1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 static cl::opt<bool> ForceOrderedReductions( 334 "force-ordered-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns true if the given type is irregular. The 378 /// type is irregular if its allocated size doesn't equal the store size of an 379 /// element of the corresponding vector type. 380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 381 // Determine if an array of N elements of type Ty is "bitcast compatible" 382 // with a <N x Ty> vector. 383 // This is only true if there is no padding between the array elements. 384 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 385 } 386 387 /// A helper function that returns the reciprocal of the block probability of 388 /// predicated blocks. If we return X, we are assuming the predicated block 389 /// will execute once for every X iterations of the loop header. 390 /// 391 /// TODO: We should use actual block probability here, if available. Currently, 392 /// we always assume predicated blocks have a 50% chance of executing. 393 static unsigned getReciprocalPredBlockProb() { return 2; } 394 395 /// A helper function that returns an integer or floating-point constant with 396 /// value C. 397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 398 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 399 : ConstantFP::get(Ty, C); 400 } 401 402 /// Returns "best known" trip count for the specified loop \p L as defined by 403 /// the following procedure: 404 /// 1) Returns exact trip count if it is known. 405 /// 2) Returns expected trip count according to profile data if any. 406 /// 3) Returns upper bound estimate if it is known. 407 /// 4) Returns None if all of the above failed. 408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 409 // Check if exact trip count is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 411 return ExpectedTC; 412 413 // Check if there is an expected trip count available from profile data. 414 if (LoopVectorizeWithBlockFrequency) 415 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 416 return EstimatedTC; 417 418 // Check if upper bound estimate is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 420 return ExpectedTC; 421 422 return None; 423 } 424 425 // Forward declare GeneratedRTChecks. 426 class GeneratedRTChecks; 427 428 namespace llvm { 429 430 AnalysisKey ShouldRunExtraVectorPasses::Key; 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop and the start value for the canonical induction, if it is != 0. The 473 /// latter is the case when vectorizing the epilogue loop. In the case of 474 /// epilogue vectorization, this function is overriden to handle the more 475 /// complex control flow around the loops. 476 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 477 478 /// Widen a single call instruction within the innermost loop. 479 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 480 VPTransformState &State); 481 482 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 483 void fixVectorizedLoop(VPTransformState &State); 484 485 // Return true if any runtime check is added. 486 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 487 488 /// A type for vectorized values in the new loop. Each value from the 489 /// original loop, when vectorized, is represented by UF vector values in the 490 /// new unrolled loop, where UF is the unroll factor. 491 using VectorParts = SmallVector<Value *, 2>; 492 493 /// Vectorize a single vector PHINode in a block in the VPlan-native path 494 /// only. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *CountRoundDown, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Handle all cross-iteration phis in the header. 573 void fixCrossIterationPHIs(VPTransformState &State); 574 575 /// Create the exit value of first order recurrences in the middle block and 576 /// update their users. 577 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 578 VPTransformState &State); 579 580 /// Create code for the loop exit value of the reduction. 581 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 582 583 /// Clear NSW/NUW flags from reduction instructions if necessary. 584 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 585 VPTransformState &State); 586 587 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 588 /// means we need to add the appropriate incoming value from the middle 589 /// block as exiting edges from the scalar epilogue loop (if present) are 590 /// already in place, and we exit the vector loop exclusively to the middle 591 /// block. 592 void fixLCSSAPHIs(VPTransformState &State); 593 594 /// Iteratively sink the scalarized operands of a predicated instruction into 595 /// the block that was created for it. 596 void sinkScalarOperands(Instruction *PredInst); 597 598 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 599 /// represented as. 600 void truncateToMinimalBitwidths(VPTransformState &State); 601 602 /// Returns (and creates if needed) the original loop trip count. 603 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 604 605 /// Returns (and creates if needed) the trip count of the widened loop. 606 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 607 608 /// Returns a bitcasted value to the requested vector type. 609 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 610 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 611 const DataLayout &DL); 612 613 /// Emit a bypass check to see if the vector trip count is zero, including if 614 /// it overflows. 615 void emitMinimumIterationCountCheck(BasicBlock *Bypass); 616 617 /// Emit a bypass check to see if all of the SCEV assumptions we've 618 /// had to make are correct. Returns the block containing the checks or 619 /// nullptr if no checks have been added. 620 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 621 622 /// Emit bypass checks to check any memory assumptions we may have made. 623 /// Returns the block containing the checks or nullptr if no checks have been 624 /// added. 625 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 626 627 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 628 /// vector loop preheader, middle block and scalar preheader. 629 void createVectorLoopSkeleton(StringRef Prefix); 630 631 /// Create new phi nodes for the induction variables to resume iteration count 632 /// in the scalar epilogue, from where the vectorized loop left off. 633 /// In cases where the loop skeleton is more complicated (eg. epilogue 634 /// vectorization) and the resume values can come from an additional bypass 635 /// block, the \p AdditionalBypass pair provides information about the bypass 636 /// block and the end value on the edge from bypass to this loop. 637 void createInductionResumeValues( 638 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 639 640 /// Complete the loop skeleton by adding debug MDs, creating appropriate 641 /// conditional branches in the middle block, preparing the builder and 642 /// running the verifier. Return the preheader of the completed vector loop. 643 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 644 645 /// Add additional metadata to \p To that was not present on \p Orig. 646 /// 647 /// Currently this is used to add the noalias annotations based on the 648 /// inserted memchecks. Use this for instructions that are *cloned* into the 649 /// vector loop. 650 void addNewMetadata(Instruction *To, const Instruction *Orig); 651 652 /// Collect poison-generating recipes that may generate a poison value that is 653 /// used after vectorization, even when their operands are not poison. Those 654 /// recipes meet the following conditions: 655 /// * Contribute to the address computation of a recipe generating a widen 656 /// memory load/store (VPWidenMemoryInstructionRecipe or 657 /// VPInterleaveRecipe). 658 /// * Such a widen memory load/store has at least one underlying Instruction 659 /// that is in a basic block that needs predication and after vectorization 660 /// the generated instruction won't be predicated. 661 void collectPoisonGeneratingRecipes(VPTransformState &State); 662 663 /// Allow subclasses to override and print debug traces before/after vplan 664 /// execution, when trace information is requested. 665 virtual void printDebugTracesAtStart(){}; 666 virtual void printDebugTracesAtEnd(){}; 667 668 /// The original loop. 669 Loop *OrigLoop; 670 671 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 672 /// dynamic knowledge to simplify SCEV expressions and converts them to a 673 /// more usable form. 674 PredicatedScalarEvolution &PSE; 675 676 /// Loop Info. 677 LoopInfo *LI; 678 679 /// Dominator Tree. 680 DominatorTree *DT; 681 682 /// Alias Analysis. 683 AAResults *AA; 684 685 /// Target Library Info. 686 const TargetLibraryInfo *TLI; 687 688 /// Target Transform Info. 689 const TargetTransformInfo *TTI; 690 691 /// Assumption Cache. 692 AssumptionCache *AC; 693 694 /// Interface to emit optimization remarks. 695 OptimizationRemarkEmitter *ORE; 696 697 /// LoopVersioning. It's only set up (non-null) if memchecks were 698 /// used. 699 /// 700 /// This is currently only used to add no-alias metadata based on the 701 /// memchecks. The actually versioning is performed manually. 702 std::unique_ptr<LoopVersioning> LVer; 703 704 /// The vectorization SIMD factor to use. Each vector will have this many 705 /// vector elements. 706 ElementCount VF; 707 708 /// The vectorization unroll factor to use. Each scalar is vectorized to this 709 /// many different vector instructions. 710 unsigned UF; 711 712 /// The builder that we use 713 IRBuilder<> Builder; 714 715 // --- Vectorization state --- 716 717 /// The vector-loop preheader. 718 BasicBlock *LoopVectorPreHeader; 719 720 /// The scalar-loop preheader. 721 BasicBlock *LoopScalarPreHeader; 722 723 /// Middle Block between the vector and the scalar. 724 BasicBlock *LoopMiddleBlock; 725 726 /// The unique ExitBlock of the scalar loop if one exists. Note that 727 /// there can be multiple exiting edges reaching this block. 728 BasicBlock *LoopExitBlock; 729 730 /// The scalar loop body. 731 BasicBlock *LoopScalarBody; 732 733 /// A list of all bypass blocks. The first block is the entry of the loop. 734 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 /// Trip count of the original loop. 740 Value *TripCount = nullptr; 741 742 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 743 Value *VectorTripCount = nullptr; 744 745 /// The legality analysis. 746 LoopVectorizationLegality *Legal; 747 748 /// The profitablity analysis. 749 LoopVectorizationCostModel *Cost; 750 751 // Record whether runtime checks are added. 752 bool AddedSafetyChecks = false; 753 754 // Holds the end values for each induction variable. We save the end values 755 // so we can later fix-up the external users of the induction variables. 756 DenseMap<PHINode *, Value *> IVEndValues; 757 758 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 759 // fixed up at the end of vector code generation. 760 SmallVector<PHINode *, 8> OrigPHIsToFix; 761 762 /// BFI and PSI are used to check for profile guided size optimizations. 763 BlockFrequencyInfo *BFI; 764 ProfileSummaryInfo *PSI; 765 766 // Whether this loop should be optimized for size based on profile guided size 767 // optimizatios. 768 bool OptForSizeBasedOnProfile; 769 770 /// Structure to hold information about generated runtime checks, responsible 771 /// for cleaning the checks, if vectorization turns out unprofitable. 772 GeneratedRTChecks &RTChecks; 773 774 // Holds the resume values for reductions in the loops, used to set the 775 // correct start value of reduction PHIs when vectorizing the epilogue. 776 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 777 ReductionResumeValues; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 789 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 790 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 791 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 792 BFI, PSI, Check) {} 793 794 private: 795 Value *getBroadcastInstrs(Value *V) override; 796 }; 797 798 /// Encapsulate information regarding vectorization of a loop and its epilogue. 799 /// This information is meant to be updated and used across two stages of 800 /// epilogue vectorization. 801 struct EpilogueLoopVectorizationInfo { 802 ElementCount MainLoopVF = ElementCount::getFixed(0); 803 unsigned MainLoopUF = 0; 804 ElementCount EpilogueVF = ElementCount::getFixed(0); 805 unsigned EpilogueUF = 0; 806 BasicBlock *MainLoopIterationCountCheck = nullptr; 807 BasicBlock *EpilogueIterationCountCheck = nullptr; 808 BasicBlock *SCEVSafetyCheck = nullptr; 809 BasicBlock *MemSafetyCheck = nullptr; 810 Value *TripCount = nullptr; 811 Value *VectorTripCount = nullptr; 812 813 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 814 ElementCount EVF, unsigned EUF) 815 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 816 assert(EUF == 1 && 817 "A high UF for the epilogue loop is likely not beneficial."); 818 } 819 }; 820 821 /// An extension of the inner loop vectorizer that creates a skeleton for a 822 /// vectorized loop that has its epilogue (residual) also vectorized. 823 /// The idea is to run the vplan on a given loop twice, firstly to setup the 824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 825 /// from the first step and vectorize the epilogue. This is achieved by 826 /// deriving two concrete strategy classes from this base class and invoking 827 /// them in succession from the loop vectorizer planner. 828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 829 public: 830 InnerLoopAndEpilogueVectorizer( 831 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 832 DominatorTree *DT, const TargetLibraryInfo *TLI, 833 const TargetTransformInfo *TTI, AssumptionCache *AC, 834 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 835 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 836 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 837 GeneratedRTChecks &Checks) 838 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 839 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 840 Checks), 841 EPI(EPI) {} 842 843 // Override this function to handle the more complex control flow around the 844 // three loops. 845 std::pair<BasicBlock *, Value *> 846 createVectorizedLoopSkeleton() final override { 847 return createEpilogueVectorizedLoopSkeleton(); 848 } 849 850 /// The interface for creating a vectorized skeleton using one of two 851 /// different strategies, each corresponding to one execution of the vplan 852 /// as described above. 853 virtual std::pair<BasicBlock *, Value *> 854 createEpilogueVectorizedLoopSkeleton() = 0; 855 856 /// Holds and updates state information required to vectorize the main loop 857 /// and its epilogue in two separate passes. This setup helps us avoid 858 /// regenerating and recomputing runtime safety checks. It also helps us to 859 /// shorten the iteration-count-check path length for the cases where the 860 /// iteration count of the loop is so small that the main vector loop is 861 /// completely skipped. 862 EpilogueLoopVectorizationInfo &EPI; 863 }; 864 865 /// A specialized derived class of inner loop vectorizer that performs 866 /// vectorization of *main* loops in the process of vectorizing loops and their 867 /// epilogues. 868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 869 public: 870 EpilogueVectorizerMainLoop( 871 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 872 DominatorTree *DT, const TargetLibraryInfo *TLI, 873 const TargetTransformInfo *TTI, AssumptionCache *AC, 874 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 875 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 876 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 877 GeneratedRTChecks &Check) 878 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 879 EPI, LVL, CM, BFI, PSI, Check) {} 880 /// Implements the interface for creating a vectorized skeleton using the 881 /// *main loop* strategy (ie the first pass of vplan execution). 882 std::pair<BasicBlock *, Value *> 883 createEpilogueVectorizedLoopSkeleton() final override; 884 885 protected: 886 /// Emits an iteration count bypass check once for the main loop (when \p 887 /// ForEpilogue is false) and once for the epilogue loop (when \p 888 /// ForEpilogue is true). 889 BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass, 890 bool ForEpilogue); 891 void printDebugTracesAtStart() override; 892 void printDebugTracesAtEnd() override; 893 }; 894 895 // A specialized derived class of inner loop vectorizer that performs 896 // vectorization of *epilogue* loops in the process of vectorizing loops and 897 // their epilogues. 898 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 899 public: 900 EpilogueVectorizerEpilogueLoop( 901 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 902 DominatorTree *DT, const TargetLibraryInfo *TLI, 903 const TargetTransformInfo *TTI, AssumptionCache *AC, 904 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 905 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 906 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 907 GeneratedRTChecks &Checks) 908 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 909 EPI, LVL, CM, BFI, PSI, Checks) { 910 TripCount = EPI.TripCount; 911 } 912 /// Implements the interface for creating a vectorized skeleton using the 913 /// *epilogue loop* strategy (ie the second pass of vplan execution). 914 std::pair<BasicBlock *, Value *> 915 createEpilogueVectorizedLoopSkeleton() final override; 916 917 protected: 918 /// Emits an iteration count bypass check after the main vector loop has 919 /// finished to see if there are any iterations left to execute by either 920 /// the vector epilogue or the scalar epilogue. 921 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 922 BasicBlock *Bypass, 923 BasicBlock *Insert); 924 void printDebugTracesAtStart() override; 925 void printDebugTracesAtEnd() override; 926 }; 927 } // end namespace llvm 928 929 /// Look for a meaningful debug location on the instruction or it's 930 /// operands. 931 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 932 if (!I) 933 return I; 934 935 DebugLoc Empty; 936 if (I->getDebugLoc() != Empty) 937 return I; 938 939 for (Use &Op : I->operands()) { 940 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 941 if (OpInst->getDebugLoc() != Empty) 942 return OpInst; 943 } 944 945 return I; 946 } 947 948 void InnerLoopVectorizer::setDebugLocFromInst( 949 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 950 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 951 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 952 const DILocation *DIL = Inst->getDebugLoc(); 953 954 // When a FSDiscriminator is enabled, we don't need to add the multiply 955 // factors to the discriminators. 956 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 957 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 958 // FIXME: For scalable vectors, assume vscale=1. 959 auto NewDIL = 960 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 961 if (NewDIL) 962 B->SetCurrentDebugLocation(NewDIL.getValue()); 963 else 964 LLVM_DEBUG(dbgs() 965 << "Failed to create new discriminator: " 966 << DIL->getFilename() << " Line: " << DIL->getLine()); 967 } else 968 B->SetCurrentDebugLocation(DIL); 969 } else 970 B->SetCurrentDebugLocation(DebugLoc()); 971 } 972 973 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 974 /// is passed, the message relates to that particular instruction. 975 #ifndef NDEBUG 976 static void debugVectorizationMessage(const StringRef Prefix, 977 const StringRef DebugMsg, 978 Instruction *I) { 979 dbgs() << "LV: " << Prefix << DebugMsg; 980 if (I != nullptr) 981 dbgs() << " " << *I; 982 else 983 dbgs() << '.'; 984 dbgs() << '\n'; 985 } 986 #endif 987 988 /// Create an analysis remark that explains why vectorization failed 989 /// 990 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 991 /// RemarkName is the identifier for the remark. If \p I is passed it is an 992 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 993 /// the location of the remark. \return the remark object that can be 994 /// streamed to. 995 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 996 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 997 Value *CodeRegion = TheLoop->getHeader(); 998 DebugLoc DL = TheLoop->getStartLoc(); 999 1000 if (I) { 1001 CodeRegion = I->getParent(); 1002 // If there is no debug location attached to the instruction, revert back to 1003 // using the loop's. 1004 if (I->getDebugLoc()) 1005 DL = I->getDebugLoc(); 1006 } 1007 1008 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1009 } 1010 1011 namespace llvm { 1012 1013 /// Return a value for Step multiplied by VF. 1014 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1015 int64_t Step) { 1016 assert(Ty->isIntegerTy() && "Expected an integer step"); 1017 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1018 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1019 } 1020 1021 /// Return the runtime value for VF. 1022 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1023 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1024 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1025 } 1026 1027 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1028 ElementCount VF) { 1029 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1030 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1031 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1032 return B.CreateUIToFP(RuntimeVF, FTy); 1033 } 1034 1035 void reportVectorizationFailure(const StringRef DebugMsg, 1036 const StringRef OREMsg, const StringRef ORETag, 1037 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1038 Instruction *I) { 1039 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1040 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1041 ORE->emit( 1042 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1043 << "loop not vectorized: " << OREMsg); 1044 } 1045 1046 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1047 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1048 Instruction *I) { 1049 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1050 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1051 ORE->emit( 1052 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1053 << Msg); 1054 } 1055 1056 } // end namespace llvm 1057 1058 #ifndef NDEBUG 1059 /// \return string containing a file name and a line # for the given loop. 1060 static std::string getDebugLocString(const Loop *L) { 1061 std::string Result; 1062 if (L) { 1063 raw_string_ostream OS(Result); 1064 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1065 LoopDbgLoc.print(OS); 1066 else 1067 // Just print the module name. 1068 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1069 OS.flush(); 1070 } 1071 return Result; 1072 } 1073 #endif 1074 1075 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1076 const Instruction *Orig) { 1077 // If the loop was versioned with memchecks, add the corresponding no-alias 1078 // metadata. 1079 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1080 LVer->annotateInstWithNoAlias(To, Orig); 1081 } 1082 1083 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1084 VPTransformState &State) { 1085 1086 // Collect recipes in the backward slice of `Root` that may generate a poison 1087 // value that is used after vectorization. 1088 SmallPtrSet<VPRecipeBase *, 16> Visited; 1089 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1090 SmallVector<VPRecipeBase *, 16> Worklist; 1091 Worklist.push_back(Root); 1092 1093 // Traverse the backward slice of Root through its use-def chain. 1094 while (!Worklist.empty()) { 1095 VPRecipeBase *CurRec = Worklist.back(); 1096 Worklist.pop_back(); 1097 1098 if (!Visited.insert(CurRec).second) 1099 continue; 1100 1101 // Prune search if we find another recipe generating a widen memory 1102 // instruction. Widen memory instructions involved in address computation 1103 // will lead to gather/scatter instructions, which don't need to be 1104 // handled. 1105 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1106 isa<VPInterleaveRecipe>(CurRec) || 1107 isa<VPScalarIVStepsRecipe>(CurRec) || 1108 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1109 continue; 1110 1111 // This recipe contributes to the address computation of a widen 1112 // load/store. Collect recipe if its underlying instruction has 1113 // poison-generating flags. 1114 Instruction *Instr = CurRec->getUnderlyingInstr(); 1115 if (Instr && Instr->hasPoisonGeneratingFlags()) 1116 State.MayGeneratePoisonRecipes.insert(CurRec); 1117 1118 // Add new definitions to the worklist. 1119 for (VPValue *operand : CurRec->operands()) 1120 if (VPDef *OpDef = operand->getDef()) 1121 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1122 } 1123 }); 1124 1125 // Traverse all the recipes in the VPlan and collect the poison-generating 1126 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1127 // VPInterleaveRecipe. 1128 auto Iter = depth_first( 1129 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1130 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1131 for (VPRecipeBase &Recipe : *VPBB) { 1132 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1133 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1134 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1135 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1136 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1137 collectPoisonGeneratingInstrsInBackwardSlice( 1138 cast<VPRecipeBase>(AddrDef)); 1139 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1140 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1141 if (AddrDef) { 1142 // Check if any member of the interleave group needs predication. 1143 const InterleaveGroup<Instruction> *InterGroup = 1144 InterleaveRec->getInterleaveGroup(); 1145 bool NeedPredication = false; 1146 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1147 I < NumMembers; ++I) { 1148 Instruction *Member = InterGroup->getMember(I); 1149 if (Member) 1150 NeedPredication |= 1151 Legal->blockNeedsPredication(Member->getParent()); 1152 } 1153 1154 if (NeedPredication) 1155 collectPoisonGeneratingInstrsInBackwardSlice( 1156 cast<VPRecipeBase>(AddrDef)); 1157 } 1158 } 1159 } 1160 } 1161 } 1162 1163 void InnerLoopVectorizer::addMetadata(Instruction *To, 1164 Instruction *From) { 1165 propagateMetadata(To, From); 1166 addNewMetadata(To, From); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1170 Instruction *From) { 1171 for (Value *V : To) { 1172 if (Instruction *I = dyn_cast<Instruction>(V)) 1173 addMetadata(I, From); 1174 } 1175 } 1176 1177 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1178 const RecurrenceDescriptor &RdxDesc) { 1179 auto It = ReductionResumeValues.find(&RdxDesc); 1180 assert(It != ReductionResumeValues.end() && 1181 "Expected to find a resume value for the reduction."); 1182 return It->second; 1183 } 1184 1185 namespace llvm { 1186 1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1188 // lowered. 1189 enum ScalarEpilogueLowering { 1190 1191 // The default: allowing scalar epilogues. 1192 CM_ScalarEpilogueAllowed, 1193 1194 // Vectorization with OptForSize: don't allow epilogues. 1195 CM_ScalarEpilogueNotAllowedOptSize, 1196 1197 // A special case of vectorisation with OptForSize: loops with a very small 1198 // trip count are considered for vectorization under OptForSize, thereby 1199 // making sure the cost of their loop body is dominant, free of runtime 1200 // guards and scalar iteration overheads. 1201 CM_ScalarEpilogueNotAllowedLowTripLoop, 1202 1203 // Loop hint predicate indicating an epilogue is undesired. 1204 CM_ScalarEpilogueNotNeededUsePredicate, 1205 1206 // Directive indicating we must either tail fold or not vectorize 1207 CM_ScalarEpilogueNotAllowedUsePredicate 1208 }; 1209 1210 /// ElementCountComparator creates a total ordering for ElementCount 1211 /// for the purposes of using it in a set structure. 1212 struct ElementCountComparator { 1213 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1214 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1215 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1216 } 1217 }; 1218 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1219 1220 /// LoopVectorizationCostModel - estimates the expected speedups due to 1221 /// vectorization. 1222 /// In many cases vectorization is not profitable. This can happen because of 1223 /// a number of reasons. In this class we mainly attempt to predict the 1224 /// expected speedup/slowdowns due to the supported instruction set. We use the 1225 /// TargetTransformInfo to query the different backends for the cost of 1226 /// different operations. 1227 class LoopVectorizationCostModel { 1228 public: 1229 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1230 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1231 LoopVectorizationLegality *Legal, 1232 const TargetTransformInfo &TTI, 1233 const TargetLibraryInfo *TLI, DemandedBits *DB, 1234 AssumptionCache *AC, 1235 OptimizationRemarkEmitter *ORE, const Function *F, 1236 const LoopVectorizeHints *Hints, 1237 InterleavedAccessInfo &IAI) 1238 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1239 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1240 Hints(Hints), InterleaveInfo(IAI) {} 1241 1242 /// \return An upper bound for the vectorization factors (both fixed and 1243 /// scalable). If the factors are 0, vectorization and interleaving should be 1244 /// avoided up front. 1245 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1246 1247 /// \return True if runtime checks are required for vectorization, and false 1248 /// otherwise. 1249 bool runtimeChecksRequired(); 1250 1251 /// \return The most profitable vectorization factor and the cost of that VF. 1252 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1253 /// then this vectorization factor will be selected if vectorization is 1254 /// possible. 1255 VectorizationFactor 1256 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1257 1258 VectorizationFactor 1259 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1260 const LoopVectorizationPlanner &LVP); 1261 1262 /// Setup cost-based decisions for user vectorization factor. 1263 /// \return true if the UserVF is a feasible VF to be chosen. 1264 bool selectUserVectorizationFactor(ElementCount UserVF) { 1265 collectUniformsAndScalars(UserVF); 1266 collectInstsToScalarize(UserVF); 1267 return expectedCost(UserVF).first.isValid(); 1268 } 1269 1270 /// \return The size (in bits) of the smallest and widest types in the code 1271 /// that needs to be vectorized. We ignore values that remain scalar such as 1272 /// 64 bit loop indices. 1273 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1274 1275 /// \return The desired interleave count. 1276 /// If interleave count has been specified by metadata it will be returned. 1277 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1278 /// are the selected vectorization factor and the cost of the selected VF. 1279 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1280 1281 /// Memory access instruction may be vectorized in more than one way. 1282 /// Form of instruction after vectorization depends on cost. 1283 /// This function takes cost-based decisions for Load/Store instructions 1284 /// and collects them in a map. This decisions map is used for building 1285 /// the lists of loop-uniform and loop-scalar instructions. 1286 /// The calculated cost is saved with widening decision in order to 1287 /// avoid redundant calculations. 1288 void setCostBasedWideningDecision(ElementCount VF); 1289 1290 /// A struct that represents some properties of the register usage 1291 /// of a loop. 1292 struct RegisterUsage { 1293 /// Holds the number of loop invariant values that are used in the loop. 1294 /// The key is ClassID of target-provided register class. 1295 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1296 /// Holds the maximum number of concurrent live intervals in the loop. 1297 /// The key is ClassID of target-provided register class. 1298 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1299 }; 1300 1301 /// \return Returns information about the register usages of the loop for the 1302 /// given vectorization factors. 1303 SmallVector<RegisterUsage, 8> 1304 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1305 1306 /// Collect values we want to ignore in the cost model. 1307 void collectValuesToIgnore(); 1308 1309 /// Collect all element types in the loop for which widening is needed. 1310 void collectElementTypesForWidening(); 1311 1312 /// Split reductions into those that happen in the loop, and those that happen 1313 /// outside. In loop reductions are collected into InLoopReductionChains. 1314 void collectInLoopReductions(); 1315 1316 /// Returns true if we should use strict in-order reductions for the given 1317 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1318 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1319 /// of FP operations. 1320 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1321 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1322 } 1323 1324 /// \returns The smallest bitwidth each instruction can be represented with. 1325 /// The vector equivalents of these instructions should be truncated to this 1326 /// type. 1327 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1328 return MinBWs; 1329 } 1330 1331 /// \returns True if it is more profitable to scalarize instruction \p I for 1332 /// vectorization factor \p VF. 1333 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1334 assert(VF.isVector() && 1335 "Profitable to scalarize relevant only for VF > 1."); 1336 1337 // Cost model is not run in the VPlan-native path - return conservative 1338 // result until this changes. 1339 if (EnableVPlanNativePath) 1340 return false; 1341 1342 auto Scalars = InstsToScalarize.find(VF); 1343 assert(Scalars != InstsToScalarize.end() && 1344 "VF not yet analyzed for scalarization profitability"); 1345 return Scalars->second.find(I) != Scalars->second.end(); 1346 } 1347 1348 /// Returns true if \p I is known to be uniform after vectorization. 1349 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1350 if (VF.isScalar()) 1351 return true; 1352 1353 // Cost model is not run in the VPlan-native path - return conservative 1354 // result until this changes. 1355 if (EnableVPlanNativePath) 1356 return false; 1357 1358 auto UniformsPerVF = Uniforms.find(VF); 1359 assert(UniformsPerVF != Uniforms.end() && 1360 "VF not yet analyzed for uniformity"); 1361 return UniformsPerVF->second.count(I); 1362 } 1363 1364 /// Returns true if \p I is known to be scalar after vectorization. 1365 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1366 if (VF.isScalar()) 1367 return true; 1368 1369 // Cost model is not run in the VPlan-native path - return conservative 1370 // result until this changes. 1371 if (EnableVPlanNativePath) 1372 return false; 1373 1374 auto ScalarsPerVF = Scalars.find(VF); 1375 assert(ScalarsPerVF != Scalars.end() && 1376 "Scalar values are not calculated for VF"); 1377 return ScalarsPerVF->second.count(I); 1378 } 1379 1380 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1381 /// for vectorization factor \p VF. 1382 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1383 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1384 !isProfitableToScalarize(I, VF) && 1385 !isScalarAfterVectorization(I, VF); 1386 } 1387 1388 /// Decision that was taken during cost calculation for memory instruction. 1389 enum InstWidening { 1390 CM_Unknown, 1391 CM_Widen, // For consecutive accesses with stride +1. 1392 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1393 CM_Interleave, 1394 CM_GatherScatter, 1395 CM_Scalarize 1396 }; 1397 1398 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1399 /// instruction \p I and vector width \p VF. 1400 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1401 InstructionCost Cost) { 1402 assert(VF.isVector() && "Expected VF >=2"); 1403 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1404 } 1405 1406 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1407 /// interleaving group \p Grp and vector width \p VF. 1408 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1409 ElementCount VF, InstWidening W, 1410 InstructionCost Cost) { 1411 assert(VF.isVector() && "Expected VF >=2"); 1412 /// Broadcast this decicion to all instructions inside the group. 1413 /// But the cost will be assigned to one instruction only. 1414 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1415 if (auto *I = Grp->getMember(i)) { 1416 if (Grp->getInsertPos() == I) 1417 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1418 else 1419 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1420 } 1421 } 1422 } 1423 1424 /// Return the cost model decision for the given instruction \p I and vector 1425 /// width \p VF. Return CM_Unknown if this instruction did not pass 1426 /// through the cost modeling. 1427 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1428 assert(VF.isVector() && "Expected VF to be a vector VF"); 1429 // Cost model is not run in the VPlan-native path - return conservative 1430 // result until this changes. 1431 if (EnableVPlanNativePath) 1432 return CM_GatherScatter; 1433 1434 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1435 auto Itr = WideningDecisions.find(InstOnVF); 1436 if (Itr == WideningDecisions.end()) 1437 return CM_Unknown; 1438 return Itr->second.first; 1439 } 1440 1441 /// Return the vectorization cost for the given instruction \p I and vector 1442 /// width \p VF. 1443 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1444 assert(VF.isVector() && "Expected VF >=2"); 1445 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1446 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1447 "The cost is not calculated"); 1448 return WideningDecisions[InstOnVF].second; 1449 } 1450 1451 /// Return True if instruction \p I is an optimizable truncate whose operand 1452 /// is an induction variable. Such a truncate will be removed by adding a new 1453 /// induction variable with the destination type. 1454 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1455 // If the instruction is not a truncate, return false. 1456 auto *Trunc = dyn_cast<TruncInst>(I); 1457 if (!Trunc) 1458 return false; 1459 1460 // Get the source and destination types of the truncate. 1461 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1462 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1463 1464 // If the truncate is free for the given types, return false. Replacing a 1465 // free truncate with an induction variable would add an induction variable 1466 // update instruction to each iteration of the loop. We exclude from this 1467 // check the primary induction variable since it will need an update 1468 // instruction regardless. 1469 Value *Op = Trunc->getOperand(0); 1470 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1471 return false; 1472 1473 // If the truncated value is not an induction variable, return false. 1474 return Legal->isInductionPhi(Op); 1475 } 1476 1477 /// Collects the instructions to scalarize for each predicated instruction in 1478 /// the loop. 1479 void collectInstsToScalarize(ElementCount VF); 1480 1481 /// Collect Uniform and Scalar values for the given \p VF. 1482 /// The sets depend on CM decision for Load/Store instructions 1483 /// that may be vectorized as interleave, gather-scatter or scalarized. 1484 void collectUniformsAndScalars(ElementCount VF) { 1485 // Do the analysis once. 1486 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1487 return; 1488 setCostBasedWideningDecision(VF); 1489 collectLoopUniforms(VF); 1490 collectLoopScalars(VF); 1491 } 1492 1493 /// Returns true if the target machine supports masked store operation 1494 /// for the given \p DataType and kind of access to \p Ptr. 1495 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1496 return Legal->isConsecutivePtr(DataType, Ptr) && 1497 TTI.isLegalMaskedStore(DataType, Alignment); 1498 } 1499 1500 /// Returns true if the target machine supports masked load operation 1501 /// for the given \p DataType and kind of access to \p Ptr. 1502 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1503 return Legal->isConsecutivePtr(DataType, Ptr) && 1504 TTI.isLegalMaskedLoad(DataType, Alignment); 1505 } 1506 1507 /// Returns true if the target machine can represent \p V as a masked gather 1508 /// or scatter operation. 1509 bool isLegalGatherOrScatter(Value *V, 1510 ElementCount VF = ElementCount::getFixed(1)) { 1511 bool LI = isa<LoadInst>(V); 1512 bool SI = isa<StoreInst>(V); 1513 if (!LI && !SI) 1514 return false; 1515 auto *Ty = getLoadStoreType(V); 1516 Align Align = getLoadStoreAlignment(V); 1517 if (VF.isVector()) 1518 Ty = VectorType::get(Ty, VF); 1519 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1520 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1521 } 1522 1523 /// Returns true if the target machine supports all of the reduction 1524 /// variables found for the given VF. 1525 bool canVectorizeReductions(ElementCount VF) const { 1526 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1527 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1528 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1529 })); 1530 } 1531 1532 /// Returns true if \p I is an instruction that will be scalarized with 1533 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1534 /// instructions include conditional stores and instructions that may divide 1535 /// by zero. 1536 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1537 1538 // Returns true if \p I is an instruction that will be predicated either 1539 // through scalar predication or masked load/store or masked gather/scatter. 1540 // \p VF is the vectorization factor that will be used to vectorize \p I. 1541 // Superset of instructions that return true for isScalarWithPredication. 1542 bool isPredicatedInst(Instruction *I, ElementCount VF, 1543 bool IsKnownUniform = false) { 1544 // When we know the load is uniform and the original scalar loop was not 1545 // predicated we don't need to mark it as a predicated instruction. Any 1546 // vectorised blocks created when tail-folding are something artificial we 1547 // have introduced and we know there is always at least one active lane. 1548 // That's why we call Legal->blockNeedsPredication here because it doesn't 1549 // query tail-folding. 1550 if (IsKnownUniform && isa<LoadInst>(I) && 1551 !Legal->blockNeedsPredication(I->getParent())) 1552 return false; 1553 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1554 return false; 1555 // Loads and stores that need some form of masked operation are predicated 1556 // instructions. 1557 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1558 return Legal->isMaskRequired(I); 1559 return isScalarWithPredication(I, VF); 1560 } 1561 1562 /// Returns true if \p I is a memory instruction with consecutive memory 1563 /// access that can be widened. 1564 bool 1565 memoryInstructionCanBeWidened(Instruction *I, 1566 ElementCount VF = ElementCount::getFixed(1)); 1567 1568 /// Returns true if \p I is a memory instruction in an interleaved-group 1569 /// of memory accesses that can be vectorized with wide vector loads/stores 1570 /// and shuffles. 1571 bool 1572 interleavedAccessCanBeWidened(Instruction *I, 1573 ElementCount VF = ElementCount::getFixed(1)); 1574 1575 /// Check if \p Instr belongs to any interleaved access group. 1576 bool isAccessInterleaved(Instruction *Instr) { 1577 return InterleaveInfo.isInterleaved(Instr); 1578 } 1579 1580 /// Get the interleaved access group that \p Instr belongs to. 1581 const InterleaveGroup<Instruction> * 1582 getInterleavedAccessGroup(Instruction *Instr) { 1583 return InterleaveInfo.getInterleaveGroup(Instr); 1584 } 1585 1586 /// Returns true if we're required to use a scalar epilogue for at least 1587 /// the final iteration of the original loop. 1588 bool requiresScalarEpilogue(ElementCount VF) const { 1589 if (!isScalarEpilogueAllowed()) 1590 return false; 1591 // If we might exit from anywhere but the latch, must run the exiting 1592 // iteration in scalar form. 1593 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1594 return true; 1595 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1596 } 1597 1598 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1599 /// loop hint annotation. 1600 bool isScalarEpilogueAllowed() const { 1601 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1602 } 1603 1604 /// Returns true if all loop blocks should be masked to fold tail loop. 1605 bool foldTailByMasking() const { return FoldTailByMasking; } 1606 1607 /// Returns true if the instructions in this block requires predication 1608 /// for any reason, e.g. because tail folding now requires a predicate 1609 /// or because the block in the original loop was predicated. 1610 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1611 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1612 } 1613 1614 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1615 /// nodes to the chain of instructions representing the reductions. Uses a 1616 /// MapVector to ensure deterministic iteration order. 1617 using ReductionChainMap = 1618 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1619 1620 /// Return the chain of instructions representing an inloop reduction. 1621 const ReductionChainMap &getInLoopReductionChains() const { 1622 return InLoopReductionChains; 1623 } 1624 1625 /// Returns true if the Phi is part of an inloop reduction. 1626 bool isInLoopReduction(PHINode *Phi) const { 1627 return InLoopReductionChains.count(Phi); 1628 } 1629 1630 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1631 /// with factor VF. Return the cost of the instruction, including 1632 /// scalarization overhead if it's needed. 1633 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1634 1635 /// Estimate cost of a call instruction CI if it were vectorized with factor 1636 /// VF. Return the cost of the instruction, including scalarization overhead 1637 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1638 /// scalarized - 1639 /// i.e. either vector version isn't available, or is too expensive. 1640 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1641 bool &NeedToScalarize) const; 1642 1643 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1644 /// that of B. 1645 bool isMoreProfitable(const VectorizationFactor &A, 1646 const VectorizationFactor &B) const; 1647 1648 /// Invalidates decisions already taken by the cost model. 1649 void invalidateCostModelingDecisions() { 1650 WideningDecisions.clear(); 1651 Uniforms.clear(); 1652 Scalars.clear(); 1653 } 1654 1655 private: 1656 unsigned NumPredStores = 0; 1657 1658 /// Convenience function that returns the value of vscale_range iff 1659 /// vscale_range.min == vscale_range.max or otherwise returns the value 1660 /// returned by the corresponding TLI method. 1661 Optional<unsigned> getVScaleForTuning() const; 1662 1663 /// \return An upper bound for the vectorization factors for both 1664 /// fixed and scalable vectorization, where the minimum-known number of 1665 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1666 /// disabled or unsupported, then the scalable part will be equal to 1667 /// ElementCount::getScalable(0). 1668 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1669 ElementCount UserVF, 1670 bool FoldTailByMasking); 1671 1672 /// \return the maximized element count based on the targets vector 1673 /// registers and the loop trip-count, but limited to a maximum safe VF. 1674 /// This is a helper function of computeFeasibleMaxVF. 1675 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1676 /// issue that occurred on one of the buildbots which cannot be reproduced 1677 /// without having access to the properietary compiler (see comments on 1678 /// D98509). The issue is currently under investigation and this workaround 1679 /// will be removed as soon as possible. 1680 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1681 unsigned SmallestType, 1682 unsigned WidestType, 1683 const ElementCount &MaxSafeVF, 1684 bool FoldTailByMasking); 1685 1686 /// \return the maximum legal scalable VF, based on the safe max number 1687 /// of elements. 1688 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1689 1690 /// The vectorization cost is a combination of the cost itself and a boolean 1691 /// indicating whether any of the contributing operations will actually 1692 /// operate on vector values after type legalization in the backend. If this 1693 /// latter value is false, then all operations will be scalarized (i.e. no 1694 /// vectorization has actually taken place). 1695 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1696 1697 /// Returns the expected execution cost. The unit of the cost does 1698 /// not matter because we use the 'cost' units to compare different 1699 /// vector widths. The cost that is returned is *not* normalized by 1700 /// the factor width. If \p Invalid is not nullptr, this function 1701 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1702 /// each instruction that has an Invalid cost for the given VF. 1703 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1704 VectorizationCostTy 1705 expectedCost(ElementCount VF, 1706 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1707 1708 /// Returns the execution time cost of an instruction for a given vector 1709 /// width. Vector width of one means scalar. 1710 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1711 1712 /// The cost-computation logic from getInstructionCost which provides 1713 /// the vector type as an output parameter. 1714 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1715 Type *&VectorTy); 1716 1717 /// Return the cost of instructions in an inloop reduction pattern, if I is 1718 /// part of that pattern. 1719 Optional<InstructionCost> 1720 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1721 TTI::TargetCostKind CostKind); 1722 1723 /// Calculate vectorization cost of memory instruction \p I. 1724 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1725 1726 /// The cost computation for scalarized memory instruction. 1727 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1728 1729 /// The cost computation for interleaving group of memory instructions. 1730 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1731 1732 /// The cost computation for Gather/Scatter instruction. 1733 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1734 1735 /// The cost computation for widening instruction \p I with consecutive 1736 /// memory access. 1737 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1738 1739 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1740 /// Load: scalar load + broadcast. 1741 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1742 /// element) 1743 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1744 1745 /// Estimate the overhead of scalarizing an instruction. This is a 1746 /// convenience wrapper for the type-based getScalarizationOverhead API. 1747 InstructionCost getScalarizationOverhead(Instruction *I, 1748 ElementCount VF) const; 1749 1750 /// Returns whether the instruction is a load or store and will be a emitted 1751 /// as a vector operation. 1752 bool isConsecutiveLoadOrStore(Instruction *I); 1753 1754 /// Returns true if an artificially high cost for emulated masked memrefs 1755 /// should be used. 1756 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1757 1758 /// Map of scalar integer values to the smallest bitwidth they can be legally 1759 /// represented as. The vector equivalents of these values should be truncated 1760 /// to this type. 1761 MapVector<Instruction *, uint64_t> MinBWs; 1762 1763 /// A type representing the costs for instructions if they were to be 1764 /// scalarized rather than vectorized. The entries are Instruction-Cost 1765 /// pairs. 1766 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1767 1768 /// A set containing all BasicBlocks that are known to present after 1769 /// vectorization as a predicated block. 1770 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1771 1772 /// Records whether it is allowed to have the original scalar loop execute at 1773 /// least once. This may be needed as a fallback loop in case runtime 1774 /// aliasing/dependence checks fail, or to handle the tail/remainder 1775 /// iterations when the trip count is unknown or doesn't divide by the VF, 1776 /// or as a peel-loop to handle gaps in interleave-groups. 1777 /// Under optsize and when the trip count is very small we don't allow any 1778 /// iterations to execute in the scalar loop. 1779 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1780 1781 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1782 bool FoldTailByMasking = false; 1783 1784 /// A map holding scalar costs for different vectorization factors. The 1785 /// presence of a cost for an instruction in the mapping indicates that the 1786 /// instruction will be scalarized when vectorizing with the associated 1787 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1788 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1789 1790 /// Holds the instructions known to be uniform after vectorization. 1791 /// The data is collected per VF. 1792 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1793 1794 /// Holds the instructions known to be scalar after vectorization. 1795 /// The data is collected per VF. 1796 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1797 1798 /// Holds the instructions (address computations) that are forced to be 1799 /// scalarized. 1800 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1801 1802 /// PHINodes of the reductions that should be expanded in-loop along with 1803 /// their associated chains of reduction operations, in program order from top 1804 /// (PHI) to bottom 1805 ReductionChainMap InLoopReductionChains; 1806 1807 /// A Map of inloop reduction operations and their immediate chain operand. 1808 /// FIXME: This can be removed once reductions can be costed correctly in 1809 /// vplan. This was added to allow quick lookup to the inloop operations, 1810 /// without having to loop through InLoopReductionChains. 1811 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1812 1813 /// Returns the expected difference in cost from scalarizing the expression 1814 /// feeding a predicated instruction \p PredInst. The instructions to 1815 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1816 /// non-negative return value implies the expression will be scalarized. 1817 /// Currently, only single-use chains are considered for scalarization. 1818 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1819 ElementCount VF); 1820 1821 /// Collect the instructions that are uniform after vectorization. An 1822 /// instruction is uniform if we represent it with a single scalar value in 1823 /// the vectorized loop corresponding to each vector iteration. Examples of 1824 /// uniform instructions include pointer operands of consecutive or 1825 /// interleaved memory accesses. Note that although uniformity implies an 1826 /// instruction will be scalar, the reverse is not true. In general, a 1827 /// scalarized instruction will be represented by VF scalar values in the 1828 /// vectorized loop, each corresponding to an iteration of the original 1829 /// scalar loop. 1830 void collectLoopUniforms(ElementCount VF); 1831 1832 /// Collect the instructions that are scalar after vectorization. An 1833 /// instruction is scalar if it is known to be uniform or will be scalarized 1834 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1835 /// to the list if they are used by a load/store instruction that is marked as 1836 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1837 /// VF values in the vectorized loop, each corresponding to an iteration of 1838 /// the original scalar loop. 1839 void collectLoopScalars(ElementCount VF); 1840 1841 /// Keeps cost model vectorization decision and cost for instructions. 1842 /// Right now it is used for memory instructions only. 1843 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1844 std::pair<InstWidening, InstructionCost>>; 1845 1846 DecisionList WideningDecisions; 1847 1848 /// Returns true if \p V is expected to be vectorized and it needs to be 1849 /// extracted. 1850 bool needsExtract(Value *V, ElementCount VF) const { 1851 Instruction *I = dyn_cast<Instruction>(V); 1852 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1853 TheLoop->isLoopInvariant(I)) 1854 return false; 1855 1856 // Assume we can vectorize V (and hence we need extraction) if the 1857 // scalars are not computed yet. This can happen, because it is called 1858 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1859 // the scalars are collected. That should be a safe assumption in most 1860 // cases, because we check if the operands have vectorizable types 1861 // beforehand in LoopVectorizationLegality. 1862 return Scalars.find(VF) == Scalars.end() || 1863 !isScalarAfterVectorization(I, VF); 1864 }; 1865 1866 /// Returns a range containing only operands needing to be extracted. 1867 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1868 ElementCount VF) const { 1869 return SmallVector<Value *, 4>(make_filter_range( 1870 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1871 } 1872 1873 /// Determines if we have the infrastructure to vectorize loop \p L and its 1874 /// epilogue, assuming the main loop is vectorized by \p VF. 1875 bool isCandidateForEpilogueVectorization(const Loop &L, 1876 const ElementCount VF) const; 1877 1878 /// Returns true if epilogue vectorization is considered profitable, and 1879 /// false otherwise. 1880 /// \p VF is the vectorization factor chosen for the original loop. 1881 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1882 1883 public: 1884 /// The loop that we evaluate. 1885 Loop *TheLoop; 1886 1887 /// Predicated scalar evolution analysis. 1888 PredicatedScalarEvolution &PSE; 1889 1890 /// Loop Info analysis. 1891 LoopInfo *LI; 1892 1893 /// Vectorization legality. 1894 LoopVectorizationLegality *Legal; 1895 1896 /// Vector target information. 1897 const TargetTransformInfo &TTI; 1898 1899 /// Target Library Info. 1900 const TargetLibraryInfo *TLI; 1901 1902 /// Demanded bits analysis. 1903 DemandedBits *DB; 1904 1905 /// Assumption cache. 1906 AssumptionCache *AC; 1907 1908 /// Interface to emit optimization remarks. 1909 OptimizationRemarkEmitter *ORE; 1910 1911 const Function *TheFunction; 1912 1913 /// Loop Vectorize Hint. 1914 const LoopVectorizeHints *Hints; 1915 1916 /// The interleave access information contains groups of interleaved accesses 1917 /// with the same stride and close to each other. 1918 InterleavedAccessInfo &InterleaveInfo; 1919 1920 /// Values to ignore in the cost model. 1921 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1922 1923 /// Values to ignore in the cost model when VF > 1. 1924 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1925 1926 /// All element types found in the loop. 1927 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1928 1929 /// Profitable vector factors. 1930 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1931 }; 1932 } // end namespace llvm 1933 1934 /// Helper struct to manage generating runtime checks for vectorization. 1935 /// 1936 /// The runtime checks are created up-front in temporary blocks to allow better 1937 /// estimating the cost and un-linked from the existing IR. After deciding to 1938 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1939 /// temporary blocks are completely removed. 1940 class GeneratedRTChecks { 1941 /// Basic block which contains the generated SCEV checks, if any. 1942 BasicBlock *SCEVCheckBlock = nullptr; 1943 1944 /// The value representing the result of the generated SCEV checks. If it is 1945 /// nullptr, either no SCEV checks have been generated or they have been used. 1946 Value *SCEVCheckCond = nullptr; 1947 1948 /// Basic block which contains the generated memory runtime checks, if any. 1949 BasicBlock *MemCheckBlock = nullptr; 1950 1951 /// The value representing the result of the generated memory runtime checks. 1952 /// If it is nullptr, either no memory runtime checks have been generated or 1953 /// they have been used. 1954 Value *MemRuntimeCheckCond = nullptr; 1955 1956 DominatorTree *DT; 1957 LoopInfo *LI; 1958 1959 SCEVExpander SCEVExp; 1960 SCEVExpander MemCheckExp; 1961 1962 public: 1963 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1964 const DataLayout &DL) 1965 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1966 MemCheckExp(SE, DL, "scev.check") {} 1967 1968 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1969 /// accurately estimate the cost of the runtime checks. The blocks are 1970 /// un-linked from the IR and is added back during vector code generation. If 1971 /// there is no vector code generation, the check blocks are removed 1972 /// completely. 1973 void Create(Loop *L, const LoopAccessInfo &LAI, 1974 const SCEVPredicate &Pred) { 1975 1976 BasicBlock *LoopHeader = L->getHeader(); 1977 BasicBlock *Preheader = L->getLoopPreheader(); 1978 1979 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1980 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1981 // may be used by SCEVExpander. The blocks will be un-linked from their 1982 // predecessors and removed from LI & DT at the end of the function. 1983 if (!Pred.isAlwaysTrue()) { 1984 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1985 nullptr, "vector.scevcheck"); 1986 1987 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1988 &Pred, SCEVCheckBlock->getTerminator()); 1989 } 1990 1991 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1992 if (RtPtrChecking.Need) { 1993 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1994 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1995 "vector.memcheck"); 1996 1997 MemRuntimeCheckCond = 1998 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1999 RtPtrChecking.getChecks(), MemCheckExp); 2000 assert(MemRuntimeCheckCond && 2001 "no RT checks generated although RtPtrChecking " 2002 "claimed checks are required"); 2003 } 2004 2005 if (!MemCheckBlock && !SCEVCheckBlock) 2006 return; 2007 2008 // Unhook the temporary block with the checks, update various places 2009 // accordingly. 2010 if (SCEVCheckBlock) 2011 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2012 if (MemCheckBlock) 2013 MemCheckBlock->replaceAllUsesWith(Preheader); 2014 2015 if (SCEVCheckBlock) { 2016 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2017 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2018 Preheader->getTerminator()->eraseFromParent(); 2019 } 2020 if (MemCheckBlock) { 2021 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2022 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2023 Preheader->getTerminator()->eraseFromParent(); 2024 } 2025 2026 DT->changeImmediateDominator(LoopHeader, Preheader); 2027 if (MemCheckBlock) { 2028 DT->eraseNode(MemCheckBlock); 2029 LI->removeBlock(MemCheckBlock); 2030 } 2031 if (SCEVCheckBlock) { 2032 DT->eraseNode(SCEVCheckBlock); 2033 LI->removeBlock(SCEVCheckBlock); 2034 } 2035 } 2036 2037 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2038 /// unused. 2039 ~GeneratedRTChecks() { 2040 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2041 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2042 if (!SCEVCheckCond) 2043 SCEVCleaner.markResultUsed(); 2044 2045 if (!MemRuntimeCheckCond) 2046 MemCheckCleaner.markResultUsed(); 2047 2048 if (MemRuntimeCheckCond) { 2049 auto &SE = *MemCheckExp.getSE(); 2050 // Memory runtime check generation creates compares that use expanded 2051 // values. Remove them before running the SCEVExpanderCleaners. 2052 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2053 if (MemCheckExp.isInsertedInstruction(&I)) 2054 continue; 2055 SE.forgetValue(&I); 2056 I.eraseFromParent(); 2057 } 2058 } 2059 MemCheckCleaner.cleanup(); 2060 SCEVCleaner.cleanup(); 2061 2062 if (SCEVCheckCond) 2063 SCEVCheckBlock->eraseFromParent(); 2064 if (MemRuntimeCheckCond) 2065 MemCheckBlock->eraseFromParent(); 2066 } 2067 2068 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2069 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2070 /// depending on the generated condition. 2071 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2072 BasicBlock *LoopVectorPreHeader, 2073 BasicBlock *LoopExitBlock) { 2074 if (!SCEVCheckCond) 2075 return nullptr; 2076 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2077 if (C->isZero()) 2078 return nullptr; 2079 2080 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2081 2082 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2083 // Create new preheader for vector loop. 2084 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2085 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2086 2087 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2088 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2089 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2090 SCEVCheckBlock); 2091 2092 DT->addNewBlock(SCEVCheckBlock, Pred); 2093 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2094 2095 ReplaceInstWithInst( 2096 SCEVCheckBlock->getTerminator(), 2097 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2098 // Mark the check as used, to prevent it from being removed during cleanup. 2099 SCEVCheckCond = nullptr; 2100 return SCEVCheckBlock; 2101 } 2102 2103 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2104 /// the branches to branch to the vector preheader or \p Bypass, depending on 2105 /// the generated condition. 2106 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2107 BasicBlock *LoopVectorPreHeader) { 2108 // Check if we generated code that checks in runtime if arrays overlap. 2109 if (!MemRuntimeCheckCond) 2110 return nullptr; 2111 2112 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2113 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2114 MemCheckBlock); 2115 2116 DT->addNewBlock(MemCheckBlock, Pred); 2117 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2118 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2119 2120 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2121 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2122 2123 ReplaceInstWithInst( 2124 MemCheckBlock->getTerminator(), 2125 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2126 MemCheckBlock->getTerminator()->setDebugLoc( 2127 Pred->getTerminator()->getDebugLoc()); 2128 2129 // Mark the check as used, to prevent it from being removed during cleanup. 2130 MemRuntimeCheckCond = nullptr; 2131 return MemCheckBlock; 2132 } 2133 }; 2134 2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2136 // vectorization. The loop needs to be annotated with #pragma omp simd 2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2138 // vector length information is not provided, vectorization is not considered 2139 // explicit. Interleave hints are not allowed either. These limitations will be 2140 // relaxed in the future. 2141 // Please, note that we are currently forced to abuse the pragma 'clang 2142 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2144 // provides *explicit vectorization hints* (LV can bypass legal checks and 2145 // assume that vectorization is legal). However, both hints are implemented 2146 // using the same metadata (llvm.loop.vectorize, processed by 2147 // LoopVectorizeHints). This will be fixed in the future when the native IR 2148 // representation for pragma 'omp simd' is introduced. 2149 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2150 OptimizationRemarkEmitter *ORE) { 2151 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2152 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2153 2154 // Only outer loops with an explicit vectorization hint are supported. 2155 // Unannotated outer loops are ignored. 2156 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2157 return false; 2158 2159 Function *Fn = OuterLp->getHeader()->getParent(); 2160 if (!Hints.allowVectorization(Fn, OuterLp, 2161 true /*VectorizeOnlyWhenForced*/)) { 2162 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2163 return false; 2164 } 2165 2166 if (Hints.getInterleave() > 1) { 2167 // TODO: Interleave support is future work. 2168 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2169 "outer loops.\n"); 2170 Hints.emitRemarkWithHints(); 2171 return false; 2172 } 2173 2174 return true; 2175 } 2176 2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2178 OptimizationRemarkEmitter *ORE, 2179 SmallVectorImpl<Loop *> &V) { 2180 // Collect inner loops and outer loops without irreducible control flow. For 2181 // now, only collect outer loops that have explicit vectorization hints. If we 2182 // are stress testing the VPlan H-CFG construction, we collect the outermost 2183 // loop of every loop nest. 2184 if (L.isInnermost() || VPlanBuildStressTest || 2185 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2186 LoopBlocksRPO RPOT(&L); 2187 RPOT.perform(LI); 2188 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2189 V.push_back(&L); 2190 // TODO: Collect inner loops inside marked outer loops in case 2191 // vectorization fails for the outer loop. Do not invoke 2192 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2193 // already known to be reducible. We can use an inherited attribute for 2194 // that. 2195 return; 2196 } 2197 } 2198 for (Loop *InnerL : L) 2199 collectSupportedLoops(*InnerL, LI, ORE, V); 2200 } 2201 2202 namespace { 2203 2204 /// The LoopVectorize Pass. 2205 struct LoopVectorize : public FunctionPass { 2206 /// Pass identification, replacement for typeid 2207 static char ID; 2208 2209 LoopVectorizePass Impl; 2210 2211 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2212 bool VectorizeOnlyWhenForced = false) 2213 : FunctionPass(ID), 2214 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2215 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2216 } 2217 2218 bool runOnFunction(Function &F) override { 2219 if (skipFunction(F)) 2220 return false; 2221 2222 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2223 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2224 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2225 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2226 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2227 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2228 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2229 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2230 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2231 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2232 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2233 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2234 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2235 2236 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2237 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2238 2239 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2240 GetLAA, *ORE, PSI).MadeAnyChange; 2241 } 2242 2243 void getAnalysisUsage(AnalysisUsage &AU) const override { 2244 AU.addRequired<AssumptionCacheTracker>(); 2245 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2246 AU.addRequired<DominatorTreeWrapperPass>(); 2247 AU.addRequired<LoopInfoWrapperPass>(); 2248 AU.addRequired<ScalarEvolutionWrapperPass>(); 2249 AU.addRequired<TargetTransformInfoWrapperPass>(); 2250 AU.addRequired<AAResultsWrapperPass>(); 2251 AU.addRequired<LoopAccessLegacyAnalysis>(); 2252 AU.addRequired<DemandedBitsWrapperPass>(); 2253 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2254 AU.addRequired<InjectTLIMappingsLegacy>(); 2255 2256 // We currently do not preserve loopinfo/dominator analyses with outer loop 2257 // vectorization. Until this is addressed, mark these analyses as preserved 2258 // only for non-VPlan-native path. 2259 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2260 if (!EnableVPlanNativePath) { 2261 AU.addPreserved<LoopInfoWrapperPass>(); 2262 AU.addPreserved<DominatorTreeWrapperPass>(); 2263 } 2264 2265 AU.addPreserved<BasicAAWrapperPass>(); 2266 AU.addPreserved<GlobalsAAWrapperPass>(); 2267 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2268 } 2269 }; 2270 2271 } // end anonymous namespace 2272 2273 //===----------------------------------------------------------------------===// 2274 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2275 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2276 //===----------------------------------------------------------------------===// 2277 2278 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2279 // We need to place the broadcast of invariant variables outside the loop, 2280 // but only if it's proven safe to do so. Else, broadcast will be inside 2281 // vector loop body. 2282 Instruction *Instr = dyn_cast<Instruction>(V); 2283 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2284 (!Instr || 2285 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2286 // Place the code for broadcasting invariant variables in the new preheader. 2287 IRBuilder<>::InsertPointGuard Guard(Builder); 2288 if (SafeToHoist) 2289 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2290 2291 // Broadcast the scalar into all locations in the vector. 2292 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2293 2294 return Shuf; 2295 } 2296 2297 /// This function adds 2298 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2299 /// to each vector element of Val. The sequence starts at StartIndex. 2300 /// \p Opcode is relevant for FP induction variable. 2301 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2302 Instruction::BinaryOps BinOp, ElementCount VF, 2303 IRBuilderBase &Builder) { 2304 assert(VF.isVector() && "only vector VFs are supported"); 2305 2306 // Create and check the types. 2307 auto *ValVTy = cast<VectorType>(Val->getType()); 2308 ElementCount VLen = ValVTy->getElementCount(); 2309 2310 Type *STy = Val->getType()->getScalarType(); 2311 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2312 "Induction Step must be an integer or FP"); 2313 assert(Step->getType() == STy && "Step has wrong type"); 2314 2315 SmallVector<Constant *, 8> Indices; 2316 2317 // Create a vector of consecutive numbers from zero to VF. 2318 VectorType *InitVecValVTy = ValVTy; 2319 if (STy->isFloatingPointTy()) { 2320 Type *InitVecValSTy = 2321 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2322 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2323 } 2324 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2325 2326 // Splat the StartIdx 2327 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2328 2329 if (STy->isIntegerTy()) { 2330 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2331 Step = Builder.CreateVectorSplat(VLen, Step); 2332 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2333 // FIXME: The newly created binary instructions should contain nsw/nuw 2334 // flags, which can be found from the original scalar operations. 2335 Step = Builder.CreateMul(InitVec, Step); 2336 return Builder.CreateAdd(Val, Step, "induction"); 2337 } 2338 2339 // Floating point induction. 2340 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2341 "Binary Opcode should be specified for FP induction"); 2342 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2343 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2344 2345 Step = Builder.CreateVectorSplat(VLen, Step); 2346 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2347 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2348 } 2349 2350 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2351 /// variable on which to base the steps, \p Step is the size of the step. 2352 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2353 const InductionDescriptor &ID, VPValue *Def, 2354 VPTransformState &State) { 2355 IRBuilderBase &Builder = State.Builder; 2356 // We shouldn't have to build scalar steps if we aren't vectorizing. 2357 assert(State.VF.isVector() && "VF should be greater than one"); 2358 // Get the value type and ensure it and the step have the same integer type. 2359 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2360 assert(ScalarIVTy == Step->getType() && 2361 "Val and Step should have the same type"); 2362 2363 // We build scalar steps for both integer and floating-point induction 2364 // variables. Here, we determine the kind of arithmetic we will perform. 2365 Instruction::BinaryOps AddOp; 2366 Instruction::BinaryOps MulOp; 2367 if (ScalarIVTy->isIntegerTy()) { 2368 AddOp = Instruction::Add; 2369 MulOp = Instruction::Mul; 2370 } else { 2371 AddOp = ID.getInductionOpcode(); 2372 MulOp = Instruction::FMul; 2373 } 2374 2375 // Determine the number of scalars we need to generate for each unroll 2376 // iteration. 2377 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2378 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2379 // Compute the scalar steps and save the results in State. 2380 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2381 ScalarIVTy->getScalarSizeInBits()); 2382 Type *VecIVTy = nullptr; 2383 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2384 if (!FirstLaneOnly && State.VF.isScalable()) { 2385 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2386 UnitStepVec = 2387 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2388 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2389 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2390 } 2391 2392 for (unsigned Part = 0; Part < State.UF; ++Part) { 2393 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2394 2395 if (!FirstLaneOnly && State.VF.isScalable()) { 2396 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2397 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2398 if (ScalarIVTy->isFloatingPointTy()) 2399 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2400 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2401 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2402 State.set(Def, Add, Part); 2403 // It's useful to record the lane values too for the known minimum number 2404 // of elements so we do those below. This improves the code quality when 2405 // trying to extract the first element, for example. 2406 } 2407 2408 if (ScalarIVTy->isFloatingPointTy()) 2409 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2410 2411 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2412 Value *StartIdx = Builder.CreateBinOp( 2413 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2414 // The step returned by `createStepForVF` is a runtime-evaluated value 2415 // when VF is scalable. Otherwise, it should be folded into a Constant. 2416 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2417 "Expected StartIdx to be folded to a constant when VF is not " 2418 "scalable"); 2419 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2420 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2421 State.set(Def, Add, VPIteration(Part, Lane)); 2422 } 2423 } 2424 } 2425 2426 // Generate code for the induction step. Note that induction steps are 2427 // required to be loop-invariant 2428 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2429 Instruction *InsertBefore, 2430 Loop *OrigLoop = nullptr) { 2431 const DataLayout &DL = SE.getDataLayout(); 2432 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2433 "Induction step should be loop invariant"); 2434 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2435 return E->getValue(); 2436 2437 SCEVExpander Exp(SE, DL, "induction"); 2438 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2439 } 2440 2441 /// Compute the transformed value of Index at offset StartValue using step 2442 /// StepValue. 2443 /// For integer induction, returns StartValue + Index * StepValue. 2444 /// For pointer induction, returns StartValue[Index * StepValue]. 2445 /// FIXME: The newly created binary instructions should contain nsw/nuw 2446 /// flags, which can be found from the original scalar operations. 2447 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2448 Value *StartValue, Value *Step, 2449 const InductionDescriptor &ID) { 2450 assert(Index->getType()->getScalarType() == Step->getType() && 2451 "Index scalar type does not match StepValue type"); 2452 2453 // Note: the IR at this point is broken. We cannot use SE to create any new 2454 // SCEV and then expand it, hoping that SCEV's simplification will give us 2455 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2456 // lead to various SCEV crashes. So all we can do is to use builder and rely 2457 // on InstCombine for future simplifications. Here we handle some trivial 2458 // cases only. 2459 auto CreateAdd = [&B](Value *X, Value *Y) { 2460 assert(X->getType() == Y->getType() && "Types don't match!"); 2461 if (auto *CX = dyn_cast<ConstantInt>(X)) 2462 if (CX->isZero()) 2463 return Y; 2464 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2465 if (CY->isZero()) 2466 return X; 2467 return B.CreateAdd(X, Y); 2468 }; 2469 2470 // We allow X to be a vector type, in which case Y will potentially be 2471 // splatted into a vector with the same element count. 2472 auto CreateMul = [&B](Value *X, Value *Y) { 2473 assert(X->getType()->getScalarType() == Y->getType() && 2474 "Types don't match!"); 2475 if (auto *CX = dyn_cast<ConstantInt>(X)) 2476 if (CX->isOne()) 2477 return Y; 2478 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2479 if (CY->isOne()) 2480 return X; 2481 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2482 if (XVTy && !isa<VectorType>(Y->getType())) 2483 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2484 return B.CreateMul(X, Y); 2485 }; 2486 2487 switch (ID.getKind()) { 2488 case InductionDescriptor::IK_IntInduction: { 2489 assert(!isa<VectorType>(Index->getType()) && 2490 "Vector indices not supported for integer inductions yet"); 2491 assert(Index->getType() == StartValue->getType() && 2492 "Index type does not match StartValue type"); 2493 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2494 return B.CreateSub(StartValue, Index); 2495 auto *Offset = CreateMul(Index, Step); 2496 return CreateAdd(StartValue, Offset); 2497 } 2498 case InductionDescriptor::IK_PtrInduction: { 2499 assert(isa<Constant>(Step) && 2500 "Expected constant step for pointer induction"); 2501 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2502 } 2503 case InductionDescriptor::IK_FpInduction: { 2504 assert(!isa<VectorType>(Index->getType()) && 2505 "Vector indices not supported for FP inductions yet"); 2506 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2507 auto InductionBinOp = ID.getInductionBinOp(); 2508 assert(InductionBinOp && 2509 (InductionBinOp->getOpcode() == Instruction::FAdd || 2510 InductionBinOp->getOpcode() == Instruction::FSub) && 2511 "Original bin op should be defined for FP induction"); 2512 2513 Value *MulExp = B.CreateFMul(Step, Index); 2514 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2515 "induction"); 2516 } 2517 case InductionDescriptor::IK_NoInduction: 2518 return nullptr; 2519 } 2520 llvm_unreachable("invalid enum"); 2521 } 2522 2523 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2524 const VPIteration &Instance, 2525 VPTransformState &State) { 2526 Value *ScalarInst = State.get(Def, Instance); 2527 Value *VectorValue = State.get(Def, Instance.Part); 2528 VectorValue = Builder.CreateInsertElement( 2529 VectorValue, ScalarInst, 2530 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2531 State.set(Def, VectorValue, Instance.Part); 2532 } 2533 2534 // Return whether we allow using masked interleave-groups (for dealing with 2535 // strided loads/stores that reside in predicated blocks, or for dealing 2536 // with gaps). 2537 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2538 // If an override option has been passed in for interleaved accesses, use it. 2539 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2540 return EnableMaskedInterleavedMemAccesses; 2541 2542 return TTI.enableMaskedInterleavedAccessVectorization(); 2543 } 2544 2545 // Try to vectorize the interleave group that \p Instr belongs to. 2546 // 2547 // E.g. Translate following interleaved load group (factor = 3): 2548 // for (i = 0; i < N; i+=3) { 2549 // R = Pic[i]; // Member of index 0 2550 // G = Pic[i+1]; // Member of index 1 2551 // B = Pic[i+2]; // Member of index 2 2552 // ... // do something to R, G, B 2553 // } 2554 // To: 2555 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2556 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2557 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2558 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2559 // 2560 // Or translate following interleaved store group (factor = 3): 2561 // for (i = 0; i < N; i+=3) { 2562 // ... do something to R, G, B 2563 // Pic[i] = R; // Member of index 0 2564 // Pic[i+1] = G; // Member of index 1 2565 // Pic[i+2] = B; // Member of index 2 2566 // } 2567 // To: 2568 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2569 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2570 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2571 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2572 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2573 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2574 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2575 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2576 VPValue *BlockInMask) { 2577 Instruction *Instr = Group->getInsertPos(); 2578 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2579 2580 // Prepare for the vector type of the interleaved load/store. 2581 Type *ScalarTy = getLoadStoreType(Instr); 2582 unsigned InterleaveFactor = Group->getFactor(); 2583 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2584 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2585 2586 // Prepare for the new pointers. 2587 SmallVector<Value *, 2> AddrParts; 2588 unsigned Index = Group->getIndex(Instr); 2589 2590 // TODO: extend the masked interleaved-group support to reversed access. 2591 assert((!BlockInMask || !Group->isReverse()) && 2592 "Reversed masked interleave-group not supported."); 2593 2594 // If the group is reverse, adjust the index to refer to the last vector lane 2595 // instead of the first. We adjust the index from the first vector lane, 2596 // rather than directly getting the pointer for lane VF - 1, because the 2597 // pointer operand of the interleaved access is supposed to be uniform. For 2598 // uniform instructions, we're only required to generate a value for the 2599 // first vector lane in each unroll iteration. 2600 if (Group->isReverse()) 2601 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2602 2603 for (unsigned Part = 0; Part < UF; Part++) { 2604 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2605 setDebugLocFromInst(AddrPart); 2606 2607 // Notice current instruction could be any index. Need to adjust the address 2608 // to the member of index 0. 2609 // 2610 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2611 // b = A[i]; // Member of index 0 2612 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2613 // 2614 // E.g. A[i+1] = a; // Member of index 1 2615 // A[i] = b; // Member of index 0 2616 // A[i+2] = c; // Member of index 2 (Current instruction) 2617 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2618 2619 bool InBounds = false; 2620 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2621 InBounds = gep->isInBounds(); 2622 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2623 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2624 2625 // Cast to the vector pointer type. 2626 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2627 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2628 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2629 } 2630 2631 setDebugLocFromInst(Instr); 2632 Value *PoisonVec = PoisonValue::get(VecTy); 2633 2634 Value *MaskForGaps = nullptr; 2635 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2636 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2637 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2638 } 2639 2640 // Vectorize the interleaved load group. 2641 if (isa<LoadInst>(Instr)) { 2642 // For each unroll part, create a wide load for the group. 2643 SmallVector<Value *, 2> NewLoads; 2644 for (unsigned Part = 0; Part < UF; Part++) { 2645 Instruction *NewLoad; 2646 if (BlockInMask || MaskForGaps) { 2647 assert(useMaskedInterleavedAccesses(*TTI) && 2648 "masked interleaved groups are not allowed."); 2649 Value *GroupMask = MaskForGaps; 2650 if (BlockInMask) { 2651 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2652 Value *ShuffledMask = Builder.CreateShuffleVector( 2653 BlockInMaskPart, 2654 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2655 "interleaved.mask"); 2656 GroupMask = MaskForGaps 2657 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2658 MaskForGaps) 2659 : ShuffledMask; 2660 } 2661 NewLoad = 2662 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2663 GroupMask, PoisonVec, "wide.masked.vec"); 2664 } 2665 else 2666 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2667 Group->getAlign(), "wide.vec"); 2668 Group->addMetadata(NewLoad); 2669 NewLoads.push_back(NewLoad); 2670 } 2671 2672 // For each member in the group, shuffle out the appropriate data from the 2673 // wide loads. 2674 unsigned J = 0; 2675 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2676 Instruction *Member = Group->getMember(I); 2677 2678 // Skip the gaps in the group. 2679 if (!Member) 2680 continue; 2681 2682 auto StrideMask = 2683 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2684 for (unsigned Part = 0; Part < UF; Part++) { 2685 Value *StridedVec = Builder.CreateShuffleVector( 2686 NewLoads[Part], StrideMask, "strided.vec"); 2687 2688 // If this member has different type, cast the result type. 2689 if (Member->getType() != ScalarTy) { 2690 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2691 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2692 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2693 } 2694 2695 if (Group->isReverse()) 2696 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2697 2698 State.set(VPDefs[J], StridedVec, Part); 2699 } 2700 ++J; 2701 } 2702 return; 2703 } 2704 2705 // The sub vector type for current instruction. 2706 auto *SubVT = VectorType::get(ScalarTy, VF); 2707 2708 // Vectorize the interleaved store group. 2709 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2710 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2711 "masked interleaved groups are not allowed."); 2712 assert((!MaskForGaps || !VF.isScalable()) && 2713 "masking gaps for scalable vectors is not yet supported."); 2714 for (unsigned Part = 0; Part < UF; Part++) { 2715 // Collect the stored vector from each member. 2716 SmallVector<Value *, 4> StoredVecs; 2717 for (unsigned i = 0; i < InterleaveFactor; i++) { 2718 assert((Group->getMember(i) || MaskForGaps) && 2719 "Fail to get a member from an interleaved store group"); 2720 Instruction *Member = Group->getMember(i); 2721 2722 // Skip the gaps in the group. 2723 if (!Member) { 2724 Value *Undef = PoisonValue::get(SubVT); 2725 StoredVecs.push_back(Undef); 2726 continue; 2727 } 2728 2729 Value *StoredVec = State.get(StoredValues[i], Part); 2730 2731 if (Group->isReverse()) 2732 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2733 2734 // If this member has different type, cast it to a unified type. 2735 2736 if (StoredVec->getType() != SubVT) 2737 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2738 2739 StoredVecs.push_back(StoredVec); 2740 } 2741 2742 // Concatenate all vectors into a wide vector. 2743 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2744 2745 // Interleave the elements in the wide vector. 2746 Value *IVec = Builder.CreateShuffleVector( 2747 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2748 "interleaved.vec"); 2749 2750 Instruction *NewStoreInstr; 2751 if (BlockInMask || MaskForGaps) { 2752 Value *GroupMask = MaskForGaps; 2753 if (BlockInMask) { 2754 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2755 Value *ShuffledMask = Builder.CreateShuffleVector( 2756 BlockInMaskPart, 2757 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2758 "interleaved.mask"); 2759 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2760 ShuffledMask, MaskForGaps) 2761 : ShuffledMask; 2762 } 2763 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2764 Group->getAlign(), GroupMask); 2765 } else 2766 NewStoreInstr = 2767 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2768 2769 Group->addMetadata(NewStoreInstr); 2770 } 2771 } 2772 2773 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2774 VPReplicateRecipe *RepRecipe, 2775 const VPIteration &Instance, 2776 bool IfPredicateInstr, 2777 VPTransformState &State) { 2778 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2779 2780 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2781 // the first lane and part. 2782 if (isa<NoAliasScopeDeclInst>(Instr)) 2783 if (!Instance.isFirstIteration()) 2784 return; 2785 2786 // Does this instruction return a value ? 2787 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2788 2789 Instruction *Cloned = Instr->clone(); 2790 if (!IsVoidRetTy) 2791 Cloned->setName(Instr->getName() + ".cloned"); 2792 2793 // If the scalarized instruction contributes to the address computation of a 2794 // widen masked load/store which was in a basic block that needed predication 2795 // and is not predicated after vectorization, we can't propagate 2796 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2797 // instruction could feed a poison value to the base address of the widen 2798 // load/store. 2799 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2800 Cloned->dropPoisonGeneratingFlags(); 2801 2802 if (Instr->getDebugLoc()) 2803 setDebugLocFromInst(Instr); 2804 2805 // Replace the operands of the cloned instructions with their scalar 2806 // equivalents in the new loop. 2807 for (auto &I : enumerate(RepRecipe->operands())) { 2808 auto InputInstance = Instance; 2809 VPValue *Operand = I.value(); 2810 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2811 if (OperandR && OperandR->isUniform()) 2812 InputInstance.Lane = VPLane::getFirstLane(); 2813 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2814 } 2815 addNewMetadata(Cloned, Instr); 2816 2817 // Place the cloned scalar in the new loop. 2818 State.Builder.Insert(Cloned); 2819 2820 State.set(RepRecipe, Cloned, Instance); 2821 2822 // If we just cloned a new assumption, add it the assumption cache. 2823 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2824 AC->registerAssumption(II); 2825 2826 // End if-block. 2827 if (IfPredicateInstr) 2828 PredicatedInstructions.push_back(Cloned); 2829 } 2830 2831 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2832 if (TripCount) 2833 return TripCount; 2834 2835 assert(InsertBlock); 2836 IRBuilder<> Builder(InsertBlock->getTerminator()); 2837 // Find the loop boundaries. 2838 ScalarEvolution *SE = PSE.getSE(); 2839 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2840 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2841 "Invalid loop count"); 2842 2843 Type *IdxTy = Legal->getWidestInductionType(); 2844 assert(IdxTy && "No type for induction"); 2845 2846 // The exit count might have the type of i64 while the phi is i32. This can 2847 // happen if we have an induction variable that is sign extended before the 2848 // compare. The only way that we get a backedge taken count is that the 2849 // induction variable was signed and as such will not overflow. In such a case 2850 // truncation is legal. 2851 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2852 IdxTy->getPrimitiveSizeInBits()) 2853 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2854 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2855 2856 // Get the total trip count from the count by adding 1. 2857 const SCEV *ExitCount = SE->getAddExpr( 2858 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2859 2860 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2861 2862 // Expand the trip count and place the new instructions in the preheader. 2863 // Notice that the pre-header does not change, only the loop body. 2864 SCEVExpander Exp(*SE, DL, "induction"); 2865 2866 // Count holds the overall loop count (N). 2867 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2868 InsertBlock->getTerminator()); 2869 2870 if (TripCount->getType()->isPointerTy()) 2871 TripCount = 2872 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2873 InsertBlock->getTerminator()); 2874 2875 return TripCount; 2876 } 2877 2878 Value * 2879 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2880 if (VectorTripCount) 2881 return VectorTripCount; 2882 2883 Value *TC = getOrCreateTripCount(InsertBlock); 2884 IRBuilder<> Builder(InsertBlock->getTerminator()); 2885 2886 Type *Ty = TC->getType(); 2887 // This is where we can make the step a runtime constant. 2888 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2889 2890 // If the tail is to be folded by masking, round the number of iterations N 2891 // up to a multiple of Step instead of rounding down. This is done by first 2892 // adding Step-1 and then rounding down. Note that it's ok if this addition 2893 // overflows: the vector induction variable will eventually wrap to zero given 2894 // that it starts at zero and its Step is a power of two; the loop will then 2895 // exit, with the last early-exit vector comparison also producing all-true. 2896 if (Cost->foldTailByMasking()) { 2897 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2898 "VF*UF must be a power of 2 when folding tail by masking"); 2899 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2900 TC = Builder.CreateAdd( 2901 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2902 } 2903 2904 // Now we need to generate the expression for the part of the loop that the 2905 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2906 // iterations are not required for correctness, or N - Step, otherwise. Step 2907 // is equal to the vectorization factor (number of SIMD elements) times the 2908 // unroll factor (number of SIMD instructions). 2909 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2910 2911 // There are cases where we *must* run at least one iteration in the remainder 2912 // loop. See the cost model for when this can happen. If the step evenly 2913 // divides the trip count, we set the remainder to be equal to the step. If 2914 // the step does not evenly divide the trip count, no adjustment is necessary 2915 // since there will already be scalar iterations. Note that the minimum 2916 // iterations check ensures that N >= Step. 2917 if (Cost->requiresScalarEpilogue(VF)) { 2918 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2919 R = Builder.CreateSelect(IsZero, Step, R); 2920 } 2921 2922 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2923 2924 return VectorTripCount; 2925 } 2926 2927 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2928 const DataLayout &DL) { 2929 // Verify that V is a vector type with same number of elements as DstVTy. 2930 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2931 unsigned VF = DstFVTy->getNumElements(); 2932 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2933 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2934 Type *SrcElemTy = SrcVecTy->getElementType(); 2935 Type *DstElemTy = DstFVTy->getElementType(); 2936 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2937 "Vector elements must have same size"); 2938 2939 // Do a direct cast if element types are castable. 2940 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2941 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2942 } 2943 // V cannot be directly casted to desired vector type. 2944 // May happen when V is a floating point vector but DstVTy is a vector of 2945 // pointers or vice-versa. Handle this using a two-step bitcast using an 2946 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2947 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2948 "Only one type should be a pointer type"); 2949 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2950 "Only one type should be a floating point type"); 2951 Type *IntTy = 2952 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2953 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2954 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2955 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2956 } 2957 2958 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) { 2959 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2960 // Reuse existing vector loop preheader for TC checks. 2961 // Note that new preheader block is generated for vector loop. 2962 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2963 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2964 2965 // Generate code to check if the loop's trip count is less than VF * UF, or 2966 // equal to it in case a scalar epilogue is required; this implies that the 2967 // vector trip count is zero. This check also covers the case where adding one 2968 // to the backedge-taken count overflowed leading to an incorrect trip count 2969 // of zero. In this case we will also jump to the scalar loop. 2970 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2971 : ICmpInst::ICMP_ULT; 2972 2973 // If tail is to be folded, vector loop takes care of all iterations. 2974 Value *CheckMinIters = Builder.getFalse(); 2975 if (!Cost->foldTailByMasking()) { 2976 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 2977 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2978 } 2979 // Create new preheader for vector loop. 2980 LoopVectorPreHeader = 2981 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2982 "vector.ph"); 2983 2984 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2985 DT->getNode(Bypass)->getIDom()) && 2986 "TC check is expected to dominate Bypass"); 2987 2988 // Update dominator for Bypass & LoopExit (if needed). 2989 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2990 if (!Cost->requiresScalarEpilogue(VF)) 2991 // If there is an epilogue which must run, there's no edge from the 2992 // middle block to exit blocks and thus no need to update the immediate 2993 // dominator of the exit blocks. 2994 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2995 2996 ReplaceInstWithInst( 2997 TCCheckBlock->getTerminator(), 2998 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2999 LoopBypassBlocks.push_back(TCCheckBlock); 3000 } 3001 3002 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3003 3004 BasicBlock *const SCEVCheckBlock = 3005 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3006 if (!SCEVCheckBlock) 3007 return nullptr; 3008 3009 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3010 (OptForSizeBasedOnProfile && 3011 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3012 "Cannot SCEV check stride or overflow when optimizing for size"); 3013 3014 3015 // Update dominator only if this is first RT check. 3016 if (LoopBypassBlocks.empty()) { 3017 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3018 if (!Cost->requiresScalarEpilogue(VF)) 3019 // If there is an epilogue which must run, there's no edge from the 3020 // middle block to exit blocks and thus no need to update the immediate 3021 // dominator of the exit blocks. 3022 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3023 } 3024 3025 LoopBypassBlocks.push_back(SCEVCheckBlock); 3026 AddedSafetyChecks = true; 3027 return SCEVCheckBlock; 3028 } 3029 3030 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3031 // VPlan-native path does not do any analysis for runtime checks currently. 3032 if (EnableVPlanNativePath) 3033 return nullptr; 3034 3035 BasicBlock *const MemCheckBlock = 3036 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3037 3038 // Check if we generated code that checks in runtime if arrays overlap. We put 3039 // the checks into a separate block to make the more common case of few 3040 // elements faster. 3041 if (!MemCheckBlock) 3042 return nullptr; 3043 3044 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3045 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3046 "Cannot emit memory checks when optimizing for size, unless forced " 3047 "to vectorize."); 3048 ORE->emit([&]() { 3049 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3050 OrigLoop->getStartLoc(), 3051 OrigLoop->getHeader()) 3052 << "Code-size may be reduced by not forcing " 3053 "vectorization, or by source-code modifications " 3054 "eliminating the need for runtime checks " 3055 "(e.g., adding 'restrict')."; 3056 }); 3057 } 3058 3059 LoopBypassBlocks.push_back(MemCheckBlock); 3060 3061 AddedSafetyChecks = true; 3062 3063 // We currently don't use LoopVersioning for the actual loop cloning but we 3064 // still use it to add the noalias metadata. 3065 LVer = std::make_unique<LoopVersioning>( 3066 *Legal->getLAI(), 3067 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3068 DT, PSE.getSE()); 3069 LVer->prepareNoAliasMetadata(); 3070 return MemCheckBlock; 3071 } 3072 3073 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3074 LoopScalarBody = OrigLoop->getHeader(); 3075 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3076 assert(LoopVectorPreHeader && "Invalid loop structure"); 3077 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3078 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3079 "multiple exit loop without required epilogue?"); 3080 3081 LoopMiddleBlock = 3082 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3083 LI, nullptr, Twine(Prefix) + "middle.block"); 3084 LoopScalarPreHeader = 3085 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3086 nullptr, Twine(Prefix) + "scalar.ph"); 3087 3088 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3089 3090 // Set up the middle block terminator. Two cases: 3091 // 1) If we know that we must execute the scalar epilogue, emit an 3092 // unconditional branch. 3093 // 2) Otherwise, we must have a single unique exit block (due to how we 3094 // implement the multiple exit case). In this case, set up a conditonal 3095 // branch from the middle block to the loop scalar preheader, and the 3096 // exit block. completeLoopSkeleton will update the condition to use an 3097 // iteration check, if required to decide whether to execute the remainder. 3098 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3099 BranchInst::Create(LoopScalarPreHeader) : 3100 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3101 Builder.getTrue()); 3102 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3103 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3104 3105 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, LI, 3106 nullptr, Twine(Prefix) + "vector.body"); 3107 3108 // Update dominator for loop exit. 3109 if (!Cost->requiresScalarEpilogue(VF)) 3110 // If there is an epilogue which must run, there's no edge from the 3111 // middle block to exit blocks and thus no need to update the immediate 3112 // dominator of the exit blocks. 3113 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3114 } 3115 3116 void InnerLoopVectorizer::createInductionResumeValues( 3117 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3118 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3119 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3120 "Inconsistent information about additional bypass."); 3121 3122 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3123 assert(VectorTripCount && "Expected valid arguments"); 3124 // We are going to resume the execution of the scalar loop. 3125 // Go over all of the induction variables that we found and fix the 3126 // PHIs that are left in the scalar version of the loop. 3127 // The starting values of PHI nodes depend on the counter of the last 3128 // iteration in the vectorized loop. 3129 // If we come from a bypass edge then we need to start from the original 3130 // start value. 3131 Instruction *OldInduction = Legal->getPrimaryInduction(); 3132 for (auto &InductionEntry : Legal->getInductionVars()) { 3133 PHINode *OrigPhi = InductionEntry.first; 3134 InductionDescriptor II = InductionEntry.second; 3135 3136 // Create phi nodes to merge from the backedge-taken check block. 3137 PHINode *BCResumeVal = 3138 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3139 LoopScalarPreHeader->getTerminator()); 3140 // Copy original phi DL over to the new one. 3141 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3142 Value *&EndValue = IVEndValues[OrigPhi]; 3143 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3144 if (OrigPhi == OldInduction) { 3145 // We know what the end value is. 3146 EndValue = VectorTripCount; 3147 } else { 3148 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3149 3150 // Fast-math-flags propagate from the original induction instruction. 3151 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3152 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3153 3154 Type *StepType = II.getStep()->getType(); 3155 Instruction::CastOps CastOp = 3156 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3157 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3158 Value *Step = 3159 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3160 EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3161 EndValue->setName("ind.end"); 3162 3163 // Compute the end value for the additional bypass (if applicable). 3164 if (AdditionalBypass.first) { 3165 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3166 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3167 StepType, true); 3168 Value *Step = 3169 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3170 CRD = 3171 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3172 EndValueFromAdditionalBypass = 3173 emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3174 EndValueFromAdditionalBypass->setName("ind.end"); 3175 } 3176 } 3177 // The new PHI merges the original incoming value, in case of a bypass, 3178 // or the value at the end of the vectorized loop. 3179 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3180 3181 // Fix the scalar body counter (PHI node). 3182 // The old induction's phi node in the scalar body needs the truncated 3183 // value. 3184 for (BasicBlock *BB : LoopBypassBlocks) 3185 BCResumeVal->addIncoming(II.getStartValue(), BB); 3186 3187 if (AdditionalBypass.first) 3188 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3189 EndValueFromAdditionalBypass); 3190 3191 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3192 } 3193 } 3194 3195 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3196 // The trip counts should be cached by now. 3197 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3198 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3199 3200 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3201 3202 // Add a check in the middle block to see if we have completed 3203 // all of the iterations in the first vector loop. Three cases: 3204 // 1) If we require a scalar epilogue, there is no conditional branch as 3205 // we unconditionally branch to the scalar preheader. Do nothing. 3206 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3207 // Thus if tail is to be folded, we know we don't need to run the 3208 // remainder and we can use the previous value for the condition (true). 3209 // 3) Otherwise, construct a runtime check. 3210 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3211 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3212 Count, VectorTripCount, "cmp.n", 3213 LoopMiddleBlock->getTerminator()); 3214 3215 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3216 // of the corresponding compare because they may have ended up with 3217 // different line numbers and we want to avoid awkward line stepping while 3218 // debugging. Eg. if the compare has got a line number inside the loop. 3219 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3220 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3221 } 3222 3223 #ifdef EXPENSIVE_CHECKS 3224 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3225 #endif 3226 3227 return LoopVectorPreHeader; 3228 } 3229 3230 std::pair<BasicBlock *, Value *> 3231 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3232 /* 3233 In this function we generate a new loop. The new loop will contain 3234 the vectorized instructions while the old loop will continue to run the 3235 scalar remainder. 3236 3237 [ ] <-- loop iteration number check. 3238 / | 3239 / v 3240 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3241 | / | 3242 | / v 3243 || [ ] <-- vector pre header. 3244 |/ | 3245 | v 3246 | [ ] \ 3247 | [ ]_| <-- vector loop. 3248 | | 3249 | v 3250 \ -[ ] <--- middle-block. 3251 \/ | 3252 /\ v 3253 | ->[ ] <--- new preheader. 3254 | | 3255 (opt) v <-- edge from middle to exit iff epilogue is not required. 3256 | [ ] \ 3257 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3258 \ | 3259 \ v 3260 >[ ] <-- exit block(s). 3261 ... 3262 */ 3263 3264 // Get the metadata of the original loop before it gets modified. 3265 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3266 3267 // Workaround! Compute the trip count of the original loop and cache it 3268 // before we start modifying the CFG. This code has a systemic problem 3269 // wherein it tries to run analysis over partially constructed IR; this is 3270 // wrong, and not simply for SCEV. The trip count of the original loop 3271 // simply happens to be prone to hitting this in practice. In theory, we 3272 // can hit the same issue for any SCEV, or ValueTracking query done during 3273 // mutation. See PR49900. 3274 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3275 3276 // Create an empty vector loop, and prepare basic blocks for the runtime 3277 // checks. 3278 createVectorLoopSkeleton(""); 3279 3280 // Now, compare the new count to zero. If it is zero skip the vector loop and 3281 // jump to the scalar loop. This check also covers the case where the 3282 // backedge-taken count is uint##_max: adding one to it will overflow leading 3283 // to an incorrect trip count of zero. In this (rare) case we will also jump 3284 // to the scalar loop. 3285 emitMinimumIterationCountCheck(LoopScalarPreHeader); 3286 3287 // Generate the code to check any assumptions that we've made for SCEV 3288 // expressions. 3289 emitSCEVChecks(LoopScalarPreHeader); 3290 3291 // Generate the code that checks in runtime if arrays overlap. We put the 3292 // checks into a separate block to make the more common case of few elements 3293 // faster. 3294 emitMemRuntimeChecks(LoopScalarPreHeader); 3295 3296 // Emit phis for the new starting index of the scalar loop. 3297 createInductionResumeValues(); 3298 3299 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3300 } 3301 3302 // Fix up external users of the induction variable. At this point, we are 3303 // in LCSSA form, with all external PHIs that use the IV having one input value, 3304 // coming from the remainder loop. We need those PHIs to also have a correct 3305 // value for the IV when arriving directly from the middle block. 3306 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3307 const InductionDescriptor &II, 3308 Value *CountRoundDown, Value *EndValue, 3309 BasicBlock *MiddleBlock, 3310 BasicBlock *VectorHeader) { 3311 // There are two kinds of external IV usages - those that use the value 3312 // computed in the last iteration (the PHI) and those that use the penultimate 3313 // value (the value that feeds into the phi from the loop latch). 3314 // We allow both, but they, obviously, have different values. 3315 3316 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3317 3318 DenseMap<Value *, Value *> MissingVals; 3319 3320 // An external user of the last iteration's value should see the value that 3321 // the remainder loop uses to initialize its own IV. 3322 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3323 for (User *U : PostInc->users()) { 3324 Instruction *UI = cast<Instruction>(U); 3325 if (!OrigLoop->contains(UI)) { 3326 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3327 MissingVals[UI] = EndValue; 3328 } 3329 } 3330 3331 // An external user of the penultimate value need to see EndValue - Step. 3332 // The simplest way to get this is to recompute it from the constituent SCEVs, 3333 // that is Start + (Step * (CRD - 1)). 3334 for (User *U : OrigPhi->users()) { 3335 auto *UI = cast<Instruction>(U); 3336 if (!OrigLoop->contains(UI)) { 3337 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3338 3339 IRBuilder<> B(MiddleBlock->getTerminator()); 3340 3341 // Fast-math-flags propagate from the original induction instruction. 3342 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3343 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3344 3345 Value *CountMinusOne = B.CreateSub( 3346 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3347 Value *CMO = 3348 !II.getStep()->getType()->isIntegerTy() 3349 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3350 II.getStep()->getType()) 3351 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3352 CMO->setName("cast.cmo"); 3353 3354 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3355 VectorHeader->getTerminator()); 3356 Value *Escape = 3357 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3358 Escape->setName("ind.escape"); 3359 MissingVals[UI] = Escape; 3360 } 3361 } 3362 3363 for (auto &I : MissingVals) { 3364 PHINode *PHI = cast<PHINode>(I.first); 3365 // One corner case we have to handle is two IVs "chasing" each-other, 3366 // that is %IV2 = phi [...], [ %IV1, %latch ] 3367 // In this case, if IV1 has an external use, we need to avoid adding both 3368 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3369 // don't already have an incoming value for the middle block. 3370 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3371 PHI->addIncoming(I.second, MiddleBlock); 3372 } 3373 } 3374 3375 namespace { 3376 3377 struct CSEDenseMapInfo { 3378 static bool canHandle(const Instruction *I) { 3379 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3380 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3381 } 3382 3383 static inline Instruction *getEmptyKey() { 3384 return DenseMapInfo<Instruction *>::getEmptyKey(); 3385 } 3386 3387 static inline Instruction *getTombstoneKey() { 3388 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3389 } 3390 3391 static unsigned getHashValue(const Instruction *I) { 3392 assert(canHandle(I) && "Unknown instruction!"); 3393 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3394 I->value_op_end())); 3395 } 3396 3397 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3398 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3399 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3400 return LHS == RHS; 3401 return LHS->isIdenticalTo(RHS); 3402 } 3403 }; 3404 3405 } // end anonymous namespace 3406 3407 ///Perform cse of induction variable instructions. 3408 static void cse(BasicBlock *BB) { 3409 // Perform simple cse. 3410 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3411 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3412 if (!CSEDenseMapInfo::canHandle(&In)) 3413 continue; 3414 3415 // Check if we can replace this instruction with any of the 3416 // visited instructions. 3417 if (Instruction *V = CSEMap.lookup(&In)) { 3418 In.replaceAllUsesWith(V); 3419 In.eraseFromParent(); 3420 continue; 3421 } 3422 3423 CSEMap[&In] = &In; 3424 } 3425 } 3426 3427 InstructionCost 3428 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3429 bool &NeedToScalarize) const { 3430 Function *F = CI->getCalledFunction(); 3431 Type *ScalarRetTy = CI->getType(); 3432 SmallVector<Type *, 4> Tys, ScalarTys; 3433 for (auto &ArgOp : CI->args()) 3434 ScalarTys.push_back(ArgOp->getType()); 3435 3436 // Estimate cost of scalarized vector call. The source operands are assumed 3437 // to be vectors, so we need to extract individual elements from there, 3438 // execute VF scalar calls, and then gather the result into the vector return 3439 // value. 3440 InstructionCost ScalarCallCost = 3441 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3442 if (VF.isScalar()) 3443 return ScalarCallCost; 3444 3445 // Compute corresponding vector type for return value and arguments. 3446 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3447 for (Type *ScalarTy : ScalarTys) 3448 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3449 3450 // Compute costs of unpacking argument values for the scalar calls and 3451 // packing the return values to a vector. 3452 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3453 3454 InstructionCost Cost = 3455 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3456 3457 // If we can't emit a vector call for this function, then the currently found 3458 // cost is the cost we need to return. 3459 NeedToScalarize = true; 3460 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3461 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3462 3463 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3464 return Cost; 3465 3466 // If the corresponding vector cost is cheaper, return its cost. 3467 InstructionCost VectorCallCost = 3468 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3469 if (VectorCallCost < Cost) { 3470 NeedToScalarize = false; 3471 Cost = VectorCallCost; 3472 } 3473 return Cost; 3474 } 3475 3476 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3477 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3478 return Elt; 3479 return VectorType::get(Elt, VF); 3480 } 3481 3482 InstructionCost 3483 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3484 ElementCount VF) const { 3485 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3486 assert(ID && "Expected intrinsic call!"); 3487 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3488 FastMathFlags FMF; 3489 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3490 FMF = FPMO->getFastMathFlags(); 3491 3492 SmallVector<const Value *> Arguments(CI->args()); 3493 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3494 SmallVector<Type *> ParamTys; 3495 std::transform(FTy->param_begin(), FTy->param_end(), 3496 std::back_inserter(ParamTys), 3497 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3498 3499 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3500 dyn_cast<IntrinsicInst>(CI)); 3501 return TTI.getIntrinsicInstrCost(CostAttrs, 3502 TargetTransformInfo::TCK_RecipThroughput); 3503 } 3504 3505 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3506 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3507 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3508 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3509 } 3510 3511 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3512 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3513 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3514 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3515 } 3516 3517 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3518 // For every instruction `I` in MinBWs, truncate the operands, create a 3519 // truncated version of `I` and reextend its result. InstCombine runs 3520 // later and will remove any ext/trunc pairs. 3521 SmallPtrSet<Value *, 4> Erased; 3522 for (const auto &KV : Cost->getMinimalBitwidths()) { 3523 // If the value wasn't vectorized, we must maintain the original scalar 3524 // type. The absence of the value from State indicates that it 3525 // wasn't vectorized. 3526 // FIXME: Should not rely on getVPValue at this point. 3527 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3528 if (!State.hasAnyVectorValue(Def)) 3529 continue; 3530 for (unsigned Part = 0; Part < UF; ++Part) { 3531 Value *I = State.get(Def, Part); 3532 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3533 continue; 3534 Type *OriginalTy = I->getType(); 3535 Type *ScalarTruncatedTy = 3536 IntegerType::get(OriginalTy->getContext(), KV.second); 3537 auto *TruncatedTy = VectorType::get( 3538 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3539 if (TruncatedTy == OriginalTy) 3540 continue; 3541 3542 IRBuilder<> B(cast<Instruction>(I)); 3543 auto ShrinkOperand = [&](Value *V) -> Value * { 3544 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3545 if (ZI->getSrcTy() == TruncatedTy) 3546 return ZI->getOperand(0); 3547 return B.CreateZExtOrTrunc(V, TruncatedTy); 3548 }; 3549 3550 // The actual instruction modification depends on the instruction type, 3551 // unfortunately. 3552 Value *NewI = nullptr; 3553 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3554 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3555 ShrinkOperand(BO->getOperand(1))); 3556 3557 // Any wrapping introduced by shrinking this operation shouldn't be 3558 // considered undefined behavior. So, we can't unconditionally copy 3559 // arithmetic wrapping flags to NewI. 3560 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3561 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3562 NewI = 3563 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3564 ShrinkOperand(CI->getOperand(1))); 3565 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3566 NewI = B.CreateSelect(SI->getCondition(), 3567 ShrinkOperand(SI->getTrueValue()), 3568 ShrinkOperand(SI->getFalseValue())); 3569 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3570 switch (CI->getOpcode()) { 3571 default: 3572 llvm_unreachable("Unhandled cast!"); 3573 case Instruction::Trunc: 3574 NewI = ShrinkOperand(CI->getOperand(0)); 3575 break; 3576 case Instruction::SExt: 3577 NewI = B.CreateSExtOrTrunc( 3578 CI->getOperand(0), 3579 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3580 break; 3581 case Instruction::ZExt: 3582 NewI = B.CreateZExtOrTrunc( 3583 CI->getOperand(0), 3584 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3585 break; 3586 } 3587 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3588 auto Elements0 = 3589 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3590 auto *O0 = B.CreateZExtOrTrunc( 3591 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3592 auto Elements1 = 3593 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3594 auto *O1 = B.CreateZExtOrTrunc( 3595 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3596 3597 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3598 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3599 // Don't do anything with the operands, just extend the result. 3600 continue; 3601 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3602 auto Elements = 3603 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3604 auto *O0 = B.CreateZExtOrTrunc( 3605 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3606 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3607 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3608 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3609 auto Elements = 3610 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3611 auto *O0 = B.CreateZExtOrTrunc( 3612 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3613 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3614 } else { 3615 // If we don't know what to do, be conservative and don't do anything. 3616 continue; 3617 } 3618 3619 // Lastly, extend the result. 3620 NewI->takeName(cast<Instruction>(I)); 3621 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3622 I->replaceAllUsesWith(Res); 3623 cast<Instruction>(I)->eraseFromParent(); 3624 Erased.insert(I); 3625 State.reset(Def, Res, Part); 3626 } 3627 } 3628 3629 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3630 for (const auto &KV : Cost->getMinimalBitwidths()) { 3631 // If the value wasn't vectorized, we must maintain the original scalar 3632 // type. The absence of the value from State indicates that it 3633 // wasn't vectorized. 3634 // FIXME: Should not rely on getVPValue at this point. 3635 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3636 if (!State.hasAnyVectorValue(Def)) 3637 continue; 3638 for (unsigned Part = 0; Part < UF; ++Part) { 3639 Value *I = State.get(Def, Part); 3640 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3641 if (Inst && Inst->use_empty()) { 3642 Value *NewI = Inst->getOperand(0); 3643 Inst->eraseFromParent(); 3644 State.reset(Def, NewI, Part); 3645 } 3646 } 3647 } 3648 } 3649 3650 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3651 // Insert truncates and extends for any truncated instructions as hints to 3652 // InstCombine. 3653 if (VF.isVector()) 3654 truncateToMinimalBitwidths(State); 3655 3656 // Fix widened non-induction PHIs by setting up the PHI operands. 3657 if (OrigPHIsToFix.size()) { 3658 assert(EnableVPlanNativePath && 3659 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3660 fixNonInductionPHIs(State); 3661 } 3662 3663 // At this point every instruction in the original loop is widened to a 3664 // vector form. Now we need to fix the recurrences in the loop. These PHI 3665 // nodes are currently empty because we did not want to introduce cycles. 3666 // This is the second stage of vectorizing recurrences. 3667 fixCrossIterationPHIs(State); 3668 3669 // Forget the original basic block. 3670 PSE.getSE()->forgetLoop(OrigLoop); 3671 3672 Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB); 3673 // If we inserted an edge from the middle block to the unique exit block, 3674 // update uses outside the loop (phis) to account for the newly inserted 3675 // edge. 3676 if (!Cost->requiresScalarEpilogue(VF)) { 3677 // Fix-up external users of the induction variables. 3678 for (auto &Entry : Legal->getInductionVars()) 3679 fixupIVUsers(Entry.first, Entry.second, 3680 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3681 IVEndValues[Entry.first], LoopMiddleBlock, 3682 VectorLoop->getHeader()); 3683 3684 fixLCSSAPHIs(State); 3685 } 3686 3687 for (Instruction *PI : PredicatedInstructions) 3688 sinkScalarOperands(&*PI); 3689 3690 // Remove redundant induction instructions. 3691 cse(VectorLoop->getHeader()); 3692 3693 // Set/update profile weights for the vector and remainder loops as original 3694 // loop iterations are now distributed among them. Note that original loop 3695 // represented by LoopScalarBody becomes remainder loop after vectorization. 3696 // 3697 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3698 // end up getting slightly roughened result but that should be OK since 3699 // profile is not inherently precise anyway. Note also possible bypass of 3700 // vector code caused by legality checks is ignored, assigning all the weight 3701 // to the vector loop, optimistically. 3702 // 3703 // For scalable vectorization we can't know at compile time how many iterations 3704 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3705 // vscale of '1'. 3706 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3707 LI->getLoopFor(LoopScalarBody), 3708 VF.getKnownMinValue() * UF); 3709 } 3710 3711 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3712 // In order to support recurrences we need to be able to vectorize Phi nodes. 3713 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3714 // stage #2: We now need to fix the recurrences by adding incoming edges to 3715 // the currently empty PHI nodes. At this point every instruction in the 3716 // original loop is widened to a vector form so we can use them to construct 3717 // the incoming edges. 3718 VPBasicBlock *Header = 3719 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3720 for (VPRecipeBase &R : Header->phis()) { 3721 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3722 fixReduction(ReductionPhi, State); 3723 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3724 fixFirstOrderRecurrence(FOR, State); 3725 } 3726 } 3727 3728 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3729 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3730 // This is the second phase of vectorizing first-order recurrences. An 3731 // overview of the transformation is described below. Suppose we have the 3732 // following loop. 3733 // 3734 // for (int i = 0; i < n; ++i) 3735 // b[i] = a[i] - a[i - 1]; 3736 // 3737 // There is a first-order recurrence on "a". For this loop, the shorthand 3738 // scalar IR looks like: 3739 // 3740 // scalar.ph: 3741 // s_init = a[-1] 3742 // br scalar.body 3743 // 3744 // scalar.body: 3745 // i = phi [0, scalar.ph], [i+1, scalar.body] 3746 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3747 // s2 = a[i] 3748 // b[i] = s2 - s1 3749 // br cond, scalar.body, ... 3750 // 3751 // In this example, s1 is a recurrence because it's value depends on the 3752 // previous iteration. In the first phase of vectorization, we created a 3753 // vector phi v1 for s1. We now complete the vectorization and produce the 3754 // shorthand vector IR shown below (for VF = 4, UF = 1). 3755 // 3756 // vector.ph: 3757 // v_init = vector(..., ..., ..., a[-1]) 3758 // br vector.body 3759 // 3760 // vector.body 3761 // i = phi [0, vector.ph], [i+4, vector.body] 3762 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3763 // v2 = a[i, i+1, i+2, i+3]; 3764 // v3 = vector(v1(3), v2(0, 1, 2)) 3765 // b[i, i+1, i+2, i+3] = v2 - v3 3766 // br cond, vector.body, middle.block 3767 // 3768 // middle.block: 3769 // x = v2(3) 3770 // br scalar.ph 3771 // 3772 // scalar.ph: 3773 // s_init = phi [x, middle.block], [a[-1], otherwise] 3774 // br scalar.body 3775 // 3776 // After execution completes the vector loop, we extract the next value of 3777 // the recurrence (x) to use as the initial value in the scalar loop. 3778 3779 // Extract the last vector element in the middle block. This will be the 3780 // initial value for the recurrence when jumping to the scalar loop. 3781 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3782 Value *Incoming = State.get(PreviousDef, UF - 1); 3783 auto *ExtractForScalar = Incoming; 3784 auto *IdxTy = Builder.getInt32Ty(); 3785 if (VF.isVector()) { 3786 auto *One = ConstantInt::get(IdxTy, 1); 3787 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3788 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3789 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3790 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3791 "vector.recur.extract"); 3792 } 3793 // Extract the second last element in the middle block if the 3794 // Phi is used outside the loop. We need to extract the phi itself 3795 // and not the last element (the phi update in the current iteration). This 3796 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3797 // when the scalar loop is not run at all. 3798 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3799 if (VF.isVector()) { 3800 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3801 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3802 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3803 Incoming, Idx, "vector.recur.extract.for.phi"); 3804 } else if (UF > 1) 3805 // When loop is unrolled without vectorizing, initialize 3806 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3807 // of `Incoming`. This is analogous to the vectorized case above: extracting 3808 // the second last element when VF > 1. 3809 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3810 3811 // Fix the initial value of the original recurrence in the scalar loop. 3812 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3813 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3814 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3815 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3816 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3817 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3818 Start->addIncoming(Incoming, BB); 3819 } 3820 3821 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3822 Phi->setName("scalar.recur"); 3823 3824 // Finally, fix users of the recurrence outside the loop. The users will need 3825 // either the last value of the scalar recurrence or the last value of the 3826 // vector recurrence we extracted in the middle block. Since the loop is in 3827 // LCSSA form, we just need to find all the phi nodes for the original scalar 3828 // recurrence in the exit block, and then add an edge for the middle block. 3829 // Note that LCSSA does not imply single entry when the original scalar loop 3830 // had multiple exiting edges (as we always run the last iteration in the 3831 // scalar epilogue); in that case, there is no edge from middle to exit and 3832 // and thus no phis which needed updated. 3833 if (!Cost->requiresScalarEpilogue(VF)) 3834 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3835 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3836 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3837 } 3838 3839 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3840 VPTransformState &State) { 3841 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3842 // Get it's reduction variable descriptor. 3843 assert(Legal->isReductionVariable(OrigPhi) && 3844 "Unable to find the reduction variable"); 3845 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3846 3847 RecurKind RK = RdxDesc.getRecurrenceKind(); 3848 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3849 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3850 setDebugLocFromInst(ReductionStartValue); 3851 3852 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3853 // This is the vector-clone of the value that leaves the loop. 3854 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3855 3856 // Wrap flags are in general invalid after vectorization, clear them. 3857 clearReductionWrapFlags(RdxDesc, State); 3858 3859 // Before each round, move the insertion point right between 3860 // the PHIs and the values we are going to write. 3861 // This allows us to write both PHINodes and the extractelement 3862 // instructions. 3863 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3864 3865 setDebugLocFromInst(LoopExitInst); 3866 3867 Type *PhiTy = OrigPhi->getType(); 3868 BasicBlock *VectorLoopLatch = 3869 LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 3870 // If tail is folded by masking, the vector value to leave the loop should be 3871 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3872 // instead of the former. For an inloop reduction the reduction will already 3873 // be predicated, and does not need to be handled here. 3874 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3875 for (unsigned Part = 0; Part < UF; ++Part) { 3876 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3877 Value *Sel = nullptr; 3878 for (User *U : VecLoopExitInst->users()) { 3879 if (isa<SelectInst>(U)) { 3880 assert(!Sel && "Reduction exit feeding two selects"); 3881 Sel = U; 3882 } else 3883 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3884 } 3885 assert(Sel && "Reduction exit feeds no select"); 3886 State.reset(LoopExitInstDef, Sel, Part); 3887 3888 // If the target can create a predicated operator for the reduction at no 3889 // extra cost in the loop (for example a predicated vadd), it can be 3890 // cheaper for the select to remain in the loop than be sunk out of it, 3891 // and so use the select value for the phi instead of the old 3892 // LoopExitValue. 3893 if (PreferPredicatedReductionSelect || 3894 TTI->preferPredicatedReductionSelect( 3895 RdxDesc.getOpcode(), PhiTy, 3896 TargetTransformInfo::ReductionFlags())) { 3897 auto *VecRdxPhi = 3898 cast<PHINode>(State.get(PhiR, Part)); 3899 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3900 } 3901 } 3902 } 3903 3904 // If the vector reduction can be performed in a smaller type, we truncate 3905 // then extend the loop exit value to enable InstCombine to evaluate the 3906 // entire expression in the smaller type. 3907 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3908 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3909 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3910 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3911 VectorParts RdxParts(UF); 3912 for (unsigned Part = 0; Part < UF; ++Part) { 3913 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3914 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3915 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3916 : Builder.CreateZExt(Trunc, VecTy); 3917 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3918 if (U != Trunc) { 3919 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3920 RdxParts[Part] = Extnd; 3921 } 3922 } 3923 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3924 for (unsigned Part = 0; Part < UF; ++Part) { 3925 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3926 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3927 } 3928 } 3929 3930 // Reduce all of the unrolled parts into a single vector. 3931 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3932 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3933 3934 // The middle block terminator has already been assigned a DebugLoc here (the 3935 // OrigLoop's single latch terminator). We want the whole middle block to 3936 // appear to execute on this line because: (a) it is all compiler generated, 3937 // (b) these instructions are always executed after evaluating the latch 3938 // conditional branch, and (c) other passes may add new predecessors which 3939 // terminate on this line. This is the easiest way to ensure we don't 3940 // accidentally cause an extra step back into the loop while debugging. 3941 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3942 if (PhiR->isOrdered()) 3943 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3944 else { 3945 // Floating-point operations should have some FMF to enable the reduction. 3946 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3947 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3948 for (unsigned Part = 1; Part < UF; ++Part) { 3949 Value *RdxPart = State.get(LoopExitInstDef, Part); 3950 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3951 ReducedPartRdx = Builder.CreateBinOp( 3952 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3953 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3954 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3955 ReducedPartRdx, RdxPart); 3956 else 3957 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3958 } 3959 } 3960 3961 // Create the reduction after the loop. Note that inloop reductions create the 3962 // target reduction in the loop using a Reduction recipe. 3963 if (VF.isVector() && !PhiR->isInLoop()) { 3964 ReducedPartRdx = 3965 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3966 // If the reduction can be performed in a smaller type, we need to extend 3967 // the reduction to the wider type before we branch to the original loop. 3968 if (PhiTy != RdxDesc.getRecurrenceType()) 3969 ReducedPartRdx = RdxDesc.isSigned() 3970 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3971 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3972 } 3973 3974 PHINode *ResumePhi = 3975 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3976 3977 // Create a phi node that merges control-flow from the backedge-taken check 3978 // block and the middle block. 3979 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3980 LoopScalarPreHeader->getTerminator()); 3981 3982 // If we are fixing reductions in the epilogue loop then we should already 3983 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3984 // we carry over the incoming values correctly. 3985 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 3986 if (Incoming == LoopMiddleBlock) 3987 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 3988 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 3989 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 3990 Incoming); 3991 else 3992 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 3993 } 3994 3995 // Set the resume value for this reduction 3996 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 3997 3998 // Now, we need to fix the users of the reduction variable 3999 // inside and outside of the scalar remainder loop. 4000 4001 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4002 // in the exit blocks. See comment on analogous loop in 4003 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4004 if (!Cost->requiresScalarEpilogue(VF)) 4005 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4006 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4007 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4008 4009 // Fix the scalar loop reduction variable with the incoming reduction sum 4010 // from the vector body and from the backedge value. 4011 int IncomingEdgeBlockIdx = 4012 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4013 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4014 // Pick the other block. 4015 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4016 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4017 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4018 } 4019 4020 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4021 VPTransformState &State) { 4022 RecurKind RK = RdxDesc.getRecurrenceKind(); 4023 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4024 return; 4025 4026 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4027 assert(LoopExitInstr && "null loop exit instruction"); 4028 SmallVector<Instruction *, 8> Worklist; 4029 SmallPtrSet<Instruction *, 8> Visited; 4030 Worklist.push_back(LoopExitInstr); 4031 Visited.insert(LoopExitInstr); 4032 4033 while (!Worklist.empty()) { 4034 Instruction *Cur = Worklist.pop_back_val(); 4035 if (isa<OverflowingBinaryOperator>(Cur)) 4036 for (unsigned Part = 0; Part < UF; ++Part) { 4037 // FIXME: Should not rely on getVPValue at this point. 4038 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4039 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4040 } 4041 4042 for (User *U : Cur->users()) { 4043 Instruction *UI = cast<Instruction>(U); 4044 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4045 Visited.insert(UI).second) 4046 Worklist.push_back(UI); 4047 } 4048 } 4049 } 4050 4051 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4052 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4053 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4054 // Some phis were already hand updated by the reduction and recurrence 4055 // code above, leave them alone. 4056 continue; 4057 4058 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4059 // Non-instruction incoming values will have only one value. 4060 4061 VPLane Lane = VPLane::getFirstLane(); 4062 if (isa<Instruction>(IncomingValue) && 4063 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4064 VF)) 4065 Lane = VPLane::getLastLaneForVF(VF); 4066 4067 // Can be a loop invariant incoming value or the last scalar value to be 4068 // extracted from the vectorized loop. 4069 // FIXME: Should not rely on getVPValue at this point. 4070 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4071 Value *lastIncomingValue = 4072 OrigLoop->isLoopInvariant(IncomingValue) 4073 ? IncomingValue 4074 : State.get(State.Plan->getVPValue(IncomingValue, true), 4075 VPIteration(UF - 1, Lane)); 4076 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4077 } 4078 } 4079 4080 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4081 // The basic block and loop containing the predicated instruction. 4082 auto *PredBB = PredInst->getParent(); 4083 auto *VectorLoop = LI->getLoopFor(PredBB); 4084 4085 // Initialize a worklist with the operands of the predicated instruction. 4086 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4087 4088 // Holds instructions that we need to analyze again. An instruction may be 4089 // reanalyzed if we don't yet know if we can sink it or not. 4090 SmallVector<Instruction *, 8> InstsToReanalyze; 4091 4092 // Returns true if a given use occurs in the predicated block. Phi nodes use 4093 // their operands in their corresponding predecessor blocks. 4094 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4095 auto *I = cast<Instruction>(U.getUser()); 4096 BasicBlock *BB = I->getParent(); 4097 if (auto *Phi = dyn_cast<PHINode>(I)) 4098 BB = Phi->getIncomingBlock( 4099 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4100 return BB == PredBB; 4101 }; 4102 4103 // Iteratively sink the scalarized operands of the predicated instruction 4104 // into the block we created for it. When an instruction is sunk, it's 4105 // operands are then added to the worklist. The algorithm ends after one pass 4106 // through the worklist doesn't sink a single instruction. 4107 bool Changed; 4108 do { 4109 // Add the instructions that need to be reanalyzed to the worklist, and 4110 // reset the changed indicator. 4111 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4112 InstsToReanalyze.clear(); 4113 Changed = false; 4114 4115 while (!Worklist.empty()) { 4116 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4117 4118 // We can't sink an instruction if it is a phi node, is not in the loop, 4119 // or may have side effects. 4120 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4121 I->mayHaveSideEffects()) 4122 continue; 4123 4124 // If the instruction is already in PredBB, check if we can sink its 4125 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4126 // sinking the scalar instruction I, hence it appears in PredBB; but it 4127 // may have failed to sink I's operands (recursively), which we try 4128 // (again) here. 4129 if (I->getParent() == PredBB) { 4130 Worklist.insert(I->op_begin(), I->op_end()); 4131 continue; 4132 } 4133 4134 // It's legal to sink the instruction if all its uses occur in the 4135 // predicated block. Otherwise, there's nothing to do yet, and we may 4136 // need to reanalyze the instruction. 4137 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4138 InstsToReanalyze.push_back(I); 4139 continue; 4140 } 4141 4142 // Move the instruction to the beginning of the predicated block, and add 4143 // it's operands to the worklist. 4144 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4145 Worklist.insert(I->op_begin(), I->op_end()); 4146 4147 // The sinking may have enabled other instructions to be sunk, so we will 4148 // need to iterate. 4149 Changed = true; 4150 } 4151 } while (Changed); 4152 } 4153 4154 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4155 for (PHINode *OrigPhi : OrigPHIsToFix) { 4156 VPWidenPHIRecipe *VPPhi = 4157 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4158 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4159 // Make sure the builder has a valid insert point. 4160 Builder.SetInsertPoint(NewPhi); 4161 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4162 VPValue *Inc = VPPhi->getIncomingValue(i); 4163 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4164 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4165 } 4166 } 4167 } 4168 4169 bool InnerLoopVectorizer::useOrderedReductions( 4170 const RecurrenceDescriptor &RdxDesc) { 4171 return Cost->useOrderedReductions(RdxDesc); 4172 } 4173 4174 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4175 VPWidenPHIRecipe *PhiR, 4176 VPTransformState &State) { 4177 assert(EnableVPlanNativePath && 4178 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 4179 // Currently we enter here in the VPlan-native path for non-induction 4180 // PHIs where all control flow is uniform. We simply widen these PHIs. 4181 // Create a vector phi with no operands - the vector phi operands will be 4182 // set at the end of vector code generation. 4183 Type *VecTy = (State.VF.isScalar()) 4184 ? PN->getType() 4185 : VectorType::get(PN->getType(), State.VF); 4186 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4187 State.set(PhiR, VecPhi, 0); 4188 OrigPHIsToFix.push_back(cast<PHINode>(PN)); 4189 } 4190 4191 /// A helper function for checking whether an integer division-related 4192 /// instruction may divide by zero (in which case it must be predicated if 4193 /// executed conditionally in the scalar code). 4194 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4195 /// Non-zero divisors that are non compile-time constants will not be 4196 /// converted into multiplication, so we will still end up scalarizing 4197 /// the division, but can do so w/o predication. 4198 static bool mayDivideByZero(Instruction &I) { 4199 assert((I.getOpcode() == Instruction::UDiv || 4200 I.getOpcode() == Instruction::SDiv || 4201 I.getOpcode() == Instruction::URem || 4202 I.getOpcode() == Instruction::SRem) && 4203 "Unexpected instruction"); 4204 Value *Divisor = I.getOperand(1); 4205 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4206 return !CInt || CInt->isZero(); 4207 } 4208 4209 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4210 VPUser &ArgOperands, 4211 VPTransformState &State) { 4212 assert(!isa<DbgInfoIntrinsic>(I) && 4213 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4214 setDebugLocFromInst(&I); 4215 4216 Module *M = I.getParent()->getParent()->getParent(); 4217 auto *CI = cast<CallInst>(&I); 4218 4219 SmallVector<Type *, 4> Tys; 4220 for (Value *ArgOperand : CI->args()) 4221 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4222 4223 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4224 4225 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4226 // version of the instruction. 4227 // Is it beneficial to perform intrinsic call compared to lib call? 4228 bool NeedToScalarize = false; 4229 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4230 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4231 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4232 assert((UseVectorIntrinsic || !NeedToScalarize) && 4233 "Instruction should be scalarized elsewhere."); 4234 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4235 "Either the intrinsic cost or vector call cost must be valid"); 4236 4237 for (unsigned Part = 0; Part < UF; ++Part) { 4238 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4239 SmallVector<Value *, 4> Args; 4240 for (auto &I : enumerate(ArgOperands.operands())) { 4241 // Some intrinsics have a scalar argument - don't replace it with a 4242 // vector. 4243 Value *Arg; 4244 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4245 Arg = State.get(I.value(), Part); 4246 else { 4247 Arg = State.get(I.value(), VPIteration(0, 0)); 4248 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4249 TysForDecl.push_back(Arg->getType()); 4250 } 4251 Args.push_back(Arg); 4252 } 4253 4254 Function *VectorF; 4255 if (UseVectorIntrinsic) { 4256 // Use vector version of the intrinsic. 4257 if (VF.isVector()) 4258 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4259 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4260 assert(VectorF && "Can't retrieve vector intrinsic."); 4261 } else { 4262 // Use vector version of the function call. 4263 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4264 #ifndef NDEBUG 4265 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4266 "Can't create vector function."); 4267 #endif 4268 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4269 } 4270 SmallVector<OperandBundleDef, 1> OpBundles; 4271 CI->getOperandBundlesAsDefs(OpBundles); 4272 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4273 4274 if (isa<FPMathOperator>(V)) 4275 V->copyFastMathFlags(CI); 4276 4277 State.set(Def, V, Part); 4278 addMetadata(V, &I); 4279 } 4280 } 4281 4282 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4283 // We should not collect Scalars more than once per VF. Right now, this 4284 // function is called from collectUniformsAndScalars(), which already does 4285 // this check. Collecting Scalars for VF=1 does not make any sense. 4286 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4287 "This function should not be visited twice for the same VF"); 4288 4289 // This avoids any chances of creating a REPLICATE recipe during planning 4290 // since that would result in generation of scalarized code during execution, 4291 // which is not supported for scalable vectors. 4292 if (VF.isScalable()) { 4293 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4294 return; 4295 } 4296 4297 SmallSetVector<Instruction *, 8> Worklist; 4298 4299 // These sets are used to seed the analysis with pointers used by memory 4300 // accesses that will remain scalar. 4301 SmallSetVector<Instruction *, 8> ScalarPtrs; 4302 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4303 auto *Latch = TheLoop->getLoopLatch(); 4304 4305 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4306 // The pointer operands of loads and stores will be scalar as long as the 4307 // memory access is not a gather or scatter operation. The value operand of a 4308 // store will remain scalar if the store is scalarized. 4309 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4310 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4311 assert(WideningDecision != CM_Unknown && 4312 "Widening decision should be ready at this moment"); 4313 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4314 if (Ptr == Store->getValueOperand()) 4315 return WideningDecision == CM_Scalarize; 4316 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4317 "Ptr is neither a value or pointer operand"); 4318 return WideningDecision != CM_GatherScatter; 4319 }; 4320 4321 // A helper that returns true if the given value is a bitcast or 4322 // getelementptr instruction contained in the loop. 4323 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4324 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4325 isa<GetElementPtrInst>(V)) && 4326 !TheLoop->isLoopInvariant(V); 4327 }; 4328 4329 // A helper that evaluates a memory access's use of a pointer. If the use will 4330 // be a scalar use and the pointer is only used by memory accesses, we place 4331 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4332 // PossibleNonScalarPtrs. 4333 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4334 // We only care about bitcast and getelementptr instructions contained in 4335 // the loop. 4336 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4337 return; 4338 4339 // If the pointer has already been identified as scalar (e.g., if it was 4340 // also identified as uniform), there's nothing to do. 4341 auto *I = cast<Instruction>(Ptr); 4342 if (Worklist.count(I)) 4343 return; 4344 4345 // If the use of the pointer will be a scalar use, and all users of the 4346 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4347 // place the pointer in PossibleNonScalarPtrs. 4348 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4349 return isa<LoadInst>(U) || isa<StoreInst>(U); 4350 })) 4351 ScalarPtrs.insert(I); 4352 else 4353 PossibleNonScalarPtrs.insert(I); 4354 }; 4355 4356 // We seed the scalars analysis with three classes of instructions: (1) 4357 // instructions marked uniform-after-vectorization and (2) bitcast, 4358 // getelementptr and (pointer) phi instructions used by memory accesses 4359 // requiring a scalar use. 4360 // 4361 // (1) Add to the worklist all instructions that have been identified as 4362 // uniform-after-vectorization. 4363 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4364 4365 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4366 // memory accesses requiring a scalar use. The pointer operands of loads and 4367 // stores will be scalar as long as the memory accesses is not a gather or 4368 // scatter operation. The value operand of a store will remain scalar if the 4369 // store is scalarized. 4370 for (auto *BB : TheLoop->blocks()) 4371 for (auto &I : *BB) { 4372 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4373 evaluatePtrUse(Load, Load->getPointerOperand()); 4374 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4375 evaluatePtrUse(Store, Store->getPointerOperand()); 4376 evaluatePtrUse(Store, Store->getValueOperand()); 4377 } 4378 } 4379 for (auto *I : ScalarPtrs) 4380 if (!PossibleNonScalarPtrs.count(I)) { 4381 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4382 Worklist.insert(I); 4383 } 4384 4385 // Insert the forced scalars. 4386 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4387 // induction variable when the PHI user is scalarized. 4388 auto ForcedScalar = ForcedScalars.find(VF); 4389 if (ForcedScalar != ForcedScalars.end()) 4390 for (auto *I : ForcedScalar->second) 4391 Worklist.insert(I); 4392 4393 // Expand the worklist by looking through any bitcasts and getelementptr 4394 // instructions we've already identified as scalar. This is similar to the 4395 // expansion step in collectLoopUniforms(); however, here we're only 4396 // expanding to include additional bitcasts and getelementptr instructions. 4397 unsigned Idx = 0; 4398 while (Idx != Worklist.size()) { 4399 Instruction *Dst = Worklist[Idx++]; 4400 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4401 continue; 4402 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4403 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4404 auto *J = cast<Instruction>(U); 4405 return !TheLoop->contains(J) || Worklist.count(J) || 4406 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4407 isScalarUse(J, Src)); 4408 })) { 4409 Worklist.insert(Src); 4410 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4411 } 4412 } 4413 4414 // An induction variable will remain scalar if all users of the induction 4415 // variable and induction variable update remain scalar. 4416 for (auto &Induction : Legal->getInductionVars()) { 4417 auto *Ind = Induction.first; 4418 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4419 4420 // If tail-folding is applied, the primary induction variable will be used 4421 // to feed a vector compare. 4422 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4423 continue; 4424 4425 // Returns true if \p Indvar is a pointer induction that is used directly by 4426 // load/store instruction \p I. 4427 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4428 Instruction *I) { 4429 return Induction.second.getKind() == 4430 InductionDescriptor::IK_PtrInduction && 4431 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4432 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4433 }; 4434 4435 // Determine if all users of the induction variable are scalar after 4436 // vectorization. 4437 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4438 auto *I = cast<Instruction>(U); 4439 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4440 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4441 }); 4442 if (!ScalarInd) 4443 continue; 4444 4445 // Determine if all users of the induction variable update instruction are 4446 // scalar after vectorization. 4447 auto ScalarIndUpdate = 4448 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4449 auto *I = cast<Instruction>(U); 4450 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4451 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4452 }); 4453 if (!ScalarIndUpdate) 4454 continue; 4455 4456 // The induction variable and its update instruction will remain scalar. 4457 Worklist.insert(Ind); 4458 Worklist.insert(IndUpdate); 4459 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4460 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4461 << "\n"); 4462 } 4463 4464 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4465 } 4466 4467 bool LoopVectorizationCostModel::isScalarWithPredication( 4468 Instruction *I, ElementCount VF) const { 4469 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4470 return false; 4471 switch(I->getOpcode()) { 4472 default: 4473 break; 4474 case Instruction::Load: 4475 case Instruction::Store: { 4476 if (!Legal->isMaskRequired(I)) 4477 return false; 4478 auto *Ptr = getLoadStorePointerOperand(I); 4479 auto *Ty = getLoadStoreType(I); 4480 Type *VTy = Ty; 4481 if (VF.isVector()) 4482 VTy = VectorType::get(Ty, VF); 4483 const Align Alignment = getLoadStoreAlignment(I); 4484 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4485 TTI.isLegalMaskedGather(VTy, Alignment)) 4486 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4487 TTI.isLegalMaskedScatter(VTy, Alignment)); 4488 } 4489 case Instruction::UDiv: 4490 case Instruction::SDiv: 4491 case Instruction::SRem: 4492 case Instruction::URem: 4493 return mayDivideByZero(*I); 4494 } 4495 return false; 4496 } 4497 4498 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4499 Instruction *I, ElementCount VF) { 4500 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4501 assert(getWideningDecision(I, VF) == CM_Unknown && 4502 "Decision should not be set yet."); 4503 auto *Group = getInterleavedAccessGroup(I); 4504 assert(Group && "Must have a group."); 4505 4506 // If the instruction's allocated size doesn't equal it's type size, it 4507 // requires padding and will be scalarized. 4508 auto &DL = I->getModule()->getDataLayout(); 4509 auto *ScalarTy = getLoadStoreType(I); 4510 if (hasIrregularType(ScalarTy, DL)) 4511 return false; 4512 4513 // If the group involves a non-integral pointer, we may not be able to 4514 // losslessly cast all values to a common type. 4515 unsigned InterleaveFactor = Group->getFactor(); 4516 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4517 for (unsigned i = 0; i < InterleaveFactor; i++) { 4518 Instruction *Member = Group->getMember(i); 4519 if (!Member) 4520 continue; 4521 auto *MemberTy = getLoadStoreType(Member); 4522 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4523 // Don't coerce non-integral pointers to integers or vice versa. 4524 if (MemberNI != ScalarNI) { 4525 // TODO: Consider adding special nullptr value case here 4526 return false; 4527 } else if (MemberNI && ScalarNI && 4528 ScalarTy->getPointerAddressSpace() != 4529 MemberTy->getPointerAddressSpace()) { 4530 return false; 4531 } 4532 } 4533 4534 // Check if masking is required. 4535 // A Group may need masking for one of two reasons: it resides in a block that 4536 // needs predication, or it was decided to use masking to deal with gaps 4537 // (either a gap at the end of a load-access that may result in a speculative 4538 // load, or any gaps in a store-access). 4539 bool PredicatedAccessRequiresMasking = 4540 blockNeedsPredicationForAnyReason(I->getParent()) && 4541 Legal->isMaskRequired(I); 4542 bool LoadAccessWithGapsRequiresEpilogMasking = 4543 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4544 !isScalarEpilogueAllowed(); 4545 bool StoreAccessWithGapsRequiresMasking = 4546 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4547 if (!PredicatedAccessRequiresMasking && 4548 !LoadAccessWithGapsRequiresEpilogMasking && 4549 !StoreAccessWithGapsRequiresMasking) 4550 return true; 4551 4552 // If masked interleaving is required, we expect that the user/target had 4553 // enabled it, because otherwise it either wouldn't have been created or 4554 // it should have been invalidated by the CostModel. 4555 assert(useMaskedInterleavedAccesses(TTI) && 4556 "Masked interleave-groups for predicated accesses are not enabled."); 4557 4558 if (Group->isReverse()) 4559 return false; 4560 4561 auto *Ty = getLoadStoreType(I); 4562 const Align Alignment = getLoadStoreAlignment(I); 4563 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4564 : TTI.isLegalMaskedStore(Ty, Alignment); 4565 } 4566 4567 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4568 Instruction *I, ElementCount VF) { 4569 // Get and ensure we have a valid memory instruction. 4570 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4571 4572 auto *Ptr = getLoadStorePointerOperand(I); 4573 auto *ScalarTy = getLoadStoreType(I); 4574 4575 // In order to be widened, the pointer should be consecutive, first of all. 4576 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4577 return false; 4578 4579 // If the instruction is a store located in a predicated block, it will be 4580 // scalarized. 4581 if (isScalarWithPredication(I, VF)) 4582 return false; 4583 4584 // If the instruction's allocated size doesn't equal it's type size, it 4585 // requires padding and will be scalarized. 4586 auto &DL = I->getModule()->getDataLayout(); 4587 if (hasIrregularType(ScalarTy, DL)) 4588 return false; 4589 4590 return true; 4591 } 4592 4593 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4594 // We should not collect Uniforms more than once per VF. Right now, 4595 // this function is called from collectUniformsAndScalars(), which 4596 // already does this check. Collecting Uniforms for VF=1 does not make any 4597 // sense. 4598 4599 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4600 "This function should not be visited twice for the same VF"); 4601 4602 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4603 // not analyze again. Uniforms.count(VF) will return 1. 4604 Uniforms[VF].clear(); 4605 4606 // We now know that the loop is vectorizable! 4607 // Collect instructions inside the loop that will remain uniform after 4608 // vectorization. 4609 4610 // Global values, params and instructions outside of current loop are out of 4611 // scope. 4612 auto isOutOfScope = [&](Value *V) -> bool { 4613 Instruction *I = dyn_cast<Instruction>(V); 4614 return (!I || !TheLoop->contains(I)); 4615 }; 4616 4617 // Worklist containing uniform instructions demanding lane 0. 4618 SetVector<Instruction *> Worklist; 4619 BasicBlock *Latch = TheLoop->getLoopLatch(); 4620 4621 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4622 // that are scalar with predication must not be considered uniform after 4623 // vectorization, because that would create an erroneous replicating region 4624 // where only a single instance out of VF should be formed. 4625 // TODO: optimize such seldom cases if found important, see PR40816. 4626 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4627 if (isOutOfScope(I)) { 4628 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4629 << *I << "\n"); 4630 return; 4631 } 4632 if (isScalarWithPredication(I, VF)) { 4633 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4634 << *I << "\n"); 4635 return; 4636 } 4637 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4638 Worklist.insert(I); 4639 }; 4640 4641 // Start with the conditional branch. If the branch condition is an 4642 // instruction contained in the loop that is only used by the branch, it is 4643 // uniform. 4644 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4645 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4646 addToWorklistIfAllowed(Cmp); 4647 4648 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4649 InstWidening WideningDecision = getWideningDecision(I, VF); 4650 assert(WideningDecision != CM_Unknown && 4651 "Widening decision should be ready at this moment"); 4652 4653 // A uniform memory op is itself uniform. We exclude uniform stores 4654 // here as they demand the last lane, not the first one. 4655 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4656 assert(WideningDecision == CM_Scalarize); 4657 return true; 4658 } 4659 4660 return (WideningDecision == CM_Widen || 4661 WideningDecision == CM_Widen_Reverse || 4662 WideningDecision == CM_Interleave); 4663 }; 4664 4665 4666 // Returns true if Ptr is the pointer operand of a memory access instruction 4667 // I, and I is known to not require scalarization. 4668 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4669 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4670 }; 4671 4672 // Holds a list of values which are known to have at least one uniform use. 4673 // Note that there may be other uses which aren't uniform. A "uniform use" 4674 // here is something which only demands lane 0 of the unrolled iterations; 4675 // it does not imply that all lanes produce the same value (e.g. this is not 4676 // the usual meaning of uniform) 4677 SetVector<Value *> HasUniformUse; 4678 4679 // Scan the loop for instructions which are either a) known to have only 4680 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4681 for (auto *BB : TheLoop->blocks()) 4682 for (auto &I : *BB) { 4683 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4684 switch (II->getIntrinsicID()) { 4685 case Intrinsic::sideeffect: 4686 case Intrinsic::experimental_noalias_scope_decl: 4687 case Intrinsic::assume: 4688 case Intrinsic::lifetime_start: 4689 case Intrinsic::lifetime_end: 4690 if (TheLoop->hasLoopInvariantOperands(&I)) 4691 addToWorklistIfAllowed(&I); 4692 break; 4693 default: 4694 break; 4695 } 4696 } 4697 4698 // ExtractValue instructions must be uniform, because the operands are 4699 // known to be loop-invariant. 4700 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4701 assert(isOutOfScope(EVI->getAggregateOperand()) && 4702 "Expected aggregate value to be loop invariant"); 4703 addToWorklistIfAllowed(EVI); 4704 continue; 4705 } 4706 4707 // If there's no pointer operand, there's nothing to do. 4708 auto *Ptr = getLoadStorePointerOperand(&I); 4709 if (!Ptr) 4710 continue; 4711 4712 // A uniform memory op is itself uniform. We exclude uniform stores 4713 // here as they demand the last lane, not the first one. 4714 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4715 addToWorklistIfAllowed(&I); 4716 4717 if (isUniformDecision(&I, VF)) { 4718 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4719 HasUniformUse.insert(Ptr); 4720 } 4721 } 4722 4723 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4724 // demanding) users. Since loops are assumed to be in LCSSA form, this 4725 // disallows uses outside the loop as well. 4726 for (auto *V : HasUniformUse) { 4727 if (isOutOfScope(V)) 4728 continue; 4729 auto *I = cast<Instruction>(V); 4730 auto UsersAreMemAccesses = 4731 llvm::all_of(I->users(), [&](User *U) -> bool { 4732 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4733 }); 4734 if (UsersAreMemAccesses) 4735 addToWorklistIfAllowed(I); 4736 } 4737 4738 // Expand Worklist in topological order: whenever a new instruction 4739 // is added , its users should be already inside Worklist. It ensures 4740 // a uniform instruction will only be used by uniform instructions. 4741 unsigned idx = 0; 4742 while (idx != Worklist.size()) { 4743 Instruction *I = Worklist[idx++]; 4744 4745 for (auto OV : I->operand_values()) { 4746 // isOutOfScope operands cannot be uniform instructions. 4747 if (isOutOfScope(OV)) 4748 continue; 4749 // First order recurrence Phi's should typically be considered 4750 // non-uniform. 4751 auto *OP = dyn_cast<PHINode>(OV); 4752 if (OP && Legal->isFirstOrderRecurrence(OP)) 4753 continue; 4754 // If all the users of the operand are uniform, then add the 4755 // operand into the uniform worklist. 4756 auto *OI = cast<Instruction>(OV); 4757 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4758 auto *J = cast<Instruction>(U); 4759 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4760 })) 4761 addToWorklistIfAllowed(OI); 4762 } 4763 } 4764 4765 // For an instruction to be added into Worklist above, all its users inside 4766 // the loop should also be in Worklist. However, this condition cannot be 4767 // true for phi nodes that form a cyclic dependence. We must process phi 4768 // nodes separately. An induction variable will remain uniform if all users 4769 // of the induction variable and induction variable update remain uniform. 4770 // The code below handles both pointer and non-pointer induction variables. 4771 for (auto &Induction : Legal->getInductionVars()) { 4772 auto *Ind = Induction.first; 4773 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4774 4775 // Determine if all users of the induction variable are uniform after 4776 // vectorization. 4777 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4778 auto *I = cast<Instruction>(U); 4779 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4780 isVectorizedMemAccessUse(I, Ind); 4781 }); 4782 if (!UniformInd) 4783 continue; 4784 4785 // Determine if all users of the induction variable update instruction are 4786 // uniform after vectorization. 4787 auto UniformIndUpdate = 4788 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4789 auto *I = cast<Instruction>(U); 4790 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4791 isVectorizedMemAccessUse(I, IndUpdate); 4792 }); 4793 if (!UniformIndUpdate) 4794 continue; 4795 4796 // The induction variable and its update instruction will remain uniform. 4797 addToWorklistIfAllowed(Ind); 4798 addToWorklistIfAllowed(IndUpdate); 4799 } 4800 4801 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4802 } 4803 4804 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4805 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4806 4807 if (Legal->getRuntimePointerChecking()->Need) { 4808 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4809 "runtime pointer checks needed. Enable vectorization of this " 4810 "loop with '#pragma clang loop vectorize(enable)' when " 4811 "compiling with -Os/-Oz", 4812 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4813 return true; 4814 } 4815 4816 if (!PSE.getPredicate().isAlwaysTrue()) { 4817 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4818 "runtime SCEV checks needed. Enable vectorization of this " 4819 "loop with '#pragma clang loop vectorize(enable)' when " 4820 "compiling with -Os/-Oz", 4821 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4822 return true; 4823 } 4824 4825 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4826 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4827 reportVectorizationFailure("Runtime stride check for small trip count", 4828 "runtime stride == 1 checks needed. Enable vectorization of " 4829 "this loop without such check by compiling with -Os/-Oz", 4830 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4831 return true; 4832 } 4833 4834 return false; 4835 } 4836 4837 ElementCount 4838 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4839 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4840 return ElementCount::getScalable(0); 4841 4842 if (Hints->isScalableVectorizationDisabled()) { 4843 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4844 "ScalableVectorizationDisabled", ORE, TheLoop); 4845 return ElementCount::getScalable(0); 4846 } 4847 4848 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4849 4850 auto MaxScalableVF = ElementCount::getScalable( 4851 std::numeric_limits<ElementCount::ScalarTy>::max()); 4852 4853 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4854 // FIXME: While for scalable vectors this is currently sufficient, this should 4855 // be replaced by a more detailed mechanism that filters out specific VFs, 4856 // instead of invalidating vectorization for a whole set of VFs based on the 4857 // MaxVF. 4858 4859 // Disable scalable vectorization if the loop contains unsupported reductions. 4860 if (!canVectorizeReductions(MaxScalableVF)) { 4861 reportVectorizationInfo( 4862 "Scalable vectorization not supported for the reduction " 4863 "operations found in this loop.", 4864 "ScalableVFUnfeasible", ORE, TheLoop); 4865 return ElementCount::getScalable(0); 4866 } 4867 4868 // Disable scalable vectorization if the loop contains any instructions 4869 // with element types not supported for scalable vectors. 4870 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4871 return !Ty->isVoidTy() && 4872 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4873 })) { 4874 reportVectorizationInfo("Scalable vectorization is not supported " 4875 "for all element types found in this loop.", 4876 "ScalableVFUnfeasible", ORE, TheLoop); 4877 return ElementCount::getScalable(0); 4878 } 4879 4880 if (Legal->isSafeForAnyVectorWidth()) 4881 return MaxScalableVF; 4882 4883 // Limit MaxScalableVF by the maximum safe dependence distance. 4884 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4885 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4886 MaxVScale = 4887 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4888 MaxScalableVF = ElementCount::getScalable( 4889 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4890 if (!MaxScalableVF) 4891 reportVectorizationInfo( 4892 "Max legal vector width too small, scalable vectorization " 4893 "unfeasible.", 4894 "ScalableVFUnfeasible", ORE, TheLoop); 4895 4896 return MaxScalableVF; 4897 } 4898 4899 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4900 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4901 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4902 unsigned SmallestType, WidestType; 4903 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4904 4905 // Get the maximum safe dependence distance in bits computed by LAA. 4906 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4907 // the memory accesses that is most restrictive (involved in the smallest 4908 // dependence distance). 4909 unsigned MaxSafeElements = 4910 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4911 4912 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4913 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4914 4915 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4916 << ".\n"); 4917 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4918 << ".\n"); 4919 4920 // First analyze the UserVF, fall back if the UserVF should be ignored. 4921 if (UserVF) { 4922 auto MaxSafeUserVF = 4923 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4924 4925 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4926 // If `VF=vscale x N` is safe, then so is `VF=N` 4927 if (UserVF.isScalable()) 4928 return FixedScalableVFPair( 4929 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4930 else 4931 return UserVF; 4932 } 4933 4934 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4935 4936 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4937 // is better to ignore the hint and let the compiler choose a suitable VF. 4938 if (!UserVF.isScalable()) { 4939 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4940 << " is unsafe, clamping to max safe VF=" 4941 << MaxSafeFixedVF << ".\n"); 4942 ORE->emit([&]() { 4943 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4944 TheLoop->getStartLoc(), 4945 TheLoop->getHeader()) 4946 << "User-specified vectorization factor " 4947 << ore::NV("UserVectorizationFactor", UserVF) 4948 << " is unsafe, clamping to maximum safe vectorization factor " 4949 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4950 }); 4951 return MaxSafeFixedVF; 4952 } 4953 4954 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4955 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4956 << " is ignored because scalable vectors are not " 4957 "available.\n"); 4958 ORE->emit([&]() { 4959 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4960 TheLoop->getStartLoc(), 4961 TheLoop->getHeader()) 4962 << "User-specified vectorization factor " 4963 << ore::NV("UserVectorizationFactor", UserVF) 4964 << " is ignored because the target does not support scalable " 4965 "vectors. The compiler will pick a more suitable value."; 4966 }); 4967 } else { 4968 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4969 << " is unsafe. Ignoring scalable UserVF.\n"); 4970 ORE->emit([&]() { 4971 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4972 TheLoop->getStartLoc(), 4973 TheLoop->getHeader()) 4974 << "User-specified vectorization factor " 4975 << ore::NV("UserVectorizationFactor", UserVF) 4976 << " is unsafe. Ignoring the hint to let the compiler pick a " 4977 "more suitable value."; 4978 }); 4979 } 4980 } 4981 4982 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4983 << " / " << WidestType << " bits.\n"); 4984 4985 FixedScalableVFPair Result(ElementCount::getFixed(1), 4986 ElementCount::getScalable(0)); 4987 if (auto MaxVF = 4988 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4989 MaxSafeFixedVF, FoldTailByMasking)) 4990 Result.FixedVF = MaxVF; 4991 4992 if (auto MaxVF = 4993 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4994 MaxSafeScalableVF, FoldTailByMasking)) 4995 if (MaxVF.isScalable()) { 4996 Result.ScalableVF = MaxVF; 4997 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4998 << "\n"); 4999 } 5000 5001 return Result; 5002 } 5003 5004 FixedScalableVFPair 5005 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5006 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5007 // TODO: It may by useful to do since it's still likely to be dynamically 5008 // uniform if the target can skip. 5009 reportVectorizationFailure( 5010 "Not inserting runtime ptr check for divergent target", 5011 "runtime pointer checks needed. Not enabled for divergent target", 5012 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5013 return FixedScalableVFPair::getNone(); 5014 } 5015 5016 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5017 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5018 if (TC == 1) { 5019 reportVectorizationFailure("Single iteration (non) loop", 5020 "loop trip count is one, irrelevant for vectorization", 5021 "SingleIterationLoop", ORE, TheLoop); 5022 return FixedScalableVFPair::getNone(); 5023 } 5024 5025 switch (ScalarEpilogueStatus) { 5026 case CM_ScalarEpilogueAllowed: 5027 return computeFeasibleMaxVF(TC, UserVF, false); 5028 case CM_ScalarEpilogueNotAllowedUsePredicate: 5029 LLVM_FALLTHROUGH; 5030 case CM_ScalarEpilogueNotNeededUsePredicate: 5031 LLVM_DEBUG( 5032 dbgs() << "LV: vector predicate hint/switch found.\n" 5033 << "LV: Not allowing scalar epilogue, creating predicated " 5034 << "vector loop.\n"); 5035 break; 5036 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5037 // fallthrough as a special case of OptForSize 5038 case CM_ScalarEpilogueNotAllowedOptSize: 5039 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5040 LLVM_DEBUG( 5041 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5042 else 5043 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5044 << "count.\n"); 5045 5046 // Bail if runtime checks are required, which are not good when optimising 5047 // for size. 5048 if (runtimeChecksRequired()) 5049 return FixedScalableVFPair::getNone(); 5050 5051 break; 5052 } 5053 5054 // The only loops we can vectorize without a scalar epilogue, are loops with 5055 // a bottom-test and a single exiting block. We'd have to handle the fact 5056 // that not every instruction executes on the last iteration. This will 5057 // require a lane mask which varies through the vector loop body. (TODO) 5058 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5059 // If there was a tail-folding hint/switch, but we can't fold the tail by 5060 // masking, fallback to a vectorization with a scalar epilogue. 5061 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5062 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5063 "scalar epilogue instead.\n"); 5064 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5065 return computeFeasibleMaxVF(TC, UserVF, false); 5066 } 5067 return FixedScalableVFPair::getNone(); 5068 } 5069 5070 // Now try the tail folding 5071 5072 // Invalidate interleave groups that require an epilogue if we can't mask 5073 // the interleave-group. 5074 if (!useMaskedInterleavedAccesses(TTI)) { 5075 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5076 "No decisions should have been taken at this point"); 5077 // Note: There is no need to invalidate any cost modeling decisions here, as 5078 // non where taken so far. 5079 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5080 } 5081 5082 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5083 // Avoid tail folding if the trip count is known to be a multiple of any VF 5084 // we chose. 5085 // FIXME: The condition below pessimises the case for fixed-width vectors, 5086 // when scalable VFs are also candidates for vectorization. 5087 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5088 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5089 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5090 "MaxFixedVF must be a power of 2"); 5091 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5092 : MaxFixedVF.getFixedValue(); 5093 ScalarEvolution *SE = PSE.getSE(); 5094 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5095 const SCEV *ExitCount = SE->getAddExpr( 5096 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5097 const SCEV *Rem = SE->getURemExpr( 5098 SE->applyLoopGuards(ExitCount, TheLoop), 5099 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5100 if (Rem->isZero()) { 5101 // Accept MaxFixedVF if we do not have a tail. 5102 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5103 return MaxFactors; 5104 } 5105 } 5106 5107 // For scalable vectors don't use tail folding for low trip counts or 5108 // optimizing for code size. We only permit this if the user has explicitly 5109 // requested it. 5110 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5111 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5112 MaxFactors.ScalableVF.isVector()) 5113 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5114 5115 // If we don't know the precise trip count, or if the trip count that we 5116 // found modulo the vectorization factor is not zero, try to fold the tail 5117 // by masking. 5118 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5119 if (Legal->prepareToFoldTailByMasking()) { 5120 FoldTailByMasking = true; 5121 return MaxFactors; 5122 } 5123 5124 // If there was a tail-folding hint/switch, but we can't fold the tail by 5125 // masking, fallback to a vectorization with a scalar epilogue. 5126 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5127 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5128 "scalar epilogue instead.\n"); 5129 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5130 return MaxFactors; 5131 } 5132 5133 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5134 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5135 return FixedScalableVFPair::getNone(); 5136 } 5137 5138 if (TC == 0) { 5139 reportVectorizationFailure( 5140 "Unable to calculate the loop count due to complex control flow", 5141 "unable to calculate the loop count due to complex control flow", 5142 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5143 return FixedScalableVFPair::getNone(); 5144 } 5145 5146 reportVectorizationFailure( 5147 "Cannot optimize for size and vectorize at the same time.", 5148 "cannot optimize for size and vectorize at the same time. " 5149 "Enable vectorization of this loop with '#pragma clang loop " 5150 "vectorize(enable)' when compiling with -Os/-Oz", 5151 "NoTailLoopWithOptForSize", ORE, TheLoop); 5152 return FixedScalableVFPair::getNone(); 5153 } 5154 5155 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5156 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5157 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5158 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5159 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5160 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5161 : TargetTransformInfo::RGK_FixedWidthVector); 5162 5163 // Convenience function to return the minimum of two ElementCounts. 5164 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5165 assert((LHS.isScalable() == RHS.isScalable()) && 5166 "Scalable flags must match"); 5167 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5168 }; 5169 5170 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5171 // Note that both WidestRegister and WidestType may not be a powers of 2. 5172 auto MaxVectorElementCount = ElementCount::get( 5173 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5174 ComputeScalableMaxVF); 5175 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5176 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5177 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5178 5179 if (!MaxVectorElementCount) { 5180 LLVM_DEBUG(dbgs() << "LV: The target has no " 5181 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5182 << " vector registers.\n"); 5183 return ElementCount::getFixed(1); 5184 } 5185 5186 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5187 if (ConstTripCount && 5188 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5189 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5190 // If loop trip count (TC) is known at compile time there is no point in 5191 // choosing VF greater than TC (as done in the loop below). Select maximum 5192 // power of two which doesn't exceed TC. 5193 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5194 // when the TC is less than or equal to the known number of lanes. 5195 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5196 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5197 "exceeding the constant trip count: " 5198 << ClampedConstTripCount << "\n"); 5199 return ElementCount::getFixed(ClampedConstTripCount); 5200 } 5201 5202 TargetTransformInfo::RegisterKind RegKind = 5203 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5204 : TargetTransformInfo::RGK_FixedWidthVector; 5205 ElementCount MaxVF = MaxVectorElementCount; 5206 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5207 TTI.shouldMaximizeVectorBandwidth(RegKind))) { 5208 auto MaxVectorElementCountMaxBW = ElementCount::get( 5209 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5210 ComputeScalableMaxVF); 5211 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5212 5213 // Collect all viable vectorization factors larger than the default MaxVF 5214 // (i.e. MaxVectorElementCount). 5215 SmallVector<ElementCount, 8> VFs; 5216 for (ElementCount VS = MaxVectorElementCount * 2; 5217 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5218 VFs.push_back(VS); 5219 5220 // For each VF calculate its register usage. 5221 auto RUs = calculateRegisterUsage(VFs); 5222 5223 // Select the largest VF which doesn't require more registers than existing 5224 // ones. 5225 for (int i = RUs.size() - 1; i >= 0; --i) { 5226 bool Selected = true; 5227 for (auto &pair : RUs[i].MaxLocalUsers) { 5228 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5229 if (pair.second > TargetNumRegisters) 5230 Selected = false; 5231 } 5232 if (Selected) { 5233 MaxVF = VFs[i]; 5234 break; 5235 } 5236 } 5237 if (ElementCount MinVF = 5238 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5239 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5240 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5241 << ") with target's minimum: " << MinVF << '\n'); 5242 MaxVF = MinVF; 5243 } 5244 } 5245 5246 // Invalidate any widening decisions we might have made, in case the loop 5247 // requires prediction (decided later), but we have already made some 5248 // load/store widening decisions. 5249 invalidateCostModelingDecisions(); 5250 } 5251 return MaxVF; 5252 } 5253 5254 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5255 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5256 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5257 auto Min = Attr.getVScaleRangeMin(); 5258 auto Max = Attr.getVScaleRangeMax(); 5259 if (Max && Min == Max) 5260 return Max; 5261 } 5262 5263 return TTI.getVScaleForTuning(); 5264 } 5265 5266 bool LoopVectorizationCostModel::isMoreProfitable( 5267 const VectorizationFactor &A, const VectorizationFactor &B) const { 5268 InstructionCost CostA = A.Cost; 5269 InstructionCost CostB = B.Cost; 5270 5271 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5272 5273 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5274 MaxTripCount) { 5275 // If we are folding the tail and the trip count is a known (possibly small) 5276 // constant, the trip count will be rounded up to an integer number of 5277 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5278 // which we compare directly. When not folding the tail, the total cost will 5279 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5280 // approximated with the per-lane cost below instead of using the tripcount 5281 // as here. 5282 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5283 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5284 return RTCostA < RTCostB; 5285 } 5286 5287 // Improve estimate for the vector width if it is scalable. 5288 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5289 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5290 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5291 if (A.Width.isScalable()) 5292 EstimatedWidthA *= VScale.getValue(); 5293 if (B.Width.isScalable()) 5294 EstimatedWidthB *= VScale.getValue(); 5295 } 5296 5297 // Assume vscale may be larger than 1 (or the value being tuned for), 5298 // so that scalable vectorization is slightly favorable over fixed-width 5299 // vectorization. 5300 if (A.Width.isScalable() && !B.Width.isScalable()) 5301 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5302 5303 // To avoid the need for FP division: 5304 // (CostA / A.Width) < (CostB / B.Width) 5305 // <=> (CostA * B.Width) < (CostB * A.Width) 5306 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5307 } 5308 5309 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5310 const ElementCountSet &VFCandidates) { 5311 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5312 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5313 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5314 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5315 "Expected Scalar VF to be a candidate"); 5316 5317 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5318 VectorizationFactor ChosenFactor = ScalarCost; 5319 5320 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5321 if (ForceVectorization && VFCandidates.size() > 1) { 5322 // Ignore scalar width, because the user explicitly wants vectorization. 5323 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5324 // evaluation. 5325 ChosenFactor.Cost = InstructionCost::getMax(); 5326 } 5327 5328 SmallVector<InstructionVFPair> InvalidCosts; 5329 for (const auto &i : VFCandidates) { 5330 // The cost for scalar VF=1 is already calculated, so ignore it. 5331 if (i.isScalar()) 5332 continue; 5333 5334 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5335 VectorizationFactor Candidate(i, C.first); 5336 5337 #ifndef NDEBUG 5338 unsigned AssumedMinimumVscale = 1; 5339 if (Optional<unsigned> VScale = getVScaleForTuning()) 5340 AssumedMinimumVscale = VScale.getValue(); 5341 unsigned Width = 5342 Candidate.Width.isScalable() 5343 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5344 : Candidate.Width.getFixedValue(); 5345 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5346 << " costs: " << (Candidate.Cost / Width)); 5347 if (i.isScalable()) 5348 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5349 << AssumedMinimumVscale << ")"); 5350 LLVM_DEBUG(dbgs() << ".\n"); 5351 #endif 5352 5353 if (!C.second && !ForceVectorization) { 5354 LLVM_DEBUG( 5355 dbgs() << "LV: Not considering vector loop of width " << i 5356 << " because it will not generate any vector instructions.\n"); 5357 continue; 5358 } 5359 5360 // If profitable add it to ProfitableVF list. 5361 if (isMoreProfitable(Candidate, ScalarCost)) 5362 ProfitableVFs.push_back(Candidate); 5363 5364 if (isMoreProfitable(Candidate, ChosenFactor)) 5365 ChosenFactor = Candidate; 5366 } 5367 5368 // Emit a report of VFs with invalid costs in the loop. 5369 if (!InvalidCosts.empty()) { 5370 // Group the remarks per instruction, keeping the instruction order from 5371 // InvalidCosts. 5372 std::map<Instruction *, unsigned> Numbering; 5373 unsigned I = 0; 5374 for (auto &Pair : InvalidCosts) 5375 if (!Numbering.count(Pair.first)) 5376 Numbering[Pair.first] = I++; 5377 5378 // Sort the list, first on instruction(number) then on VF. 5379 llvm::sort(InvalidCosts, 5380 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5381 if (Numbering[A.first] != Numbering[B.first]) 5382 return Numbering[A.first] < Numbering[B.first]; 5383 ElementCountComparator ECC; 5384 return ECC(A.second, B.second); 5385 }); 5386 5387 // For a list of ordered instruction-vf pairs: 5388 // [(load, vf1), (load, vf2), (store, vf1)] 5389 // Group the instructions together to emit separate remarks for: 5390 // load (vf1, vf2) 5391 // store (vf1) 5392 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5393 auto Subset = ArrayRef<InstructionVFPair>(); 5394 do { 5395 if (Subset.empty()) 5396 Subset = Tail.take_front(1); 5397 5398 Instruction *I = Subset.front().first; 5399 5400 // If the next instruction is different, or if there are no other pairs, 5401 // emit a remark for the collated subset. e.g. 5402 // [(load, vf1), (load, vf2))] 5403 // to emit: 5404 // remark: invalid costs for 'load' at VF=(vf, vf2) 5405 if (Subset == Tail || Tail[Subset.size()].first != I) { 5406 std::string OutString; 5407 raw_string_ostream OS(OutString); 5408 assert(!Subset.empty() && "Unexpected empty range"); 5409 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5410 for (auto &Pair : Subset) 5411 OS << (Pair.second == Subset.front().second ? "" : ", ") 5412 << Pair.second; 5413 OS << "):"; 5414 if (auto *CI = dyn_cast<CallInst>(I)) 5415 OS << " call to " << CI->getCalledFunction()->getName(); 5416 else 5417 OS << " " << I->getOpcodeName(); 5418 OS.flush(); 5419 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5420 Tail = Tail.drop_front(Subset.size()); 5421 Subset = {}; 5422 } else 5423 // Grow the subset by one element 5424 Subset = Tail.take_front(Subset.size() + 1); 5425 } while (!Tail.empty()); 5426 } 5427 5428 if (!EnableCondStoresVectorization && NumPredStores) { 5429 reportVectorizationFailure("There are conditional stores.", 5430 "store that is conditionally executed prevents vectorization", 5431 "ConditionalStore", ORE, TheLoop); 5432 ChosenFactor = ScalarCost; 5433 } 5434 5435 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5436 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5437 << "LV: Vectorization seems to be not beneficial, " 5438 << "but was forced by a user.\n"); 5439 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5440 return ChosenFactor; 5441 } 5442 5443 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5444 const Loop &L, ElementCount VF) const { 5445 // Cross iteration phis such as reductions need special handling and are 5446 // currently unsupported. 5447 if (any_of(L.getHeader()->phis(), 5448 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5449 return false; 5450 5451 // Phis with uses outside of the loop require special handling and are 5452 // currently unsupported. 5453 for (auto &Entry : Legal->getInductionVars()) { 5454 // Look for uses of the value of the induction at the last iteration. 5455 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5456 for (User *U : PostInc->users()) 5457 if (!L.contains(cast<Instruction>(U))) 5458 return false; 5459 // Look for uses of penultimate value of the induction. 5460 for (User *U : Entry.first->users()) 5461 if (!L.contains(cast<Instruction>(U))) 5462 return false; 5463 } 5464 5465 // Induction variables that are widened require special handling that is 5466 // currently not supported. 5467 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5468 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5469 this->isProfitableToScalarize(Entry.first, VF)); 5470 })) 5471 return false; 5472 5473 // Epilogue vectorization code has not been auditted to ensure it handles 5474 // non-latch exits properly. It may be fine, but it needs auditted and 5475 // tested. 5476 if (L.getExitingBlock() != L.getLoopLatch()) 5477 return false; 5478 5479 return true; 5480 } 5481 5482 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5483 const ElementCount VF) const { 5484 // FIXME: We need a much better cost-model to take different parameters such 5485 // as register pressure, code size increase and cost of extra branches into 5486 // account. For now we apply a very crude heuristic and only consider loops 5487 // with vectorization factors larger than a certain value. 5488 // We also consider epilogue vectorization unprofitable for targets that don't 5489 // consider interleaving beneficial (eg. MVE). 5490 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5491 return false; 5492 // FIXME: We should consider changing the threshold for scalable 5493 // vectors to take VScaleForTuning into account. 5494 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5495 return true; 5496 return false; 5497 } 5498 5499 VectorizationFactor 5500 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5501 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5502 VectorizationFactor Result = VectorizationFactor::Disabled(); 5503 if (!EnableEpilogueVectorization) { 5504 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5505 return Result; 5506 } 5507 5508 if (!isScalarEpilogueAllowed()) { 5509 LLVM_DEBUG( 5510 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5511 "allowed.\n";); 5512 return Result; 5513 } 5514 5515 // Not really a cost consideration, but check for unsupported cases here to 5516 // simplify the logic. 5517 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5518 LLVM_DEBUG( 5519 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5520 "not a supported candidate.\n";); 5521 return Result; 5522 } 5523 5524 if (EpilogueVectorizationForceVF > 1) { 5525 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5526 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5527 if (LVP.hasPlanWithVF(ForcedEC)) 5528 return {ForcedEC, 0}; 5529 else { 5530 LLVM_DEBUG( 5531 dbgs() 5532 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5533 return Result; 5534 } 5535 } 5536 5537 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5538 TheLoop->getHeader()->getParent()->hasMinSize()) { 5539 LLVM_DEBUG( 5540 dbgs() 5541 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5542 return Result; 5543 } 5544 5545 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5546 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5547 "this loop\n"); 5548 return Result; 5549 } 5550 5551 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5552 // the main loop handles 8 lanes per iteration. We could still benefit from 5553 // vectorizing the epilogue loop with VF=4. 5554 ElementCount EstimatedRuntimeVF = MainLoopVF; 5555 if (MainLoopVF.isScalable()) { 5556 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5557 if (Optional<unsigned> VScale = getVScaleForTuning()) 5558 EstimatedRuntimeVF *= VScale.getValue(); 5559 } 5560 5561 for (auto &NextVF : ProfitableVFs) 5562 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5563 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5564 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5565 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5566 LVP.hasPlanWithVF(NextVF.Width)) 5567 Result = NextVF; 5568 5569 if (Result != VectorizationFactor::Disabled()) 5570 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5571 << Result.Width << "\n";); 5572 return Result; 5573 } 5574 5575 std::pair<unsigned, unsigned> 5576 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5577 unsigned MinWidth = -1U; 5578 unsigned MaxWidth = 8; 5579 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5580 // For in-loop reductions, no element types are added to ElementTypesInLoop 5581 // if there are no loads/stores in the loop. In this case, check through the 5582 // reduction variables to determine the maximum width. 5583 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5584 // Reset MaxWidth so that we can find the smallest type used by recurrences 5585 // in the loop. 5586 MaxWidth = -1U; 5587 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5588 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5589 // When finding the min width used by the recurrence we need to account 5590 // for casts on the input operands of the recurrence. 5591 MaxWidth = std::min<unsigned>( 5592 MaxWidth, std::min<unsigned>( 5593 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5594 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5595 } 5596 } else { 5597 for (Type *T : ElementTypesInLoop) { 5598 MinWidth = std::min<unsigned>( 5599 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5600 MaxWidth = std::max<unsigned>( 5601 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5602 } 5603 } 5604 return {MinWidth, MaxWidth}; 5605 } 5606 5607 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5608 ElementTypesInLoop.clear(); 5609 // For each block. 5610 for (BasicBlock *BB : TheLoop->blocks()) { 5611 // For each instruction in the loop. 5612 for (Instruction &I : BB->instructionsWithoutDebug()) { 5613 Type *T = I.getType(); 5614 5615 // Skip ignored values. 5616 if (ValuesToIgnore.count(&I)) 5617 continue; 5618 5619 // Only examine Loads, Stores and PHINodes. 5620 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5621 continue; 5622 5623 // Examine PHI nodes that are reduction variables. Update the type to 5624 // account for the recurrence type. 5625 if (auto *PN = dyn_cast<PHINode>(&I)) { 5626 if (!Legal->isReductionVariable(PN)) 5627 continue; 5628 const RecurrenceDescriptor &RdxDesc = 5629 Legal->getReductionVars().find(PN)->second; 5630 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5631 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5632 RdxDesc.getRecurrenceType(), 5633 TargetTransformInfo::ReductionFlags())) 5634 continue; 5635 T = RdxDesc.getRecurrenceType(); 5636 } 5637 5638 // Examine the stored values. 5639 if (auto *ST = dyn_cast<StoreInst>(&I)) 5640 T = ST->getValueOperand()->getType(); 5641 5642 assert(T->isSized() && 5643 "Expected the load/store/recurrence type to be sized"); 5644 5645 ElementTypesInLoop.insert(T); 5646 } 5647 } 5648 } 5649 5650 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5651 unsigned LoopCost) { 5652 // -- The interleave heuristics -- 5653 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5654 // There are many micro-architectural considerations that we can't predict 5655 // at this level. For example, frontend pressure (on decode or fetch) due to 5656 // code size, or the number and capabilities of the execution ports. 5657 // 5658 // We use the following heuristics to select the interleave count: 5659 // 1. If the code has reductions, then we interleave to break the cross 5660 // iteration dependency. 5661 // 2. If the loop is really small, then we interleave to reduce the loop 5662 // overhead. 5663 // 3. We don't interleave if we think that we will spill registers to memory 5664 // due to the increased register pressure. 5665 5666 if (!isScalarEpilogueAllowed()) 5667 return 1; 5668 5669 // We used the distance for the interleave count. 5670 if (Legal->getMaxSafeDepDistBytes() != -1U) 5671 return 1; 5672 5673 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5674 const bool HasReductions = !Legal->getReductionVars().empty(); 5675 // Do not interleave loops with a relatively small known or estimated trip 5676 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5677 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5678 // because with the above conditions interleaving can expose ILP and break 5679 // cross iteration dependences for reductions. 5680 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5681 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5682 return 1; 5683 5684 // If we did not calculate the cost for VF (because the user selected the VF) 5685 // then we calculate the cost of VF here. 5686 if (LoopCost == 0) { 5687 InstructionCost C = expectedCost(VF).first; 5688 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5689 LoopCost = *C.getValue(); 5690 5691 // Loop body is free and there is no need for interleaving. 5692 if (LoopCost == 0) 5693 return 1; 5694 } 5695 5696 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5697 // We divide by these constants so assume that we have at least one 5698 // instruction that uses at least one register. 5699 for (auto& pair : R.MaxLocalUsers) { 5700 pair.second = std::max(pair.second, 1U); 5701 } 5702 5703 // We calculate the interleave count using the following formula. 5704 // Subtract the number of loop invariants from the number of available 5705 // registers. These registers are used by all of the interleaved instances. 5706 // Next, divide the remaining registers by the number of registers that is 5707 // required by the loop, in order to estimate how many parallel instances 5708 // fit without causing spills. All of this is rounded down if necessary to be 5709 // a power of two. We want power of two interleave count to simplify any 5710 // addressing operations or alignment considerations. 5711 // We also want power of two interleave counts to ensure that the induction 5712 // variable of the vector loop wraps to zero, when tail is folded by masking; 5713 // this currently happens when OptForSize, in which case IC is set to 1 above. 5714 unsigned IC = UINT_MAX; 5715 5716 for (auto& pair : R.MaxLocalUsers) { 5717 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5718 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5719 << " registers of " 5720 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5721 if (VF.isScalar()) { 5722 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5723 TargetNumRegisters = ForceTargetNumScalarRegs; 5724 } else { 5725 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5726 TargetNumRegisters = ForceTargetNumVectorRegs; 5727 } 5728 unsigned MaxLocalUsers = pair.second; 5729 unsigned LoopInvariantRegs = 0; 5730 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5731 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5732 5733 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5734 // Don't count the induction variable as interleaved. 5735 if (EnableIndVarRegisterHeur) { 5736 TmpIC = 5737 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5738 std::max(1U, (MaxLocalUsers - 1))); 5739 } 5740 5741 IC = std::min(IC, TmpIC); 5742 } 5743 5744 // Clamp the interleave ranges to reasonable counts. 5745 unsigned MaxInterleaveCount = 5746 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5747 5748 // Check if the user has overridden the max. 5749 if (VF.isScalar()) { 5750 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5751 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5752 } else { 5753 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5754 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5755 } 5756 5757 // If trip count is known or estimated compile time constant, limit the 5758 // interleave count to be less than the trip count divided by VF, provided it 5759 // is at least 1. 5760 // 5761 // For scalable vectors we can't know if interleaving is beneficial. It may 5762 // not be beneficial for small loops if none of the lanes in the second vector 5763 // iterations is enabled. However, for larger loops, there is likely to be a 5764 // similar benefit as for fixed-width vectors. For now, we choose to leave 5765 // the InterleaveCount as if vscale is '1', although if some information about 5766 // the vector is known (e.g. min vector size), we can make a better decision. 5767 if (BestKnownTC) { 5768 MaxInterleaveCount = 5769 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5770 // Make sure MaxInterleaveCount is greater than 0. 5771 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5772 } 5773 5774 assert(MaxInterleaveCount > 0 && 5775 "Maximum interleave count must be greater than 0"); 5776 5777 // Clamp the calculated IC to be between the 1 and the max interleave count 5778 // that the target and trip count allows. 5779 if (IC > MaxInterleaveCount) 5780 IC = MaxInterleaveCount; 5781 else 5782 // Make sure IC is greater than 0. 5783 IC = std::max(1u, IC); 5784 5785 assert(IC > 0 && "Interleave count must be greater than 0."); 5786 5787 // Interleave if we vectorized this loop and there is a reduction that could 5788 // benefit from interleaving. 5789 if (VF.isVector() && HasReductions) { 5790 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5791 return IC; 5792 } 5793 5794 // For any scalar loop that either requires runtime checks or predication we 5795 // are better off leaving this to the unroller. Note that if we've already 5796 // vectorized the loop we will have done the runtime check and so interleaving 5797 // won't require further checks. 5798 bool ScalarInterleavingRequiresPredication = 5799 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5800 return Legal->blockNeedsPredication(BB); 5801 })); 5802 bool ScalarInterleavingRequiresRuntimePointerCheck = 5803 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5804 5805 // We want to interleave small loops in order to reduce the loop overhead and 5806 // potentially expose ILP opportunities. 5807 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5808 << "LV: IC is " << IC << '\n' 5809 << "LV: VF is " << VF << '\n'); 5810 const bool AggressivelyInterleaveReductions = 5811 TTI.enableAggressiveInterleaving(HasReductions); 5812 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5813 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5814 // We assume that the cost overhead is 1 and we use the cost model 5815 // to estimate the cost of the loop and interleave until the cost of the 5816 // loop overhead is about 5% of the cost of the loop. 5817 unsigned SmallIC = 5818 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5819 5820 // Interleave until store/load ports (estimated by max interleave count) are 5821 // saturated. 5822 unsigned NumStores = Legal->getNumStores(); 5823 unsigned NumLoads = Legal->getNumLoads(); 5824 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5825 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5826 5827 // There is little point in interleaving for reductions containing selects 5828 // and compares when VF=1 since it may just create more overhead than it's 5829 // worth for loops with small trip counts. This is because we still have to 5830 // do the final reduction after the loop. 5831 bool HasSelectCmpReductions = 5832 HasReductions && 5833 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5834 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5835 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5836 RdxDesc.getRecurrenceKind()); 5837 }); 5838 if (HasSelectCmpReductions) { 5839 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5840 return 1; 5841 } 5842 5843 // If we have a scalar reduction (vector reductions are already dealt with 5844 // by this point), we can increase the critical path length if the loop 5845 // we're interleaving is inside another loop. For tree-wise reductions 5846 // set the limit to 2, and for ordered reductions it's best to disable 5847 // interleaving entirely. 5848 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5849 bool HasOrderedReductions = 5850 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5851 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5852 return RdxDesc.isOrdered(); 5853 }); 5854 if (HasOrderedReductions) { 5855 LLVM_DEBUG( 5856 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5857 return 1; 5858 } 5859 5860 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5861 SmallIC = std::min(SmallIC, F); 5862 StoresIC = std::min(StoresIC, F); 5863 LoadsIC = std::min(LoadsIC, F); 5864 } 5865 5866 if (EnableLoadStoreRuntimeInterleave && 5867 std::max(StoresIC, LoadsIC) > SmallIC) { 5868 LLVM_DEBUG( 5869 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5870 return std::max(StoresIC, LoadsIC); 5871 } 5872 5873 // If there are scalar reductions and TTI has enabled aggressive 5874 // interleaving for reductions, we will interleave to expose ILP. 5875 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5876 AggressivelyInterleaveReductions) { 5877 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5878 // Interleave no less than SmallIC but not as aggressive as the normal IC 5879 // to satisfy the rare situation when resources are too limited. 5880 return std::max(IC / 2, SmallIC); 5881 } else { 5882 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5883 return SmallIC; 5884 } 5885 } 5886 5887 // Interleave if this is a large loop (small loops are already dealt with by 5888 // this point) that could benefit from interleaving. 5889 if (AggressivelyInterleaveReductions) { 5890 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5891 return IC; 5892 } 5893 5894 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5895 return 1; 5896 } 5897 5898 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5899 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5900 // This function calculates the register usage by measuring the highest number 5901 // of values that are alive at a single location. Obviously, this is a very 5902 // rough estimation. We scan the loop in a topological order in order and 5903 // assign a number to each instruction. We use RPO to ensure that defs are 5904 // met before their users. We assume that each instruction that has in-loop 5905 // users starts an interval. We record every time that an in-loop value is 5906 // used, so we have a list of the first and last occurrences of each 5907 // instruction. Next, we transpose this data structure into a multi map that 5908 // holds the list of intervals that *end* at a specific location. This multi 5909 // map allows us to perform a linear search. We scan the instructions linearly 5910 // and record each time that a new interval starts, by placing it in a set. 5911 // If we find this value in the multi-map then we remove it from the set. 5912 // The max register usage is the maximum size of the set. 5913 // We also search for instructions that are defined outside the loop, but are 5914 // used inside the loop. We need this number separately from the max-interval 5915 // usage number because when we unroll, loop-invariant values do not take 5916 // more register. 5917 LoopBlocksDFS DFS(TheLoop); 5918 DFS.perform(LI); 5919 5920 RegisterUsage RU; 5921 5922 // Each 'key' in the map opens a new interval. The values 5923 // of the map are the index of the 'last seen' usage of the 5924 // instruction that is the key. 5925 using IntervalMap = DenseMap<Instruction *, unsigned>; 5926 5927 // Maps instruction to its index. 5928 SmallVector<Instruction *, 64> IdxToInstr; 5929 // Marks the end of each interval. 5930 IntervalMap EndPoint; 5931 // Saves the list of instruction indices that are used in the loop. 5932 SmallPtrSet<Instruction *, 8> Ends; 5933 // Saves the list of values that are used in the loop but are 5934 // defined outside the loop, such as arguments and constants. 5935 SmallPtrSet<Value *, 8> LoopInvariants; 5936 5937 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5938 for (Instruction &I : BB->instructionsWithoutDebug()) { 5939 IdxToInstr.push_back(&I); 5940 5941 // Save the end location of each USE. 5942 for (Value *U : I.operands()) { 5943 auto *Instr = dyn_cast<Instruction>(U); 5944 5945 // Ignore non-instruction values such as arguments, constants, etc. 5946 if (!Instr) 5947 continue; 5948 5949 // If this instruction is outside the loop then record it and continue. 5950 if (!TheLoop->contains(Instr)) { 5951 LoopInvariants.insert(Instr); 5952 continue; 5953 } 5954 5955 // Overwrite previous end points. 5956 EndPoint[Instr] = IdxToInstr.size(); 5957 Ends.insert(Instr); 5958 } 5959 } 5960 } 5961 5962 // Saves the list of intervals that end with the index in 'key'. 5963 using InstrList = SmallVector<Instruction *, 2>; 5964 DenseMap<unsigned, InstrList> TransposeEnds; 5965 5966 // Transpose the EndPoints to a list of values that end at each index. 5967 for (auto &Interval : EndPoint) 5968 TransposeEnds[Interval.second].push_back(Interval.first); 5969 5970 SmallPtrSet<Instruction *, 8> OpenIntervals; 5971 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5972 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5973 5974 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5975 5976 // A lambda that gets the register usage for the given type and VF. 5977 const auto &TTICapture = TTI; 5978 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5979 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5980 return 0; 5981 InstructionCost::CostType RegUsage = 5982 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 5983 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 5984 "Nonsensical values for register usage."); 5985 return RegUsage; 5986 }; 5987 5988 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5989 Instruction *I = IdxToInstr[i]; 5990 5991 // Remove all of the instructions that end at this location. 5992 InstrList &List = TransposeEnds[i]; 5993 for (Instruction *ToRemove : List) 5994 OpenIntervals.erase(ToRemove); 5995 5996 // Ignore instructions that are never used within the loop. 5997 if (!Ends.count(I)) 5998 continue; 5999 6000 // Skip ignored values. 6001 if (ValuesToIgnore.count(I)) 6002 continue; 6003 6004 // For each VF find the maximum usage of registers. 6005 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6006 // Count the number of live intervals. 6007 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6008 6009 if (VFs[j].isScalar()) { 6010 for (auto Inst : OpenIntervals) { 6011 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6012 if (RegUsage.find(ClassID) == RegUsage.end()) 6013 RegUsage[ClassID] = 1; 6014 else 6015 RegUsage[ClassID] += 1; 6016 } 6017 } else { 6018 collectUniformsAndScalars(VFs[j]); 6019 for (auto Inst : OpenIntervals) { 6020 // Skip ignored values for VF > 1. 6021 if (VecValuesToIgnore.count(Inst)) 6022 continue; 6023 if (isScalarAfterVectorization(Inst, VFs[j])) { 6024 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6025 if (RegUsage.find(ClassID) == RegUsage.end()) 6026 RegUsage[ClassID] = 1; 6027 else 6028 RegUsage[ClassID] += 1; 6029 } else { 6030 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6031 if (RegUsage.find(ClassID) == RegUsage.end()) 6032 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6033 else 6034 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6035 } 6036 } 6037 } 6038 6039 for (auto& pair : RegUsage) { 6040 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6041 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6042 else 6043 MaxUsages[j][pair.first] = pair.second; 6044 } 6045 } 6046 6047 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6048 << OpenIntervals.size() << '\n'); 6049 6050 // Add the current instruction to the list of open intervals. 6051 OpenIntervals.insert(I); 6052 } 6053 6054 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6055 SmallMapVector<unsigned, unsigned, 4> Invariant; 6056 6057 for (auto Inst : LoopInvariants) { 6058 unsigned Usage = 6059 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6060 unsigned ClassID = 6061 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6062 if (Invariant.find(ClassID) == Invariant.end()) 6063 Invariant[ClassID] = Usage; 6064 else 6065 Invariant[ClassID] += Usage; 6066 } 6067 6068 LLVM_DEBUG({ 6069 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6070 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6071 << " item\n"; 6072 for (const auto &pair : MaxUsages[i]) { 6073 dbgs() << "LV(REG): RegisterClass: " 6074 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6075 << " registers\n"; 6076 } 6077 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6078 << " item\n"; 6079 for (const auto &pair : Invariant) { 6080 dbgs() << "LV(REG): RegisterClass: " 6081 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6082 << " registers\n"; 6083 } 6084 }); 6085 6086 RU.LoopInvariantRegs = Invariant; 6087 RU.MaxLocalUsers = MaxUsages[i]; 6088 RUs[i] = RU; 6089 } 6090 6091 return RUs; 6092 } 6093 6094 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6095 ElementCount VF) { 6096 // TODO: Cost model for emulated masked load/store is completely 6097 // broken. This hack guides the cost model to use an artificially 6098 // high enough value to practically disable vectorization with such 6099 // operations, except where previously deployed legality hack allowed 6100 // using very low cost values. This is to avoid regressions coming simply 6101 // from moving "masked load/store" check from legality to cost model. 6102 // Masked Load/Gather emulation was previously never allowed. 6103 // Limited number of Masked Store/Scatter emulation was allowed. 6104 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6105 return isa<LoadInst>(I) || 6106 (isa<StoreInst>(I) && 6107 NumPredStores > NumberOfStoresToPredicate); 6108 } 6109 6110 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6111 // If we aren't vectorizing the loop, or if we've already collected the 6112 // instructions to scalarize, there's nothing to do. Collection may already 6113 // have occurred if we have a user-selected VF and are now computing the 6114 // expected cost for interleaving. 6115 if (VF.isScalar() || VF.isZero() || 6116 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6117 return; 6118 6119 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6120 // not profitable to scalarize any instructions, the presence of VF in the 6121 // map will indicate that we've analyzed it already. 6122 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6123 6124 // Find all the instructions that are scalar with predication in the loop and 6125 // determine if it would be better to not if-convert the blocks they are in. 6126 // If so, we also record the instructions to scalarize. 6127 for (BasicBlock *BB : TheLoop->blocks()) { 6128 if (!blockNeedsPredicationForAnyReason(BB)) 6129 continue; 6130 for (Instruction &I : *BB) 6131 if (isScalarWithPredication(&I, VF)) { 6132 ScalarCostsTy ScalarCosts; 6133 // Do not apply discount if scalable, because that would lead to 6134 // invalid scalarization costs. 6135 // Do not apply discount logic if hacked cost is needed 6136 // for emulated masked memrefs. 6137 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6138 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6139 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6140 // Remember that BB will remain after vectorization. 6141 PredicatedBBsAfterVectorization.insert(BB); 6142 } 6143 } 6144 } 6145 6146 int LoopVectorizationCostModel::computePredInstDiscount( 6147 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6148 assert(!isUniformAfterVectorization(PredInst, VF) && 6149 "Instruction marked uniform-after-vectorization will be predicated"); 6150 6151 // Initialize the discount to zero, meaning that the scalar version and the 6152 // vector version cost the same. 6153 InstructionCost Discount = 0; 6154 6155 // Holds instructions to analyze. The instructions we visit are mapped in 6156 // ScalarCosts. Those instructions are the ones that would be scalarized if 6157 // we find that the scalar version costs less. 6158 SmallVector<Instruction *, 8> Worklist; 6159 6160 // Returns true if the given instruction can be scalarized. 6161 auto canBeScalarized = [&](Instruction *I) -> bool { 6162 // We only attempt to scalarize instructions forming a single-use chain 6163 // from the original predicated block that would otherwise be vectorized. 6164 // Although not strictly necessary, we give up on instructions we know will 6165 // already be scalar to avoid traversing chains that are unlikely to be 6166 // beneficial. 6167 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6168 isScalarAfterVectorization(I, VF)) 6169 return false; 6170 6171 // If the instruction is scalar with predication, it will be analyzed 6172 // separately. We ignore it within the context of PredInst. 6173 if (isScalarWithPredication(I, VF)) 6174 return false; 6175 6176 // If any of the instruction's operands are uniform after vectorization, 6177 // the instruction cannot be scalarized. This prevents, for example, a 6178 // masked load from being scalarized. 6179 // 6180 // We assume we will only emit a value for lane zero of an instruction 6181 // marked uniform after vectorization, rather than VF identical values. 6182 // Thus, if we scalarize an instruction that uses a uniform, we would 6183 // create uses of values corresponding to the lanes we aren't emitting code 6184 // for. This behavior can be changed by allowing getScalarValue to clone 6185 // the lane zero values for uniforms rather than asserting. 6186 for (Use &U : I->operands()) 6187 if (auto *J = dyn_cast<Instruction>(U.get())) 6188 if (isUniformAfterVectorization(J, VF)) 6189 return false; 6190 6191 // Otherwise, we can scalarize the instruction. 6192 return true; 6193 }; 6194 6195 // Compute the expected cost discount from scalarizing the entire expression 6196 // feeding the predicated instruction. We currently only consider expressions 6197 // that are single-use instruction chains. 6198 Worklist.push_back(PredInst); 6199 while (!Worklist.empty()) { 6200 Instruction *I = Worklist.pop_back_val(); 6201 6202 // If we've already analyzed the instruction, there's nothing to do. 6203 if (ScalarCosts.find(I) != ScalarCosts.end()) 6204 continue; 6205 6206 // Compute the cost of the vector instruction. Note that this cost already 6207 // includes the scalarization overhead of the predicated instruction. 6208 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6209 6210 // Compute the cost of the scalarized instruction. This cost is the cost of 6211 // the instruction as if it wasn't if-converted and instead remained in the 6212 // predicated block. We will scale this cost by block probability after 6213 // computing the scalarization overhead. 6214 InstructionCost ScalarCost = 6215 VF.getFixedValue() * 6216 getInstructionCost(I, ElementCount::getFixed(1)).first; 6217 6218 // Compute the scalarization overhead of needed insertelement instructions 6219 // and phi nodes. 6220 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6221 ScalarCost += TTI.getScalarizationOverhead( 6222 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6223 APInt::getAllOnes(VF.getFixedValue()), true, false); 6224 ScalarCost += 6225 VF.getFixedValue() * 6226 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6227 } 6228 6229 // Compute the scalarization overhead of needed extractelement 6230 // instructions. For each of the instruction's operands, if the operand can 6231 // be scalarized, add it to the worklist; otherwise, account for the 6232 // overhead. 6233 for (Use &U : I->operands()) 6234 if (auto *J = dyn_cast<Instruction>(U.get())) { 6235 assert(VectorType::isValidElementType(J->getType()) && 6236 "Instruction has non-scalar type"); 6237 if (canBeScalarized(J)) 6238 Worklist.push_back(J); 6239 else if (needsExtract(J, VF)) { 6240 ScalarCost += TTI.getScalarizationOverhead( 6241 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6242 APInt::getAllOnes(VF.getFixedValue()), false, true); 6243 } 6244 } 6245 6246 // Scale the total scalar cost by block probability. 6247 ScalarCost /= getReciprocalPredBlockProb(); 6248 6249 // Compute the discount. A non-negative discount means the vector version 6250 // of the instruction costs more, and scalarizing would be beneficial. 6251 Discount += VectorCost - ScalarCost; 6252 ScalarCosts[I] = ScalarCost; 6253 } 6254 6255 return *Discount.getValue(); 6256 } 6257 6258 LoopVectorizationCostModel::VectorizationCostTy 6259 LoopVectorizationCostModel::expectedCost( 6260 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6261 VectorizationCostTy Cost; 6262 6263 // For each block. 6264 for (BasicBlock *BB : TheLoop->blocks()) { 6265 VectorizationCostTy BlockCost; 6266 6267 // For each instruction in the old loop. 6268 for (Instruction &I : BB->instructionsWithoutDebug()) { 6269 // Skip ignored values. 6270 if (ValuesToIgnore.count(&I) || 6271 (VF.isVector() && VecValuesToIgnore.count(&I))) 6272 continue; 6273 6274 VectorizationCostTy C = getInstructionCost(&I, VF); 6275 6276 // Check if we should override the cost. 6277 if (C.first.isValid() && 6278 ForceTargetInstructionCost.getNumOccurrences() > 0) 6279 C.first = InstructionCost(ForceTargetInstructionCost); 6280 6281 // Keep a list of instructions with invalid costs. 6282 if (Invalid && !C.first.isValid()) 6283 Invalid->emplace_back(&I, VF); 6284 6285 BlockCost.first += C.first; 6286 BlockCost.second |= C.second; 6287 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6288 << " for VF " << VF << " For instruction: " << I 6289 << '\n'); 6290 } 6291 6292 // If we are vectorizing a predicated block, it will have been 6293 // if-converted. This means that the block's instructions (aside from 6294 // stores and instructions that may divide by zero) will now be 6295 // unconditionally executed. For the scalar case, we may not always execute 6296 // the predicated block, if it is an if-else block. Thus, scale the block's 6297 // cost by the probability of executing it. blockNeedsPredication from 6298 // Legal is used so as to not include all blocks in tail folded loops. 6299 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6300 BlockCost.first /= getReciprocalPredBlockProb(); 6301 6302 Cost.first += BlockCost.first; 6303 Cost.second |= BlockCost.second; 6304 } 6305 6306 return Cost; 6307 } 6308 6309 /// Gets Address Access SCEV after verifying that the access pattern 6310 /// is loop invariant except the induction variable dependence. 6311 /// 6312 /// This SCEV can be sent to the Target in order to estimate the address 6313 /// calculation cost. 6314 static const SCEV *getAddressAccessSCEV( 6315 Value *Ptr, 6316 LoopVectorizationLegality *Legal, 6317 PredicatedScalarEvolution &PSE, 6318 const Loop *TheLoop) { 6319 6320 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6321 if (!Gep) 6322 return nullptr; 6323 6324 // We are looking for a gep with all loop invariant indices except for one 6325 // which should be an induction variable. 6326 auto SE = PSE.getSE(); 6327 unsigned NumOperands = Gep->getNumOperands(); 6328 for (unsigned i = 1; i < NumOperands; ++i) { 6329 Value *Opd = Gep->getOperand(i); 6330 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6331 !Legal->isInductionVariable(Opd)) 6332 return nullptr; 6333 } 6334 6335 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6336 return PSE.getSCEV(Ptr); 6337 } 6338 6339 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6340 return Legal->hasStride(I->getOperand(0)) || 6341 Legal->hasStride(I->getOperand(1)); 6342 } 6343 6344 InstructionCost 6345 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6346 ElementCount VF) { 6347 assert(VF.isVector() && 6348 "Scalarization cost of instruction implies vectorization."); 6349 if (VF.isScalable()) 6350 return InstructionCost::getInvalid(); 6351 6352 Type *ValTy = getLoadStoreType(I); 6353 auto SE = PSE.getSE(); 6354 6355 unsigned AS = getLoadStoreAddressSpace(I); 6356 Value *Ptr = getLoadStorePointerOperand(I); 6357 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6358 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6359 // that it is being called from this specific place. 6360 6361 // Figure out whether the access is strided and get the stride value 6362 // if it's known in compile time 6363 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6364 6365 // Get the cost of the scalar memory instruction and address computation. 6366 InstructionCost Cost = 6367 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6368 6369 // Don't pass *I here, since it is scalar but will actually be part of a 6370 // vectorized loop where the user of it is a vectorized instruction. 6371 const Align Alignment = getLoadStoreAlignment(I); 6372 Cost += VF.getKnownMinValue() * 6373 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6374 AS, TTI::TCK_RecipThroughput); 6375 6376 // Get the overhead of the extractelement and insertelement instructions 6377 // we might create due to scalarization. 6378 Cost += getScalarizationOverhead(I, VF); 6379 6380 // If we have a predicated load/store, it will need extra i1 extracts and 6381 // conditional branches, but may not be executed for each vector lane. Scale 6382 // the cost by the probability of executing the predicated block. 6383 if (isPredicatedInst(I, VF)) { 6384 Cost /= getReciprocalPredBlockProb(); 6385 6386 // Add the cost of an i1 extract and a branch 6387 auto *Vec_i1Ty = 6388 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6389 Cost += TTI.getScalarizationOverhead( 6390 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6391 /*Insert=*/false, /*Extract=*/true); 6392 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6393 6394 if (useEmulatedMaskMemRefHack(I, VF)) 6395 // Artificially setting to a high enough value to practically disable 6396 // vectorization with such operations. 6397 Cost = 3000000; 6398 } 6399 6400 return Cost; 6401 } 6402 6403 InstructionCost 6404 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6405 ElementCount VF) { 6406 Type *ValTy = getLoadStoreType(I); 6407 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6408 Value *Ptr = getLoadStorePointerOperand(I); 6409 unsigned AS = getLoadStoreAddressSpace(I); 6410 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6411 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6412 6413 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6414 "Stride should be 1 or -1 for consecutive memory access"); 6415 const Align Alignment = getLoadStoreAlignment(I); 6416 InstructionCost Cost = 0; 6417 if (Legal->isMaskRequired(I)) 6418 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6419 CostKind); 6420 else 6421 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6422 CostKind, I); 6423 6424 bool Reverse = ConsecutiveStride < 0; 6425 if (Reverse) 6426 Cost += 6427 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6428 return Cost; 6429 } 6430 6431 InstructionCost 6432 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6433 ElementCount VF) { 6434 assert(Legal->isUniformMemOp(*I)); 6435 6436 Type *ValTy = getLoadStoreType(I); 6437 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6438 const Align Alignment = getLoadStoreAlignment(I); 6439 unsigned AS = getLoadStoreAddressSpace(I); 6440 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6441 if (isa<LoadInst>(I)) { 6442 return TTI.getAddressComputationCost(ValTy) + 6443 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6444 CostKind) + 6445 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6446 } 6447 StoreInst *SI = cast<StoreInst>(I); 6448 6449 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6450 return TTI.getAddressComputationCost(ValTy) + 6451 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6452 CostKind) + 6453 (isLoopInvariantStoreValue 6454 ? 0 6455 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6456 VF.getKnownMinValue() - 1)); 6457 } 6458 6459 InstructionCost 6460 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6461 ElementCount VF) { 6462 Type *ValTy = getLoadStoreType(I); 6463 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6464 const Align Alignment = getLoadStoreAlignment(I); 6465 const Value *Ptr = getLoadStorePointerOperand(I); 6466 6467 return TTI.getAddressComputationCost(VectorTy) + 6468 TTI.getGatherScatterOpCost( 6469 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6470 TargetTransformInfo::TCK_RecipThroughput, I); 6471 } 6472 6473 InstructionCost 6474 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6475 ElementCount VF) { 6476 // TODO: Once we have support for interleaving with scalable vectors 6477 // we can calculate the cost properly here. 6478 if (VF.isScalable()) 6479 return InstructionCost::getInvalid(); 6480 6481 Type *ValTy = getLoadStoreType(I); 6482 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6483 unsigned AS = getLoadStoreAddressSpace(I); 6484 6485 auto Group = getInterleavedAccessGroup(I); 6486 assert(Group && "Fail to get an interleaved access group."); 6487 6488 unsigned InterleaveFactor = Group->getFactor(); 6489 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6490 6491 // Holds the indices of existing members in the interleaved group. 6492 SmallVector<unsigned, 4> Indices; 6493 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6494 if (Group->getMember(IF)) 6495 Indices.push_back(IF); 6496 6497 // Calculate the cost of the whole interleaved group. 6498 bool UseMaskForGaps = 6499 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6500 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6501 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6502 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6503 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6504 6505 if (Group->isReverse()) { 6506 // TODO: Add support for reversed masked interleaved access. 6507 assert(!Legal->isMaskRequired(I) && 6508 "Reverse masked interleaved access not supported."); 6509 Cost += 6510 Group->getNumMembers() * 6511 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6512 } 6513 return Cost; 6514 } 6515 6516 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6517 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6518 using namespace llvm::PatternMatch; 6519 // Early exit for no inloop reductions 6520 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6521 return None; 6522 auto *VectorTy = cast<VectorType>(Ty); 6523 6524 // We are looking for a pattern of, and finding the minimal acceptable cost: 6525 // reduce(mul(ext(A), ext(B))) or 6526 // reduce(mul(A, B)) or 6527 // reduce(ext(A)) or 6528 // reduce(A). 6529 // The basic idea is that we walk down the tree to do that, finding the root 6530 // reduction instruction in InLoopReductionImmediateChains. From there we find 6531 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6532 // of the components. If the reduction cost is lower then we return it for the 6533 // reduction instruction and 0 for the other instructions in the pattern. If 6534 // it is not we return an invalid cost specifying the orignal cost method 6535 // should be used. 6536 Instruction *RetI = I; 6537 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6538 if (!RetI->hasOneUser()) 6539 return None; 6540 RetI = RetI->user_back(); 6541 } 6542 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6543 RetI->user_back()->getOpcode() == Instruction::Add) { 6544 if (!RetI->hasOneUser()) 6545 return None; 6546 RetI = RetI->user_back(); 6547 } 6548 6549 // Test if the found instruction is a reduction, and if not return an invalid 6550 // cost specifying the parent to use the original cost modelling. 6551 if (!InLoopReductionImmediateChains.count(RetI)) 6552 return None; 6553 6554 // Find the reduction this chain is a part of and calculate the basic cost of 6555 // the reduction on its own. 6556 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6557 Instruction *ReductionPhi = LastChain; 6558 while (!isa<PHINode>(ReductionPhi)) 6559 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6560 6561 const RecurrenceDescriptor &RdxDesc = 6562 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6563 6564 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6565 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6566 6567 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6568 // normal fmul instruction to the cost of the fadd reduction. 6569 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6570 BaseCost += 6571 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6572 6573 // If we're using ordered reductions then we can just return the base cost 6574 // here, since getArithmeticReductionCost calculates the full ordered 6575 // reduction cost when FP reassociation is not allowed. 6576 if (useOrderedReductions(RdxDesc)) 6577 return BaseCost; 6578 6579 // Get the operand that was not the reduction chain and match it to one of the 6580 // patterns, returning the better cost if it is found. 6581 Instruction *RedOp = RetI->getOperand(1) == LastChain 6582 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6583 : dyn_cast<Instruction>(RetI->getOperand(1)); 6584 6585 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6586 6587 Instruction *Op0, *Op1; 6588 if (RedOp && 6589 match(RedOp, 6590 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6591 match(Op0, m_ZExtOrSExt(m_Value())) && 6592 Op0->getOpcode() == Op1->getOpcode() && 6593 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6594 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6595 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6596 6597 // Matched reduce(ext(mul(ext(A), ext(B))) 6598 // Note that the extend opcodes need to all match, or if A==B they will have 6599 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6600 // which is equally fine. 6601 bool IsUnsigned = isa<ZExtInst>(Op0); 6602 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6603 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6604 6605 InstructionCost ExtCost = 6606 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6607 TTI::CastContextHint::None, CostKind, Op0); 6608 InstructionCost MulCost = 6609 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6610 InstructionCost Ext2Cost = 6611 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6612 TTI::CastContextHint::None, CostKind, RedOp); 6613 6614 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6615 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6616 CostKind); 6617 6618 if (RedCost.isValid() && 6619 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6620 return I == RetI ? RedCost : 0; 6621 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6622 !TheLoop->isLoopInvariant(RedOp)) { 6623 // Matched reduce(ext(A)) 6624 bool IsUnsigned = isa<ZExtInst>(RedOp); 6625 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6626 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6627 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6628 CostKind); 6629 6630 InstructionCost ExtCost = 6631 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6632 TTI::CastContextHint::None, CostKind, RedOp); 6633 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6634 return I == RetI ? RedCost : 0; 6635 } else if (RedOp && 6636 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6637 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6638 Op0->getOpcode() == Op1->getOpcode() && 6639 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6640 bool IsUnsigned = isa<ZExtInst>(Op0); 6641 Type *Op0Ty = Op0->getOperand(0)->getType(); 6642 Type *Op1Ty = Op1->getOperand(0)->getType(); 6643 Type *LargestOpTy = 6644 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6645 : Op0Ty; 6646 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6647 6648 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6649 // different sizes. We take the largest type as the ext to reduce, and add 6650 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6651 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6652 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6653 TTI::CastContextHint::None, CostKind, Op0); 6654 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6655 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6656 TTI::CastContextHint::None, CostKind, Op1); 6657 InstructionCost MulCost = 6658 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6659 6660 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6661 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6662 CostKind); 6663 InstructionCost ExtraExtCost = 0; 6664 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6665 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6666 ExtraExtCost = TTI.getCastInstrCost( 6667 ExtraExtOp->getOpcode(), ExtType, 6668 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6669 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6670 } 6671 6672 if (RedCost.isValid() && 6673 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6674 return I == RetI ? RedCost : 0; 6675 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6676 // Matched reduce(mul()) 6677 InstructionCost MulCost = 6678 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6679 6680 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6681 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6682 CostKind); 6683 6684 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6685 return I == RetI ? RedCost : 0; 6686 } 6687 } 6688 6689 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6690 } 6691 6692 InstructionCost 6693 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6694 ElementCount VF) { 6695 // Calculate scalar cost only. Vectorization cost should be ready at this 6696 // moment. 6697 if (VF.isScalar()) { 6698 Type *ValTy = getLoadStoreType(I); 6699 const Align Alignment = getLoadStoreAlignment(I); 6700 unsigned AS = getLoadStoreAddressSpace(I); 6701 6702 return TTI.getAddressComputationCost(ValTy) + 6703 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6704 TTI::TCK_RecipThroughput, I); 6705 } 6706 return getWideningCost(I, VF); 6707 } 6708 6709 LoopVectorizationCostModel::VectorizationCostTy 6710 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6711 ElementCount VF) { 6712 // If we know that this instruction will remain uniform, check the cost of 6713 // the scalar version. 6714 if (isUniformAfterVectorization(I, VF)) 6715 VF = ElementCount::getFixed(1); 6716 6717 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6718 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6719 6720 // Forced scalars do not have any scalarization overhead. 6721 auto ForcedScalar = ForcedScalars.find(VF); 6722 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6723 auto InstSet = ForcedScalar->second; 6724 if (InstSet.count(I)) 6725 return VectorizationCostTy( 6726 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6727 VF.getKnownMinValue()), 6728 false); 6729 } 6730 6731 Type *VectorTy; 6732 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6733 6734 bool TypeNotScalarized = false; 6735 if (VF.isVector() && VectorTy->isVectorTy()) { 6736 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6737 if (NumParts) 6738 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6739 else 6740 C = InstructionCost::getInvalid(); 6741 } 6742 return VectorizationCostTy(C, TypeNotScalarized); 6743 } 6744 6745 InstructionCost 6746 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6747 ElementCount VF) const { 6748 6749 // There is no mechanism yet to create a scalable scalarization loop, 6750 // so this is currently Invalid. 6751 if (VF.isScalable()) 6752 return InstructionCost::getInvalid(); 6753 6754 if (VF.isScalar()) 6755 return 0; 6756 6757 InstructionCost Cost = 0; 6758 Type *RetTy = ToVectorTy(I->getType(), VF); 6759 if (!RetTy->isVoidTy() && 6760 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6761 Cost += TTI.getScalarizationOverhead( 6762 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6763 false); 6764 6765 // Some targets keep addresses scalar. 6766 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6767 return Cost; 6768 6769 // Some targets support efficient element stores. 6770 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6771 return Cost; 6772 6773 // Collect operands to consider. 6774 CallInst *CI = dyn_cast<CallInst>(I); 6775 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6776 6777 // Skip operands that do not require extraction/scalarization and do not incur 6778 // any overhead. 6779 SmallVector<Type *> Tys; 6780 for (auto *V : filterExtractingOperands(Ops, VF)) 6781 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6782 return Cost + TTI.getOperandsScalarizationOverhead( 6783 filterExtractingOperands(Ops, VF), Tys); 6784 } 6785 6786 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6787 if (VF.isScalar()) 6788 return; 6789 NumPredStores = 0; 6790 for (BasicBlock *BB : TheLoop->blocks()) { 6791 // For each instruction in the old loop. 6792 for (Instruction &I : *BB) { 6793 Value *Ptr = getLoadStorePointerOperand(&I); 6794 if (!Ptr) 6795 continue; 6796 6797 // TODO: We should generate better code and update the cost model for 6798 // predicated uniform stores. Today they are treated as any other 6799 // predicated store (see added test cases in 6800 // invariant-store-vectorization.ll). 6801 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6802 NumPredStores++; 6803 6804 if (Legal->isUniformMemOp(I)) { 6805 // TODO: Avoid replicating loads and stores instead of 6806 // relying on instcombine to remove them. 6807 // Load: Scalar load + broadcast 6808 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6809 InstructionCost Cost; 6810 if (isa<StoreInst>(&I) && VF.isScalable() && 6811 isLegalGatherOrScatter(&I, VF)) { 6812 Cost = getGatherScatterCost(&I, VF); 6813 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6814 } else { 6815 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6816 "Cannot yet scalarize uniform stores"); 6817 Cost = getUniformMemOpCost(&I, VF); 6818 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6819 } 6820 continue; 6821 } 6822 6823 // We assume that widening is the best solution when possible. 6824 if (memoryInstructionCanBeWidened(&I, VF)) { 6825 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6826 int ConsecutiveStride = Legal->isConsecutivePtr( 6827 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6828 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6829 "Expected consecutive stride."); 6830 InstWidening Decision = 6831 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6832 setWideningDecision(&I, VF, Decision, Cost); 6833 continue; 6834 } 6835 6836 // Choose between Interleaving, Gather/Scatter or Scalarization. 6837 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6838 unsigned NumAccesses = 1; 6839 if (isAccessInterleaved(&I)) { 6840 auto Group = getInterleavedAccessGroup(&I); 6841 assert(Group && "Fail to get an interleaved access group."); 6842 6843 // Make one decision for the whole group. 6844 if (getWideningDecision(&I, VF) != CM_Unknown) 6845 continue; 6846 6847 NumAccesses = Group->getNumMembers(); 6848 if (interleavedAccessCanBeWidened(&I, VF)) 6849 InterleaveCost = getInterleaveGroupCost(&I, VF); 6850 } 6851 6852 InstructionCost GatherScatterCost = 6853 isLegalGatherOrScatter(&I, VF) 6854 ? getGatherScatterCost(&I, VF) * NumAccesses 6855 : InstructionCost::getInvalid(); 6856 6857 InstructionCost ScalarizationCost = 6858 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6859 6860 // Choose better solution for the current VF, 6861 // write down this decision and use it during vectorization. 6862 InstructionCost Cost; 6863 InstWidening Decision; 6864 if (InterleaveCost <= GatherScatterCost && 6865 InterleaveCost < ScalarizationCost) { 6866 Decision = CM_Interleave; 6867 Cost = InterleaveCost; 6868 } else if (GatherScatterCost < ScalarizationCost) { 6869 Decision = CM_GatherScatter; 6870 Cost = GatherScatterCost; 6871 } else { 6872 Decision = CM_Scalarize; 6873 Cost = ScalarizationCost; 6874 } 6875 // If the instructions belongs to an interleave group, the whole group 6876 // receives the same decision. The whole group receives the cost, but 6877 // the cost will actually be assigned to one instruction. 6878 if (auto Group = getInterleavedAccessGroup(&I)) 6879 setWideningDecision(Group, VF, Decision, Cost); 6880 else 6881 setWideningDecision(&I, VF, Decision, Cost); 6882 } 6883 } 6884 6885 // Make sure that any load of address and any other address computation 6886 // remains scalar unless there is gather/scatter support. This avoids 6887 // inevitable extracts into address registers, and also has the benefit of 6888 // activating LSR more, since that pass can't optimize vectorized 6889 // addresses. 6890 if (TTI.prefersVectorizedAddressing()) 6891 return; 6892 6893 // Start with all scalar pointer uses. 6894 SmallPtrSet<Instruction *, 8> AddrDefs; 6895 for (BasicBlock *BB : TheLoop->blocks()) 6896 for (Instruction &I : *BB) { 6897 Instruction *PtrDef = 6898 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6899 if (PtrDef && TheLoop->contains(PtrDef) && 6900 getWideningDecision(&I, VF) != CM_GatherScatter) 6901 AddrDefs.insert(PtrDef); 6902 } 6903 6904 // Add all instructions used to generate the addresses. 6905 SmallVector<Instruction *, 4> Worklist; 6906 append_range(Worklist, AddrDefs); 6907 while (!Worklist.empty()) { 6908 Instruction *I = Worklist.pop_back_val(); 6909 for (auto &Op : I->operands()) 6910 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6911 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6912 AddrDefs.insert(InstOp).second) 6913 Worklist.push_back(InstOp); 6914 } 6915 6916 for (auto *I : AddrDefs) { 6917 if (isa<LoadInst>(I)) { 6918 // Setting the desired widening decision should ideally be handled in 6919 // by cost functions, but since this involves the task of finding out 6920 // if the loaded register is involved in an address computation, it is 6921 // instead changed here when we know this is the case. 6922 InstWidening Decision = getWideningDecision(I, VF); 6923 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6924 // Scalarize a widened load of address. 6925 setWideningDecision( 6926 I, VF, CM_Scalarize, 6927 (VF.getKnownMinValue() * 6928 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6929 else if (auto Group = getInterleavedAccessGroup(I)) { 6930 // Scalarize an interleave group of address loads. 6931 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6932 if (Instruction *Member = Group->getMember(I)) 6933 setWideningDecision( 6934 Member, VF, CM_Scalarize, 6935 (VF.getKnownMinValue() * 6936 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6937 } 6938 } 6939 } else 6940 // Make sure I gets scalarized and a cost estimate without 6941 // scalarization overhead. 6942 ForcedScalars[VF].insert(I); 6943 } 6944 } 6945 6946 InstructionCost 6947 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6948 Type *&VectorTy) { 6949 Type *RetTy = I->getType(); 6950 if (canTruncateToMinimalBitwidth(I, VF)) 6951 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6952 auto SE = PSE.getSE(); 6953 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6954 6955 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6956 ElementCount VF) -> bool { 6957 if (VF.isScalar()) 6958 return true; 6959 6960 auto Scalarized = InstsToScalarize.find(VF); 6961 assert(Scalarized != InstsToScalarize.end() && 6962 "VF not yet analyzed for scalarization profitability"); 6963 return !Scalarized->second.count(I) && 6964 llvm::all_of(I->users(), [&](User *U) { 6965 auto *UI = cast<Instruction>(U); 6966 return !Scalarized->second.count(UI); 6967 }); 6968 }; 6969 (void) hasSingleCopyAfterVectorization; 6970 6971 if (isScalarAfterVectorization(I, VF)) { 6972 // With the exception of GEPs and PHIs, after scalarization there should 6973 // only be one copy of the instruction generated in the loop. This is 6974 // because the VF is either 1, or any instructions that need scalarizing 6975 // have already been dealt with by the the time we get here. As a result, 6976 // it means we don't have to multiply the instruction cost by VF. 6977 assert(I->getOpcode() == Instruction::GetElementPtr || 6978 I->getOpcode() == Instruction::PHI || 6979 (I->getOpcode() == Instruction::BitCast && 6980 I->getType()->isPointerTy()) || 6981 hasSingleCopyAfterVectorization(I, VF)); 6982 VectorTy = RetTy; 6983 } else 6984 VectorTy = ToVectorTy(RetTy, VF); 6985 6986 // TODO: We need to estimate the cost of intrinsic calls. 6987 switch (I->getOpcode()) { 6988 case Instruction::GetElementPtr: 6989 // We mark this instruction as zero-cost because the cost of GEPs in 6990 // vectorized code depends on whether the corresponding memory instruction 6991 // is scalarized or not. Therefore, we handle GEPs with the memory 6992 // instruction cost. 6993 return 0; 6994 case Instruction::Br: { 6995 // In cases of scalarized and predicated instructions, there will be VF 6996 // predicated blocks in the vectorized loop. Each branch around these 6997 // blocks requires also an extract of its vector compare i1 element. 6998 bool ScalarPredicatedBB = false; 6999 BranchInst *BI = cast<BranchInst>(I); 7000 if (VF.isVector() && BI->isConditional() && 7001 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7002 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7003 ScalarPredicatedBB = true; 7004 7005 if (ScalarPredicatedBB) { 7006 // Not possible to scalarize scalable vector with predicated instructions. 7007 if (VF.isScalable()) 7008 return InstructionCost::getInvalid(); 7009 // Return cost for branches around scalarized and predicated blocks. 7010 auto *Vec_i1Ty = 7011 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7012 return ( 7013 TTI.getScalarizationOverhead( 7014 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7015 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7016 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7017 // The back-edge branch will remain, as will all scalar branches. 7018 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7019 else 7020 // This branch will be eliminated by if-conversion. 7021 return 0; 7022 // Note: We currently assume zero cost for an unconditional branch inside 7023 // a predicated block since it will become a fall-through, although we 7024 // may decide in the future to call TTI for all branches. 7025 } 7026 case Instruction::PHI: { 7027 auto *Phi = cast<PHINode>(I); 7028 7029 // First-order recurrences are replaced by vector shuffles inside the loop. 7030 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7031 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7032 return TTI.getShuffleCost( 7033 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7034 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7035 7036 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7037 // converted into select instructions. We require N - 1 selects per phi 7038 // node, where N is the number of incoming values. 7039 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7040 return (Phi->getNumIncomingValues() - 1) * 7041 TTI.getCmpSelInstrCost( 7042 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7043 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7044 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7045 7046 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7047 } 7048 case Instruction::UDiv: 7049 case Instruction::SDiv: 7050 case Instruction::URem: 7051 case Instruction::SRem: 7052 // If we have a predicated instruction, it may not be executed for each 7053 // vector lane. Get the scalarization cost and scale this amount by the 7054 // probability of executing the predicated block. If the instruction is not 7055 // predicated, we fall through to the next case. 7056 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7057 InstructionCost Cost = 0; 7058 7059 // These instructions have a non-void type, so account for the phi nodes 7060 // that we will create. This cost is likely to be zero. The phi node 7061 // cost, if any, should be scaled by the block probability because it 7062 // models a copy at the end of each predicated block. 7063 Cost += VF.getKnownMinValue() * 7064 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7065 7066 // The cost of the non-predicated instruction. 7067 Cost += VF.getKnownMinValue() * 7068 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7069 7070 // The cost of insertelement and extractelement instructions needed for 7071 // scalarization. 7072 Cost += getScalarizationOverhead(I, VF); 7073 7074 // Scale the cost by the probability of executing the predicated blocks. 7075 // This assumes the predicated block for each vector lane is equally 7076 // likely. 7077 return Cost / getReciprocalPredBlockProb(); 7078 } 7079 LLVM_FALLTHROUGH; 7080 case Instruction::Add: 7081 case Instruction::FAdd: 7082 case Instruction::Sub: 7083 case Instruction::FSub: 7084 case Instruction::Mul: 7085 case Instruction::FMul: 7086 case Instruction::FDiv: 7087 case Instruction::FRem: 7088 case Instruction::Shl: 7089 case Instruction::LShr: 7090 case Instruction::AShr: 7091 case Instruction::And: 7092 case Instruction::Or: 7093 case Instruction::Xor: { 7094 // Since we will replace the stride by 1 the multiplication should go away. 7095 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7096 return 0; 7097 7098 // Detect reduction patterns 7099 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7100 return *RedCost; 7101 7102 // Certain instructions can be cheaper to vectorize if they have a constant 7103 // second vector operand. One example of this are shifts on x86. 7104 Value *Op2 = I->getOperand(1); 7105 TargetTransformInfo::OperandValueProperties Op2VP; 7106 TargetTransformInfo::OperandValueKind Op2VK = 7107 TTI.getOperandInfo(Op2, Op2VP); 7108 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7109 Op2VK = TargetTransformInfo::OK_UniformValue; 7110 7111 SmallVector<const Value *, 4> Operands(I->operand_values()); 7112 return TTI.getArithmeticInstrCost( 7113 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7114 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7115 } 7116 case Instruction::FNeg: { 7117 return TTI.getArithmeticInstrCost( 7118 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7119 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7120 TargetTransformInfo::OP_None, I->getOperand(0), I); 7121 } 7122 case Instruction::Select: { 7123 SelectInst *SI = cast<SelectInst>(I); 7124 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7125 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7126 7127 const Value *Op0, *Op1; 7128 using namespace llvm::PatternMatch; 7129 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7130 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7131 // select x, y, false --> x & y 7132 // select x, true, y --> x | y 7133 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7134 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7135 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7136 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7137 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7138 Op1->getType()->getScalarSizeInBits() == 1); 7139 7140 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7141 return TTI.getArithmeticInstrCost( 7142 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7143 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7144 } 7145 7146 Type *CondTy = SI->getCondition()->getType(); 7147 if (!ScalarCond) 7148 CondTy = VectorType::get(CondTy, VF); 7149 7150 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7151 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7152 Pred = Cmp->getPredicate(); 7153 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7154 CostKind, I); 7155 } 7156 case Instruction::ICmp: 7157 case Instruction::FCmp: { 7158 Type *ValTy = I->getOperand(0)->getType(); 7159 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7160 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7161 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7162 VectorTy = ToVectorTy(ValTy, VF); 7163 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7164 cast<CmpInst>(I)->getPredicate(), CostKind, 7165 I); 7166 } 7167 case Instruction::Store: 7168 case Instruction::Load: { 7169 ElementCount Width = VF; 7170 if (Width.isVector()) { 7171 InstWidening Decision = getWideningDecision(I, Width); 7172 assert(Decision != CM_Unknown && 7173 "CM decision should be taken at this point"); 7174 if (Decision == CM_Scalarize) 7175 Width = ElementCount::getFixed(1); 7176 } 7177 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7178 return getMemoryInstructionCost(I, VF); 7179 } 7180 case Instruction::BitCast: 7181 if (I->getType()->isPointerTy()) 7182 return 0; 7183 LLVM_FALLTHROUGH; 7184 case Instruction::ZExt: 7185 case Instruction::SExt: 7186 case Instruction::FPToUI: 7187 case Instruction::FPToSI: 7188 case Instruction::FPExt: 7189 case Instruction::PtrToInt: 7190 case Instruction::IntToPtr: 7191 case Instruction::SIToFP: 7192 case Instruction::UIToFP: 7193 case Instruction::Trunc: 7194 case Instruction::FPTrunc: { 7195 // Computes the CastContextHint from a Load/Store instruction. 7196 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7197 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7198 "Expected a load or a store!"); 7199 7200 if (VF.isScalar() || !TheLoop->contains(I)) 7201 return TTI::CastContextHint::Normal; 7202 7203 switch (getWideningDecision(I, VF)) { 7204 case LoopVectorizationCostModel::CM_GatherScatter: 7205 return TTI::CastContextHint::GatherScatter; 7206 case LoopVectorizationCostModel::CM_Interleave: 7207 return TTI::CastContextHint::Interleave; 7208 case LoopVectorizationCostModel::CM_Scalarize: 7209 case LoopVectorizationCostModel::CM_Widen: 7210 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7211 : TTI::CastContextHint::Normal; 7212 case LoopVectorizationCostModel::CM_Widen_Reverse: 7213 return TTI::CastContextHint::Reversed; 7214 case LoopVectorizationCostModel::CM_Unknown: 7215 llvm_unreachable("Instr did not go through cost modelling?"); 7216 } 7217 7218 llvm_unreachable("Unhandled case!"); 7219 }; 7220 7221 unsigned Opcode = I->getOpcode(); 7222 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7223 // For Trunc, the context is the only user, which must be a StoreInst. 7224 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7225 if (I->hasOneUse()) 7226 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7227 CCH = ComputeCCH(Store); 7228 } 7229 // For Z/Sext, the context is the operand, which must be a LoadInst. 7230 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7231 Opcode == Instruction::FPExt) { 7232 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7233 CCH = ComputeCCH(Load); 7234 } 7235 7236 // We optimize the truncation of induction variables having constant 7237 // integer steps. The cost of these truncations is the same as the scalar 7238 // operation. 7239 if (isOptimizableIVTruncate(I, VF)) { 7240 auto *Trunc = cast<TruncInst>(I); 7241 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7242 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7243 } 7244 7245 // Detect reduction patterns 7246 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7247 return *RedCost; 7248 7249 Type *SrcScalarTy = I->getOperand(0)->getType(); 7250 Type *SrcVecTy = 7251 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7252 if (canTruncateToMinimalBitwidth(I, VF)) { 7253 // This cast is going to be shrunk. This may remove the cast or it might 7254 // turn it into slightly different cast. For example, if MinBW == 16, 7255 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7256 // 7257 // Calculate the modified src and dest types. 7258 Type *MinVecTy = VectorTy; 7259 if (Opcode == Instruction::Trunc) { 7260 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7261 VectorTy = 7262 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7263 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7264 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7265 VectorTy = 7266 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7267 } 7268 } 7269 7270 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7271 } 7272 case Instruction::Call: { 7273 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7274 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7275 return *RedCost; 7276 bool NeedToScalarize; 7277 CallInst *CI = cast<CallInst>(I); 7278 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7279 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7280 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7281 return std::min(CallCost, IntrinsicCost); 7282 } 7283 return CallCost; 7284 } 7285 case Instruction::ExtractValue: 7286 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7287 case Instruction::Alloca: 7288 // We cannot easily widen alloca to a scalable alloca, as 7289 // the result would need to be a vector of pointers. 7290 if (VF.isScalable()) 7291 return InstructionCost::getInvalid(); 7292 LLVM_FALLTHROUGH; 7293 default: 7294 // This opcode is unknown. Assume that it is the same as 'mul'. 7295 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7296 } // end of switch. 7297 } 7298 7299 char LoopVectorize::ID = 0; 7300 7301 static const char lv_name[] = "Loop Vectorization"; 7302 7303 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7304 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7305 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7306 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7307 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7308 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7309 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7311 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7312 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7313 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7314 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7315 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7316 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7317 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7318 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7319 7320 namespace llvm { 7321 7322 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7323 7324 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7325 bool VectorizeOnlyWhenForced) { 7326 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7327 } 7328 7329 } // end namespace llvm 7330 7331 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7332 // Check if the pointer operand of a load or store instruction is 7333 // consecutive. 7334 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7335 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7336 return false; 7337 } 7338 7339 void LoopVectorizationCostModel::collectValuesToIgnore() { 7340 // Ignore ephemeral values. 7341 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7342 7343 // Ignore type-promoting instructions we identified during reduction 7344 // detection. 7345 for (auto &Reduction : Legal->getReductionVars()) { 7346 const RecurrenceDescriptor &RedDes = Reduction.second; 7347 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7348 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7349 } 7350 // Ignore type-casting instructions we identified during induction 7351 // detection. 7352 for (auto &Induction : Legal->getInductionVars()) { 7353 const InductionDescriptor &IndDes = Induction.second; 7354 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7355 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7356 } 7357 } 7358 7359 void LoopVectorizationCostModel::collectInLoopReductions() { 7360 for (auto &Reduction : Legal->getReductionVars()) { 7361 PHINode *Phi = Reduction.first; 7362 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7363 7364 // We don't collect reductions that are type promoted (yet). 7365 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7366 continue; 7367 7368 // If the target would prefer this reduction to happen "in-loop", then we 7369 // want to record it as such. 7370 unsigned Opcode = RdxDesc.getOpcode(); 7371 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7372 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7373 TargetTransformInfo::ReductionFlags())) 7374 continue; 7375 7376 // Check that we can correctly put the reductions into the loop, by 7377 // finding the chain of operations that leads from the phi to the loop 7378 // exit value. 7379 SmallVector<Instruction *, 4> ReductionOperations = 7380 RdxDesc.getReductionOpChain(Phi, TheLoop); 7381 bool InLoop = !ReductionOperations.empty(); 7382 if (InLoop) { 7383 InLoopReductionChains[Phi] = ReductionOperations; 7384 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7385 Instruction *LastChain = Phi; 7386 for (auto *I : ReductionOperations) { 7387 InLoopReductionImmediateChains[I] = LastChain; 7388 LastChain = I; 7389 } 7390 } 7391 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7392 << " reduction for phi: " << *Phi << "\n"); 7393 } 7394 } 7395 7396 // TODO: we could return a pair of values that specify the max VF and 7397 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7398 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7399 // doesn't have a cost model that can choose which plan to execute if 7400 // more than one is generated. 7401 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7402 LoopVectorizationCostModel &CM) { 7403 unsigned WidestType; 7404 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7405 return WidestVectorRegBits / WidestType; 7406 } 7407 7408 VectorizationFactor 7409 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7410 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7411 ElementCount VF = UserVF; 7412 // Outer loop handling: They may require CFG and instruction level 7413 // transformations before even evaluating whether vectorization is profitable. 7414 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7415 // the vectorization pipeline. 7416 if (!OrigLoop->isInnermost()) { 7417 // If the user doesn't provide a vectorization factor, determine a 7418 // reasonable one. 7419 if (UserVF.isZero()) { 7420 VF = ElementCount::getFixed(determineVPlanVF( 7421 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7422 .getFixedSize(), 7423 CM)); 7424 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7425 7426 // Make sure we have a VF > 1 for stress testing. 7427 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7428 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7429 << "overriding computed VF.\n"); 7430 VF = ElementCount::getFixed(4); 7431 } 7432 } 7433 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7434 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7435 "VF needs to be a power of two"); 7436 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7437 << "VF " << VF << " to build VPlans.\n"); 7438 buildVPlans(VF, VF); 7439 7440 // For VPlan build stress testing, we bail out after VPlan construction. 7441 if (VPlanBuildStressTest) 7442 return VectorizationFactor::Disabled(); 7443 7444 return {VF, 0 /*Cost*/}; 7445 } 7446 7447 LLVM_DEBUG( 7448 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7449 "VPlan-native path.\n"); 7450 return VectorizationFactor::Disabled(); 7451 } 7452 7453 Optional<VectorizationFactor> 7454 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7455 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7456 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7457 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7458 return None; 7459 7460 // Invalidate interleave groups if all blocks of loop will be predicated. 7461 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7462 !useMaskedInterleavedAccesses(*TTI)) { 7463 LLVM_DEBUG( 7464 dbgs() 7465 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7466 "which requires masked-interleaved support.\n"); 7467 if (CM.InterleaveInfo.invalidateGroups()) 7468 // Invalidating interleave groups also requires invalidating all decisions 7469 // based on them, which includes widening decisions and uniform and scalar 7470 // values. 7471 CM.invalidateCostModelingDecisions(); 7472 } 7473 7474 ElementCount MaxUserVF = 7475 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7476 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7477 if (!UserVF.isZero() && UserVFIsLegal) { 7478 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7479 "VF needs to be a power of two"); 7480 // Collect the instructions (and their associated costs) that will be more 7481 // profitable to scalarize. 7482 if (CM.selectUserVectorizationFactor(UserVF)) { 7483 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7484 CM.collectInLoopReductions(); 7485 buildVPlansWithVPRecipes(UserVF, UserVF); 7486 LLVM_DEBUG(printPlans(dbgs())); 7487 return {{UserVF, 0}}; 7488 } else 7489 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7490 "InvalidCost", ORE, OrigLoop); 7491 } 7492 7493 // Populate the set of Vectorization Factor Candidates. 7494 ElementCountSet VFCandidates; 7495 for (auto VF = ElementCount::getFixed(1); 7496 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7497 VFCandidates.insert(VF); 7498 for (auto VF = ElementCount::getScalable(1); 7499 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7500 VFCandidates.insert(VF); 7501 7502 for (const auto &VF : VFCandidates) { 7503 // Collect Uniform and Scalar instructions after vectorization with VF. 7504 CM.collectUniformsAndScalars(VF); 7505 7506 // Collect the instructions (and their associated costs) that will be more 7507 // profitable to scalarize. 7508 if (VF.isVector()) 7509 CM.collectInstsToScalarize(VF); 7510 } 7511 7512 CM.collectInLoopReductions(); 7513 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7514 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7515 7516 LLVM_DEBUG(printPlans(dbgs())); 7517 if (!MaxFactors.hasVector()) 7518 return VectorizationFactor::Disabled(); 7519 7520 // Select the optimal vectorization factor. 7521 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7522 7523 // Check if it is profitable to vectorize with runtime checks. 7524 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7525 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7526 bool PragmaThresholdReached = 7527 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7528 bool ThresholdReached = 7529 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7530 if ((ThresholdReached && !Hints.allowReordering()) || 7531 PragmaThresholdReached) { 7532 ORE->emit([&]() { 7533 return OptimizationRemarkAnalysisAliasing( 7534 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7535 OrigLoop->getHeader()) 7536 << "loop not vectorized: cannot prove it is safe to reorder " 7537 "memory operations"; 7538 }); 7539 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7540 Hints.emitRemarkWithHints(); 7541 return VectorizationFactor::Disabled(); 7542 } 7543 } 7544 return SelectedVF; 7545 } 7546 7547 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7548 assert(count_if(VPlans, 7549 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7550 1 && 7551 "Best VF has not a single VPlan."); 7552 7553 for (const VPlanPtr &Plan : VPlans) { 7554 if (Plan->hasVF(VF)) 7555 return *Plan.get(); 7556 } 7557 llvm_unreachable("No plan found!"); 7558 } 7559 7560 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7561 SmallVector<Metadata *, 4> MDs; 7562 // Reserve first location for self reference to the LoopID metadata node. 7563 MDs.push_back(nullptr); 7564 bool IsUnrollMetadata = false; 7565 MDNode *LoopID = L->getLoopID(); 7566 if (LoopID) { 7567 // First find existing loop unrolling disable metadata. 7568 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7569 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7570 if (MD) { 7571 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7572 IsUnrollMetadata = 7573 S && S->getString().startswith("llvm.loop.unroll.disable"); 7574 } 7575 MDs.push_back(LoopID->getOperand(i)); 7576 } 7577 } 7578 7579 if (!IsUnrollMetadata) { 7580 // Add runtime unroll disable metadata. 7581 LLVMContext &Context = L->getHeader()->getContext(); 7582 SmallVector<Metadata *, 1> DisableOperands; 7583 DisableOperands.push_back( 7584 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7585 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7586 MDs.push_back(DisableNode); 7587 MDNode *NewLoopID = MDNode::get(Context, MDs); 7588 // Set operand 0 to refer to the loop id itself. 7589 NewLoopID->replaceOperandWith(0, NewLoopID); 7590 L->setLoopID(NewLoopID); 7591 } 7592 } 7593 7594 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7595 VPlan &BestVPlan, 7596 InnerLoopVectorizer &ILV, 7597 DominatorTree *DT) { 7598 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7599 << '\n'); 7600 7601 // Perform the actual loop transformation. 7602 7603 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7604 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7605 Value *CanonicalIVStartValue; 7606 std::tie(State.CFG.VectorPreHeader, CanonicalIVStartValue) = 7607 ILV.createVectorizedLoopSkeleton(); 7608 ILV.collectPoisonGeneratingRecipes(State); 7609 7610 ILV.printDebugTracesAtStart(); 7611 7612 //===------------------------------------------------===// 7613 // 7614 // Notice: any optimization or new instruction that go 7615 // into the code below should also be implemented in 7616 // the cost-model. 7617 // 7618 //===------------------------------------------------===// 7619 7620 // 2. Copy and widen instructions from the old loop into the new loop. 7621 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7622 ILV.getOrCreateVectorTripCount(nullptr), 7623 CanonicalIVStartValue, State); 7624 BestVPlan.execute(&State); 7625 7626 // Keep all loop hints from the original loop on the vector loop (we'll 7627 // replace the vectorizer-specific hints below). 7628 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7629 7630 Optional<MDNode *> VectorizedLoopID = 7631 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7632 LLVMLoopVectorizeFollowupVectorized}); 7633 7634 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7635 if (VectorizedLoopID.hasValue()) 7636 L->setLoopID(VectorizedLoopID.getValue()); 7637 else { 7638 // Keep all loop hints from the original loop on the vector loop (we'll 7639 // replace the vectorizer-specific hints below). 7640 if (MDNode *LID = OrigLoop->getLoopID()) 7641 L->setLoopID(LID); 7642 7643 LoopVectorizeHints Hints(L, true, *ORE); 7644 Hints.setAlreadyVectorized(); 7645 } 7646 // Disable runtime unrolling when vectorizing the epilogue loop. 7647 if (CanonicalIVStartValue) 7648 AddRuntimeUnrollDisableMetaData(L); 7649 7650 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7651 // predication, updating analyses. 7652 ILV.fixVectorizedLoop(State); 7653 7654 ILV.printDebugTracesAtEnd(); 7655 } 7656 7657 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7658 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7659 for (const auto &Plan : VPlans) 7660 if (PrintVPlansInDotFormat) 7661 Plan->printDOT(O); 7662 else 7663 Plan->print(O); 7664 } 7665 #endif 7666 7667 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7668 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7669 7670 // We create new control-flow for the vectorized loop, so the original exit 7671 // conditions will be dead after vectorization if it's only used by the 7672 // terminator 7673 SmallVector<BasicBlock*> ExitingBlocks; 7674 OrigLoop->getExitingBlocks(ExitingBlocks); 7675 for (auto *BB : ExitingBlocks) { 7676 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7677 if (!Cmp || !Cmp->hasOneUse()) 7678 continue; 7679 7680 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7681 if (!DeadInstructions.insert(Cmp).second) 7682 continue; 7683 7684 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7685 // TODO: can recurse through operands in general 7686 for (Value *Op : Cmp->operands()) { 7687 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7688 DeadInstructions.insert(cast<Instruction>(Op)); 7689 } 7690 } 7691 7692 // We create new "steps" for induction variable updates to which the original 7693 // induction variables map. An original update instruction will be dead if 7694 // all its users except the induction variable are dead. 7695 auto *Latch = OrigLoop->getLoopLatch(); 7696 for (auto &Induction : Legal->getInductionVars()) { 7697 PHINode *Ind = Induction.first; 7698 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7699 7700 // If the tail is to be folded by masking, the primary induction variable, 7701 // if exists, isn't dead: it will be used for masking. Don't kill it. 7702 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7703 continue; 7704 7705 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7706 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7707 })) 7708 DeadInstructions.insert(IndUpdate); 7709 } 7710 } 7711 7712 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7713 7714 //===--------------------------------------------------------------------===// 7715 // EpilogueVectorizerMainLoop 7716 //===--------------------------------------------------------------------===// 7717 7718 /// This function is partially responsible for generating the control flow 7719 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7720 std::pair<BasicBlock *, Value *> 7721 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7722 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7723 7724 // Workaround! Compute the trip count of the original loop and cache it 7725 // before we start modifying the CFG. This code has a systemic problem 7726 // wherein it tries to run analysis over partially constructed IR; this is 7727 // wrong, and not simply for SCEV. The trip count of the original loop 7728 // simply happens to be prone to hitting this in practice. In theory, we 7729 // can hit the same issue for any SCEV, or ValueTracking query done during 7730 // mutation. See PR49900. 7731 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7732 createVectorLoopSkeleton(""); 7733 7734 // Generate the code to check the minimum iteration count of the vector 7735 // epilogue (see below). 7736 EPI.EpilogueIterationCountCheck = 7737 emitMinimumIterationCountCheck(LoopScalarPreHeader, true); 7738 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7739 7740 // Generate the code to check any assumptions that we've made for SCEV 7741 // expressions. 7742 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7743 7744 // Generate the code that checks at runtime if arrays overlap. We put the 7745 // checks into a separate block to make the more common case of few elements 7746 // faster. 7747 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7748 7749 // Generate the iteration count check for the main loop, *after* the check 7750 // for the epilogue loop, so that the path-length is shorter for the case 7751 // that goes directly through the vector epilogue. The longer-path length for 7752 // the main loop is compensated for, by the gain from vectorizing the larger 7753 // trip count. Note: the branch will get updated later on when we vectorize 7754 // the epilogue. 7755 EPI.MainLoopIterationCountCheck = 7756 emitMinimumIterationCountCheck(LoopScalarPreHeader, false); 7757 7758 // Generate the induction variable. 7759 Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader); 7760 EPI.VectorTripCount = CountRoundDown; 7761 7762 // Skip induction resume value creation here because they will be created in 7763 // the second pass. If we created them here, they wouldn't be used anyway, 7764 // because the vplan in the second pass still contains the inductions from the 7765 // original loop. 7766 7767 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7768 } 7769 7770 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7771 LLVM_DEBUG({ 7772 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7773 << "Main Loop VF:" << EPI.MainLoopVF 7774 << ", Main Loop UF:" << EPI.MainLoopUF 7775 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7776 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7777 }); 7778 } 7779 7780 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7781 DEBUG_WITH_TYPE(VerboseDebug, { 7782 dbgs() << "intermediate fn:\n" 7783 << *OrigLoop->getHeader()->getParent() << "\n"; 7784 }); 7785 } 7786 7787 BasicBlock * 7788 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass, 7789 bool ForEpilogue) { 7790 assert(Bypass && "Expected valid bypass basic block."); 7791 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7792 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7793 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7794 // Reuse existing vector loop preheader for TC checks. 7795 // Note that new preheader block is generated for vector loop. 7796 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7797 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7798 7799 // Generate code to check if the loop's trip count is less than VF * UF of the 7800 // main vector loop. 7801 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7802 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7803 7804 Value *CheckMinIters = Builder.CreateICmp( 7805 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7806 "min.iters.check"); 7807 7808 if (!ForEpilogue) 7809 TCCheckBlock->setName("vector.main.loop.iter.check"); 7810 7811 // Create new preheader for vector loop. 7812 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7813 DT, LI, nullptr, "vector.ph"); 7814 7815 if (ForEpilogue) { 7816 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7817 DT->getNode(Bypass)->getIDom()) && 7818 "TC check is expected to dominate Bypass"); 7819 7820 // Update dominator for Bypass & LoopExit. 7821 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7822 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7823 // For loops with multiple exits, there's no edge from the middle block 7824 // to exit blocks (as the epilogue must run) and thus no need to update 7825 // the immediate dominator of the exit blocks. 7826 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7827 7828 LoopBypassBlocks.push_back(TCCheckBlock); 7829 7830 // Save the trip count so we don't have to regenerate it in the 7831 // vec.epilog.iter.check. This is safe to do because the trip count 7832 // generated here dominates the vector epilog iter check. 7833 EPI.TripCount = Count; 7834 } 7835 7836 ReplaceInstWithInst( 7837 TCCheckBlock->getTerminator(), 7838 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7839 7840 return TCCheckBlock; 7841 } 7842 7843 //===--------------------------------------------------------------------===// 7844 // EpilogueVectorizerEpilogueLoop 7845 //===--------------------------------------------------------------------===// 7846 7847 /// This function is partially responsible for generating the control flow 7848 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7849 std::pair<BasicBlock *, Value *> 7850 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7851 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7852 createVectorLoopSkeleton("vec.epilog."); 7853 7854 // Now, compare the remaining count and if there aren't enough iterations to 7855 // execute the vectorized epilogue skip to the scalar part. 7856 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7857 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7858 LoopVectorPreHeader = 7859 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7860 LI, nullptr, "vec.epilog.ph"); 7861 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7862 VecEpilogueIterationCountCheck); 7863 7864 // Adjust the control flow taking the state info from the main loop 7865 // vectorization into account. 7866 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7867 "expected this to be saved from the previous pass."); 7868 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7869 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7870 7871 DT->changeImmediateDominator(LoopVectorPreHeader, 7872 EPI.MainLoopIterationCountCheck); 7873 7874 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7875 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7876 7877 if (EPI.SCEVSafetyCheck) 7878 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7879 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7880 if (EPI.MemSafetyCheck) 7881 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7882 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7883 7884 DT->changeImmediateDominator( 7885 VecEpilogueIterationCountCheck, 7886 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7887 7888 DT->changeImmediateDominator(LoopScalarPreHeader, 7889 EPI.EpilogueIterationCountCheck); 7890 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7891 // If there is an epilogue which must run, there's no edge from the 7892 // middle block to exit blocks and thus no need to update the immediate 7893 // dominator of the exit blocks. 7894 DT->changeImmediateDominator(LoopExitBlock, 7895 EPI.EpilogueIterationCountCheck); 7896 7897 // Keep track of bypass blocks, as they feed start values to the induction 7898 // phis in the scalar loop preheader. 7899 if (EPI.SCEVSafetyCheck) 7900 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7901 if (EPI.MemSafetyCheck) 7902 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7903 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7904 7905 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7906 // merge control-flow from the latch block and the middle block. Update the 7907 // incoming values here and move the Phi into the preheader. 7908 SmallVector<PHINode *, 4> PhisInBlock; 7909 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7910 PhisInBlock.push_back(&Phi); 7911 7912 for (PHINode *Phi : PhisInBlock) { 7913 Phi->replaceIncomingBlockWith( 7914 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7915 VecEpilogueIterationCountCheck); 7916 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7917 if (EPI.SCEVSafetyCheck) 7918 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7919 if (EPI.MemSafetyCheck) 7920 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7921 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7922 } 7923 7924 // Generate a resume induction for the vector epilogue and put it in the 7925 // vector epilogue preheader 7926 Type *IdxTy = Legal->getWidestInductionType(); 7927 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7928 LoopVectorPreHeader->getFirstNonPHI()); 7929 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7930 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7931 EPI.MainLoopIterationCountCheck); 7932 7933 // Generate induction resume values. These variables save the new starting 7934 // indexes for the scalar loop. They are used to test if there are any tail 7935 // iterations left once the vector loop has completed. 7936 // Note that when the vectorized epilogue is skipped due to iteration count 7937 // check, then the resume value for the induction variable comes from 7938 // the trip count of the main vector loop, hence passing the AdditionalBypass 7939 // argument. 7940 createInductionResumeValues({VecEpilogueIterationCountCheck, 7941 EPI.VectorTripCount} /* AdditionalBypass */); 7942 7943 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7944 } 7945 7946 BasicBlock * 7947 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7948 BasicBlock *Bypass, BasicBlock *Insert) { 7949 7950 assert(EPI.TripCount && 7951 "Expected trip count to have been safed in the first pass."); 7952 assert( 7953 (!isa<Instruction>(EPI.TripCount) || 7954 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7955 "saved trip count does not dominate insertion point."); 7956 Value *TC = EPI.TripCount; 7957 IRBuilder<> Builder(Insert->getTerminator()); 7958 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7959 7960 // Generate code to check if the loop's trip count is less than VF * UF of the 7961 // vector epilogue loop. 7962 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7963 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7964 7965 Value *CheckMinIters = 7966 Builder.CreateICmp(P, Count, 7967 createStepForVF(Builder, Count->getType(), 7968 EPI.EpilogueVF, EPI.EpilogueUF), 7969 "min.epilog.iters.check"); 7970 7971 ReplaceInstWithInst( 7972 Insert->getTerminator(), 7973 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7974 7975 LoopBypassBlocks.push_back(Insert); 7976 return Insert; 7977 } 7978 7979 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7980 LLVM_DEBUG({ 7981 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7982 << "Epilogue Loop VF:" << EPI.EpilogueVF 7983 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7984 }); 7985 } 7986 7987 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7988 DEBUG_WITH_TYPE(VerboseDebug, { 7989 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7990 }); 7991 } 7992 7993 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7994 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7995 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7996 bool PredicateAtRangeStart = Predicate(Range.Start); 7997 7998 for (ElementCount TmpVF = Range.Start * 2; 7999 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8000 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8001 Range.End = TmpVF; 8002 break; 8003 } 8004 8005 return PredicateAtRangeStart; 8006 } 8007 8008 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8009 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8010 /// of VF's starting at a given VF and extending it as much as possible. Each 8011 /// vectorization decision can potentially shorten this sub-range during 8012 /// buildVPlan(). 8013 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8014 ElementCount MaxVF) { 8015 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8016 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8017 VFRange SubRange = {VF, MaxVFPlusOne}; 8018 VPlans.push_back(buildVPlan(SubRange)); 8019 VF = SubRange.End; 8020 } 8021 } 8022 8023 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8024 VPlanPtr &Plan) { 8025 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8026 8027 // Look for cached value. 8028 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8029 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8030 if (ECEntryIt != EdgeMaskCache.end()) 8031 return ECEntryIt->second; 8032 8033 VPValue *SrcMask = createBlockInMask(Src, Plan); 8034 8035 // The terminator has to be a branch inst! 8036 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8037 assert(BI && "Unexpected terminator found"); 8038 8039 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8040 return EdgeMaskCache[Edge] = SrcMask; 8041 8042 // If source is an exiting block, we know the exit edge is dynamically dead 8043 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8044 // adding uses of an otherwise potentially dead instruction. 8045 if (OrigLoop->isLoopExiting(Src)) 8046 return EdgeMaskCache[Edge] = SrcMask; 8047 8048 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8049 assert(EdgeMask && "No Edge Mask found for condition"); 8050 8051 if (BI->getSuccessor(0) != Dst) 8052 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8053 8054 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8055 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8056 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8057 // The select version does not introduce new UB if SrcMask is false and 8058 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8059 VPValue *False = Plan->getOrAddVPValue( 8060 ConstantInt::getFalse(BI->getCondition()->getType())); 8061 EdgeMask = 8062 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8063 } 8064 8065 return EdgeMaskCache[Edge] = EdgeMask; 8066 } 8067 8068 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8069 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8070 8071 // Look for cached value. 8072 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8073 if (BCEntryIt != BlockMaskCache.end()) 8074 return BCEntryIt->second; 8075 8076 // All-one mask is modelled as no-mask following the convention for masked 8077 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8078 VPValue *BlockMask = nullptr; 8079 8080 if (OrigLoop->getHeader() == BB) { 8081 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8082 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8083 8084 // Introduce the early-exit compare IV <= BTC to form header block mask. 8085 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8086 // constructing the desired canonical IV in the header block as its first 8087 // non-phi instructions. 8088 assert(CM.foldTailByMasking() && "must fold the tail"); 8089 VPBasicBlock *HeaderVPBB = 8090 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8091 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8092 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8093 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8094 8095 VPBuilder::InsertPointGuard Guard(Builder); 8096 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8097 if (CM.TTI.emitGetActiveLaneMask()) { 8098 VPValue *TC = Plan->getOrCreateTripCount(); 8099 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8100 } else { 8101 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8102 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8103 } 8104 return BlockMaskCache[BB] = BlockMask; 8105 } 8106 8107 // This is the block mask. We OR all incoming edges. 8108 for (auto *Predecessor : predecessors(BB)) { 8109 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8110 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8111 return BlockMaskCache[BB] = EdgeMask; 8112 8113 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8114 BlockMask = EdgeMask; 8115 continue; 8116 } 8117 8118 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8119 } 8120 8121 return BlockMaskCache[BB] = BlockMask; 8122 } 8123 8124 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8125 ArrayRef<VPValue *> Operands, 8126 VFRange &Range, 8127 VPlanPtr &Plan) { 8128 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8129 "Must be called with either a load or store"); 8130 8131 auto willWiden = [&](ElementCount VF) -> bool { 8132 if (VF.isScalar()) 8133 return false; 8134 LoopVectorizationCostModel::InstWidening Decision = 8135 CM.getWideningDecision(I, VF); 8136 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8137 "CM decision should be taken at this point."); 8138 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8139 return true; 8140 if (CM.isScalarAfterVectorization(I, VF) || 8141 CM.isProfitableToScalarize(I, VF)) 8142 return false; 8143 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8144 }; 8145 8146 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8147 return nullptr; 8148 8149 VPValue *Mask = nullptr; 8150 if (Legal->isMaskRequired(I)) 8151 Mask = createBlockInMask(I->getParent(), Plan); 8152 8153 // Determine if the pointer operand of the access is either consecutive or 8154 // reverse consecutive. 8155 LoopVectorizationCostModel::InstWidening Decision = 8156 CM.getWideningDecision(I, Range.Start); 8157 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8158 bool Consecutive = 8159 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8160 8161 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8162 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8163 Consecutive, Reverse); 8164 8165 StoreInst *Store = cast<StoreInst>(I); 8166 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8167 Mask, Consecutive, Reverse); 8168 } 8169 8170 static VPWidenIntOrFpInductionRecipe * 8171 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8172 VPValue *Start, const InductionDescriptor &IndDesc, 8173 LoopVectorizationCostModel &CM, ScalarEvolution &SE, 8174 Loop &OrigLoop, VFRange &Range) { 8175 // Returns true if an instruction \p I should be scalarized instead of 8176 // vectorized for the chosen vectorization factor. 8177 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8178 return CM.isScalarAfterVectorization(I, VF) || 8179 CM.isProfitableToScalarize(I, VF); 8180 }; 8181 8182 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8183 [&](ElementCount VF) { 8184 // Returns true if we should generate a scalar version of \p IV. 8185 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8186 return true; 8187 auto isScalarInst = [&](User *U) -> bool { 8188 auto *I = cast<Instruction>(U); 8189 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8190 }; 8191 return any_of(PhiOrTrunc->users(), isScalarInst); 8192 }, 8193 Range); 8194 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8195 [&](ElementCount VF) { 8196 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8197 }, 8198 Range); 8199 assert(IndDesc.getStartValue() == 8200 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8201 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8202 "step must be loop invariant"); 8203 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8204 return new VPWidenIntOrFpInductionRecipe( 8205 Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE); 8206 } 8207 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8208 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8209 !NeedsScalarIVOnly, SE); 8210 } 8211 8212 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8213 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8214 8215 // Check if this is an integer or fp induction. If so, build the recipe that 8216 // produces its scalar and vector values. 8217 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8218 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, 8219 *PSE.getSE(), *OrigLoop, Range); 8220 8221 // Check if this is pointer induction. If so, build the recipe for it. 8222 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8223 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8224 *PSE.getSE()); 8225 return nullptr; 8226 } 8227 8228 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8229 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8230 VPlan &Plan) const { 8231 // Optimize the special case where the source is a constant integer 8232 // induction variable. Notice that we can only optimize the 'trunc' case 8233 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8234 // (c) other casts depend on pointer size. 8235 8236 // Determine whether \p K is a truncation based on an induction variable that 8237 // can be optimized. 8238 auto isOptimizableIVTruncate = 8239 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8240 return [=](ElementCount VF) -> bool { 8241 return CM.isOptimizableIVTruncate(K, VF); 8242 }; 8243 }; 8244 8245 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8246 isOptimizableIVTruncate(I), Range)) { 8247 8248 auto *Phi = cast<PHINode>(I->getOperand(0)); 8249 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8250 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8251 return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(), 8252 *OrigLoop, Range); 8253 } 8254 return nullptr; 8255 } 8256 8257 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8258 ArrayRef<VPValue *> Operands, 8259 VPlanPtr &Plan) { 8260 // If all incoming values are equal, the incoming VPValue can be used directly 8261 // instead of creating a new VPBlendRecipe. 8262 VPValue *FirstIncoming = Operands[0]; 8263 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8264 return FirstIncoming == Inc; 8265 })) { 8266 return Operands[0]; 8267 } 8268 8269 unsigned NumIncoming = Phi->getNumIncomingValues(); 8270 // For in-loop reductions, we do not need to create an additional select. 8271 VPValue *InLoopVal = nullptr; 8272 for (unsigned In = 0; In < NumIncoming; In++) { 8273 PHINode *PhiOp = 8274 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8275 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8276 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8277 InLoopVal = Operands[In]; 8278 } 8279 } 8280 8281 assert((!InLoopVal || NumIncoming == 2) && 8282 "Found an in-loop reduction for PHI with unexpected number of " 8283 "incoming values"); 8284 if (InLoopVal) 8285 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8286 8287 // We know that all PHIs in non-header blocks are converted into selects, so 8288 // we don't have to worry about the insertion order and we can just use the 8289 // builder. At this point we generate the predication tree. There may be 8290 // duplications since this is a simple recursive scan, but future 8291 // optimizations will clean it up. 8292 SmallVector<VPValue *, 2> OperandsWithMask; 8293 8294 for (unsigned In = 0; In < NumIncoming; In++) { 8295 VPValue *EdgeMask = 8296 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8297 assert((EdgeMask || NumIncoming == 1) && 8298 "Multiple predecessors with one having a full mask"); 8299 OperandsWithMask.push_back(Operands[In]); 8300 if (EdgeMask) 8301 OperandsWithMask.push_back(EdgeMask); 8302 } 8303 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8304 } 8305 8306 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8307 ArrayRef<VPValue *> Operands, 8308 VFRange &Range) const { 8309 8310 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8311 [this, CI](ElementCount VF) { 8312 return CM.isScalarWithPredication(CI, VF); 8313 }, 8314 Range); 8315 8316 if (IsPredicated) 8317 return nullptr; 8318 8319 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8320 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8321 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8322 ID == Intrinsic::pseudoprobe || 8323 ID == Intrinsic::experimental_noalias_scope_decl)) 8324 return nullptr; 8325 8326 auto willWiden = [&](ElementCount VF) -> bool { 8327 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8328 // The following case may be scalarized depending on the VF. 8329 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8330 // version of the instruction. 8331 // Is it beneficial to perform intrinsic call compared to lib call? 8332 bool NeedToScalarize = false; 8333 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8334 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8335 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8336 return UseVectorIntrinsic || !NeedToScalarize; 8337 }; 8338 8339 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8340 return nullptr; 8341 8342 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8343 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8344 } 8345 8346 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8347 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8348 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8349 // Instruction should be widened, unless it is scalar after vectorization, 8350 // scalarization is profitable or it is predicated. 8351 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8352 return CM.isScalarAfterVectorization(I, VF) || 8353 CM.isProfitableToScalarize(I, VF) || 8354 CM.isScalarWithPredication(I, VF); 8355 }; 8356 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8357 Range); 8358 } 8359 8360 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8361 ArrayRef<VPValue *> Operands) const { 8362 auto IsVectorizableOpcode = [](unsigned Opcode) { 8363 switch (Opcode) { 8364 case Instruction::Add: 8365 case Instruction::And: 8366 case Instruction::AShr: 8367 case Instruction::BitCast: 8368 case Instruction::FAdd: 8369 case Instruction::FCmp: 8370 case Instruction::FDiv: 8371 case Instruction::FMul: 8372 case Instruction::FNeg: 8373 case Instruction::FPExt: 8374 case Instruction::FPToSI: 8375 case Instruction::FPToUI: 8376 case Instruction::FPTrunc: 8377 case Instruction::FRem: 8378 case Instruction::FSub: 8379 case Instruction::ICmp: 8380 case Instruction::IntToPtr: 8381 case Instruction::LShr: 8382 case Instruction::Mul: 8383 case Instruction::Or: 8384 case Instruction::PtrToInt: 8385 case Instruction::SDiv: 8386 case Instruction::Select: 8387 case Instruction::SExt: 8388 case Instruction::Shl: 8389 case Instruction::SIToFP: 8390 case Instruction::SRem: 8391 case Instruction::Sub: 8392 case Instruction::Trunc: 8393 case Instruction::UDiv: 8394 case Instruction::UIToFP: 8395 case Instruction::URem: 8396 case Instruction::Xor: 8397 case Instruction::ZExt: 8398 return true; 8399 } 8400 return false; 8401 }; 8402 8403 if (!IsVectorizableOpcode(I->getOpcode())) 8404 return nullptr; 8405 8406 // Success: widen this instruction. 8407 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8408 } 8409 8410 void VPRecipeBuilder::fixHeaderPhis() { 8411 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8412 for (VPHeaderPHIRecipe *R : PhisToFix) { 8413 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8414 VPRecipeBase *IncR = 8415 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8416 R->addOperand(IncR->getVPSingleValue()); 8417 } 8418 } 8419 8420 VPBasicBlock *VPRecipeBuilder::handleReplication( 8421 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8422 VPlanPtr &Plan) { 8423 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8424 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8425 Range); 8426 8427 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8428 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8429 Range); 8430 8431 // Even if the instruction is not marked as uniform, there are certain 8432 // intrinsic calls that can be effectively treated as such, so we check for 8433 // them here. Conservatively, we only do this for scalable vectors, since 8434 // for fixed-width VFs we can always fall back on full scalarization. 8435 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8436 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8437 case Intrinsic::assume: 8438 case Intrinsic::lifetime_start: 8439 case Intrinsic::lifetime_end: 8440 // For scalable vectors if one of the operands is variant then we still 8441 // want to mark as uniform, which will generate one instruction for just 8442 // the first lane of the vector. We can't scalarize the call in the same 8443 // way as for fixed-width vectors because we don't know how many lanes 8444 // there are. 8445 // 8446 // The reasons for doing it this way for scalable vectors are: 8447 // 1. For the assume intrinsic generating the instruction for the first 8448 // lane is still be better than not generating any at all. For 8449 // example, the input may be a splat across all lanes. 8450 // 2. For the lifetime start/end intrinsics the pointer operand only 8451 // does anything useful when the input comes from a stack object, 8452 // which suggests it should always be uniform. For non-stack objects 8453 // the effect is to poison the object, which still allows us to 8454 // remove the call. 8455 IsUniform = true; 8456 break; 8457 default: 8458 break; 8459 } 8460 } 8461 8462 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8463 IsUniform, IsPredicated); 8464 setRecipe(I, Recipe); 8465 Plan->addVPValue(I, Recipe); 8466 8467 // Find if I uses a predicated instruction. If so, it will use its scalar 8468 // value. Avoid hoisting the insert-element which packs the scalar value into 8469 // a vector value, as that happens iff all users use the vector value. 8470 for (VPValue *Op : Recipe->operands()) { 8471 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8472 if (!PredR) 8473 continue; 8474 auto *RepR = 8475 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8476 assert(RepR->isPredicated() && 8477 "expected Replicate recipe to be predicated"); 8478 RepR->setAlsoPack(false); 8479 } 8480 8481 // Finalize the recipe for Instr, first if it is not predicated. 8482 if (!IsPredicated) { 8483 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8484 VPBB->appendRecipe(Recipe); 8485 return VPBB; 8486 } 8487 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8488 8489 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8490 assert(SingleSucc && "VPBB must have a single successor when handling " 8491 "predicated replication."); 8492 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8493 // Record predicated instructions for above packing optimizations. 8494 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8495 VPBlockUtils::insertBlockAfter(Region, VPBB); 8496 auto *RegSucc = new VPBasicBlock(); 8497 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8498 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8499 return RegSucc; 8500 } 8501 8502 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8503 VPRecipeBase *PredRecipe, 8504 VPlanPtr &Plan) { 8505 // Instructions marked for predication are replicated and placed under an 8506 // if-then construct to prevent side-effects. 8507 8508 // Generate recipes to compute the block mask for this region. 8509 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8510 8511 // Build the triangular if-then region. 8512 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8513 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8514 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8515 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8516 auto *PHIRecipe = Instr->getType()->isVoidTy() 8517 ? nullptr 8518 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8519 if (PHIRecipe) { 8520 Plan->removeVPValueFor(Instr); 8521 Plan->addVPValue(Instr, PHIRecipe); 8522 } 8523 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8524 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8525 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8526 8527 // Note: first set Entry as region entry and then connect successors starting 8528 // from it in order, to propagate the "parent" of each VPBasicBlock. 8529 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8530 VPBlockUtils::connectBlocks(Pred, Exit); 8531 8532 return Region; 8533 } 8534 8535 VPRecipeOrVPValueTy 8536 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8537 ArrayRef<VPValue *> Operands, 8538 VFRange &Range, VPlanPtr &Plan) { 8539 // First, check for specific widening recipes that deal with calls, memory 8540 // operations, inductions and Phi nodes. 8541 if (auto *CI = dyn_cast<CallInst>(Instr)) 8542 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8543 8544 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8545 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8546 8547 VPRecipeBase *Recipe; 8548 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8549 if (Phi->getParent() != OrigLoop->getHeader()) 8550 return tryToBlend(Phi, Operands, Plan); 8551 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8552 return toVPRecipeResult(Recipe); 8553 8554 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8555 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8556 VPValue *StartV = Operands[0]; 8557 if (Legal->isReductionVariable(Phi)) { 8558 const RecurrenceDescriptor &RdxDesc = 8559 Legal->getReductionVars().find(Phi)->second; 8560 assert(RdxDesc.getRecurrenceStartValue() == 8561 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8562 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8563 CM.isInLoopReduction(Phi), 8564 CM.useOrderedReductions(RdxDesc)); 8565 } else { 8566 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8567 } 8568 8569 // Record the incoming value from the backedge, so we can add the incoming 8570 // value from the backedge after all recipes have been created. 8571 recordRecipeOf(cast<Instruction>( 8572 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8573 PhisToFix.push_back(PhiRecipe); 8574 } else { 8575 // TODO: record backedge value for remaining pointer induction phis. 8576 assert(Phi->getType()->isPointerTy() && 8577 "only pointer phis should be handled here"); 8578 assert(Legal->getInductionVars().count(Phi) && 8579 "Not an induction variable"); 8580 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8581 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8582 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8583 } 8584 8585 return toVPRecipeResult(PhiRecipe); 8586 } 8587 8588 if (isa<TruncInst>(Instr) && 8589 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8590 Range, *Plan))) 8591 return toVPRecipeResult(Recipe); 8592 8593 if (!shouldWiden(Instr, Range)) 8594 return nullptr; 8595 8596 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8597 return toVPRecipeResult(new VPWidenGEPRecipe( 8598 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8599 8600 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8601 bool InvariantCond = 8602 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8603 return toVPRecipeResult(new VPWidenSelectRecipe( 8604 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8605 } 8606 8607 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8608 } 8609 8610 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8611 ElementCount MaxVF) { 8612 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8613 8614 // Collect instructions from the original loop that will become trivially dead 8615 // in the vectorized loop. We don't need to vectorize these instructions. For 8616 // example, original induction update instructions can become dead because we 8617 // separately emit induction "steps" when generating code for the new loop. 8618 // Similarly, we create a new latch condition when setting up the structure 8619 // of the new loop, so the old one can become dead. 8620 SmallPtrSet<Instruction *, 4> DeadInstructions; 8621 collectTriviallyDeadInstructions(DeadInstructions); 8622 8623 // Add assume instructions we need to drop to DeadInstructions, to prevent 8624 // them from being added to the VPlan. 8625 // TODO: We only need to drop assumes in blocks that get flattend. If the 8626 // control flow is preserved, we should keep them. 8627 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8628 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8629 8630 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8631 // Dead instructions do not need sinking. Remove them from SinkAfter. 8632 for (Instruction *I : DeadInstructions) 8633 SinkAfter.erase(I); 8634 8635 // Cannot sink instructions after dead instructions (there won't be any 8636 // recipes for them). Instead, find the first non-dead previous instruction. 8637 for (auto &P : Legal->getSinkAfter()) { 8638 Instruction *SinkTarget = P.second; 8639 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8640 (void)FirstInst; 8641 while (DeadInstructions.contains(SinkTarget)) { 8642 assert( 8643 SinkTarget != FirstInst && 8644 "Must find a live instruction (at least the one feeding the " 8645 "first-order recurrence PHI) before reaching beginning of the block"); 8646 SinkTarget = SinkTarget->getPrevNode(); 8647 assert(SinkTarget != P.first && 8648 "sink source equals target, no sinking required"); 8649 } 8650 P.second = SinkTarget; 8651 } 8652 8653 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8654 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8655 VFRange SubRange = {VF, MaxVFPlusOne}; 8656 VPlans.push_back( 8657 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8658 VF = SubRange.End; 8659 } 8660 } 8661 8662 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8663 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8664 // BranchOnCount VPInstruction to the latch. 8665 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8666 bool HasNUW, bool IsVPlanNative) { 8667 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8668 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8669 8670 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8671 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8672 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8673 if (IsVPlanNative) 8674 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8675 Header->insert(CanonicalIVPHI, Header->begin()); 8676 8677 auto *CanonicalIVIncrement = 8678 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8679 : VPInstruction::CanonicalIVIncrement, 8680 {CanonicalIVPHI}, DL); 8681 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8682 8683 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8684 if (IsVPlanNative) { 8685 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8686 EB->setCondBit(nullptr); 8687 } 8688 EB->appendRecipe(CanonicalIVIncrement); 8689 8690 auto *BranchOnCount = 8691 new VPInstruction(VPInstruction::BranchOnCount, 8692 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8693 EB->appendRecipe(BranchOnCount); 8694 } 8695 8696 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8697 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8698 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8699 8700 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8701 8702 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8703 8704 // --------------------------------------------------------------------------- 8705 // Pre-construction: record ingredients whose recipes we'll need to further 8706 // process after constructing the initial VPlan. 8707 // --------------------------------------------------------------------------- 8708 8709 // Mark instructions we'll need to sink later and their targets as 8710 // ingredients whose recipe we'll need to record. 8711 for (auto &Entry : SinkAfter) { 8712 RecipeBuilder.recordRecipeOf(Entry.first); 8713 RecipeBuilder.recordRecipeOf(Entry.second); 8714 } 8715 for (auto &Reduction : CM.getInLoopReductionChains()) { 8716 PHINode *Phi = Reduction.first; 8717 RecurKind Kind = 8718 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8719 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8720 8721 RecipeBuilder.recordRecipeOf(Phi); 8722 for (auto &R : ReductionOperations) { 8723 RecipeBuilder.recordRecipeOf(R); 8724 // For min/max reductions, where we have a pair of icmp/select, we also 8725 // need to record the ICmp recipe, so it can be removed later. 8726 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8727 "Only min/max recurrences allowed for inloop reductions"); 8728 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8729 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8730 } 8731 } 8732 8733 // For each interleave group which is relevant for this (possibly trimmed) 8734 // Range, add it to the set of groups to be later applied to the VPlan and add 8735 // placeholders for its members' Recipes which we'll be replacing with a 8736 // single VPInterleaveRecipe. 8737 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8738 auto applyIG = [IG, this](ElementCount VF) -> bool { 8739 return (VF.isVector() && // Query is illegal for VF == 1 8740 CM.getWideningDecision(IG->getInsertPos(), VF) == 8741 LoopVectorizationCostModel::CM_Interleave); 8742 }; 8743 if (!getDecisionAndClampRange(applyIG, Range)) 8744 continue; 8745 InterleaveGroups.insert(IG); 8746 for (unsigned i = 0; i < IG->getFactor(); i++) 8747 if (Instruction *Member = IG->getMember(i)) 8748 RecipeBuilder.recordRecipeOf(Member); 8749 }; 8750 8751 // --------------------------------------------------------------------------- 8752 // Build initial VPlan: Scan the body of the loop in a topological order to 8753 // visit each basic block after having visited its predecessor basic blocks. 8754 // --------------------------------------------------------------------------- 8755 8756 // Create initial VPlan skeleton, with separate header and latch blocks. 8757 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 8758 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8759 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8760 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8761 auto Plan = std::make_unique<VPlan>(TopRegion); 8762 8763 Instruction *DLInst = 8764 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8765 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8766 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8767 !CM.foldTailByMasking(), false); 8768 8769 // Scan the body of the loop in a topological order to visit each basic block 8770 // after having visited its predecessor basic blocks. 8771 LoopBlocksDFS DFS(OrigLoop); 8772 DFS.perform(LI); 8773 8774 VPBasicBlock *VPBB = HeaderVPBB; 8775 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8776 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8777 // Relevant instructions from basic block BB will be grouped into VPRecipe 8778 // ingredients and fill a new VPBasicBlock. 8779 unsigned VPBBsForBB = 0; 8780 VPBB->setName(BB->getName()); 8781 Builder.setInsertPoint(VPBB); 8782 8783 // Introduce each ingredient into VPlan. 8784 // TODO: Model and preserve debug instrinsics in VPlan. 8785 for (Instruction &I : BB->instructionsWithoutDebug()) { 8786 Instruction *Instr = &I; 8787 8788 // First filter out irrelevant instructions, to ensure no recipes are 8789 // built for them. 8790 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8791 continue; 8792 8793 SmallVector<VPValue *, 4> Operands; 8794 auto *Phi = dyn_cast<PHINode>(Instr); 8795 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8796 Operands.push_back(Plan->getOrAddVPValue( 8797 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8798 } else { 8799 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8800 Operands = {OpRange.begin(), OpRange.end()}; 8801 } 8802 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8803 Instr, Operands, Range, Plan)) { 8804 // If Instr can be simplified to an existing VPValue, use it. 8805 if (RecipeOrValue.is<VPValue *>()) { 8806 auto *VPV = RecipeOrValue.get<VPValue *>(); 8807 Plan->addVPValue(Instr, VPV); 8808 // If the re-used value is a recipe, register the recipe for the 8809 // instruction, in case the recipe for Instr needs to be recorded. 8810 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8811 RecipeBuilder.setRecipe(Instr, R); 8812 continue; 8813 } 8814 // Otherwise, add the new recipe. 8815 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8816 for (auto *Def : Recipe->definedValues()) { 8817 auto *UV = Def->getUnderlyingValue(); 8818 Plan->addVPValue(UV, Def); 8819 } 8820 8821 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8822 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8823 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8824 // of the header block. That can happen for truncates of induction 8825 // variables. Those recipes are moved to the phi section of the header 8826 // block after applying SinkAfter, which relies on the original 8827 // position of the trunc. 8828 assert(isa<TruncInst>(Instr)); 8829 InductionsToMove.push_back( 8830 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8831 } 8832 RecipeBuilder.setRecipe(Instr, Recipe); 8833 VPBB->appendRecipe(Recipe); 8834 continue; 8835 } 8836 8837 // Otherwise, if all widening options failed, Instruction is to be 8838 // replicated. This may create a successor for VPBB. 8839 VPBasicBlock *NextVPBB = 8840 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8841 if (NextVPBB != VPBB) { 8842 VPBB = NextVPBB; 8843 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8844 : ""); 8845 } 8846 } 8847 8848 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8849 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8850 } 8851 8852 HeaderVPBB->setName("vector.body"); 8853 8854 // Fold the last, empty block into its predecessor. 8855 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8856 assert(VPBB && "expected to fold last (empty) block"); 8857 // After here, VPBB should not be used. 8858 VPBB = nullptr; 8859 8860 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8861 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8862 "entry block must be set to a VPRegionBlock having a non-empty entry " 8863 "VPBasicBlock"); 8864 RecipeBuilder.fixHeaderPhis(); 8865 8866 // --------------------------------------------------------------------------- 8867 // Transform initial VPlan: Apply previously taken decisions, in order, to 8868 // bring the VPlan to its final state. 8869 // --------------------------------------------------------------------------- 8870 8871 // Apply Sink-After legal constraints. 8872 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8873 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8874 if (Region && Region->isReplicator()) { 8875 assert(Region->getNumSuccessors() == 1 && 8876 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8877 assert(R->getParent()->size() == 1 && 8878 "A recipe in an original replicator region must be the only " 8879 "recipe in its block"); 8880 return Region; 8881 } 8882 return nullptr; 8883 }; 8884 for (auto &Entry : SinkAfter) { 8885 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8886 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8887 8888 auto *TargetRegion = GetReplicateRegion(Target); 8889 auto *SinkRegion = GetReplicateRegion(Sink); 8890 if (!SinkRegion) { 8891 // If the sink source is not a replicate region, sink the recipe directly. 8892 if (TargetRegion) { 8893 // The target is in a replication region, make sure to move Sink to 8894 // the block after it, not into the replication region itself. 8895 VPBasicBlock *NextBlock = 8896 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8897 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8898 } else 8899 Sink->moveAfter(Target); 8900 continue; 8901 } 8902 8903 // The sink source is in a replicate region. Unhook the region from the CFG. 8904 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8905 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8906 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8907 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8908 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8909 8910 if (TargetRegion) { 8911 // The target recipe is also in a replicate region, move the sink region 8912 // after the target region. 8913 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8914 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8915 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8916 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8917 } else { 8918 // The sink source is in a replicate region, we need to move the whole 8919 // replicate region, which should only contain a single recipe in the 8920 // main block. 8921 auto *SplitBlock = 8922 Target->getParent()->splitAt(std::next(Target->getIterator())); 8923 8924 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8925 8926 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8927 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8928 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8929 } 8930 } 8931 8932 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8933 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8934 8935 // Now that sink-after is done, move induction recipes for optimized truncates 8936 // to the phi section of the header block. 8937 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8938 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8939 8940 // Adjust the recipes for any inloop reductions. 8941 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 8942 RecipeBuilder, Range.Start); 8943 8944 // Introduce a recipe to combine the incoming and previous values of a 8945 // first-order recurrence. 8946 for (VPRecipeBase &R : 8947 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8948 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8949 if (!RecurPhi) 8950 continue; 8951 8952 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8953 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8954 auto *Region = GetReplicateRegion(PrevRecipe); 8955 if (Region) 8956 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 8957 if (Region || PrevRecipe->isPhi()) 8958 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8959 else 8960 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8961 8962 auto *RecurSplice = cast<VPInstruction>( 8963 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8964 {RecurPhi, RecurPhi->getBackedgeValue()})); 8965 8966 RecurPhi->replaceAllUsesWith(RecurSplice); 8967 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8968 // all users. 8969 RecurSplice->setOperand(0, RecurPhi); 8970 } 8971 8972 // Interleave memory: for each Interleave Group we marked earlier as relevant 8973 // for this VPlan, replace the Recipes widening its memory instructions with a 8974 // single VPInterleaveRecipe at its insertion point. 8975 for (auto IG : InterleaveGroups) { 8976 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8977 RecipeBuilder.getRecipe(IG->getInsertPos())); 8978 SmallVector<VPValue *, 4> StoredValues; 8979 for (unsigned i = 0; i < IG->getFactor(); ++i) 8980 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 8981 auto *StoreR = 8982 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 8983 StoredValues.push_back(StoreR->getStoredValue()); 8984 } 8985 8986 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8987 Recipe->getMask()); 8988 VPIG->insertBefore(Recipe); 8989 unsigned J = 0; 8990 for (unsigned i = 0; i < IG->getFactor(); ++i) 8991 if (Instruction *Member = IG->getMember(i)) { 8992 if (!Member->getType()->isVoidTy()) { 8993 VPValue *OriginalV = Plan->getVPValue(Member); 8994 Plan->removeVPValueFor(Member); 8995 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8996 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8997 J++; 8998 } 8999 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9000 } 9001 } 9002 9003 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9004 // in ways that accessing values using original IR values is incorrect. 9005 Plan->disableValue2VPValue(); 9006 9007 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9008 VPlanTransforms::sinkScalarOperands(*Plan); 9009 VPlanTransforms::mergeReplicateRegions(*Plan); 9010 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9011 9012 std::string PlanName; 9013 raw_string_ostream RSO(PlanName); 9014 ElementCount VF = Range.Start; 9015 Plan->addVF(VF); 9016 RSO << "Initial VPlan for VF={" << VF; 9017 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9018 Plan->addVF(VF); 9019 RSO << "," << VF; 9020 } 9021 RSO << "},UF>=1"; 9022 RSO.flush(); 9023 Plan->setName(PlanName); 9024 9025 // Fold Exit block into its predecessor if possible. 9026 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9027 // VPBasicBlock as exit. 9028 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9029 9030 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9031 return Plan; 9032 } 9033 9034 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9035 // Outer loop handling: They may require CFG and instruction level 9036 // transformations before even evaluating whether vectorization is profitable. 9037 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9038 // the vectorization pipeline. 9039 assert(!OrigLoop->isInnermost()); 9040 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9041 9042 // Create new empty VPlan 9043 auto Plan = std::make_unique<VPlan>(); 9044 9045 // Build hierarchical CFG 9046 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9047 HCFGBuilder.buildHierarchicalCFG(); 9048 9049 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9050 VF *= 2) 9051 Plan->addVF(VF); 9052 9053 if (EnableVPlanPredication) { 9054 VPlanPredicator VPP(*Plan); 9055 VPP.predicate(); 9056 9057 // Avoid running transformation to recipes until masked code generation in 9058 // VPlan-native path is in place. 9059 return Plan; 9060 } 9061 9062 SmallPtrSet<Instruction *, 1> DeadInstructions; 9063 VPlanTransforms::VPInstructionsToVPRecipes( 9064 OrigLoop, Plan, 9065 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9066 DeadInstructions, *PSE.getSE()); 9067 9068 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9069 true, true); 9070 return Plan; 9071 } 9072 9073 // Adjust the recipes for reductions. For in-loop reductions the chain of 9074 // instructions leading from the loop exit instr to the phi need to be converted 9075 // to reductions, with one operand being vector and the other being the scalar 9076 // reduction chain. For other reductions, a select is introduced between the phi 9077 // and live-out recipes when folding the tail. 9078 void LoopVectorizationPlanner::adjustRecipesForReductions( 9079 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9080 ElementCount MinVF) { 9081 for (auto &Reduction : CM.getInLoopReductionChains()) { 9082 PHINode *Phi = Reduction.first; 9083 const RecurrenceDescriptor &RdxDesc = 9084 Legal->getReductionVars().find(Phi)->second; 9085 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9086 9087 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9088 continue; 9089 9090 // ReductionOperations are orders top-down from the phi's use to the 9091 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9092 // which of the two operands will remain scalar and which will be reduced. 9093 // For minmax the chain will be the select instructions. 9094 Instruction *Chain = Phi; 9095 for (Instruction *R : ReductionOperations) { 9096 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9097 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9098 9099 VPValue *ChainOp = Plan->getVPValue(Chain); 9100 unsigned FirstOpId; 9101 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9102 "Only min/max recurrences allowed for inloop reductions"); 9103 // Recognize a call to the llvm.fmuladd intrinsic. 9104 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9105 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9106 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9107 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9108 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9109 "Expected to replace a VPWidenSelectSC"); 9110 FirstOpId = 1; 9111 } else { 9112 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9113 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9114 "Expected to replace a VPWidenSC"); 9115 FirstOpId = 0; 9116 } 9117 unsigned VecOpId = 9118 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9119 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9120 9121 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9122 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9123 : nullptr; 9124 9125 if (IsFMulAdd) { 9126 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9127 // need to create an fmul recipe to use as the vector operand for the 9128 // fadd reduction. 9129 VPInstruction *FMulRecipe = new VPInstruction( 9130 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9131 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9132 WidenRecipe->getParent()->insert(FMulRecipe, 9133 WidenRecipe->getIterator()); 9134 VecOp = FMulRecipe; 9135 } 9136 VPReductionRecipe *RedRecipe = 9137 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9138 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9139 Plan->removeVPValueFor(R); 9140 Plan->addVPValue(R, RedRecipe); 9141 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9142 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9143 WidenRecipe->eraseFromParent(); 9144 9145 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9146 VPRecipeBase *CompareRecipe = 9147 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9148 assert(isa<VPWidenRecipe>(CompareRecipe) && 9149 "Expected to replace a VPWidenSC"); 9150 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9151 "Expected no remaining users"); 9152 CompareRecipe->eraseFromParent(); 9153 } 9154 Chain = R; 9155 } 9156 } 9157 9158 // If tail is folded by masking, introduce selects between the phi 9159 // and the live-out instruction of each reduction, at the beginning of the 9160 // dedicated latch block. 9161 if (CM.foldTailByMasking()) { 9162 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9163 for (VPRecipeBase &R : 9164 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9165 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9166 if (!PhiR || PhiR->isInLoop()) 9167 continue; 9168 VPValue *Cond = 9169 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9170 VPValue *Red = PhiR->getBackedgeValue(); 9171 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9172 "reduction recipe must be defined before latch"); 9173 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9174 } 9175 } 9176 } 9177 9178 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9179 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9180 VPSlotTracker &SlotTracker) const { 9181 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9182 IG->getInsertPos()->printAsOperand(O, false); 9183 O << ", "; 9184 getAddr()->printAsOperand(O, SlotTracker); 9185 VPValue *Mask = getMask(); 9186 if (Mask) { 9187 O << ", "; 9188 Mask->printAsOperand(O, SlotTracker); 9189 } 9190 9191 unsigned OpIdx = 0; 9192 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9193 if (!IG->getMember(i)) 9194 continue; 9195 if (getNumStoreOperands() > 0) { 9196 O << "\n" << Indent << " store "; 9197 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9198 O << " to index " << i; 9199 } else { 9200 O << "\n" << Indent << " "; 9201 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9202 O << " = load from index " << i; 9203 } 9204 ++OpIdx; 9205 } 9206 } 9207 #endif 9208 9209 void VPWidenCallRecipe::execute(VPTransformState &State) { 9210 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9211 *this, State); 9212 } 9213 9214 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9215 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9216 State.ILV->setDebugLocFromInst(&I); 9217 9218 // The condition can be loop invariant but still defined inside the 9219 // loop. This means that we can't just use the original 'cond' value. 9220 // We have to take the 'vectorized' value and pick the first lane. 9221 // Instcombine will make this a no-op. 9222 auto *InvarCond = 9223 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9224 9225 for (unsigned Part = 0; Part < State.UF; ++Part) { 9226 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9227 Value *Op0 = State.get(getOperand(1), Part); 9228 Value *Op1 = State.get(getOperand(2), Part); 9229 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9230 State.set(this, Sel, Part); 9231 State.ILV->addMetadata(Sel, &I); 9232 } 9233 } 9234 9235 void VPWidenRecipe::execute(VPTransformState &State) { 9236 auto &I = *cast<Instruction>(getUnderlyingValue()); 9237 auto &Builder = State.Builder; 9238 switch (I.getOpcode()) { 9239 case Instruction::Call: 9240 case Instruction::Br: 9241 case Instruction::PHI: 9242 case Instruction::GetElementPtr: 9243 case Instruction::Select: 9244 llvm_unreachable("This instruction is handled by a different recipe."); 9245 case Instruction::UDiv: 9246 case Instruction::SDiv: 9247 case Instruction::SRem: 9248 case Instruction::URem: 9249 case Instruction::Add: 9250 case Instruction::FAdd: 9251 case Instruction::Sub: 9252 case Instruction::FSub: 9253 case Instruction::FNeg: 9254 case Instruction::Mul: 9255 case Instruction::FMul: 9256 case Instruction::FDiv: 9257 case Instruction::FRem: 9258 case Instruction::Shl: 9259 case Instruction::LShr: 9260 case Instruction::AShr: 9261 case Instruction::And: 9262 case Instruction::Or: 9263 case Instruction::Xor: { 9264 // Just widen unops and binops. 9265 State.ILV->setDebugLocFromInst(&I); 9266 9267 for (unsigned Part = 0; Part < State.UF; ++Part) { 9268 SmallVector<Value *, 2> Ops; 9269 for (VPValue *VPOp : operands()) 9270 Ops.push_back(State.get(VPOp, Part)); 9271 9272 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9273 9274 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9275 VecOp->copyIRFlags(&I); 9276 9277 // If the instruction is vectorized and was in a basic block that needed 9278 // predication, we can't propagate poison-generating flags (nuw/nsw, 9279 // exact, etc.). The control flow has been linearized and the 9280 // instruction is no longer guarded by the predicate, which could make 9281 // the flag properties to no longer hold. 9282 if (State.MayGeneratePoisonRecipes.contains(this)) 9283 VecOp->dropPoisonGeneratingFlags(); 9284 } 9285 9286 // Use this vector value for all users of the original instruction. 9287 State.set(this, V, Part); 9288 State.ILV->addMetadata(V, &I); 9289 } 9290 9291 break; 9292 } 9293 case Instruction::ICmp: 9294 case Instruction::FCmp: { 9295 // Widen compares. Generate vector compares. 9296 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9297 auto *Cmp = cast<CmpInst>(&I); 9298 State.ILV->setDebugLocFromInst(Cmp); 9299 for (unsigned Part = 0; Part < State.UF; ++Part) { 9300 Value *A = State.get(getOperand(0), Part); 9301 Value *B = State.get(getOperand(1), Part); 9302 Value *C = nullptr; 9303 if (FCmp) { 9304 // Propagate fast math flags. 9305 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9306 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9307 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9308 } else { 9309 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9310 } 9311 State.set(this, C, Part); 9312 State.ILV->addMetadata(C, &I); 9313 } 9314 9315 break; 9316 } 9317 9318 case Instruction::ZExt: 9319 case Instruction::SExt: 9320 case Instruction::FPToUI: 9321 case Instruction::FPToSI: 9322 case Instruction::FPExt: 9323 case Instruction::PtrToInt: 9324 case Instruction::IntToPtr: 9325 case Instruction::SIToFP: 9326 case Instruction::UIToFP: 9327 case Instruction::Trunc: 9328 case Instruction::FPTrunc: 9329 case Instruction::BitCast: { 9330 auto *CI = cast<CastInst>(&I); 9331 State.ILV->setDebugLocFromInst(CI); 9332 9333 /// Vectorize casts. 9334 Type *DestTy = (State.VF.isScalar()) 9335 ? CI->getType() 9336 : VectorType::get(CI->getType(), State.VF); 9337 9338 for (unsigned Part = 0; Part < State.UF; ++Part) { 9339 Value *A = State.get(getOperand(0), Part); 9340 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9341 State.set(this, Cast, Part); 9342 State.ILV->addMetadata(Cast, &I); 9343 } 9344 break; 9345 } 9346 default: 9347 // This instruction is not vectorized by simple widening. 9348 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9349 llvm_unreachable("Unhandled instruction!"); 9350 } // end of switch. 9351 } 9352 9353 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9354 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9355 // Construct a vector GEP by widening the operands of the scalar GEP as 9356 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9357 // results in a vector of pointers when at least one operand of the GEP 9358 // is vector-typed. Thus, to keep the representation compact, we only use 9359 // vector-typed operands for loop-varying values. 9360 9361 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9362 // If we are vectorizing, but the GEP has only loop-invariant operands, 9363 // the GEP we build (by only using vector-typed operands for 9364 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9365 // produce a vector of pointers, we need to either arbitrarily pick an 9366 // operand to broadcast, or broadcast a clone of the original GEP. 9367 // Here, we broadcast a clone of the original. 9368 // 9369 // TODO: If at some point we decide to scalarize instructions having 9370 // loop-invariant operands, this special case will no longer be 9371 // required. We would add the scalarization decision to 9372 // collectLoopScalars() and teach getVectorValue() to broadcast 9373 // the lane-zero scalar value. 9374 auto *Clone = State.Builder.Insert(GEP->clone()); 9375 for (unsigned Part = 0; Part < State.UF; ++Part) { 9376 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9377 State.set(this, EntryPart, Part); 9378 State.ILV->addMetadata(EntryPart, GEP); 9379 } 9380 } else { 9381 // If the GEP has at least one loop-varying operand, we are sure to 9382 // produce a vector of pointers. But if we are only unrolling, we want 9383 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9384 // produce with the code below will be scalar (if VF == 1) or vector 9385 // (otherwise). Note that for the unroll-only case, we still maintain 9386 // values in the vector mapping with initVector, as we do for other 9387 // instructions. 9388 for (unsigned Part = 0; Part < State.UF; ++Part) { 9389 // The pointer operand of the new GEP. If it's loop-invariant, we 9390 // won't broadcast it. 9391 auto *Ptr = IsPtrLoopInvariant 9392 ? State.get(getOperand(0), VPIteration(0, 0)) 9393 : State.get(getOperand(0), Part); 9394 9395 // Collect all the indices for the new GEP. If any index is 9396 // loop-invariant, we won't broadcast it. 9397 SmallVector<Value *, 4> Indices; 9398 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9399 VPValue *Operand = getOperand(I); 9400 if (IsIndexLoopInvariant[I - 1]) 9401 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9402 else 9403 Indices.push_back(State.get(Operand, Part)); 9404 } 9405 9406 // If the GEP instruction is vectorized and was in a basic block that 9407 // needed predication, we can't propagate the poison-generating 'inbounds' 9408 // flag. The control flow has been linearized and the GEP is no longer 9409 // guarded by the predicate, which could make the 'inbounds' properties to 9410 // no longer hold. 9411 bool IsInBounds = 9412 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9413 9414 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9415 // but it should be a vector, otherwise. 9416 auto *NewGEP = IsInBounds 9417 ? State.Builder.CreateInBoundsGEP( 9418 GEP->getSourceElementType(), Ptr, Indices) 9419 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9420 Ptr, Indices); 9421 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9422 "NewGEP is not a pointer vector"); 9423 State.set(this, NewGEP, Part); 9424 State.ILV->addMetadata(NewGEP, GEP); 9425 } 9426 } 9427 } 9428 9429 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9430 assert(!State.Instance && "Int or FP induction being replicated."); 9431 9432 Value *Start = getStartValue()->getLiveInIRValue(); 9433 const InductionDescriptor &ID = getInductionDescriptor(); 9434 TruncInst *Trunc = getTruncInst(); 9435 IRBuilderBase &Builder = State.Builder; 9436 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9437 assert(State.VF.isVector() && "must have vector VF"); 9438 9439 // The value from the original loop to which we are mapping the new induction 9440 // variable. 9441 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9442 9443 auto &DL = EntryVal->getModule()->getDataLayout(); 9444 9445 // Generate code for the induction step. Note that induction steps are 9446 // required to be loop-invariant 9447 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 9448 if (SE.isSCEVable(IV->getType())) { 9449 SCEVExpander Exp(SE, DL, "induction"); 9450 return Exp.expandCodeFor(Step, Step->getType(), 9451 State.CFG.VectorPreHeader->getTerminator()); 9452 } 9453 return cast<SCEVUnknown>(Step)->getValue(); 9454 }; 9455 9456 // Fast-math-flags propagate from the original induction instruction. 9457 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9458 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9459 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9460 9461 // Now do the actual transformations, and start with creating the step value. 9462 Value *Step = CreateStepValue(ID.getStep()); 9463 9464 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9465 "Expected either an induction phi-node or a truncate of it!"); 9466 9467 // Construct the initial value of the vector IV in the vector loop preheader 9468 auto CurrIP = Builder.saveIP(); 9469 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 9470 if (isa<TruncInst>(EntryVal)) { 9471 assert(Start->getType()->isIntegerTy() && 9472 "Truncation requires an integer type"); 9473 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9474 Step = Builder.CreateTrunc(Step, TruncType); 9475 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9476 } 9477 9478 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9479 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9480 Value *SteppedStart = getStepVector( 9481 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9482 9483 // We create vector phi nodes for both integer and floating-point induction 9484 // variables. Here, we determine the kind of arithmetic we will perform. 9485 Instruction::BinaryOps AddOp; 9486 Instruction::BinaryOps MulOp; 9487 if (Step->getType()->isIntegerTy()) { 9488 AddOp = Instruction::Add; 9489 MulOp = Instruction::Mul; 9490 } else { 9491 AddOp = ID.getInductionOpcode(); 9492 MulOp = Instruction::FMul; 9493 } 9494 9495 // Multiply the vectorization factor by the step using integer or 9496 // floating-point arithmetic as appropriate. 9497 Type *StepType = Step->getType(); 9498 Value *RuntimeVF; 9499 if (Step->getType()->isFloatingPointTy()) 9500 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9501 else 9502 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9503 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9504 9505 // Create a vector splat to use in the induction update. 9506 // 9507 // FIXME: If the step is non-constant, we create the vector splat with 9508 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9509 // handle a constant vector splat. 9510 Value *SplatVF = isa<Constant>(Mul) 9511 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9512 : Builder.CreateVectorSplat(State.VF, Mul); 9513 Builder.restoreIP(CurrIP); 9514 9515 // We may need to add the step a number of times, depending on the unroll 9516 // factor. The last of those goes into the PHI. 9517 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9518 &*State.CFG.PrevBB->getFirstInsertionPt()); 9519 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9520 Instruction *LastInduction = VecInd; 9521 for (unsigned Part = 0; Part < State.UF; ++Part) { 9522 State.set(this, LastInduction, Part); 9523 9524 if (isa<TruncInst>(EntryVal)) 9525 State.ILV->addMetadata(LastInduction, EntryVal); 9526 9527 LastInduction = cast<Instruction>( 9528 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9529 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9530 } 9531 9532 LastInduction->setName("vec.ind.next"); 9533 VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader); 9534 // Add induction update using an incorrect block temporarily. The phi node 9535 // will be fixed after VPlan execution. Note that at this point the latch 9536 // block cannot be used, as it does not exist yet. 9537 // TODO: Model increment value in VPlan, by turning the recipe into a 9538 // multi-def and a subclass of VPHeaderPHIRecipe. 9539 VecInd->addIncoming(LastInduction, State.CFG.VectorPreHeader); 9540 } 9541 9542 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9543 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9544 "Not a pointer induction according to InductionDescriptor!"); 9545 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9546 "Unexpected type."); 9547 9548 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9549 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9550 9551 if (all_of(users(), [this](const VPUser *U) { 9552 return cast<VPRecipeBase>(U)->usesScalars(this); 9553 })) { 9554 // This is the normalized GEP that starts counting at zero. 9555 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9556 CanonicalIV, IndDesc.getStep()->getType()); 9557 // Determine the number of scalars we need to generate for each unroll 9558 // iteration. If the instruction is uniform, we only need to generate the 9559 // first lane. Otherwise, we generate all VF values. 9560 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9561 assert((IsUniform || !State.VF.isScalable()) && 9562 "Cannot scalarize a scalable VF"); 9563 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9564 9565 for (unsigned Part = 0; Part < State.UF; ++Part) { 9566 Value *PartStart = 9567 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9568 9569 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9570 Value *Idx = State.Builder.CreateAdd( 9571 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9572 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9573 9574 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9575 State.CFG.PrevBB->getTerminator()); 9576 Value *SclrGep = emitTransformedIndex( 9577 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9578 SclrGep->setName("next.gep"); 9579 State.set(this, SclrGep, VPIteration(Part, Lane)); 9580 } 9581 } 9582 return; 9583 } 9584 9585 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9586 "Induction step not a SCEV constant!"); 9587 Type *PhiType = IndDesc.getStep()->getType(); 9588 9589 // Build a pointer phi 9590 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9591 Type *ScStValueType = ScalarStartValue->getType(); 9592 PHINode *NewPointerPhi = 9593 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9594 NewPointerPhi->addIncoming(ScalarStartValue, State.CFG.VectorPreHeader); 9595 9596 // A pointer induction, performed by using a gep 9597 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9598 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9599 9600 const SCEV *ScalarStep = IndDesc.getStep(); 9601 SCEVExpander Exp(SE, DL, "induction"); 9602 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9603 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9604 Value *NumUnrolledElems = 9605 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9606 Value *InductionGEP = GetElementPtrInst::Create( 9607 IndDesc.getElementType(), NewPointerPhi, 9608 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9609 InductionLoc); 9610 // Add induction update using an incorrect block temporarily. The phi node 9611 // will be fixed after VPlan execution. Note that at this point the latch 9612 // block cannot be used, as it does not exist yet. 9613 // TODO: Model increment value in VPlan, by turning the recipe into a 9614 // multi-def and a subclass of VPHeaderPHIRecipe. 9615 NewPointerPhi->addIncoming(InductionGEP, State.CFG.VectorPreHeader); 9616 9617 // Create UF many actual address geps that use the pointer 9618 // phi as base and a vectorized version of the step value 9619 // (<step*0, ..., step*N>) as offset. 9620 for (unsigned Part = 0; Part < State.UF; ++Part) { 9621 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9622 Value *StartOffsetScalar = 9623 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9624 Value *StartOffset = 9625 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9626 // Create a vector of consecutive numbers from zero to VF. 9627 StartOffset = State.Builder.CreateAdd( 9628 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9629 9630 Value *GEP = State.Builder.CreateGEP( 9631 IndDesc.getElementType(), NewPointerPhi, 9632 State.Builder.CreateMul( 9633 StartOffset, 9634 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9635 "vector.gep")); 9636 State.set(this, GEP, Part); 9637 } 9638 } 9639 9640 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9641 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9642 9643 // Fast-math-flags propagate from the original induction instruction. 9644 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9645 if (IndDesc.getInductionBinOp() && 9646 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9647 State.Builder.setFastMathFlags( 9648 IndDesc.getInductionBinOp()->getFastMathFlags()); 9649 9650 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9651 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9652 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9653 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9654 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9655 ScalarIV = 9656 Ty->isIntegerTy() 9657 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9658 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9659 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9660 getStartValue()->getLiveInIRValue(), Step, 9661 IndDesc); 9662 ScalarIV->setName("offset.idx"); 9663 } 9664 if (TruncToTy) { 9665 assert(Step->getType()->isIntegerTy() && 9666 "Truncation requires an integer step"); 9667 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9668 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9669 } 9670 return ScalarIV; 9671 }; 9672 9673 Value *ScalarIV = CreateScalarIV(Step); 9674 if (State.VF.isVector()) { 9675 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9676 return; 9677 } 9678 9679 for (unsigned Part = 0; Part < State.UF; ++Part) { 9680 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9681 Value *EntryPart; 9682 if (Step->getType()->isFloatingPointTy()) { 9683 Value *StartIdx = 9684 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9685 // Floating-point operations inherit FMF via the builder's flags. 9686 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9687 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9688 ScalarIV, MulOp); 9689 } else { 9690 Value *StartIdx = 9691 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9692 EntryPart = State.Builder.CreateAdd( 9693 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9694 } 9695 State.set(this, EntryPart, Part); 9696 } 9697 } 9698 9699 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9700 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9701 State); 9702 } 9703 9704 void VPBlendRecipe::execute(VPTransformState &State) { 9705 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9706 // We know that all PHIs in non-header blocks are converted into 9707 // selects, so we don't have to worry about the insertion order and we 9708 // can just use the builder. 9709 // At this point we generate the predication tree. There may be 9710 // duplications since this is a simple recursive scan, but future 9711 // optimizations will clean it up. 9712 9713 unsigned NumIncoming = getNumIncomingValues(); 9714 9715 // Generate a sequence of selects of the form: 9716 // SELECT(Mask3, In3, 9717 // SELECT(Mask2, In2, 9718 // SELECT(Mask1, In1, 9719 // In0))) 9720 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9721 // are essentially undef are taken from In0. 9722 InnerLoopVectorizer::VectorParts Entry(State.UF); 9723 for (unsigned In = 0; In < NumIncoming; ++In) { 9724 for (unsigned Part = 0; Part < State.UF; ++Part) { 9725 // We might have single edge PHIs (blocks) - use an identity 9726 // 'select' for the first PHI operand. 9727 Value *In0 = State.get(getIncomingValue(In), Part); 9728 if (In == 0) 9729 Entry[Part] = In0; // Initialize with the first incoming value. 9730 else { 9731 // Select between the current value and the previous incoming edge 9732 // based on the incoming mask. 9733 Value *Cond = State.get(getMask(In), Part); 9734 Entry[Part] = 9735 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9736 } 9737 } 9738 } 9739 for (unsigned Part = 0; Part < State.UF; ++Part) 9740 State.set(this, Entry[Part], Part); 9741 } 9742 9743 void VPInterleaveRecipe::execute(VPTransformState &State) { 9744 assert(!State.Instance && "Interleave group being replicated."); 9745 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9746 getStoredValues(), getMask()); 9747 } 9748 9749 void VPReductionRecipe::execute(VPTransformState &State) { 9750 assert(!State.Instance && "Reduction being replicated."); 9751 Value *PrevInChain = State.get(getChainOp(), 0); 9752 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9753 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9754 // Propagate the fast-math flags carried by the underlying instruction. 9755 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9756 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9757 for (unsigned Part = 0; Part < State.UF; ++Part) { 9758 Value *NewVecOp = State.get(getVecOp(), Part); 9759 if (VPValue *Cond = getCondOp()) { 9760 Value *NewCond = State.get(Cond, Part); 9761 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9762 Value *Iden = RdxDesc->getRecurrenceIdentity( 9763 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9764 Value *IdenVec = 9765 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9766 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9767 NewVecOp = Select; 9768 } 9769 Value *NewRed; 9770 Value *NextInChain; 9771 if (IsOrdered) { 9772 if (State.VF.isVector()) 9773 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9774 PrevInChain); 9775 else 9776 NewRed = State.Builder.CreateBinOp( 9777 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9778 NewVecOp); 9779 PrevInChain = NewRed; 9780 } else { 9781 PrevInChain = State.get(getChainOp(), Part); 9782 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9783 } 9784 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9785 NextInChain = 9786 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9787 NewRed, PrevInChain); 9788 } else if (IsOrdered) 9789 NextInChain = NewRed; 9790 else 9791 NextInChain = State.Builder.CreateBinOp( 9792 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9793 PrevInChain); 9794 State.set(this, NextInChain, Part); 9795 } 9796 } 9797 9798 void VPReplicateRecipe::execute(VPTransformState &State) { 9799 if (State.Instance) { // Generate a single instance. 9800 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9801 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9802 IsPredicated, State); 9803 // Insert scalar instance packing it into a vector. 9804 if (AlsoPack && State.VF.isVector()) { 9805 // If we're constructing lane 0, initialize to start from poison. 9806 if (State.Instance->Lane.isFirstLane()) { 9807 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9808 Value *Poison = PoisonValue::get( 9809 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9810 State.set(this, Poison, State.Instance->Part); 9811 } 9812 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9813 } 9814 return; 9815 } 9816 9817 // Generate scalar instances for all VF lanes of all UF parts, unless the 9818 // instruction is uniform inwhich case generate only the first lane for each 9819 // of the UF parts. 9820 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9821 assert((!State.VF.isScalable() || IsUniform) && 9822 "Can't scalarize a scalable vector"); 9823 for (unsigned Part = 0; Part < State.UF; ++Part) 9824 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9825 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9826 VPIteration(Part, Lane), IsPredicated, 9827 State); 9828 } 9829 9830 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9831 assert(State.Instance && "Branch on Mask works only on single instance."); 9832 9833 unsigned Part = State.Instance->Part; 9834 unsigned Lane = State.Instance->Lane.getKnownLane(); 9835 9836 Value *ConditionBit = nullptr; 9837 VPValue *BlockInMask = getMask(); 9838 if (BlockInMask) { 9839 ConditionBit = State.get(BlockInMask, Part); 9840 if (ConditionBit->getType()->isVectorTy()) 9841 ConditionBit = State.Builder.CreateExtractElement( 9842 ConditionBit, State.Builder.getInt32(Lane)); 9843 } else // Block in mask is all-one. 9844 ConditionBit = State.Builder.getTrue(); 9845 9846 // Replace the temporary unreachable terminator with a new conditional branch, 9847 // whose two destinations will be set later when they are created. 9848 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9849 assert(isa<UnreachableInst>(CurrentTerminator) && 9850 "Expected to replace unreachable terminator with conditional branch."); 9851 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9852 CondBr->setSuccessor(0, nullptr); 9853 ReplaceInstWithInst(CurrentTerminator, CondBr); 9854 } 9855 9856 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9857 assert(State.Instance && "Predicated instruction PHI works per instance."); 9858 Instruction *ScalarPredInst = 9859 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9860 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9861 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9862 assert(PredicatingBB && "Predicated block has no single predecessor."); 9863 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9864 "operand must be VPReplicateRecipe"); 9865 9866 // By current pack/unpack logic we need to generate only a single phi node: if 9867 // a vector value for the predicated instruction exists at this point it means 9868 // the instruction has vector users only, and a phi for the vector value is 9869 // needed. In this case the recipe of the predicated instruction is marked to 9870 // also do that packing, thereby "hoisting" the insert-element sequence. 9871 // Otherwise, a phi node for the scalar value is needed. 9872 unsigned Part = State.Instance->Part; 9873 if (State.hasVectorValue(getOperand(0), Part)) { 9874 Value *VectorValue = State.get(getOperand(0), Part); 9875 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9876 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9877 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9878 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9879 if (State.hasVectorValue(this, Part)) 9880 State.reset(this, VPhi, Part); 9881 else 9882 State.set(this, VPhi, Part); 9883 // NOTE: Currently we need to update the value of the operand, so the next 9884 // predicated iteration inserts its generated value in the correct vector. 9885 State.reset(getOperand(0), VPhi, Part); 9886 } else { 9887 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9888 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9889 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9890 PredicatingBB); 9891 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9892 if (State.hasScalarValue(this, *State.Instance)) 9893 State.reset(this, Phi, *State.Instance); 9894 else 9895 State.set(this, Phi, *State.Instance); 9896 // NOTE: Currently we need to update the value of the operand, so the next 9897 // predicated iteration inserts its generated value in the correct vector. 9898 State.reset(getOperand(0), Phi, *State.Instance); 9899 } 9900 } 9901 9902 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9903 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9904 9905 // Attempt to issue a wide load. 9906 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9907 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9908 9909 assert((LI || SI) && "Invalid Load/Store instruction"); 9910 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9911 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9912 9913 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9914 9915 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9916 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9917 bool CreateGatherScatter = !Consecutive; 9918 9919 auto &Builder = State.Builder; 9920 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9921 bool isMaskRequired = getMask(); 9922 if (isMaskRequired) 9923 for (unsigned Part = 0; Part < State.UF; ++Part) 9924 BlockInMaskParts[Part] = State.get(getMask(), Part); 9925 9926 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9927 // Calculate the pointer for the specific unroll-part. 9928 GetElementPtrInst *PartPtr = nullptr; 9929 9930 bool InBounds = false; 9931 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9932 InBounds = gep->isInBounds(); 9933 if (Reverse) { 9934 // If the address is consecutive but reversed, then the 9935 // wide store needs to start at the last vector element. 9936 // RunTimeVF = VScale * VF.getKnownMinValue() 9937 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9938 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9939 // NumElt = -Part * RunTimeVF 9940 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9941 // LastLane = 1 - RunTimeVF 9942 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9943 PartPtr = 9944 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9945 PartPtr->setIsInBounds(InBounds); 9946 PartPtr = cast<GetElementPtrInst>( 9947 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9948 PartPtr->setIsInBounds(InBounds); 9949 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9950 BlockInMaskParts[Part] = 9951 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9952 } else { 9953 Value *Increment = 9954 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9955 PartPtr = cast<GetElementPtrInst>( 9956 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9957 PartPtr->setIsInBounds(InBounds); 9958 } 9959 9960 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9961 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9962 }; 9963 9964 // Handle Stores: 9965 if (SI) { 9966 State.ILV->setDebugLocFromInst(SI); 9967 9968 for (unsigned Part = 0; Part < State.UF; ++Part) { 9969 Instruction *NewSI = nullptr; 9970 Value *StoredVal = State.get(StoredValue, Part); 9971 if (CreateGatherScatter) { 9972 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9973 Value *VectorGep = State.get(getAddr(), Part); 9974 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9975 MaskPart); 9976 } else { 9977 if (Reverse) { 9978 // If we store to reverse consecutive memory locations, then we need 9979 // to reverse the order of elements in the stored value. 9980 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9981 // We don't want to update the value in the map as it might be used in 9982 // another expression. So don't call resetVectorValue(StoredVal). 9983 } 9984 auto *VecPtr = 9985 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9986 if (isMaskRequired) 9987 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9988 BlockInMaskParts[Part]); 9989 else 9990 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9991 } 9992 State.ILV->addMetadata(NewSI, SI); 9993 } 9994 return; 9995 } 9996 9997 // Handle loads. 9998 assert(LI && "Must have a load instruction"); 9999 State.ILV->setDebugLocFromInst(LI); 10000 for (unsigned Part = 0; Part < State.UF; ++Part) { 10001 Value *NewLI; 10002 if (CreateGatherScatter) { 10003 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10004 Value *VectorGep = State.get(getAddr(), Part); 10005 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10006 nullptr, "wide.masked.gather"); 10007 State.ILV->addMetadata(NewLI, LI); 10008 } else { 10009 auto *VecPtr = 10010 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10011 if (isMaskRequired) 10012 NewLI = Builder.CreateMaskedLoad( 10013 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10014 PoisonValue::get(DataTy), "wide.masked.load"); 10015 else 10016 NewLI = 10017 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10018 10019 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10020 State.ILV->addMetadata(NewLI, LI); 10021 if (Reverse) 10022 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10023 } 10024 10025 State.set(this, NewLI, Part); 10026 } 10027 } 10028 10029 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10030 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10031 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10032 // for predication. 10033 static ScalarEpilogueLowering getScalarEpilogueLowering( 10034 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10035 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10036 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10037 LoopVectorizationLegality &LVL) { 10038 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10039 // don't look at hints or options, and don't request a scalar epilogue. 10040 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10041 // LoopAccessInfo (due to code dependency and not being able to reliably get 10042 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10043 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10044 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10045 // back to the old way and vectorize with versioning when forced. See D81345.) 10046 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10047 PGSOQueryType::IRPass) && 10048 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10049 return CM_ScalarEpilogueNotAllowedOptSize; 10050 10051 // 2) If set, obey the directives 10052 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10053 switch (PreferPredicateOverEpilogue) { 10054 case PreferPredicateTy::ScalarEpilogue: 10055 return CM_ScalarEpilogueAllowed; 10056 case PreferPredicateTy::PredicateElseScalarEpilogue: 10057 return CM_ScalarEpilogueNotNeededUsePredicate; 10058 case PreferPredicateTy::PredicateOrDontVectorize: 10059 return CM_ScalarEpilogueNotAllowedUsePredicate; 10060 }; 10061 } 10062 10063 // 3) If set, obey the hints 10064 switch (Hints.getPredicate()) { 10065 case LoopVectorizeHints::FK_Enabled: 10066 return CM_ScalarEpilogueNotNeededUsePredicate; 10067 case LoopVectorizeHints::FK_Disabled: 10068 return CM_ScalarEpilogueAllowed; 10069 }; 10070 10071 // 4) if the TTI hook indicates this is profitable, request predication. 10072 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10073 LVL.getLAI())) 10074 return CM_ScalarEpilogueNotNeededUsePredicate; 10075 10076 return CM_ScalarEpilogueAllowed; 10077 } 10078 10079 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10080 // If Values have been set for this Def return the one relevant for \p Part. 10081 if (hasVectorValue(Def, Part)) 10082 return Data.PerPartOutput[Def][Part]; 10083 10084 if (!hasScalarValue(Def, {Part, 0})) { 10085 Value *IRV = Def->getLiveInIRValue(); 10086 Value *B = ILV->getBroadcastInstrs(IRV); 10087 set(Def, B, Part); 10088 return B; 10089 } 10090 10091 Value *ScalarValue = get(Def, {Part, 0}); 10092 // If we aren't vectorizing, we can just copy the scalar map values over 10093 // to the vector map. 10094 if (VF.isScalar()) { 10095 set(Def, ScalarValue, Part); 10096 return ScalarValue; 10097 } 10098 10099 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10100 bool IsUniform = RepR && RepR->isUniform(); 10101 10102 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10103 // Check if there is a scalar value for the selected lane. 10104 if (!hasScalarValue(Def, {Part, LastLane})) { 10105 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10106 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10107 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10108 "unexpected recipe found to be invariant"); 10109 IsUniform = true; 10110 LastLane = 0; 10111 } 10112 10113 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10114 // Set the insert point after the last scalarized instruction or after the 10115 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10116 // will directly follow the scalar definitions. 10117 auto OldIP = Builder.saveIP(); 10118 auto NewIP = 10119 isa<PHINode>(LastInst) 10120 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10121 : std::next(BasicBlock::iterator(LastInst)); 10122 Builder.SetInsertPoint(&*NewIP); 10123 10124 // However, if we are vectorizing, we need to construct the vector values. 10125 // If the value is known to be uniform after vectorization, we can just 10126 // broadcast the scalar value corresponding to lane zero for each unroll 10127 // iteration. Otherwise, we construct the vector values using 10128 // insertelement instructions. Since the resulting vectors are stored in 10129 // State, we will only generate the insertelements once. 10130 Value *VectorValue = nullptr; 10131 if (IsUniform) { 10132 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10133 set(Def, VectorValue, Part); 10134 } else { 10135 // Initialize packing with insertelements to start from undef. 10136 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10137 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10138 set(Def, Undef, Part); 10139 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10140 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10141 VectorValue = get(Def, Part); 10142 } 10143 Builder.restoreIP(OldIP); 10144 return VectorValue; 10145 } 10146 10147 // Process the loop in the VPlan-native vectorization path. This path builds 10148 // VPlan upfront in the vectorization pipeline, which allows to apply 10149 // VPlan-to-VPlan transformations from the very beginning without modifying the 10150 // input LLVM IR. 10151 static bool processLoopInVPlanNativePath( 10152 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10153 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10154 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10155 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10156 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10157 LoopVectorizationRequirements &Requirements) { 10158 10159 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10160 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10161 return false; 10162 } 10163 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10164 Function *F = L->getHeader()->getParent(); 10165 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10166 10167 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10168 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10169 10170 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10171 &Hints, IAI); 10172 // Use the planner for outer loop vectorization. 10173 // TODO: CM is not used at this point inside the planner. Turn CM into an 10174 // optional argument if we don't need it in the future. 10175 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10176 Requirements, ORE); 10177 10178 // Get user vectorization factor. 10179 ElementCount UserVF = Hints.getWidth(); 10180 10181 CM.collectElementTypesForWidening(); 10182 10183 // Plan how to best vectorize, return the best VF and its cost. 10184 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10185 10186 // If we are stress testing VPlan builds, do not attempt to generate vector 10187 // code. Masked vector code generation support will follow soon. 10188 // Also, do not attempt to vectorize if no vector code will be produced. 10189 if (VPlanBuildStressTest || EnableVPlanPredication || 10190 VectorizationFactor::Disabled() == VF) 10191 return false; 10192 10193 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10194 10195 { 10196 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10197 F->getParent()->getDataLayout()); 10198 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10199 &CM, BFI, PSI, Checks); 10200 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10201 << L->getHeader()->getParent()->getName() << "\"\n"); 10202 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10203 } 10204 10205 // Mark the loop as already vectorized to avoid vectorizing again. 10206 Hints.setAlreadyVectorized(); 10207 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10208 return true; 10209 } 10210 10211 // Emit a remark if there are stores to floats that required a floating point 10212 // extension. If the vectorized loop was generated with floating point there 10213 // will be a performance penalty from the conversion overhead and the change in 10214 // the vector width. 10215 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10216 SmallVector<Instruction *, 4> Worklist; 10217 for (BasicBlock *BB : L->getBlocks()) { 10218 for (Instruction &Inst : *BB) { 10219 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10220 if (S->getValueOperand()->getType()->isFloatTy()) 10221 Worklist.push_back(S); 10222 } 10223 } 10224 } 10225 10226 // Traverse the floating point stores upwards searching, for floating point 10227 // conversions. 10228 SmallPtrSet<const Instruction *, 4> Visited; 10229 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10230 while (!Worklist.empty()) { 10231 auto *I = Worklist.pop_back_val(); 10232 if (!L->contains(I)) 10233 continue; 10234 if (!Visited.insert(I).second) 10235 continue; 10236 10237 // Emit a remark if the floating point store required a floating 10238 // point conversion. 10239 // TODO: More work could be done to identify the root cause such as a 10240 // constant or a function return type and point the user to it. 10241 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10242 ORE->emit([&]() { 10243 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10244 I->getDebugLoc(), L->getHeader()) 10245 << "floating point conversion changes vector width. " 10246 << "Mixed floating point precision requires an up/down " 10247 << "cast that will negatively impact performance."; 10248 }); 10249 10250 for (Use &Op : I->operands()) 10251 if (auto *OpI = dyn_cast<Instruction>(Op)) 10252 Worklist.push_back(OpI); 10253 } 10254 } 10255 10256 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10257 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10258 !EnableLoopInterleaving), 10259 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10260 !EnableLoopVectorization) {} 10261 10262 bool LoopVectorizePass::processLoop(Loop *L) { 10263 assert((EnableVPlanNativePath || L->isInnermost()) && 10264 "VPlan-native path is not enabled. Only process inner loops."); 10265 10266 #ifndef NDEBUG 10267 const std::string DebugLocStr = getDebugLocString(L); 10268 #endif /* NDEBUG */ 10269 10270 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10271 << L->getHeader()->getParent()->getName() << "' from " 10272 << DebugLocStr << "\n"); 10273 10274 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10275 10276 LLVM_DEBUG( 10277 dbgs() << "LV: Loop hints:" 10278 << " force=" 10279 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10280 ? "disabled" 10281 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10282 ? "enabled" 10283 : "?")) 10284 << " width=" << Hints.getWidth() 10285 << " interleave=" << Hints.getInterleave() << "\n"); 10286 10287 // Function containing loop 10288 Function *F = L->getHeader()->getParent(); 10289 10290 // Looking at the diagnostic output is the only way to determine if a loop 10291 // was vectorized (other than looking at the IR or machine code), so it 10292 // is important to generate an optimization remark for each loop. Most of 10293 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10294 // generated as OptimizationRemark and OptimizationRemarkMissed are 10295 // less verbose reporting vectorized loops and unvectorized loops that may 10296 // benefit from vectorization, respectively. 10297 10298 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10299 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10300 return false; 10301 } 10302 10303 PredicatedScalarEvolution PSE(*SE, *L); 10304 10305 // Check if it is legal to vectorize the loop. 10306 LoopVectorizationRequirements Requirements; 10307 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10308 &Requirements, &Hints, DB, AC, BFI, PSI); 10309 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10310 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10311 Hints.emitRemarkWithHints(); 10312 return false; 10313 } 10314 10315 // Check the function attributes and profiles to find out if this function 10316 // should be optimized for size. 10317 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10318 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10319 10320 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10321 // here. They may require CFG and instruction level transformations before 10322 // even evaluating whether vectorization is profitable. Since we cannot modify 10323 // the incoming IR, we need to build VPlan upfront in the vectorization 10324 // pipeline. 10325 if (!L->isInnermost()) 10326 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10327 ORE, BFI, PSI, Hints, Requirements); 10328 10329 assert(L->isInnermost() && "Inner loop expected."); 10330 10331 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10332 // count by optimizing for size, to minimize overheads. 10333 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10334 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10335 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10336 << "This loop is worth vectorizing only if no scalar " 10337 << "iteration overheads are incurred."); 10338 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10339 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10340 else { 10341 LLVM_DEBUG(dbgs() << "\n"); 10342 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10343 } 10344 } 10345 10346 // Check the function attributes to see if implicit floats are allowed. 10347 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10348 // an integer loop and the vector instructions selected are purely integer 10349 // vector instructions? 10350 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10351 reportVectorizationFailure( 10352 "Can't vectorize when the NoImplicitFloat attribute is used", 10353 "loop not vectorized due to NoImplicitFloat attribute", 10354 "NoImplicitFloat", ORE, L); 10355 Hints.emitRemarkWithHints(); 10356 return false; 10357 } 10358 10359 // Check if the target supports potentially unsafe FP vectorization. 10360 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10361 // for the target we're vectorizing for, to make sure none of the 10362 // additional fp-math flags can help. 10363 if (Hints.isPotentiallyUnsafe() && 10364 TTI->isFPVectorizationPotentiallyUnsafe()) { 10365 reportVectorizationFailure( 10366 "Potentially unsafe FP op prevents vectorization", 10367 "loop not vectorized due to unsafe FP support.", 10368 "UnsafeFP", ORE, L); 10369 Hints.emitRemarkWithHints(); 10370 return false; 10371 } 10372 10373 bool AllowOrderedReductions; 10374 // If the flag is set, use that instead and override the TTI behaviour. 10375 if (ForceOrderedReductions.getNumOccurrences() > 0) 10376 AllowOrderedReductions = ForceOrderedReductions; 10377 else 10378 AllowOrderedReductions = TTI->enableOrderedReductions(); 10379 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10380 ORE->emit([&]() { 10381 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10382 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10383 ExactFPMathInst->getDebugLoc(), 10384 ExactFPMathInst->getParent()) 10385 << "loop not vectorized: cannot prove it is safe to reorder " 10386 "floating-point operations"; 10387 }); 10388 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10389 "reorder floating-point operations\n"); 10390 Hints.emitRemarkWithHints(); 10391 return false; 10392 } 10393 10394 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10395 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10396 10397 // If an override option has been passed in for interleaved accesses, use it. 10398 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10399 UseInterleaved = EnableInterleavedMemAccesses; 10400 10401 // Analyze interleaved memory accesses. 10402 if (UseInterleaved) { 10403 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10404 } 10405 10406 // Use the cost model. 10407 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10408 F, &Hints, IAI); 10409 CM.collectValuesToIgnore(); 10410 CM.collectElementTypesForWidening(); 10411 10412 // Use the planner for vectorization. 10413 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10414 Requirements, ORE); 10415 10416 // Get user vectorization factor and interleave count. 10417 ElementCount UserVF = Hints.getWidth(); 10418 unsigned UserIC = Hints.getInterleave(); 10419 10420 // Plan how to best vectorize, return the best VF and its cost. 10421 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10422 10423 VectorizationFactor VF = VectorizationFactor::Disabled(); 10424 unsigned IC = 1; 10425 10426 if (MaybeVF) { 10427 VF = *MaybeVF; 10428 // Select the interleave count. 10429 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10430 } 10431 10432 // Identify the diagnostic messages that should be produced. 10433 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10434 bool VectorizeLoop = true, InterleaveLoop = true; 10435 if (VF.Width.isScalar()) { 10436 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10437 VecDiagMsg = std::make_pair( 10438 "VectorizationNotBeneficial", 10439 "the cost-model indicates that vectorization is not beneficial"); 10440 VectorizeLoop = false; 10441 } 10442 10443 if (!MaybeVF && UserIC > 1) { 10444 // Tell the user interleaving was avoided up-front, despite being explicitly 10445 // requested. 10446 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10447 "interleaving should be avoided up front\n"); 10448 IntDiagMsg = std::make_pair( 10449 "InterleavingAvoided", 10450 "Ignoring UserIC, because interleaving was avoided up front"); 10451 InterleaveLoop = false; 10452 } else if (IC == 1 && UserIC <= 1) { 10453 // Tell the user interleaving is not beneficial. 10454 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10455 IntDiagMsg = std::make_pair( 10456 "InterleavingNotBeneficial", 10457 "the cost-model indicates that interleaving is not beneficial"); 10458 InterleaveLoop = false; 10459 if (UserIC == 1) { 10460 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10461 IntDiagMsg.second += 10462 " and is explicitly disabled or interleave count is set to 1"; 10463 } 10464 } else if (IC > 1 && UserIC == 1) { 10465 // Tell the user interleaving is beneficial, but it explicitly disabled. 10466 LLVM_DEBUG( 10467 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10468 IntDiagMsg = std::make_pair( 10469 "InterleavingBeneficialButDisabled", 10470 "the cost-model indicates that interleaving is beneficial " 10471 "but is explicitly disabled or interleave count is set to 1"); 10472 InterleaveLoop = false; 10473 } 10474 10475 // Override IC if user provided an interleave count. 10476 IC = UserIC > 0 ? UserIC : IC; 10477 10478 // Emit diagnostic messages, if any. 10479 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10480 if (!VectorizeLoop && !InterleaveLoop) { 10481 // Do not vectorize or interleaving the loop. 10482 ORE->emit([&]() { 10483 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10484 L->getStartLoc(), L->getHeader()) 10485 << VecDiagMsg.second; 10486 }); 10487 ORE->emit([&]() { 10488 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10489 L->getStartLoc(), L->getHeader()) 10490 << IntDiagMsg.second; 10491 }); 10492 return false; 10493 } else if (!VectorizeLoop && InterleaveLoop) { 10494 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10495 ORE->emit([&]() { 10496 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10497 L->getStartLoc(), L->getHeader()) 10498 << VecDiagMsg.second; 10499 }); 10500 } else if (VectorizeLoop && !InterleaveLoop) { 10501 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10502 << ") in " << DebugLocStr << '\n'); 10503 ORE->emit([&]() { 10504 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10505 L->getStartLoc(), L->getHeader()) 10506 << IntDiagMsg.second; 10507 }); 10508 } else if (VectorizeLoop && InterleaveLoop) { 10509 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10510 << ") in " << DebugLocStr << '\n'); 10511 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10512 } 10513 10514 bool DisableRuntimeUnroll = false; 10515 MDNode *OrigLoopID = L->getLoopID(); 10516 { 10517 // Optimistically generate runtime checks. Drop them if they turn out to not 10518 // be profitable. Limit the scope of Checks, so the cleanup happens 10519 // immediately after vector codegeneration is done. 10520 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10521 F->getParent()->getDataLayout()); 10522 if (!VF.Width.isScalar() || IC > 1) 10523 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10524 10525 using namespace ore; 10526 if (!VectorizeLoop) { 10527 assert(IC > 1 && "interleave count should not be 1 or 0"); 10528 // If we decided that it is not legal to vectorize the loop, then 10529 // interleave it. 10530 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10531 &CM, BFI, PSI, Checks); 10532 10533 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10534 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10535 10536 ORE->emit([&]() { 10537 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10538 L->getHeader()) 10539 << "interleaved loop (interleaved count: " 10540 << NV("InterleaveCount", IC) << ")"; 10541 }); 10542 } else { 10543 // If we decided that it is *legal* to vectorize the loop, then do it. 10544 10545 // Consider vectorizing the epilogue too if it's profitable. 10546 VectorizationFactor EpilogueVF = 10547 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10548 if (EpilogueVF.Width.isVector()) { 10549 10550 // The first pass vectorizes the main loop and creates a scalar epilogue 10551 // to be vectorized by executing the plan (potentially with a different 10552 // factor) again shortly afterwards. 10553 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10554 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10555 EPI, &LVL, &CM, BFI, PSI, Checks); 10556 10557 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10558 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10559 DT); 10560 ++LoopsVectorized; 10561 10562 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10563 formLCSSARecursively(*L, *DT, LI, SE); 10564 10565 // Second pass vectorizes the epilogue and adjusts the control flow 10566 // edges from the first pass. 10567 EPI.MainLoopVF = EPI.EpilogueVF; 10568 EPI.MainLoopUF = EPI.EpilogueUF; 10569 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10570 ORE, EPI, &LVL, &CM, BFI, PSI, 10571 Checks); 10572 10573 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10574 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->setName( 10575 "vec.epilog.vector.body"); 10576 10577 // Ensure that the start values for any VPReductionPHIRecipes are 10578 // updated before vectorising the epilogue loop. 10579 VPBasicBlock *Header = 10580 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock(); 10581 for (VPRecipeBase &R : Header->phis()) { 10582 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10583 if (auto *Resume = MainILV.getReductionResumeValue( 10584 ReductionPhi->getRecurrenceDescriptor())) { 10585 VPValue *StartVal = new VPValue(Resume); 10586 BestEpiPlan.addExternalDef(StartVal); 10587 ReductionPhi->setOperand(0, StartVal); 10588 } 10589 } 10590 } 10591 10592 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10593 DT); 10594 ++LoopsEpilogueVectorized; 10595 10596 if (!MainILV.areSafetyChecksAdded()) 10597 DisableRuntimeUnroll = true; 10598 } else { 10599 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10600 &LVL, &CM, BFI, PSI, Checks); 10601 10602 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10603 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10604 ++LoopsVectorized; 10605 10606 // Add metadata to disable runtime unrolling a scalar loop when there 10607 // are no runtime checks about strides and memory. A scalar loop that is 10608 // rarely used is not worth unrolling. 10609 if (!LB.areSafetyChecksAdded()) 10610 DisableRuntimeUnroll = true; 10611 } 10612 // Report the vectorization decision. 10613 ORE->emit([&]() { 10614 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10615 L->getHeader()) 10616 << "vectorized loop (vectorization width: " 10617 << NV("VectorizationFactor", VF.Width) 10618 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10619 }); 10620 } 10621 10622 if (ORE->allowExtraAnalysis(LV_NAME)) 10623 checkMixedPrecision(L, ORE); 10624 } 10625 10626 Optional<MDNode *> RemainderLoopID = 10627 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10628 LLVMLoopVectorizeFollowupEpilogue}); 10629 if (RemainderLoopID.hasValue()) { 10630 L->setLoopID(RemainderLoopID.getValue()); 10631 } else { 10632 if (DisableRuntimeUnroll) 10633 AddRuntimeUnrollDisableMetaData(L); 10634 10635 // Mark the loop as already vectorized to avoid vectorizing again. 10636 Hints.setAlreadyVectorized(); 10637 } 10638 10639 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10640 return true; 10641 } 10642 10643 LoopVectorizeResult LoopVectorizePass::runImpl( 10644 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10645 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10646 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10647 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10648 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10649 SE = &SE_; 10650 LI = &LI_; 10651 TTI = &TTI_; 10652 DT = &DT_; 10653 BFI = &BFI_; 10654 TLI = TLI_; 10655 AA = &AA_; 10656 AC = &AC_; 10657 GetLAA = &GetLAA_; 10658 DB = &DB_; 10659 ORE = &ORE_; 10660 PSI = PSI_; 10661 10662 // Don't attempt if 10663 // 1. the target claims to have no vector registers, and 10664 // 2. interleaving won't help ILP. 10665 // 10666 // The second condition is necessary because, even if the target has no 10667 // vector registers, loop vectorization may still enable scalar 10668 // interleaving. 10669 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10670 TTI->getMaxInterleaveFactor(1) < 2) 10671 return LoopVectorizeResult(false, false); 10672 10673 bool Changed = false, CFGChanged = false; 10674 10675 // The vectorizer requires loops to be in simplified form. 10676 // Since simplification may add new inner loops, it has to run before the 10677 // legality and profitability checks. This means running the loop vectorizer 10678 // will simplify all loops, regardless of whether anything end up being 10679 // vectorized. 10680 for (auto &L : *LI) 10681 Changed |= CFGChanged |= 10682 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10683 10684 // Build up a worklist of inner-loops to vectorize. This is necessary as 10685 // the act of vectorizing or partially unrolling a loop creates new loops 10686 // and can invalidate iterators across the loops. 10687 SmallVector<Loop *, 8> Worklist; 10688 10689 for (Loop *L : *LI) 10690 collectSupportedLoops(*L, LI, ORE, Worklist); 10691 10692 LoopsAnalyzed += Worklist.size(); 10693 10694 // Now walk the identified inner loops. 10695 while (!Worklist.empty()) { 10696 Loop *L = Worklist.pop_back_val(); 10697 10698 // For the inner loops we actually process, form LCSSA to simplify the 10699 // transform. 10700 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10701 10702 Changed |= CFGChanged |= processLoop(L); 10703 } 10704 10705 // Process each loop nest in the function. 10706 return LoopVectorizeResult(Changed, CFGChanged); 10707 } 10708 10709 PreservedAnalyses LoopVectorizePass::run(Function &F, 10710 FunctionAnalysisManager &AM) { 10711 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10712 auto &LI = AM.getResult<LoopAnalysis>(F); 10713 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10714 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10715 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10716 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10717 auto &AA = AM.getResult<AAManager>(F); 10718 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10719 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10720 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10721 10722 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10723 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10724 [&](Loop &L) -> const LoopAccessInfo & { 10725 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10726 TLI, TTI, nullptr, nullptr, nullptr}; 10727 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10728 }; 10729 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10730 ProfileSummaryInfo *PSI = 10731 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10732 LoopVectorizeResult Result = 10733 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10734 if (!Result.MadeAnyChange) 10735 return PreservedAnalyses::all(); 10736 PreservedAnalyses PA; 10737 10738 // We currently do not preserve loopinfo/dominator analyses with outer loop 10739 // vectorization. Until this is addressed, mark these analyses as preserved 10740 // only for non-VPlan-native path. 10741 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10742 if (!EnableVPlanNativePath) { 10743 PA.preserve<LoopAnalysis>(); 10744 PA.preserve<DominatorTreeAnalysis>(); 10745 } 10746 10747 if (Result.MadeCFGChange) { 10748 // Making CFG changes likely means a loop got vectorized. Indicate that 10749 // extra simplification passes should be run. 10750 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10751 // be run if runtime checks have been added. 10752 AM.getResult<ShouldRunExtraVectorPasses>(F); 10753 PA.preserve<ShouldRunExtraVectorPasses>(); 10754 } else { 10755 PA.preserveSet<CFGAnalyses>(); 10756 } 10757 return PA; 10758 } 10759 10760 void LoopVectorizePass::printPipeline( 10761 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10762 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10763 OS, MapClassName2PassName); 10764 10765 OS << "<"; 10766 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10767 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10768 OS << ">"; 10769 } 10770