConsecutiveLoadOrStore(Instruction *I);
1753 
1754   /// Returns true if an artificially high cost for emulated masked memrefs
1755   /// should be used.
1756   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1757 
1758   /// Map of scalar integer values to the smallest bitwidth they can be legally
1759   /// represented as. The vector equivalents of these values should be truncated
1760   /// to this type.
1761   MapVector<Instruction *, uint64_t> MinBWs;
1762 
1763   /// A type representing the costs for instructions if they were to be
1764   /// scalarized rather than vectorized. The entries are Instruction-Cost
1765   /// pairs.
1766   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1767 
1768   /// A set containing all BasicBlocks that are known to present after
1769   /// vectorization as a predicated block.
1770   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1771 
1772   /// Records whether it is allowed to have the original scalar loop execute at
1773   /// least once. This may be needed as a fallback loop in case runtime
1774   /// aliasing/dependence checks fail, or to handle the tail/remainder
1775   /// iterations when the trip count is unknown or doesn't divide by the VF,
1776   /// or as a peel-loop to handle gaps in interleave-groups.
1777   /// Under optsize and when the trip count is very small we don't allow any
1778   /// iterations to execute in the scalar loop.
1779   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1780 
1781   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1782   bool FoldTailByMasking = false;
1783 
1784   /// A map holding scalar costs for different vectorization factors. The
1785   /// presence of a cost for an instruction in the mapping indicates that the
1786   /// instruction will be scalarized when vectorizing with the associated
1787   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1788   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1789 
1790   /// Holds the instructions known to be uniform after vectorization.
1791   /// The data is collected per VF.
1792   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1793 
1794   /// Holds the instructions known to be scalar after vectorization.
1795   /// The data is collected per VF.
1796   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1797 
1798   /// Holds the instructions (address computations) that are forced to be
1799   /// scalarized.
1800   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1801 
1802   /// PHINodes of the reductions that should be expanded in-loop along with
1803   /// their associated chains of reduction operations, in program order from top
1804   /// (PHI) to bottom
1805   ReductionChainMap InLoopReductionChains;
1806 
1807   /// A Map of inloop reduction operations and their immediate chain operand.
1808   /// FIXME: This can be removed once reductions can be costed correctly in
1809   /// vplan. This was added to allow quick lookup to the inloop operations,
1810   /// without having to loop through InLoopReductionChains.
1811   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1812 
1813   /// Returns the expected difference in cost from scalarizing the expression
1814   /// feeding a predicated instruction \p PredInst. The instructions to
1815   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1816   /// non-negative return value implies the expression will be scalarized.
1817   /// Currently, only single-use chains are considered for scalarization.
1818   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1819                               ElementCount VF);
1820 
1821   /// Collect the instructions that are uniform after vectorization. An
1822   /// instruction is uniform if we represent it with a single scalar value in
1823   /// the vectorized loop corresponding to each vector iteration. Examples of
1824   /// uniform instructions include pointer operands of consecutive or
1825   /// interleaved memory accesses. Note that although uniformity implies an
1826   /// instruction will be scalar, the reverse is not true. In general, a
1827   /// scalarized instruction will be represented by VF scalar values in the
1828   /// vectorized loop, each corresponding to an iteration of the original
1829   /// scalar loop.
1830   void collectLoopUniforms(ElementCount VF);
1831 
1832   /// Collect the instructions that are scalar after vectorization. An
1833   /// instruction is scalar if it is known to be uniform or will be scalarized
1834   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1835   /// to the list if they are used by a load/store instruction that is marked as
1836   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1837   /// VF values in the vectorized loop, each corresponding to an iteration of
1838   /// the original scalar loop.
1839   void collectLoopScalars(ElementCount VF);
1840 
1841   /// Keeps cost model vectorization decision and cost for instructions.
1842   /// Right now it is used for memory instructions only.
1843   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1844                                 std::pair<InstWidening, InstructionCost>>;
1845 
1846   DecisionList WideningDecisions;
1847 
1848   /// Returns true if \p V is expected to be vectorized and it needs to be
1849   /// extracted.
1850   bool needsExtract(Value *V, ElementCount VF) const {
1851     Instruction *I = dyn_cast<Instruction>(V);
1852     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1853         TheLoop->isLoopInvariant(I))
1854       return false;
1855 
1856     // Assume we can vectorize V (and hence we need extraction) if the
1857     // scalars are not computed yet. This can happen, because it is called
1858     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1859     // the scalars are collected. That should be a safe assumption in most
1860     // cases, because we check if the operands have vectorizable types
1861     // beforehand in LoopVectorizationLegality.
1862     return Scalars.find(VF) == Scalars.end() ||
1863            !isScalarAfterVectorization(I, VF);
1864   };
1865 
1866   /// Returns a range containing only operands needing to be extracted.
1867   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1868                                                    ElementCount VF) const {
1869     return SmallVector<Value *, 4>(make_filter_range(
1870         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1871   }
1872 
1873   /// Determines if we have the infrastructure to vectorize loop \p L and its
1874   /// epilogue, assuming the main loop is vectorized by \p VF.
1875   bool isCandidateForEpilogueVectorization(const Loop &L,
1876                                            const ElementCount VF) const;
1877 
1878   /// Returns true if epilogue vectorization is considered profitable, and
1879   /// false otherwise.
1880   /// \p VF is the vectorization factor chosen for the original loop.
1881   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1882 
1883 public:
1884   /// The loop that we evaluate.
1885   Loop *TheLoop;
1886 
1887   /// Predicated scalar evolution analysis.
1888   PredicatedScalarEvolution &PSE;
1889 
1890   /// Loop Info analysis.
1891   LoopInfo *LI;
1892 
1893   /// Vectorization legality.
1894   LoopVectorizationLegality *Legal;
1895 
1896   /// Vector target information.
1897   const TargetTransformInfo &TTI;
1898 
1899   /// Target Library Info.
1900   const TargetLibraryInfo *TLI;
1901 
1902   /// Demanded bits analysis.
1903   DemandedBits *DB;
1904 
1905   /// Assumption cache.
1906   AssumptionCache *AC;
1907 
1908   /// Interface to emit optimization remarks.
1909   OptimizationRemarkEmitter *ORE;
1910 
1911   const Function *TheFunction;
1912 
1913   /// Loop Vectorize Hint.
1914   const LoopVectorizeHints *Hints;
1915 
1916   /// The interleave access information contains groups of interleaved accesses
1917   /// with the same stride and close to each other.
1918   InterleavedAccessInfo &InterleaveInfo;
1919 
1920   /// Values to ignore in the cost model.
1921   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1922 
1923   /// Values to ignore in the cost model when VF > 1.
1924   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1925 
1926   /// All element types found in the loop.
1927   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1928 
1929   /// Profitable vector factors.
1930   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1931 };
1932 } // end namespace llvm
1933 
1934 /// Helper struct to manage generating runtime checks for vectorization.
1935 ///
1936 /// The runtime checks are created up-front in temporary blocks to allow better
1937 /// estimating the cost and un-linked from the existing IR. After deciding to
1938 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1939 /// temporary blocks are completely removed.
1940 class GeneratedRTChecks {
1941   /// Basic block which contains the generated SCEV checks, if any.
1942   BasicBlock *SCEVCheckBlock = nullptr;
1943 
1944   /// The value representing the result of the generated SCEV checks. If it is
1945   /// nullptr, either no SCEV checks have been generated or they have been used.
1946   Value *SCEVCheckCond = nullptr;
1947 
1948   /// Basic block which contains the generated memory runtime checks, if any.
1949   BasicBlock *MemCheckBlock = nullptr;
1950 
1951   /// The value representing the result of the generated memory runtime checks.
1952   /// If it is nullptr, either no memory runtime checks have been generated or
1953   /// they have been used.
1954   Value *MemRuntimeCheckCond = nullptr;
1955 
1956   DominatorTree *DT;
1957   LoopInfo *LI;
1958 
1959   SCEVExpander SCEVExp;
1960   SCEVExpander MemCheckExp;
1961 
1962 public:
1963   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1964                     const DataLayout &DL)
1965       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1966         MemCheckExp(SE, DL, "scev.check") {}
1967 
1968   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1969   /// accurately estimate the cost of the runtime checks. The blocks are
1970   /// un-linked from the IR and is added back during vector code generation. If
1971   /// there is no vector code generation, the check blocks are removed
1972   /// completely.
1973   void Create(Loop *L, const LoopAccessInfo &LAI,
1974               const SCEVPredicate &Pred) {
1975 
1976     BasicBlock *LoopHeader = L->getHeader();
1977     BasicBlock *Preheader = L->getLoopPreheader();
1978 
1979     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1980     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1981     // may be used by SCEVExpander. The blocks will be un-linked from their
1982     // predecessors and removed from LI & DT at the end of the function.
1983     if (!Pred.isAlwaysTrue()) {
1984       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1985                                   nullptr, "vector.scevcheck");
1986 
1987       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1988           &Pred, SCEVCheckBlock->getTerminator());
1989     }
1990 
1991     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1992     if (RtPtrChecking.Need) {
1993       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1994       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1995                                  "vector.memcheck");
1996 
1997       MemRuntimeCheckCond =
1998           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1999                            RtPtrChecking.getChecks(), MemCheckExp);
2000       assert(MemRuntimeCheckCond &&
2001              "no RT checks generated although RtPtrChecking "
2002              "claimed checks are required");
2003     }
2004 
2005     if (!MemCheckBlock && !SCEVCheckBlock)
2006       return;
2007 
2008     // Unhook the temporary block with the checks, update various places
2009     // accordingly.
2010     if (SCEVCheckBlock)
2011       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2012     if (MemCheckBlock)
2013       MemCheckBlock->replaceAllUsesWith(Preheader);
2014 
2015     if (SCEVCheckBlock) {
2016       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2017       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2018       Preheader->getTerminator()->eraseFromParent();
2019     }
2020     if (MemCheckBlock) {
2021       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2022       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2023       Preheader->getTerminator()->eraseFromParent();
2024     }
2025 
2026     DT->changeImmediateDominator(LoopHeader, Preheader);
2027     if (MemCheckBlock) {
2028       DT->eraseNode(MemCheckBlock);
2029       LI->removeBlock(MemCheckBlock);
2030     }
2031     if (SCEVCheckBlock) {
2032       DT->eraseNode(SCEVCheckBlock);
2033       LI->removeBlock(SCEVCheckBlock);
2034     }
2035   }
2036 
2037   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2038   /// unused.
2039   ~GeneratedRTChecks() {
2040     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2041     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2042     if (!SCEVCheckCond)
2043       SCEVCleaner.markResultUsed();
2044 
2045     if (!MemRuntimeCheckCond)
2046       MemCheckCleaner.markResultUsed();
2047 
2048     if (MemRuntimeCheckCond) {
2049       auto &SE = *MemCheckExp.getSE();
2050       // Memory runtime check generation creates compares that use expanded
2051       // values. Remove them before running the SCEVExpanderCleaners.
2052       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2053         if (MemCheckExp.isInsertedInstruction(&I))
2054           continue;
2055         SE.forgetValue(&I);
2056         I.eraseFromParent();
2057       }
2058     }
2059     MemCheckCleaner.cleanup();
2060     SCEVCleaner.cleanup();
2061 
2062     if (SCEVCheckCond)
2063       SCEVCheckBlock->eraseFromParent();
2064     if (MemRuntimeCheckCond)
2065       MemCheckBlock->eraseFromParent();
2066   }
2067 
2068   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2069   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2070   /// depending on the generated condition.
2071   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2072                              BasicBlock *LoopVectorPreHeader,
2073                              BasicBlock *LoopExitBlock) {
2074     if (!SCEVCheckCond)
2075       return nullptr;
2076     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2077       if (C->isZero())
2078         return nullptr;
2079 
2080     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2081 
2082     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2083     // Create new preheader for vector loop.
2084     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2085       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2086 
2087     SCEVCheckBlock->getTerminator()->eraseFromParent();
2088     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2089     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2090                                                 SCEVCheckBlock);
2091 
2092     DT->addNewBlock(SCEVCheckBlock, Pred);
2093     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2094 
2095     ReplaceInstWithInst(
2096         SCEVCheckBlock->getTerminator(),
2097         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2098     // Mark the check as used, to prevent it from being removed during cleanup.
2099     SCEVCheckCond = nullptr;
2100     return SCEVCheckBlock;
2101   }
2102 
2103   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2104   /// the branches to branch to the vector preheader or \p Bypass, depending on
2105   /// the generated condition.
2106   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2107                                    BasicBlock *LoopVectorPreHeader) {
2108     // Check if we generated code that checks in runtime if arrays overlap.
2109     if (!MemRuntimeCheckCond)
2110       return nullptr;
2111 
2112     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2113     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2114                                                 MemCheckBlock);
2115 
2116     DT->addNewBlock(MemCheckBlock, Pred);
2117     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2118     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2119 
2120     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2121       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2122 
2123     ReplaceInstWithInst(
2124         MemCheckBlock->getTerminator(),
2125         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2126     MemCheckBlock->getTerminator()->setDebugLoc(
2127         Pred->getTerminator()->getDebugLoc());
2128 
2129     // Mark the check as used, to prevent it from being removed during cleanup.
2130     MemRuntimeCheckCond = nullptr;
2131     return MemCheckBlock;
2132   }
2133 };
2134 
2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2136 // vectorization. The loop needs to be annotated with #pragma omp simd
2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2138 // vector length information is not provided, vectorization is not considered
2139 // explicit. Interleave hints are not allowed either. These limitations will be
2140 // relaxed in the future.
2141 // Please, note that we are currently forced to abuse the pragma 'clang
2142 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2144 // provides *explicit vectorization hints* (LV can bypass legal checks and
2145 // assume that vectorization is legal). However, both hints are implemented
2146 // using the same metadata (llvm.loop.vectorize, processed by
2147 // LoopVectorizeHints). This will be fixed in the future when the native IR
2148 // representation for pragma 'omp simd' is introduced.
2149 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2150                                    OptimizationRemarkEmitter *ORE) {
2151   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2152   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2153 
2154   // Only outer loops with an explicit vectorization hint are supported.
2155   // Unannotated outer loops are ignored.
2156   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2157     return false;
2158 
2159   Function *Fn = OuterLp->getHeader()->getParent();
2160   if (!Hints.allowVectorization(Fn, OuterLp,
2161                                 true /*VectorizeOnlyWhenForced*/)) {
2162     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2163     return false;
2164   }
2165 
2166   if (Hints.getInterleave() > 1) {
2167     // TODO: Interleave support is future work.
2168     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2169                          "outer loops.\n");
2170     Hints.emitRemarkWithHints();
2171     return false;
2172   }
2173 
2174   return true;
2175 }
2176 
2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2178                                   OptimizationRemarkEmitter *ORE,
2179                                   SmallVectorImpl<Loop *> &V) {
2180   // Collect inner loops and outer loops without irreducible control flow. For
2181   // now, only collect outer loops that have explicit vectorization hints. If we
2182   // are stress testing the VPlan H-CFG construction, we collect the outermost
2183   // loop of every loop nest.
2184   if (L.isInnermost() || VPlanBuildStressTest ||
2185       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2186     LoopBlocksRPO RPOT(&L);
2187     RPOT.perform(LI);
2188     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2189       V.push_back(&L);
2190       // TODO: Collect inner loops inside marked outer loops in case
2191       // vectorization fails for the outer loop. Do not invoke
2192       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2193       // already known to be reducible. We can use an inherited attribute for
2194       // that.
2195       return;
2196     }
2197   }
2198   for (Loop *InnerL : L)
2199     collectSupportedLoops(*InnerL, LI, ORE, V);
2200 }
2201 
2202 namespace {
2203 
2204 /// The LoopVectorize Pass.
2205 struct LoopVectorize : public FunctionPass {
2206   /// Pass identification, replacement for typeid
2207   static char ID;
2208 
2209   LoopVectorizePass Impl;
2210 
2211   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2212                          bool VectorizeOnlyWhenForced = false)
2213       : FunctionPass(ID),
2214         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2215     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2216   }
2217 
2218   bool runOnFunction(Function &F) override {
2219     if (skipFunction(F))
2220       return false;
2221 
2222     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2223     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2224     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2225     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2226     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2227     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2228     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2229     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2230     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2231     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2232     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2233     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2234     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2235 
2236     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2237         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2238 
2239     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2240                         GetLAA, *ORE, PSI).MadeAnyChange;
2241   }
2242 
2243   void getAnalysisUsage(AnalysisUsage &AU) const override {
2244     AU.addRequired<AssumptionCacheTracker>();
2245     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2246     AU.addRequired<DominatorTreeWrapperPass>();
2247     AU.addRequired<LoopInfoWrapperPass>();
2248     AU.addRequired<ScalarEvolutionWrapperPass>();
2249     AU.addRequired<TargetTransformInfoWrapperPass>();
2250     AU.addRequired<AAResultsWrapperPass>();
2251     AU.addRequired<LoopAccessLegacyAnalysis>();
2252     AU.addRequired<DemandedBitsWrapperPass>();
2253     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2254     AU.addRequired<InjectTLIMappingsLegacy>();
2255 
2256     // We currently do not preserve loopinfo/dominator analyses with outer loop
2257     // vectorization. Until this is addressed, mark these analyses as preserved
2258     // only for non-VPlan-native path.
2259     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2260     if (!EnableVPlanNativePath) {
2261       AU.addPreserved<LoopInfoWrapperPass>();
2262       AU.addPreserved<DominatorTreeWrapperPass>();
2263     }
2264 
2265     AU.addPreserved<BasicAAWrapperPass>();
2266     AU.addPreserved<GlobalsAAWrapperPass>();
2267     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2268   }
2269 };
2270 
2271 } // end anonymous namespace
2272 
2273 //===----------------------------------------------------------------------===//
2274 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2275 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2276 //===----------------------------------------------------------------------===//
2277 
2278 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2279   // We need to place the broadcast of invariant variables outside the loop,
2280   // but only if it's proven safe to do so. Else, broadcast will be inside
2281   // vector loop body.
2282   Instruction *Instr = dyn_cast<Instruction>(V);
2283   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2284                      (!Instr ||
2285                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2286   // Place the code for broadcasting invariant variables in the new preheader.
2287   IRBuilder<>::InsertPointGuard Guard(Builder);
2288   if (SafeToHoist)
2289     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2290 
2291   // Broadcast the scalar into all locations in the vector.
2292   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2293 
2294   return Shuf;
2295 }
2296 
2297 /// This function adds
2298 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2299 /// to each vector element of Val. The sequence starts at StartIndex.
2300 /// \p Opcode is relevant for FP induction variable.
2301 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2302                             Instruction::BinaryOps BinOp, ElementCount VF,
2303                             IRBuilderBase &Builder) {
2304   assert(VF.isVector() && "only vector VFs are supported");
2305 
2306   // Create and check the types.
2307   auto *ValVTy = cast<VectorType>(Val->getType());
2308   ElementCount VLen = ValVTy->getElementCount();
2309 
2310   Type *STy = Val->getType()->getScalarType();
2311   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2312          "Induction Step must be an integer or FP");
2313   assert(Step->getType() == STy && "Step has wrong type");
2314 
2315   SmallVector<Constant *, 8> Indices;
2316 
2317   // Create a vector of consecutive numbers from zero to VF.
2318   VectorType *InitVecValVTy = ValVTy;
2319   if (STy->isFloatingPointTy()) {
2320     Type *InitVecValSTy =
2321         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2322     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2323   }
2324   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2325 
2326   // Splat the StartIdx
2327   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2328 
2329   if (STy->isIntegerTy()) {
2330     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2331     Step = Builder.CreateVectorSplat(VLen, Step);
2332     assert(Step->getType() == Val->getType() && "Invalid step vec");
2333     // FIXME: The newly created binary instructions should contain nsw/nuw
2334     // flags, which can be found from the original scalar operations.
2335     Step = Builder.CreateMul(InitVec, Step);
2336     return Builder.CreateAdd(Val, Step, "induction");
2337   }
2338 
2339   // Floating point induction.
2340   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2341          "Binary Opcode should be specified for FP induction");
2342   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2343   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2344 
2345   Step = Builder.CreateVectorSplat(VLen, Step);
2346   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2347   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2348 }
2349 
2350 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2351 /// variable on which to base the steps, \p Step is the size of the step.
2352 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2353                              const InductionDescriptor &ID, VPValue *Def,
2354                              VPTransformState &State) {
2355   IRBuilderBase &Builder = State.Builder;
2356   // We shouldn't have to build scalar steps if we aren't vectorizing.
2357   assert(State.VF.isVector() && "VF should be greater than one");
2358   // Get the value type and ensure it and the step have the same integer type.
2359   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2360   assert(ScalarIVTy == Step->getType() &&
2361          "Val and Step should have the same type");
2362 
2363   // We build scalar steps for both integer and floating-point induction
2364   // variables. Here, we determine the kind of arithmetic we will perform.
2365   Instruction::BinaryOps AddOp;
2366   Instruction::BinaryOps MulOp;
2367   if (ScalarIVTy->isIntegerTy()) {
2368     AddOp = Instruction::Add;
2369     MulOp = Instruction::Mul;
2370   } else {
2371     AddOp = ID.getInductionOpcode();
2372     MulOp = Instruction::FMul;
2373   }
2374 
2375   // Determine the number of scalars we need to generate for each unroll
2376   // iteration.
2377   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2378   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2379   // Compute the scalar steps and save the results in State.
2380   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2381                                      ScalarIVTy->getScalarSizeInBits());
2382   Type *VecIVTy = nullptr;
2383   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2384   if (!FirstLaneOnly && State.VF.isScalable()) {
2385     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2386     UnitStepVec =
2387         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2388     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2389     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2390   }
2391 
2392   for (unsigned Part = 0; Part < State.UF; ++Part) {
2393     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2394 
2395     if (!FirstLaneOnly && State.VF.isScalable()) {
2396       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2397       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2398       if (ScalarIVTy->isFloatingPointTy())
2399         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2400       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2401       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2402       State.set(Def, Add, Part);
2403       // It's useful to record the lane values too for the known minimum number
2404       // of elements so we do those below. This improves the code quality when
2405       // trying to extract the first element, for example.
2406     }
2407 
2408     if (ScalarIVTy->isFloatingPointTy())
2409       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2410 
2411     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2412       Value *StartIdx = Builder.CreateBinOp(
2413           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2414       // The step returned by `createStepForVF` is a runtime-evaluated value
2415       // when VF is scalable. Otherwise, it should be folded into a Constant.
2416       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2417              "Expected StartIdx to be folded to a constant when VF is not "
2418              "scalable");
2419       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2420       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2421       State.set(Def, Add, VPIteration(Part, Lane));
2422     }
2423   }
2424 }
2425 
2426 // Generate code for the induction step. Note that induction steps are
2427 // required to be loop-invariant
2428 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2429                               Instruction *InsertBefore,
2430                               Loop *OrigLoop = nullptr) {
2431   const DataLayout &DL = SE.getDataLayout();
2432   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2433          "Induction step should be loop invariant");
2434   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2435     return E->getValue();
2436 
2437   SCEVExpander Exp(SE, DL, "induction");
2438   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2439 }
2440 
2441 /// Compute the transformed value of Index at offset StartValue using step
2442 /// StepValue.
2443 /// For integer induction, returns StartValue + Index * StepValue.
2444 /// For pointer induction, returns StartValue[Index * StepValue].
2445 /// FIXME: The newly created binary instructions should contain nsw/nuw
2446 /// flags, which can be found from the original scalar operations.
2447 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2448                                    Value *StartValue, Value *Step,
2449                                    const InductionDescriptor &ID) {
2450   assert(Index->getType()->getScalarType() == Step->getType() &&
2451          "Index scalar type does not match StepValue type");
2452 
2453   // Note: the IR at this point is broken. We cannot use SE to create any new
2454   // SCEV and then expand it, hoping that SCEV's simplification will give us
2455   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2456   // lead to various SCEV crashes. So all we can do is to use builder and rely
2457   // on InstCombine for future simplifications. Here we handle some trivial
2458   // cases only.
2459   auto CreateAdd = [&B](Value *X, Value *Y) {
2460     assert(X->getType() == Y->getType() && "Types don't match!");
2461     if (auto *CX = dyn_cast<ConstantInt>(X))
2462       if (CX->isZero())
2463         return Y;
2464     if (auto *CY = dyn_cast<ConstantInt>(Y))
2465       if (CY->isZero())
2466         return X;
2467     return B.CreateAdd(X, Y);
2468   };
2469 
2470   // We allow X to be a vector type, in which case Y will potentially be
2471   // splatted into a vector with the same element count.
2472   auto CreateMul = [&B](Value *X, Value *Y) {
2473     assert(X->getType()->getScalarType() == Y->getType() &&
2474            "Types don't match!");
2475     if (auto *CX = dyn_cast<ConstantInt>(X))
2476       if (CX->isOne())
2477         return Y;
2478     if (auto *CY = dyn_cast<ConstantInt>(Y))
2479       if (CY->isOne())
2480         return X;
2481     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2482     if (XVTy && !isa<VectorType>(Y->getType()))
2483       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2484     return B.CreateMul(X, Y);
2485   };
2486 
2487   switch (ID.getKind()) {
2488   case InductionDescriptor::IK_IntInduction: {
2489     assert(!isa<VectorType>(Index->getType()) &&
2490            "Vector indices not supported for integer inductions yet");
2491     assert(Index->getType() == StartValue->getType() &&
2492            "Index type does not match StartValue type");
2493     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2494       return B.CreateSub(StartValue, Index);
2495     auto *Offset = CreateMul(Index, Step);
2496     return CreateAdd(StartValue, Offset);
2497   }
2498   case InductionDescriptor::IK_PtrInduction: {
2499     assert(isa<Constant>(Step) &&
2500            "Expected constant step for pointer induction");
2501     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2502   }
2503   case InductionDescriptor::IK_FpInduction: {
2504     assert(!isa<VectorType>(Index->getType()) &&
2505            "Vector indices not supported for FP inductions yet");
2506     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2507     auto InductionBinOp = ID.getInductionBinOp();
2508     assert(InductionBinOp &&
2509            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2510             InductionBinOp->getOpcode() == Instruction::FSub) &&
2511            "Original bin op should be defined for FP induction");
2512 
2513     Value *MulExp = B.CreateFMul(Step, Index);
2514     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2515                          "induction");
2516   }
2517   case InductionDescriptor::IK_NoInduction:
2518     return nullptr;
2519   }
2520   llvm_unreachable("invalid enum");
2521 }
2522 
2523 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2524                                                     const VPIteration &Instance,
2525                                                     VPTransformState &State) {
2526   Value *ScalarInst = State.get(Def, Instance);
2527   Value *VectorValue = State.get(Def, Instance.Part);
2528   VectorValue = Builder.CreateInsertElement(
2529       VectorValue, ScalarInst,
2530       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2531   State.set(Def, VectorValue, Instance.Part);
2532 }
2533 
2534 // Return whether we allow using masked interleave-groups (for dealing with
2535 // strided loads/stores that reside in predicated blocks, or for dealing
2536 // with gaps).
2537 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2538   // If an override option has been passed in for interleaved accesses, use it.
2539   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2540     return EnableMaskedInterleavedMemAccesses;
2541 
2542   return TTI.enableMaskedInterleavedAccessVectorization();
2543 }
2544 
2545 // Try to vectorize the interleave group that \p Instr belongs to.
2546 //
2547 // E.g. Translate following interleaved load group (factor = 3):
2548 //   for (i = 0; i < N; i+=3) {
2549 //     R = Pic[i];             // Member of index 0
2550 //     G = Pic[i+1];           // Member of index 1
2551 //     B = Pic[i+2];           // Member of index 2
2552 //     ... // do something to R, G, B
2553 //   }
2554 // To:
2555 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2556 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2557 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2558 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2559 //
2560 // Or translate following interleaved store group (factor = 3):
2561 //   for (i = 0; i < N; i+=3) {
2562 //     ... do something to R, G, B
2563 //     Pic[i]   = R;           // Member of index 0
2564 //     Pic[i+1] = G;           // Member of index 1
2565 //     Pic[i+2] = B;           // Member of index 2
2566 //   }
2567 // To:
2568 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2569 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2570 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2571 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2572 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2573 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2574     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2575     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2576     VPValue *BlockInMask) {
2577   Instruction *Instr = Group->getInsertPos();
2578   const DataLayout &DL = Instr->getModule()->getDataLayout();
2579 
2580   // Prepare for the vector type of the interleaved load/store.
2581   Type *ScalarTy = getLoadStoreType(Instr);
2582   unsigned InterleaveFactor = Group->getFactor();
2583   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2584   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2585 
2586   // Prepare for the new pointers.
2587   SmallVector<Value *, 2> AddrParts;
2588   unsigned Index = Group->getIndex(Instr);
2589 
2590   // TODO: extend the masked interleaved-group support to reversed access.
2591   assert((!BlockInMask || !Group->isReverse()) &&
2592          "Reversed masked interleave-group not supported.");
2593 
2594   // If the group is reverse, adjust the index to refer to the last vector lane
2595   // instead of the first. We adjust the index from the first vector lane,
2596   // rather than directly getting the pointer for lane VF - 1, because the
2597   // pointer operand of the interleaved access is supposed to be uniform. For
2598   // uniform instructions, we're only required to generate a value for the
2599   // first vector lane in each unroll iteration.
2600   if (Group->isReverse())
2601     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2602 
2603   for (unsigned Part = 0; Part < UF; Part++) {
2604     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2605     setDebugLocFromInst(AddrPart);
2606 
2607     // Notice current instruction could be any index. Need to adjust the address
2608     // to the member of index 0.
2609     //
2610     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2611     //       b = A[i];       // Member of index 0
2612     // Current pointer is pointed to A[i+1], adjust it to A[i].
2613     //
2614     // E.g.  A[i+1] = a;     // Member of index 1
2615     //       A[i]   = b;     // Member of index 0
2616     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2617     // Current pointer is pointed to A[i+2], adjust it to A[i].
2618 
2619     bool InBounds = false;
2620     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2621       InBounds = gep->isInBounds();
2622     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2623     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2624 
2625     // Cast to the vector pointer type.
2626     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2627     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2628     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2629   }
2630 
2631   setDebugLocFromInst(Instr);
2632   Value *PoisonVec = PoisonValue::get(VecTy);
2633 
2634   Value *MaskForGaps = nullptr;
2635   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2636     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2637     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2638   }
2639 
2640   // Vectorize the interleaved load group.
2641   if (isa<LoadInst>(Instr)) {
2642     // For each unroll part, create a wide load for the group.
2643     SmallVector<Value *, 2> NewLoads;
2644     for (unsigned Part = 0; Part < UF; Part++) {
2645       Instruction *NewLoad;
2646       if (BlockInMask || MaskForGaps) {
2647         assert(useMaskedInterleavedAccesses(*TTI) &&
2648                "masked interleaved groups are not allowed.");
2649         Value *GroupMask = MaskForGaps;
2650         if (BlockInMask) {
2651           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2652           Value *ShuffledMask = Builder.CreateShuffleVector(
2653               BlockInMaskPart,
2654               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2655               "interleaved.mask");
2656           GroupMask = MaskForGaps
2657                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2658                                                 MaskForGaps)
2659                           : ShuffledMask;
2660         }
2661         NewLoad =
2662             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2663                                      GroupMask, PoisonVec, "wide.masked.vec");
2664       }
2665       else
2666         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2667                                             Group->getAlign(), "wide.vec");
2668       Group->addMetadata(NewLoad);
2669       NewLoads.push_back(NewLoad);
2670     }
2671 
2672     // For each member in the group, shuffle out the appropriate data from the
2673     // wide loads.
2674     unsigned J = 0;
2675     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2676       Instruction *Member = Group->getMember(I);
2677 
2678       // Skip the gaps in the group.
2679       if (!Member)
2680         continue;
2681 
2682       auto StrideMask =
2683           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2684       for (unsigned Part = 0; Part < UF; Part++) {
2685         Value *StridedVec = Builder.CreateShuffleVector(
2686             NewLoads[Part], StrideMask, "strided.vec");
2687 
2688         // If this member has different type, cast the result type.
2689         if (Member->getType() != ScalarTy) {
2690           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2691           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2692           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2693         }
2694 
2695         if (Group->isReverse())
2696           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2697 
2698         State.set(VPDefs[J], StridedVec, Part);
2699       }
2700       ++J;
2701     }
2702     return;
2703   }
2704 
2705   // The sub vector type for current instruction.
2706   auto *SubVT = VectorType::get(ScalarTy, VF);
2707 
2708   // Vectorize the interleaved store group.
2709   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2710   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2711          "masked interleaved groups are not allowed.");
2712   assert((!MaskForGaps || !VF.isScalable()) &&
2713          "masking gaps for scalable vectors is not yet supported.");
2714   for (unsigned Part = 0; Part < UF; Part++) {
2715     // Collect the stored vector from each member.
2716     SmallVector<Value *, 4> StoredVecs;
2717     for (unsigned i = 0; i < InterleaveFactor; i++) {
2718       assert((Group->getMember(i) || MaskForGaps) &&
2719              "Fail to get a member from an interleaved store group");
2720       Instruction *Member = Group->getMember(i);
2721 
2722       // Skip the gaps in the group.
2723       if (!Member) {
2724         Value *Undef = PoisonValue::get(SubVT);
2725         StoredVecs.push_back(Undef);
2726         continue;
2727       }
2728 
2729       Value *StoredVec = State.get(StoredValues[i], Part);
2730 
2731       if (Group->isReverse())
2732         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2733 
2734       // If this member has different type, cast it to a unified type.
2735 
2736       if (StoredVec->getType() != SubVT)
2737         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2738 
2739       StoredVecs.push_back(StoredVec);
2740     }
2741 
2742     // Concatenate all vectors into a wide vector.
2743     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2744 
2745     // Interleave the elements in the wide vector.
2746     Value *IVec = Builder.CreateShuffleVector(
2747         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2748         "interleaved.vec");
2749 
2750     Instruction *NewStoreInstr;
2751     if (BlockInMask || MaskForGaps) {
2752       Value *GroupMask = MaskForGaps;
2753       if (BlockInMask) {
2754         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2755         Value *ShuffledMask = Builder.CreateShuffleVector(
2756             BlockInMaskPart,
2757             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2758             "interleaved.mask");
2759         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2760                                                       ShuffledMask, MaskForGaps)
2761                                 : ShuffledMask;
2762       }
2763       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2764                                                 Group->getAlign(), GroupMask);
2765     } else
2766       NewStoreInstr =
2767           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2768 
2769     Group->addMetadata(NewStoreInstr);
2770   }
2771 }
2772 
2773 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2774                                                VPReplicateRecipe *RepRecipe,
2775                                                const VPIteration &Instance,
2776                                                bool IfPredicateInstr,
2777                                                VPTransformState &State) {
2778   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2779 
2780   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2781   // the first lane and part.
2782   if (isa<NoAliasScopeDeclInst>(Instr))
2783     if (!Instance.isFirstIteration())
2784       return;
2785 
2786   // Does this instruction return a value ?
2787   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2788 
2789   Instruction *Cloned = Instr->clone();
2790   if (!IsVoidRetTy)
2791     Cloned->setName(Instr->getName() + ".cloned");
2792 
2793   // If the scalarized instruction contributes to the address computation of a
2794   // widen masked load/store which was in a basic block that needed predication
2795   // and is not predicated after vectorization, we can't propagate
2796   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2797   // instruction could feed a poison value to the base address of the widen
2798   // load/store.
2799   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2800     Cloned->dropPoisonGeneratingFlags();
2801 
2802   if (Instr->getDebugLoc())
2803     setDebugLocFromInst(Instr);
2804 
2805   // Replace the operands of the cloned instructions with their scalar
2806   // equivalents in the new loop.
2807   for (auto &I : enumerate(RepRecipe->operands())) {
2808     auto InputInstance = Instance;
2809     VPValue *Operand = I.value();
2810     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2811     if (OperandR && OperandR->isUniform())
2812       InputInstance.Lane = VPLane::getFirstLane();
2813     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2814   }
2815   addNewMetadata(Cloned, Instr);
2816 
2817   // Place the cloned scalar in the new loop.
2818   State.Builder.Insert(Cloned);
2819 
2820   State.set(RepRecipe, Cloned, Instance);
2821 
2822   // If we just cloned a new assumption, add it the assumption cache.
2823   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2824     AC->registerAssumption(II);
2825 
2826   // End if-block.
2827   if (IfPredicateInstr)
2828     PredicatedInstructions.push_back(Cloned);
2829 }
2830 
2831 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2832   if (TripCount)
2833     return TripCount;
2834 
2835   assert(InsertBlock);
2836   IRBuilder<> Builder(InsertBlock->getTerminator());
2837   // Find the loop boundaries.
2838   ScalarEvolution *SE = PSE.getSE();
2839   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2840   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2841          "Invalid loop count");
2842 
2843   Type *IdxTy = Legal->getWidestInductionType();
2844   assert(IdxTy && "No type for induction");
2845 
2846   // The exit count might have the type of i64 while the phi is i32. This can
2847   // happen if we have an induction variable that is sign extended before the
2848   // compare. The only way that we get a backedge taken count is that the
2849   // induction variable was signed and as such will not overflow. In such a case
2850   // truncation is legal.
2851   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2852       IdxTy->getPrimitiveSizeInBits())
2853     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2854   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2855 
2856   // Get the total trip count from the count by adding 1.
2857   const SCEV *ExitCount = SE->getAddExpr(
2858       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2859 
2860   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2861 
2862   // Expand the trip count and place the new instructions in the preheader.
2863   // Notice that the pre-header does not change, only the loop body.
2864   SCEVExpander Exp(*SE, DL, "induction");
2865 
2866   // Count holds the overall loop count (N).
2867   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2868                                 InsertBlock->getTerminator());
2869 
2870   if (TripCount->getType()->isPointerTy())
2871     TripCount =
2872         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2873                                     InsertBlock->getTerminator());
2874 
2875   return TripCount;
2876 }
2877 
2878 Value *
2879 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2880   if (VectorTripCount)
2881     return VectorTripCount;
2882 
2883   Value *TC = getOrCreateTripCount(InsertBlock);
2884   IRBuilder<> Builder(InsertBlock->getTerminator());
2885 
2886   Type *Ty = TC->getType();
2887   // This is where we can make the step a runtime constant.
2888   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2889 
2890   // If the tail is to be folded by masking, round the number of iterations N
2891   // up to a multiple of Step instead of rounding down. This is done by first
2892   // adding Step-1 and then rounding down. Note that it's ok if this addition
2893   // overflows: the vector induction variable will eventually wrap to zero given
2894   // that it starts at zero and its Step is a power of two; the loop will then
2895   // exit, with the last early-exit vector comparison also producing all-true.
2896   if (Cost->foldTailByMasking()) {
2897     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2898            "VF*UF must be a power of 2 when folding tail by masking");
2899     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2900     TC = Builder.CreateAdd(
2901         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2902   }
2903 
2904   // Now we need to generate the expression for the part of the loop that the
2905   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2906   // iterations are not required for correctness, or N - Step, otherwise. Step
2907   // is equal to the vectorization factor (number of SIMD elements) times the
2908   // unroll factor (number of SIMD instructions).
2909   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2910 
2911   // There are cases where we *must* run at least one iteration in the remainder
2912   // loop.  See the cost model for when this can happen.  If the step evenly
2913   // divides the trip count, we set the remainder to be equal to the step. If
2914   // the step does not evenly divide the trip count, no adjustment is necessary
2915   // since there will already be scalar iterations. Note that the minimum
2916   // iterations check ensures that N >= Step.
2917   if (Cost->requiresScalarEpilogue(VF)) {
2918     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2919     R = Builder.CreateSelect(IsZero, Step, R);
2920   }
2921 
2922   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2923 
2924   return VectorTripCount;
2925 }
2926 
2927 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2928                                                    const DataLayout &DL) {
2929   // Verify that V is a vector type with same number of elements as DstVTy.
2930   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2931   unsigned VF = DstFVTy->getNumElements();
2932   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2933   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2934   Type *SrcElemTy = SrcVecTy->getElementType();
2935   Type *DstElemTy = DstFVTy->getElementType();
2936   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2937          "Vector elements must have same size");
2938 
2939   // Do a direct cast if element types are castable.
2940   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2941     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2942   }
2943   // V cannot be directly casted to desired vector type.
2944   // May happen when V is a floating point vector but DstVTy is a vector of
2945   // pointers or vice-versa. Handle this using a two-step bitcast using an
2946   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2947   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2948          "Only one type should be a pointer type");
2949   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2950          "Only one type should be a floating point type");
2951   Type *IntTy =
2952       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2953   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2954   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2955   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2956 }
2957 
2958 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) {
2959   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2960   // Reuse existing vector loop preheader for TC checks.
2961   // Note that new preheader block is generated for vector loop.
2962   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2963   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2964 
2965   // Generate code to check if the loop's trip count is less than VF * UF, or
2966   // equal to it in case a scalar epilogue is required; this implies that the
2967   // vector trip count is zero. This check also covers the case where adding one
2968   // to the backedge-taken count overflowed leading to an incorrect trip count
2969   // of zero. In this case we will also jump to the scalar loop.
2970   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2971                                             : ICmpInst::ICMP_ULT;
2972 
2973   // If tail is to be folded, vector loop takes care of all iterations.
2974   Value *CheckMinIters = Builder.getFalse();
2975   if (!Cost->foldTailByMasking()) {
2976     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
2977     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2978   }
2979   // Create new preheader for vector loop.
2980   LoopVectorPreHeader =
2981       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2982                  "vector.ph");
2983 
2984   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2985                                DT->getNode(Bypass)->getIDom()) &&
2986          "TC check is expected to dominate Bypass");
2987 
2988   // Update dominator for Bypass & LoopExit (if needed).
2989   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2990   if (!Cost->requiresScalarEpilogue(VF))
2991     // If there is an epilogue which must run, there's no edge from the
2992     // middle block to exit blocks  and thus no need to update the immediate
2993     // dominator of the exit blocks.
2994     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2995 
2996   ReplaceInstWithInst(
2997       TCCheckBlock->getTerminator(),
2998       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2999   LoopBypassBlocks.push_back(TCCheckBlock);
3000 }
3001 
3002 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
3003 
3004   BasicBlock *const SCEVCheckBlock =
3005       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3006   if (!SCEVCheckBlock)
3007     return nullptr;
3008 
3009   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3010            (OptForSizeBasedOnProfile &&
3011             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3012          "Cannot SCEV check stride or overflow when optimizing for size");
3013 
3014 
3015   // Update dominator only if this is first RT check.
3016   if (LoopBypassBlocks.empty()) {
3017     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3018     if (!Cost->requiresScalarEpilogue(VF))
3019       // If there is an epilogue which must run, there's no edge from the
3020       // middle block to exit blocks  and thus no need to update the immediate
3021       // dominator of the exit blocks.
3022       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3023   }
3024 
3025   LoopBypassBlocks.push_back(SCEVCheckBlock);
3026   AddedSafetyChecks = true;
3027   return SCEVCheckBlock;
3028 }
3029 
3030 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3031   // VPlan-native path does not do any analysis for runtime checks currently.
3032   if (EnableVPlanNativePath)
3033     return nullptr;
3034 
3035   BasicBlock *const MemCheckBlock =
3036       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3037 
3038   // Check if we generated code that checks in runtime if arrays overlap. We put
3039   // the checks into a separate block to make the more common case of few
3040   // elements faster.
3041   if (!MemCheckBlock)
3042     return nullptr;
3043 
3044   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3045     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3046            "Cannot emit memory checks when optimizing for size, unless forced "
3047            "to vectorize.");
3048     ORE->emit([&]() {
3049       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3050                                         OrigLoop->getStartLoc(),
3051                                         OrigLoop->getHeader())
3052              << "Code-size may be reduced by not forcing "
3053                 "vectorization, or by source-code modifications "
3054                 "eliminating the need for runtime checks "
3055                 "(e.g., adding 'restrict').";
3056     });
3057   }
3058 
3059   LoopBypassBlocks.push_back(MemCheckBlock);
3060 
3061   AddedSafetyChecks = true;
3062 
3063   // We currently don't use LoopVersioning for the actual loop cloning but we
3064   // still use it to add the noalias metadata.
3065   LVer = std::make_unique<LoopVersioning>(
3066       *Legal->getLAI(),
3067       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3068       DT, PSE.getSE());
3069   LVer->prepareNoAliasMetadata();
3070   return MemCheckBlock;
3071 }
3072 
3073 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3074   LoopScalarBody = OrigLoop->getHeader();
3075   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3076   assert(LoopVectorPreHeader && "Invalid loop structure");
3077   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3078   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3079          "multiple exit loop without required epilogue?");
3080 
3081   LoopMiddleBlock =
3082       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3083                  LI, nullptr, Twine(Prefix) + "middle.block");
3084   LoopScalarPreHeader =
3085       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3086                  nullptr, Twine(Prefix) + "scalar.ph");
3087 
3088   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3089 
3090   // Set up the middle block terminator.  Two cases:
3091   // 1) If we know that we must execute the scalar epilogue, emit an
3092   //    unconditional branch.
3093   // 2) Otherwise, we must have a single unique exit block (due to how we
3094   //    implement the multiple exit case).  In this case, set up a conditonal
3095   //    branch from the middle block to the loop scalar preheader, and the
3096   //    exit block.  completeLoopSkeleton will update the condition to use an
3097   //    iteration check, if required to decide whether to execute the remainder.
3098   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3099     BranchInst::Create(LoopScalarPreHeader) :
3100     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3101                        Builder.getTrue());
3102   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3103   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3104 
3105   SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, LI,
3106              nullptr, Twine(Prefix) + "vector.body");
3107 
3108   // Update dominator for loop exit.
3109   if (!Cost->requiresScalarEpilogue(VF))
3110     // If there is an epilogue which must run, there's no edge from the
3111     // middle block to exit blocks  and thus no need to update the immediate
3112     // dominator of the exit blocks.
3113     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3114 }
3115 
3116 void InnerLoopVectorizer::createInductionResumeValues(
3117     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3118   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3119           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3120          "Inconsistent information about additional bypass.");
3121 
3122   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3123   assert(VectorTripCount && "Expected valid arguments");
3124   // We are going to resume the execution of the scalar loop.
3125   // Go over all of the induction variables that we found and fix the
3126   // PHIs that are left in the scalar version of the loop.
3127   // The starting values of PHI nodes depend on the counter of the last
3128   // iteration in the vectorized loop.
3129   // If we come from a bypass edge then we need to start from the original
3130   // start value.
3131   Instruction *OldInduction = Legal->getPrimaryInduction();
3132   for (auto &InductionEntry : Legal->getInductionVars()) {
3133     PHINode *OrigPhi = InductionEntry.first;
3134     InductionDescriptor II = InductionEntry.second;
3135 
3136     // Create phi nodes to merge from the  backedge-taken check block.
3137     PHINode *BCResumeVal =
3138         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3139                         LoopScalarPreHeader->getTerminator());
3140     // Copy original phi DL over to the new one.
3141     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3142     Value *&EndValue = IVEndValues[OrigPhi];
3143     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3144     if (OrigPhi == OldInduction) {
3145       // We know what the end value is.
3146       EndValue = VectorTripCount;
3147     } else {
3148       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3149 
3150       // Fast-math-flags propagate from the original induction instruction.
3151       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3152         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3153 
3154       Type *StepType = II.getStep()->getType();
3155       Instruction::CastOps CastOp =
3156           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3157       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3158       Value *Step =
3159           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3160       EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3161       EndValue->setName("ind.end");
3162 
3163       // Compute the end value for the additional bypass (if applicable).
3164       if (AdditionalBypass.first) {
3165         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3166         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3167                                          StepType, true);
3168         Value *Step =
3169             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3170         CRD =
3171             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3172         EndValueFromAdditionalBypass =
3173             emitTransformedIndex(B, CRD, II.getStartValue(), Step, II);
3174         EndValueFromAdditionalBypass->setName("ind.end");
3175       }
3176     }
3177     // The new PHI merges the original incoming value, in case of a bypass,
3178     // or the value at the end of the vectorized loop.
3179     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3180 
3181     // Fix the scalar body counter (PHI node).
3182     // The old induction's phi node in the scalar body needs the truncated
3183     // value.
3184     for (BasicBlock *BB : LoopBypassBlocks)
3185       BCResumeVal->addIncoming(II.getStartValue(), BB);
3186 
3187     if (AdditionalBypass.first)
3188       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3189                                             EndValueFromAdditionalBypass);
3190 
3191     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3192   }
3193 }
3194 
3195 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3196   // The trip counts should be cached by now.
3197   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3198   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3199 
3200   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3201 
3202   // Add a check in the middle block to see if we have completed
3203   // all of the iterations in the first vector loop.  Three cases:
3204   // 1) If we require a scalar epilogue, there is no conditional branch as
3205   //    we unconditionally branch to the scalar preheader.  Do nothing.
3206   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3207   //    Thus if tail is to be folded, we know we don't need to run the
3208   //    remainder and we can use the previous value for the condition (true).
3209   // 3) Otherwise, construct a runtime check.
3210   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3211     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3212                                         Count, VectorTripCount, "cmp.n",
3213                                         LoopMiddleBlock->getTerminator());
3214 
3215     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3216     // of the corresponding compare because they may have ended up with
3217     // different line numbers and we want to avoid awkward line stepping while
3218     // debugging. Eg. if the compare has got a line number inside the loop.
3219     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3220     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3221   }
3222 
3223 #ifdef EXPENSIVE_CHECKS
3224   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3225 #endif
3226 
3227   return LoopVectorPreHeader;
3228 }
3229 
3230 std::pair<BasicBlock *, Value *>
3231 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3232   /*
3233    In this function we generate a new loop. The new loop will contain
3234    the vectorized instructions while the old loop will continue to run the
3235    scalar remainder.
3236 
3237        [ ] <-- loop iteration number check.
3238     /   |
3239    /    v
3240   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3241   |  /  |
3242   | /   v
3243   ||   [ ]     <-- vector pre header.
3244   |/    |
3245   |     v
3246   |    [  ] \
3247   |    [  ]_|   <-- vector loop.
3248   |     |
3249   |     v
3250   \   -[ ]   <--- middle-block.
3251    \/   |
3252    /\   v
3253    | ->[ ]     <--- new preheader.
3254    |    |
3255  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3256    |   [ ] \
3257    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3258     \   |
3259      \  v
3260       >[ ]     <-- exit block(s).
3261    ...
3262    */
3263 
3264   // Get the metadata of the original loop before it gets modified.
3265   MDNode *OrigLoopID = OrigLoop->getLoopID();
3266 
3267   // Workaround!  Compute the trip count of the original loop and cache it
3268   // before we start modifying the CFG.  This code has a systemic problem
3269   // wherein it tries to run analysis over partially constructed IR; this is
3270   // wrong, and not simply for SCEV.  The trip count of the original loop
3271   // simply happens to be prone to hitting this in practice.  In theory, we
3272   // can hit the same issue for any SCEV, or ValueTracking query done during
3273   // mutation.  See PR49900.
3274   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3275 
3276   // Create an empty vector loop, and prepare basic blocks for the runtime
3277   // checks.
3278   createVectorLoopSkeleton("");
3279 
3280   // Now, compare the new count to zero. If it is zero skip the vector loop and
3281   // jump to the scalar loop. This check also covers the case where the
3282   // backedge-taken count is uint##_max: adding one to it will overflow leading
3283   // to an incorrect trip count of zero. In this (rare) case we will also jump
3284   // to the scalar loop.
3285   emitMinimumIterationCountCheck(LoopScalarPreHeader);
3286 
3287   // Generate the code to check any assumptions that we've made for SCEV
3288   // expressions.
3289   emitSCEVChecks(LoopScalarPreHeader);
3290 
3291   // Generate the code that checks in runtime if arrays overlap. We put the
3292   // checks into a separate block to make the more common case of few elements
3293   // faster.
3294   emitMemRuntimeChecks(LoopScalarPreHeader);
3295 
3296   // Emit phis for the new starting index of the scalar loop.
3297   createInductionResumeValues();
3298 
3299   return {completeLoopSkeleton(OrigLoopID), nullptr};
3300 }
3301 
3302 // Fix up external users of the induction variable. At this point, we are
3303 // in LCSSA form, with all external PHIs that use the IV having one input value,
3304 // coming from the remainder loop. We need those PHIs to also have a correct
3305 // value for the IV when arriving directly from the middle block.
3306 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3307                                        const InductionDescriptor &II,
3308                                        Value *CountRoundDown, Value *EndValue,
3309                                        BasicBlock *MiddleBlock,
3310                                        BasicBlock *VectorHeader) {
3311   // There are two kinds of external IV usages - those that use the value
3312   // computed in the last iteration (the PHI) and those that use the penultimate
3313   // value (the value that feeds into the phi from the loop latch).
3314   // We allow both, but they, obviously, have different values.
3315 
3316   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3317 
3318   DenseMap<Value *, Value *> MissingVals;
3319 
3320   // An external user of the last iteration's value should see the value that
3321   // the remainder loop uses to initialize its own IV.
3322   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3323   for (User *U : PostInc->users()) {
3324     Instruction *UI = cast<Instruction>(U);
3325     if (!OrigLoop->contains(UI)) {
3326       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3327       MissingVals[UI] = EndValue;
3328     }
3329   }
3330 
3331   // An external user of the penultimate value need to see EndValue - Step.
3332   // The simplest way to get this is to recompute it from the constituent SCEVs,
3333   // that is Start + (Step * (CRD - 1)).
3334   for (User *U : OrigPhi->users()) {
3335     auto *UI = cast<Instruction>(U);
3336     if (!OrigLoop->contains(UI)) {
3337       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3338 
3339       IRBuilder<> B(MiddleBlock->getTerminator());
3340 
3341       // Fast-math-flags propagate from the original induction instruction.
3342       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3343         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3344 
3345       Value *CountMinusOne = B.CreateSub(
3346           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3347       Value *CMO =
3348           !II.getStep()->getType()->isIntegerTy()
3349               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3350                              II.getStep()->getType())
3351               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3352       CMO->setName("cast.cmo");
3353 
3354       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3355                                     VectorHeader->getTerminator());
3356       Value *Escape =
3357           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3358       Escape->setName("ind.escape");
3359       MissingVals[UI] = Escape;
3360     }
3361   }
3362 
3363   for (auto &I : MissingVals) {
3364     PHINode *PHI = cast<PHINode>(I.first);
3365     // One corner case we have to handle is two IVs "chasing" each-other,
3366     // that is %IV2 = phi [...], [ %IV1, %latch ]
3367     // In this case, if IV1 has an external use, we need to avoid adding both
3368     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3369     // don't already have an incoming value for the middle block.
3370     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3371       PHI->addIncoming(I.second, MiddleBlock);
3372   }
3373 }
3374 
3375 namespace {
3376 
3377 struct CSEDenseMapInfo {
3378   static bool canHandle(const Instruction *I) {
3379     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3380            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3381   }
3382 
3383   static inline Instruction *getEmptyKey() {
3384     return DenseMapInfo<Instruction *>::getEmptyKey();
3385   }
3386 
3387   static inline Instruction *getTombstoneKey() {
3388     return DenseMapInfo<Instruction *>::getTombstoneKey();
3389   }
3390 
3391   static unsigned getHashValue(const Instruction *I) {
3392     assert(canHandle(I) && "Unknown instruction!");
3393     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3394                                                            I->value_op_end()));
3395   }
3396 
3397   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3398     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3399         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3400       return LHS == RHS;
3401     return LHS->isIdenticalTo(RHS);
3402   }
3403 };
3404 
3405 } // end anonymous namespace
3406 
3407 ///Perform cse of induction variable instructions.
3408 static void cse(BasicBlock *BB) {
3409   // Perform simple cse.
3410   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3411   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3412     if (!CSEDenseMapInfo::canHandle(&In))
3413       continue;
3414 
3415     // Check if we can replace this instruction with any of the
3416     // visited instructions.
3417     if (Instruction *V = CSEMap.lookup(&In)) {
3418       In.replaceAllUsesWith(V);
3419       In.eraseFromParent();
3420       continue;
3421     }
3422 
3423     CSEMap[&In] = &In;
3424   }
3425 }
3426 
3427 InstructionCost
3428 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3429                                               bool &NeedToScalarize) const {
3430   Function *F = CI->getCalledFunction();
3431   Type *ScalarRetTy = CI->getType();
3432   SmallVector<Type *, 4> Tys, ScalarTys;
3433   for (auto &ArgOp : CI->args())
3434     ScalarTys.push_back(ArgOp->getType());
3435 
3436   // Estimate cost of scalarized vector call. The source operands are assumed
3437   // to be vectors, so we need to extract individual elements from there,
3438   // execute VF scalar calls, and then gather the result into the vector return
3439   // value.
3440   InstructionCost ScalarCallCost =
3441       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3442   if (VF.isScalar())
3443     return ScalarCallCost;
3444 
3445   // Compute corresponding vector type for return value and arguments.
3446   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3447   for (Type *ScalarTy : ScalarTys)
3448     Tys.push_back(ToVectorTy(ScalarTy, VF));
3449 
3450   // Compute costs of unpacking argument values for the scalar calls and
3451   // packing the return values to a vector.
3452   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3453 
3454   InstructionCost Cost =
3455       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3456 
3457   // If we can't emit a vector call for this function, then the currently found
3458   // cost is the cost we need to return.
3459   NeedToScalarize = true;
3460   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3461   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3462 
3463   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3464     return Cost;
3465 
3466   // If the corresponding vector cost is cheaper, return its cost.
3467   InstructionCost VectorCallCost =
3468       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3469   if (VectorCallCost < Cost) {
3470     NeedToScalarize = false;
3471     Cost = VectorCallCost;
3472   }
3473   return Cost;
3474 }
3475 
3476 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3477   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3478     return Elt;
3479   return VectorType::get(Elt, VF);
3480 }
3481 
3482 InstructionCost
3483 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3484                                                    ElementCount VF) const {
3485   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3486   assert(ID && "Expected intrinsic call!");
3487   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3488   FastMathFlags FMF;
3489   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3490     FMF = FPMO->getFastMathFlags();
3491 
3492   SmallVector<const Value *> Arguments(CI->args());
3493   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3494   SmallVector<Type *> ParamTys;
3495   std::transform(FTy->param_begin(), FTy->param_end(),
3496                  std::back_inserter(ParamTys),
3497                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3498 
3499   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3500                                     dyn_cast<IntrinsicInst>(CI));
3501   return TTI.getIntrinsicInstrCost(CostAttrs,
3502                                    TargetTransformInfo::TCK_RecipThroughput);
3503 }
3504 
3505 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3506   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3507   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3508   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3509 }
3510 
3511 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3512   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3513   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3514   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3515 }
3516 
3517 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3518   // For every instruction `I` in MinBWs, truncate the operands, create a
3519   // truncated version of `I` and reextend its result. InstCombine runs
3520   // later and will remove any ext/trunc pairs.
3521   SmallPtrSet<Value *, 4> Erased;
3522   for (const auto &KV : Cost->getMinimalBitwidths()) {
3523     // If the value wasn't vectorized, we must maintain the original scalar
3524     // type. The absence of the value from State indicates that it
3525     // wasn't vectorized.
3526     // FIXME: Should not rely on getVPValue at this point.
3527     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3528     if (!State.hasAnyVectorValue(Def))
3529       continue;
3530     for (unsigned Part = 0; Part < UF; ++Part) {
3531       Value *I = State.get(Def, Part);
3532       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3533         continue;
3534       Type *OriginalTy = I->getType();
3535       Type *ScalarTruncatedTy =
3536           IntegerType::get(OriginalTy->getContext(), KV.second);
3537       auto *TruncatedTy = VectorType::get(
3538           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3539       if (TruncatedTy == OriginalTy)
3540         continue;
3541 
3542       IRBuilder<> B(cast<Instruction>(I));
3543       auto ShrinkOperand = [&](Value *V) -> Value * {
3544         if (auto *ZI = dyn_cast<ZExtInst>(V))
3545           if (ZI->getSrcTy() == TruncatedTy)
3546             return ZI->getOperand(0);
3547         return B.CreateZExtOrTrunc(V, TruncatedTy);
3548       };
3549 
3550       // The actual instruction modification depends on the instruction type,
3551       // unfortunately.
3552       Value *NewI = nullptr;
3553       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3554         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3555                              ShrinkOperand(BO->getOperand(1)));
3556 
3557         // Any wrapping introduced by shrinking this operation shouldn't be
3558         // considered undefined behavior. So, we can't unconditionally copy
3559         // arithmetic wrapping flags to NewI.
3560         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3561       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3562         NewI =
3563             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3564                          ShrinkOperand(CI->getOperand(1)));
3565       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3566         NewI = B.CreateSelect(SI->getCondition(),
3567                               ShrinkOperand(SI->getTrueValue()),
3568                               ShrinkOperand(SI->getFalseValue()));
3569       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3570         switch (CI->getOpcode()) {
3571         default:
3572           llvm_unreachable("Unhandled cast!");
3573         case Instruction::Trunc:
3574           NewI = ShrinkOperand(CI->getOperand(0));
3575           break;
3576         case Instruction::SExt:
3577           NewI = B.CreateSExtOrTrunc(
3578               CI->getOperand(0),
3579               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3580           break;
3581         case Instruction::ZExt:
3582           NewI = B.CreateZExtOrTrunc(
3583               CI->getOperand(0),
3584               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3585           break;
3586         }
3587       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3588         auto Elements0 =
3589             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3590         auto *O0 = B.CreateZExtOrTrunc(
3591             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3592         auto Elements1 =
3593             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3594         auto *O1 = B.CreateZExtOrTrunc(
3595             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3596 
3597         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3598       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3599         // Don't do anything with the operands, just extend the result.
3600         continue;
3601       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3602         auto Elements =
3603             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3604         auto *O0 = B.CreateZExtOrTrunc(
3605             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3606         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3607         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3608       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3609         auto Elements =
3610             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3611         auto *O0 = B.CreateZExtOrTrunc(
3612             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3613         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3614       } else {
3615         // If we don't know what to do, be conservative and don't do anything.
3616         continue;
3617       }
3618 
3619       // Lastly, extend the result.
3620       NewI->takeName(cast<Instruction>(I));
3621       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3622       I->replaceAllUsesWith(Res);
3623       cast<Instruction>(I)->eraseFromParent();
3624       Erased.insert(I);
3625       State.reset(Def, Res, Part);
3626     }
3627   }
3628 
3629   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3630   for (const auto &KV : Cost->getMinimalBitwidths()) {
3631     // If the value wasn't vectorized, we must maintain the original scalar
3632     // type. The absence of the value from State indicates that it
3633     // wasn't vectorized.
3634     // FIXME: Should not rely on getVPValue at this point.
3635     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3636     if (!State.hasAnyVectorValue(Def))
3637       continue;
3638     for (unsigned Part = 0; Part < UF; ++Part) {
3639       Value *I = State.get(Def, Part);
3640       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3641       if (Inst && Inst->use_empty()) {
3642         Value *NewI = Inst->getOperand(0);
3643         Inst->eraseFromParent();
3644         State.reset(Def, NewI, Part);
3645       }
3646     }
3647   }
3648 }
3649 
3650 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3651   // Insert truncates and extends for any truncated instructions as hints to
3652   // InstCombine.
3653   if (VF.isVector())
3654     truncateToMinimalBitwidths(State);
3655 
3656   // Fix widened non-induction PHIs by setting up the PHI operands.
3657   if (OrigPHIsToFix.size()) {
3658     assert(EnableVPlanNativePath &&
3659            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3660     fixNonInductionPHIs(State);
3661   }
3662 
3663   // At this point every instruction in the original loop is widened to a
3664   // vector form. Now we need to fix the recurrences in the loop. These PHI
3665   // nodes are currently empty because we did not want to introduce cycles.
3666   // This is the second stage of vectorizing recurrences.
3667   fixCrossIterationPHIs(State);
3668 
3669   // Forget the original basic block.
3670   PSE.getSE()->forgetLoop(OrigLoop);
3671 
3672   Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB);
3673   // If we inserted an edge from the middle block to the unique exit block,
3674   // update uses outside the loop (phis) to account for the newly inserted
3675   // edge.
3676   if (!Cost->requiresScalarEpilogue(VF)) {
3677     // Fix-up external users of the induction variables.
3678     for (auto &Entry : Legal->getInductionVars())
3679       fixupIVUsers(Entry.first, Entry.second,
3680                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3681                    IVEndValues[Entry.first], LoopMiddleBlock,
3682                    VectorLoop->getHeader());
3683 
3684     fixLCSSAPHIs(State);
3685   }
3686 
3687   for (Instruction *PI : PredicatedInstructions)
3688     sinkScalarOperands(&*PI);
3689 
3690   // Remove redundant induction instructions.
3691   cse(VectorLoop->getHeader());
3692 
3693   // Set/update profile weights for the vector and remainder loops as original
3694   // loop iterations are now distributed among them. Note that original loop
3695   // represented by LoopScalarBody becomes remainder loop after vectorization.
3696   //
3697   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3698   // end up getting slightly roughened result but that should be OK since
3699   // profile is not inherently precise anyway. Note also possible bypass of
3700   // vector code caused by legality checks is ignored, assigning all the weight
3701   // to the vector loop, optimistically.
3702   //
3703   // For scalable vectorization we can't know at compile time how many iterations
3704   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3705   // vscale of '1'.
3706   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3707                                LI->getLoopFor(LoopScalarBody),
3708                                VF.getKnownMinValue() * UF);
3709 }
3710 
3711 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3712   // In order to support recurrences we need to be able to vectorize Phi nodes.
3713   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3714   // stage #2: We now need to fix the recurrences by adding incoming edges to
3715   // the currently empty PHI nodes. At this point every instruction in the
3716   // original loop is widened to a vector form so we can use them to construct
3717   // the incoming edges.
3718   VPBasicBlock *Header =
3719       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3720   for (VPRecipeBase &R : Header->phis()) {
3721     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3722       fixReduction(ReductionPhi, State);
3723     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3724       fixFirstOrderRecurrence(FOR, State);
3725   }
3726 }
3727 
3728 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3729     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3730   // This is the second phase of vectorizing first-order recurrences. An
3731   // overview of the transformation is described below. Suppose we have the
3732   // following loop.
3733   //
3734   //   for (int i = 0; i < n; ++i)
3735   //     b[i] = a[i] - a[i - 1];
3736   //
3737   // There is a first-order recurrence on "a". For this loop, the shorthand
3738   // scalar IR looks like:
3739   //
3740   //   scalar.ph:
3741   //     s_init = a[-1]
3742   //     br scalar.body
3743   //
3744   //   scalar.body:
3745   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3746   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3747   //     s2 = a[i]
3748   //     b[i] = s2 - s1
3749   //     br cond, scalar.body, ...
3750   //
3751   // In this example, s1 is a recurrence because it's value depends on the
3752   // previous iteration. In the first phase of vectorization, we created a
3753   // vector phi v1 for s1. We now complete the vectorization and produce the
3754   // shorthand vector IR shown below (for VF = 4, UF = 1).
3755   //
3756   //   vector.ph:
3757   //     v_init = vector(..., ..., ..., a[-1])
3758   //     br vector.body
3759   //
3760   //   vector.body
3761   //     i = phi [0, vector.ph], [i+4, vector.body]
3762   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3763   //     v2 = a[i, i+1, i+2, i+3];
3764   //     v3 = vector(v1(3), v2(0, 1, 2))
3765   //     b[i, i+1, i+2, i+3] = v2 - v3
3766   //     br cond, vector.body, middle.block
3767   //
3768   //   middle.block:
3769   //     x = v2(3)
3770   //     br scalar.ph
3771   //
3772   //   scalar.ph:
3773   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3774   //     br scalar.body
3775   //
3776   // After execution completes the vector loop, we extract the next value of
3777   // the recurrence (x) to use as the initial value in the scalar loop.
3778 
3779   // Extract the last vector element in the middle block. This will be the
3780   // initial value for the recurrence when jumping to the scalar loop.
3781   VPValue *PreviousDef = PhiR->getBackedgeValue();
3782   Value *Incoming = State.get(PreviousDef, UF - 1);
3783   auto *ExtractForScalar = Incoming;
3784   auto *IdxTy = Builder.getInt32Ty();
3785   if (VF.isVector()) {
3786     auto *One = ConstantInt::get(IdxTy, 1);
3787     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3788     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3789     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3790     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3791                                                     "vector.recur.extract");
3792   }
3793   // Extract the second last element in the middle block if the
3794   // Phi is used outside the loop. We need to extract the phi itself
3795   // and not the last element (the phi update in the current iteration). This
3796   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3797   // when the scalar loop is not run at all.
3798   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3799   if (VF.isVector()) {
3800     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3801     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3802     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3803         Incoming, Idx, "vector.recur.extract.for.phi");
3804   } else if (UF > 1)
3805     // When loop is unrolled without vectorizing, initialize
3806     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3807     // of `Incoming`. This is analogous to the vectorized case above: extracting
3808     // the second last element when VF > 1.
3809     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3810 
3811   // Fix the initial value of the original recurrence in the scalar loop.
3812   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3813   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3814   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3815   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3816   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3817     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3818     Start->addIncoming(Incoming, BB);
3819   }
3820 
3821   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3822   Phi->setName("scalar.recur");
3823 
3824   // Finally, fix users of the recurrence outside the loop. The users will need
3825   // either the last value of the scalar recurrence or the last value of the
3826   // vector recurrence we extracted in the middle block. Since the loop is in
3827   // LCSSA form, we just need to find all the phi nodes for the original scalar
3828   // recurrence in the exit block, and then add an edge for the middle block.
3829   // Note that LCSSA does not imply single entry when the original scalar loop
3830   // had multiple exiting edges (as we always run the last iteration in the
3831   // scalar epilogue); in that case, there is no edge from middle to exit and
3832   // and thus no phis which needed updated.
3833   if (!Cost->requiresScalarEpilogue(VF))
3834     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3835       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
3836         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3837 }
3838 
3839 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3840                                        VPTransformState &State) {
3841   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3842   // Get it's reduction variable descriptor.
3843   assert(Legal->isReductionVariable(OrigPhi) &&
3844          "Unable to find the reduction variable");
3845   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3846 
3847   RecurKind RK = RdxDesc.getRecurrenceKind();
3848   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3849   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3850   setDebugLocFromInst(ReductionStartValue);
3851 
3852   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3853   // This is the vector-clone of the value that leaves the loop.
3854   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3855 
3856   // Wrap flags are in general invalid after vectorization, clear them.
3857   clearReductionWrapFlags(RdxDesc, State);
3858 
3859   // Before each round, move the insertion point right between
3860   // the PHIs and the values we are going to write.
3861   // This allows us to write both PHINodes and the extractelement
3862   // instructions.
3863   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3864 
3865   setDebugLocFromInst(LoopExitInst);
3866 
3867   Type *PhiTy = OrigPhi->getType();
3868   BasicBlock *VectorLoopLatch =
3869       LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch();
3870   // If tail is folded by masking, the vector value to leave the loop should be
3871   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3872   // instead of the former. For an inloop reduction the reduction will already
3873   // be predicated, and does not need to be handled here.
3874   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3875     for (unsigned Part = 0; Part < UF; ++Part) {
3876       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3877       Value *Sel = nullptr;
3878       for (User *U : VecLoopExitInst->users()) {
3879         if (isa<SelectInst>(U)) {
3880           assert(!Sel && "Reduction exit feeding two selects");
3881           Sel = U;
3882         } else
3883           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3884       }
3885       assert(Sel && "Reduction exit feeds no select");
3886       State.reset(LoopExitInstDef, Sel, Part);
3887 
3888       // If the target can create a predicated operator for the reduction at no
3889       // extra cost in the loop (for example a predicated vadd), it can be
3890       // cheaper for the select to remain in the loop than be sunk out of it,
3891       // and so use the select value for the phi instead of the old
3892       // LoopExitValue.
3893       if (PreferPredicatedReductionSelect ||
3894           TTI->preferPredicatedReductionSelect(
3895               RdxDesc.getOpcode(), PhiTy,
3896               TargetTransformInfo::ReductionFlags())) {
3897         auto *VecRdxPhi =
3898             cast<PHINode>(State.get(PhiR, Part));
3899         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3900       }
3901     }
3902   }
3903 
3904   // If the vector reduction can be performed in a smaller type, we truncate
3905   // then extend the loop exit value to enable InstCombine to evaluate the
3906   // entire expression in the smaller type.
3907   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3908     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3909     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3910     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3911     VectorParts RdxParts(UF);
3912     for (unsigned Part = 0; Part < UF; ++Part) {
3913       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3914       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3915       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3916                                         : Builder.CreateZExt(Trunc, VecTy);
3917       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3918         if (U != Trunc) {
3919           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3920           RdxParts[Part] = Extnd;
3921         }
3922     }
3923     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3924     for (unsigned Part = 0; Part < UF; ++Part) {
3925       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3926       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3927     }
3928   }
3929 
3930   // Reduce all of the unrolled parts into a single vector.
3931   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3932   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3933 
3934   // The middle block terminator has already been assigned a DebugLoc here (the
3935   // OrigLoop's single latch terminator). We want the whole middle block to
3936   // appear to execute on this line because: (a) it is all compiler generated,
3937   // (b) these instructions are always executed after evaluating the latch
3938   // conditional branch, and (c) other passes may add new predecessors which
3939   // terminate on this line. This is the easiest way to ensure we don't
3940   // accidentally cause an extra step back into the loop while debugging.
3941   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3942   if (PhiR->isOrdered())
3943     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3944   else {
3945     // Floating-point operations should have some FMF to enable the reduction.
3946     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3947     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3948     for (unsigned Part = 1; Part < UF; ++Part) {
3949       Value *RdxPart = State.get(LoopExitInstDef, Part);
3950       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3951         ReducedPartRdx = Builder.CreateBinOp(
3952             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3953       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3954         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3955                                            ReducedPartRdx, RdxPart);
3956       else
3957         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3958     }
3959   }
3960 
3961   // Create the reduction after the loop. Note that inloop reductions create the
3962   // target reduction in the loop using a Reduction recipe.
3963   if (VF.isVector() && !PhiR->isInLoop()) {
3964     ReducedPartRdx =
3965         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3966     // If the reduction can be performed in a smaller type, we need to extend
3967     // the reduction to the wider type before we branch to the original loop.
3968     if (PhiTy != RdxDesc.getRecurrenceType())
3969       ReducedPartRdx = RdxDesc.isSigned()
3970                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3971                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3972   }
3973 
3974   PHINode *ResumePhi =
3975       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3976 
3977   // Create a phi node that merges control-flow from the backedge-taken check
3978   // block and the middle block.
3979   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3980                                         LoopScalarPreHeader->getTerminator());
3981 
3982   // If we are fixing reductions in the epilogue loop then we should already
3983   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
3984   // we carry over the incoming values correctly.
3985   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
3986     if (Incoming == LoopMiddleBlock)
3987       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
3988     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
3989       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
3990                               Incoming);
3991     else
3992       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
3993   }
3994 
3995   // Set the resume value for this reduction
3996   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
3997 
3998   // Now, we need to fix the users of the reduction variable
3999   // inside and outside of the scalar remainder loop.
4000 
4001   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4002   // in the exit blocks.  See comment on analogous loop in
4003   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4004   if (!Cost->requiresScalarEpilogue(VF))
4005     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4006       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4007         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4008 
4009   // Fix the scalar loop reduction variable with the incoming reduction sum
4010   // from the vector body and from the backedge value.
4011   int IncomingEdgeBlockIdx =
4012       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4013   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4014   // Pick the other block.
4015   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4016   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4017   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4018 }
4019 
4020 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4021                                                   VPTransformState &State) {
4022   RecurKind RK = RdxDesc.getRecurrenceKind();
4023   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4024     return;
4025 
4026   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4027   assert(LoopExitInstr && "null loop exit instruction");
4028   SmallVector<Instruction *, 8> Worklist;
4029   SmallPtrSet<Instruction *, 8> Visited;
4030   Worklist.push_back(LoopExitInstr);
4031   Visited.insert(LoopExitInstr);
4032 
4033   while (!Worklist.empty()) {
4034     Instruction *Cur = Worklist.pop_back_val();
4035     if (isa<OverflowingBinaryOperator>(Cur))
4036       for (unsigned Part = 0; Part < UF; ++Part) {
4037         // FIXME: Should not rely on getVPValue at this point.
4038         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4039         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4040       }
4041 
4042     for (User *U : Cur->users()) {
4043       Instruction *UI = cast<Instruction>(U);
4044       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4045           Visited.insert(UI).second)
4046         Worklist.push_back(UI);
4047     }
4048   }
4049 }
4050 
4051 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4052   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4053     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4054       // Some phis were already hand updated by the reduction and recurrence
4055       // code above, leave them alone.
4056       continue;
4057 
4058     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4059     // Non-instruction incoming values will have only one value.
4060 
4061     VPLane Lane = VPLane::getFirstLane();
4062     if (isa<Instruction>(IncomingValue) &&
4063         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4064                                            VF))
4065       Lane = VPLane::getLastLaneForVF(VF);
4066 
4067     // Can be a loop invariant incoming value or the last scalar value to be
4068     // extracted from the vectorized loop.
4069     // FIXME: Should not rely on getVPValue at this point.
4070     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4071     Value *lastIncomingValue =
4072         OrigLoop->isLoopInvariant(IncomingValue)
4073             ? IncomingValue
4074             : State.get(State.Plan->getVPValue(IncomingValue, true),
4075                         VPIteration(UF - 1, Lane));
4076     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4077   }
4078 }
4079 
4080 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4081   // The basic block and loop containing the predicated instruction.
4082   auto *PredBB = PredInst->getParent();
4083   auto *VectorLoop = LI->getLoopFor(PredBB);
4084 
4085   // Initialize a worklist with the operands of the predicated instruction.
4086   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4087 
4088   // Holds instructions that we need to analyze again. An instruction may be
4089   // reanalyzed if we don't yet know if we can sink it or not.
4090   SmallVector<Instruction *, 8> InstsToReanalyze;
4091 
4092   // Returns true if a given use occurs in the predicated block. Phi nodes use
4093   // their operands in their corresponding predecessor blocks.
4094   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4095     auto *I = cast<Instruction>(U.getUser());
4096     BasicBlock *BB = I->getParent();
4097     if (auto *Phi = dyn_cast<PHINode>(I))
4098       BB = Phi->getIncomingBlock(
4099           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4100     return BB == PredBB;
4101   };
4102 
4103   // Iteratively sink the scalarized operands of the predicated instruction
4104   // into the block we created for it. When an instruction is sunk, it's
4105   // operands are then added to the worklist. The algorithm ends after one pass
4106   // through the worklist doesn't sink a single instruction.
4107   bool Changed;
4108   do {
4109     // Add the instructions that need to be reanalyzed to the worklist, and
4110     // reset the changed indicator.
4111     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4112     InstsToReanalyze.clear();
4113     Changed = false;
4114 
4115     while (!Worklist.empty()) {
4116       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4117 
4118       // We can't sink an instruction if it is a phi node, is not in the loop,
4119       // or may have side effects.
4120       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4121           I->mayHaveSideEffects())
4122         continue;
4123 
4124       // If the instruction is already in PredBB, check if we can sink its
4125       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4126       // sinking the scalar instruction I, hence it appears in PredBB; but it
4127       // may have failed to sink I's operands (recursively), which we try
4128       // (again) here.
4129       if (I->getParent() == PredBB) {
4130         Worklist.insert(I->op_begin(), I->op_end());
4131         continue;
4132       }
4133 
4134       // It's legal to sink the instruction if all its uses occur in the
4135       // predicated block. Otherwise, there's nothing to do yet, and we may
4136       // need to reanalyze the instruction.
4137       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4138         InstsToReanalyze.push_back(I);
4139         continue;
4140       }
4141 
4142       // Move the instruction to the beginning of the predicated block, and add
4143       // it's operands to the worklist.
4144       I->moveBefore(&*PredBB->getFirstInsertionPt());
4145       Worklist.insert(I->op_begin(), I->op_end());
4146 
4147       // The sinking may have enabled other instructions to be sunk, so we will
4148       // need to iterate.
4149       Changed = true;
4150     }
4151   } while (Changed);
4152 }
4153 
4154 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4155   for (PHINode *OrigPhi : OrigPHIsToFix) {
4156     VPWidenPHIRecipe *VPPhi =
4157         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4158     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4159     // Make sure the builder has a valid insert point.
4160     Builder.SetInsertPoint(NewPhi);
4161     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4162       VPValue *Inc = VPPhi->getIncomingValue(i);
4163       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4164       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4165     }
4166   }
4167 }
4168 
4169 bool InnerLoopVectorizer::useOrderedReductions(
4170     const RecurrenceDescriptor &RdxDesc) {
4171   return Cost->useOrderedReductions(RdxDesc);
4172 }
4173 
4174 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4175                                               VPWidenPHIRecipe *PhiR,
4176                                               VPTransformState &State) {
4177   assert(EnableVPlanNativePath &&
4178          "Non-native vplans are not expected to have VPWidenPHIRecipes.");
4179   // Currently we enter here in the VPlan-native path for non-induction
4180   // PHIs where all control flow is uniform. We simply widen these PHIs.
4181   // Create a vector phi with no operands - the vector phi operands will be
4182   // set at the end of vector code generation.
4183   Type *VecTy = (State.VF.isScalar())
4184                     ? PN->getType()
4185                     : VectorType::get(PN->getType(), State.VF);
4186   Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4187   State.set(PhiR, VecPhi, 0);
4188   OrigPHIsToFix.push_back(cast<PHINode>(PN));
4189 }
4190 
4191 /// A helper function for checking whether an integer division-related
4192 /// instruction may divide by zero (in which case it must be predicated if
4193 /// executed conditionally in the scalar code).
4194 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4195 /// Non-zero divisors that are non compile-time constants will not be
4196 /// converted into multiplication, so we will still end up scalarizing
4197 /// the division, but can do so w/o predication.
4198 static bool mayDivideByZero(Instruction &I) {
4199   assert((I.getOpcode() == Instruction::UDiv ||
4200           I.getOpcode() == Instruction::SDiv ||
4201           I.getOpcode() == Instruction::URem ||
4202           I.getOpcode() == Instruction::SRem) &&
4203          "Unexpected instruction");
4204   Value *Divisor = I.getOperand(1);
4205   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4206   return !CInt || CInt->isZero();
4207 }
4208 
4209 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4210                                                VPUser &ArgOperands,
4211                                                VPTransformState &State) {
4212   assert(!isa<DbgInfoIntrinsic>(I) &&
4213          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4214   setDebugLocFromInst(&I);
4215 
4216   Module *M = I.getParent()->getParent()->getParent();
4217   auto *CI = cast<CallInst>(&I);
4218 
4219   SmallVector<Type *, 4> Tys;
4220   for (Value *ArgOperand : CI->args())
4221     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4222 
4223   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4224 
4225   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4226   // version of the instruction.
4227   // Is it beneficial to perform intrinsic call compared to lib call?
4228   bool NeedToScalarize = false;
4229   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4230   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4231   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4232   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4233          "Instruction should be scalarized elsewhere.");
4234   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4235          "Either the intrinsic cost or vector call cost must be valid");
4236 
4237   for (unsigned Part = 0; Part < UF; ++Part) {
4238     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4239     SmallVector<Value *, 4> Args;
4240     for (auto &I : enumerate(ArgOperands.operands())) {
4241       // Some intrinsics have a scalar argument - don't replace it with a
4242       // vector.
4243       Value *Arg;
4244       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4245         Arg = State.get(I.value(), Part);
4246       else {
4247         Arg = State.get(I.value(), VPIteration(0, 0));
4248         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4249           TysForDecl.push_back(Arg->getType());
4250       }
4251       Args.push_back(Arg);
4252     }
4253 
4254     Function *VectorF;
4255     if (UseVectorIntrinsic) {
4256       // Use vector version of the intrinsic.
4257       if (VF.isVector())
4258         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4259       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4260       assert(VectorF && "Can't retrieve vector intrinsic.");
4261     } else {
4262       // Use vector version of the function call.
4263       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4264 #ifndef NDEBUG
4265       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4266              "Can't create vector function.");
4267 #endif
4268         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4269     }
4270       SmallVector<OperandBundleDef, 1> OpBundles;
4271       CI->getOperandBundlesAsDefs(OpBundles);
4272       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4273 
4274       if (isa<FPMathOperator>(V))
4275         V->copyFastMathFlags(CI);
4276 
4277       State.set(Def, V, Part);
4278       addMetadata(V, &I);
4279   }
4280 }
4281 
4282 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4283   // We should not collect Scalars more than once per VF. Right now, this
4284   // function is called from collectUniformsAndScalars(), which already does
4285   // this check. Collecting Scalars for VF=1 does not make any sense.
4286   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4287          "This function should not be visited twice for the same VF");
4288 
4289   // This avoids any chances of creating a REPLICATE recipe during planning
4290   // since that would result in generation of scalarized code during execution,
4291   // which is not supported for scalable vectors.
4292   if (VF.isScalable()) {
4293     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4294     return;
4295   }
4296 
4297   SmallSetVector<Instruction *, 8> Worklist;
4298 
4299   // These sets are used to seed the analysis with pointers used by memory
4300   // accesses that will remain scalar.
4301   SmallSetVector<Instruction *, 8> ScalarPtrs;
4302   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4303   auto *Latch = TheLoop->getLoopLatch();
4304 
4305   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4306   // The pointer operands of loads and stores will be scalar as long as the
4307   // memory access is not a gather or scatter operation. The value operand of a
4308   // store will remain scalar if the store is scalarized.
4309   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4310     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4311     assert(WideningDecision != CM_Unknown &&
4312            "Widening decision should be ready at this moment");
4313     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4314       if (Ptr == Store->getValueOperand())
4315         return WideningDecision == CM_Scalarize;
4316     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4317            "Ptr is neither a value or pointer operand");
4318     return WideningDecision != CM_GatherScatter;
4319   };
4320 
4321   // A helper that returns true if the given value is a bitcast or
4322   // getelementptr instruction contained in the loop.
4323   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4324     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4325             isa<GetElementPtrInst>(V)) &&
4326            !TheLoop->isLoopInvariant(V);
4327   };
4328 
4329   // A helper that evaluates a memory access's use of a pointer. If the use will
4330   // be a scalar use and the pointer is only used by memory accesses, we place
4331   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4332   // PossibleNonScalarPtrs.
4333   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4334     // We only care about bitcast and getelementptr instructions contained in
4335     // the loop.
4336     if (!isLoopVaryingBitCastOrGEP(Ptr))
4337       return;
4338 
4339     // If the pointer has already been identified as scalar (e.g., if it was
4340     // also identified as uniform), there's nothing to do.
4341     auto *I = cast<Instruction>(Ptr);
4342     if (Worklist.count(I))
4343       return;
4344 
4345     // If the use of the pointer will be a scalar use, and all users of the
4346     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4347     // place the pointer in PossibleNonScalarPtrs.
4348     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4349           return isa<LoadInst>(U) || isa<StoreInst>(U);
4350         }))
4351       ScalarPtrs.insert(I);
4352     else
4353       PossibleNonScalarPtrs.insert(I);
4354   };
4355 
4356   // We seed the scalars analysis with three classes of instructions: (1)
4357   // instructions marked uniform-after-vectorization and (2) bitcast,
4358   // getelementptr and (pointer) phi instructions used by memory accesses
4359   // requiring a scalar use.
4360   //
4361   // (1) Add to the worklist all instructions that have been identified as
4362   // uniform-after-vectorization.
4363   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4364 
4365   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4366   // memory accesses requiring a scalar use. The pointer operands of loads and
4367   // stores will be scalar as long as the memory accesses is not a gather or
4368   // scatter operation. The value operand of a store will remain scalar if the
4369   // store is scalarized.
4370   for (auto *BB : TheLoop->blocks())
4371     for (auto &I : *BB) {
4372       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4373         evaluatePtrUse(Load, Load->getPointerOperand());
4374       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4375         evaluatePtrUse(Store, Store->getPointerOperand());
4376         evaluatePtrUse(Store, Store->getValueOperand());
4377       }
4378     }
4379   for (auto *I : ScalarPtrs)
4380     if (!PossibleNonScalarPtrs.count(I)) {
4381       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4382       Worklist.insert(I);
4383     }
4384 
4385   // Insert the forced scalars.
4386   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4387   // induction variable when the PHI user is scalarized.
4388   auto ForcedScalar = ForcedScalars.find(VF);
4389   if (ForcedScalar != ForcedScalars.end())
4390     for (auto *I : ForcedScalar->second)
4391       Worklist.insert(I);
4392 
4393   // Expand the worklist by looking through any bitcasts and getelementptr
4394   // instructions we've already identified as scalar. This is similar to the
4395   // expansion step in collectLoopUniforms(); however, here we're only
4396   // expanding to include additional bitcasts and getelementptr instructions.
4397   unsigned Idx = 0;
4398   while (Idx != Worklist.size()) {
4399     Instruction *Dst = Worklist[Idx++];
4400     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4401       continue;
4402     auto *Src = cast<Instruction>(Dst->getOperand(0));
4403     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4404           auto *J = cast<Instruction>(U);
4405           return !TheLoop->contains(J) || Worklist.count(J) ||
4406                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4407                   isScalarUse(J, Src));
4408         })) {
4409       Worklist.insert(Src);
4410       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4411     }
4412   }
4413 
4414   // An induction variable will remain scalar if all users of the induction
4415   // variable and induction variable update remain scalar.
4416   for (auto &Induction : Legal->getInductionVars()) {
4417     auto *Ind = Induction.first;
4418     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4419 
4420     // If tail-folding is applied, the primary induction variable will be used
4421     // to feed a vector compare.
4422     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4423       continue;
4424 
4425     // Returns true if \p Indvar is a pointer induction that is used directly by
4426     // load/store instruction \p I.
4427     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4428                                               Instruction *I) {
4429       return Induction.second.getKind() ==
4430                  InductionDescriptor::IK_PtrInduction &&
4431              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4432              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4433     };
4434 
4435     // Determine if all users of the induction variable are scalar after
4436     // vectorization.
4437     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4438       auto *I = cast<Instruction>(U);
4439       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4440              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4441     });
4442     if (!ScalarInd)
4443       continue;
4444 
4445     // Determine if all users of the induction variable update instruction are
4446     // scalar after vectorization.
4447     auto ScalarIndUpdate =
4448         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4449           auto *I = cast<Instruction>(U);
4450           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4451                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4452         });
4453     if (!ScalarIndUpdate)
4454       continue;
4455 
4456     // The induction variable and its update instruction will remain scalar.
4457     Worklist.insert(Ind);
4458     Worklist.insert(IndUpdate);
4459     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4460     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4461                       << "\n");
4462   }
4463 
4464   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4465 }
4466 
4467 bool LoopVectorizationCostModel::isScalarWithPredication(
4468     Instruction *I, ElementCount VF) const {
4469   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4470     return false;
4471   switch(I->getOpcode()) {
4472   default:
4473     break;
4474   case Instruction::Load:
4475   case Instruction::Store: {
4476     if (!Legal->isMaskRequired(I))
4477       return false;
4478     auto *Ptr = getLoadStorePointerOperand(I);
4479     auto *Ty = getLoadStoreType(I);
4480     Type *VTy = Ty;
4481     if (VF.isVector())
4482       VTy = VectorType::get(Ty, VF);
4483     const Align Alignment = getLoadStoreAlignment(I);
4484     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4485                                 TTI.isLegalMaskedGather(VTy, Alignment))
4486                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4487                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4488   }
4489   case Instruction::UDiv:
4490   case Instruction::SDiv:
4491   case Instruction::SRem:
4492   case Instruction::URem:
4493     return mayDivideByZero(*I);
4494   }
4495   return false;
4496 }
4497 
4498 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4499     Instruction *I, ElementCount VF) {
4500   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4501   assert(getWideningDecision(I, VF) == CM_Unknown &&
4502          "Decision should not be set yet.");
4503   auto *Group = getInterleavedAccessGroup(I);
4504   assert(Group && "Must have a group.");
4505 
4506   // If the instruction's allocated size doesn't equal it's type size, it
4507   // requires padding and will be scalarized.
4508   auto &DL = I->getModule()->getDataLayout();
4509   auto *ScalarTy = getLoadStoreType(I);
4510   if (hasIrregularType(ScalarTy, DL))
4511     return false;
4512 
4513   // If the group involves a non-integral pointer, we may not be able to
4514   // losslessly cast all values to a common type.
4515   unsigned InterleaveFactor = Group->getFactor();
4516   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4517   for (unsigned i = 0; i < InterleaveFactor; i++) {
4518     Instruction *Member = Group->getMember(i);
4519     if (!Member)
4520       continue;
4521     auto *MemberTy = getLoadStoreType(Member);
4522     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4523     // Don't coerce non-integral pointers to integers or vice versa.
4524     if (MemberNI != ScalarNI) {
4525       // TODO: Consider adding special nullptr value case here
4526       return false;
4527     } else if (MemberNI && ScalarNI &&
4528                ScalarTy->getPointerAddressSpace() !=
4529                MemberTy->getPointerAddressSpace()) {
4530       return false;
4531     }
4532   }
4533 
4534   // Check if masking is required.
4535   // A Group may need masking for one of two reasons: it resides in a block that
4536   // needs predication, or it was decided to use masking to deal with gaps
4537   // (either a gap at the end of a load-access that may result in a speculative
4538   // load, or any gaps in a store-access).
4539   bool PredicatedAccessRequiresMasking =
4540       blockNeedsPredicationForAnyReason(I->getParent()) &&
4541       Legal->isMaskRequired(I);
4542   bool LoadAccessWithGapsRequiresEpilogMasking =
4543       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4544       !isScalarEpilogueAllowed();
4545   bool StoreAccessWithGapsRequiresMasking =
4546       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4547   if (!PredicatedAccessRequiresMasking &&
4548       !LoadAccessWithGapsRequiresEpilogMasking &&
4549       !StoreAccessWithGapsRequiresMasking)
4550     return true;
4551 
4552   // If masked interleaving is required, we expect that the user/target had
4553   // enabled it, because otherwise it either wouldn't have been created or
4554   // it should have been invalidated by the CostModel.
4555   assert(useMaskedInterleavedAccesses(TTI) &&
4556          "Masked interleave-groups for predicated accesses are not enabled.");
4557 
4558   if (Group->isReverse())
4559     return false;
4560 
4561   auto *Ty = getLoadStoreType(I);
4562   const Align Alignment = getLoadStoreAlignment(I);
4563   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4564                           : TTI.isLegalMaskedStore(Ty, Alignment);
4565 }
4566 
4567 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4568     Instruction *I, ElementCount VF) {
4569   // Get and ensure we have a valid memory instruction.
4570   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4571 
4572   auto *Ptr = getLoadStorePointerOperand(I);
4573   auto *ScalarTy = getLoadStoreType(I);
4574 
4575   // In order to be widened, the pointer should be consecutive, first of all.
4576   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4577     return false;
4578 
4579   // If the instruction is a store located in a predicated block, it will be
4580   // scalarized.
4581   if (isScalarWithPredication(I, VF))
4582     return false;
4583 
4584   // If the instruction's allocated size doesn't equal it's type size, it
4585   // requires padding and will be scalarized.
4586   auto &DL = I->getModule()->getDataLayout();
4587   if (hasIrregularType(ScalarTy, DL))
4588     return false;
4589 
4590   return true;
4591 }
4592 
4593 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4594   // We should not collect Uniforms more than once per VF. Right now,
4595   // this function is called from collectUniformsAndScalars(), which
4596   // already does this check. Collecting Uniforms for VF=1 does not make any
4597   // sense.
4598 
4599   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4600          "This function should not be visited twice for the same VF");
4601 
4602   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4603   // not analyze again.  Uniforms.count(VF) will return 1.
4604   Uniforms[VF].clear();
4605 
4606   // We now know that the loop is vectorizable!
4607   // Collect instructions inside the loop that will remain uniform after
4608   // vectorization.
4609 
4610   // Global values, params and instructions outside of current loop are out of
4611   // scope.
4612   auto isOutOfScope = [&](Value *V) -> bool {
4613     Instruction *I = dyn_cast<Instruction>(V);
4614     return (!I || !TheLoop->contains(I));
4615   };
4616 
4617   // Worklist containing uniform instructions demanding lane 0.
4618   SetVector<Instruction *> Worklist;
4619   BasicBlock *Latch = TheLoop->getLoopLatch();
4620 
4621   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4622   // that are scalar with predication must not be considered uniform after
4623   // vectorization, because that would create an erroneous replicating region
4624   // where only a single instance out of VF should be formed.
4625   // TODO: optimize such seldom cases if found important, see PR40816.
4626   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4627     if (isOutOfScope(I)) {
4628       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4629                         << *I << "\n");
4630       return;
4631     }
4632     if (isScalarWithPredication(I, VF)) {
4633       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4634                         << *I << "\n");
4635       return;
4636     }
4637     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4638     Worklist.insert(I);
4639   };
4640 
4641   // Start with the conditional branch. If the branch condition is an
4642   // instruction contained in the loop that is only used by the branch, it is
4643   // uniform.
4644   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4645   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4646     addToWorklistIfAllowed(Cmp);
4647 
4648   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4649     InstWidening WideningDecision = getWideningDecision(I, VF);
4650     assert(WideningDecision != CM_Unknown &&
4651            "Widening decision should be ready at this moment");
4652 
4653     // A uniform memory op is itself uniform.  We exclude uniform stores
4654     // here as they demand the last lane, not the first one.
4655     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4656       assert(WideningDecision == CM_Scalarize);
4657       return true;
4658     }
4659 
4660     return (WideningDecision == CM_Widen ||
4661             WideningDecision == CM_Widen_Reverse ||
4662             WideningDecision == CM_Interleave);
4663   };
4664 
4665 
4666   // Returns true if Ptr is the pointer operand of a memory access instruction
4667   // I, and I is known to not require scalarization.
4668   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4669     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4670   };
4671 
4672   // Holds a list of values which are known to have at least one uniform use.
4673   // Note that there may be other uses which aren't uniform.  A "uniform use"
4674   // here is something which only demands lane 0 of the unrolled iterations;
4675   // it does not imply that all lanes produce the same value (e.g. this is not
4676   // the usual meaning of uniform)
4677   SetVector<Value *> HasUniformUse;
4678 
4679   // Scan the loop for instructions which are either a) known to have only
4680   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4681   for (auto *BB : TheLoop->blocks())
4682     for (auto &I : *BB) {
4683       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4684         switch (II->getIntrinsicID()) {
4685         case Intrinsic::sideeffect:
4686         case Intrinsic::experimental_noalias_scope_decl:
4687         case Intrinsic::assume:
4688         case Intrinsic::lifetime_start:
4689         case Intrinsic::lifetime_end:
4690           if (TheLoop->hasLoopInvariantOperands(&I))
4691             addToWorklistIfAllowed(&I);
4692           break;
4693         default:
4694           break;
4695         }
4696       }
4697 
4698       // ExtractValue instructions must be uniform, because the operands are
4699       // known to be loop-invariant.
4700       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4701         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4702                "Expected aggregate value to be loop invariant");
4703         addToWorklistIfAllowed(EVI);
4704         continue;
4705       }
4706 
4707       // If there's no pointer operand, there's nothing to do.
4708       auto *Ptr = getLoadStorePointerOperand(&I);
4709       if (!Ptr)
4710         continue;
4711 
4712       // A uniform memory op is itself uniform.  We exclude uniform stores
4713       // here as they demand the last lane, not the first one.
4714       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4715         addToWorklistIfAllowed(&I);
4716 
4717       if (isUniformDecision(&I, VF)) {
4718         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4719         HasUniformUse.insert(Ptr);
4720       }
4721     }
4722 
4723   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4724   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4725   // disallows uses outside the loop as well.
4726   for (auto *V : HasUniformUse) {
4727     if (isOutOfScope(V))
4728       continue;
4729     auto *I = cast<Instruction>(V);
4730     auto UsersAreMemAccesses =
4731       llvm::all_of(I->users(), [&](User *U) -> bool {
4732         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4733       });
4734     if (UsersAreMemAccesses)
4735       addToWorklistIfAllowed(I);
4736   }
4737 
4738   // Expand Worklist in topological order: whenever a new instruction
4739   // is added , its users should be already inside Worklist.  It ensures
4740   // a uniform instruction will only be used by uniform instructions.
4741   unsigned idx = 0;
4742   while (idx != Worklist.size()) {
4743     Instruction *I = Worklist[idx++];
4744 
4745     for (auto OV : I->operand_values()) {
4746       // isOutOfScope operands cannot be uniform instructions.
4747       if (isOutOfScope(OV))
4748         continue;
4749       // First order recurrence Phi's should typically be considered
4750       // non-uniform.
4751       auto *OP = dyn_cast<PHINode>(OV);
4752       if (OP && Legal->isFirstOrderRecurrence(OP))
4753         continue;
4754       // If all the users of the operand are uniform, then add the
4755       // operand into the uniform worklist.
4756       auto *OI = cast<Instruction>(OV);
4757       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4758             auto *J = cast<Instruction>(U);
4759             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4760           }))
4761         addToWorklistIfAllowed(OI);
4762     }
4763   }
4764 
4765   // For an instruction to be added into Worklist above, all its users inside
4766   // the loop should also be in Worklist. However, this condition cannot be
4767   // true for phi nodes that form a cyclic dependence. We must process phi
4768   // nodes separately. An induction variable will remain uniform if all users
4769   // of the induction variable and induction variable update remain uniform.
4770   // The code below handles both pointer and non-pointer induction variables.
4771   for (auto &Induction : Legal->getInductionVars()) {
4772     auto *Ind = Induction.first;
4773     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4774 
4775     // Determine if all users of the induction variable are uniform after
4776     // vectorization.
4777     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4778       auto *I = cast<Instruction>(U);
4779       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4780              isVectorizedMemAccessUse(I, Ind);
4781     });
4782     if (!UniformInd)
4783       continue;
4784 
4785     // Determine if all users of the induction variable update instruction are
4786     // uniform after vectorization.
4787     auto UniformIndUpdate =
4788         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4789           auto *I = cast<Instruction>(U);
4790           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4791                  isVectorizedMemAccessUse(I, IndUpdate);
4792         });
4793     if (!UniformIndUpdate)
4794       continue;
4795 
4796     // The induction variable and its update instruction will remain uniform.
4797     addToWorklistIfAllowed(Ind);
4798     addToWorklistIfAllowed(IndUpdate);
4799   }
4800 
4801   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4802 }
4803 
4804 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4805   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4806 
4807   if (Legal->getRuntimePointerChecking()->Need) {
4808     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4809         "runtime pointer checks needed. Enable vectorization of this "
4810         "loop with '#pragma clang loop vectorize(enable)' when "
4811         "compiling with -Os/-Oz",
4812         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4813     return true;
4814   }
4815 
4816   if (!PSE.getPredicate().isAlwaysTrue()) {
4817     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4818         "runtime SCEV checks needed. Enable vectorization of this "
4819         "loop with '#pragma clang loop vectorize(enable)' when "
4820         "compiling with -Os/-Oz",
4821         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4822     return true;
4823   }
4824 
4825   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4826   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4827     reportVectorizationFailure("Runtime stride check for small trip count",
4828         "runtime stride == 1 checks needed. Enable vectorization of "
4829         "this loop without such check by compiling with -Os/-Oz",
4830         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4831     return true;
4832   }
4833 
4834   return false;
4835 }
4836 
4837 ElementCount
4838 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4839   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4840     return ElementCount::getScalable(0);
4841 
4842   if (Hints->isScalableVectorizationDisabled()) {
4843     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4844                             "ScalableVectorizationDisabled", ORE, TheLoop);
4845     return ElementCount::getScalable(0);
4846   }
4847 
4848   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4849 
4850   auto MaxScalableVF = ElementCount::getScalable(
4851       std::numeric_limits<ElementCount::ScalarTy>::max());
4852 
4853   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4854   // FIXME: While for scalable vectors this is currently sufficient, this should
4855   // be replaced by a more detailed mechanism that filters out specific VFs,
4856   // instead of invalidating vectorization for a whole set of VFs based on the
4857   // MaxVF.
4858 
4859   // Disable scalable vectorization if the loop contains unsupported reductions.
4860   if (!canVectorizeReductions(MaxScalableVF)) {
4861     reportVectorizationInfo(
4862         "Scalable vectorization not supported for the reduction "
4863         "operations found in this loop.",
4864         "ScalableVFUnfeasible", ORE, TheLoop);
4865     return ElementCount::getScalable(0);
4866   }
4867 
4868   // Disable scalable vectorization if the loop contains any instructions
4869   // with element types not supported for scalable vectors.
4870   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4871         return !Ty->isVoidTy() &&
4872                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4873       })) {
4874     reportVectorizationInfo("Scalable vectorization is not supported "
4875                             "for all element types found in this loop.",
4876                             "ScalableVFUnfeasible", ORE, TheLoop);
4877     return ElementCount::getScalable(0);
4878   }
4879 
4880   if (Legal->isSafeForAnyVectorWidth())
4881     return MaxScalableVF;
4882 
4883   // Limit MaxScalableVF by the maximum safe dependence distance.
4884   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4885   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4886     MaxVScale =
4887         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4888   MaxScalableVF = ElementCount::getScalable(
4889       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4890   if (!MaxScalableVF)
4891     reportVectorizationInfo(
4892         "Max legal vector width too small, scalable vectorization "
4893         "unfeasible.",
4894         "ScalableVFUnfeasible", ORE, TheLoop);
4895 
4896   return MaxScalableVF;
4897 }
4898 
4899 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4900     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4901   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4902   unsigned SmallestType, WidestType;
4903   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4904 
4905   // Get the maximum safe dependence distance in bits computed by LAA.
4906   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4907   // the memory accesses that is most restrictive (involved in the smallest
4908   // dependence distance).
4909   unsigned MaxSafeElements =
4910       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4911 
4912   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4913   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4914 
4915   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4916                     << ".\n");
4917   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4918                     << ".\n");
4919 
4920   // First analyze the UserVF, fall back if the UserVF should be ignored.
4921   if (UserVF) {
4922     auto MaxSafeUserVF =
4923         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4924 
4925     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4926       // If `VF=vscale x N` is safe, then so is `VF=N`
4927       if (UserVF.isScalable())
4928         return FixedScalableVFPair(
4929             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4930       else
4931         return UserVF;
4932     }
4933 
4934     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4935 
4936     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4937     // is better to ignore the hint and let the compiler choose a suitable VF.
4938     if (!UserVF.isScalable()) {
4939       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4940                         << " is unsafe, clamping to max safe VF="
4941                         << MaxSafeFixedVF << ".\n");
4942       ORE->emit([&]() {
4943         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4944                                           TheLoop->getStartLoc(),
4945                                           TheLoop->getHeader())
4946                << "User-specified vectorization factor "
4947                << ore::NV("UserVectorizationFactor", UserVF)
4948                << " is unsafe, clamping to maximum safe vectorization factor "
4949                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4950       });
4951       return MaxSafeFixedVF;
4952     }
4953 
4954     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4955       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4956                         << " is ignored because scalable vectors are not "
4957                            "available.\n");
4958       ORE->emit([&]() {
4959         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4960                                           TheLoop->getStartLoc(),
4961                                           TheLoop->getHeader())
4962                << "User-specified vectorization factor "
4963                << ore::NV("UserVectorizationFactor", UserVF)
4964                << " is ignored because the target does not support scalable "
4965                   "vectors. The compiler will pick a more suitable value.";
4966       });
4967     } else {
4968       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4969                         << " is unsafe. Ignoring scalable UserVF.\n");
4970       ORE->emit([&]() {
4971         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4972                                           TheLoop->getStartLoc(),
4973                                           TheLoop->getHeader())
4974                << "User-specified vectorization factor "
4975                << ore::NV("UserVectorizationFactor", UserVF)
4976                << " is unsafe. Ignoring the hint to let the compiler pick a "
4977                   "more suitable value.";
4978       });
4979     }
4980   }
4981 
4982   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4983                     << " / " << WidestType << " bits.\n");
4984 
4985   FixedScalableVFPair Result(ElementCount::getFixed(1),
4986                              ElementCount::getScalable(0));
4987   if (auto MaxVF =
4988           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4989                                   MaxSafeFixedVF, FoldTailByMasking))
4990     Result.FixedVF = MaxVF;
4991 
4992   if (auto MaxVF =
4993           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4994                                   MaxSafeScalableVF, FoldTailByMasking))
4995     if (MaxVF.isScalable()) {
4996       Result.ScalableVF = MaxVF;
4997       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4998                         << "\n");
4999     }
5000 
5001   return Result;
5002 }
5003 
5004 FixedScalableVFPair
5005 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5006   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5007     // TODO: It may by useful to do since it's still likely to be dynamically
5008     // uniform if the target can skip.
5009     reportVectorizationFailure(
5010         "Not inserting runtime ptr check for divergent target",
5011         "runtime pointer checks needed. Not enabled for divergent target",
5012         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5013     return FixedScalableVFPair::getNone();
5014   }
5015 
5016   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5017   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5018   if (TC == 1) {
5019     reportVectorizationFailure("Single iteration (non) loop",
5020         "loop trip count is one, irrelevant for vectorization",
5021         "SingleIterationLoop", ORE, TheLoop);
5022     return FixedScalableVFPair::getNone();
5023   }
5024 
5025   switch (ScalarEpilogueStatus) {
5026   case CM_ScalarEpilogueAllowed:
5027     return computeFeasibleMaxVF(TC, UserVF, false);
5028   case CM_ScalarEpilogueNotAllowedUsePredicate:
5029     LLVM_FALLTHROUGH;
5030   case CM_ScalarEpilogueNotNeededUsePredicate:
5031     LLVM_DEBUG(
5032         dbgs() << "LV: vector predicate hint/switch found.\n"
5033                << "LV: Not allowing scalar epilogue, creating predicated "
5034                << "vector loop.\n");
5035     break;
5036   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5037     // fallthrough as a special case of OptForSize
5038   case CM_ScalarEpilogueNotAllowedOptSize:
5039     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5040       LLVM_DEBUG(
5041           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5042     else
5043       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5044                         << "count.\n");
5045 
5046     // Bail if runtime checks are required, which are not good when optimising
5047     // for size.
5048     if (runtimeChecksRequired())
5049       return FixedScalableVFPair::getNone();
5050 
5051     break;
5052   }
5053 
5054   // The only loops we can vectorize without a scalar epilogue, are loops with
5055   // a bottom-test and a single exiting block. We'd have to handle the fact
5056   // that not every instruction executes on the last iteration.  This will
5057   // require a lane mask which varies through the vector loop body.  (TODO)
5058   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5059     // If there was a tail-folding hint/switch, but we can't fold the tail by
5060     // masking, fallback to a vectorization with a scalar epilogue.
5061     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5062       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5063                            "scalar epilogue instead.\n");
5064       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5065       return computeFeasibleMaxVF(TC, UserVF, false);
5066     }
5067     return FixedScalableVFPair::getNone();
5068   }
5069 
5070   // Now try the tail folding
5071 
5072   // Invalidate interleave groups that require an epilogue if we can't mask
5073   // the interleave-group.
5074   if (!useMaskedInterleavedAccesses(TTI)) {
5075     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5076            "No decisions should have been taken at this point");
5077     // Note: There is no need to invalidate any cost modeling decisions here, as
5078     // non where taken so far.
5079     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5080   }
5081 
5082   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5083   // Avoid tail folding if the trip count is known to be a multiple of any VF
5084   // we chose.
5085   // FIXME: The condition below pessimises the case for fixed-width vectors,
5086   // when scalable VFs are also candidates for vectorization.
5087   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5088     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5089     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5090            "MaxFixedVF must be a power of 2");
5091     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5092                                    : MaxFixedVF.getFixedValue();
5093     ScalarEvolution *SE = PSE.getSE();
5094     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5095     const SCEV *ExitCount = SE->getAddExpr(
5096         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5097     const SCEV *Rem = SE->getURemExpr(
5098         SE->applyLoopGuards(ExitCount, TheLoop),
5099         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5100     if (Rem->isZero()) {
5101       // Accept MaxFixedVF if we do not have a tail.
5102       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5103       return MaxFactors;
5104     }
5105   }
5106 
5107   // For scalable vectors don't use tail folding for low trip counts or
5108   // optimizing for code size. We only permit this if the user has explicitly
5109   // requested it.
5110   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5111       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5112       MaxFactors.ScalableVF.isVector())
5113     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5114 
5115   // If we don't know the precise trip count, or if the trip count that we
5116   // found modulo the vectorization factor is not zero, try to fold the tail
5117   // by masking.
5118   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5119   if (Legal->prepareToFoldTailByMasking()) {
5120     FoldTailByMasking = true;
5121     return MaxFactors;
5122   }
5123 
5124   // If there was a tail-folding hint/switch, but we can't fold the tail by
5125   // masking, fallback to a vectorization with a scalar epilogue.
5126   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5127     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5128                          "scalar epilogue instead.\n");
5129     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5130     return MaxFactors;
5131   }
5132 
5133   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5134     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5135     return FixedScalableVFPair::getNone();
5136   }
5137 
5138   if (TC == 0) {
5139     reportVectorizationFailure(
5140         "Unable to calculate the loop count due to complex control flow",
5141         "unable to calculate the loop count due to complex control flow",
5142         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5143     return FixedScalableVFPair::getNone();
5144   }
5145 
5146   reportVectorizationFailure(
5147       "Cannot optimize for size and vectorize at the same time.",
5148       "cannot optimize for size and vectorize at the same time. "
5149       "Enable vectorization of this loop with '#pragma clang loop "
5150       "vectorize(enable)' when compiling with -Os/-Oz",
5151       "NoTailLoopWithOptForSize", ORE, TheLoop);
5152   return FixedScalableVFPair::getNone();
5153 }
5154 
5155 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5156     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5157     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5158   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5159   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5160       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5161                            : TargetTransformInfo::RGK_FixedWidthVector);
5162 
5163   // Convenience function to return the minimum of two ElementCounts.
5164   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5165     assert((LHS.isScalable() == RHS.isScalable()) &&
5166            "Scalable flags must match");
5167     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5168   };
5169 
5170   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5171   // Note that both WidestRegister and WidestType may not be a powers of 2.
5172   auto MaxVectorElementCount = ElementCount::get(
5173       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5174       ComputeScalableMaxVF);
5175   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5176   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5177                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5178 
5179   if (!MaxVectorElementCount) {
5180     LLVM_DEBUG(dbgs() << "LV: The target has no "
5181                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5182                       << " vector registers.\n");
5183     return ElementCount::getFixed(1);
5184   }
5185 
5186   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5187   if (ConstTripCount &&
5188       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5189       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5190     // If loop trip count (TC) is known at compile time there is no point in
5191     // choosing VF greater than TC (as done in the loop below). Select maximum
5192     // power of two which doesn't exceed TC.
5193     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5194     // when the TC is less than or equal to the known number of lanes.
5195     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5196     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5197                          "exceeding the constant trip count: "
5198                       << ClampedConstTripCount << "\n");
5199     return ElementCount::getFixed(ClampedConstTripCount);
5200   }
5201 
5202   TargetTransformInfo::RegisterKind RegKind =
5203       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5204                            : TargetTransformInfo::RGK_FixedWidthVector;
5205   ElementCount MaxVF = MaxVectorElementCount;
5206   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5207                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5208     auto MaxVectorElementCountMaxBW = ElementCount::get(
5209         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5210         ComputeScalableMaxVF);
5211     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5212 
5213     // Collect all viable vectorization factors larger than the default MaxVF
5214     // (i.e. MaxVectorElementCount).
5215     SmallVector<ElementCount, 8> VFs;
5216     for (ElementCount VS = MaxVectorElementCount * 2;
5217          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5218       VFs.push_back(VS);
5219 
5220     // For each VF calculate its register usage.
5221     auto RUs = calculateRegisterUsage(VFs);
5222 
5223     // Select the largest VF which doesn't require more registers than existing
5224     // ones.
5225     for (int i = RUs.size() - 1; i >= 0; --i) {
5226       bool Selected = true;
5227       for (auto &pair : RUs[i].MaxLocalUsers) {
5228         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5229         if (pair.second > TargetNumRegisters)
5230           Selected = false;
5231       }
5232       if (Selected) {
5233         MaxVF = VFs[i];
5234         break;
5235       }
5236     }
5237     if (ElementCount MinVF =
5238             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5239       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5240         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5241                           << ") with target's minimum: " << MinVF << '\n');
5242         MaxVF = MinVF;
5243       }
5244     }
5245 
5246     // Invalidate any widening decisions we might have made, in case the loop
5247     // requires prediction (decided later), but we have already made some
5248     // load/store widening decisions.
5249     invalidateCostModelingDecisions();
5250   }
5251   return MaxVF;
5252 }
5253 
5254 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5255   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5256     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5257     auto Min = Attr.getVScaleRangeMin();
5258     auto Max = Attr.getVScaleRangeMax();
5259     if (Max && Min == Max)
5260       return Max;
5261   }
5262 
5263   return TTI.getVScaleForTuning();
5264 }
5265 
5266 bool LoopVectorizationCostModel::isMoreProfitable(
5267     const VectorizationFactor &A, const VectorizationFactor &B) const {
5268   InstructionCost CostA = A.Cost;
5269   InstructionCost CostB = B.Cost;
5270 
5271   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5272 
5273   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5274       MaxTripCount) {
5275     // If we are folding the tail and the trip count is a known (possibly small)
5276     // constant, the trip count will be rounded up to an integer number of
5277     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5278     // which we compare directly. When not folding the tail, the total cost will
5279     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5280     // approximated with the per-lane cost below instead of using the tripcount
5281     // as here.
5282     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5283     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5284     return RTCostA < RTCostB;
5285   }
5286 
5287   // Improve estimate for the vector width if it is scalable.
5288   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5289   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5290   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5291     if (A.Width.isScalable())
5292       EstimatedWidthA *= VScale.getValue();
5293     if (B.Width.isScalable())
5294       EstimatedWidthB *= VScale.getValue();
5295   }
5296 
5297   // Assume vscale may be larger than 1 (or the value being tuned for),
5298   // so that scalable vectorization is slightly favorable over fixed-width
5299   // vectorization.
5300   if (A.Width.isScalable() && !B.Width.isScalable())
5301     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5302 
5303   // To avoid the need for FP division:
5304   //      (CostA / A.Width) < (CostB / B.Width)
5305   // <=>  (CostA * B.Width) < (CostB * A.Width)
5306   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5307 }
5308 
5309 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5310     const ElementCountSet &VFCandidates) {
5311   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5312   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5313   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5314   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5315          "Expected Scalar VF to be a candidate");
5316 
5317   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5318   VectorizationFactor ChosenFactor = ScalarCost;
5319 
5320   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5321   if (ForceVectorization && VFCandidates.size() > 1) {
5322     // Ignore scalar width, because the user explicitly wants vectorization.
5323     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5324     // evaluation.
5325     ChosenFactor.Cost = InstructionCost::getMax();
5326   }
5327 
5328   SmallVector<InstructionVFPair> InvalidCosts;
5329   for (const auto &i : VFCandidates) {
5330     // The cost for scalar VF=1 is already calculated, so ignore it.
5331     if (i.isScalar())
5332       continue;
5333 
5334     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5335     VectorizationFactor Candidate(i, C.first);
5336 
5337 #ifndef NDEBUG
5338     unsigned AssumedMinimumVscale = 1;
5339     if (Optional<unsigned> VScale = getVScaleForTuning())
5340       AssumedMinimumVscale = VScale.getValue();
5341     unsigned Width =
5342         Candidate.Width.isScalable()
5343             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5344             : Candidate.Width.getFixedValue();
5345     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5346                       << " costs: " << (Candidate.Cost / Width));
5347     if (i.isScalable())
5348       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5349                         << AssumedMinimumVscale << ")");
5350     LLVM_DEBUG(dbgs() << ".\n");
5351 #endif
5352 
5353     if (!C.second && !ForceVectorization) {
5354       LLVM_DEBUG(
5355           dbgs() << "LV: Not considering vector loop of width " << i
5356                  << " because it will not generate any vector instructions.\n");
5357       continue;
5358     }
5359 
5360     // If profitable add it to ProfitableVF list.
5361     if (isMoreProfitable(Candidate, ScalarCost))
5362       ProfitableVFs.push_back(Candidate);
5363 
5364     if (isMoreProfitable(Candidate, ChosenFactor))
5365       ChosenFactor = Candidate;
5366   }
5367 
5368   // Emit a report of VFs with invalid costs in the loop.
5369   if (!InvalidCosts.empty()) {
5370     // Group the remarks per instruction, keeping the instruction order from
5371     // InvalidCosts.
5372     std::map<Instruction *, unsigned> Numbering;
5373     unsigned I = 0;
5374     for (auto &Pair : InvalidCosts)
5375       if (!Numbering.count(Pair.first))
5376         Numbering[Pair.first] = I++;
5377 
5378     // Sort the list, first on instruction(number) then on VF.
5379     llvm::sort(InvalidCosts,
5380                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5381                  if (Numbering[A.first] != Numbering[B.first])
5382                    return Numbering[A.first] < Numbering[B.first];
5383                  ElementCountComparator ECC;
5384                  return ECC(A.second, B.second);
5385                });
5386 
5387     // For a list of ordered instruction-vf pairs:
5388     //   [(load, vf1), (load, vf2), (store, vf1)]
5389     // Group the instructions together to emit separate remarks for:
5390     //   load  (vf1, vf2)
5391     //   store (vf1)
5392     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5393     auto Subset = ArrayRef<InstructionVFPair>();
5394     do {
5395       if (Subset.empty())
5396         Subset = Tail.take_front(1);
5397 
5398       Instruction *I = Subset.front().first;
5399 
5400       // If the next instruction is different, or if there are no other pairs,
5401       // emit a remark for the collated subset. e.g.
5402       //   [(load, vf1), (load, vf2))]
5403       // to emit:
5404       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5405       if (Subset == Tail || Tail[Subset.size()].first != I) {
5406         std::string OutString;
5407         raw_string_ostream OS(OutString);
5408         assert(!Subset.empty() && "Unexpected empty range");
5409         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5410         for (auto &Pair : Subset)
5411           OS << (Pair.second == Subset.front().second ? "" : ", ")
5412              << Pair.second;
5413         OS << "):";
5414         if (auto *CI = dyn_cast<CallInst>(I))
5415           OS << " call to " << CI->getCalledFunction()->getName();
5416         else
5417           OS << " " << I->getOpcodeName();
5418         OS.flush();
5419         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5420         Tail = Tail.drop_front(Subset.size());
5421         Subset = {};
5422       } else
5423         // Grow the subset by one element
5424         Subset = Tail.take_front(Subset.size() + 1);
5425     } while (!Tail.empty());
5426   }
5427 
5428   if (!EnableCondStoresVectorization && NumPredStores) {
5429     reportVectorizationFailure("There are conditional stores.",
5430         "store that is conditionally executed prevents vectorization",
5431         "ConditionalStore", ORE, TheLoop);
5432     ChosenFactor = ScalarCost;
5433   }
5434 
5435   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5436                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5437              << "LV: Vectorization seems to be not beneficial, "
5438              << "but was forced by a user.\n");
5439   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5440   return ChosenFactor;
5441 }
5442 
5443 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5444     const Loop &L, ElementCount VF) const {
5445   // Cross iteration phis such as reductions need special handling and are
5446   // currently unsupported.
5447   if (any_of(L.getHeader()->phis(),
5448              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5449     return false;
5450 
5451   // Phis with uses outside of the loop require special handling and are
5452   // currently unsupported.
5453   for (auto &Entry : Legal->getInductionVars()) {
5454     // Look for uses of the value of the induction at the last iteration.
5455     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5456     for (User *U : PostInc->users())
5457       if (!L.contains(cast<Instruction>(U)))
5458         return false;
5459     // Look for uses of penultimate value of the induction.
5460     for (User *U : Entry.first->users())
5461       if (!L.contains(cast<Instruction>(U)))
5462         return false;
5463   }
5464 
5465   // Induction variables that are widened require special handling that is
5466   // currently not supported.
5467   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5468         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5469                  this->isProfitableToScalarize(Entry.first, VF));
5470       }))
5471     return false;
5472 
5473   // Epilogue vectorization code has not been auditted to ensure it handles
5474   // non-latch exits properly.  It may be fine, but it needs auditted and
5475   // tested.
5476   if (L.getExitingBlock() != L.getLoopLatch())
5477     return false;
5478 
5479   return true;
5480 }
5481 
5482 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5483     const ElementCount VF) const {
5484   // FIXME: We need a much better cost-model to take different parameters such
5485   // as register pressure, code size increase and cost of extra branches into
5486   // account. For now we apply a very crude heuristic and only consider loops
5487   // with vectorization factors larger than a certain value.
5488   // We also consider epilogue vectorization unprofitable for targets that don't
5489   // consider interleaving beneficial (eg. MVE).
5490   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5491     return false;
5492   // FIXME: We should consider changing the threshold for scalable
5493   // vectors to take VScaleForTuning into account.
5494   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5495     return true;
5496   return false;
5497 }
5498 
5499 VectorizationFactor
5500 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5501     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5502   VectorizationFactor Result = VectorizationFactor::Disabled();
5503   if (!EnableEpilogueVectorization) {
5504     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5505     return Result;
5506   }
5507 
5508   if (!isScalarEpilogueAllowed()) {
5509     LLVM_DEBUG(
5510         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5511                   "allowed.\n";);
5512     return Result;
5513   }
5514 
5515   // Not really a cost consideration, but check for unsupported cases here to
5516   // simplify the logic.
5517   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5518     LLVM_DEBUG(
5519         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5520                   "not a supported candidate.\n";);
5521     return Result;
5522   }
5523 
5524   if (EpilogueVectorizationForceVF > 1) {
5525     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5526     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5527     if (LVP.hasPlanWithVF(ForcedEC))
5528       return {ForcedEC, 0};
5529     else {
5530       LLVM_DEBUG(
5531           dbgs()
5532               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5533       return Result;
5534     }
5535   }
5536 
5537   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5538       TheLoop->getHeader()->getParent()->hasMinSize()) {
5539     LLVM_DEBUG(
5540         dbgs()
5541             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5542     return Result;
5543   }
5544 
5545   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5546     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5547                          "this loop\n");
5548     return Result;
5549   }
5550 
5551   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5552   // the main loop handles 8 lanes per iteration. We could still benefit from
5553   // vectorizing the epilogue loop with VF=4.
5554   ElementCount EstimatedRuntimeVF = MainLoopVF;
5555   if (MainLoopVF.isScalable()) {
5556     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5557     if (Optional<unsigned> VScale = getVScaleForTuning())
5558       EstimatedRuntimeVF *= VScale.getValue();
5559   }
5560 
5561   for (auto &NextVF : ProfitableVFs)
5562     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5563           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5564          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5565         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5566         LVP.hasPlanWithVF(NextVF.Width))
5567       Result = NextVF;
5568 
5569   if (Result != VectorizationFactor::Disabled())
5570     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5571                       << Result.Width << "\n";);
5572   return Result;
5573 }
5574 
5575 std::pair<unsigned, unsigned>
5576 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5577   unsigned MinWidth = -1U;
5578   unsigned MaxWidth = 8;
5579   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5580   // For in-loop reductions, no element types are added to ElementTypesInLoop
5581   // if there are no loads/stores in the loop. In this case, check through the
5582   // reduction variables to determine the maximum width.
5583   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5584     // Reset MaxWidth so that we can find the smallest type used by recurrences
5585     // in the loop.
5586     MaxWidth = -1U;
5587     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5588       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5589       // When finding the min width used by the recurrence we need to account
5590       // for casts on the input operands of the recurrence.
5591       MaxWidth = std::min<unsigned>(
5592           MaxWidth, std::min<unsigned>(
5593                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5594                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5595     }
5596   } else {
5597     for (Type *T : ElementTypesInLoop) {
5598       MinWidth = std::min<unsigned>(
5599           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5600       MaxWidth = std::max<unsigned>(
5601           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5602     }
5603   }
5604   return {MinWidth, MaxWidth};
5605 }
5606 
5607 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5608   ElementTypesInLoop.clear();
5609   // For each block.
5610   for (BasicBlock *BB : TheLoop->blocks()) {
5611     // For each instruction in the loop.
5612     for (Instruction &I : BB->instructionsWithoutDebug()) {
5613       Type *T = I.getType();
5614 
5615       // Skip ignored values.
5616       if (ValuesToIgnore.count(&I))
5617         continue;
5618 
5619       // Only examine Loads, Stores and PHINodes.
5620       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5621         continue;
5622 
5623       // Examine PHI nodes that are reduction variables. Update the type to
5624       // account for the recurrence type.
5625       if (auto *PN = dyn_cast<PHINode>(&I)) {
5626         if (!Legal->isReductionVariable(PN))
5627           continue;
5628         const RecurrenceDescriptor &RdxDesc =
5629             Legal->getReductionVars().find(PN)->second;
5630         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5631             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5632                                       RdxDesc.getRecurrenceType(),
5633                                       TargetTransformInfo::ReductionFlags()))
5634           continue;
5635         T = RdxDesc.getRecurrenceType();
5636       }
5637 
5638       // Examine the stored values.
5639       if (auto *ST = dyn_cast<StoreInst>(&I))
5640         T = ST->getValueOperand()->getType();
5641 
5642       assert(T->isSized() &&
5643              "Expected the load/store/recurrence type to be sized");
5644 
5645       ElementTypesInLoop.insert(T);
5646     }
5647   }
5648 }
5649 
5650 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5651                                                            unsigned LoopCost) {
5652   // -- The interleave heuristics --
5653   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5654   // There are many micro-architectural considerations that we can't predict
5655   // at this level. For example, frontend pressure (on decode or fetch) due to
5656   // code size, or the number and capabilities of the execution ports.
5657   //
5658   // We use the following heuristics to select the interleave count:
5659   // 1. If the code has reductions, then we interleave to break the cross
5660   // iteration dependency.
5661   // 2. If the loop is really small, then we interleave to reduce the loop
5662   // overhead.
5663   // 3. We don't interleave if we think that we will spill registers to memory
5664   // due to the increased register pressure.
5665 
5666   if (!isScalarEpilogueAllowed())
5667     return 1;
5668 
5669   // We used the distance for the interleave count.
5670   if (Legal->getMaxSafeDepDistBytes() != -1U)
5671     return 1;
5672 
5673   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5674   const bool HasReductions = !Legal->getReductionVars().empty();
5675   // Do not interleave loops with a relatively small known or estimated trip
5676   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5677   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5678   // because with the above conditions interleaving can expose ILP and break
5679   // cross iteration dependences for reductions.
5680   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5681       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5682     return 1;
5683 
5684   // If we did not calculate the cost for VF (because the user selected the VF)
5685   // then we calculate the cost of VF here.
5686   if (LoopCost == 0) {
5687     InstructionCost C = expectedCost(VF).first;
5688     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5689     LoopCost = *C.getValue();
5690 
5691     // Loop body is free and there is no need for interleaving.
5692     if (LoopCost == 0)
5693       return 1;
5694   }
5695 
5696   RegisterUsage R = calculateRegisterUsage({VF})[0];
5697   // We divide by these constants so assume that we have at least one
5698   // instruction that uses at least one register.
5699   for (auto& pair : R.MaxLocalUsers) {
5700     pair.second = std::max(pair.second, 1U);
5701   }
5702 
5703   // We calculate the interleave count using the following formula.
5704   // Subtract the number of loop invariants from the number of available
5705   // registers. These registers are used by all of the interleaved instances.
5706   // Next, divide the remaining registers by the number of registers that is
5707   // required by the loop, in order to estimate how many parallel instances
5708   // fit without causing spills. All of this is rounded down if necessary to be
5709   // a power of two. We want power of two interleave count to simplify any
5710   // addressing operations or alignment considerations.
5711   // We also want power of two interleave counts to ensure that the induction
5712   // variable of the vector loop wraps to zero, when tail is folded by masking;
5713   // this currently happens when OptForSize, in which case IC is set to 1 above.
5714   unsigned IC = UINT_MAX;
5715 
5716   for (auto& pair : R.MaxLocalUsers) {
5717     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5718     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5719                       << " registers of "
5720                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5721     if (VF.isScalar()) {
5722       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5723         TargetNumRegisters = ForceTargetNumScalarRegs;
5724     } else {
5725       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5726         TargetNumRegisters = ForceTargetNumVectorRegs;
5727     }
5728     unsigned MaxLocalUsers = pair.second;
5729     unsigned LoopInvariantRegs = 0;
5730     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5731       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5732 
5733     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5734     // Don't count the induction variable as interleaved.
5735     if (EnableIndVarRegisterHeur) {
5736       TmpIC =
5737           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5738                         std::max(1U, (MaxLocalUsers - 1)));
5739     }
5740 
5741     IC = std::min(IC, TmpIC);
5742   }
5743 
5744   // Clamp the interleave ranges to reasonable counts.
5745   unsigned MaxInterleaveCount =
5746       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5747 
5748   // Check if the user has overridden the max.
5749   if (VF.isScalar()) {
5750     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5751       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5752   } else {
5753     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5754       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5755   }
5756 
5757   // If trip count is known or estimated compile time constant, limit the
5758   // interleave count to be less than the trip count divided by VF, provided it
5759   // is at least 1.
5760   //
5761   // For scalable vectors we can't know if interleaving is beneficial. It may
5762   // not be beneficial for small loops if none of the lanes in the second vector
5763   // iterations is enabled. However, for larger loops, there is likely to be a
5764   // similar benefit as for fixed-width vectors. For now, we choose to leave
5765   // the InterleaveCount as if vscale is '1', although if some information about
5766   // the vector is known (e.g. min vector size), we can make a better decision.
5767   if (BestKnownTC) {
5768     MaxInterleaveCount =
5769         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5770     // Make sure MaxInterleaveCount is greater than 0.
5771     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5772   }
5773 
5774   assert(MaxInterleaveCount > 0 &&
5775          "Maximum interleave count must be greater than 0");
5776 
5777   // Clamp the calculated IC to be between the 1 and the max interleave count
5778   // that the target and trip count allows.
5779   if (IC > MaxInterleaveCount)
5780     IC = MaxInterleaveCount;
5781   else
5782     // Make sure IC is greater than 0.
5783     IC = std::max(1u, IC);
5784 
5785   assert(IC > 0 && "Interleave count must be greater than 0.");
5786 
5787   // Interleave if we vectorized this loop and there is a reduction that could
5788   // benefit from interleaving.
5789   if (VF.isVector() && HasReductions) {
5790     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5791     return IC;
5792   }
5793 
5794   // For any scalar loop that either requires runtime checks or predication we
5795   // are better off leaving this to the unroller. Note that if we've already
5796   // vectorized the loop we will have done the runtime check and so interleaving
5797   // won't require further checks.
5798   bool ScalarInterleavingRequiresPredication =
5799       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5800          return Legal->blockNeedsPredication(BB);
5801        }));
5802   bool ScalarInterleavingRequiresRuntimePointerCheck =
5803       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5804 
5805   // We want to interleave small loops in order to reduce the loop overhead and
5806   // potentially expose ILP opportunities.
5807   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5808                     << "LV: IC is " << IC << '\n'
5809                     << "LV: VF is " << VF << '\n');
5810   const bool AggressivelyInterleaveReductions =
5811       TTI.enableAggressiveInterleaving(HasReductions);
5812   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5813       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5814     // We assume that the cost overhead is 1 and we use the cost model
5815     // to estimate the cost of the loop and interleave until the cost of the
5816     // loop overhead is about 5% of the cost of the loop.
5817     unsigned SmallIC =
5818         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5819 
5820     // Interleave until store/load ports (estimated by max interleave count) are
5821     // saturated.
5822     unsigned NumStores = Legal->getNumStores();
5823     unsigned NumLoads = Legal->getNumLoads();
5824     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5825     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5826 
5827     // There is little point in interleaving for reductions containing selects
5828     // and compares when VF=1 since it may just create more overhead than it's
5829     // worth for loops with small trip counts. This is because we still have to
5830     // do the final reduction after the loop.
5831     bool HasSelectCmpReductions =
5832         HasReductions &&
5833         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5834           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5835           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5836               RdxDesc.getRecurrenceKind());
5837         });
5838     if (HasSelectCmpReductions) {
5839       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5840       return 1;
5841     }
5842 
5843     // If we have a scalar reduction (vector reductions are already dealt with
5844     // by this point), we can increase the critical path length if the loop
5845     // we're interleaving is inside another loop. For tree-wise reductions
5846     // set the limit to 2, and for ordered reductions it's best to disable
5847     // interleaving entirely.
5848     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5849       bool HasOrderedReductions =
5850           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5851             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5852             return RdxDesc.isOrdered();
5853           });
5854       if (HasOrderedReductions) {
5855         LLVM_DEBUG(
5856             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5857         return 1;
5858       }
5859 
5860       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5861       SmallIC = std::min(SmallIC, F);
5862       StoresIC = std::min(StoresIC, F);
5863       LoadsIC = std::min(LoadsIC, F);
5864     }
5865 
5866     if (EnableLoadStoreRuntimeInterleave &&
5867         std::max(StoresIC, LoadsIC) > SmallIC) {
5868       LLVM_DEBUG(
5869           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5870       return std::max(StoresIC, LoadsIC);
5871     }
5872 
5873     // If there are scalar reductions and TTI has enabled aggressive
5874     // interleaving for reductions, we will interleave to expose ILP.
5875     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5876         AggressivelyInterleaveReductions) {
5877       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5878       // Interleave no less than SmallIC but not as aggressive as the normal IC
5879       // to satisfy the rare situation when resources are too limited.
5880       return std::max(IC / 2, SmallIC);
5881     } else {
5882       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5883       return SmallIC;
5884     }
5885   }
5886 
5887   // Interleave if this is a large loop (small loops are already dealt with by
5888   // this point) that could benefit from interleaving.
5889   if (AggressivelyInterleaveReductions) {
5890     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5891     return IC;
5892   }
5893 
5894   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5895   return 1;
5896 }
5897 
5898 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5899 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5900   // This function calculates the register usage by measuring the highest number
5901   // of values that are alive at a single location. Obviously, this is a very
5902   // rough estimation. We scan the loop in a topological order in order and
5903   // assign a number to each instruction. We use RPO to ensure that defs are
5904   // met before their users. We assume that each instruction that has in-loop
5905   // users starts an interval. We record every time that an in-loop value is
5906   // used, so we have a list of the first and last occurrences of each
5907   // instruction. Next, we transpose this data structure into a multi map that
5908   // holds the list of intervals that *end* at a specific location. This multi
5909   // map allows us to perform a linear search. We scan the instructions linearly
5910   // and record each time that a new interval starts, by placing it in a set.
5911   // If we find this value in the multi-map then we remove it from the set.
5912   // The max register usage is the maximum size of the set.
5913   // We also search for instructions that are defined outside the loop, but are
5914   // used inside the loop. We need this number separately from the max-interval
5915   // usage number because when we unroll, loop-invariant values do not take
5916   // more register.
5917   LoopBlocksDFS DFS(TheLoop);
5918   DFS.perform(LI);
5919 
5920   RegisterUsage RU;
5921 
5922   // Each 'key' in the map opens a new interval. The values
5923   // of the map are the index of the 'last seen' usage of the
5924   // instruction that is the key.
5925   using IntervalMap = DenseMap<Instruction *, unsigned>;
5926 
5927   // Maps instruction to its index.
5928   SmallVector<Instruction *, 64> IdxToInstr;
5929   // Marks the end of each interval.
5930   IntervalMap EndPoint;
5931   // Saves the list of instruction indices that are used in the loop.
5932   SmallPtrSet<Instruction *, 8> Ends;
5933   // Saves the list of values that are used in the loop but are
5934   // defined outside the loop, such as arguments and constants.
5935   SmallPtrSet<Value *, 8> LoopInvariants;
5936 
5937   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5938     for (Instruction &I : BB->instructionsWithoutDebug()) {
5939       IdxToInstr.push_back(&I);
5940 
5941       // Save the end location of each USE.
5942       for (Value *U : I.operands()) {
5943         auto *Instr = dyn_cast<Instruction>(U);
5944 
5945         // Ignore non-instruction values such as arguments, constants, etc.
5946         if (!Instr)
5947           continue;
5948 
5949         // If this instruction is outside the loop then record it and continue.
5950         if (!TheLoop->contains(Instr)) {
5951           LoopInvariants.insert(Instr);
5952           continue;
5953         }
5954 
5955         // Overwrite previous end points.
5956         EndPoint[Instr] = IdxToInstr.size();
5957         Ends.insert(Instr);
5958       }
5959     }
5960   }
5961 
5962   // Saves the list of intervals that end with the index in 'key'.
5963   using InstrList = SmallVector<Instruction *, 2>;
5964   DenseMap<unsigned, InstrList> TransposeEnds;
5965 
5966   // Transpose the EndPoints to a list of values that end at each index.
5967   for (auto &Interval : EndPoint)
5968     TransposeEnds[Interval.second].push_back(Interval.first);
5969 
5970   SmallPtrSet<Instruction *, 8> OpenIntervals;
5971   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5972   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5973 
5974   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5975 
5976   // A lambda that gets the register usage for the given type and VF.
5977   const auto &TTICapture = TTI;
5978   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
5979     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5980       return 0;
5981     InstructionCost::CostType RegUsage =
5982         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
5983     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
5984            "Nonsensical values for register usage.");
5985     return RegUsage;
5986   };
5987 
5988   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5989     Instruction *I = IdxToInstr[i];
5990 
5991     // Remove all of the instructions that end at this location.
5992     InstrList &List = TransposeEnds[i];
5993     for (Instruction *ToRemove : List)
5994       OpenIntervals.erase(ToRemove);
5995 
5996     // Ignore instructions that are never used within the loop.
5997     if (!Ends.count(I))
5998       continue;
5999 
6000     // Skip ignored values.
6001     if (ValuesToIgnore.count(I))
6002       continue;
6003 
6004     // For each VF find the maximum usage of registers.
6005     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6006       // Count the number of live intervals.
6007       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6008 
6009       if (VFs[j].isScalar()) {
6010         for (auto Inst : OpenIntervals) {
6011           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6012           if (RegUsage.find(ClassID) == RegUsage.end())
6013             RegUsage[ClassID] = 1;
6014           else
6015             RegUsage[ClassID] += 1;
6016         }
6017       } else {
6018         collectUniformsAndScalars(VFs[j]);
6019         for (auto Inst : OpenIntervals) {
6020           // Skip ignored values for VF > 1.
6021           if (VecValuesToIgnore.count(Inst))
6022             continue;
6023           if (isScalarAfterVectorization(Inst, VFs[j])) {
6024             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6025             if (RegUsage.find(ClassID) == RegUsage.end())
6026               RegUsage[ClassID] = 1;
6027             else
6028               RegUsage[ClassID] += 1;
6029           } else {
6030             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6031             if (RegUsage.find(ClassID) == RegUsage.end())
6032               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6033             else
6034               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6035           }
6036         }
6037       }
6038 
6039       for (auto& pair : RegUsage) {
6040         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6041           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6042         else
6043           MaxUsages[j][pair.first] = pair.second;
6044       }
6045     }
6046 
6047     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6048                       << OpenIntervals.size() << '\n');
6049 
6050     // Add the current instruction to the list of open intervals.
6051     OpenIntervals.insert(I);
6052   }
6053 
6054   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6055     SmallMapVector<unsigned, unsigned, 4> Invariant;
6056 
6057     for (auto Inst : LoopInvariants) {
6058       unsigned Usage =
6059           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6060       unsigned ClassID =
6061           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6062       if (Invariant.find(ClassID) == Invariant.end())
6063         Invariant[ClassID] = Usage;
6064       else
6065         Invariant[ClassID] += Usage;
6066     }
6067 
6068     LLVM_DEBUG({
6069       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6070       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6071              << " item\n";
6072       for (const auto &pair : MaxUsages[i]) {
6073         dbgs() << "LV(REG): RegisterClass: "
6074                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6075                << " registers\n";
6076       }
6077       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6078              << " item\n";
6079       for (const auto &pair : Invariant) {
6080         dbgs() << "LV(REG): RegisterClass: "
6081                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6082                << " registers\n";
6083       }
6084     });
6085 
6086     RU.LoopInvariantRegs = Invariant;
6087     RU.MaxLocalUsers = MaxUsages[i];
6088     RUs[i] = RU;
6089   }
6090 
6091   return RUs;
6092 }
6093 
6094 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6095                                                            ElementCount VF) {
6096   // TODO: Cost model for emulated masked load/store is completely
6097   // broken. This hack guides the cost model to use an artificially
6098   // high enough value to practically disable vectorization with such
6099   // operations, except where previously deployed legality hack allowed
6100   // using very low cost values. This is to avoid regressions coming simply
6101   // from moving "masked load/store" check from legality to cost model.
6102   // Masked Load/Gather emulation was previously never allowed.
6103   // Limited number of Masked Store/Scatter emulation was allowed.
6104   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6105   return isa<LoadInst>(I) ||
6106          (isa<StoreInst>(I) &&
6107           NumPredStores > NumberOfStoresToPredicate);
6108 }
6109 
6110 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6111   // If we aren't vectorizing the loop, or if we've already collected the
6112   // instructions to scalarize, there's nothing to do. Collection may already
6113   // have occurred if we have a user-selected VF and are now computing the
6114   // expected cost for interleaving.
6115   if (VF.isScalar() || VF.isZero() ||
6116       InstsToScalarize.find(VF) != InstsToScalarize.end())
6117     return;
6118 
6119   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6120   // not profitable to scalarize any instructions, the presence of VF in the
6121   // map will indicate that we've analyzed it already.
6122   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6123 
6124   // Find all the instructions that are scalar with predication in the loop and
6125   // determine if it would be better to not if-convert the blocks they are in.
6126   // If so, we also record the instructions to scalarize.
6127   for (BasicBlock *BB : TheLoop->blocks()) {
6128     if (!blockNeedsPredicationForAnyReason(BB))
6129       continue;
6130     for (Instruction &I : *BB)
6131       if (isScalarWithPredication(&I, VF)) {
6132         ScalarCostsTy ScalarCosts;
6133         // Do not apply discount if scalable, because that would lead to
6134         // invalid scalarization costs.
6135         // Do not apply discount logic if hacked cost is needed
6136         // for emulated masked memrefs.
6137         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6138             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6139           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6140         // Remember that BB will remain after vectorization.
6141         PredicatedBBsAfterVectorization.insert(BB);
6142       }
6143   }
6144 }
6145 
6146 int LoopVectorizationCostModel::computePredInstDiscount(
6147     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6148   assert(!isUniformAfterVectorization(PredInst, VF) &&
6149          "Instruction marked uniform-after-vectorization will be predicated");
6150 
6151   // Initialize the discount to zero, meaning that the scalar version and the
6152   // vector version cost the same.
6153   InstructionCost Discount = 0;
6154 
6155   // Holds instructions to analyze. The instructions we visit are mapped in
6156   // ScalarCosts. Those instructions are the ones that would be scalarized if
6157   // we find that the scalar version costs less.
6158   SmallVector<Instruction *, 8> Worklist;
6159 
6160   // Returns true if the given instruction can be scalarized.
6161   auto canBeScalarized = [&](Instruction *I) -> bool {
6162     // We only attempt to scalarize instructions forming a single-use chain
6163     // from the original predicated block that would otherwise be vectorized.
6164     // Although not strictly necessary, we give up on instructions we know will
6165     // already be scalar to avoid traversing chains that are unlikely to be
6166     // beneficial.
6167     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6168         isScalarAfterVectorization(I, VF))
6169       return false;
6170 
6171     // If the instruction is scalar with predication, it will be analyzed
6172     // separately. We ignore it within the context of PredInst.
6173     if (isScalarWithPredication(I, VF))
6174       return false;
6175 
6176     // If any of the instruction's operands are uniform after vectorization,
6177     // the instruction cannot be scalarized. This prevents, for example, a
6178     // masked load from being scalarized.
6179     //
6180     // We assume we will only emit a value for lane zero of an instruction
6181     // marked uniform after vectorization, rather than VF identical values.
6182     // Thus, if we scalarize an instruction that uses a uniform, we would
6183     // create uses of values corresponding to the lanes we aren't emitting code
6184     // for. This behavior can be changed by allowing getScalarValue to clone
6185     // the lane zero values for uniforms rather than asserting.
6186     for (Use &U : I->operands())
6187       if (auto *J = dyn_cast<Instruction>(U.get()))
6188         if (isUniformAfterVectorization(J, VF))
6189           return false;
6190 
6191     // Otherwise, we can scalarize the instruction.
6192     return true;
6193   };
6194 
6195   // Compute the expected cost discount from scalarizing the entire expression
6196   // feeding the predicated instruction. We currently only consider expressions
6197   // that are single-use instruction chains.
6198   Worklist.push_back(PredInst);
6199   while (!Worklist.empty()) {
6200     Instruction *I = Worklist.pop_back_val();
6201 
6202     // If we've already analyzed the instruction, there's nothing to do.
6203     if (ScalarCosts.find(I) != ScalarCosts.end())
6204       continue;
6205 
6206     // Compute the cost of the vector instruction. Note that this cost already
6207     // includes the scalarization overhead of the predicated instruction.
6208     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6209 
6210     // Compute the cost of the scalarized instruction. This cost is the cost of
6211     // the instruction as if it wasn't if-converted and instead remained in the
6212     // predicated block. We will scale this cost by block probability after
6213     // computing the scalarization overhead.
6214     InstructionCost ScalarCost =
6215         VF.getFixedValue() *
6216         getInstructionCost(I, ElementCount::getFixed(1)).first;
6217 
6218     // Compute the scalarization overhead of needed insertelement instructions
6219     // and phi nodes.
6220     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6221       ScalarCost += TTI.getScalarizationOverhead(
6222           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6223           APInt::getAllOnes(VF.getFixedValue()), true, false);
6224       ScalarCost +=
6225           VF.getFixedValue() *
6226           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6227     }
6228 
6229     // Compute the scalarization overhead of needed extractelement
6230     // instructions. For each of the instruction's operands, if the operand can
6231     // be scalarized, add it to the worklist; otherwise, account for the
6232     // overhead.
6233     for (Use &U : I->operands())
6234       if (auto *J = dyn_cast<Instruction>(U.get())) {
6235         assert(VectorType::isValidElementType(J->getType()) &&
6236                "Instruction has non-scalar type");
6237         if (canBeScalarized(J))
6238           Worklist.push_back(J);
6239         else if (needsExtract(J, VF)) {
6240           ScalarCost += TTI.getScalarizationOverhead(
6241               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6242               APInt::getAllOnes(VF.getFixedValue()), false, true);
6243         }
6244       }
6245 
6246     // Scale the total scalar cost by block probability.
6247     ScalarCost /= getReciprocalPredBlockProb();
6248 
6249     // Compute the discount. A non-negative discount means the vector version
6250     // of the instruction costs more, and scalarizing would be beneficial.
6251     Discount += VectorCost - ScalarCost;
6252     ScalarCosts[I] = ScalarCost;
6253   }
6254 
6255   return *Discount.getValue();
6256 }
6257 
6258 LoopVectorizationCostModel::VectorizationCostTy
6259 LoopVectorizationCostModel::expectedCost(
6260     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6261   VectorizationCostTy Cost;
6262 
6263   // For each block.
6264   for (BasicBlock *BB : TheLoop->blocks()) {
6265     VectorizationCostTy BlockCost;
6266 
6267     // For each instruction in the old loop.
6268     for (Instruction &I : BB->instructionsWithoutDebug()) {
6269       // Skip ignored values.
6270       if (ValuesToIgnore.count(&I) ||
6271           (VF.isVector() && VecValuesToIgnore.count(&I)))
6272         continue;
6273 
6274       VectorizationCostTy C = getInstructionCost(&I, VF);
6275 
6276       // Check if we should override the cost.
6277       if (C.first.isValid() &&
6278           ForceTargetInstructionCost.getNumOccurrences() > 0)
6279         C.first = InstructionCost(ForceTargetInstructionCost);
6280 
6281       // Keep a list of instructions with invalid costs.
6282       if (Invalid && !C.first.isValid())
6283         Invalid->emplace_back(&I, VF);
6284 
6285       BlockCost.first += C.first;
6286       BlockCost.second |= C.second;
6287       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6288                         << " for VF " << VF << " For instruction: " << I
6289                         << '\n');
6290     }
6291 
6292     // If we are vectorizing a predicated block, it will have been
6293     // if-converted. This means that the block's instructions (aside from
6294     // stores and instructions that may divide by zero) will now be
6295     // unconditionally executed. For the scalar case, we may not always execute
6296     // the predicated block, if it is an if-else block. Thus, scale the block's
6297     // cost by the probability of executing it. blockNeedsPredication from
6298     // Legal is used so as to not include all blocks in tail folded loops.
6299     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6300       BlockCost.first /= getReciprocalPredBlockProb();
6301 
6302     Cost.first += BlockCost.first;
6303     Cost.second |= BlockCost.second;
6304   }
6305 
6306   return Cost;
6307 }
6308 
6309 /// Gets Address Access SCEV after verifying that the access pattern
6310 /// is loop invariant except the induction variable dependence.
6311 ///
6312 /// This SCEV can be sent to the Target in order to estimate the address
6313 /// calculation cost.
6314 static const SCEV *getAddressAccessSCEV(
6315               Value *Ptr,
6316               LoopVectorizationLegality *Legal,
6317               PredicatedScalarEvolution &PSE,
6318               const Loop *TheLoop) {
6319 
6320   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6321   if (!Gep)
6322     return nullptr;
6323 
6324   // We are looking for a gep with all loop invariant indices except for one
6325   // which should be an induction variable.
6326   auto SE = PSE.getSE();
6327   unsigned NumOperands = Gep->getNumOperands();
6328   for (unsigned i = 1; i < NumOperands; ++i) {
6329     Value *Opd = Gep->getOperand(i);
6330     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6331         !Legal->isInductionVariable(Opd))
6332       return nullptr;
6333   }
6334 
6335   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6336   return PSE.getSCEV(Ptr);
6337 }
6338 
6339 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6340   return Legal->hasStride(I->getOperand(0)) ||
6341          Legal->hasStride(I->getOperand(1));
6342 }
6343 
6344 InstructionCost
6345 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6346                                                         ElementCount VF) {
6347   assert(VF.isVector() &&
6348          "Scalarization cost of instruction implies vectorization.");
6349   if (VF.isScalable())
6350     return InstructionCost::getInvalid();
6351 
6352   Type *ValTy = getLoadStoreType(I);
6353   auto SE = PSE.getSE();
6354 
6355   unsigned AS = getLoadStoreAddressSpace(I);
6356   Value *Ptr = getLoadStorePointerOperand(I);
6357   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6358   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6359   //       that it is being called from this specific place.
6360 
6361   // Figure out whether the access is strided and get the stride value
6362   // if it's known in compile time
6363   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6364 
6365   // Get the cost of the scalar memory instruction and address computation.
6366   InstructionCost Cost =
6367       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6368 
6369   // Don't pass *I here, since it is scalar but will actually be part of a
6370   // vectorized loop where the user of it is a vectorized instruction.
6371   const Align Alignment = getLoadStoreAlignment(I);
6372   Cost += VF.getKnownMinValue() *
6373           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6374                               AS, TTI::TCK_RecipThroughput);
6375 
6376   // Get the overhead of the extractelement and insertelement instructions
6377   // we might create due to scalarization.
6378   Cost += getScalarizationOverhead(I, VF);
6379 
6380   // If we have a predicated load/store, it will need extra i1 extracts and
6381   // conditional branches, but may not be executed for each vector lane. Scale
6382   // the cost by the probability of executing the predicated block.
6383   if (isPredicatedInst(I, VF)) {
6384     Cost /= getReciprocalPredBlockProb();
6385 
6386     // Add the cost of an i1 extract and a branch
6387     auto *Vec_i1Ty =
6388         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6389     Cost += TTI.getScalarizationOverhead(
6390         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6391         /*Insert=*/false, /*Extract=*/true);
6392     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6393 
6394     if (useEmulatedMaskMemRefHack(I, VF))
6395       // Artificially setting to a high enough value to practically disable
6396       // vectorization with such operations.
6397       Cost = 3000000;
6398   }
6399 
6400   return Cost;
6401 }
6402 
6403 InstructionCost
6404 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6405                                                     ElementCount VF) {
6406   Type *ValTy = getLoadStoreType(I);
6407   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6408   Value *Ptr = getLoadStorePointerOperand(I);
6409   unsigned AS = getLoadStoreAddressSpace(I);
6410   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6411   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6412 
6413   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6414          "Stride should be 1 or -1 for consecutive memory access");
6415   const Align Alignment = getLoadStoreAlignment(I);
6416   InstructionCost Cost = 0;
6417   if (Legal->isMaskRequired(I))
6418     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6419                                       CostKind);
6420   else
6421     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6422                                 CostKind, I);
6423 
6424   bool Reverse = ConsecutiveStride < 0;
6425   if (Reverse)
6426     Cost +=
6427         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6428   return Cost;
6429 }
6430 
6431 InstructionCost
6432 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6433                                                 ElementCount VF) {
6434   assert(Legal->isUniformMemOp(*I));
6435 
6436   Type *ValTy = getLoadStoreType(I);
6437   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6438   const Align Alignment = getLoadStoreAlignment(I);
6439   unsigned AS = getLoadStoreAddressSpace(I);
6440   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6441   if (isa<LoadInst>(I)) {
6442     return TTI.getAddressComputationCost(ValTy) +
6443            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6444                                CostKind) +
6445            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6446   }
6447   StoreInst *SI = cast<StoreInst>(I);
6448 
6449   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6450   return TTI.getAddressComputationCost(ValTy) +
6451          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6452                              CostKind) +
6453          (isLoopInvariantStoreValue
6454               ? 0
6455               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6456                                        VF.getKnownMinValue() - 1));
6457 }
6458 
6459 InstructionCost
6460 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6461                                                  ElementCount VF) {
6462   Type *ValTy = getLoadStoreType(I);
6463   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6464   const Align Alignment = getLoadStoreAlignment(I);
6465   const Value *Ptr = getLoadStorePointerOperand(I);
6466 
6467   return TTI.getAddressComputationCost(VectorTy) +
6468          TTI.getGatherScatterOpCost(
6469              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6470              TargetTransformInfo::TCK_RecipThroughput, I);
6471 }
6472 
6473 InstructionCost
6474 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6475                                                    ElementCount VF) {
6476   // TODO: Once we have support for interleaving with scalable vectors
6477   // we can calculate the cost properly here.
6478   if (VF.isScalable())
6479     return InstructionCost::getInvalid();
6480 
6481   Type *ValTy = getLoadStoreType(I);
6482   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6483   unsigned AS = getLoadStoreAddressSpace(I);
6484 
6485   auto Group = getInterleavedAccessGroup(I);
6486   assert(Group && "Fail to get an interleaved access group.");
6487 
6488   unsigned InterleaveFactor = Group->getFactor();
6489   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6490 
6491   // Holds the indices of existing members in the interleaved group.
6492   SmallVector<unsigned, 4> Indices;
6493   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6494     if (Group->getMember(IF))
6495       Indices.push_back(IF);
6496 
6497   // Calculate the cost of the whole interleaved group.
6498   bool UseMaskForGaps =
6499       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6500       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6501   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6502       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6503       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6504 
6505   if (Group->isReverse()) {
6506     // TODO: Add support for reversed masked interleaved access.
6507     assert(!Legal->isMaskRequired(I) &&
6508            "Reverse masked interleaved access not supported.");
6509     Cost +=
6510         Group->getNumMembers() *
6511         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6512   }
6513   return Cost;
6514 }
6515 
6516 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6517     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6518   using namespace llvm::PatternMatch;
6519   // Early exit for no inloop reductions
6520   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6521     return None;
6522   auto *VectorTy = cast<VectorType>(Ty);
6523 
6524   // We are looking for a pattern of, and finding the minimal acceptable cost:
6525   //  reduce(mul(ext(A), ext(B))) or
6526   //  reduce(mul(A, B)) or
6527   //  reduce(ext(A)) or
6528   //  reduce(A).
6529   // The basic idea is that we walk down the tree to do that, finding the root
6530   // reduction instruction in InLoopReductionImmediateChains. From there we find
6531   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6532   // of the components. If the reduction cost is lower then we return it for the
6533   // reduction instruction and 0 for the other instructions in the pattern. If
6534   // it is not we return an invalid cost specifying the orignal cost method
6535   // should be used.
6536   Instruction *RetI = I;
6537   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6538     if (!RetI->hasOneUser())
6539       return None;
6540     RetI = RetI->user_back();
6541   }
6542   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6543       RetI->user_back()->getOpcode() == Instruction::Add) {
6544     if (!RetI->hasOneUser())
6545       return None;
6546     RetI = RetI->user_back();
6547   }
6548 
6549   // Test if the found instruction is a reduction, and if not return an invalid
6550   // cost specifying the parent to use the original cost modelling.
6551   if (!InLoopReductionImmediateChains.count(RetI))
6552     return None;
6553 
6554   // Find the reduction this chain is a part of and calculate the basic cost of
6555   // the reduction on its own.
6556   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6557   Instruction *ReductionPhi = LastChain;
6558   while (!isa<PHINode>(ReductionPhi))
6559     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6560 
6561   const RecurrenceDescriptor &RdxDesc =
6562       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6563 
6564   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6565       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6566 
6567   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6568   // normal fmul instruction to the cost of the fadd reduction.
6569   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6570     BaseCost +=
6571         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6572 
6573   // If we're using ordered reductions then we can just return the base cost
6574   // here, since getArithmeticReductionCost calculates the full ordered
6575   // reduction cost when FP reassociation is not allowed.
6576   if (useOrderedReductions(RdxDesc))
6577     return BaseCost;
6578 
6579   // Get the operand that was not the reduction chain and match it to one of the
6580   // patterns, returning the better cost if it is found.
6581   Instruction *RedOp = RetI->getOperand(1) == LastChain
6582                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6583                            : dyn_cast<Instruction>(RetI->getOperand(1));
6584 
6585   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6586 
6587   Instruction *Op0, *Op1;
6588   if (RedOp &&
6589       match(RedOp,
6590             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6591       match(Op0, m_ZExtOrSExt(m_Value())) &&
6592       Op0->getOpcode() == Op1->getOpcode() &&
6593       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6594       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6595       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6596 
6597     // Matched reduce(ext(mul(ext(A), ext(B)))
6598     // Note that the extend opcodes need to all match, or if A==B they will have
6599     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6600     // which is equally fine.
6601     bool IsUnsigned = isa<ZExtInst>(Op0);
6602     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6603     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6604 
6605     InstructionCost ExtCost =
6606         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6607                              TTI::CastContextHint::None, CostKind, Op0);
6608     InstructionCost MulCost =
6609         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6610     InstructionCost Ext2Cost =
6611         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6612                              TTI::CastContextHint::None, CostKind, RedOp);
6613 
6614     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6615         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6616         CostKind);
6617 
6618     if (RedCost.isValid() &&
6619         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6620       return I == RetI ? RedCost : 0;
6621   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6622              !TheLoop->isLoopInvariant(RedOp)) {
6623     // Matched reduce(ext(A))
6624     bool IsUnsigned = isa<ZExtInst>(RedOp);
6625     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6626     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6627         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6628         CostKind);
6629 
6630     InstructionCost ExtCost =
6631         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6632                              TTI::CastContextHint::None, CostKind, RedOp);
6633     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6634       return I == RetI ? RedCost : 0;
6635   } else if (RedOp &&
6636              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6637     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6638         Op0->getOpcode() == Op1->getOpcode() &&
6639         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6640       bool IsUnsigned = isa<ZExtInst>(Op0);
6641       Type *Op0Ty = Op0->getOperand(0)->getType();
6642       Type *Op1Ty = Op1->getOperand(0)->getType();
6643       Type *LargestOpTy =
6644           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6645                                                                     : Op0Ty;
6646       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6647 
6648       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6649       // different sizes. We take the largest type as the ext to reduce, and add
6650       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6651       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6652           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6653           TTI::CastContextHint::None, CostKind, Op0);
6654       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6655           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6656           TTI::CastContextHint::None, CostKind, Op1);
6657       InstructionCost MulCost =
6658           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6659 
6660       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6661           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6662           CostKind);
6663       InstructionCost ExtraExtCost = 0;
6664       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6665         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6666         ExtraExtCost = TTI.getCastInstrCost(
6667             ExtraExtOp->getOpcode(), ExtType,
6668             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6669             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6670       }
6671 
6672       if (RedCost.isValid() &&
6673           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6674         return I == RetI ? RedCost : 0;
6675     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6676       // Matched reduce(mul())
6677       InstructionCost MulCost =
6678           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6679 
6680       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6681           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6682           CostKind);
6683 
6684       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6685         return I == RetI ? RedCost : 0;
6686     }
6687   }
6688 
6689   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6690 }
6691 
6692 InstructionCost
6693 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6694                                                      ElementCount VF) {
6695   // Calculate scalar cost only. Vectorization cost should be ready at this
6696   // moment.
6697   if (VF.isScalar()) {
6698     Type *ValTy = getLoadStoreType(I);
6699     const Align Alignment = getLoadStoreAlignment(I);
6700     unsigned AS = getLoadStoreAddressSpace(I);
6701 
6702     return TTI.getAddressComputationCost(ValTy) +
6703            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6704                                TTI::TCK_RecipThroughput, I);
6705   }
6706   return getWideningCost(I, VF);
6707 }
6708 
6709 LoopVectorizationCostModel::VectorizationCostTy
6710 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6711                                                ElementCount VF) {
6712   // If we know that this instruction will remain uniform, check the cost of
6713   // the scalar version.
6714   if (isUniformAfterVectorization(I, VF))
6715     VF = ElementCount::getFixed(1);
6716 
6717   if (VF.isVector() && isProfitableToScalarize(I, VF))
6718     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6719 
6720   // Forced scalars do not have any scalarization overhead.
6721   auto ForcedScalar = ForcedScalars.find(VF);
6722   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6723     auto InstSet = ForcedScalar->second;
6724     if (InstSet.count(I))
6725       return VectorizationCostTy(
6726           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6727            VF.getKnownMinValue()),
6728           false);
6729   }
6730 
6731   Type *VectorTy;
6732   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6733 
6734   bool TypeNotScalarized = false;
6735   if (VF.isVector() && VectorTy->isVectorTy()) {
6736     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6737     if (NumParts)
6738       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6739     else
6740       C = InstructionCost::getInvalid();
6741   }
6742   return VectorizationCostTy(C, TypeNotScalarized);
6743 }
6744 
6745 InstructionCost
6746 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6747                                                      ElementCount VF) const {
6748 
6749   // There is no mechanism yet to create a scalable scalarization loop,
6750   // so this is currently Invalid.
6751   if (VF.isScalable())
6752     return InstructionCost::getInvalid();
6753 
6754   if (VF.isScalar())
6755     return 0;
6756 
6757   InstructionCost Cost = 0;
6758   Type *RetTy = ToVectorTy(I->getType(), VF);
6759   if (!RetTy->isVoidTy() &&
6760       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6761     Cost += TTI.getScalarizationOverhead(
6762         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6763         false);
6764 
6765   // Some targets keep addresses scalar.
6766   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6767     return Cost;
6768 
6769   // Some targets support efficient element stores.
6770   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6771     return Cost;
6772 
6773   // Collect operands to consider.
6774   CallInst *CI = dyn_cast<CallInst>(I);
6775   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6776 
6777   // Skip operands that do not require extraction/scalarization and do not incur
6778   // any overhead.
6779   SmallVector<Type *> Tys;
6780   for (auto *V : filterExtractingOperands(Ops, VF))
6781     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6782   return Cost + TTI.getOperandsScalarizationOverhead(
6783                     filterExtractingOperands(Ops, VF), Tys);
6784 }
6785 
6786 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6787   if (VF.isScalar())
6788     return;
6789   NumPredStores = 0;
6790   for (BasicBlock *BB : TheLoop->blocks()) {
6791     // For each instruction in the old loop.
6792     for (Instruction &I : *BB) {
6793       Value *Ptr =  getLoadStorePointerOperand(&I);
6794       if (!Ptr)
6795         continue;
6796 
6797       // TODO: We should generate better code and update the cost model for
6798       // predicated uniform stores. Today they are treated as any other
6799       // predicated store (see added test cases in
6800       // invariant-store-vectorization.ll).
6801       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6802         NumPredStores++;
6803 
6804       if (Legal->isUniformMemOp(I)) {
6805         // TODO: Avoid replicating loads and stores instead of
6806         // relying on instcombine to remove them.
6807         // Load: Scalar load + broadcast
6808         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6809         InstructionCost Cost;
6810         if (isa<StoreInst>(&I) && VF.isScalable() &&
6811             isLegalGatherOrScatter(&I, VF)) {
6812           Cost = getGatherScatterCost(&I, VF);
6813           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6814         } else {
6815           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
6816                  "Cannot yet scalarize uniform stores");
6817           Cost = getUniformMemOpCost(&I, VF);
6818           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6819         }
6820         continue;
6821       }
6822 
6823       // We assume that widening is the best solution when possible.
6824       if (memoryInstructionCanBeWidened(&I, VF)) {
6825         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6826         int ConsecutiveStride = Legal->isConsecutivePtr(
6827             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6828         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6829                "Expected consecutive stride.");
6830         InstWidening Decision =
6831             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6832         setWideningDecision(&I, VF, Decision, Cost);
6833         continue;
6834       }
6835 
6836       // Choose between Interleaving, Gather/Scatter or Scalarization.
6837       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6838       unsigned NumAccesses = 1;
6839       if (isAccessInterleaved(&I)) {
6840         auto Group = getInterleavedAccessGroup(&I);
6841         assert(Group && "Fail to get an interleaved access group.");
6842 
6843         // Make one decision for the whole group.
6844         if (getWideningDecision(&I, VF) != CM_Unknown)
6845           continue;
6846 
6847         NumAccesses = Group->getNumMembers();
6848         if (interleavedAccessCanBeWidened(&I, VF))
6849           InterleaveCost = getInterleaveGroupCost(&I, VF);
6850       }
6851 
6852       InstructionCost GatherScatterCost =
6853           isLegalGatherOrScatter(&I, VF)
6854               ? getGatherScatterCost(&I, VF) * NumAccesses
6855               : InstructionCost::getInvalid();
6856 
6857       InstructionCost ScalarizationCost =
6858           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6859 
6860       // Choose better solution for the current VF,
6861       // write down this decision and use it during vectorization.
6862       InstructionCost Cost;
6863       InstWidening Decision;
6864       if (InterleaveCost <= GatherScatterCost &&
6865           InterleaveCost < ScalarizationCost) {
6866         Decision = CM_Interleave;
6867         Cost = InterleaveCost;
6868       } else if (GatherScatterCost < ScalarizationCost) {
6869         Decision = CM_GatherScatter;
6870         Cost = GatherScatterCost;
6871       } else {
6872         Decision = CM_Scalarize;
6873         Cost = ScalarizationCost;
6874       }
6875       // If the instructions belongs to an interleave group, the whole group
6876       // receives the same decision. The whole group receives the cost, but
6877       // the cost will actually be assigned to one instruction.
6878       if (auto Group = getInterleavedAccessGroup(&I))
6879         setWideningDecision(Group, VF, Decision, Cost);
6880       else
6881         setWideningDecision(&I, VF, Decision, Cost);
6882     }
6883   }
6884 
6885   // Make sure that any load of address and any other address computation
6886   // remains scalar unless there is gather/scatter support. This avoids
6887   // inevitable extracts into address registers, and also has the benefit of
6888   // activating LSR more, since that pass can't optimize vectorized
6889   // addresses.
6890   if (TTI.prefersVectorizedAddressing())
6891     return;
6892 
6893   // Start with all scalar pointer uses.
6894   SmallPtrSet<Instruction *, 8> AddrDefs;
6895   for (BasicBlock *BB : TheLoop->blocks())
6896     for (Instruction &I : *BB) {
6897       Instruction *PtrDef =
6898         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6899       if (PtrDef && TheLoop->contains(PtrDef) &&
6900           getWideningDecision(&I, VF) != CM_GatherScatter)
6901         AddrDefs.insert(PtrDef);
6902     }
6903 
6904   // Add all instructions used to generate the addresses.
6905   SmallVector<Instruction *, 4> Worklist;
6906   append_range(Worklist, AddrDefs);
6907   while (!Worklist.empty()) {
6908     Instruction *I = Worklist.pop_back_val();
6909     for (auto &Op : I->operands())
6910       if (auto *InstOp = dyn_cast<Instruction>(Op))
6911         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6912             AddrDefs.insert(InstOp).second)
6913           Worklist.push_back(InstOp);
6914   }
6915 
6916   for (auto *I : AddrDefs) {
6917     if (isa<LoadInst>(I)) {
6918       // Setting the desired widening decision should ideally be handled in
6919       // by cost functions, but since this involves the task of finding out
6920       // if the loaded register is involved in an address computation, it is
6921       // instead changed here when we know this is the case.
6922       InstWidening Decision = getWideningDecision(I, VF);
6923       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6924         // Scalarize a widened load of address.
6925         setWideningDecision(
6926             I, VF, CM_Scalarize,
6927             (VF.getKnownMinValue() *
6928              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6929       else if (auto Group = getInterleavedAccessGroup(I)) {
6930         // Scalarize an interleave group of address loads.
6931         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6932           if (Instruction *Member = Group->getMember(I))
6933             setWideningDecision(
6934                 Member, VF, CM_Scalarize,
6935                 (VF.getKnownMinValue() *
6936                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6937         }
6938       }
6939     } else
6940       // Make sure I gets scalarized and a cost estimate without
6941       // scalarization overhead.
6942       ForcedScalars[VF].insert(I);
6943   }
6944 }
6945 
6946 InstructionCost
6947 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6948                                                Type *&VectorTy) {
6949   Type *RetTy = I->getType();
6950   if (canTruncateToMinimalBitwidth(I, VF))
6951     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6952   auto SE = PSE.getSE();
6953   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6954 
6955   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6956                                                 ElementCount VF) -> bool {
6957     if (VF.isScalar())
6958       return true;
6959 
6960     auto Scalarized = InstsToScalarize.find(VF);
6961     assert(Scalarized != InstsToScalarize.end() &&
6962            "VF not yet analyzed for scalarization profitability");
6963     return !Scalarized->second.count(I) &&
6964            llvm::all_of(I->users(), [&](User *U) {
6965              auto *UI = cast<Instruction>(U);
6966              return !Scalarized->second.count(UI);
6967            });
6968   };
6969   (void) hasSingleCopyAfterVectorization;
6970 
6971   if (isScalarAfterVectorization(I, VF)) {
6972     // With the exception of GEPs and PHIs, after scalarization there should
6973     // only be one copy of the instruction generated in the loop. This is
6974     // because the VF is either 1, or any instructions that need scalarizing
6975     // have already been dealt with by the the time we get here. As a result,
6976     // it means we don't have to multiply the instruction cost by VF.
6977     assert(I->getOpcode() == Instruction::GetElementPtr ||
6978            I->getOpcode() == Instruction::PHI ||
6979            (I->getOpcode() == Instruction::BitCast &&
6980             I->getType()->isPointerTy()) ||
6981            hasSingleCopyAfterVectorization(I, VF));
6982     VectorTy = RetTy;
6983   } else
6984     VectorTy = ToVectorTy(RetTy, VF);
6985 
6986   // TODO: We need to estimate the cost of intrinsic calls.
6987   switch (I->getOpcode()) {
6988   case Instruction::GetElementPtr:
6989     // We mark this instruction as zero-cost because the cost of GEPs in
6990     // vectorized code depends on whether the corresponding memory instruction
6991     // is scalarized or not. Therefore, we handle GEPs with the memory
6992     // instruction cost.
6993     return 0;
6994   case Instruction::Br: {
6995     // In cases of scalarized and predicated instructions, there will be VF
6996     // predicated blocks in the vectorized loop. Each branch around these
6997     // blocks requires also an extract of its vector compare i1 element.
6998     bool ScalarPredicatedBB = false;
6999     BranchInst *BI = cast<BranchInst>(I);
7000     if (VF.isVector() && BI->isConditional() &&
7001         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7002          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7003       ScalarPredicatedBB = true;
7004 
7005     if (ScalarPredicatedBB) {
7006       // Not possible to scalarize scalable vector with predicated instructions.
7007       if (VF.isScalable())
7008         return InstructionCost::getInvalid();
7009       // Return cost for branches around scalarized and predicated blocks.
7010       auto *Vec_i1Ty =
7011           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7012       return (
7013           TTI.getScalarizationOverhead(
7014               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7015           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7016     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7017       // The back-edge branch will remain, as will all scalar branches.
7018       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7019     else
7020       // This branch will be eliminated by if-conversion.
7021       return 0;
7022     // Note: We currently assume zero cost for an unconditional branch inside
7023     // a predicated block since it will become a fall-through, although we
7024     // may decide in the future to call TTI for all branches.
7025   }
7026   case Instruction::PHI: {
7027     auto *Phi = cast<PHINode>(I);
7028 
7029     // First-order recurrences are replaced by vector shuffles inside the loop.
7030     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7031     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7032       return TTI.getShuffleCost(
7033           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7034           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7035 
7036     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7037     // converted into select instructions. We require N - 1 selects per phi
7038     // node, where N is the number of incoming values.
7039     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7040       return (Phi->getNumIncomingValues() - 1) *
7041              TTI.getCmpSelInstrCost(
7042                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7043                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7044                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7045 
7046     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7047   }
7048   case Instruction::UDiv:
7049   case Instruction::SDiv:
7050   case Instruction::URem:
7051   case Instruction::SRem:
7052     // If we have a predicated instruction, it may not be executed for each
7053     // vector lane. Get the scalarization cost and scale this amount by the
7054     // probability of executing the predicated block. If the instruction is not
7055     // predicated, we fall through to the next case.
7056     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7057       InstructionCost Cost = 0;
7058 
7059       // These instructions have a non-void type, so account for the phi nodes
7060       // that we will create. This cost is likely to be zero. The phi node
7061       // cost, if any, should be scaled by the block probability because it
7062       // models a copy at the end of each predicated block.
7063       Cost += VF.getKnownMinValue() *
7064               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7065 
7066       // The cost of the non-predicated instruction.
7067       Cost += VF.getKnownMinValue() *
7068               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7069 
7070       // The cost of insertelement and extractelement instructions needed for
7071       // scalarization.
7072       Cost += getScalarizationOverhead(I, VF);
7073 
7074       // Scale the cost by the probability of executing the predicated blocks.
7075       // This assumes the predicated block for each vector lane is equally
7076       // likely.
7077       return Cost / getReciprocalPredBlockProb();
7078     }
7079     LLVM_FALLTHROUGH;
7080   case Instruction::Add:
7081   case Instruction::FAdd:
7082   case Instruction::Sub:
7083   case Instruction::FSub:
7084   case Instruction::Mul:
7085   case Instruction::FMul:
7086   case Instruction::FDiv:
7087   case Instruction::FRem:
7088   case Instruction::Shl:
7089   case Instruction::LShr:
7090   case Instruction::AShr:
7091   case Instruction::And:
7092   case Instruction::Or:
7093   case Instruction::Xor: {
7094     // Since we will replace the stride by 1 the multiplication should go away.
7095     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7096       return 0;
7097 
7098     // Detect reduction patterns
7099     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7100       return *RedCost;
7101 
7102     // Certain instructions can be cheaper to vectorize if they have a constant
7103     // second vector operand. One example of this are shifts on x86.
7104     Value *Op2 = I->getOperand(1);
7105     TargetTransformInfo::OperandValueProperties Op2VP;
7106     TargetTransformInfo::OperandValueKind Op2VK =
7107         TTI.getOperandInfo(Op2, Op2VP);
7108     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7109       Op2VK = TargetTransformInfo::OK_UniformValue;
7110 
7111     SmallVector<const Value *, 4> Operands(I->operand_values());
7112     return TTI.getArithmeticInstrCost(
7113         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7114         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7115   }
7116   case Instruction::FNeg: {
7117     return TTI.getArithmeticInstrCost(
7118         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7119         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7120         TargetTransformInfo::OP_None, I->getOperand(0), I);
7121   }
7122   case Instruction::Select: {
7123     SelectInst *SI = cast<SelectInst>(I);
7124     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7125     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7126 
7127     const Value *Op0, *Op1;
7128     using namespace llvm::PatternMatch;
7129     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7130                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7131       // select x, y, false --> x & y
7132       // select x, true, y --> x | y
7133       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7134       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7135       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7136       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7137       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7138               Op1->getType()->getScalarSizeInBits() == 1);
7139 
7140       SmallVector<const Value *, 2> Operands{Op0, Op1};
7141       return TTI.getArithmeticInstrCost(
7142           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7143           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7144     }
7145 
7146     Type *CondTy = SI->getCondition()->getType();
7147     if (!ScalarCond)
7148       CondTy = VectorType::get(CondTy, VF);
7149 
7150     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7151     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7152       Pred = Cmp->getPredicate();
7153     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7154                                   CostKind, I);
7155   }
7156   case Instruction::ICmp:
7157   case Instruction::FCmp: {
7158     Type *ValTy = I->getOperand(0)->getType();
7159     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7160     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7161       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7162     VectorTy = ToVectorTy(ValTy, VF);
7163     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7164                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7165                                   I);
7166   }
7167   case Instruction::Store:
7168   case Instruction::Load: {
7169     ElementCount Width = VF;
7170     if (Width.isVector()) {
7171       InstWidening Decision = getWideningDecision(I, Width);
7172       assert(Decision != CM_Unknown &&
7173              "CM decision should be taken at this point");
7174       if (Decision == CM_Scalarize)
7175         Width = ElementCount::getFixed(1);
7176     }
7177     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7178     return getMemoryInstructionCost(I, VF);
7179   }
7180   case Instruction::BitCast:
7181     if (I->getType()->isPointerTy())
7182       return 0;
7183     LLVM_FALLTHROUGH;
7184   case Instruction::ZExt:
7185   case Instruction::SExt:
7186   case Instruction::FPToUI:
7187   case Instruction::FPToSI:
7188   case Instruction::FPExt:
7189   case Instruction::PtrToInt:
7190   case Instruction::IntToPtr:
7191   case Instruction::SIToFP:
7192   case Instruction::UIToFP:
7193   case Instruction::Trunc:
7194   case Instruction::FPTrunc: {
7195     // Computes the CastContextHint from a Load/Store instruction.
7196     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7197       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7198              "Expected a load or a store!");
7199 
7200       if (VF.isScalar() || !TheLoop->contains(I))
7201         return TTI::CastContextHint::Normal;
7202 
7203       switch (getWideningDecision(I, VF)) {
7204       case LoopVectorizationCostModel::CM_GatherScatter:
7205         return TTI::CastContextHint::GatherScatter;
7206       case LoopVectorizationCostModel::CM_Interleave:
7207         return TTI::CastContextHint::Interleave;
7208       case LoopVectorizationCostModel::CM_Scalarize:
7209       case LoopVectorizationCostModel::CM_Widen:
7210         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7211                                         : TTI::CastContextHint::Normal;
7212       case LoopVectorizationCostModel::CM_Widen_Reverse:
7213         return TTI::CastContextHint::Reversed;
7214       case LoopVectorizationCostModel::CM_Unknown:
7215         llvm_unreachable("Instr did not go through cost modelling?");
7216       }
7217 
7218       llvm_unreachable("Unhandled case!");
7219     };
7220 
7221     unsigned Opcode = I->getOpcode();
7222     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7223     // For Trunc, the context is the only user, which must be a StoreInst.
7224     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7225       if (I->hasOneUse())
7226         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7227           CCH = ComputeCCH(Store);
7228     }
7229     // For Z/Sext, the context is the operand, which must be a LoadInst.
7230     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7231              Opcode == Instruction::FPExt) {
7232       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7233         CCH = ComputeCCH(Load);
7234     }
7235 
7236     // We optimize the truncation of induction variables having constant
7237     // integer steps. The cost of these truncations is the same as the scalar
7238     // operation.
7239     if (isOptimizableIVTruncate(I, VF)) {
7240       auto *Trunc = cast<TruncInst>(I);
7241       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7242                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7243     }
7244 
7245     // Detect reduction patterns
7246     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7247       return *RedCost;
7248 
7249     Type *SrcScalarTy = I->getOperand(0)->getType();
7250     Type *SrcVecTy =
7251         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7252     if (canTruncateToMinimalBitwidth(I, VF)) {
7253       // This cast is going to be shrunk. This may remove the cast or it might
7254       // turn it into slightly different cast. For example, if MinBW == 16,
7255       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7256       //
7257       // Calculate the modified src and dest types.
7258       Type *MinVecTy = VectorTy;
7259       if (Opcode == Instruction::Trunc) {
7260         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7261         VectorTy =
7262             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7263       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7264         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7265         VectorTy =
7266             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7267       }
7268     }
7269 
7270     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7271   }
7272   case Instruction::Call: {
7273     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7274       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7275         return *RedCost;
7276     bool NeedToScalarize;
7277     CallInst *CI = cast<CallInst>(I);
7278     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7279     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7280       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7281       return std::min(CallCost, IntrinsicCost);
7282     }
7283     return CallCost;
7284   }
7285   case Instruction::ExtractValue:
7286     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7287   case Instruction::Alloca:
7288     // We cannot easily widen alloca to a scalable alloca, as
7289     // the result would need to be a vector of pointers.
7290     if (VF.isScalable())
7291       return InstructionCost::getInvalid();
7292     LLVM_FALLTHROUGH;
7293   default:
7294     // This opcode is unknown. Assume that it is the same as 'mul'.
7295     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7296   } // end of switch.
7297 }
7298 
7299 char LoopVectorize::ID = 0;
7300 
7301 static const char lv_name[] = "Loop Vectorization";
7302 
7303 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7304 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7305 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7306 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7307 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7308 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7309 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7311 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7312 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7313 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7314 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7315 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7316 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7317 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7318 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7319 
7320 namespace llvm {
7321 
7322 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7323 
7324 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7325                               bool VectorizeOnlyWhenForced) {
7326   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7327 }
7328 
7329 } // end namespace llvm
7330 
7331 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7332   // Check if the pointer operand of a load or store instruction is
7333   // consecutive.
7334   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7335     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7336   return false;
7337 }
7338 
7339 void LoopVectorizationCostModel::collectValuesToIgnore() {
7340   // Ignore ephemeral values.
7341   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7342 
7343   // Ignore type-promoting instructions we identified during reduction
7344   // detection.
7345   for (auto &Reduction : Legal->getReductionVars()) {
7346     const RecurrenceDescriptor &RedDes = Reduction.second;
7347     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7348     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7349   }
7350   // Ignore type-casting instructions we identified during induction
7351   // detection.
7352   for (auto &Induction : Legal->getInductionVars()) {
7353     const InductionDescriptor &IndDes = Induction.second;
7354     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7355     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7356   }
7357 }
7358 
7359 void LoopVectorizationCostModel::collectInLoopReductions() {
7360   for (auto &Reduction : Legal->getReductionVars()) {
7361     PHINode *Phi = Reduction.first;
7362     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7363 
7364     // We don't collect reductions that are type promoted (yet).
7365     if (RdxDesc.getRecurrenceType() != Phi->getType())
7366       continue;
7367 
7368     // If the target would prefer this reduction to happen "in-loop", then we
7369     // want to record it as such.
7370     unsigned Opcode = RdxDesc.getOpcode();
7371     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7372         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7373                                    TargetTransformInfo::ReductionFlags()))
7374       continue;
7375 
7376     // Check that we can correctly put the reductions into the loop, by
7377     // finding the chain of operations that leads from the phi to the loop
7378     // exit value.
7379     SmallVector<Instruction *, 4> ReductionOperations =
7380         RdxDesc.getReductionOpChain(Phi, TheLoop);
7381     bool InLoop = !ReductionOperations.empty();
7382     if (InLoop) {
7383       InLoopReductionChains[Phi] = ReductionOperations;
7384       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7385       Instruction *LastChain = Phi;
7386       for (auto *I : ReductionOperations) {
7387         InLoopReductionImmediateChains[I] = LastChain;
7388         LastChain = I;
7389       }
7390     }
7391     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7392                       << " reduction for phi: " << *Phi << "\n");
7393   }
7394 }
7395 
7396 // TODO: we could return a pair of values that specify the max VF and
7397 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7398 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7399 // doesn't have a cost model that can choose which plan to execute if
7400 // more than one is generated.
7401 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7402                                  LoopVectorizationCostModel &CM) {
7403   unsigned WidestType;
7404   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7405   return WidestVectorRegBits / WidestType;
7406 }
7407 
7408 VectorizationFactor
7409 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7410   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7411   ElementCount VF = UserVF;
7412   // Outer loop handling: They may require CFG and instruction level
7413   // transformations before even evaluating whether vectorization is profitable.
7414   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7415   // the vectorization pipeline.
7416   if (!OrigLoop->isInnermost()) {
7417     // If the user doesn't provide a vectorization factor, determine a
7418     // reasonable one.
7419     if (UserVF.isZero()) {
7420       VF = ElementCount::getFixed(determineVPlanVF(
7421           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7422               .getFixedSize(),
7423           CM));
7424       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7425 
7426       // Make sure we have a VF > 1 for stress testing.
7427       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7428         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7429                           << "overriding computed VF.\n");
7430         VF = ElementCount::getFixed(4);
7431       }
7432     }
7433     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7434     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7435            "VF needs to be a power of two");
7436     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7437                       << "VF " << VF << " to build VPlans.\n");
7438     buildVPlans(VF, VF);
7439 
7440     // For VPlan build stress testing, we bail out after VPlan construction.
7441     if (VPlanBuildStressTest)
7442       return VectorizationFactor::Disabled();
7443 
7444     return {VF, 0 /*Cost*/};
7445   }
7446 
7447   LLVM_DEBUG(
7448       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7449                 "VPlan-native path.\n");
7450   return VectorizationFactor::Disabled();
7451 }
7452 
7453 Optional<VectorizationFactor>
7454 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7455   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7456   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7457   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7458     return None;
7459 
7460   // Invalidate interleave groups if all blocks of loop will be predicated.
7461   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7462       !useMaskedInterleavedAccesses(*TTI)) {
7463     LLVM_DEBUG(
7464         dbgs()
7465         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7466            "which requires masked-interleaved support.\n");
7467     if (CM.InterleaveInfo.invalidateGroups())
7468       // Invalidating interleave groups also requires invalidating all decisions
7469       // based on them, which includes widening decisions and uniform and scalar
7470       // values.
7471       CM.invalidateCostModelingDecisions();
7472   }
7473 
7474   ElementCount MaxUserVF =
7475       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7476   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7477   if (!UserVF.isZero() && UserVFIsLegal) {
7478     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7479            "VF needs to be a power of two");
7480     // Collect the instructions (and their associated costs) that will be more
7481     // profitable to scalarize.
7482     if (CM.selectUserVectorizationFactor(UserVF)) {
7483       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7484       CM.collectInLoopReductions();
7485       buildVPlansWithVPRecipes(UserVF, UserVF);
7486       LLVM_DEBUG(printPlans(dbgs()));
7487       return {{UserVF, 0}};
7488     } else
7489       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7490                               "InvalidCost", ORE, OrigLoop);
7491   }
7492 
7493   // Populate the set of Vectorization Factor Candidates.
7494   ElementCountSet VFCandidates;
7495   for (auto VF = ElementCount::getFixed(1);
7496        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7497     VFCandidates.insert(VF);
7498   for (auto VF = ElementCount::getScalable(1);
7499        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7500     VFCandidates.insert(VF);
7501 
7502   for (const auto &VF : VFCandidates) {
7503     // Collect Uniform and Scalar instructions after vectorization with VF.
7504     CM.collectUniformsAndScalars(VF);
7505 
7506     // Collect the instructions (and their associated costs) that will be more
7507     // profitable to scalarize.
7508     if (VF.isVector())
7509       CM.collectInstsToScalarize(VF);
7510   }
7511 
7512   CM.collectInLoopReductions();
7513   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7514   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7515 
7516   LLVM_DEBUG(printPlans(dbgs()));
7517   if (!MaxFactors.hasVector())
7518     return VectorizationFactor::Disabled();
7519 
7520   // Select the optimal vectorization factor.
7521   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7522 
7523   // Check if it is profitable to vectorize with runtime checks.
7524   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7525   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7526     bool PragmaThresholdReached =
7527         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7528     bool ThresholdReached =
7529         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7530     if ((ThresholdReached && !Hints.allowReordering()) ||
7531         PragmaThresholdReached) {
7532       ORE->emit([&]() {
7533         return OptimizationRemarkAnalysisAliasing(
7534                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7535                    OrigLoop->getHeader())
7536                << "loop not vectorized: cannot prove it is safe to reorder "
7537                   "memory operations";
7538       });
7539       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7540       Hints.emitRemarkWithHints();
7541       return VectorizationFactor::Disabled();
7542     }
7543   }
7544   return SelectedVF;
7545 }
7546 
7547 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7548   assert(count_if(VPlans,
7549                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7550              1 &&
7551          "Best VF has not a single VPlan.");
7552 
7553   for (const VPlanPtr &Plan : VPlans) {
7554     if (Plan->hasVF(VF))
7555       return *Plan.get();
7556   }
7557   llvm_unreachable("No plan found!");
7558 }
7559 
7560 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7561   SmallVector<Metadata *, 4> MDs;
7562   // Reserve first location for self reference to the LoopID metadata node.
7563   MDs.push_back(nullptr);
7564   bool IsUnrollMetadata = false;
7565   MDNode *LoopID = L->getLoopID();
7566   if (LoopID) {
7567     // First find existing loop unrolling disable metadata.
7568     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7569       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7570       if (MD) {
7571         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7572         IsUnrollMetadata =
7573             S && S->getString().startswith("llvm.loop.unroll.disable");
7574       }
7575       MDs.push_back(LoopID->getOperand(i));
7576     }
7577   }
7578 
7579   if (!IsUnrollMetadata) {
7580     // Add runtime unroll disable metadata.
7581     LLVMContext &Context = L->getHeader()->getContext();
7582     SmallVector<Metadata *, 1> DisableOperands;
7583     DisableOperands.push_back(
7584         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7585     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7586     MDs.push_back(DisableNode);
7587     MDNode *NewLoopID = MDNode::get(Context, MDs);
7588     // Set operand 0 to refer to the loop id itself.
7589     NewLoopID->replaceOperandWith(0, NewLoopID);
7590     L->setLoopID(NewLoopID);
7591   }
7592 }
7593 
7594 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7595                                            VPlan &BestVPlan,
7596                                            InnerLoopVectorizer &ILV,
7597                                            DominatorTree *DT) {
7598   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7599                     << '\n');
7600 
7601   // Perform the actual loop transformation.
7602 
7603   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7604   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7605   Value *CanonicalIVStartValue;
7606   std::tie(State.CFG.VectorPreHeader, CanonicalIVStartValue) =
7607       ILV.createVectorizedLoopSkeleton();
7608   ILV.collectPoisonGeneratingRecipes(State);
7609 
7610   ILV.printDebugTracesAtStart();
7611 
7612   //===------------------------------------------------===//
7613   //
7614   // Notice: any optimization or new instruction that go
7615   // into the code below should also be implemented in
7616   // the cost-model.
7617   //
7618   //===------------------------------------------------===//
7619 
7620   // 2. Copy and widen instructions from the old loop into the new loop.
7621   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7622                              ILV.getOrCreateVectorTripCount(nullptr),
7623                              CanonicalIVStartValue, State);
7624   BestVPlan.execute(&State);
7625 
7626   // Keep all loop hints from the original loop on the vector loop (we'll
7627   // replace the vectorizer-specific hints below).
7628   MDNode *OrigLoopID = OrigLoop->getLoopID();
7629 
7630   Optional<MDNode *> VectorizedLoopID =
7631       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7632                                       LLVMLoopVectorizeFollowupVectorized});
7633 
7634   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7635   if (VectorizedLoopID.hasValue())
7636     L->setLoopID(VectorizedLoopID.getValue());
7637   else {
7638     // Keep all loop hints from the original loop on the vector loop (we'll
7639     // replace the vectorizer-specific hints below).
7640     if (MDNode *LID = OrigLoop->getLoopID())
7641       L->setLoopID(LID);
7642 
7643     LoopVectorizeHints Hints(L, true, *ORE);
7644     Hints.setAlreadyVectorized();
7645   }
7646   // Disable runtime unrolling when vectorizing the epilogue loop.
7647   if (CanonicalIVStartValue)
7648     AddRuntimeUnrollDisableMetaData(L);
7649 
7650   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7651   //    predication, updating analyses.
7652   ILV.fixVectorizedLoop(State);
7653 
7654   ILV.printDebugTracesAtEnd();
7655 }
7656 
7657 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7658 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7659   for (const auto &Plan : VPlans)
7660     if (PrintVPlansInDotFormat)
7661       Plan->printDOT(O);
7662     else
7663       Plan->print(O);
7664 }
7665 #endif
7666 
7667 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7668     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7669 
7670   // We create new control-flow for the vectorized loop, so the original exit
7671   // conditions will be dead after vectorization if it's only used by the
7672   // terminator
7673   SmallVector<BasicBlock*> ExitingBlocks;
7674   OrigLoop->getExitingBlocks(ExitingBlocks);
7675   for (auto *BB : ExitingBlocks) {
7676     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7677     if (!Cmp || !Cmp->hasOneUse())
7678       continue;
7679 
7680     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7681     if (!DeadInstructions.insert(Cmp).second)
7682       continue;
7683 
7684     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7685     // TODO: can recurse through operands in general
7686     for (Value *Op : Cmp->operands()) {
7687       if (isa<TruncInst>(Op) && Op->hasOneUse())
7688           DeadInstructions.insert(cast<Instruction>(Op));
7689     }
7690   }
7691 
7692   // We create new "steps" for induction variable updates to which the original
7693   // induction variables map. An original update instruction will be dead if
7694   // all its users except the induction variable are dead.
7695   auto *Latch = OrigLoop->getLoopLatch();
7696   for (auto &Induction : Legal->getInductionVars()) {
7697     PHINode *Ind = Induction.first;
7698     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7699 
7700     // If the tail is to be folded by masking, the primary induction variable,
7701     // if exists, isn't dead: it will be used for masking. Don't kill it.
7702     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7703       continue;
7704 
7705     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7706           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7707         }))
7708       DeadInstructions.insert(IndUpdate);
7709   }
7710 }
7711 
7712 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7713 
7714 //===--------------------------------------------------------------------===//
7715 // EpilogueVectorizerMainLoop
7716 //===--------------------------------------------------------------------===//
7717 
7718 /// This function is partially responsible for generating the control flow
7719 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7720 std::pair<BasicBlock *, Value *>
7721 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7722   MDNode *OrigLoopID = OrigLoop->getLoopID();
7723 
7724   // Workaround!  Compute the trip count of the original loop and cache it
7725   // before we start modifying the CFG.  This code has a systemic problem
7726   // wherein it tries to run analysis over partially constructed IR; this is
7727   // wrong, and not simply for SCEV.  The trip count of the original loop
7728   // simply happens to be prone to hitting this in practice.  In theory, we
7729   // can hit the same issue for any SCEV, or ValueTracking query done during
7730   // mutation.  See PR49900.
7731   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7732   createVectorLoopSkeleton("");
7733 
7734   // Generate the code to check the minimum iteration count of the vector
7735   // epilogue (see below).
7736   EPI.EpilogueIterationCountCheck =
7737       emitMinimumIterationCountCheck(LoopScalarPreHeader, true);
7738   EPI.EpilogueIterationCountCheck->setName("iter.check");
7739 
7740   // Generate the code to check any assumptions that we've made for SCEV
7741   // expressions.
7742   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7743 
7744   // Generate the code that checks at runtime if arrays overlap. We put the
7745   // checks into a separate block to make the more common case of few elements
7746   // faster.
7747   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7748 
7749   // Generate the iteration count check for the main loop, *after* the check
7750   // for the epilogue loop, so that the path-length is shorter for the case
7751   // that goes directly through the vector epilogue. The longer-path length for
7752   // the main loop is compensated for, by the gain from vectorizing the larger
7753   // trip count. Note: the branch will get updated later on when we vectorize
7754   // the epilogue.
7755   EPI.MainLoopIterationCountCheck =
7756       emitMinimumIterationCountCheck(LoopScalarPreHeader, false);
7757 
7758   // Generate the induction variable.
7759   Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader);
7760   EPI.VectorTripCount = CountRoundDown;
7761 
7762   // Skip induction resume value creation here because they will be created in
7763   // the second pass. If we created them here, they wouldn't be used anyway,
7764   // because the vplan in the second pass still contains the inductions from the
7765   // original loop.
7766 
7767   return {completeLoopSkeleton(OrigLoopID), nullptr};
7768 }
7769 
7770 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7771   LLVM_DEBUG({
7772     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7773            << "Main Loop VF:" << EPI.MainLoopVF
7774            << ", Main Loop UF:" << EPI.MainLoopUF
7775            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7776            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7777   });
7778 }
7779 
7780 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7781   DEBUG_WITH_TYPE(VerboseDebug, {
7782     dbgs() << "intermediate fn:\n"
7783            << *OrigLoop->getHeader()->getParent() << "\n";
7784   });
7785 }
7786 
7787 BasicBlock *
7788 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass,
7789                                                            bool ForEpilogue) {
7790   assert(Bypass && "Expected valid bypass basic block.");
7791   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7792   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7793   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7794   // Reuse existing vector loop preheader for TC checks.
7795   // Note that new preheader block is generated for vector loop.
7796   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7797   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7798 
7799   // Generate code to check if the loop's trip count is less than VF * UF of the
7800   // main vector loop.
7801   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7802       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7803 
7804   Value *CheckMinIters = Builder.CreateICmp(
7805       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7806       "min.iters.check");
7807 
7808   if (!ForEpilogue)
7809     TCCheckBlock->setName("vector.main.loop.iter.check");
7810 
7811   // Create new preheader for vector loop.
7812   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7813                                    DT, LI, nullptr, "vector.ph");
7814 
7815   if (ForEpilogue) {
7816     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7817                                  DT->getNode(Bypass)->getIDom()) &&
7818            "TC check is expected to dominate Bypass");
7819 
7820     // Update dominator for Bypass & LoopExit.
7821     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7822     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7823       // For loops with multiple exits, there's no edge from the middle block
7824       // to exit blocks (as the epilogue must run) and thus no need to update
7825       // the immediate dominator of the exit blocks.
7826       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7827 
7828     LoopBypassBlocks.push_back(TCCheckBlock);
7829 
7830     // Save the trip count so we don't have to regenerate it in the
7831     // vec.epilog.iter.check. This is safe to do because the trip count
7832     // generated here dominates the vector epilog iter check.
7833     EPI.TripCount = Count;
7834   }
7835 
7836   ReplaceInstWithInst(
7837       TCCheckBlock->getTerminator(),
7838       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7839 
7840   return TCCheckBlock;
7841 }
7842 
7843 //===--------------------------------------------------------------------===//
7844 // EpilogueVectorizerEpilogueLoop
7845 //===--------------------------------------------------------------------===//
7846 
7847 /// This function is partially responsible for generating the control flow
7848 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7849 std::pair<BasicBlock *, Value *>
7850 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7851   MDNode *OrigLoopID = OrigLoop->getLoopID();
7852   createVectorLoopSkeleton("vec.epilog.");
7853 
7854   // Now, compare the remaining count and if there aren't enough iterations to
7855   // execute the vectorized epilogue skip to the scalar part.
7856   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7857   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7858   LoopVectorPreHeader =
7859       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7860                  LI, nullptr, "vec.epilog.ph");
7861   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7862                                           VecEpilogueIterationCountCheck);
7863 
7864   // Adjust the control flow taking the state info from the main loop
7865   // vectorization into account.
7866   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7867          "expected this to be saved from the previous pass.");
7868   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7869       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7870 
7871   DT->changeImmediateDominator(LoopVectorPreHeader,
7872                                EPI.MainLoopIterationCountCheck);
7873 
7874   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7875       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7876 
7877   if (EPI.SCEVSafetyCheck)
7878     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7879         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7880   if (EPI.MemSafetyCheck)
7881     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7882         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7883 
7884   DT->changeImmediateDominator(
7885       VecEpilogueIterationCountCheck,
7886       VecEpilogueIterationCountCheck->getSinglePredecessor());
7887 
7888   DT->changeImmediateDominator(LoopScalarPreHeader,
7889                                EPI.EpilogueIterationCountCheck);
7890   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7891     // If there is an epilogue which must run, there's no edge from the
7892     // middle block to exit blocks  and thus no need to update the immediate
7893     // dominator of the exit blocks.
7894     DT->changeImmediateDominator(LoopExitBlock,
7895                                  EPI.EpilogueIterationCountCheck);
7896 
7897   // Keep track of bypass blocks, as they feed start values to the induction
7898   // phis in the scalar loop preheader.
7899   if (EPI.SCEVSafetyCheck)
7900     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7901   if (EPI.MemSafetyCheck)
7902     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7903   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7904 
7905   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7906   // merge control-flow from the latch block and the middle block. Update the
7907   // incoming values here and move the Phi into the preheader.
7908   SmallVector<PHINode *, 4> PhisInBlock;
7909   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7910     PhisInBlock.push_back(&Phi);
7911 
7912   for (PHINode *Phi : PhisInBlock) {
7913     Phi->replaceIncomingBlockWith(
7914         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7915         VecEpilogueIterationCountCheck);
7916     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7917     if (EPI.SCEVSafetyCheck)
7918       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7919     if (EPI.MemSafetyCheck)
7920       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7921     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7922   }
7923 
7924   // Generate a resume induction for the vector epilogue and put it in the
7925   // vector epilogue preheader
7926   Type *IdxTy = Legal->getWidestInductionType();
7927   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7928                                          LoopVectorPreHeader->getFirstNonPHI());
7929   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7930   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7931                            EPI.MainLoopIterationCountCheck);
7932 
7933   // Generate induction resume values. These variables save the new starting
7934   // indexes for the scalar loop. They are used to test if there are any tail
7935   // iterations left once the vector loop has completed.
7936   // Note that when the vectorized epilogue is skipped due to iteration count
7937   // check, then the resume value for the induction variable comes from
7938   // the trip count of the main vector loop, hence passing the AdditionalBypass
7939   // argument.
7940   createInductionResumeValues({VecEpilogueIterationCountCheck,
7941                                EPI.VectorTripCount} /* AdditionalBypass */);
7942 
7943   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7944 }
7945 
7946 BasicBlock *
7947 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7948     BasicBlock *Bypass, BasicBlock *Insert) {
7949 
7950   assert(EPI.TripCount &&
7951          "Expected trip count to have been safed in the first pass.");
7952   assert(
7953       (!isa<Instruction>(EPI.TripCount) ||
7954        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7955       "saved trip count does not dominate insertion point.");
7956   Value *TC = EPI.TripCount;
7957   IRBuilder<> Builder(Insert->getTerminator());
7958   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7959 
7960   // Generate code to check if the loop's trip count is less than VF * UF of the
7961   // vector epilogue loop.
7962   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7963       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7964 
7965   Value *CheckMinIters =
7966       Builder.CreateICmp(P, Count,
7967                          createStepForVF(Builder, Count->getType(),
7968                                          EPI.EpilogueVF, EPI.EpilogueUF),
7969                          "min.epilog.iters.check");
7970 
7971   ReplaceInstWithInst(
7972       Insert->getTerminator(),
7973       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7974 
7975   LoopBypassBlocks.push_back(Insert);
7976   return Insert;
7977 }
7978 
7979 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7980   LLVM_DEBUG({
7981     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7982            << "Epilogue Loop VF:" << EPI.EpilogueVF
7983            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7984   });
7985 }
7986 
7987 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7988   DEBUG_WITH_TYPE(VerboseDebug, {
7989     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7990   });
7991 }
7992 
7993 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7994     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7995   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7996   bool PredicateAtRangeStart = Predicate(Range.Start);
7997 
7998   for (ElementCount TmpVF = Range.Start * 2;
7999        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8000     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8001       Range.End = TmpVF;
8002       break;
8003     }
8004 
8005   return PredicateAtRangeStart;
8006 }
8007 
8008 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8009 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8010 /// of VF's starting at a given VF and extending it as much as possible. Each
8011 /// vectorization decision can potentially shorten this sub-range during
8012 /// buildVPlan().
8013 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8014                                            ElementCount MaxVF) {
8015   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8016   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8017     VFRange SubRange = {VF, MaxVFPlusOne};
8018     VPlans.push_back(buildVPlan(SubRange));
8019     VF = SubRange.End;
8020   }
8021 }
8022 
8023 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8024                                          VPlanPtr &Plan) {
8025   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8026 
8027   // Look for cached value.
8028   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8029   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8030   if (ECEntryIt != EdgeMaskCache.end())
8031     return ECEntryIt->second;
8032 
8033   VPValue *SrcMask = createBlockInMask(Src, Plan);
8034 
8035   // The terminator has to be a branch inst!
8036   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8037   assert(BI && "Unexpected terminator found");
8038 
8039   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8040     return EdgeMaskCache[Edge] = SrcMask;
8041 
8042   // If source is an exiting block, we know the exit edge is dynamically dead
8043   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8044   // adding uses of an otherwise potentially dead instruction.
8045   if (OrigLoop->isLoopExiting(Src))
8046     return EdgeMaskCache[Edge] = SrcMask;
8047 
8048   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8049   assert(EdgeMask && "No Edge Mask found for condition");
8050 
8051   if (BI->getSuccessor(0) != Dst)
8052     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8053 
8054   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8055     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8056     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8057     // The select version does not introduce new UB if SrcMask is false and
8058     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8059     VPValue *False = Plan->getOrAddVPValue(
8060         ConstantInt::getFalse(BI->getCondition()->getType()));
8061     EdgeMask =
8062         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8063   }
8064 
8065   return EdgeMaskCache[Edge] = EdgeMask;
8066 }
8067 
8068 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8069   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8070 
8071   // Look for cached value.
8072   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8073   if (BCEntryIt != BlockMaskCache.end())
8074     return BCEntryIt->second;
8075 
8076   // All-one mask is modelled as no-mask following the convention for masked
8077   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8078   VPValue *BlockMask = nullptr;
8079 
8080   if (OrigLoop->getHeader() == BB) {
8081     if (!CM.blockNeedsPredicationForAnyReason(BB))
8082       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8083 
8084     // Introduce the early-exit compare IV <= BTC to form header block mask.
8085     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8086     // constructing the desired canonical IV in the header block as its first
8087     // non-phi instructions.
8088     assert(CM.foldTailByMasking() && "must fold the tail");
8089     VPBasicBlock *HeaderVPBB =
8090         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8091     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8092     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8093     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8094 
8095     VPBuilder::InsertPointGuard Guard(Builder);
8096     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8097     if (CM.TTI.emitGetActiveLaneMask()) {
8098       VPValue *TC = Plan->getOrCreateTripCount();
8099       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8100     } else {
8101       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8102       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8103     }
8104     return BlockMaskCache[BB] = BlockMask;
8105   }
8106 
8107   // This is the block mask. We OR all incoming edges.
8108   for (auto *Predecessor : predecessors(BB)) {
8109     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8110     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8111       return BlockMaskCache[BB] = EdgeMask;
8112 
8113     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8114       BlockMask = EdgeMask;
8115       continue;
8116     }
8117 
8118     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8119   }
8120 
8121   return BlockMaskCache[BB] = BlockMask;
8122 }
8123 
8124 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8125                                                 ArrayRef<VPValue *> Operands,
8126                                                 VFRange &Range,
8127                                                 VPlanPtr &Plan) {
8128   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8129          "Must be called with either a load or store");
8130 
8131   auto willWiden = [&](ElementCount VF) -> bool {
8132     if (VF.isScalar())
8133       return false;
8134     LoopVectorizationCostModel::InstWidening Decision =
8135         CM.getWideningDecision(I, VF);
8136     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8137            "CM decision should be taken at this point.");
8138     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8139       return true;
8140     if (CM.isScalarAfterVectorization(I, VF) ||
8141         CM.isProfitableToScalarize(I, VF))
8142       return false;
8143     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8144   };
8145 
8146   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8147     return nullptr;
8148 
8149   VPValue *Mask = nullptr;
8150   if (Legal->isMaskRequired(I))
8151     Mask = createBlockInMask(I->getParent(), Plan);
8152 
8153   // Determine if the pointer operand of the access is either consecutive or
8154   // reverse consecutive.
8155   LoopVectorizationCostModel::InstWidening Decision =
8156       CM.getWideningDecision(I, Range.Start);
8157   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8158   bool Consecutive =
8159       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8160 
8161   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8162     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8163                                               Consecutive, Reverse);
8164 
8165   StoreInst *Store = cast<StoreInst>(I);
8166   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8167                                             Mask, Consecutive, Reverse);
8168 }
8169 
8170 static VPWidenIntOrFpInductionRecipe *
8171 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8172                            VPValue *Start, const InductionDescriptor &IndDesc,
8173                            LoopVectorizationCostModel &CM, ScalarEvolution &SE,
8174                            Loop &OrigLoop, VFRange &Range) {
8175   // Returns true if an instruction \p I should be scalarized instead of
8176   // vectorized for the chosen vectorization factor.
8177   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8178     return CM.isScalarAfterVectorization(I, VF) ||
8179            CM.isProfitableToScalarize(I, VF);
8180   };
8181 
8182   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8183       [&](ElementCount VF) {
8184         // Returns true if we should generate a scalar version of \p IV.
8185         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8186           return true;
8187         auto isScalarInst = [&](User *U) -> bool {
8188           auto *I = cast<Instruction>(U);
8189           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8190         };
8191         return any_of(PhiOrTrunc->users(), isScalarInst);
8192       },
8193       Range);
8194   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8195       [&](ElementCount VF) {
8196         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8197       },
8198       Range);
8199   assert(IndDesc.getStartValue() ==
8200          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8201   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8202          "step must be loop invariant");
8203   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8204     return new VPWidenIntOrFpInductionRecipe(
8205         Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE);
8206   }
8207   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8208   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8209                                            !NeedsScalarIVOnly, SE);
8210 }
8211 
8212 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8213     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8214 
8215   // Check if this is an integer or fp induction. If so, build the recipe that
8216   // produces its scalar and vector values.
8217   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8218     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM,
8219                                       *PSE.getSE(), *OrigLoop, Range);
8220 
8221   // Check if this is pointer induction. If so, build the recipe for it.
8222   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8223     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8224                                              *PSE.getSE());
8225   return nullptr;
8226 }
8227 
8228 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8229     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8230     VPlan &Plan) const {
8231   // Optimize the special case where the source is a constant integer
8232   // induction variable. Notice that we can only optimize the 'trunc' case
8233   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8234   // (c) other casts depend on pointer size.
8235 
8236   // Determine whether \p K is a truncation based on an induction variable that
8237   // can be optimized.
8238   auto isOptimizableIVTruncate =
8239       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8240     return [=](ElementCount VF) -> bool {
8241       return CM.isOptimizableIVTruncate(K, VF);
8242     };
8243   };
8244 
8245   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8246           isOptimizableIVTruncate(I), Range)) {
8247 
8248     auto *Phi = cast<PHINode>(I->getOperand(0));
8249     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8250     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8251     return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(),
8252                                       *OrigLoop, Range);
8253   }
8254   return nullptr;
8255 }
8256 
8257 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8258                                                 ArrayRef<VPValue *> Operands,
8259                                                 VPlanPtr &Plan) {
8260   // If all incoming values are equal, the incoming VPValue can be used directly
8261   // instead of creating a new VPBlendRecipe.
8262   VPValue *FirstIncoming = Operands[0];
8263   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8264         return FirstIncoming == Inc;
8265       })) {
8266     return Operands[0];
8267   }
8268 
8269   unsigned NumIncoming = Phi->getNumIncomingValues();
8270   // For in-loop reductions, we do not need to create an additional select.
8271   VPValue *InLoopVal = nullptr;
8272   for (unsigned In = 0; In < NumIncoming; In++) {
8273     PHINode *PhiOp =
8274         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8275     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8276       assert(!InLoopVal && "Found more than one in-loop reduction!");
8277       InLoopVal = Operands[In];
8278     }
8279   }
8280 
8281   assert((!InLoopVal || NumIncoming == 2) &&
8282          "Found an in-loop reduction for PHI with unexpected number of "
8283          "incoming values");
8284   if (InLoopVal)
8285     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8286 
8287   // We know that all PHIs in non-header blocks are converted into selects, so
8288   // we don't have to worry about the insertion order and we can just use the
8289   // builder. At this point we generate the predication tree. There may be
8290   // duplications since this is a simple recursive scan, but future
8291   // optimizations will clean it up.
8292   SmallVector<VPValue *, 2> OperandsWithMask;
8293 
8294   for (unsigned In = 0; In < NumIncoming; In++) {
8295     VPValue *EdgeMask =
8296       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8297     assert((EdgeMask || NumIncoming == 1) &&
8298            "Multiple predecessors with one having a full mask");
8299     OperandsWithMask.push_back(Operands[In]);
8300     if (EdgeMask)
8301       OperandsWithMask.push_back(EdgeMask);
8302   }
8303   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8304 }
8305 
8306 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8307                                                    ArrayRef<VPValue *> Operands,
8308                                                    VFRange &Range) const {
8309 
8310   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8311       [this, CI](ElementCount VF) {
8312         return CM.isScalarWithPredication(CI, VF);
8313       },
8314       Range);
8315 
8316   if (IsPredicated)
8317     return nullptr;
8318 
8319   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8320   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8321              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8322              ID == Intrinsic::pseudoprobe ||
8323              ID == Intrinsic::experimental_noalias_scope_decl))
8324     return nullptr;
8325 
8326   auto willWiden = [&](ElementCount VF) -> bool {
8327     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8328     // The following case may be scalarized depending on the VF.
8329     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8330     // version of the instruction.
8331     // Is it beneficial to perform intrinsic call compared to lib call?
8332     bool NeedToScalarize = false;
8333     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8334     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8335     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8336     return UseVectorIntrinsic || !NeedToScalarize;
8337   };
8338 
8339   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8340     return nullptr;
8341 
8342   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8343   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8344 }
8345 
8346 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8347   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8348          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8349   // Instruction should be widened, unless it is scalar after vectorization,
8350   // scalarization is profitable or it is predicated.
8351   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8352     return CM.isScalarAfterVectorization(I, VF) ||
8353            CM.isProfitableToScalarize(I, VF) ||
8354            CM.isScalarWithPredication(I, VF);
8355   };
8356   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8357                                                              Range);
8358 }
8359 
8360 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8361                                            ArrayRef<VPValue *> Operands) const {
8362   auto IsVectorizableOpcode = [](unsigned Opcode) {
8363     switch (Opcode) {
8364     case Instruction::Add:
8365     case Instruction::And:
8366     case Instruction::AShr:
8367     case Instruction::BitCast:
8368     case Instruction::FAdd:
8369     case Instruction::FCmp:
8370     case Instruction::FDiv:
8371     case Instruction::FMul:
8372     case Instruction::FNeg:
8373     case Instruction::FPExt:
8374     case Instruction::FPToSI:
8375     case Instruction::FPToUI:
8376     case Instruction::FPTrunc:
8377     case Instruction::FRem:
8378     case Instruction::FSub:
8379     case Instruction::ICmp:
8380     case Instruction::IntToPtr:
8381     case Instruction::LShr:
8382     case Instruction::Mul:
8383     case Instruction::Or:
8384     case Instruction::PtrToInt:
8385     case Instruction::SDiv:
8386     case Instruction::Select:
8387     case Instruction::SExt:
8388     case Instruction::Shl:
8389     case Instruction::SIToFP:
8390     case Instruction::SRem:
8391     case Instruction::Sub:
8392     case Instruction::Trunc:
8393     case Instruction::UDiv:
8394     case Instruction::UIToFP:
8395     case Instruction::URem:
8396     case Instruction::Xor:
8397     case Instruction::ZExt:
8398       return true;
8399     }
8400     return false;
8401   };
8402 
8403   if (!IsVectorizableOpcode(I->getOpcode()))
8404     return nullptr;
8405 
8406   // Success: widen this instruction.
8407   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8408 }
8409 
8410 void VPRecipeBuilder::fixHeaderPhis() {
8411   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8412   for (VPHeaderPHIRecipe *R : PhisToFix) {
8413     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8414     VPRecipeBase *IncR =
8415         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8416     R->addOperand(IncR->getVPSingleValue());
8417   }
8418 }
8419 
8420 VPBasicBlock *VPRecipeBuilder::handleReplication(
8421     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8422     VPlanPtr &Plan) {
8423   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8424       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8425       Range);
8426 
8427   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8428       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8429       Range);
8430 
8431   // Even if the instruction is not marked as uniform, there are certain
8432   // intrinsic calls that can be effectively treated as such, so we check for
8433   // them here. Conservatively, we only do this for scalable vectors, since
8434   // for fixed-width VFs we can always fall back on full scalarization.
8435   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8436     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8437     case Intrinsic::assume:
8438     case Intrinsic::lifetime_start:
8439     case Intrinsic::lifetime_end:
8440       // For scalable vectors if one of the operands is variant then we still
8441       // want to mark as uniform, which will generate one instruction for just
8442       // the first lane of the vector. We can't scalarize the call in the same
8443       // way as for fixed-width vectors because we don't know how many lanes
8444       // there are.
8445       //
8446       // The reasons for doing it this way for scalable vectors are:
8447       //   1. For the assume intrinsic generating the instruction for the first
8448       //      lane is still be better than not generating any at all. For
8449       //      example, the input may be a splat across all lanes.
8450       //   2. For the lifetime start/end intrinsics the pointer operand only
8451       //      does anything useful when the input comes from a stack object,
8452       //      which suggests it should always be uniform. For non-stack objects
8453       //      the effect is to poison the object, which still allows us to
8454       //      remove the call.
8455       IsUniform = true;
8456       break;
8457     default:
8458       break;
8459     }
8460   }
8461 
8462   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8463                                        IsUniform, IsPredicated);
8464   setRecipe(I, Recipe);
8465   Plan->addVPValue(I, Recipe);
8466 
8467   // Find if I uses a predicated instruction. If so, it will use its scalar
8468   // value. Avoid hoisting the insert-element which packs the scalar value into
8469   // a vector value, as that happens iff all users use the vector value.
8470   for (VPValue *Op : Recipe->operands()) {
8471     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8472     if (!PredR)
8473       continue;
8474     auto *RepR =
8475         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8476     assert(RepR->isPredicated() &&
8477            "expected Replicate recipe to be predicated");
8478     RepR->setAlsoPack(false);
8479   }
8480 
8481   // Finalize the recipe for Instr, first if it is not predicated.
8482   if (!IsPredicated) {
8483     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8484     VPBB->appendRecipe(Recipe);
8485     return VPBB;
8486   }
8487   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8488 
8489   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8490   assert(SingleSucc && "VPBB must have a single successor when handling "
8491                        "predicated replication.");
8492   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8493   // Record predicated instructions for above packing optimizations.
8494   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8495   VPBlockUtils::insertBlockAfter(Region, VPBB);
8496   auto *RegSucc = new VPBasicBlock();
8497   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8498   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8499   return RegSucc;
8500 }
8501 
8502 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8503                                                       VPRecipeBase *PredRecipe,
8504                                                       VPlanPtr &Plan) {
8505   // Instructions marked for predication are replicated and placed under an
8506   // if-then construct to prevent side-effects.
8507 
8508   // Generate recipes to compute the block mask for this region.
8509   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8510 
8511   // Build the triangular if-then region.
8512   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8513   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8514   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8515   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8516   auto *PHIRecipe = Instr->getType()->isVoidTy()
8517                         ? nullptr
8518                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8519   if (PHIRecipe) {
8520     Plan->removeVPValueFor(Instr);
8521     Plan->addVPValue(Instr, PHIRecipe);
8522   }
8523   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8524   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8525   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8526 
8527   // Note: first set Entry as region entry and then connect successors starting
8528   // from it in order, to propagate the "parent" of each VPBasicBlock.
8529   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8530   VPBlockUtils::connectBlocks(Pred, Exit);
8531 
8532   return Region;
8533 }
8534 
8535 VPRecipeOrVPValueTy
8536 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8537                                         ArrayRef<VPValue *> Operands,
8538                                         VFRange &Range, VPlanPtr &Plan) {
8539   // First, check for specific widening recipes that deal with calls, memory
8540   // operations, inductions and Phi nodes.
8541   if (auto *CI = dyn_cast<CallInst>(Instr))
8542     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8543 
8544   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8545     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8546 
8547   VPRecipeBase *Recipe;
8548   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8549     if (Phi->getParent() != OrigLoop->getHeader())
8550       return tryToBlend(Phi, Operands, Plan);
8551     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8552       return toVPRecipeResult(Recipe);
8553 
8554     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8555     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8556       VPValue *StartV = Operands[0];
8557       if (Legal->isReductionVariable(Phi)) {
8558         const RecurrenceDescriptor &RdxDesc =
8559             Legal->getReductionVars().find(Phi)->second;
8560         assert(RdxDesc.getRecurrenceStartValue() ==
8561                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8562         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8563                                              CM.isInLoopReduction(Phi),
8564                                              CM.useOrderedReductions(RdxDesc));
8565       } else {
8566         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8567       }
8568 
8569       // Record the incoming value from the backedge, so we can add the incoming
8570       // value from the backedge after all recipes have been created.
8571       recordRecipeOf(cast<Instruction>(
8572           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8573       PhisToFix.push_back(PhiRecipe);
8574     } else {
8575       // TODO: record backedge value for remaining pointer induction phis.
8576       assert(Phi->getType()->isPointerTy() &&
8577              "only pointer phis should be handled here");
8578       assert(Legal->getInductionVars().count(Phi) &&
8579              "Not an induction variable");
8580       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8581       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8582       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8583     }
8584 
8585     return toVPRecipeResult(PhiRecipe);
8586   }
8587 
8588   if (isa<TruncInst>(Instr) &&
8589       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8590                                                Range, *Plan)))
8591     return toVPRecipeResult(Recipe);
8592 
8593   if (!shouldWiden(Instr, Range))
8594     return nullptr;
8595 
8596   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8597     return toVPRecipeResult(new VPWidenGEPRecipe(
8598         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8599 
8600   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8601     bool InvariantCond =
8602         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8603     return toVPRecipeResult(new VPWidenSelectRecipe(
8604         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8605   }
8606 
8607   return toVPRecipeResult(tryToWiden(Instr, Operands));
8608 }
8609 
8610 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8611                                                         ElementCount MaxVF) {
8612   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8613 
8614   // Collect instructions from the original loop that will become trivially dead
8615   // in the vectorized loop. We don't need to vectorize these instructions. For
8616   // example, original induction update instructions can become dead because we
8617   // separately emit induction "steps" when generating code for the new loop.
8618   // Similarly, we create a new latch condition when setting up the structure
8619   // of the new loop, so the old one can become dead.
8620   SmallPtrSet<Instruction *, 4> DeadInstructions;
8621   collectTriviallyDeadInstructions(DeadInstructions);
8622 
8623   // Add assume instructions we need to drop to DeadInstructions, to prevent
8624   // them from being added to the VPlan.
8625   // TODO: We only need to drop assumes in blocks that get flattend. If the
8626   // control flow is preserved, we should keep them.
8627   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8628   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8629 
8630   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8631   // Dead instructions do not need sinking. Remove them from SinkAfter.
8632   for (Instruction *I : DeadInstructions)
8633     SinkAfter.erase(I);
8634 
8635   // Cannot sink instructions after dead instructions (there won't be any
8636   // recipes for them). Instead, find the first non-dead previous instruction.
8637   for (auto &P : Legal->getSinkAfter()) {
8638     Instruction *SinkTarget = P.second;
8639     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8640     (void)FirstInst;
8641     while (DeadInstructions.contains(SinkTarget)) {
8642       assert(
8643           SinkTarget != FirstInst &&
8644           "Must find a live instruction (at least the one feeding the "
8645           "first-order recurrence PHI) before reaching beginning of the block");
8646       SinkTarget = SinkTarget->getPrevNode();
8647       assert(SinkTarget != P.first &&
8648              "sink source equals target, no sinking required");
8649     }
8650     P.second = SinkTarget;
8651   }
8652 
8653   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8654   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8655     VFRange SubRange = {VF, MaxVFPlusOne};
8656     VPlans.push_back(
8657         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8658     VF = SubRange.End;
8659   }
8660 }
8661 
8662 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8663 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8664 // BranchOnCount VPInstruction to the latch.
8665 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8666                                   bool HasNUW, bool IsVPlanNative) {
8667   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8668   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8669 
8670   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8671   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8672   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8673   if (IsVPlanNative)
8674     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8675   Header->insert(CanonicalIVPHI, Header->begin());
8676 
8677   auto *CanonicalIVIncrement =
8678       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8679                                : VPInstruction::CanonicalIVIncrement,
8680                         {CanonicalIVPHI}, DL);
8681   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8682 
8683   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8684   if (IsVPlanNative) {
8685     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
8686     EB->setCondBit(nullptr);
8687   }
8688   EB->appendRecipe(CanonicalIVIncrement);
8689 
8690   auto *BranchOnCount =
8691       new VPInstruction(VPInstruction::BranchOnCount,
8692                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8693   EB->appendRecipe(BranchOnCount);
8694 }
8695 
8696 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8697     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8698     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8699 
8700   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8701 
8702   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8703 
8704   // ---------------------------------------------------------------------------
8705   // Pre-construction: record ingredients whose recipes we'll need to further
8706   // process after constructing the initial VPlan.
8707   // ---------------------------------------------------------------------------
8708 
8709   // Mark instructions we'll need to sink later and their targets as
8710   // ingredients whose recipe we'll need to record.
8711   for (auto &Entry : SinkAfter) {
8712     RecipeBuilder.recordRecipeOf(Entry.first);
8713     RecipeBuilder.recordRecipeOf(Entry.second);
8714   }
8715   for (auto &Reduction : CM.getInLoopReductionChains()) {
8716     PHINode *Phi = Reduction.first;
8717     RecurKind Kind =
8718         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8719     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8720 
8721     RecipeBuilder.recordRecipeOf(Phi);
8722     for (auto &R : ReductionOperations) {
8723       RecipeBuilder.recordRecipeOf(R);
8724       // For min/max reductions, where we have a pair of icmp/select, we also
8725       // need to record the ICmp recipe, so it can be removed later.
8726       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8727              "Only min/max recurrences allowed for inloop reductions");
8728       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8729         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8730     }
8731   }
8732 
8733   // For each interleave group which is relevant for this (possibly trimmed)
8734   // Range, add it to the set of groups to be later applied to the VPlan and add
8735   // placeholders for its members' Recipes which we'll be replacing with a
8736   // single VPInterleaveRecipe.
8737   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8738     auto applyIG = [IG, this](ElementCount VF) -> bool {
8739       return (VF.isVector() && // Query is illegal for VF == 1
8740               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8741                   LoopVectorizationCostModel::CM_Interleave);
8742     };
8743     if (!getDecisionAndClampRange(applyIG, Range))
8744       continue;
8745     InterleaveGroups.insert(IG);
8746     for (unsigned i = 0; i < IG->getFactor(); i++)
8747       if (Instruction *Member = IG->getMember(i))
8748         RecipeBuilder.recordRecipeOf(Member);
8749   };
8750 
8751   // ---------------------------------------------------------------------------
8752   // Build initial VPlan: Scan the body of the loop in a topological order to
8753   // visit each basic block after having visited its predecessor basic blocks.
8754   // ---------------------------------------------------------------------------
8755 
8756   // Create initial VPlan skeleton, with separate header and latch blocks.
8757   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
8758   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8759   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8760   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8761   auto Plan = std::make_unique<VPlan>(TopRegion);
8762 
8763   Instruction *DLInst =
8764       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8765   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8766                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8767                         !CM.foldTailByMasking(), false);
8768 
8769   // Scan the body of the loop in a topological order to visit each basic block
8770   // after having visited its predecessor basic blocks.
8771   LoopBlocksDFS DFS(OrigLoop);
8772   DFS.perform(LI);
8773 
8774   VPBasicBlock *VPBB = HeaderVPBB;
8775   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8776   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8777     // Relevant instructions from basic block BB will be grouped into VPRecipe
8778     // ingredients and fill a new VPBasicBlock.
8779     unsigned VPBBsForBB = 0;
8780     VPBB->setName(BB->getName());
8781     Builder.setInsertPoint(VPBB);
8782 
8783     // Introduce each ingredient into VPlan.
8784     // TODO: Model and preserve debug instrinsics in VPlan.
8785     for (Instruction &I : BB->instructionsWithoutDebug()) {
8786       Instruction *Instr = &I;
8787 
8788       // First filter out irrelevant instructions, to ensure no recipes are
8789       // built for them.
8790       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8791         continue;
8792 
8793       SmallVector<VPValue *, 4> Operands;
8794       auto *Phi = dyn_cast<PHINode>(Instr);
8795       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8796         Operands.push_back(Plan->getOrAddVPValue(
8797             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8798       } else {
8799         auto OpRange = Plan->mapToVPValues(Instr->operands());
8800         Operands = {OpRange.begin(), OpRange.end()};
8801       }
8802       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8803               Instr, Operands, Range, Plan)) {
8804         // If Instr can be simplified to an existing VPValue, use it.
8805         if (RecipeOrValue.is<VPValue *>()) {
8806           auto *VPV = RecipeOrValue.get<VPValue *>();
8807           Plan->addVPValue(Instr, VPV);
8808           // If the re-used value is a recipe, register the recipe for the
8809           // instruction, in case the recipe for Instr needs to be recorded.
8810           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8811             RecipeBuilder.setRecipe(Instr, R);
8812           continue;
8813         }
8814         // Otherwise, add the new recipe.
8815         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8816         for (auto *Def : Recipe->definedValues()) {
8817           auto *UV = Def->getUnderlyingValue();
8818           Plan->addVPValue(UV, Def);
8819         }
8820 
8821         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8822             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8823           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8824           // of the header block. That can happen for truncates of induction
8825           // variables. Those recipes are moved to the phi section of the header
8826           // block after applying SinkAfter, which relies on the original
8827           // position of the trunc.
8828           assert(isa<TruncInst>(Instr));
8829           InductionsToMove.push_back(
8830               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8831         }
8832         RecipeBuilder.setRecipe(Instr, Recipe);
8833         VPBB->appendRecipe(Recipe);
8834         continue;
8835       }
8836 
8837       // Otherwise, if all widening options failed, Instruction is to be
8838       // replicated. This may create a successor for VPBB.
8839       VPBasicBlock *NextVPBB =
8840           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8841       if (NextVPBB != VPBB) {
8842         VPBB = NextVPBB;
8843         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8844                                     : "");
8845       }
8846     }
8847 
8848     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8849     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8850   }
8851 
8852   HeaderVPBB->setName("vector.body");
8853 
8854   // Fold the last, empty block into its predecessor.
8855   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8856   assert(VPBB && "expected to fold last (empty) block");
8857   // After here, VPBB should not be used.
8858   VPBB = nullptr;
8859 
8860   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8861          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8862          "entry block must be set to a VPRegionBlock having a non-empty entry "
8863          "VPBasicBlock");
8864   RecipeBuilder.fixHeaderPhis();
8865 
8866   // ---------------------------------------------------------------------------
8867   // Transform initial VPlan: Apply previously taken decisions, in order, to
8868   // bring the VPlan to its final state.
8869   // ---------------------------------------------------------------------------
8870 
8871   // Apply Sink-After legal constraints.
8872   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8873     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8874     if (Region && Region->isReplicator()) {
8875       assert(Region->getNumSuccessors() == 1 &&
8876              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8877       assert(R->getParent()->size() == 1 &&
8878              "A recipe in an original replicator region must be the only "
8879              "recipe in its block");
8880       return Region;
8881     }
8882     return nullptr;
8883   };
8884   for (auto &Entry : SinkAfter) {
8885     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8886     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8887 
8888     auto *TargetRegion = GetReplicateRegion(Target);
8889     auto *SinkRegion = GetReplicateRegion(Sink);
8890     if (!SinkRegion) {
8891       // If the sink source is not a replicate region, sink the recipe directly.
8892       if (TargetRegion) {
8893         // The target is in a replication region, make sure to move Sink to
8894         // the block after it, not into the replication region itself.
8895         VPBasicBlock *NextBlock =
8896             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8897         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8898       } else
8899         Sink->moveAfter(Target);
8900       continue;
8901     }
8902 
8903     // The sink source is in a replicate region. Unhook the region from the CFG.
8904     auto *SinkPred = SinkRegion->getSinglePredecessor();
8905     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8906     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8907     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8908     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8909 
8910     if (TargetRegion) {
8911       // The target recipe is also in a replicate region, move the sink region
8912       // after the target region.
8913       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8914       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8915       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8916       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8917     } else {
8918       // The sink source is in a replicate region, we need to move the whole
8919       // replicate region, which should only contain a single recipe in the
8920       // main block.
8921       auto *SplitBlock =
8922           Target->getParent()->splitAt(std::next(Target->getIterator()));
8923 
8924       auto *SplitPred = SplitBlock->getSinglePredecessor();
8925 
8926       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8927       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8928       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8929     }
8930   }
8931 
8932   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8933   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8934 
8935   // Now that sink-after is done, move induction recipes for optimized truncates
8936   // to the phi section of the header block.
8937   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8938     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8939 
8940   // Adjust the recipes for any inloop reductions.
8941   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
8942                              RecipeBuilder, Range.Start);
8943 
8944   // Introduce a recipe to combine the incoming and previous values of a
8945   // first-order recurrence.
8946   for (VPRecipeBase &R :
8947        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8948     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8949     if (!RecurPhi)
8950       continue;
8951 
8952     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8953     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8954     auto *Region = GetReplicateRegion(PrevRecipe);
8955     if (Region)
8956       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
8957     if (Region || PrevRecipe->isPhi())
8958       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8959     else
8960       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8961 
8962     auto *RecurSplice = cast<VPInstruction>(
8963         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8964                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8965 
8966     RecurPhi->replaceAllUsesWith(RecurSplice);
8967     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8968     // all users.
8969     RecurSplice->setOperand(0, RecurPhi);
8970   }
8971 
8972   // Interleave memory: for each Interleave Group we marked earlier as relevant
8973   // for this VPlan, replace the Recipes widening its memory instructions with a
8974   // single VPInterleaveRecipe at its insertion point.
8975   for (auto IG : InterleaveGroups) {
8976     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8977         RecipeBuilder.getRecipe(IG->getInsertPos()));
8978     SmallVector<VPValue *, 4> StoredValues;
8979     for (unsigned i = 0; i < IG->getFactor(); ++i)
8980       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8981         auto *StoreR =
8982             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8983         StoredValues.push_back(StoreR->getStoredValue());
8984       }
8985 
8986     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8987                                         Recipe->getMask());
8988     VPIG->insertBefore(Recipe);
8989     unsigned J = 0;
8990     for (unsigned i = 0; i < IG->getFactor(); ++i)
8991       if (Instruction *Member = IG->getMember(i)) {
8992         if (!Member->getType()->isVoidTy()) {
8993           VPValue *OriginalV = Plan->getVPValue(Member);
8994           Plan->removeVPValueFor(Member);
8995           Plan->addVPValue(Member, VPIG->getVPValue(J));
8996           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8997           J++;
8998         }
8999         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9000       }
9001   }
9002 
9003   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9004   // in ways that accessing values using original IR values is incorrect.
9005   Plan->disableValue2VPValue();
9006 
9007   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9008   VPlanTransforms::sinkScalarOperands(*Plan);
9009   VPlanTransforms::mergeReplicateRegions(*Plan);
9010   VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop);
9011 
9012   std::string PlanName;
9013   raw_string_ostream RSO(PlanName);
9014   ElementCount VF = Range.Start;
9015   Plan->addVF(VF);
9016   RSO << "Initial VPlan for VF={" << VF;
9017   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9018     Plan->addVF(VF);
9019     RSO << "," << VF;
9020   }
9021   RSO << "},UF>=1";
9022   RSO.flush();
9023   Plan->setName(PlanName);
9024 
9025   // Fold Exit block into its predecessor if possible.
9026   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9027   // VPBasicBlock as exit.
9028   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9029 
9030   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9031   return Plan;
9032 }
9033 
9034 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9035   // Outer loop handling: They may require CFG and instruction level
9036   // transformations before even evaluating whether vectorization is profitable.
9037   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9038   // the vectorization pipeline.
9039   assert(!OrigLoop->isInnermost());
9040   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9041 
9042   // Create new empty VPlan
9043   auto Plan = std::make_unique<VPlan>();
9044 
9045   // Build hierarchical CFG
9046   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9047   HCFGBuilder.buildHierarchicalCFG();
9048 
9049   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9050        VF *= 2)
9051     Plan->addVF(VF);
9052 
9053   if (EnableVPlanPredication) {
9054     VPlanPredicator VPP(*Plan);
9055     VPP.predicate();
9056 
9057     // Avoid running transformation to recipes until masked code generation in
9058     // VPlan-native path is in place.
9059     return Plan;
9060   }
9061 
9062   SmallPtrSet<Instruction *, 1> DeadInstructions;
9063   VPlanTransforms::VPInstructionsToVPRecipes(
9064       OrigLoop, Plan,
9065       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9066       DeadInstructions, *PSE.getSE());
9067 
9068   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9069                         true, true);
9070   return Plan;
9071 }
9072 
9073 // Adjust the recipes for reductions. For in-loop reductions the chain of
9074 // instructions leading from the loop exit instr to the phi need to be converted
9075 // to reductions, with one operand being vector and the other being the scalar
9076 // reduction chain. For other reductions, a select is introduced between the phi
9077 // and live-out recipes when folding the tail.
9078 void LoopVectorizationPlanner::adjustRecipesForReductions(
9079     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9080     ElementCount MinVF) {
9081   for (auto &Reduction : CM.getInLoopReductionChains()) {
9082     PHINode *Phi = Reduction.first;
9083     const RecurrenceDescriptor &RdxDesc =
9084         Legal->getReductionVars().find(Phi)->second;
9085     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9086 
9087     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9088       continue;
9089 
9090     // ReductionOperations are orders top-down from the phi's use to the
9091     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9092     // which of the two operands will remain scalar and which will be reduced.
9093     // For minmax the chain will be the select instructions.
9094     Instruction *Chain = Phi;
9095     for (Instruction *R : ReductionOperations) {
9096       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9097       RecurKind Kind = RdxDesc.getRecurrenceKind();
9098 
9099       VPValue *ChainOp = Plan->getVPValue(Chain);
9100       unsigned FirstOpId;
9101       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9102              "Only min/max recurrences allowed for inloop reductions");
9103       // Recognize a call to the llvm.fmuladd intrinsic.
9104       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9105       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9106              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9107       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9108         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9109                "Expected to replace a VPWidenSelectSC");
9110         FirstOpId = 1;
9111       } else {
9112         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9113                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9114                "Expected to replace a VPWidenSC");
9115         FirstOpId = 0;
9116       }
9117       unsigned VecOpId =
9118           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9119       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9120 
9121       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9122                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9123                          : nullptr;
9124 
9125       if (IsFMulAdd) {
9126         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9127         // need to create an fmul recipe to use as the vector operand for the
9128         // fadd reduction.
9129         VPInstruction *FMulRecipe = new VPInstruction(
9130             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9131         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9132         WidenRecipe->getParent()->insert(FMulRecipe,
9133                                          WidenRecipe->getIterator());
9134         VecOp = FMulRecipe;
9135       }
9136       VPReductionRecipe *RedRecipe =
9137           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9138       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9139       Plan->removeVPValueFor(R);
9140       Plan->addVPValue(R, RedRecipe);
9141       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9142       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9143       WidenRecipe->eraseFromParent();
9144 
9145       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9146         VPRecipeBase *CompareRecipe =
9147             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9148         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9149                "Expected to replace a VPWidenSC");
9150         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9151                "Expected no remaining users");
9152         CompareRecipe->eraseFromParent();
9153       }
9154       Chain = R;
9155     }
9156   }
9157 
9158   // If tail is folded by masking, introduce selects between the phi
9159   // and the live-out instruction of each reduction, at the beginning of the
9160   // dedicated latch block.
9161   if (CM.foldTailByMasking()) {
9162     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9163     for (VPRecipeBase &R :
9164          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9165       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9166       if (!PhiR || PhiR->isInLoop())
9167         continue;
9168       VPValue *Cond =
9169           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9170       VPValue *Red = PhiR->getBackedgeValue();
9171       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9172              "reduction recipe must be defined before latch");
9173       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9174     }
9175   }
9176 }
9177 
9178 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9179 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9180                                VPSlotTracker &SlotTracker) const {
9181   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9182   IG->getInsertPos()->printAsOperand(O, false);
9183   O << ", ";
9184   getAddr()->printAsOperand(O, SlotTracker);
9185   VPValue *Mask = getMask();
9186   if (Mask) {
9187     O << ", ";
9188     Mask->printAsOperand(O, SlotTracker);
9189   }
9190 
9191   unsigned OpIdx = 0;
9192   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9193     if (!IG->getMember(i))
9194       continue;
9195     if (getNumStoreOperands() > 0) {
9196       O << "\n" << Indent << "  store ";
9197       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9198       O << " to index " << i;
9199     } else {
9200       O << "\n" << Indent << "  ";
9201       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9202       O << " = load from index " << i;
9203     }
9204     ++OpIdx;
9205   }
9206 }
9207 #endif
9208 
9209 void VPWidenCallRecipe::execute(VPTransformState &State) {
9210   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9211                                   *this, State);
9212 }
9213 
9214 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9215   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9216   State.ILV->setDebugLocFromInst(&I);
9217 
9218   // The condition can be loop invariant  but still defined inside the
9219   // loop. This means that we can't just use the original 'cond' value.
9220   // We have to take the 'vectorized' value and pick the first lane.
9221   // Instcombine will make this a no-op.
9222   auto *InvarCond =
9223       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9224 
9225   for (unsigned Part = 0; Part < State.UF; ++Part) {
9226     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9227     Value *Op0 = State.get(getOperand(1), Part);
9228     Value *Op1 = State.get(getOperand(2), Part);
9229     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9230     State.set(this, Sel, Part);
9231     State.ILV->addMetadata(Sel, &I);
9232   }
9233 }
9234 
9235 void VPWidenRecipe::execute(VPTransformState &State) {
9236   auto &I = *cast<Instruction>(getUnderlyingValue());
9237   auto &Builder = State.Builder;
9238   switch (I.getOpcode()) {
9239   case Instruction::Call:
9240   case Instruction::Br:
9241   case Instruction::PHI:
9242   case Instruction::GetElementPtr:
9243   case Instruction::Select:
9244     llvm_unreachable("This instruction is handled by a different recipe.");
9245   case Instruction::UDiv:
9246   case Instruction::SDiv:
9247   case Instruction::SRem:
9248   case Instruction::URem:
9249   case Instruction::Add:
9250   case Instruction::FAdd:
9251   case Instruction::Sub:
9252   case Instruction::FSub:
9253   case Instruction::FNeg:
9254   case Instruction::Mul:
9255   case Instruction::FMul:
9256   case Instruction::FDiv:
9257   case Instruction::FRem:
9258   case Instruction::Shl:
9259   case Instruction::LShr:
9260   case Instruction::AShr:
9261   case Instruction::And:
9262   case Instruction::Or:
9263   case Instruction::Xor: {
9264     // Just widen unops and binops.
9265     State.ILV->setDebugLocFromInst(&I);
9266 
9267     for (unsigned Part = 0; Part < State.UF; ++Part) {
9268       SmallVector<Value *, 2> Ops;
9269       for (VPValue *VPOp : operands())
9270         Ops.push_back(State.get(VPOp, Part));
9271 
9272       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9273 
9274       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9275         VecOp->copyIRFlags(&I);
9276 
9277         // If the instruction is vectorized and was in a basic block that needed
9278         // predication, we can't propagate poison-generating flags (nuw/nsw,
9279         // exact, etc.). The control flow has been linearized and the
9280         // instruction is no longer guarded by the predicate, which could make
9281         // the flag properties to no longer hold.
9282         if (State.MayGeneratePoisonRecipes.contains(this))
9283           VecOp->dropPoisonGeneratingFlags();
9284       }
9285 
9286       // Use this vector value for all users of the original instruction.
9287       State.set(this, V, Part);
9288       State.ILV->addMetadata(V, &I);
9289     }
9290 
9291     break;
9292   }
9293   case Instruction::ICmp:
9294   case Instruction::FCmp: {
9295     // Widen compares. Generate vector compares.
9296     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9297     auto *Cmp = cast<CmpInst>(&I);
9298     State.ILV->setDebugLocFromInst(Cmp);
9299     for (unsigned Part = 0; Part < State.UF; ++Part) {
9300       Value *A = State.get(getOperand(0), Part);
9301       Value *B = State.get(getOperand(1), Part);
9302       Value *C = nullptr;
9303       if (FCmp) {
9304         // Propagate fast math flags.
9305         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9306         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9307         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9308       } else {
9309         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9310       }
9311       State.set(this, C, Part);
9312       State.ILV->addMetadata(C, &I);
9313     }
9314 
9315     break;
9316   }
9317 
9318   case Instruction::ZExt:
9319   case Instruction::SExt:
9320   case Instruction::FPToUI:
9321   case Instruction::FPToSI:
9322   case Instruction::FPExt:
9323   case Instruction::PtrToInt:
9324   case Instruction::IntToPtr:
9325   case Instruction::SIToFP:
9326   case Instruction::UIToFP:
9327   case Instruction::Trunc:
9328   case Instruction::FPTrunc:
9329   case Instruction::BitCast: {
9330     auto *CI = cast<CastInst>(&I);
9331     State.ILV->setDebugLocFromInst(CI);
9332 
9333     /// Vectorize casts.
9334     Type *DestTy = (State.VF.isScalar())
9335                        ? CI->getType()
9336                        : VectorType::get(CI->getType(), State.VF);
9337 
9338     for (unsigned Part = 0; Part < State.UF; ++Part) {
9339       Value *A = State.get(getOperand(0), Part);
9340       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9341       State.set(this, Cast, Part);
9342       State.ILV->addMetadata(Cast, &I);
9343     }
9344     break;
9345   }
9346   default:
9347     // This instruction is not vectorized by simple widening.
9348     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9349     llvm_unreachable("Unhandled instruction!");
9350   } // end of switch.
9351 }
9352 
9353 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9354   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9355   // Construct a vector GEP by widening the operands of the scalar GEP as
9356   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9357   // results in a vector of pointers when at least one operand of the GEP
9358   // is vector-typed. Thus, to keep the representation compact, we only use
9359   // vector-typed operands for loop-varying values.
9360 
9361   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9362     // If we are vectorizing, but the GEP has only loop-invariant operands,
9363     // the GEP we build (by only using vector-typed operands for
9364     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9365     // produce a vector of pointers, we need to either arbitrarily pick an
9366     // operand to broadcast, or broadcast a clone of the original GEP.
9367     // Here, we broadcast a clone of the original.
9368     //
9369     // TODO: If at some point we decide to scalarize instructions having
9370     //       loop-invariant operands, this special case will no longer be
9371     //       required. We would add the scalarization decision to
9372     //       collectLoopScalars() and teach getVectorValue() to broadcast
9373     //       the lane-zero scalar value.
9374     auto *Clone = State.Builder.Insert(GEP->clone());
9375     for (unsigned Part = 0; Part < State.UF; ++Part) {
9376       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9377       State.set(this, EntryPart, Part);
9378       State.ILV->addMetadata(EntryPart, GEP);
9379     }
9380   } else {
9381     // If the GEP has at least one loop-varying operand, we are sure to
9382     // produce a vector of pointers. But if we are only unrolling, we want
9383     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9384     // produce with the code below will be scalar (if VF == 1) or vector
9385     // (otherwise). Note that for the unroll-only case, we still maintain
9386     // values in the vector mapping with initVector, as we do for other
9387     // instructions.
9388     for (unsigned Part = 0; Part < State.UF; ++Part) {
9389       // The pointer operand of the new GEP. If it's loop-invariant, we
9390       // won't broadcast it.
9391       auto *Ptr = IsPtrLoopInvariant
9392                       ? State.get(getOperand(0), VPIteration(0, 0))
9393                       : State.get(getOperand(0), Part);
9394 
9395       // Collect all the indices for the new GEP. If any index is
9396       // loop-invariant, we won't broadcast it.
9397       SmallVector<Value *, 4> Indices;
9398       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9399         VPValue *Operand = getOperand(I);
9400         if (IsIndexLoopInvariant[I - 1])
9401           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9402         else
9403           Indices.push_back(State.get(Operand, Part));
9404       }
9405 
9406       // If the GEP instruction is vectorized and was in a basic block that
9407       // needed predication, we can't propagate the poison-generating 'inbounds'
9408       // flag. The control flow has been linearized and the GEP is no longer
9409       // guarded by the predicate, which could make the 'inbounds' properties to
9410       // no longer hold.
9411       bool IsInBounds =
9412           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9413 
9414       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9415       // but it should be a vector, otherwise.
9416       auto *NewGEP = IsInBounds
9417                          ? State.Builder.CreateInBoundsGEP(
9418                                GEP->getSourceElementType(), Ptr, Indices)
9419                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9420                                                    Ptr, Indices);
9421       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9422              "NewGEP is not a pointer vector");
9423       State.set(this, NewGEP, Part);
9424       State.ILV->addMetadata(NewGEP, GEP);
9425     }
9426   }
9427 }
9428 
9429 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9430   assert(!State.Instance && "Int or FP induction being replicated.");
9431 
9432   Value *Start = getStartValue()->getLiveInIRValue();
9433   const InductionDescriptor &ID = getInductionDescriptor();
9434   TruncInst *Trunc = getTruncInst();
9435   IRBuilderBase &Builder = State.Builder;
9436   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9437   assert(State.VF.isVector() && "must have vector VF");
9438 
9439   // The value from the original loop to which we are mapping the new induction
9440   // variable.
9441   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9442 
9443   auto &DL = EntryVal->getModule()->getDataLayout();
9444 
9445   // Generate code for the induction step. Note that induction steps are
9446   // required to be loop-invariant
9447   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
9448     if (SE.isSCEVable(IV->getType())) {
9449       SCEVExpander Exp(SE, DL, "induction");
9450       return Exp.expandCodeFor(Step, Step->getType(),
9451                                State.CFG.VectorPreHeader->getTerminator());
9452     }
9453     return cast<SCEVUnknown>(Step)->getValue();
9454   };
9455 
9456   // Fast-math-flags propagate from the original induction instruction.
9457   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9458   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9459     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9460 
9461   // Now do the actual transformations, and start with creating the step value.
9462   Value *Step = CreateStepValue(ID.getStep());
9463 
9464   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9465          "Expected either an induction phi-node or a truncate of it!");
9466 
9467   // Construct the initial value of the vector IV in the vector loop preheader
9468   auto CurrIP = Builder.saveIP();
9469   Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
9470   if (isa<TruncInst>(EntryVal)) {
9471     assert(Start->getType()->isIntegerTy() &&
9472            "Truncation requires an integer type");
9473     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9474     Step = Builder.CreateTrunc(Step, TruncType);
9475     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9476   }
9477 
9478   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9479   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9480   Value *SteppedStart = getStepVector(
9481       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9482 
9483   // We create vector phi nodes for both integer and floating-point induction
9484   // variables. Here, we determine the kind of arithmetic we will perform.
9485   Instruction::BinaryOps AddOp;
9486   Instruction::BinaryOps MulOp;
9487   if (Step->getType()->isIntegerTy()) {
9488     AddOp = Instruction::Add;
9489     MulOp = Instruction::Mul;
9490   } else {
9491     AddOp = ID.getInductionOpcode();
9492     MulOp = Instruction::FMul;
9493   }
9494 
9495   // Multiply the vectorization factor by the step using integer or
9496   // floating-point arithmetic as appropriate.
9497   Type *StepType = Step->getType();
9498   Value *RuntimeVF;
9499   if (Step->getType()->isFloatingPointTy())
9500     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9501   else
9502     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9503   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9504 
9505   // Create a vector splat to use in the induction update.
9506   //
9507   // FIXME: If the step is non-constant, we create the vector splat with
9508   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9509   //        handle a constant vector splat.
9510   Value *SplatVF = isa<Constant>(Mul)
9511                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9512                        : Builder.CreateVectorSplat(State.VF, Mul);
9513   Builder.restoreIP(CurrIP);
9514 
9515   // We may need to add the step a number of times, depending on the unroll
9516   // factor. The last of those goes into the PHI.
9517   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9518                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9519   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9520   Instruction *LastInduction = VecInd;
9521   for (unsigned Part = 0; Part < State.UF; ++Part) {
9522     State.set(this, LastInduction, Part);
9523 
9524     if (isa<TruncInst>(EntryVal))
9525       State.ILV->addMetadata(LastInduction, EntryVal);
9526 
9527     LastInduction = cast<Instruction>(
9528         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9529     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9530   }
9531 
9532   LastInduction->setName("vec.ind.next");
9533   VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader);
9534   // Add induction update using an incorrect block temporarily. The phi node
9535   // will be fixed after VPlan execution. Note that at this point the latch
9536   // block cannot be used, as it does not exist yet.
9537   // TODO: Model increment value in VPlan, by turning the recipe into a
9538   // multi-def and a subclass of VPHeaderPHIRecipe.
9539   VecInd->addIncoming(LastInduction, State.CFG.VectorPreHeader);
9540 }
9541 
9542 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9543   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9544          "Not a pointer induction according to InductionDescriptor!");
9545   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9546          "Unexpected type.");
9547 
9548   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9549   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9550 
9551   if (all_of(users(), [this](const VPUser *U) {
9552         return cast<VPRecipeBase>(U)->usesScalars(this);
9553       })) {
9554     // This is the normalized GEP that starts counting at zero.
9555     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9556         CanonicalIV, IndDesc.getStep()->getType());
9557     // Determine the number of scalars we need to generate for each unroll
9558     // iteration. If the instruction is uniform, we only need to generate the
9559     // first lane. Otherwise, we generate all VF values.
9560     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9561     assert((IsUniform || !State.VF.isScalable()) &&
9562            "Cannot scalarize a scalable VF");
9563     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9564 
9565     for (unsigned Part = 0; Part < State.UF; ++Part) {
9566       Value *PartStart =
9567           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9568 
9569       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9570         Value *Idx = State.Builder.CreateAdd(
9571             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9572         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9573 
9574         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9575                                       State.CFG.PrevBB->getTerminator());
9576         Value *SclrGep = emitTransformedIndex(
9577             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9578         SclrGep->setName("next.gep");
9579         State.set(this, SclrGep, VPIteration(Part, Lane));
9580       }
9581     }
9582     return;
9583   }
9584 
9585   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9586          "Induction step not a SCEV constant!");
9587   Type *PhiType = IndDesc.getStep()->getType();
9588 
9589   // Build a pointer phi
9590   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9591   Type *ScStValueType = ScalarStartValue->getType();
9592   PHINode *NewPointerPhi =
9593       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9594   NewPointerPhi->addIncoming(ScalarStartValue, State.CFG.VectorPreHeader);
9595 
9596   // A pointer induction, performed by using a gep
9597   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9598   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9599 
9600   const SCEV *ScalarStep = IndDesc.getStep();
9601   SCEVExpander Exp(SE, DL, "induction");
9602   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9603   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9604   Value *NumUnrolledElems =
9605       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9606   Value *InductionGEP = GetElementPtrInst::Create(
9607       IndDesc.getElementType(), NewPointerPhi,
9608       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9609       InductionLoc);
9610   // Add induction update using an incorrect block temporarily. The phi node
9611   // will be fixed after VPlan execution. Note that at this point the latch
9612   // block cannot be used, as it does not exist yet.
9613   // TODO: Model increment value in VPlan, by turning the recipe into a
9614   // multi-def and a subclass of VPHeaderPHIRecipe.
9615   NewPointerPhi->addIncoming(InductionGEP, State.CFG.VectorPreHeader);
9616 
9617   // Create UF many actual address geps that use the pointer
9618   // phi as base and a vectorized version of the step value
9619   // (<step*0, ..., step*N>) as offset.
9620   for (unsigned Part = 0; Part < State.UF; ++Part) {
9621     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9622     Value *StartOffsetScalar =
9623         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9624     Value *StartOffset =
9625         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9626     // Create a vector of consecutive numbers from zero to VF.
9627     StartOffset = State.Builder.CreateAdd(
9628         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9629 
9630     Value *GEP = State.Builder.CreateGEP(
9631         IndDesc.getElementType(), NewPointerPhi,
9632         State.Builder.CreateMul(
9633             StartOffset,
9634             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9635             "vector.gep"));
9636     State.set(this, GEP, Part);
9637   }
9638 }
9639 
9640 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9641   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9642 
9643   // Fast-math-flags propagate from the original induction instruction.
9644   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9645   if (IndDesc.getInductionBinOp() &&
9646       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9647     State.Builder.setFastMathFlags(
9648         IndDesc.getInductionBinOp()->getFastMathFlags());
9649 
9650   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9651   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9652     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9653     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9654     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9655       ScalarIV =
9656           Ty->isIntegerTy()
9657               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9658               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9659       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9660                                       getStartValue()->getLiveInIRValue(), Step,
9661                                       IndDesc);
9662       ScalarIV->setName("offset.idx");
9663     }
9664     if (TruncToTy) {
9665       assert(Step->getType()->isIntegerTy() &&
9666              "Truncation requires an integer step");
9667       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9668       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9669     }
9670     return ScalarIV;
9671   };
9672 
9673   Value *ScalarIV = CreateScalarIV(Step);
9674   if (State.VF.isVector()) {
9675     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9676     return;
9677   }
9678 
9679   for (unsigned Part = 0; Part < State.UF; ++Part) {
9680     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9681     Value *EntryPart;
9682     if (Step->getType()->isFloatingPointTy()) {
9683       Value *StartIdx =
9684           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9685       // Floating-point operations inherit FMF via the builder's flags.
9686       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9687       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9688                                             ScalarIV, MulOp);
9689     } else {
9690       Value *StartIdx =
9691           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9692       EntryPart = State.Builder.CreateAdd(
9693           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9694     }
9695     State.set(this, EntryPart, Part);
9696   }
9697 }
9698 
9699 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9700   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9701                                  State);
9702 }
9703 
9704 void VPBlendRecipe::execute(VPTransformState &State) {
9705   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9706   // We know that all PHIs in non-header blocks are converted into
9707   // selects, so we don't have to worry about the insertion order and we
9708   // can just use the builder.
9709   // At this point we generate the predication tree. There may be
9710   // duplications since this is a simple recursive scan, but future
9711   // optimizations will clean it up.
9712 
9713   unsigned NumIncoming = getNumIncomingValues();
9714 
9715   // Generate a sequence of selects of the form:
9716   // SELECT(Mask3, In3,
9717   //        SELECT(Mask2, In2,
9718   //               SELECT(Mask1, In1,
9719   //                      In0)))
9720   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9721   // are essentially undef are taken from In0.
9722   InnerLoopVectorizer::VectorParts Entry(State.UF);
9723   for (unsigned In = 0; In < NumIncoming; ++In) {
9724     for (unsigned Part = 0; Part < State.UF; ++Part) {
9725       // We might have single edge PHIs (blocks) - use an identity
9726       // 'select' for the first PHI operand.
9727       Value *In0 = State.get(getIncomingValue(In), Part);
9728       if (In == 0)
9729         Entry[Part] = In0; // Initialize with the first incoming value.
9730       else {
9731         // Select between the current value and the previous incoming edge
9732         // based on the incoming mask.
9733         Value *Cond = State.get(getMask(In), Part);
9734         Entry[Part] =
9735             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9736       }
9737     }
9738   }
9739   for (unsigned Part = 0; Part < State.UF; ++Part)
9740     State.set(this, Entry[Part], Part);
9741 }
9742 
9743 void VPInterleaveRecipe::execute(VPTransformState &State) {
9744   assert(!State.Instance && "Interleave group being replicated.");
9745   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9746                                       getStoredValues(), getMask());
9747 }
9748 
9749 void VPReductionRecipe::execute(VPTransformState &State) {
9750   assert(!State.Instance && "Reduction being replicated.");
9751   Value *PrevInChain = State.get(getChainOp(), 0);
9752   RecurKind Kind = RdxDesc->getRecurrenceKind();
9753   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9754   // Propagate the fast-math flags carried by the underlying instruction.
9755   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9756   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9757   for (unsigned Part = 0; Part < State.UF; ++Part) {
9758     Value *NewVecOp = State.get(getVecOp(), Part);
9759     if (VPValue *Cond = getCondOp()) {
9760       Value *NewCond = State.get(Cond, Part);
9761       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9762       Value *Iden = RdxDesc->getRecurrenceIdentity(
9763           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9764       Value *IdenVec =
9765           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9766       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9767       NewVecOp = Select;
9768     }
9769     Value *NewRed;
9770     Value *NextInChain;
9771     if (IsOrdered) {
9772       if (State.VF.isVector())
9773         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9774                                         PrevInChain);
9775       else
9776         NewRed = State.Builder.CreateBinOp(
9777             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9778             NewVecOp);
9779       PrevInChain = NewRed;
9780     } else {
9781       PrevInChain = State.get(getChainOp(), Part);
9782       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9783     }
9784     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9785       NextInChain =
9786           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9787                          NewRed, PrevInChain);
9788     } else if (IsOrdered)
9789       NextInChain = NewRed;
9790     else
9791       NextInChain = State.Builder.CreateBinOp(
9792           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9793           PrevInChain);
9794     State.set(this, NextInChain, Part);
9795   }
9796 }
9797 
9798 void VPReplicateRecipe::execute(VPTransformState &State) {
9799   if (State.Instance) { // Generate a single instance.
9800     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9801     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9802                                     IsPredicated, State);
9803     // Insert scalar instance packing it into a vector.
9804     if (AlsoPack && State.VF.isVector()) {
9805       // If we're constructing lane 0, initialize to start from poison.
9806       if (State.Instance->Lane.isFirstLane()) {
9807         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9808         Value *Poison = PoisonValue::get(
9809             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9810         State.set(this, Poison, State.Instance->Part);
9811       }
9812       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9813     }
9814     return;
9815   }
9816 
9817   // Generate scalar instances for all VF lanes of all UF parts, unless the
9818   // instruction is uniform inwhich case generate only the first lane for each
9819   // of the UF parts.
9820   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9821   assert((!State.VF.isScalable() || IsUniform) &&
9822          "Can't scalarize a scalable vector");
9823   for (unsigned Part = 0; Part < State.UF; ++Part)
9824     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9825       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9826                                       VPIteration(Part, Lane), IsPredicated,
9827                                       State);
9828 }
9829 
9830 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9831   assert(State.Instance && "Branch on Mask works only on single instance.");
9832 
9833   unsigned Part = State.Instance->Part;
9834   unsigned Lane = State.Instance->Lane.getKnownLane();
9835 
9836   Value *ConditionBit = nullptr;
9837   VPValue *BlockInMask = getMask();
9838   if (BlockInMask) {
9839     ConditionBit = State.get(BlockInMask, Part);
9840     if (ConditionBit->getType()->isVectorTy())
9841       ConditionBit = State.Builder.CreateExtractElement(
9842           ConditionBit, State.Builder.getInt32(Lane));
9843   } else // Block in mask is all-one.
9844     ConditionBit = State.Builder.getTrue();
9845 
9846   // Replace the temporary unreachable terminator with a new conditional branch,
9847   // whose two destinations will be set later when they are created.
9848   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9849   assert(isa<UnreachableInst>(CurrentTerminator) &&
9850          "Expected to replace unreachable terminator with conditional branch.");
9851   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9852   CondBr->setSuccessor(0, nullptr);
9853   ReplaceInstWithInst(CurrentTerminator, CondBr);
9854 }
9855 
9856 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9857   assert(State.Instance && "Predicated instruction PHI works per instance.");
9858   Instruction *ScalarPredInst =
9859       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9860   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9861   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9862   assert(PredicatingBB && "Predicated block has no single predecessor.");
9863   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9864          "operand must be VPReplicateRecipe");
9865 
9866   // By current pack/unpack logic we need to generate only a single phi node: if
9867   // a vector value for the predicated instruction exists at this point it means
9868   // the instruction has vector users only, and a phi for the vector value is
9869   // needed. In this case the recipe of the predicated instruction is marked to
9870   // also do that packing, thereby "hoisting" the insert-element sequence.
9871   // Otherwise, a phi node for the scalar value is needed.
9872   unsigned Part = State.Instance->Part;
9873   if (State.hasVectorValue(getOperand(0), Part)) {
9874     Value *VectorValue = State.get(getOperand(0), Part);
9875     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9876     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9877     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9878     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9879     if (State.hasVectorValue(this, Part))
9880       State.reset(this, VPhi, Part);
9881     else
9882       State.set(this, VPhi, Part);
9883     // NOTE: Currently we need to update the value of the operand, so the next
9884     // predicated iteration inserts its generated value in the correct vector.
9885     State.reset(getOperand(0), VPhi, Part);
9886   } else {
9887     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9888     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9889     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9890                      PredicatingBB);
9891     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9892     if (State.hasScalarValue(this, *State.Instance))
9893       State.reset(this, Phi, *State.Instance);
9894     else
9895       State.set(this, Phi, *State.Instance);
9896     // NOTE: Currently we need to update the value of the operand, so the next
9897     // predicated iteration inserts its generated value in the correct vector.
9898     State.reset(getOperand(0), Phi, *State.Instance);
9899   }
9900 }
9901 
9902 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9903   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9904 
9905   // Attempt to issue a wide load.
9906   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9907   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9908 
9909   assert((LI || SI) && "Invalid Load/Store instruction");
9910   assert((!SI || StoredValue) && "No stored value provided for widened store");
9911   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9912 
9913   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9914 
9915   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9916   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9917   bool CreateGatherScatter = !Consecutive;
9918 
9919   auto &Builder = State.Builder;
9920   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9921   bool isMaskRequired = getMask();
9922   if (isMaskRequired)
9923     for (unsigned Part = 0; Part < State.UF; ++Part)
9924       BlockInMaskParts[Part] = State.get(getMask(), Part);
9925 
9926   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9927     // Calculate the pointer for the specific unroll-part.
9928     GetElementPtrInst *PartPtr = nullptr;
9929 
9930     bool InBounds = false;
9931     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9932       InBounds = gep->isInBounds();
9933     if (Reverse) {
9934       // If the address is consecutive but reversed, then the
9935       // wide store needs to start at the last vector element.
9936       // RunTimeVF =  VScale * VF.getKnownMinValue()
9937       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9938       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9939       // NumElt = -Part * RunTimeVF
9940       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9941       // LastLane = 1 - RunTimeVF
9942       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9943       PartPtr =
9944           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9945       PartPtr->setIsInBounds(InBounds);
9946       PartPtr = cast<GetElementPtrInst>(
9947           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9948       PartPtr->setIsInBounds(InBounds);
9949       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9950         BlockInMaskParts[Part] =
9951             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9952     } else {
9953       Value *Increment =
9954           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9955       PartPtr = cast<GetElementPtrInst>(
9956           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9957       PartPtr->setIsInBounds(InBounds);
9958     }
9959 
9960     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9961     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9962   };
9963 
9964   // Handle Stores:
9965   if (SI) {
9966     State.ILV->setDebugLocFromInst(SI);
9967 
9968     for (unsigned Part = 0; Part < State.UF; ++Part) {
9969       Instruction *NewSI = nullptr;
9970       Value *StoredVal = State.get(StoredValue, Part);
9971       if (CreateGatherScatter) {
9972         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9973         Value *VectorGep = State.get(getAddr(), Part);
9974         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9975                                             MaskPart);
9976       } else {
9977         if (Reverse) {
9978           // If we store to reverse consecutive memory locations, then we need
9979           // to reverse the order of elements in the stored value.
9980           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9981           // We don't want to update the value in the map as it might be used in
9982           // another expression. So don't call resetVectorValue(StoredVal).
9983         }
9984         auto *VecPtr =
9985             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9986         if (isMaskRequired)
9987           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9988                                             BlockInMaskParts[Part]);
9989         else
9990           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9991       }
9992       State.ILV->addMetadata(NewSI, SI);
9993     }
9994     return;
9995   }
9996 
9997   // Handle loads.
9998   assert(LI && "Must have a load instruction");
9999   State.ILV->setDebugLocFromInst(LI);
10000   for (unsigned Part = 0; Part < State.UF; ++Part) {
10001     Value *NewLI;
10002     if (CreateGatherScatter) {
10003       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10004       Value *VectorGep = State.get(getAddr(), Part);
10005       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10006                                          nullptr, "wide.masked.gather");
10007       State.ILV->addMetadata(NewLI, LI);
10008     } else {
10009       auto *VecPtr =
10010           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10011       if (isMaskRequired)
10012         NewLI = Builder.CreateMaskedLoad(
10013             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10014             PoisonValue::get(DataTy), "wide.masked.load");
10015       else
10016         NewLI =
10017             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10018 
10019       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10020       State.ILV->addMetadata(NewLI, LI);
10021       if (Reverse)
10022         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10023     }
10024 
10025     State.set(this, NewLI, Part);
10026   }
10027 }
10028 
10029 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10030 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10031 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10032 // for predication.
10033 static ScalarEpilogueLowering getScalarEpilogueLowering(
10034     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10035     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10036     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10037     LoopVectorizationLegality &LVL) {
10038   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10039   // don't look at hints or options, and don't request a scalar epilogue.
10040   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10041   // LoopAccessInfo (due to code dependency and not being able to reliably get
10042   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10043   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10044   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10045   // back to the old way and vectorize with versioning when forced. See D81345.)
10046   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10047                                                       PGSOQueryType::IRPass) &&
10048                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10049     return CM_ScalarEpilogueNotAllowedOptSize;
10050 
10051   // 2) If set, obey the directives
10052   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10053     switch (PreferPredicateOverEpilogue) {
10054     case PreferPredicateTy::ScalarEpilogue:
10055       return CM_ScalarEpilogueAllowed;
10056     case PreferPredicateTy::PredicateElseScalarEpilogue:
10057       return CM_ScalarEpilogueNotNeededUsePredicate;
10058     case PreferPredicateTy::PredicateOrDontVectorize:
10059       return CM_ScalarEpilogueNotAllowedUsePredicate;
10060     };
10061   }
10062 
10063   // 3) If set, obey the hints
10064   switch (Hints.getPredicate()) {
10065   case LoopVectorizeHints::FK_Enabled:
10066     return CM_ScalarEpilogueNotNeededUsePredicate;
10067   case LoopVectorizeHints::FK_Disabled:
10068     return CM_ScalarEpilogueAllowed;
10069   };
10070 
10071   // 4) if the TTI hook indicates this is profitable, request predication.
10072   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10073                                        LVL.getLAI()))
10074     return CM_ScalarEpilogueNotNeededUsePredicate;
10075 
10076   return CM_ScalarEpilogueAllowed;
10077 }
10078 
10079 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10080   // If Values have been set for this Def return the one relevant for \p Part.
10081   if (hasVectorValue(Def, Part))
10082     return Data.PerPartOutput[Def][Part];
10083 
10084   if (!hasScalarValue(Def, {Part, 0})) {
10085     Value *IRV = Def->getLiveInIRValue();
10086     Value *B = ILV->getBroadcastInstrs(IRV);
10087     set(Def, B, Part);
10088     return B;
10089   }
10090 
10091   Value *ScalarValue = get(Def, {Part, 0});
10092   // If we aren't vectorizing, we can just copy the scalar map values over
10093   // to the vector map.
10094   if (VF.isScalar()) {
10095     set(Def, ScalarValue, Part);
10096     return ScalarValue;
10097   }
10098 
10099   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10100   bool IsUniform = RepR && RepR->isUniform();
10101 
10102   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10103   // Check if there is a scalar value for the selected lane.
10104   if (!hasScalarValue(Def, {Part, LastLane})) {
10105     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10106     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10107             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10108            "unexpected recipe found to be invariant");
10109     IsUniform = true;
10110     LastLane = 0;
10111   }
10112 
10113   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10114   // Set the insert point after the last scalarized instruction or after the
10115   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10116   // will directly follow the scalar definitions.
10117   auto OldIP = Builder.saveIP();
10118   auto NewIP =
10119       isa<PHINode>(LastInst)
10120           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10121           : std::next(BasicBlock::iterator(LastInst));
10122   Builder.SetInsertPoint(&*NewIP);
10123 
10124   // However, if we are vectorizing, we need to construct the vector values.
10125   // If the value is known to be uniform after vectorization, we can just
10126   // broadcast the scalar value corresponding to lane zero for each unroll
10127   // iteration. Otherwise, we construct the vector values using
10128   // insertelement instructions. Since the resulting vectors are stored in
10129   // State, we will only generate the insertelements once.
10130   Value *VectorValue = nullptr;
10131   if (IsUniform) {
10132     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10133     set(Def, VectorValue, Part);
10134   } else {
10135     // Initialize packing with insertelements to start from undef.
10136     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10137     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10138     set(Def, Undef, Part);
10139     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10140       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10141     VectorValue = get(Def, Part);
10142   }
10143   Builder.restoreIP(OldIP);
10144   return VectorValue;
10145 }
10146 
10147 // Process the loop in the VPlan-native vectorization path. This path builds
10148 // VPlan upfront in the vectorization pipeline, which allows to apply
10149 // VPlan-to-VPlan transformations from the very beginning without modifying the
10150 // input LLVM IR.
10151 static bool processLoopInVPlanNativePath(
10152     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10153     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10154     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10155     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10156     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10157     LoopVectorizationRequirements &Requirements) {
10158 
10159   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10160     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10161     return false;
10162   }
10163   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10164   Function *F = L->getHeader()->getParent();
10165   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10166 
10167   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10168       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10169 
10170   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10171                                 &Hints, IAI);
10172   // Use the planner for outer loop vectorization.
10173   // TODO: CM is not used at this point inside the planner. Turn CM into an
10174   // optional argument if we don't need it in the future.
10175   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10176                                Requirements, ORE);
10177 
10178   // Get user vectorization factor.
10179   ElementCount UserVF = Hints.getWidth();
10180 
10181   CM.collectElementTypesForWidening();
10182 
10183   // Plan how to best vectorize, return the best VF and its cost.
10184   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10185 
10186   // If we are stress testing VPlan builds, do not attempt to generate vector
10187   // code. Masked vector code generation support will follow soon.
10188   // Also, do not attempt to vectorize if no vector code will be produced.
10189   if (VPlanBuildStressTest || EnableVPlanPredication ||
10190       VectorizationFactor::Disabled() == VF)
10191     return false;
10192 
10193   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10194 
10195   {
10196     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10197                              F->getParent()->getDataLayout());
10198     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10199                            &CM, BFI, PSI, Checks);
10200     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10201                       << L->getHeader()->getParent()->getName() << "\"\n");
10202     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10203   }
10204 
10205   // Mark the loop as already vectorized to avoid vectorizing again.
10206   Hints.setAlreadyVectorized();
10207   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10208   return true;
10209 }
10210 
10211 // Emit a remark if there are stores to floats that required a floating point
10212 // extension. If the vectorized loop was generated with floating point there
10213 // will be a performance penalty from the conversion overhead and the change in
10214 // the vector width.
10215 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10216   SmallVector<Instruction *, 4> Worklist;
10217   for (BasicBlock *BB : L->getBlocks()) {
10218     for (Instruction &Inst : *BB) {
10219       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10220         if (S->getValueOperand()->getType()->isFloatTy())
10221           Worklist.push_back(S);
10222       }
10223     }
10224   }
10225 
10226   // Traverse the floating point stores upwards searching, for floating point
10227   // conversions.
10228   SmallPtrSet<const Instruction *, 4> Visited;
10229   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10230   while (!Worklist.empty()) {
10231     auto *I = Worklist.pop_back_val();
10232     if (!L->contains(I))
10233       continue;
10234     if (!Visited.insert(I).second)
10235       continue;
10236 
10237     // Emit a remark if the floating point store required a floating
10238     // point conversion.
10239     // TODO: More work could be done to identify the root cause such as a
10240     // constant or a function return type and point the user to it.
10241     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10242       ORE->emit([&]() {
10243         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10244                                           I->getDebugLoc(), L->getHeader())
10245                << "floating point conversion changes vector width. "
10246                << "Mixed floating point precision requires an up/down "
10247                << "cast that will negatively impact performance.";
10248       });
10249 
10250     for (Use &Op : I->operands())
10251       if (auto *OpI = dyn_cast<Instruction>(Op))
10252         Worklist.push_back(OpI);
10253   }
10254 }
10255 
10256 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10257     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10258                                !EnableLoopInterleaving),
10259       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10260                               !EnableLoopVectorization) {}
10261 
10262 bool LoopVectorizePass::processLoop(Loop *L) {
10263   assert((EnableVPlanNativePath || L->isInnermost()) &&
10264          "VPlan-native path is not enabled. Only process inner loops.");
10265 
10266 #ifndef NDEBUG
10267   const std::string DebugLocStr = getDebugLocString(L);
10268 #endif /* NDEBUG */
10269 
10270   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10271                     << L->getHeader()->getParent()->getName() << "' from "
10272                     << DebugLocStr << "\n");
10273 
10274   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10275 
10276   LLVM_DEBUG(
10277       dbgs() << "LV: Loop hints:"
10278              << " force="
10279              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10280                      ? "disabled"
10281                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10282                             ? "enabled"
10283                             : "?"))
10284              << " width=" << Hints.getWidth()
10285              << " interleave=" << Hints.getInterleave() << "\n");
10286 
10287   // Function containing loop
10288   Function *F = L->getHeader()->getParent();
10289 
10290   // Looking at the diagnostic output is the only way to determine if a loop
10291   // was vectorized (other than looking at the IR or machine code), so it
10292   // is important to generate an optimization remark for each loop. Most of
10293   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10294   // generated as OptimizationRemark and OptimizationRemarkMissed are
10295   // less verbose reporting vectorized loops and unvectorized loops that may
10296   // benefit from vectorization, respectively.
10297 
10298   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10299     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10300     return false;
10301   }
10302 
10303   PredicatedScalarEvolution PSE(*SE, *L);
10304 
10305   // Check if it is legal to vectorize the loop.
10306   LoopVectorizationRequirements Requirements;
10307   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10308                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10309   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10310     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10311     Hints.emitRemarkWithHints();
10312     return false;
10313   }
10314 
10315   // Check the function attributes and profiles to find out if this function
10316   // should be optimized for size.
10317   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10318       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10319 
10320   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10321   // here. They may require CFG and instruction level transformations before
10322   // even evaluating whether vectorization is profitable. Since we cannot modify
10323   // the incoming IR, we need to build VPlan upfront in the vectorization
10324   // pipeline.
10325   if (!L->isInnermost())
10326     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10327                                         ORE, BFI, PSI, Hints, Requirements);
10328 
10329   assert(L->isInnermost() && "Inner loop expected.");
10330 
10331   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10332   // count by optimizing for size, to minimize overheads.
10333   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10334   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10335     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10336                       << "This loop is worth vectorizing only if no scalar "
10337                       << "iteration overheads are incurred.");
10338     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10339       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10340     else {
10341       LLVM_DEBUG(dbgs() << "\n");
10342       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10343     }
10344   }
10345 
10346   // Check the function attributes to see if implicit floats are allowed.
10347   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10348   // an integer loop and the vector instructions selected are purely integer
10349   // vector instructions?
10350   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10351     reportVectorizationFailure(
10352         "Can't vectorize when the NoImplicitFloat attribute is used",
10353         "loop not vectorized due to NoImplicitFloat attribute",
10354         "NoImplicitFloat", ORE, L);
10355     Hints.emitRemarkWithHints();
10356     return false;
10357   }
10358 
10359   // Check if the target supports potentially unsafe FP vectorization.
10360   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10361   // for the target we're vectorizing for, to make sure none of the
10362   // additional fp-math flags can help.
10363   if (Hints.isPotentiallyUnsafe() &&
10364       TTI->isFPVectorizationPotentiallyUnsafe()) {
10365     reportVectorizationFailure(
10366         "Potentially unsafe FP op prevents vectorization",
10367         "loop not vectorized due to unsafe FP support.",
10368         "UnsafeFP", ORE, L);
10369     Hints.emitRemarkWithHints();
10370     return false;
10371   }
10372 
10373   bool AllowOrderedReductions;
10374   // If the flag is set, use that instead and override the TTI behaviour.
10375   if (ForceOrderedReductions.getNumOccurrences() > 0)
10376     AllowOrderedReductions = ForceOrderedReductions;
10377   else
10378     AllowOrderedReductions = TTI->enableOrderedReductions();
10379   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10380     ORE->emit([&]() {
10381       auto *ExactFPMathInst = Requirements.getExactFPInst();
10382       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10383                                                  ExactFPMathInst->getDebugLoc(),
10384                                                  ExactFPMathInst->getParent())
10385              << "loop not vectorized: cannot prove it is safe to reorder "
10386                 "floating-point operations";
10387     });
10388     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10389                          "reorder floating-point operations\n");
10390     Hints.emitRemarkWithHints();
10391     return false;
10392   }
10393 
10394   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10395   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10396 
10397   // If an override option has been passed in for interleaved accesses, use it.
10398   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10399     UseInterleaved = EnableInterleavedMemAccesses;
10400 
10401   // Analyze interleaved memory accesses.
10402   if (UseInterleaved) {
10403     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10404   }
10405 
10406   // Use the cost model.
10407   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10408                                 F, &Hints, IAI);
10409   CM.collectValuesToIgnore();
10410   CM.collectElementTypesForWidening();
10411 
10412   // Use the planner for vectorization.
10413   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10414                                Requirements, ORE);
10415 
10416   // Get user vectorization factor and interleave count.
10417   ElementCount UserVF = Hints.getWidth();
10418   unsigned UserIC = Hints.getInterleave();
10419 
10420   // Plan how to best vectorize, return the best VF and its cost.
10421   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10422 
10423   VectorizationFactor VF = VectorizationFactor::Disabled();
10424   unsigned IC = 1;
10425 
10426   if (MaybeVF) {
10427     VF = *MaybeVF;
10428     // Select the interleave count.
10429     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10430   }
10431 
10432   // Identify the diagnostic messages that should be produced.
10433   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10434   bool VectorizeLoop = true, InterleaveLoop = true;
10435   if (VF.Width.isScalar()) {
10436     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10437     VecDiagMsg = std::make_pair(
10438         "VectorizationNotBeneficial",
10439         "the cost-model indicates that vectorization is not beneficial");
10440     VectorizeLoop = false;
10441   }
10442 
10443   if (!MaybeVF && UserIC > 1) {
10444     // Tell the user interleaving was avoided up-front, despite being explicitly
10445     // requested.
10446     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10447                          "interleaving should be avoided up front\n");
10448     IntDiagMsg = std::make_pair(
10449         "InterleavingAvoided",
10450         "Ignoring UserIC, because interleaving was avoided up front");
10451     InterleaveLoop = false;
10452   } else if (IC == 1 && UserIC <= 1) {
10453     // Tell the user interleaving is not beneficial.
10454     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10455     IntDiagMsg = std::make_pair(
10456         "InterleavingNotBeneficial",
10457         "the cost-model indicates that interleaving is not beneficial");
10458     InterleaveLoop = false;
10459     if (UserIC == 1) {
10460       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10461       IntDiagMsg.second +=
10462           " and is explicitly disabled or interleave count is set to 1";
10463     }
10464   } else if (IC > 1 && UserIC == 1) {
10465     // Tell the user interleaving is beneficial, but it explicitly disabled.
10466     LLVM_DEBUG(
10467         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10468     IntDiagMsg = std::make_pair(
10469         "InterleavingBeneficialButDisabled",
10470         "the cost-model indicates that interleaving is beneficial "
10471         "but is explicitly disabled or interleave count is set to 1");
10472     InterleaveLoop = false;
10473   }
10474 
10475   // Override IC if user provided an interleave count.
10476   IC = UserIC > 0 ? UserIC : IC;
10477 
10478   // Emit diagnostic messages, if any.
10479   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10480   if (!VectorizeLoop && !InterleaveLoop) {
10481     // Do not vectorize or interleaving the loop.
10482     ORE->emit([&]() {
10483       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10484                                       L->getStartLoc(), L->getHeader())
10485              << VecDiagMsg.second;
10486     });
10487     ORE->emit([&]() {
10488       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10489                                       L->getStartLoc(), L->getHeader())
10490              << IntDiagMsg.second;
10491     });
10492     return false;
10493   } else if (!VectorizeLoop && InterleaveLoop) {
10494     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10495     ORE->emit([&]() {
10496       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10497                                         L->getStartLoc(), L->getHeader())
10498              << VecDiagMsg.second;
10499     });
10500   } else if (VectorizeLoop && !InterleaveLoop) {
10501     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10502                       << ") in " << DebugLocStr << '\n');
10503     ORE->emit([&]() {
10504       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10505                                         L->getStartLoc(), L->getHeader())
10506              << IntDiagMsg.second;
10507     });
10508   } else if (VectorizeLoop && InterleaveLoop) {
10509     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10510                       << ") in " << DebugLocStr << '\n');
10511     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10512   }
10513 
10514   bool DisableRuntimeUnroll = false;
10515   MDNode *OrigLoopID = L->getLoopID();
10516   {
10517     // Optimistically generate runtime checks. Drop them if they turn out to not
10518     // be profitable. Limit the scope of Checks, so the cleanup happens
10519     // immediately after vector codegeneration is done.
10520     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10521                              F->getParent()->getDataLayout());
10522     if (!VF.Width.isScalar() || IC > 1)
10523       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate());
10524 
10525     using namespace ore;
10526     if (!VectorizeLoop) {
10527       assert(IC > 1 && "interleave count should not be 1 or 0");
10528       // If we decided that it is not legal to vectorize the loop, then
10529       // interleave it.
10530       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10531                                  &CM, BFI, PSI, Checks);
10532 
10533       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10534       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10535 
10536       ORE->emit([&]() {
10537         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10538                                   L->getHeader())
10539                << "interleaved loop (interleaved count: "
10540                << NV("InterleaveCount", IC) << ")";
10541       });
10542     } else {
10543       // If we decided that it is *legal* to vectorize the loop, then do it.
10544 
10545       // Consider vectorizing the epilogue too if it's profitable.
10546       VectorizationFactor EpilogueVF =
10547           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10548       if (EpilogueVF.Width.isVector()) {
10549 
10550         // The first pass vectorizes the main loop and creates a scalar epilogue
10551         // to be vectorized by executing the plan (potentially with a different
10552         // factor) again shortly afterwards.
10553         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10554         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10555                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10556 
10557         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10558         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10559                         DT);
10560         ++LoopsVectorized;
10561 
10562         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10563         formLCSSARecursively(*L, *DT, LI, SE);
10564 
10565         // Second pass vectorizes the epilogue and adjusts the control flow
10566         // edges from the first pass.
10567         EPI.MainLoopVF = EPI.EpilogueVF;
10568         EPI.MainLoopUF = EPI.EpilogueUF;
10569         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10570                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10571                                                  Checks);
10572 
10573         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10574         BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->setName(
10575             "vec.epilog.vector.body");
10576 
10577         // Ensure that the start values for any VPReductionPHIRecipes are
10578         // updated before vectorising the epilogue loop.
10579         VPBasicBlock *Header =
10580             BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock();
10581         for (VPRecipeBase &R : Header->phis()) {
10582           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10583             if (auto *Resume = MainILV.getReductionResumeValue(
10584                     ReductionPhi->getRecurrenceDescriptor())) {
10585               VPValue *StartVal = new VPValue(Resume);
10586               BestEpiPlan.addExternalDef(StartVal);
10587               ReductionPhi->setOperand(0, StartVal);
10588             }
10589           }
10590         }
10591 
10592         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10593                         DT);
10594         ++LoopsEpilogueVectorized;
10595 
10596         if (!MainILV.areSafetyChecksAdded())
10597           DisableRuntimeUnroll = true;
10598       } else {
10599         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10600                                &LVL, &CM, BFI, PSI, Checks);
10601 
10602         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10603         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10604         ++LoopsVectorized;
10605 
10606         // Add metadata to disable runtime unrolling a scalar loop when there
10607         // are no runtime checks about strides and memory. A scalar loop that is
10608         // rarely used is not worth unrolling.
10609         if (!LB.areSafetyChecksAdded())
10610           DisableRuntimeUnroll = true;
10611       }
10612       // Report the vectorization decision.
10613       ORE->emit([&]() {
10614         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10615                                   L->getHeader())
10616                << "vectorized loop (vectorization width: "
10617                << NV("VectorizationFactor", VF.Width)
10618                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10619       });
10620     }
10621 
10622     if (ORE->allowExtraAnalysis(LV_NAME))
10623       checkMixedPrecision(L, ORE);
10624   }
10625 
10626   Optional<MDNode *> RemainderLoopID =
10627       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10628                                       LLVMLoopVectorizeFollowupEpilogue});
10629   if (RemainderLoopID.hasValue()) {
10630     L->setLoopID(RemainderLoopID.getValue());
10631   } else {
10632     if (DisableRuntimeUnroll)
10633       AddRuntimeUnrollDisableMetaData(L);
10634 
10635     // Mark the loop as already vectorized to avoid vectorizing again.
10636     Hints.setAlreadyVectorized();
10637   }
10638 
10639   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10640   return true;
10641 }
10642 
10643 LoopVectorizeResult LoopVectorizePass::runImpl(
10644     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10645     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10646     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10647     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10648     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10649   SE = &SE_;
10650   LI = &LI_;
10651   TTI = &TTI_;
10652   DT = &DT_;
10653   BFI = &BFI_;
10654   TLI = TLI_;
10655   AA = &AA_;
10656   AC = &AC_;
10657   GetLAA = &GetLAA_;
10658   DB = &DB_;
10659   ORE = &ORE_;
10660   PSI = PSI_;
10661 
10662   // Don't attempt if
10663   // 1. the target claims to have no vector registers, and
10664   // 2. interleaving won't help ILP.
10665   //
10666   // The second condition is necessary because, even if the target has no
10667   // vector registers, loop vectorization may still enable scalar
10668   // interleaving.
10669   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10670       TTI->getMaxInterleaveFactor(1) < 2)
10671     return LoopVectorizeResult(false, false);
10672 
10673   bool Changed = false, CFGChanged = false;
10674 
10675   // The vectorizer requires loops to be in simplified form.
10676   // Since simplification may add new inner loops, it has to run before the
10677   // legality and profitability checks. This means running the loop vectorizer
10678   // will simplify all loops, regardless of whether anything end up being
10679   // vectorized.
10680   for (auto &L : *LI)
10681     Changed |= CFGChanged |=
10682         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10683 
10684   // Build up a worklist of inner-loops to vectorize. This is necessary as
10685   // the act of vectorizing or partially unrolling a loop creates new loops
10686   // and can invalidate iterators across the loops.
10687   SmallVector<Loop *, 8> Worklist;
10688 
10689   for (Loop *L : *LI)
10690     collectSupportedLoops(*L, LI, ORE, Worklist);
10691 
10692   LoopsAnalyzed += Worklist.size();
10693 
10694   // Now walk the identified inner loops.
10695   while (!Worklist.empty()) {
10696     Loop *L = Worklist.pop_back_val();
10697 
10698     // For the inner loops we actually process, form LCSSA to simplify the
10699     // transform.
10700     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10701 
10702     Changed |= CFGChanged |= processLoop(L);
10703   }
10704 
10705   // Process each loop nest in the function.
10706   return LoopVectorizeResult(Changed, CFGChanged);
10707 }
10708 
10709 PreservedAnalyses LoopVectorizePass::run(Function &F,
10710                                          FunctionAnalysisManager &AM) {
10711     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10712     auto &LI = AM.getResult<LoopAnalysis>(F);
10713     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10714     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10715     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10716     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10717     auto &AA = AM.getResult<AAManager>(F);
10718     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10719     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10720     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10721 
10722     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10723     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10724         [&](Loop &L) -> const LoopAccessInfo & {
10725       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10726                                         TLI, TTI, nullptr, nullptr, nullptr};
10727       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10728     };
10729     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10730     ProfileSummaryInfo *PSI =
10731         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10732     LoopVectorizeResult Result =
10733         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10734     if (!Result.MadeAnyChange)
10735       return PreservedAnalyses::all();
10736     PreservedAnalyses PA;
10737 
10738     // We currently do not preserve loopinfo/dominator analyses with outer loop
10739     // vectorization. Until this is addressed, mark these analyses as preserved
10740     // only for non-VPlan-native path.
10741     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10742     if (!EnableVPlanNativePath) {
10743       PA.preserve<LoopAnalysis>();
10744       PA.preserve<DominatorTreeAnalysis>();
10745     }
10746 
10747     if (Result.MadeCFGChange) {
10748       // Making CFG changes likely means a loop got vectorized. Indicate that
10749       // extra simplification passes should be run.
10750       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10751       // be run if runtime checks have been added.
10752       AM.getResult<ShouldRunExtraVectorPasses>(F);
10753       PA.preserve<ShouldRunExtraVectorPasses>();
10754     } else {
10755       PA.preserveSet<CFGAnalyses>();
10756     }
10757     return PA;
10758 }
10759 
10760 void LoopVectorizePass::printPipeline(
10761     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10762   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10763       OS, MapClassName2PassName);
10764 
10765   OS << "<";
10766   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10767   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10768   OS << ">";
10769 }
10770