1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanTransforms.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DenseMapInfo.h"
66 #include "llvm/ADT/Hashing.h"
67 #include "llvm/ADT/MapVector.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
90 #include "llvm/Analysis/ProfileSummaryInfo.h"
91 #include "llvm/Analysis/ScalarEvolution.h"
92 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
93 #include "llvm/Analysis/TargetLibraryInfo.h"
94 #include "llvm/Analysis/TargetTransformInfo.h"
95 #include "llvm/Analysis/VectorUtils.h"
96 #include "llvm/IR/Attributes.h"
97 #include "llvm/IR/BasicBlock.h"
98 #include "llvm/IR/CFG.h"
99 #include "llvm/IR/Constant.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/DebugInfoMetadata.h"
103 #include "llvm/IR/DebugLoc.h"
104 #include "llvm/IR/DerivedTypes.h"
105 #include "llvm/IR/DiagnosticInfo.h"
106 #include "llvm/IR/Dominators.h"
107 #include "llvm/IR/Function.h"
108 #include "llvm/IR/IRBuilder.h"
109 #include "llvm/IR/InstrTypes.h"
110 #include "llvm/IR/Instruction.h"
111 #include "llvm/IR/Instructions.h"
112 #include "llvm/IR/IntrinsicInst.h"
113 #include "llvm/IR/Intrinsics.h"
114 #include "llvm/IR/Metadata.h"
115 #include "llvm/IR/Module.h"
116 #include "llvm/IR/Operator.h"
117 #include "llvm/IR/PatternMatch.h"
118 #include "llvm/IR/Type.h"
119 #include "llvm/IR/Use.h"
120 #include "llvm/IR/User.h"
121 #include "llvm/IR/Value.h"
122 #include "llvm/IR/ValueHandle.h"
123 #include "llvm/IR/Verifier.h"
124 #include "llvm/InitializePasses.h"
125 #include "llvm/Pass.h"
126 #include "llvm/Support/Casting.h"
127 #include "llvm/Support/CommandLine.h"
128 #include "llvm/Support/Compiler.h"
129 #include "llvm/Support/Debug.h"
130 #include "llvm/Support/ErrorHandling.h"
131 #include "llvm/Support/InstructionCost.h"
132 #include "llvm/Support/MathExtras.h"
133 #include "llvm/Support/raw_ostream.h"
134 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
135 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
136 #include "llvm/Transforms/Utils/LoopSimplify.h"
137 #include "llvm/Transforms/Utils/LoopUtils.h"
138 #include "llvm/Transforms/Utils/LoopVersioning.h"
139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
140 #include "llvm/Transforms/Utils/SizeOpts.h"
141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
142 #include <algorithm>
143 #include <cassert>
144 #include <cstdint>
145 #include <functional>
146 #include <iterator>
147 #include <limits>
148 #include <map>
149 #include <memory>
150 #include <string>
151 #include <tuple>
152 #include <utility>
153 
154 using namespace llvm;
155 
156 #define LV_NAME "loop-vectorize"
157 #define DEBUG_TYPE LV_NAME
158 
159 #ifndef NDEBUG
160 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
161 #endif
162 
163 /// @{
164 /// Metadata attribute names
165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
166 const char LLVMLoopVectorizeFollowupVectorized[] =
167     "llvm.loop.vectorize.followup_vectorized";
168 const char LLVMLoopVectorizeFollowupEpilogue[] =
169     "llvm.loop.vectorize.followup_epilogue";
170 /// @}
171 
172 STATISTIC(LoopsVectorized, "Number of loops vectorized");
173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
175 
176 static cl::opt<bool> EnableEpilogueVectorization(
177     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
178     cl::desc("Enable vectorization of epilogue loops."));
179 
180 static cl::opt<unsigned> EpilogueVectorizationForceVF(
181     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
182     cl::desc("When epilogue vectorization is enabled, and a value greater than "
183              "1 is specified, forces the given VF for all applicable epilogue "
184              "loops."));
185 
186 static cl::opt<unsigned> EpilogueVectorizationMinVF(
187     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
188     cl::desc("Only loops with vectorization factor equal to or larger than "
189              "the specified value are considered for epilogue vectorization."));
190 
191 /// Loops with a known constant trip count below this number are vectorized only
192 /// if no scalar iteration overheads are incurred.
193 static cl::opt<unsigned> TinyTripCountVectorThreshold(
194     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
195     cl::desc("Loops with a constant trip count that is smaller than this "
196              "value are vectorized only if no scalar iteration overheads "
197              "are incurred."));
198 
199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
200     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
201     cl::desc("The maximum allowed number of runtime memory checks with a "
202              "vectorize(enable) pragma."));
203 
204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
205 // that predication is preferred, and this lists all options. I.e., the
206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
207 // and predicate the instructions accordingly. If tail-folding fails, there are
208 // different fallback strategies depending on these values:
209 namespace PreferPredicateTy {
210   enum Option {
211     ScalarEpilogue = 0,
212     PredicateElseScalarEpilogue,
213     PredicateOrDontVectorize
214   };
215 } // namespace PreferPredicateTy
216 
217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
218     "prefer-predicate-over-epilogue",
219     cl::init(PreferPredicateTy::ScalarEpilogue),
220     cl::Hidden,
221     cl::desc("Tail-folding and predication preferences over creating a scalar "
222              "epilogue loop."),
223     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
224                          "scalar-epilogue",
225                          "Don't tail-predicate loops, create scalar epilogue"),
226               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
227                          "predicate-else-scalar-epilogue",
228                          "prefer tail-folding, create scalar epilogue if tail "
229                          "folding fails."),
230               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
231                          "predicate-dont-vectorize",
232                          "prefers tail-folding, don't attempt vectorization if "
233                          "tail-folding fails.")));
234 
235 static cl::opt<bool> MaximizeBandwidth(
236     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
237     cl::desc("Maximize bandwidth when selecting vectorization factor which "
238              "will be determined by the smallest type in loop."));
239 
240 static cl::opt<bool> EnableInterleavedMemAccesses(
241     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
242     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
243 
244 /// An interleave-group may need masking if it resides in a block that needs
245 /// predication, or in order to mask away gaps.
246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
247     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
248     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
249 
250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
251     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
252     cl::desc("We don't interleave loops with a estimated constant trip count "
253              "below this number"));
254 
255 static cl::opt<unsigned> ForceTargetNumScalarRegs(
256     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
257     cl::desc("A flag that overrides the target's number of scalar registers."));
258 
259 static cl::opt<unsigned> ForceTargetNumVectorRegs(
260     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
261     cl::desc("A flag that overrides the target's number of vector registers."));
262 
263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
264     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
265     cl::desc("A flag that overrides the target's max interleave factor for "
266              "scalar loops."));
267 
268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
269     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
270     cl::desc("A flag that overrides the target's max interleave factor for "
271              "vectorized loops."));
272 
273 static cl::opt<unsigned> ForceTargetInstructionCost(
274     "force-target-instruction-cost", cl::init(0), cl::Hidden,
275     cl::desc("A flag that overrides the target's expected cost for "
276              "an instruction to a single constant value. Mostly "
277              "useful for getting consistent testing."));
278 
279 static cl::opt<bool> ForceTargetSupportsScalableVectors(
280     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
281     cl::desc(
282         "Pretend that scalable vectors are supported, even if the target does "
283         "not support them. This flag should only be used for testing."));
284 
285 static cl::opt<unsigned> SmallLoopCost(
286     "small-loop-cost", cl::init(20), cl::Hidden,
287     cl::desc(
288         "The cost of a loop that is considered 'small' by the interleaver."));
289 
290 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
291     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
292     cl::desc("Enable the use of the block frequency analysis to access PGO "
293              "heuristics minimizing code growth in cold regions and being more "
294              "aggressive in hot regions."));
295 
296 // Runtime interleave loops for load/store throughput.
297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
298     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
299     cl::desc(
300         "Enable runtime interleaving until load/store ports are saturated"));
301 
302 /// Interleave small loops with scalar reductions.
303 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
304     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
305     cl::desc("Enable interleaving for loops with small iteration counts that "
306              "contain scalar reductions to expose ILP."));
307 
308 /// The number of stores in a loop that are allowed to need predication.
309 static cl::opt<unsigned> NumberOfStoresToPredicate(
310     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
311     cl::desc("Max number of stores to be predicated behind an if."));
312 
313 static cl::opt<bool> EnableIndVarRegisterHeur(
314     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
315     cl::desc("Count the induction variable only once when interleaving"));
316 
317 static cl::opt<bool> EnableCondStoresVectorization(
318     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
319     cl::desc("Enable if predication of stores during vectorization."));
320 
321 static cl::opt<unsigned> MaxNestedScalarReductionIC(
322     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
323     cl::desc("The maximum interleave count to use when interleaving a scalar "
324              "reduction in a nested loop."));
325 
326 static cl::opt<bool>
327     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
328                            cl::Hidden,
329                            cl::desc("Prefer in-loop vector reductions, "
330                                     "overriding the targets preference."));
331 
332 static cl::opt<bool> ForceOrderedReductions(
333     "force-ordered-reductions", cl::init(false), cl::Hidden,
334     cl::desc("Enable the vectorisation of loops with in-order (strict) "
335              "FP reductions"));
336 
337 static cl::opt<bool> PreferPredicatedReductionSelect(
338     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
339     cl::desc(
340         "Prefer predicating a reduction operation over an after loop select."));
341 
342 cl::opt<bool> EnableVPlanNativePath(
343     "enable-vplan-native-path", cl::init(false), cl::Hidden,
344     cl::desc("Enable VPlan-native vectorization path with "
345              "support for outer loop vectorization."));
346 
347 // This flag enables the stress testing of the VPlan H-CFG construction in the
348 // VPlan-native vectorization path. It must be used in conjuction with
349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
350 // verification of the H-CFGs built.
351 static cl::opt<bool> VPlanBuildStressTest(
352     "vplan-build-stress-test", cl::init(false), cl::Hidden,
353     cl::desc(
354         "Build VPlan for every supported loop nest in the function and bail "
355         "out right after the build (stress test the VPlan H-CFG construction "
356         "in the VPlan-native vectorization path)."));
357 
358 cl::opt<bool> llvm::EnableLoopInterleaving(
359     "interleave-loops", cl::init(true), cl::Hidden,
360     cl::desc("Enable loop interleaving in Loop vectorization passes"));
361 cl::opt<bool> llvm::EnableLoopVectorization(
362     "vectorize-loops", cl::init(true), cl::Hidden,
363     cl::desc("Run the Loop vectorization passes"));
364 
365 cl::opt<bool> PrintVPlansInDotFormat(
366     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
367     cl::desc("Use dot format instead of plain text when dumping VPlans"));
368 
369 /// A helper function that returns true if the given type is irregular. The
370 /// type is irregular if its allocated size doesn't equal the store size of an
371 /// element of the corresponding vector type.
372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
373   // Determine if an array of N elements of type Ty is "bitcast compatible"
374   // with a <N x Ty> vector.
375   // This is only true if there is no padding between the array elements.
376   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
377 }
378 
379 /// A helper function that returns the reciprocal of the block probability of
380 /// predicated blocks. If we return X, we are assuming the predicated block
381 /// will execute once for every X iterations of the loop header.
382 ///
383 /// TODO: We should use actual block probability here, if available. Currently,
384 ///       we always assume predicated blocks have a 50% chance of executing.
385 static unsigned getReciprocalPredBlockProb() { return 2; }
386 
387 /// A helper function that returns an integer or floating-point constant with
388 /// value C.
389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
390   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
391                            : ConstantFP::get(Ty, C);
392 }
393 
394 /// Returns "best known" trip count for the specified loop \p L as defined by
395 /// the following procedure:
396 ///   1) Returns exact trip count if it is known.
397 ///   2) Returns expected trip count according to profile data if any.
398 ///   3) Returns upper bound estimate if it is known.
399 ///   4) Returns None if all of the above failed.
400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
401   // Check if exact trip count is known.
402   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
403     return ExpectedTC;
404 
405   // Check if there is an expected trip count available from profile data.
406   if (LoopVectorizeWithBlockFrequency)
407     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
408       return EstimatedTC;
409 
410   // Check if upper bound estimate is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
412     return ExpectedTC;
413 
414   return None;
415 }
416 
417 // Forward declare GeneratedRTChecks.
418 class GeneratedRTChecks;
419 
420 namespace llvm {
421 
422 AnalysisKey ShouldRunExtraVectorPasses::Key;
423 
424 /// InnerLoopVectorizer vectorizes loops which contain only one basic
425 /// block to a specified vectorization factor (VF).
426 /// This class performs the widening of scalars into vectors, or multiple
427 /// scalars. This class also implements the following features:
428 /// * It inserts an epilogue loop for handling loops that don't have iteration
429 ///   counts that are known to be a multiple of the vectorization factor.
430 /// * It handles the code generation for reduction variables.
431 /// * Scalarization (implementation using scalars) of un-vectorizable
432 ///   instructions.
433 /// InnerLoopVectorizer does not perform any vectorization-legality
434 /// checks, and relies on the caller to check for the different legality
435 /// aspects. The InnerLoopVectorizer relies on the
436 /// LoopVectorizationLegality class to provide information about the induction
437 /// and reduction variables that were found to a given vectorization factor.
438 class InnerLoopVectorizer {
439 public:
440   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
441                       LoopInfo *LI, DominatorTree *DT,
442                       const TargetLibraryInfo *TLI,
443                       const TargetTransformInfo *TTI, AssumptionCache *AC,
444                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
445                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
446                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
447                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
448       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
449         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
450         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
451         PSI(PSI), RTChecks(RTChecks) {
452     // Query this against the original loop and save it here because the profile
453     // of the original loop header may change as the transformation happens.
454     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
455         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
456   }
457 
458   virtual ~InnerLoopVectorizer() = default;
459 
460   /// Create a new empty loop that will contain vectorized instructions later
461   /// on, while the old loop will be used as the scalar remainder. Control flow
462   /// is generated around the vectorized (and scalar epilogue) loops consisting
463   /// of various checks and bypasses. Return the pre-header block of the new
464   /// loop and the start value for the canonical induction, if it is != 0. The
465   /// latter is the case when vectorizing the epilogue loop. In the case of
466   /// epilogue vectorization, this function is overriden to handle the more
467   /// complex control flow around the loops.
468   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
469 
470   /// Widen a single call instruction within the innermost loop.
471   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
472                             VPTransformState &State);
473 
474   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
475   void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
476 
477   // Return true if any runtime check is added.
478   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
479 
480   /// A type for vectorized values in the new loop. Each value from the
481   /// original loop, when vectorized, is represented by UF vector values in the
482   /// new unrolled loop, where UF is the unroll factor.
483   using VectorParts = SmallVector<Value *, 2>;
484 
485   /// A helper function to scalarize a single Instruction in the innermost loop.
486   /// Generates a sequence of scalar instances for each lane between \p MinLane
487   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
488   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
489   /// Instr's operands.
490   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
491                             const VPIteration &Instance, bool IfPredicateInstr,
492                             VPTransformState &State);
493 
494   /// Construct the vector value of a scalarized value \p V one lane at a time.
495   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
496                                  VPTransformState &State);
497 
498   /// Try to vectorize interleaved access group \p Group with the base address
499   /// given in \p Addr, optionally masking the vector operations if \p
500   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
501   /// values in the vectorized loop.
502   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
503                                 ArrayRef<VPValue *> VPDefs,
504                                 VPTransformState &State, VPValue *Addr,
505                                 ArrayRef<VPValue *> StoredValues,
506                                 VPValue *BlockInMask = nullptr);
507 
508   /// Set the debug location in the builder \p Ptr using the debug location in
509   /// \p V. If \p Ptr is None then it uses the class member's Builder.
510   void setDebugLocFromInst(const Value *V);
511 
512   /// Fix the non-induction PHIs in \p Plan.
513   void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
514 
515   /// Returns true if the reordering of FP operations is not allowed, but we are
516   /// able to vectorize with strict in-order reductions for the given RdxDesc.
517   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
518 
519   /// Create a broadcast instruction. This method generates a broadcast
520   /// instruction (shuffle) for loop invariant values and for the induction
521   /// value. If this is the induction variable then we extend it to N, N+1, ...
522   /// this is needed because each iteration in the loop corresponds to a SIMD
523   /// element.
524   virtual Value *getBroadcastInstrs(Value *V);
525 
526   /// Add metadata from one instruction to another.
527   ///
528   /// This includes both the original MDs from \p From and additional ones (\see
529   /// addNewMetadata).  Use this for *newly created* instructions in the vector
530   /// loop.
531   void addMetadata(Instruction *To, Instruction *From);
532 
533   /// Similar to the previous function but it adds the metadata to a
534   /// vector of instructions.
535   void addMetadata(ArrayRef<Value *> To, Instruction *From);
536 
537   // Returns the resume value (bc.merge.rdx) for a reduction as
538   // generated by fixReduction.
539   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
540 
541 protected:
542   friend class LoopVectorizationPlanner;
543 
544   /// A small list of PHINodes.
545   using PhiVector = SmallVector<PHINode *, 4>;
546 
547   /// A type for scalarized values in the new loop. Each value from the
548   /// original loop, when scalarized, is represented by UF x VF scalar values
549   /// in the new unrolled loop, where UF is the unroll factor and VF is the
550   /// vectorization factor.
551   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
552 
553   /// Set up the values of the IVs correctly when exiting the vector loop.
554   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
555                     Value *VectorTripCount, Value *EndValue,
556                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
557                     VPlan &Plan);
558 
559   /// Handle all cross-iteration phis in the header.
560   void fixCrossIterationPHIs(VPTransformState &State);
561 
562   /// Create the exit value of first order recurrences in the middle block and
563   /// update their users.
564   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
565                                VPTransformState &State);
566 
567   /// Create code for the loop exit value of the reduction.
568   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
569 
570   /// Clear NSW/NUW flags from reduction instructions if necessary.
571   void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
572                                VPTransformState &State);
573 
574   /// Iteratively sink the scalarized operands of a predicated instruction into
575   /// the block that was created for it.
576   void sinkScalarOperands(Instruction *PredInst);
577 
578   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
579   /// represented as.
580   void truncateToMinimalBitwidths(VPTransformState &State);
581 
582   /// Returns (and creates if needed) the original loop trip count.
583   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
584 
585   /// Returns (and creates if needed) the trip count of the widened loop.
586   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
587 
588   /// Returns a bitcasted value to the requested vector type.
589   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
590   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
591                                 const DataLayout &DL);
592 
593   /// Emit a bypass check to see if the vector trip count is zero, including if
594   /// it overflows.
595   void emitIterationCountCheck(BasicBlock *Bypass);
596 
597   /// Emit a bypass check to see if all of the SCEV assumptions we've
598   /// had to make are correct. Returns the block containing the checks or
599   /// nullptr if no checks have been added.
600   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
601 
602   /// Emit bypass checks to check any memory assumptions we may have made.
603   /// Returns the block containing the checks or nullptr if no checks have been
604   /// added.
605   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
606 
607   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
608   /// vector loop preheader, middle block and scalar preheader.
609   void createVectorLoopSkeleton(StringRef Prefix);
610 
611   /// Create new phi nodes for the induction variables to resume iteration count
612   /// in the scalar epilogue, from where the vectorized loop left off.
613   /// In cases where the loop skeleton is more complicated (eg. epilogue
614   /// vectorization) and the resume values can come from an additional bypass
615   /// block, the \p AdditionalBypass pair provides information about the bypass
616   /// block and the end value on the edge from bypass to this loop.
617   void createInductionResumeValues(
618       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
619 
620   /// Complete the loop skeleton by adding debug MDs, creating appropriate
621   /// conditional branches in the middle block, preparing the builder and
622   /// running the verifier. Return the preheader of the completed vector loop.
623   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
624 
625   /// Add additional metadata to \p To that was not present on \p Orig.
626   ///
627   /// Currently this is used to add the noalias annotations based on the
628   /// inserted memchecks.  Use this for instructions that are *cloned* into the
629   /// vector loop.
630   void addNewMetadata(Instruction *To, const Instruction *Orig);
631 
632   /// Collect poison-generating recipes that may generate a poison value that is
633   /// used after vectorization, even when their operands are not poison. Those
634   /// recipes meet the following conditions:
635   ///  * Contribute to the address computation of a recipe generating a widen
636   ///    memory load/store (VPWidenMemoryInstructionRecipe or
637   ///    VPInterleaveRecipe).
638   ///  * Such a widen memory load/store has at least one underlying Instruction
639   ///    that is in a basic block that needs predication and after vectorization
640   ///    the generated instruction won't be predicated.
641   void collectPoisonGeneratingRecipes(VPTransformState &State);
642 
643   /// Allow subclasses to override and print debug traces before/after vplan
644   /// execution, when trace information is requested.
645   virtual void printDebugTracesAtStart(){};
646   virtual void printDebugTracesAtEnd(){};
647 
648   /// The original loop.
649   Loop *OrigLoop;
650 
651   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
652   /// dynamic knowledge to simplify SCEV expressions and converts them to a
653   /// more usable form.
654   PredicatedScalarEvolution &PSE;
655 
656   /// Loop Info.
657   LoopInfo *LI;
658 
659   /// Dominator Tree.
660   DominatorTree *DT;
661 
662   /// Alias Analysis.
663   AAResults *AA;
664 
665   /// Target Library Info.
666   const TargetLibraryInfo *TLI;
667 
668   /// Target Transform Info.
669   const TargetTransformInfo *TTI;
670 
671   /// Assumption Cache.
672   AssumptionCache *AC;
673 
674   /// Interface to emit optimization remarks.
675   OptimizationRemarkEmitter *ORE;
676 
677   /// LoopVersioning.  It's only set up (non-null) if memchecks were
678   /// used.
679   ///
680   /// This is currently only used to add no-alias metadata based on the
681   /// memchecks.  The actually versioning is performed manually.
682   std::unique_ptr<LoopVersioning> LVer;
683 
684   /// The vectorization SIMD factor to use. Each vector will have this many
685   /// vector elements.
686   ElementCount VF;
687 
688   /// The vectorization unroll factor to use. Each scalar is vectorized to this
689   /// many different vector instructions.
690   unsigned UF;
691 
692   /// The builder that we use
693   IRBuilder<> Builder;
694 
695   // --- Vectorization state ---
696 
697   /// The vector-loop preheader.
698   BasicBlock *LoopVectorPreHeader;
699 
700   /// The scalar-loop preheader.
701   BasicBlock *LoopScalarPreHeader;
702 
703   /// Middle Block between the vector and the scalar.
704   BasicBlock *LoopMiddleBlock;
705 
706   /// The unique ExitBlock of the scalar loop if one exists.  Note that
707   /// there can be multiple exiting edges reaching this block.
708   BasicBlock *LoopExitBlock;
709 
710   /// The scalar loop body.
711   BasicBlock *LoopScalarBody;
712 
713   /// A list of all bypass blocks. The first block is the entry of the loop.
714   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
715 
716   /// Store instructions that were predicated.
717   SmallVector<Instruction *, 4> PredicatedInstructions;
718 
719   /// Trip count of the original loop.
720   Value *TripCount = nullptr;
721 
722   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
723   Value *VectorTripCount = nullptr;
724 
725   /// The legality analysis.
726   LoopVectorizationLegality *Legal;
727 
728   /// The profitablity analysis.
729   LoopVectorizationCostModel *Cost;
730 
731   // Record whether runtime checks are added.
732   bool AddedSafetyChecks = false;
733 
734   // Holds the end values for each induction variable. We save the end values
735   // so we can later fix-up the external users of the induction variables.
736   DenseMap<PHINode *, Value *> IVEndValues;
737 
738   /// BFI and PSI are used to check for profile guided size optimizations.
739   BlockFrequencyInfo *BFI;
740   ProfileSummaryInfo *PSI;
741 
742   // Whether this loop should be optimized for size based on profile guided size
743   // optimizatios.
744   bool OptForSizeBasedOnProfile;
745 
746   /// Structure to hold information about generated runtime checks, responsible
747   /// for cleaning the checks, if vectorization turns out unprofitable.
748   GeneratedRTChecks &RTChecks;
749 
750   // Holds the resume values for reductions in the loops, used to set the
751   // correct start value of reduction PHIs when vectorizing the epilogue.
752   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
753       ReductionResumeValues;
754 };
755 
756 class InnerLoopUnroller : public InnerLoopVectorizer {
757 public:
758   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
759                     LoopInfo *LI, DominatorTree *DT,
760                     const TargetLibraryInfo *TLI,
761                     const TargetTransformInfo *TTI, AssumptionCache *AC,
762                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
763                     LoopVectorizationLegality *LVL,
764                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
765                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
766       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
767                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
768                             BFI, PSI, Check) {}
769 
770 private:
771   Value *getBroadcastInstrs(Value *V) override;
772 };
773 
774 /// Encapsulate information regarding vectorization of a loop and its epilogue.
775 /// This information is meant to be updated and used across two stages of
776 /// epilogue vectorization.
777 struct EpilogueLoopVectorizationInfo {
778   ElementCount MainLoopVF = ElementCount::getFixed(0);
779   unsigned MainLoopUF = 0;
780   ElementCount EpilogueVF = ElementCount::getFixed(0);
781   unsigned EpilogueUF = 0;
782   BasicBlock *MainLoopIterationCountCheck = nullptr;
783   BasicBlock *EpilogueIterationCountCheck = nullptr;
784   BasicBlock *SCEVSafetyCheck = nullptr;
785   BasicBlock *MemSafetyCheck = nullptr;
786   Value *TripCount = nullptr;
787   Value *VectorTripCount = nullptr;
788 
789   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
790                                 ElementCount EVF, unsigned EUF)
791       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
792     assert(EUF == 1 &&
793            "A high UF for the epilogue loop is likely not beneficial.");
794   }
795 };
796 
797 /// An extension of the inner loop vectorizer that creates a skeleton for a
798 /// vectorized loop that has its epilogue (residual) also vectorized.
799 /// The idea is to run the vplan on a given loop twice, firstly to setup the
800 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
801 /// from the first step and vectorize the epilogue.  This is achieved by
802 /// deriving two concrete strategy classes from this base class and invoking
803 /// them in succession from the loop vectorizer planner.
804 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
805 public:
806   InnerLoopAndEpilogueVectorizer(
807       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
808       DominatorTree *DT, const TargetLibraryInfo *TLI,
809       const TargetTransformInfo *TTI, AssumptionCache *AC,
810       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
811       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
812       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
813       GeneratedRTChecks &Checks)
814       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
815                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
816                             Checks),
817         EPI(EPI) {}
818 
819   // Override this function to handle the more complex control flow around the
820   // three loops.
821   std::pair<BasicBlock *, Value *>
822   createVectorizedLoopSkeleton() final override {
823     return createEpilogueVectorizedLoopSkeleton();
824   }
825 
826   /// The interface for creating a vectorized skeleton using one of two
827   /// different strategies, each corresponding to one execution of the vplan
828   /// as described above.
829   virtual std::pair<BasicBlock *, Value *>
830   createEpilogueVectorizedLoopSkeleton() = 0;
831 
832   /// Holds and updates state information required to vectorize the main loop
833   /// and its epilogue in two separate passes. This setup helps us avoid
834   /// regenerating and recomputing runtime safety checks. It also helps us to
835   /// shorten the iteration-count-check path length for the cases where the
836   /// iteration count of the loop is so small that the main vector loop is
837   /// completely skipped.
838   EpilogueLoopVectorizationInfo &EPI;
839 };
840 
841 /// A specialized derived class of inner loop vectorizer that performs
842 /// vectorization of *main* loops in the process of vectorizing loops and their
843 /// epilogues.
844 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
845 public:
846   EpilogueVectorizerMainLoop(
847       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
848       DominatorTree *DT, const TargetLibraryInfo *TLI,
849       const TargetTransformInfo *TTI, AssumptionCache *AC,
850       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
851       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
852       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
853       GeneratedRTChecks &Check)
854       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
855                                        EPI, LVL, CM, BFI, PSI, Check) {}
856   /// Implements the interface for creating a vectorized skeleton using the
857   /// *main loop* strategy (ie the first pass of vplan execution).
858   std::pair<BasicBlock *, Value *>
859   createEpilogueVectorizedLoopSkeleton() final override;
860 
861 protected:
862   /// Emits an iteration count bypass check once for the main loop (when \p
863   /// ForEpilogue is false) and once for the epilogue loop (when \p
864   /// ForEpilogue is true).
865   BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
866   void printDebugTracesAtStart() override;
867   void printDebugTracesAtEnd() override;
868 };
869 
870 // A specialized derived class of inner loop vectorizer that performs
871 // vectorization of *epilogue* loops in the process of vectorizing loops and
872 // their epilogues.
873 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
874 public:
875   EpilogueVectorizerEpilogueLoop(
876       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
877       DominatorTree *DT, const TargetLibraryInfo *TLI,
878       const TargetTransformInfo *TTI, AssumptionCache *AC,
879       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
880       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
881       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
882       GeneratedRTChecks &Checks)
883       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
884                                        EPI, LVL, CM, BFI, PSI, Checks) {
885     TripCount = EPI.TripCount;
886   }
887   /// Implements the interface for creating a vectorized skeleton using the
888   /// *epilogue loop* strategy (ie the second pass of vplan execution).
889   std::pair<BasicBlock *, Value *>
890   createEpilogueVectorizedLoopSkeleton() final override;
891 
892 protected:
893   /// Emits an iteration count bypass check after the main vector loop has
894   /// finished to see if there are any iterations left to execute by either
895   /// the vector epilogue or the scalar epilogue.
896   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
897                                                       BasicBlock *Bypass,
898                                                       BasicBlock *Insert);
899   void printDebugTracesAtStart() override;
900   void printDebugTracesAtEnd() override;
901 };
902 } // end namespace llvm
903 
904 /// Look for a meaningful debug location on the instruction or it's
905 /// operands.
906 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
907   if (!I)
908     return I;
909 
910   DebugLoc Empty;
911   if (I->getDebugLoc() != Empty)
912     return I;
913 
914   for (Use &Op : I->operands()) {
915     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
916       if (OpInst->getDebugLoc() != Empty)
917         return OpInst;
918   }
919 
920   return I;
921 }
922 
923 void InnerLoopVectorizer::setDebugLocFromInst(
924     const Value *V) {
925   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
926     const DILocation *DIL = Inst->getDebugLoc();
927 
928     // When a FSDiscriminator is enabled, we don't need to add the multiply
929     // factors to the discriminators.
930     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
931         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
932       // FIXME: For scalable vectors, assume vscale=1.
933       auto NewDIL =
934           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
935       if (NewDIL)
936         Builder.SetCurrentDebugLocation(NewDIL.getValue());
937       else
938         LLVM_DEBUG(dbgs()
939                    << "Failed to create new discriminator: "
940                    << DIL->getFilename() << " Line: " << DIL->getLine());
941     } else
942       Builder.SetCurrentDebugLocation(DIL);
943   } else
944     Builder.SetCurrentDebugLocation(DebugLoc());
945 }
946 
947 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
948 /// is passed, the message relates to that particular instruction.
949 #ifndef NDEBUG
950 static void debugVectorizationMessage(const StringRef Prefix,
951                                       const StringRef DebugMsg,
952                                       Instruction *I) {
953   dbgs() << "LV: " << Prefix << DebugMsg;
954   if (I != nullptr)
955     dbgs() << " " << *I;
956   else
957     dbgs() << '.';
958   dbgs() << '\n';
959 }
960 #endif
961 
962 /// Create an analysis remark that explains why vectorization failed
963 ///
964 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
965 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
966 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
967 /// the location of the remark.  \return the remark object that can be
968 /// streamed to.
969 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
970     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
971   Value *CodeRegion = TheLoop->getHeader();
972   DebugLoc DL = TheLoop->getStartLoc();
973 
974   if (I) {
975     CodeRegion = I->getParent();
976     // If there is no debug location attached to the instruction, revert back to
977     // using the loop's.
978     if (I->getDebugLoc())
979       DL = I->getDebugLoc();
980   }
981 
982   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
983 }
984 
985 namespace llvm {
986 
987 /// Return a value for Step multiplied by VF.
988 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
989                        int64_t Step) {
990   assert(Ty->isIntegerTy() && "Expected an integer step");
991   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
992   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
993 }
994 
995 /// Return the runtime value for VF.
996 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
997   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
998   return VF.isScalable() ? B.CreateVScale(EC) : EC;
999 }
1000 
1001 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1002                                   ElementCount VF) {
1003   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1004   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1005   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1006   return B.CreateUIToFP(RuntimeVF, FTy);
1007 }
1008 
1009 void reportVectorizationFailure(const StringRef DebugMsg,
1010                                 const StringRef OREMsg, const StringRef ORETag,
1011                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1012                                 Instruction *I) {
1013   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1014   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1015   ORE->emit(
1016       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1017       << "loop not vectorized: " << OREMsg);
1018 }
1019 
1020 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1021                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1022                              Instruction *I) {
1023   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1024   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1025   ORE->emit(
1026       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1027       << Msg);
1028 }
1029 
1030 } // end namespace llvm
1031 
1032 #ifndef NDEBUG
1033 /// \return string containing a file name and a line # for the given loop.
1034 static std::string getDebugLocString(const Loop *L) {
1035   std::string Result;
1036   if (L) {
1037     raw_string_ostream OS(Result);
1038     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1039       LoopDbgLoc.print(OS);
1040     else
1041       // Just print the module name.
1042       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1043     OS.flush();
1044   }
1045   return Result;
1046 }
1047 #endif
1048 
1049 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1050                                          const Instruction *Orig) {
1051   // If the loop was versioned with memchecks, add the corresponding no-alias
1052   // metadata.
1053   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1054     LVer->annotateInstWithNoAlias(To, Orig);
1055 }
1056 
1057 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1058     VPTransformState &State) {
1059 
1060   // Collect recipes in the backward slice of `Root` that may generate a poison
1061   // value that is used after vectorization.
1062   SmallPtrSet<VPRecipeBase *, 16> Visited;
1063   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1064     SmallVector<VPRecipeBase *, 16> Worklist;
1065     Worklist.push_back(Root);
1066 
1067     // Traverse the backward slice of Root through its use-def chain.
1068     while (!Worklist.empty()) {
1069       VPRecipeBase *CurRec = Worklist.back();
1070       Worklist.pop_back();
1071 
1072       if (!Visited.insert(CurRec).second)
1073         continue;
1074 
1075       // Prune search if we find another recipe generating a widen memory
1076       // instruction. Widen memory instructions involved in address computation
1077       // will lead to gather/scatter instructions, which don't need to be
1078       // handled.
1079       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1080           isa<VPInterleaveRecipe>(CurRec) ||
1081           isa<VPScalarIVStepsRecipe>(CurRec) ||
1082           isa<VPCanonicalIVPHIRecipe>(CurRec))
1083         continue;
1084 
1085       // This recipe contributes to the address computation of a widen
1086       // load/store. Collect recipe if its underlying instruction has
1087       // poison-generating flags.
1088       Instruction *Instr = CurRec->getUnderlyingInstr();
1089       if (Instr && Instr->hasPoisonGeneratingFlags())
1090         State.MayGeneratePoisonRecipes.insert(CurRec);
1091 
1092       // Add new definitions to the worklist.
1093       for (VPValue *operand : CurRec->operands())
1094         if (VPDef *OpDef = operand->getDef())
1095           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1096     }
1097   });
1098 
1099   // Traverse all the recipes in the VPlan and collect the poison-generating
1100   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1101   // VPInterleaveRecipe.
1102   auto Iter = depth_first(
1103       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1104   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1105     for (VPRecipeBase &Recipe : *VPBB) {
1106       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1107         Instruction &UnderlyingInstr = WidenRec->getIngredient();
1108         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1109         if (AddrDef && WidenRec->isConsecutive() &&
1110             Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
1111           collectPoisonGeneratingInstrsInBackwardSlice(
1112               cast<VPRecipeBase>(AddrDef));
1113       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1114         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1115         if (AddrDef) {
1116           // Check if any member of the interleave group needs predication.
1117           const InterleaveGroup<Instruction> *InterGroup =
1118               InterleaveRec->getInterleaveGroup();
1119           bool NeedPredication = false;
1120           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1121                I < NumMembers; ++I) {
1122             Instruction *Member = InterGroup->getMember(I);
1123             if (Member)
1124               NeedPredication |=
1125                   Legal->blockNeedsPredication(Member->getParent());
1126           }
1127 
1128           if (NeedPredication)
1129             collectPoisonGeneratingInstrsInBackwardSlice(
1130                 cast<VPRecipeBase>(AddrDef));
1131         }
1132       }
1133     }
1134   }
1135 }
1136 
1137 void InnerLoopVectorizer::addMetadata(Instruction *To,
1138                                       Instruction *From) {
1139   propagateMetadata(To, From);
1140   addNewMetadata(To, From);
1141 }
1142 
1143 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1144                                       Instruction *From) {
1145   for (Value *V : To) {
1146     if (Instruction *I = dyn_cast<Instruction>(V))
1147       addMetadata(I, From);
1148   }
1149 }
1150 
1151 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1152     const RecurrenceDescriptor &RdxDesc) {
1153   auto It = ReductionResumeValues.find(&RdxDesc);
1154   assert(It != ReductionResumeValues.end() &&
1155          "Expected to find a resume value for the reduction.");
1156   return It->second;
1157 }
1158 
1159 namespace llvm {
1160 
1161 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1162 // lowered.
1163 enum ScalarEpilogueLowering {
1164 
1165   // The default: allowing scalar epilogues.
1166   CM_ScalarEpilogueAllowed,
1167 
1168   // Vectorization with OptForSize: don't allow epilogues.
1169   CM_ScalarEpilogueNotAllowedOptSize,
1170 
1171   // A special case of vectorisation with OptForSize: loops with a very small
1172   // trip count are considered for vectorization under OptForSize, thereby
1173   // making sure the cost of their loop body is dominant, free of runtime
1174   // guards and scalar iteration overheads.
1175   CM_ScalarEpilogueNotAllowedLowTripLoop,
1176 
1177   // Loop hint predicate indicating an epilogue is undesired.
1178   CM_ScalarEpilogueNotNeededUsePredicate,
1179 
1180   // Directive indicating we must either tail fold or not vectorize
1181   CM_ScalarEpilogueNotAllowedUsePredicate
1182 };
1183 
1184 /// ElementCountComparator creates a total ordering for ElementCount
1185 /// for the purposes of using it in a set structure.
1186 struct ElementCountComparator {
1187   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1188     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1189            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1190   }
1191 };
1192 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1193 
1194 /// LoopVectorizationCostModel - estimates the expected speedups due to
1195 /// vectorization.
1196 /// In many cases vectorization is not profitable. This can happen because of
1197 /// a number of reasons. In this class we mainly attempt to predict the
1198 /// expected speedup/slowdowns due to the supported instruction set. We use the
1199 /// TargetTransformInfo to query the different backends for the cost of
1200 /// different operations.
1201 class LoopVectorizationCostModel {
1202 public:
1203   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1204                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1205                              LoopVectorizationLegality *Legal,
1206                              const TargetTransformInfo &TTI,
1207                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1208                              AssumptionCache *AC,
1209                              OptimizationRemarkEmitter *ORE, const Function *F,
1210                              const LoopVectorizeHints *Hints,
1211                              InterleavedAccessInfo &IAI)
1212       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1213         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1214         Hints(Hints), InterleaveInfo(IAI) {}
1215 
1216   /// \return An upper bound for the vectorization factors (both fixed and
1217   /// scalable). If the factors are 0, vectorization and interleaving should be
1218   /// avoided up front.
1219   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1220 
1221   /// \return True if runtime checks are required for vectorization, and false
1222   /// otherwise.
1223   bool runtimeChecksRequired();
1224 
1225   /// \return The most profitable vectorization factor and the cost of that VF.
1226   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1227   /// then this vectorization factor will be selected if vectorization is
1228   /// possible.
1229   VectorizationFactor
1230   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1231 
1232   VectorizationFactor
1233   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1234                                     const LoopVectorizationPlanner &LVP);
1235 
1236   /// Setup cost-based decisions for user vectorization factor.
1237   /// \return true if the UserVF is a feasible VF to be chosen.
1238   bool selectUserVectorizationFactor(ElementCount UserVF) {
1239     collectUniformsAndScalars(UserVF);
1240     collectInstsToScalarize(UserVF);
1241     return expectedCost(UserVF).first.isValid();
1242   }
1243 
1244   /// \return The size (in bits) of the smallest and widest types in the code
1245   /// that needs to be vectorized. We ignore values that remain scalar such as
1246   /// 64 bit loop indices.
1247   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1248 
1249   /// \return The desired interleave count.
1250   /// If interleave count has been specified by metadata it will be returned.
1251   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1252   /// are the selected vectorization factor and the cost of the selected VF.
1253   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1254 
1255   /// Memory access instruction may be vectorized in more than one way.
1256   /// Form of instruction after vectorization depends on cost.
1257   /// This function takes cost-based decisions for Load/Store instructions
1258   /// and collects them in a map. This decisions map is used for building
1259   /// the lists of loop-uniform and loop-scalar instructions.
1260   /// The calculated cost is saved with widening decision in order to
1261   /// avoid redundant calculations.
1262   void setCostBasedWideningDecision(ElementCount VF);
1263 
1264   /// A struct that represents some properties of the register usage
1265   /// of a loop.
1266   struct RegisterUsage {
1267     /// Holds the number of loop invariant values that are used in the loop.
1268     /// The key is ClassID of target-provided register class.
1269     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1270     /// Holds the maximum number of concurrent live intervals in the loop.
1271     /// The key is ClassID of target-provided register class.
1272     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1273   };
1274 
1275   /// \return Returns information about the register usages of the loop for the
1276   /// given vectorization factors.
1277   SmallVector<RegisterUsage, 8>
1278   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1279 
1280   /// Collect values we want to ignore in the cost model.
1281   void collectValuesToIgnore();
1282 
1283   /// Collect all element types in the loop for which widening is needed.
1284   void collectElementTypesForWidening();
1285 
1286   /// Split reductions into those that happen in the loop, and those that happen
1287   /// outside. In loop reductions are collected into InLoopReductionChains.
1288   void collectInLoopReductions();
1289 
1290   /// Returns true if we should use strict in-order reductions for the given
1291   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1292   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1293   /// of FP operations.
1294   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
1295     return !Hints->allowReordering() && RdxDesc.isOrdered();
1296   }
1297 
1298   /// \returns The smallest bitwidth each instruction can be represented with.
1299   /// The vector equivalents of these instructions should be truncated to this
1300   /// type.
1301   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1302     return MinBWs;
1303   }
1304 
1305   /// \returns True if it is more profitable to scalarize instruction \p I for
1306   /// vectorization factor \p VF.
1307   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1308     assert(VF.isVector() &&
1309            "Profitable to scalarize relevant only for VF > 1.");
1310 
1311     // Cost model is not run in the VPlan-native path - return conservative
1312     // result until this changes.
1313     if (EnableVPlanNativePath)
1314       return false;
1315 
1316     auto Scalars = InstsToScalarize.find(VF);
1317     assert(Scalars != InstsToScalarize.end() &&
1318            "VF not yet analyzed for scalarization profitability");
1319     return Scalars->second.find(I) != Scalars->second.end();
1320   }
1321 
1322   /// Returns true if \p I is known to be uniform after vectorization.
1323   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1324     if (VF.isScalar())
1325       return true;
1326 
1327     // Cost model is not run in the VPlan-native path - return conservative
1328     // result until this changes.
1329     if (EnableVPlanNativePath)
1330       return false;
1331 
1332     auto UniformsPerVF = Uniforms.find(VF);
1333     assert(UniformsPerVF != Uniforms.end() &&
1334            "VF not yet analyzed for uniformity");
1335     return UniformsPerVF->second.count(I);
1336   }
1337 
1338   /// Returns true if \p I is known to be scalar after vectorization.
1339   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1340     if (VF.isScalar())
1341       return true;
1342 
1343     // Cost model is not run in the VPlan-native path - return conservative
1344     // result until this changes.
1345     if (EnableVPlanNativePath)
1346       return false;
1347 
1348     auto ScalarsPerVF = Scalars.find(VF);
1349     assert(ScalarsPerVF != Scalars.end() &&
1350            "Scalar values are not calculated for VF");
1351     return ScalarsPerVF->second.count(I);
1352   }
1353 
1354   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1355   /// for vectorization factor \p VF.
1356   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1357     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1358            !isProfitableToScalarize(I, VF) &&
1359            !isScalarAfterVectorization(I, VF);
1360   }
1361 
1362   /// Decision that was taken during cost calculation for memory instruction.
1363   enum InstWidening {
1364     CM_Unknown,
1365     CM_Widen,         // For consecutive accesses with stride +1.
1366     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1367     CM_Interleave,
1368     CM_GatherScatter,
1369     CM_Scalarize
1370   };
1371 
1372   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1373   /// instruction \p I and vector width \p VF.
1374   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1375                            InstructionCost Cost) {
1376     assert(VF.isVector() && "Expected VF >=2");
1377     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1378   }
1379 
1380   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1381   /// interleaving group \p Grp and vector width \p VF.
1382   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1383                            ElementCount VF, InstWidening W,
1384                            InstructionCost Cost) {
1385     assert(VF.isVector() && "Expected VF >=2");
1386     /// Broadcast this decicion to all instructions inside the group.
1387     /// But the cost will be assigned to one instruction only.
1388     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1389       if (auto *I = Grp->getMember(i)) {
1390         if (Grp->getInsertPos() == I)
1391           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1392         else
1393           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1394       }
1395     }
1396   }
1397 
1398   /// Return the cost model decision for the given instruction \p I and vector
1399   /// width \p VF. Return CM_Unknown if this instruction did not pass
1400   /// through the cost modeling.
1401   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1402     assert(VF.isVector() && "Expected VF to be a vector VF");
1403     // Cost model is not run in the VPlan-native path - return conservative
1404     // result until this changes.
1405     if (EnableVPlanNativePath)
1406       return CM_GatherScatter;
1407 
1408     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1409     auto Itr = WideningDecisions.find(InstOnVF);
1410     if (Itr == WideningDecisions.end())
1411       return CM_Unknown;
1412     return Itr->second.first;
1413   }
1414 
1415   /// Return the vectorization cost for the given instruction \p I and vector
1416   /// width \p VF.
1417   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1418     assert(VF.isVector() && "Expected VF >=2");
1419     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1420     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1421            "The cost is not calculated");
1422     return WideningDecisions[InstOnVF].second;
1423   }
1424 
1425   /// Return True if instruction \p I is an optimizable truncate whose operand
1426   /// is an induction variable. Such a truncate will be removed by adding a new
1427   /// induction variable with the destination type.
1428   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1429     // If the instruction is not a truncate, return false.
1430     auto *Trunc = dyn_cast<TruncInst>(I);
1431     if (!Trunc)
1432       return false;
1433 
1434     // Get the source and destination types of the truncate.
1435     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1436     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1437 
1438     // If the truncate is free for the given types, return false. Replacing a
1439     // free truncate with an induction variable would add an induction variable
1440     // update instruction to each iteration of the loop. We exclude from this
1441     // check the primary induction variable since it will need an update
1442     // instruction regardless.
1443     Value *Op = Trunc->getOperand(0);
1444     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1445       return false;
1446 
1447     // If the truncated value is not an induction variable, return false.
1448     return Legal->isInductionPhi(Op);
1449   }
1450 
1451   /// Collects the instructions to scalarize for each predicated instruction in
1452   /// the loop.
1453   void collectInstsToScalarize(ElementCount VF);
1454 
1455   /// Collect Uniform and Scalar values for the given \p VF.
1456   /// The sets depend on CM decision for Load/Store instructions
1457   /// that may be vectorized as interleave, gather-scatter or scalarized.
1458   void collectUniformsAndScalars(ElementCount VF) {
1459     // Do the analysis once.
1460     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1461       return;
1462     setCostBasedWideningDecision(VF);
1463     collectLoopUniforms(VF);
1464     collectLoopScalars(VF);
1465   }
1466 
1467   /// Returns true if the target machine supports masked store operation
1468   /// for the given \p DataType and kind of access to \p Ptr.
1469   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1470     return Legal->isConsecutivePtr(DataType, Ptr) &&
1471            TTI.isLegalMaskedStore(DataType, Alignment);
1472   }
1473 
1474   /// Returns true if the target machine supports masked load operation
1475   /// for the given \p DataType and kind of access to \p Ptr.
1476   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1477     return Legal->isConsecutivePtr(DataType, Ptr) &&
1478            TTI.isLegalMaskedLoad(DataType, Alignment);
1479   }
1480 
1481   /// Returns true if the target machine can represent \p V as a masked gather
1482   /// or scatter operation.
1483   bool isLegalGatherOrScatter(Value *V,
1484                               ElementCount VF = ElementCount::getFixed(1)) {
1485     bool LI = isa<LoadInst>(V);
1486     bool SI = isa<StoreInst>(V);
1487     if (!LI && !SI)
1488       return false;
1489     auto *Ty = getLoadStoreType(V);
1490     Align Align = getLoadStoreAlignment(V);
1491     if (VF.isVector())
1492       Ty = VectorType::get(Ty, VF);
1493     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1494            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1495   }
1496 
1497   /// Returns true if the target machine supports all of the reduction
1498   /// variables found for the given VF.
1499   bool canVectorizeReductions(ElementCount VF) const {
1500     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1501       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1502       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1503     }));
1504   }
1505 
1506   /// Returns true if \p I is an instruction that will be scalarized with
1507   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1508   /// instructions include conditional stores and instructions that may divide
1509   /// by zero.
1510   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1511 
1512   // Returns true if \p I is an instruction that will be predicated either
1513   // through scalar predication or masked load/store or masked gather/scatter.
1514   // \p VF is the vectorization factor that will be used to vectorize \p I.
1515   // Superset of instructions that return true for isScalarWithPredication.
1516   bool isPredicatedInst(Instruction *I, ElementCount VF,
1517                         bool IsKnownUniform = false) {
1518     // When we know the load is uniform and the original scalar loop was not
1519     // predicated we don't need to mark it as a predicated instruction. Any
1520     // vectorised blocks created when tail-folding are something artificial we
1521     // have introduced and we know there is always at least one active lane.
1522     // That's why we call Legal->blockNeedsPredication here because it doesn't
1523     // query tail-folding.
1524     if (IsKnownUniform && isa<LoadInst>(I) &&
1525         !Legal->blockNeedsPredication(I->getParent()))
1526       return false;
1527     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1528       return false;
1529     // Loads and stores that need some form of masked operation are predicated
1530     // instructions.
1531     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1532       return Legal->isMaskRequired(I);
1533     return isScalarWithPredication(I, VF);
1534   }
1535 
1536   /// Returns true if \p I is a memory instruction with consecutive memory
1537   /// access that can be widened.
1538   bool
1539   memoryInstructionCanBeWidened(Instruction *I,
1540                                 ElementCount VF = ElementCount::getFixed(1));
1541 
1542   /// Returns true if \p I is a memory instruction in an interleaved-group
1543   /// of memory accesses that can be vectorized with wide vector loads/stores
1544   /// and shuffles.
1545   bool
1546   interleavedAccessCanBeWidened(Instruction *I,
1547                                 ElementCount VF = ElementCount::getFixed(1));
1548 
1549   /// Check if \p Instr belongs to any interleaved access group.
1550   bool isAccessInterleaved(Instruction *Instr) {
1551     return InterleaveInfo.isInterleaved(Instr);
1552   }
1553 
1554   /// Get the interleaved access group that \p Instr belongs to.
1555   const InterleaveGroup<Instruction> *
1556   getInterleavedAccessGroup(Instruction *Instr) {
1557     return InterleaveInfo.getInterleaveGroup(Instr);
1558   }
1559 
1560   /// Returns true if we're required to use a scalar epilogue for at least
1561   /// the final iteration of the original loop.
1562   bool requiresScalarEpilogue(ElementCount VF) const {
1563     if (!isScalarEpilogueAllowed())
1564       return false;
1565     // If we might exit from anywhere but the latch, must run the exiting
1566     // iteration in scalar form.
1567     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1568       return true;
1569     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1570   }
1571 
1572   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1573   /// loop hint annotation.
1574   bool isScalarEpilogueAllowed() const {
1575     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1576   }
1577 
1578   /// Returns true if all loop blocks should be masked to fold tail loop.
1579   bool foldTailByMasking() const { return FoldTailByMasking; }
1580 
1581   /// Returns true if the instructions in this block requires predication
1582   /// for any reason, e.g. because tail folding now requires a predicate
1583   /// or because the block in the original loop was predicated.
1584   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1585     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1586   }
1587 
1588   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1589   /// nodes to the chain of instructions representing the reductions. Uses a
1590   /// MapVector to ensure deterministic iteration order.
1591   using ReductionChainMap =
1592       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1593 
1594   /// Return the chain of instructions representing an inloop reduction.
1595   const ReductionChainMap &getInLoopReductionChains() const {
1596     return InLoopReductionChains;
1597   }
1598 
1599   /// Returns true if the Phi is part of an inloop reduction.
1600   bool isInLoopReduction(PHINode *Phi) const {
1601     return InLoopReductionChains.count(Phi);
1602   }
1603 
1604   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1605   /// with factor VF.  Return the cost of the instruction, including
1606   /// scalarization overhead if it's needed.
1607   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1608 
1609   /// Estimate cost of a call instruction CI if it were vectorized with factor
1610   /// VF. Return the cost of the instruction, including scalarization overhead
1611   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1612   /// scalarized -
1613   /// i.e. either vector version isn't available, or is too expensive.
1614   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1615                                     bool &NeedToScalarize) const;
1616 
1617   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1618   /// that of B.
1619   bool isMoreProfitable(const VectorizationFactor &A,
1620                         const VectorizationFactor &B) const;
1621 
1622   /// Invalidates decisions already taken by the cost model.
1623   void invalidateCostModelingDecisions() {
1624     WideningDecisions.clear();
1625     Uniforms.clear();
1626     Scalars.clear();
1627   }
1628 
1629 private:
1630   unsigned NumPredStores = 0;
1631 
1632   /// Convenience function that returns the value of vscale_range iff
1633   /// vscale_range.min == vscale_range.max or otherwise returns the value
1634   /// returned by the corresponding TLI method.
1635   Optional<unsigned> getVScaleForTuning() const;
1636 
1637   /// \return An upper bound for the vectorization factors for both
1638   /// fixed and scalable vectorization, where the minimum-known number of
1639   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1640   /// disabled or unsupported, then the scalable part will be equal to
1641   /// ElementCount::getScalable(0).
1642   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1643                                            ElementCount UserVF,
1644                                            bool FoldTailByMasking);
1645 
1646   /// \return the maximized element count based on the targets vector
1647   /// registers and the loop trip-count, but limited to a maximum safe VF.
1648   /// This is a helper function of computeFeasibleMaxVF.
1649   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1650                                        unsigned SmallestType,
1651                                        unsigned WidestType,
1652                                        ElementCount MaxSafeVF,
1653                                        bool FoldTailByMasking);
1654 
1655   /// \return the maximum legal scalable VF, based on the safe max number
1656   /// of elements.
1657   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1658 
1659   /// The vectorization cost is a combination of the cost itself and a boolean
1660   /// indicating whether any of the contributing operations will actually
1661   /// operate on vector values after type legalization in the backend. If this
1662   /// latter value is false, then all operations will be scalarized (i.e. no
1663   /// vectorization has actually taken place).
1664   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1665 
1666   /// Returns the expected execution cost. The unit of the cost does
1667   /// not matter because we use the 'cost' units to compare different
1668   /// vector widths. The cost that is returned is *not* normalized by
1669   /// the factor width. If \p Invalid is not nullptr, this function
1670   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1671   /// each instruction that has an Invalid cost for the given VF.
1672   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1673   VectorizationCostTy
1674   expectedCost(ElementCount VF,
1675                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1676 
1677   /// Returns the execution time cost of an instruction for a given vector
1678   /// width. Vector width of one means scalar.
1679   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1680 
1681   /// The cost-computation logic from getInstructionCost which provides
1682   /// the vector type as an output parameter.
1683   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1684                                      Type *&VectorTy);
1685 
1686   /// Return the cost of instructions in an inloop reduction pattern, if I is
1687   /// part of that pattern.
1688   Optional<InstructionCost>
1689   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1690                           TTI::TargetCostKind CostKind);
1691 
1692   /// Calculate vectorization cost of memory instruction \p I.
1693   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost computation for scalarized memory instruction.
1696   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1697 
1698   /// The cost computation for interleaving group of memory instructions.
1699   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for Gather/Scatter instruction.
1702   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1703 
1704   /// The cost computation for widening instruction \p I with consecutive
1705   /// memory access.
1706   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1709   /// Load: scalar load + broadcast.
1710   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1711   /// element)
1712   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1713 
1714   /// Estimate the overhead of scalarizing an instruction. This is a
1715   /// convenience wrapper for the type-based getScalarizationOverhead API.
1716   InstructionCost getScalarizationOverhead(Instruction *I,
1717                                            ElementCount VF) const;
1718 
1719   /// Returns whether the instruction is a load or store and will be a emitted
1720   /// as a vector operation.
1721   bool isConsecutiveLoadOrStore(Instruction *I);
1722 
1723   /// Returns true if an artificially high cost for emulated masked memrefs
1724   /// should be used.
1725   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1726 
1727   /// Map of scalar integer values to the smallest bitwidth they can be legally
1728   /// represented as. The vector equivalents of these values should be truncated
1729   /// to this type.
1730   MapVector<Instruction *, uint64_t> MinBWs;
1731 
1732   /// A type representing the costs for instructions if they were to be
1733   /// scalarized rather than vectorized. The entries are Instruction-Cost
1734   /// pairs.
1735   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1736 
1737   /// A set containing all BasicBlocks that are known to present after
1738   /// vectorization as a predicated block.
1739   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1740 
1741   /// Records whether it is allowed to have the original scalar loop execute at
1742   /// least once. This may be needed as a fallback loop in case runtime
1743   /// aliasing/dependence checks fail, or to handle the tail/remainder
1744   /// iterations when the trip count is unknown or doesn't divide by the VF,
1745   /// or as a peel-loop to handle gaps in interleave-groups.
1746   /// Under optsize and when the trip count is very small we don't allow any
1747   /// iterations to execute in the scalar loop.
1748   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1749 
1750   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1751   bool FoldTailByMasking = false;
1752 
1753   /// A map holding scalar costs for different vectorization factors. The
1754   /// presence of a cost for an instruction in the mapping indicates that the
1755   /// instruction will be scalarized when vectorizing with the associated
1756   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1757   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1758 
1759   /// Holds the instructions known to be uniform after vectorization.
1760   /// The data is collected per VF.
1761   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1762 
1763   /// Holds the instructions known to be scalar after vectorization.
1764   /// The data is collected per VF.
1765   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1766 
1767   /// Holds the instructions (address computations) that are forced to be
1768   /// scalarized.
1769   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1770 
1771   /// PHINodes of the reductions that should be expanded in-loop along with
1772   /// their associated chains of reduction operations, in program order from top
1773   /// (PHI) to bottom
1774   ReductionChainMap InLoopReductionChains;
1775 
1776   /// A Map of inloop reduction operations and their immediate chain operand.
1777   /// FIXME: This can be removed once reductions can be costed correctly in
1778   /// vplan. This was added to allow quick lookup to the inloop operations,
1779   /// without having to loop through InLoopReductionChains.
1780   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1781 
1782   /// Returns the expected difference in cost from scalarizing the expression
1783   /// feeding a predicated instruction \p PredInst. The instructions to
1784   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1785   /// non-negative return value implies the expression will be scalarized.
1786   /// Currently, only single-use chains are considered for scalarization.
1787   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1788                               ElementCount VF);
1789 
1790   /// Collect the instructions that are uniform after vectorization. An
1791   /// instruction is uniform if we represent it with a single scalar value in
1792   /// the vectorized loop corresponding to each vector iteration. Examples of
1793   /// uniform instructions include pointer operands of consecutive or
1794   /// interleaved memory accesses. Note that although uniformity implies an
1795   /// instruction will be scalar, the reverse is not true. In general, a
1796   /// scalarized instruction will be represented by VF scalar values in the
1797   /// vectorized loop, each corresponding to an iteration of the original
1798   /// scalar loop.
1799   void collectLoopUniforms(ElementCount VF);
1800 
1801   /// Collect the instructions that are scalar after vectorization. An
1802   /// instruction is scalar if it is known to be uniform or will be scalarized
1803   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1804   /// to the list if they are used by a load/store instruction that is marked as
1805   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1806   /// VF values in the vectorized loop, each corresponding to an iteration of
1807   /// the original scalar loop.
1808   void collectLoopScalars(ElementCount VF);
1809 
1810   /// Keeps cost model vectorization decision and cost for instructions.
1811   /// Right now it is used for memory instructions only.
1812   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1813                                 std::pair<InstWidening, InstructionCost>>;
1814 
1815   DecisionList WideningDecisions;
1816 
1817   /// Returns true if \p V is expected to be vectorized and it needs to be
1818   /// extracted.
1819   bool needsExtract(Value *V, ElementCount VF) const {
1820     Instruction *I = dyn_cast<Instruction>(V);
1821     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1822         TheLoop->isLoopInvariant(I))
1823       return false;
1824 
1825     // Assume we can vectorize V (and hence we need extraction) if the
1826     // scalars are not computed yet. This can happen, because it is called
1827     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1828     // the scalars are collected. That should be a safe assumption in most
1829     // cases, because we check if the operands have vectorizable types
1830     // beforehand in LoopVectorizationLegality.
1831     return Scalars.find(VF) == Scalars.end() ||
1832            !isScalarAfterVectorization(I, VF);
1833   };
1834 
1835   /// Returns a range containing only operands needing to be extracted.
1836   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1837                                                    ElementCount VF) const {
1838     return SmallVector<Value *, 4>(make_filter_range(
1839         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1840   }
1841 
1842   /// Determines if we have the infrastructure to vectorize loop \p L and its
1843   /// epilogue, assuming the main loop is vectorized by \p VF.
1844   bool isCandidateForEpilogueVectorization(const Loop &L,
1845                                            const ElementCount VF) const;
1846 
1847   /// Returns true if epilogue vectorization is considered profitable, and
1848   /// false otherwise.
1849   /// \p VF is the vectorization factor chosen for the original loop.
1850   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1851 
1852 public:
1853   /// The loop that we evaluate.
1854   Loop *TheLoop;
1855 
1856   /// Predicated scalar evolution analysis.
1857   PredicatedScalarEvolution &PSE;
1858 
1859   /// Loop Info analysis.
1860   LoopInfo *LI;
1861 
1862   /// Vectorization legality.
1863   LoopVectorizationLegality *Legal;
1864 
1865   /// Vector target information.
1866   const TargetTransformInfo &TTI;
1867 
1868   /// Target Library Info.
1869   const TargetLibraryInfo *TLI;
1870 
1871   /// Demanded bits analysis.
1872   DemandedBits *DB;
1873 
1874   /// Assumption cache.
1875   AssumptionCache *AC;
1876 
1877   /// Interface to emit optimization remarks.
1878   OptimizationRemarkEmitter *ORE;
1879 
1880   const Function *TheFunction;
1881 
1882   /// Loop Vectorize Hint.
1883   const LoopVectorizeHints *Hints;
1884 
1885   /// The interleave access information contains groups of interleaved accesses
1886   /// with the same stride and close to each other.
1887   InterleavedAccessInfo &InterleaveInfo;
1888 
1889   /// Values to ignore in the cost model.
1890   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1891 
1892   /// Values to ignore in the cost model when VF > 1.
1893   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1894 
1895   /// All element types found in the loop.
1896   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1897 
1898   /// Profitable vector factors.
1899   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1900 };
1901 } // end namespace llvm
1902 
1903 /// Helper struct to manage generating runtime checks for vectorization.
1904 ///
1905 /// The runtime checks are created up-front in temporary blocks to allow better
1906 /// estimating the cost and un-linked from the existing IR. After deciding to
1907 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1908 /// temporary blocks are completely removed.
1909 class GeneratedRTChecks {
1910   /// Basic block which contains the generated SCEV checks, if any.
1911   BasicBlock *SCEVCheckBlock = nullptr;
1912 
1913   /// The value representing the result of the generated SCEV checks. If it is
1914   /// nullptr, either no SCEV checks have been generated or they have been used.
1915   Value *SCEVCheckCond = nullptr;
1916 
1917   /// Basic block which contains the generated memory runtime checks, if any.
1918   BasicBlock *MemCheckBlock = nullptr;
1919 
1920   /// The value representing the result of the generated memory runtime checks.
1921   /// If it is nullptr, either no memory runtime checks have been generated or
1922   /// they have been used.
1923   Value *MemRuntimeCheckCond = nullptr;
1924 
1925   DominatorTree *DT;
1926   LoopInfo *LI;
1927 
1928   SCEVExpander SCEVExp;
1929   SCEVExpander MemCheckExp;
1930 
1931 public:
1932   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1933                     const DataLayout &DL)
1934       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1935         MemCheckExp(SE, DL, "scev.check") {}
1936 
1937   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1938   /// accurately estimate the cost of the runtime checks. The blocks are
1939   /// un-linked from the IR and is added back during vector code generation. If
1940   /// there is no vector code generation, the check blocks are removed
1941   /// completely.
1942   void Create(Loop *L, const LoopAccessInfo &LAI,
1943               const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1944 
1945     BasicBlock *LoopHeader = L->getHeader();
1946     BasicBlock *Preheader = L->getLoopPreheader();
1947 
1948     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1949     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1950     // may be used by SCEVExpander. The blocks will be un-linked from their
1951     // predecessors and removed from LI & DT at the end of the function.
1952     if (!UnionPred.isAlwaysTrue()) {
1953       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1954                                   nullptr, "vector.scevcheck");
1955 
1956       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1957           &UnionPred, SCEVCheckBlock->getTerminator());
1958     }
1959 
1960     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1961     if (RtPtrChecking.Need) {
1962       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1963       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1964                                  "vector.memcheck");
1965 
1966       auto DiffChecks = RtPtrChecking.getDiffChecks();
1967       if (DiffChecks) {
1968         MemRuntimeCheckCond = addDiffRuntimeChecks(
1969             MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp,
1970             [VF](IRBuilderBase &B, unsigned Bits) {
1971               return getRuntimeVF(B, B.getIntNTy(Bits), VF);
1972             },
1973             IC);
1974       } else {
1975         MemRuntimeCheckCond =
1976             addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1977                              RtPtrChecking.getChecks(), MemCheckExp);
1978       }
1979       assert(MemRuntimeCheckCond &&
1980              "no RT checks generated although RtPtrChecking "
1981              "claimed checks are required");
1982     }
1983 
1984     if (!MemCheckBlock && !SCEVCheckBlock)
1985       return;
1986 
1987     // Unhook the temporary block with the checks, update various places
1988     // accordingly.
1989     if (SCEVCheckBlock)
1990       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1991     if (MemCheckBlock)
1992       MemCheckBlock->replaceAllUsesWith(Preheader);
1993 
1994     if (SCEVCheckBlock) {
1995       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1996       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1997       Preheader->getTerminator()->eraseFromParent();
1998     }
1999     if (MemCheckBlock) {
2000       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2001       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2002       Preheader->getTerminator()->eraseFromParent();
2003     }
2004 
2005     DT->changeImmediateDominator(LoopHeader, Preheader);
2006     if (MemCheckBlock) {
2007       DT->eraseNode(MemCheckBlock);
2008       LI->removeBlock(MemCheckBlock);
2009     }
2010     if (SCEVCheckBlock) {
2011       DT->eraseNode(SCEVCheckBlock);
2012       LI->removeBlock(SCEVCheckBlock);
2013     }
2014   }
2015 
2016   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2017   /// unused.
2018   ~GeneratedRTChecks() {
2019     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2020     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2021     if (!SCEVCheckCond)
2022       SCEVCleaner.markResultUsed();
2023 
2024     if (!MemRuntimeCheckCond)
2025       MemCheckCleaner.markResultUsed();
2026 
2027     if (MemRuntimeCheckCond) {
2028       auto &SE = *MemCheckExp.getSE();
2029       // Memory runtime check generation creates compares that use expanded
2030       // values. Remove them before running the SCEVExpanderCleaners.
2031       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2032         if (MemCheckExp.isInsertedInstruction(&I))
2033           continue;
2034         SE.forgetValue(&I);
2035         I.eraseFromParent();
2036       }
2037     }
2038     MemCheckCleaner.cleanup();
2039     SCEVCleaner.cleanup();
2040 
2041     if (SCEVCheckCond)
2042       SCEVCheckBlock->eraseFromParent();
2043     if (MemRuntimeCheckCond)
2044       MemCheckBlock->eraseFromParent();
2045   }
2046 
2047   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2048   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2049   /// depending on the generated condition.
2050   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2051                              BasicBlock *LoopVectorPreHeader,
2052                              BasicBlock *LoopExitBlock) {
2053     if (!SCEVCheckCond)
2054       return nullptr;
2055 
2056     Value *Cond = SCEVCheckCond;
2057     // Mark the check as used, to prevent it from being removed during cleanup.
2058     SCEVCheckCond = nullptr;
2059     if (auto *C = dyn_cast<ConstantInt>(Cond))
2060       if (C->isZero())
2061         return nullptr;
2062 
2063     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2064 
2065     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2066     // Create new preheader for vector loop.
2067     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2068       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2069 
2070     SCEVCheckBlock->getTerminator()->eraseFromParent();
2071     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2072     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2073                                                 SCEVCheckBlock);
2074 
2075     DT->addNewBlock(SCEVCheckBlock, Pred);
2076     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2077 
2078     ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
2079                         BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
2080     return SCEVCheckBlock;
2081   }
2082 
2083   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2084   /// the branches to branch to the vector preheader or \p Bypass, depending on
2085   /// the generated condition.
2086   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2087                                    BasicBlock *LoopVectorPreHeader) {
2088     // Check if we generated code that checks in runtime if arrays overlap.
2089     if (!MemRuntimeCheckCond)
2090       return nullptr;
2091 
2092     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2093     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2094                                                 MemCheckBlock);
2095 
2096     DT->addNewBlock(MemCheckBlock, Pred);
2097     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2098     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2099 
2100     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2101       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2102 
2103     ReplaceInstWithInst(
2104         MemCheckBlock->getTerminator(),
2105         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2106     MemCheckBlock->getTerminator()->setDebugLoc(
2107         Pred->getTerminator()->getDebugLoc());
2108 
2109     // Mark the check as used, to prevent it from being removed during cleanup.
2110     MemRuntimeCheckCond = nullptr;
2111     return MemCheckBlock;
2112   }
2113 };
2114 
2115 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2116 // vectorization. The loop needs to be annotated with #pragma omp simd
2117 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2118 // vector length information is not provided, vectorization is not considered
2119 // explicit. Interleave hints are not allowed either. These limitations will be
2120 // relaxed in the future.
2121 // Please, note that we are currently forced to abuse the pragma 'clang
2122 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2123 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2124 // provides *explicit vectorization hints* (LV can bypass legal checks and
2125 // assume that vectorization is legal). However, both hints are implemented
2126 // using the same metadata (llvm.loop.vectorize, processed by
2127 // LoopVectorizeHints). This will be fixed in the future when the native IR
2128 // representation for pragma 'omp simd' is introduced.
2129 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2130                                    OptimizationRemarkEmitter *ORE) {
2131   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2132   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2133 
2134   // Only outer loops with an explicit vectorization hint are supported.
2135   // Unannotated outer loops are ignored.
2136   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2137     return false;
2138 
2139   Function *Fn = OuterLp->getHeader()->getParent();
2140   if (!Hints.allowVectorization(Fn, OuterLp,
2141                                 true /*VectorizeOnlyWhenForced*/)) {
2142     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2143     return false;
2144   }
2145 
2146   if (Hints.getInterleave() > 1) {
2147     // TODO: Interleave support is future work.
2148     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2149                          "outer loops.\n");
2150     Hints.emitRemarkWithHints();
2151     return false;
2152   }
2153 
2154   return true;
2155 }
2156 
2157 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2158                                   OptimizationRemarkEmitter *ORE,
2159                                   SmallVectorImpl<Loop *> &V) {
2160   // Collect inner loops and outer loops without irreducible control flow. For
2161   // now, only collect outer loops that have explicit vectorization hints. If we
2162   // are stress testing the VPlan H-CFG construction, we collect the outermost
2163   // loop of every loop nest.
2164   if (L.isInnermost() || VPlanBuildStressTest ||
2165       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2166     LoopBlocksRPO RPOT(&L);
2167     RPOT.perform(LI);
2168     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2169       V.push_back(&L);
2170       // TODO: Collect inner loops inside marked outer loops in case
2171       // vectorization fails for the outer loop. Do not invoke
2172       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2173       // already known to be reducible. We can use an inherited attribute for
2174       // that.
2175       return;
2176     }
2177   }
2178   for (Loop *InnerL : L)
2179     collectSupportedLoops(*InnerL, LI, ORE, V);
2180 }
2181 
2182 namespace {
2183 
2184 /// The LoopVectorize Pass.
2185 struct LoopVectorize : public FunctionPass {
2186   /// Pass identification, replacement for typeid
2187   static char ID;
2188 
2189   LoopVectorizePass Impl;
2190 
2191   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2192                          bool VectorizeOnlyWhenForced = false)
2193       : FunctionPass(ID),
2194         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2195     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2196   }
2197 
2198   bool runOnFunction(Function &F) override {
2199     if (skipFunction(F))
2200       return false;
2201 
2202     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2203     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2204     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2205     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2206     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2207     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2208     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2209     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2210     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2211     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2212     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2213     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2214     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2215 
2216     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2217         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2218 
2219     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2220                         GetLAA, *ORE, PSI).MadeAnyChange;
2221   }
2222 
2223   void getAnalysisUsage(AnalysisUsage &AU) const override {
2224     AU.addRequired<AssumptionCacheTracker>();
2225     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2226     AU.addRequired<DominatorTreeWrapperPass>();
2227     AU.addRequired<LoopInfoWrapperPass>();
2228     AU.addRequired<ScalarEvolutionWrapperPass>();
2229     AU.addRequired<TargetTransformInfoWrapperPass>();
2230     AU.addRequired<AAResultsWrapperPass>();
2231     AU.addRequired<LoopAccessLegacyAnalysis>();
2232     AU.addRequired<DemandedBitsWrapperPass>();
2233     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2234     AU.addRequired<InjectTLIMappingsLegacy>();
2235 
2236     // We currently do not preserve loopinfo/dominator analyses with outer loop
2237     // vectorization. Until this is addressed, mark these analyses as preserved
2238     // only for non-VPlan-native path.
2239     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2240     if (!EnableVPlanNativePath) {
2241       AU.addPreserved<LoopInfoWrapperPass>();
2242       AU.addPreserved<DominatorTreeWrapperPass>();
2243     }
2244 
2245     AU.addPreserved<BasicAAWrapperPass>();
2246     AU.addPreserved<GlobalsAAWrapperPass>();
2247     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2248   }
2249 };
2250 
2251 } // end anonymous namespace
2252 
2253 //===----------------------------------------------------------------------===//
2254 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2255 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2256 //===----------------------------------------------------------------------===//
2257 
2258 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2259   // We need to place the broadcast of invariant variables outside the loop,
2260   // but only if it's proven safe to do so. Else, broadcast will be inside
2261   // vector loop body.
2262   Instruction *Instr = dyn_cast<Instruction>(V);
2263   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2264                      (!Instr ||
2265                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2266   // Place the code for broadcasting invariant variables in the new preheader.
2267   IRBuilder<>::InsertPointGuard Guard(Builder);
2268   if (SafeToHoist)
2269     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2270 
2271   // Broadcast the scalar into all locations in the vector.
2272   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2273 
2274   return Shuf;
2275 }
2276 
2277 /// This function adds
2278 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2279 /// to each vector element of Val. The sequence starts at StartIndex.
2280 /// \p Opcode is relevant for FP induction variable.
2281 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2282                             Instruction::BinaryOps BinOp, ElementCount VF,
2283                             IRBuilderBase &Builder) {
2284   assert(VF.isVector() && "only vector VFs are supported");
2285 
2286   // Create and check the types.
2287   auto *ValVTy = cast<VectorType>(Val->getType());
2288   ElementCount VLen = ValVTy->getElementCount();
2289 
2290   Type *STy = Val->getType()->getScalarType();
2291   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2292          "Induction Step must be an integer or FP");
2293   assert(Step->getType() == STy && "Step has wrong type");
2294 
2295   SmallVector<Constant *, 8> Indices;
2296 
2297   // Create a vector of consecutive numbers from zero to VF.
2298   VectorType *InitVecValVTy = ValVTy;
2299   if (STy->isFloatingPointTy()) {
2300     Type *InitVecValSTy =
2301         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2302     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2303   }
2304   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2305 
2306   // Splat the StartIdx
2307   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2308 
2309   if (STy->isIntegerTy()) {
2310     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2311     Step = Builder.CreateVectorSplat(VLen, Step);
2312     assert(Step->getType() == Val->getType() && "Invalid step vec");
2313     // FIXME: The newly created binary instructions should contain nsw/nuw
2314     // flags, which can be found from the original scalar operations.
2315     Step = Builder.CreateMul(InitVec, Step);
2316     return Builder.CreateAdd(Val, Step, "induction");
2317   }
2318 
2319   // Floating point induction.
2320   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2321          "Binary Opcode should be specified for FP induction");
2322   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2323   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2324 
2325   Step = Builder.CreateVectorSplat(VLen, Step);
2326   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2327   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2328 }
2329 
2330 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2331 /// variable on which to base the steps, \p Step is the size of the step.
2332 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2333                              const InductionDescriptor &ID, VPValue *Def,
2334                              VPTransformState &State) {
2335   IRBuilderBase &Builder = State.Builder;
2336   // We shouldn't have to build scalar steps if we aren't vectorizing.
2337   assert(State.VF.isVector() && "VF should be greater than one");
2338   // Get the value type and ensure it and the step have the same integer type.
2339   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2340   assert(ScalarIVTy == Step->getType() &&
2341          "Val and Step should have the same type");
2342 
2343   // We build scalar steps for both integer and floating-point induction
2344   // variables. Here, we determine the kind of arithmetic we will perform.
2345   Instruction::BinaryOps AddOp;
2346   Instruction::BinaryOps MulOp;
2347   if (ScalarIVTy->isIntegerTy()) {
2348     AddOp = Instruction::Add;
2349     MulOp = Instruction::Mul;
2350   } else {
2351     AddOp = ID.getInductionOpcode();
2352     MulOp = Instruction::FMul;
2353   }
2354 
2355   // Determine the number of scalars we need to generate for each unroll
2356   // iteration.
2357   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2358   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2359   // Compute the scalar steps and save the results in State.
2360   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2361                                      ScalarIVTy->getScalarSizeInBits());
2362   Type *VecIVTy = nullptr;
2363   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2364   if (!FirstLaneOnly && State.VF.isScalable()) {
2365     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2366     UnitStepVec =
2367         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2368     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2369     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2370   }
2371 
2372   for (unsigned Part = 0; Part < State.UF; ++Part) {
2373     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2374 
2375     if (!FirstLaneOnly && State.VF.isScalable()) {
2376       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2377       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2378       if (ScalarIVTy->isFloatingPointTy())
2379         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2380       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2381       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2382       State.set(Def, Add, Part);
2383       // It's useful to record the lane values too for the known minimum number
2384       // of elements so we do those below. This improves the code quality when
2385       // trying to extract the first element, for example.
2386     }
2387 
2388     if (ScalarIVTy->isFloatingPointTy())
2389       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2390 
2391     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2392       Value *StartIdx = Builder.CreateBinOp(
2393           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2394       // The step returned by `createStepForVF` is a runtime-evaluated value
2395       // when VF is scalable. Otherwise, it should be folded into a Constant.
2396       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2397              "Expected StartIdx to be folded to a constant when VF is not "
2398              "scalable");
2399       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2400       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2401       State.set(Def, Add, VPIteration(Part, Lane));
2402     }
2403   }
2404 }
2405 
2406 // Generate code for the induction step. Note that induction steps are
2407 // required to be loop-invariant
2408 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2409                               Instruction *InsertBefore,
2410                               Loop *OrigLoop = nullptr) {
2411   const DataLayout &DL = SE.getDataLayout();
2412   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2413          "Induction step should be loop invariant");
2414   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2415     return E->getValue();
2416 
2417   SCEVExpander Exp(SE, DL, "induction");
2418   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2419 }
2420 
2421 /// Compute the transformed value of Index at offset StartValue using step
2422 /// StepValue.
2423 /// For integer induction, returns StartValue + Index * StepValue.
2424 /// For pointer induction, returns StartValue[Index * StepValue].
2425 /// FIXME: The newly created binary instructions should contain nsw/nuw
2426 /// flags, which can be found from the original scalar operations.
2427 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2428                                    Value *StartValue, Value *Step,
2429                                    const InductionDescriptor &ID) {
2430   assert(Index->getType()->getScalarType() == Step->getType() &&
2431          "Index scalar type does not match StepValue type");
2432 
2433   // Note: the IR at this point is broken. We cannot use SE to create any new
2434   // SCEV and then expand it, hoping that SCEV's simplification will give us
2435   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2436   // lead to various SCEV crashes. So all we can do is to use builder and rely
2437   // on InstCombine for future simplifications. Here we handle some trivial
2438   // cases only.
2439   auto CreateAdd = [&B](Value *X, Value *Y) {
2440     assert(X->getType() == Y->getType() && "Types don't match!");
2441     if (auto *CX = dyn_cast<ConstantInt>(X))
2442       if (CX->isZero())
2443         return Y;
2444     if (auto *CY = dyn_cast<ConstantInt>(Y))
2445       if (CY->isZero())
2446         return X;
2447     return B.CreateAdd(X, Y);
2448   };
2449 
2450   // We allow X to be a vector type, in which case Y will potentially be
2451   // splatted into a vector with the same element count.
2452   auto CreateMul = [&B](Value *X, Value *Y) {
2453     assert(X->getType()->getScalarType() == Y->getType() &&
2454            "Types don't match!");
2455     if (auto *CX = dyn_cast<ConstantInt>(X))
2456       if (CX->isOne())
2457         return Y;
2458     if (auto *CY = dyn_cast<ConstantInt>(Y))
2459       if (CY->isOne())
2460         return X;
2461     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2462     if (XVTy && !isa<VectorType>(Y->getType()))
2463       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2464     return B.CreateMul(X, Y);
2465   };
2466 
2467   switch (ID.getKind()) {
2468   case InductionDescriptor::IK_IntInduction: {
2469     assert(!isa<VectorType>(Index->getType()) &&
2470            "Vector indices not supported for integer inductions yet");
2471     assert(Index->getType() == StartValue->getType() &&
2472            "Index type does not match StartValue type");
2473     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2474       return B.CreateSub(StartValue, Index);
2475     auto *Offset = CreateMul(Index, Step);
2476     return CreateAdd(StartValue, Offset);
2477   }
2478   case InductionDescriptor::IK_PtrInduction: {
2479     assert(isa<Constant>(Step) &&
2480            "Expected constant step for pointer induction");
2481     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2482   }
2483   case InductionDescriptor::IK_FpInduction: {
2484     assert(!isa<VectorType>(Index->getType()) &&
2485            "Vector indices not supported for FP inductions yet");
2486     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2487     auto InductionBinOp = ID.getInductionBinOp();
2488     assert(InductionBinOp &&
2489            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2490             InductionBinOp->getOpcode() == Instruction::FSub) &&
2491            "Original bin op should be defined for FP induction");
2492 
2493     Value *MulExp = B.CreateFMul(Step, Index);
2494     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2495                          "induction");
2496   }
2497   case InductionDescriptor::IK_NoInduction:
2498     return nullptr;
2499   }
2500   llvm_unreachable("invalid enum");
2501 }
2502 
2503 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2504                                                     const VPIteration &Instance,
2505                                                     VPTransformState &State) {
2506   Value *ScalarInst = State.get(Def, Instance);
2507   Value *VectorValue = State.get(Def, Instance.Part);
2508   VectorValue = Builder.CreateInsertElement(
2509       VectorValue, ScalarInst,
2510       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2511   State.set(Def, VectorValue, Instance.Part);
2512 }
2513 
2514 // Return whether we allow using masked interleave-groups (for dealing with
2515 // strided loads/stores that reside in predicated blocks, or for dealing
2516 // with gaps).
2517 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2518   // If an override option has been passed in for interleaved accesses, use it.
2519   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2520     return EnableMaskedInterleavedMemAccesses;
2521 
2522   return TTI.enableMaskedInterleavedAccessVectorization();
2523 }
2524 
2525 // Try to vectorize the interleave group that \p Instr belongs to.
2526 //
2527 // E.g. Translate following interleaved load group (factor = 3):
2528 //   for (i = 0; i < N; i+=3) {
2529 //     R = Pic[i];             // Member of index 0
2530 //     G = Pic[i+1];           // Member of index 1
2531 //     B = Pic[i+2];           // Member of index 2
2532 //     ... // do something to R, G, B
2533 //   }
2534 // To:
2535 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2536 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2537 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2538 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2539 //
2540 // Or translate following interleaved store group (factor = 3):
2541 //   for (i = 0; i < N; i+=3) {
2542 //     ... do something to R, G, B
2543 //     Pic[i]   = R;           // Member of index 0
2544 //     Pic[i+1] = G;           // Member of index 1
2545 //     Pic[i+2] = B;           // Member of index 2
2546 //   }
2547 // To:
2548 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2549 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2550 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2551 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2552 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2553 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2554     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2555     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2556     VPValue *BlockInMask) {
2557   Instruction *Instr = Group->getInsertPos();
2558   const DataLayout &DL = Instr->getModule()->getDataLayout();
2559 
2560   // Prepare for the vector type of the interleaved load/store.
2561   Type *ScalarTy = getLoadStoreType(Instr);
2562   unsigned InterleaveFactor = Group->getFactor();
2563   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2564   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2565 
2566   // Prepare for the new pointers.
2567   SmallVector<Value *, 2> AddrParts;
2568   unsigned Index = Group->getIndex(Instr);
2569 
2570   // TODO: extend the masked interleaved-group support to reversed access.
2571   assert((!BlockInMask || !Group->isReverse()) &&
2572          "Reversed masked interleave-group not supported.");
2573 
2574   // If the group is reverse, adjust the index to refer to the last vector lane
2575   // instead of the first. We adjust the index from the first vector lane,
2576   // rather than directly getting the pointer for lane VF - 1, because the
2577   // pointer operand of the interleaved access is supposed to be uniform. For
2578   // uniform instructions, we're only required to generate a value for the
2579   // first vector lane in each unroll iteration.
2580   if (Group->isReverse())
2581     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2582 
2583   for (unsigned Part = 0; Part < UF; Part++) {
2584     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2585     setDebugLocFromInst(AddrPart);
2586 
2587     // Notice current instruction could be any index. Need to adjust the address
2588     // to the member of index 0.
2589     //
2590     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2591     //       b = A[i];       // Member of index 0
2592     // Current pointer is pointed to A[i+1], adjust it to A[i].
2593     //
2594     // E.g.  A[i+1] = a;     // Member of index 1
2595     //       A[i]   = b;     // Member of index 0
2596     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2597     // Current pointer is pointed to A[i+2], adjust it to A[i].
2598 
2599     bool InBounds = false;
2600     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2601       InBounds = gep->isInBounds();
2602     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2603     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2604 
2605     // Cast to the vector pointer type.
2606     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2607     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2608     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2609   }
2610 
2611   setDebugLocFromInst(Instr);
2612   Value *PoisonVec = PoisonValue::get(VecTy);
2613 
2614   Value *MaskForGaps = nullptr;
2615   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2616     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2617     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2618   }
2619 
2620   // Vectorize the interleaved load group.
2621   if (isa<LoadInst>(Instr)) {
2622     // For each unroll part, create a wide load for the group.
2623     SmallVector<Value *, 2> NewLoads;
2624     for (unsigned Part = 0; Part < UF; Part++) {
2625       Instruction *NewLoad;
2626       if (BlockInMask || MaskForGaps) {
2627         assert(useMaskedInterleavedAccesses(*TTI) &&
2628                "masked interleaved groups are not allowed.");
2629         Value *GroupMask = MaskForGaps;
2630         if (BlockInMask) {
2631           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2632           Value *ShuffledMask = Builder.CreateShuffleVector(
2633               BlockInMaskPart,
2634               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2635               "interleaved.mask");
2636           GroupMask = MaskForGaps
2637                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2638                                                 MaskForGaps)
2639                           : ShuffledMask;
2640         }
2641         NewLoad =
2642             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2643                                      GroupMask, PoisonVec, "wide.masked.vec");
2644       }
2645       else
2646         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2647                                             Group->getAlign(), "wide.vec");
2648       Group->addMetadata(NewLoad);
2649       NewLoads.push_back(NewLoad);
2650     }
2651 
2652     // For each member in the group, shuffle out the appropriate data from the
2653     // wide loads.
2654     unsigned J = 0;
2655     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2656       Instruction *Member = Group->getMember(I);
2657 
2658       // Skip the gaps in the group.
2659       if (!Member)
2660         continue;
2661 
2662       auto StrideMask =
2663           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2664       for (unsigned Part = 0; Part < UF; Part++) {
2665         Value *StridedVec = Builder.CreateShuffleVector(
2666             NewLoads[Part], StrideMask, "strided.vec");
2667 
2668         // If this member has different type, cast the result type.
2669         if (Member->getType() != ScalarTy) {
2670           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2671           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2672           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2673         }
2674 
2675         if (Group->isReverse())
2676           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2677 
2678         State.set(VPDefs[J], StridedVec, Part);
2679       }
2680       ++J;
2681     }
2682     return;
2683   }
2684 
2685   // The sub vector type for current instruction.
2686   auto *SubVT = VectorType::get(ScalarTy, VF);
2687 
2688   // Vectorize the interleaved store group.
2689   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2690   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2691          "masked interleaved groups are not allowed.");
2692   assert((!MaskForGaps || !VF.isScalable()) &&
2693          "masking gaps for scalable vectors is not yet supported.");
2694   for (unsigned Part = 0; Part < UF; Part++) {
2695     // Collect the stored vector from each member.
2696     SmallVector<Value *, 4> StoredVecs;
2697     for (unsigned i = 0; i < InterleaveFactor; i++) {
2698       assert((Group->getMember(i) || MaskForGaps) &&
2699              "Fail to get a member from an interleaved store group");
2700       Instruction *Member = Group->getMember(i);
2701 
2702       // Skip the gaps in the group.
2703       if (!Member) {
2704         Value *Undef = PoisonValue::get(SubVT);
2705         StoredVecs.push_back(Undef);
2706         continue;
2707       }
2708 
2709       Value *StoredVec = State.get(StoredValues[i], Part);
2710 
2711       if (Group->isReverse())
2712         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2713 
2714       // If this member has different type, cast it to a unified type.
2715 
2716       if (StoredVec->getType() != SubVT)
2717         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2718 
2719       StoredVecs.push_back(StoredVec);
2720     }
2721 
2722     // Concatenate all vectors into a wide vector.
2723     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2724 
2725     // Interleave the elements in the wide vector.
2726     Value *IVec = Builder.CreateShuffleVector(
2727         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2728         "interleaved.vec");
2729 
2730     Instruction *NewStoreInstr;
2731     if (BlockInMask || MaskForGaps) {
2732       Value *GroupMask = MaskForGaps;
2733       if (BlockInMask) {
2734         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2735         Value *ShuffledMask = Builder.CreateShuffleVector(
2736             BlockInMaskPart,
2737             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2738             "interleaved.mask");
2739         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2740                                                       ShuffledMask, MaskForGaps)
2741                                 : ShuffledMask;
2742       }
2743       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2744                                                 Group->getAlign(), GroupMask);
2745     } else
2746       NewStoreInstr =
2747           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2748 
2749     Group->addMetadata(NewStoreInstr);
2750   }
2751 }
2752 
2753 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2754                                                VPReplicateRecipe *RepRecipe,
2755                                                const VPIteration &Instance,
2756                                                bool IfPredicateInstr,
2757                                                VPTransformState &State) {
2758   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2759 
2760   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2761   // the first lane and part.
2762   if (isa<NoAliasScopeDeclInst>(Instr))
2763     if (!Instance.isFirstIteration())
2764       return;
2765 
2766   // Does this instruction return a value ?
2767   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2768 
2769   Instruction *Cloned = Instr->clone();
2770   if (!IsVoidRetTy)
2771     Cloned->setName(Instr->getName() + ".cloned");
2772 
2773   // If the scalarized instruction contributes to the address computation of a
2774   // widen masked load/store which was in a basic block that needed predication
2775   // and is not predicated after vectorization, we can't propagate
2776   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2777   // instruction could feed a poison value to the base address of the widen
2778   // load/store.
2779   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2780     Cloned->dropPoisonGeneratingFlags();
2781 
2782   if (Instr->getDebugLoc())
2783     setDebugLocFromInst(Instr);
2784 
2785   // Replace the operands of the cloned instructions with their scalar
2786   // equivalents in the new loop.
2787   for (auto &I : enumerate(RepRecipe->operands())) {
2788     auto InputInstance = Instance;
2789     VPValue *Operand = I.value();
2790     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2791     if (OperandR && OperandR->isUniform())
2792       InputInstance.Lane = VPLane::getFirstLane();
2793     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2794   }
2795   addNewMetadata(Cloned, Instr);
2796 
2797   // Place the cloned scalar in the new loop.
2798   State.Builder.Insert(Cloned);
2799 
2800   State.set(RepRecipe, Cloned, Instance);
2801 
2802   // If we just cloned a new assumption, add it the assumption cache.
2803   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2804     AC->registerAssumption(II);
2805 
2806   // End if-block.
2807   if (IfPredicateInstr)
2808     PredicatedInstructions.push_back(Cloned);
2809 }
2810 
2811 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2812   if (TripCount)
2813     return TripCount;
2814 
2815   assert(InsertBlock);
2816   IRBuilder<> Builder(InsertBlock->getTerminator());
2817   // Find the loop boundaries.
2818   ScalarEvolution *SE = PSE.getSE();
2819   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2820   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2821          "Invalid loop count");
2822 
2823   Type *IdxTy = Legal->getWidestInductionType();
2824   assert(IdxTy && "No type for induction");
2825 
2826   // The exit count might have the type of i64 while the phi is i32. This can
2827   // happen if we have an induction variable that is sign extended before the
2828   // compare. The only way that we get a backedge taken count is that the
2829   // induction variable was signed and as such will not overflow. In such a case
2830   // truncation is legal.
2831   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2832       IdxTy->getPrimitiveSizeInBits())
2833     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2834   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2835 
2836   // Get the total trip count from the count by adding 1.
2837   const SCEV *ExitCount = SE->getAddExpr(
2838       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2839 
2840   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2841 
2842   // Expand the trip count and place the new instructions in the preheader.
2843   // Notice that the pre-header does not change, only the loop body.
2844   SCEVExpander Exp(*SE, DL, "induction");
2845 
2846   // Count holds the overall loop count (N).
2847   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2848                                 InsertBlock->getTerminator());
2849 
2850   if (TripCount->getType()->isPointerTy())
2851     TripCount =
2852         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2853                                     InsertBlock->getTerminator());
2854 
2855   return TripCount;
2856 }
2857 
2858 Value *
2859 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2860   if (VectorTripCount)
2861     return VectorTripCount;
2862 
2863   Value *TC = getOrCreateTripCount(InsertBlock);
2864   IRBuilder<> Builder(InsertBlock->getTerminator());
2865 
2866   Type *Ty = TC->getType();
2867   // This is where we can make the step a runtime constant.
2868   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2869 
2870   // If the tail is to be folded by masking, round the number of iterations N
2871   // up to a multiple of Step instead of rounding down. This is done by first
2872   // adding Step-1 and then rounding down. Note that it's ok if this addition
2873   // overflows: the vector induction variable will eventually wrap to zero given
2874   // that it starts at zero and its Step is a power of two; the loop will then
2875   // exit, with the last early-exit vector comparison also producing all-true.
2876   // For scalable vectors the VF is not guaranteed to be a power of 2, but this
2877   // is accounted for in emitIterationCountCheck that adds an overflow check.
2878   if (Cost->foldTailByMasking()) {
2879     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2880            "VF*UF must be a power of 2 when folding tail by masking");
2881     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2882     TC = Builder.CreateAdd(
2883         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2884   }
2885 
2886   // Now we need to generate the expression for the part of the loop that the
2887   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2888   // iterations are not required for correctness, or N - Step, otherwise. Step
2889   // is equal to the vectorization factor (number of SIMD elements) times the
2890   // unroll factor (number of SIMD instructions).
2891   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2892 
2893   // There are cases where we *must* run at least one iteration in the remainder
2894   // loop.  See the cost model for when this can happen.  If the step evenly
2895   // divides the trip count, we set the remainder to be equal to the step. If
2896   // the step does not evenly divide the trip count, no adjustment is necessary
2897   // since there will already be scalar iterations. Note that the minimum
2898   // iterations check ensures that N >= Step.
2899   if (Cost->requiresScalarEpilogue(VF)) {
2900     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2901     R = Builder.CreateSelect(IsZero, Step, R);
2902   }
2903 
2904   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2905 
2906   return VectorTripCount;
2907 }
2908 
2909 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2910                                                    const DataLayout &DL) {
2911   // Verify that V is a vector type with same number of elements as DstVTy.
2912   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2913   unsigned VF = DstFVTy->getNumElements();
2914   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2915   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2916   Type *SrcElemTy = SrcVecTy->getElementType();
2917   Type *DstElemTy = DstFVTy->getElementType();
2918   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2919          "Vector elements must have same size");
2920 
2921   // Do a direct cast if element types are castable.
2922   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2923     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2924   }
2925   // V cannot be directly casted to desired vector type.
2926   // May happen when V is a floating point vector but DstVTy is a vector of
2927   // pointers or vice-versa. Handle this using a two-step bitcast using an
2928   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2929   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2930          "Only one type should be a pointer type");
2931   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2932          "Only one type should be a floating point type");
2933   Type *IntTy =
2934       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2935   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2936   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2937   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2938 }
2939 
2940 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
2941   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2942   // Reuse existing vector loop preheader for TC checks.
2943   // Note that new preheader block is generated for vector loop.
2944   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2945   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2946 
2947   // Generate code to check if the loop's trip count is less than VF * UF, or
2948   // equal to it in case a scalar epilogue is required; this implies that the
2949   // vector trip count is zero. This check also covers the case where adding one
2950   // to the backedge-taken count overflowed leading to an incorrect trip count
2951   // of zero. In this case we will also jump to the scalar loop.
2952   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2953                                             : ICmpInst::ICMP_ULT;
2954 
2955   // If tail is to be folded, vector loop takes care of all iterations.
2956   Type *CountTy = Count->getType();
2957   Value *CheckMinIters = Builder.getFalse();
2958   Value *Step = createStepForVF(Builder, CountTy, VF, UF);
2959   if (!Cost->foldTailByMasking())
2960     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2961   else if (VF.isScalable()) {
2962     // vscale is not necessarily a power-of-2, which means we cannot guarantee
2963     // an overflow to zero when updating induction variables and so an
2964     // additional overflow check is required before entering the vector loop.
2965 
2966     // Get the maximum unsigned value for the type.
2967     Value *MaxUIntTripCount =
2968         ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2969     Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2970 
2971     // Don't execute the vector loop if (UMax - n) < (VF * UF).
2972     CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step);
2973   }
2974   // Create new preheader for vector loop.
2975   LoopVectorPreHeader =
2976       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2977                  "vector.ph");
2978 
2979   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2980                                DT->getNode(Bypass)->getIDom()) &&
2981          "TC check is expected to dominate Bypass");
2982 
2983   // Update dominator for Bypass & LoopExit (if needed).
2984   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2985   if (!Cost->requiresScalarEpilogue(VF))
2986     // If there is an epilogue which must run, there's no edge from the
2987     // middle block to exit blocks  and thus no need to update the immediate
2988     // dominator of the exit blocks.
2989     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2990 
2991   ReplaceInstWithInst(
2992       TCCheckBlock->getTerminator(),
2993       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2994   LoopBypassBlocks.push_back(TCCheckBlock);
2995 }
2996 
2997 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
2998 
2999   BasicBlock *const SCEVCheckBlock =
3000       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3001   if (!SCEVCheckBlock)
3002     return nullptr;
3003 
3004   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3005            (OptForSizeBasedOnProfile &&
3006             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3007          "Cannot SCEV check stride or overflow when optimizing for size");
3008 
3009 
3010   // Update dominator only if this is first RT check.
3011   if (LoopBypassBlocks.empty()) {
3012     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3013     if (!Cost->requiresScalarEpilogue(VF))
3014       // If there is an epilogue which must run, there's no edge from the
3015       // middle block to exit blocks  and thus no need to update the immediate
3016       // dominator of the exit blocks.
3017       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3018   }
3019 
3020   LoopBypassBlocks.push_back(SCEVCheckBlock);
3021   AddedSafetyChecks = true;
3022   return SCEVCheckBlock;
3023 }
3024 
3025 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3026   // VPlan-native path does not do any analysis for runtime checks currently.
3027   if (EnableVPlanNativePath)
3028     return nullptr;
3029 
3030   BasicBlock *const MemCheckBlock =
3031       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3032 
3033   // Check if we generated code that checks in runtime if arrays overlap. We put
3034   // the checks into a separate block to make the more common case of few
3035   // elements faster.
3036   if (!MemCheckBlock)
3037     return nullptr;
3038 
3039   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3040     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3041            "Cannot emit memory checks when optimizing for size, unless forced "
3042            "to vectorize.");
3043     ORE->emit([&]() {
3044       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3045                                         OrigLoop->getStartLoc(),
3046                                         OrigLoop->getHeader())
3047              << "Code-size may be reduced by not forcing "
3048                 "vectorization, or by source-code modifications "
3049                 "eliminating the need for runtime checks "
3050                 "(e.g., adding 'restrict').";
3051     });
3052   }
3053 
3054   LoopBypassBlocks.push_back(MemCheckBlock);
3055 
3056   AddedSafetyChecks = true;
3057 
3058   // Only use noalias metadata when using memory checks guaranteeing no overlap
3059   // across all iterations.
3060   if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) {
3061     //  We currently don't use LoopVersioning for the actual loop cloning but we
3062     //  still use it to add the noalias metadata.
3063     LVer = std::make_unique<LoopVersioning>(
3064         *Legal->getLAI(),
3065         Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3066         DT, PSE.getSE());
3067     LVer->prepareNoAliasMetadata();
3068   }
3069   return MemCheckBlock;
3070 }
3071 
3072 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3073   LoopScalarBody = OrigLoop->getHeader();
3074   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3075   assert(LoopVectorPreHeader && "Invalid loop structure");
3076   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3077   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3078          "multiple exit loop without required epilogue?");
3079 
3080   LoopMiddleBlock =
3081       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3082                  LI, nullptr, Twine(Prefix) + "middle.block");
3083   LoopScalarPreHeader =
3084       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3085                  nullptr, Twine(Prefix) + "scalar.ph");
3086 
3087   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3088 
3089   // Set up the middle block terminator.  Two cases:
3090   // 1) If we know that we must execute the scalar epilogue, emit an
3091   //    unconditional branch.
3092   // 2) Otherwise, we must have a single unique exit block (due to how we
3093   //    implement the multiple exit case).  In this case, set up a conditonal
3094   //    branch from the middle block to the loop scalar preheader, and the
3095   //    exit block.  completeLoopSkeleton will update the condition to use an
3096   //    iteration check, if required to decide whether to execute the remainder.
3097   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3098     BranchInst::Create(LoopScalarPreHeader) :
3099     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3100                        Builder.getTrue());
3101   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3102   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3103 
3104   // Update dominator for loop exit. During skeleton creation, only the vector
3105   // pre-header and the middle block are created. The vector loop is entirely
3106   // created during VPlan exection.
3107   if (!Cost->requiresScalarEpilogue(VF))
3108     // If there is an epilogue which must run, there's no edge from the
3109     // middle block to exit blocks  and thus no need to update the immediate
3110     // dominator of the exit blocks.
3111     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3112 }
3113 
3114 void InnerLoopVectorizer::createInductionResumeValues(
3115     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3116   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3117           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3118          "Inconsistent information about additional bypass.");
3119 
3120   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3121   assert(VectorTripCount && "Expected valid arguments");
3122   // We are going to resume the execution of the scalar loop.
3123   // Go over all of the induction variables that we found and fix the
3124   // PHIs that are left in the scalar version of the loop.
3125   // The starting values of PHI nodes depend on the counter of the last
3126   // iteration in the vectorized loop.
3127   // If we come from a bypass edge then we need to start from the original
3128   // start value.
3129   Instruction *OldInduction = Legal->getPrimaryInduction();
3130   for (auto &InductionEntry : Legal->getInductionVars()) {
3131     PHINode *OrigPhi = InductionEntry.first;
3132     InductionDescriptor II = InductionEntry.second;
3133 
3134     // Create phi nodes to merge from the  backedge-taken check block.
3135     PHINode *BCResumeVal =
3136         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3137                         LoopScalarPreHeader->getTerminator());
3138     // Copy original phi DL over to the new one.
3139     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3140     Value *&EndValue = IVEndValues[OrigPhi];
3141     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3142     if (OrigPhi == OldInduction) {
3143       // We know what the end value is.
3144       EndValue = VectorTripCount;
3145     } else {
3146       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3147 
3148       // Fast-math-flags propagate from the original induction instruction.
3149       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3150         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3151 
3152       Type *StepType = II.getStep()->getType();
3153       Instruction::CastOps CastOp =
3154           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3155       Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc");
3156       Value *Step =
3157           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3158       EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3159       EndValue->setName("ind.end");
3160 
3161       // Compute the end value for the additional bypass (if applicable).
3162       if (AdditionalBypass.first) {
3163         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3164         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3165                                          StepType, true);
3166         Value *Step =
3167             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3168         VTC =
3169             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc");
3170         EndValueFromAdditionalBypass =
3171             emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3172         EndValueFromAdditionalBypass->setName("ind.end");
3173       }
3174     }
3175     // The new PHI merges the original incoming value, in case of a bypass,
3176     // or the value at the end of the vectorized loop.
3177     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3178 
3179     // Fix the scalar body counter (PHI node).
3180     // The old induction's phi node in the scalar body needs the truncated
3181     // value.
3182     for (BasicBlock *BB : LoopBypassBlocks)
3183       BCResumeVal->addIncoming(II.getStartValue(), BB);
3184 
3185     if (AdditionalBypass.first)
3186       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3187                                             EndValueFromAdditionalBypass);
3188 
3189     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3190   }
3191 }
3192 
3193 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3194   // The trip counts should be cached by now.
3195   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3196   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3197 
3198   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3199 
3200   // Add a check in the middle block to see if we have completed
3201   // all of the iterations in the first vector loop.  Three cases:
3202   // 1) If we require a scalar epilogue, there is no conditional branch as
3203   //    we unconditionally branch to the scalar preheader.  Do nothing.
3204   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3205   //    Thus if tail is to be folded, we know we don't need to run the
3206   //    remainder and we can use the previous value for the condition (true).
3207   // 3) Otherwise, construct a runtime check.
3208   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3209     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3210                                         Count, VectorTripCount, "cmp.n",
3211                                         LoopMiddleBlock->getTerminator());
3212 
3213     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3214     // of the corresponding compare because they may have ended up with
3215     // different line numbers and we want to avoid awkward line stepping while
3216     // debugging. Eg. if the compare has got a line number inside the loop.
3217     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3218     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3219   }
3220 
3221 #ifdef EXPENSIVE_CHECKS
3222   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3223 #endif
3224 
3225   return LoopVectorPreHeader;
3226 }
3227 
3228 std::pair<BasicBlock *, Value *>
3229 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3230   /*
3231    In this function we generate a new loop. The new loop will contain
3232    the vectorized instructions while the old loop will continue to run the
3233    scalar remainder.
3234 
3235        [ ] <-- loop iteration number check.
3236     /   |
3237    /    v
3238   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3239   |  /  |
3240   | /   v
3241   ||   [ ]     <-- vector pre header.
3242   |/    |
3243   |     v
3244   |    [  ] \
3245   |    [  ]_|   <-- vector loop (created during VPlan execution).
3246   |     |
3247   |     v
3248   \   -[ ]   <--- middle-block.
3249    \/   |
3250    /\   v
3251    | ->[ ]     <--- new preheader.
3252    |    |
3253  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3254    |   [ ] \
3255    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3256     \   |
3257      \  v
3258       >[ ]     <-- exit block(s).
3259    ...
3260    */
3261 
3262   // Get the metadata of the original loop before it gets modified.
3263   MDNode *OrigLoopID = OrigLoop->getLoopID();
3264 
3265   // Workaround!  Compute the trip count of the original loop and cache it
3266   // before we start modifying the CFG.  This code has a systemic problem
3267   // wherein it tries to run analysis over partially constructed IR; this is
3268   // wrong, and not simply for SCEV.  The trip count of the original loop
3269   // simply happens to be prone to hitting this in practice.  In theory, we
3270   // can hit the same issue for any SCEV, or ValueTracking query done during
3271   // mutation.  See PR49900.
3272   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3273 
3274   // Create an empty vector loop, and prepare basic blocks for the runtime
3275   // checks.
3276   createVectorLoopSkeleton("");
3277 
3278   // Now, compare the new count to zero. If it is zero skip the vector loop and
3279   // jump to the scalar loop. This check also covers the case where the
3280   // backedge-taken count is uint##_max: adding one to it will overflow leading
3281   // to an incorrect trip count of zero. In this (rare) case we will also jump
3282   // to the scalar loop.
3283   emitIterationCountCheck(LoopScalarPreHeader);
3284 
3285   // Generate the code to check any assumptions that we've made for SCEV
3286   // expressions.
3287   emitSCEVChecks(LoopScalarPreHeader);
3288 
3289   // Generate the code that checks in runtime if arrays overlap. We put the
3290   // checks into a separate block to make the more common case of few elements
3291   // faster.
3292   emitMemRuntimeChecks(LoopScalarPreHeader);
3293 
3294   // Emit phis for the new starting index of the scalar loop.
3295   createInductionResumeValues();
3296 
3297   return {completeLoopSkeleton(OrigLoopID), nullptr};
3298 }
3299 
3300 // Fix up external users of the induction variable. At this point, we are
3301 // in LCSSA form, with all external PHIs that use the IV having one input value,
3302 // coming from the remainder loop. We need those PHIs to also have a correct
3303 // value for the IV when arriving directly from the middle block.
3304 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3305                                        const InductionDescriptor &II,
3306                                        Value *VectorTripCount, Value *EndValue,
3307                                        BasicBlock *MiddleBlock,
3308                                        BasicBlock *VectorHeader, VPlan &Plan) {
3309   // There are two kinds of external IV usages - those that use the value
3310   // computed in the last iteration (the PHI) and those that use the penultimate
3311   // value (the value that feeds into the phi from the loop latch).
3312   // We allow both, but they, obviously, have different values.
3313 
3314   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3315 
3316   DenseMap<Value *, Value *> MissingVals;
3317 
3318   // An external user of the last iteration's value should see the value that
3319   // the remainder loop uses to initialize its own IV.
3320   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3321   for (User *U : PostInc->users()) {
3322     Instruction *UI = cast<Instruction>(U);
3323     if (!OrigLoop->contains(UI)) {
3324       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3325       MissingVals[UI] = EndValue;
3326     }
3327   }
3328 
3329   // An external user of the penultimate value need to see EndValue - Step.
3330   // The simplest way to get this is to recompute it from the constituent SCEVs,
3331   // that is Start + (Step * (CRD - 1)).
3332   for (User *U : OrigPhi->users()) {
3333     auto *UI = cast<Instruction>(U);
3334     if (!OrigLoop->contains(UI)) {
3335       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3336 
3337       IRBuilder<> B(MiddleBlock->getTerminator());
3338 
3339       // Fast-math-flags propagate from the original induction instruction.
3340       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3341         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3342 
3343       Value *CountMinusOne = B.CreateSub(
3344           VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
3345       Value *CMO =
3346           !II.getStep()->getType()->isIntegerTy()
3347               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3348                              II.getStep()->getType())
3349               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3350       CMO->setName("cast.cmo");
3351 
3352       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3353                                     VectorHeader->getTerminator());
3354       Value *Escape =
3355           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3356       Escape->setName("ind.escape");
3357       MissingVals[UI] = Escape;
3358     }
3359   }
3360 
3361   for (auto &I : MissingVals) {
3362     PHINode *PHI = cast<PHINode>(I.first);
3363     // One corner case we have to handle is two IVs "chasing" each-other,
3364     // that is %IV2 = phi [...], [ %IV1, %latch ]
3365     // In this case, if IV1 has an external use, we need to avoid adding both
3366     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3367     // don't already have an incoming value for the middle block.
3368     if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
3369       PHI->addIncoming(I.second, MiddleBlock);
3370       Plan.removeLiveOut(PHI);
3371     }
3372   }
3373 }
3374 
3375 namespace {
3376 
3377 struct CSEDenseMapInfo {
3378   static bool canHandle(const Instruction *I) {
3379     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3380            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3381   }
3382 
3383   static inline Instruction *getEmptyKey() {
3384     return DenseMapInfo<Instruction *>::getEmptyKey();
3385   }
3386 
3387   static inline Instruction *getTombstoneKey() {
3388     return DenseMapInfo<Instruction *>::getTombstoneKey();
3389   }
3390 
3391   static unsigned getHashValue(const Instruction *I) {
3392     assert(canHandle(I) && "Unknown instruction!");
3393     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3394                                                            I->value_op_end()));
3395   }
3396 
3397   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3398     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3399         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3400       return LHS == RHS;
3401     return LHS->isIdenticalTo(RHS);
3402   }
3403 };
3404 
3405 } // end anonymous namespace
3406 
3407 ///Perform cse of induction variable instructions.
3408 static void cse(BasicBlock *BB) {
3409   // Perform simple cse.
3410   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3411   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3412     if (!CSEDenseMapInfo::canHandle(&In))
3413       continue;
3414 
3415     // Check if we can replace this instruction with any of the
3416     // visited instructions.
3417     if (Instruction *V = CSEMap.lookup(&In)) {
3418       In.replaceAllUsesWith(V);
3419       In.eraseFromParent();
3420       continue;
3421     }
3422 
3423     CSEMap[&In] = &In;
3424   }
3425 }
3426 
3427 InstructionCost
3428 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3429                                               bool &NeedToScalarize) const {
3430   Function *F = CI->getCalledFunction();
3431   Type *ScalarRetTy = CI->getType();
3432   SmallVector<Type *, 4> Tys, ScalarTys;
3433   for (auto &ArgOp : CI->args())
3434     ScalarTys.push_back(ArgOp->getType());
3435 
3436   // Estimate cost of scalarized vector call. The source operands are assumed
3437   // to be vectors, so we need to extract individual elements from there,
3438   // execute VF scalar calls, and then gather the result into the vector return
3439   // value.
3440   InstructionCost ScalarCallCost =
3441       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3442   if (VF.isScalar())
3443     return ScalarCallCost;
3444 
3445   // Compute corresponding vector type for return value and arguments.
3446   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3447   for (Type *ScalarTy : ScalarTys)
3448     Tys.push_back(ToVectorTy(ScalarTy, VF));
3449 
3450   // Compute costs of unpacking argument values for the scalar calls and
3451   // packing the return values to a vector.
3452   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3453 
3454   InstructionCost Cost =
3455       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3456 
3457   // If we can't emit a vector call for this function, then the currently found
3458   // cost is the cost we need to return.
3459   NeedToScalarize = true;
3460   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3461   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3462 
3463   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3464     return Cost;
3465 
3466   // If the corresponding vector cost is cheaper, return its cost.
3467   InstructionCost VectorCallCost =
3468       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3469   if (VectorCallCost < Cost) {
3470     NeedToScalarize = false;
3471     Cost = VectorCallCost;
3472   }
3473   return Cost;
3474 }
3475 
3476 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3477   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3478     return Elt;
3479   return VectorType::get(Elt, VF);
3480 }
3481 
3482 InstructionCost
3483 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3484                                                    ElementCount VF) const {
3485   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3486   assert(ID && "Expected intrinsic call!");
3487   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3488   FastMathFlags FMF;
3489   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3490     FMF = FPMO->getFastMathFlags();
3491 
3492   SmallVector<const Value *> Arguments(CI->args());
3493   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3494   SmallVector<Type *> ParamTys;
3495   std::transform(FTy->param_begin(), FTy->param_end(),
3496                  std::back_inserter(ParamTys),
3497                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3498 
3499   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3500                                     dyn_cast<IntrinsicInst>(CI));
3501   return TTI.getIntrinsicInstrCost(CostAttrs,
3502                                    TargetTransformInfo::TCK_RecipThroughput);
3503 }
3504 
3505 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3506   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3507   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3508   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3509 }
3510 
3511 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3512   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3513   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3514   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3515 }
3516 
3517 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3518   // For every instruction `I` in MinBWs, truncate the operands, create a
3519   // truncated version of `I` and reextend its result. InstCombine runs
3520   // later and will remove any ext/trunc pairs.
3521   SmallPtrSet<Value *, 4> Erased;
3522   for (const auto &KV : Cost->getMinimalBitwidths()) {
3523     // If the value wasn't vectorized, we must maintain the original scalar
3524     // type. The absence of the value from State indicates that it
3525     // wasn't vectorized.
3526     // FIXME: Should not rely on getVPValue at this point.
3527     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3528     if (!State.hasAnyVectorValue(Def))
3529       continue;
3530     for (unsigned Part = 0; Part < UF; ++Part) {
3531       Value *I = State.get(Def, Part);
3532       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3533         continue;
3534       Type *OriginalTy = I->getType();
3535       Type *ScalarTruncatedTy =
3536           IntegerType::get(OriginalTy->getContext(), KV.second);
3537       auto *TruncatedTy = VectorType::get(
3538           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3539       if (TruncatedTy == OriginalTy)
3540         continue;
3541 
3542       IRBuilder<> B(cast<Instruction>(I));
3543       auto ShrinkOperand = [&](Value *V) -> Value * {
3544         if (auto *ZI = dyn_cast<ZExtInst>(V))
3545           if (ZI->getSrcTy() == TruncatedTy)
3546             return ZI->getOperand(0);
3547         return B.CreateZExtOrTrunc(V, TruncatedTy);
3548       };
3549 
3550       // The actual instruction modification depends on the instruction type,
3551       // unfortunately.
3552       Value *NewI = nullptr;
3553       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3554         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3555                              ShrinkOperand(BO->getOperand(1)));
3556 
3557         // Any wrapping introduced by shrinking this operation shouldn't be
3558         // considered undefined behavior. So, we can't unconditionally copy
3559         // arithmetic wrapping flags to NewI.
3560         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3561       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3562         NewI =
3563             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3564                          ShrinkOperand(CI->getOperand(1)));
3565       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3566         NewI = B.CreateSelect(SI->getCondition(),
3567                               ShrinkOperand(SI->getTrueValue()),
3568                               ShrinkOperand(SI->getFalseValue()));
3569       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3570         switch (CI->getOpcode()) {
3571         default:
3572           llvm_unreachable("Unhandled cast!");
3573         case Instruction::Trunc:
3574           NewI = ShrinkOperand(CI->getOperand(0));
3575           break;
3576         case Instruction::SExt:
3577           NewI = B.CreateSExtOrTrunc(
3578               CI->getOperand(0),
3579               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3580           break;
3581         case Instruction::ZExt:
3582           NewI = B.CreateZExtOrTrunc(
3583               CI->getOperand(0),
3584               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3585           break;
3586         }
3587       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3588         auto Elements0 =
3589             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3590         auto *O0 = B.CreateZExtOrTrunc(
3591             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3592         auto Elements1 =
3593             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3594         auto *O1 = B.CreateZExtOrTrunc(
3595             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3596 
3597         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3598       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3599         // Don't do anything with the operands, just extend the result.
3600         continue;
3601       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3602         auto Elements =
3603             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3604         auto *O0 = B.CreateZExtOrTrunc(
3605             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3606         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3607         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3608       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3609         auto Elements =
3610             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3611         auto *O0 = B.CreateZExtOrTrunc(
3612             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3613         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3614       } else {
3615         // If we don't know what to do, be conservative and don't do anything.
3616         continue;
3617       }
3618 
3619       // Lastly, extend the result.
3620       NewI->takeName(cast<Instruction>(I));
3621       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3622       I->replaceAllUsesWith(Res);
3623       cast<Instruction>(I)->eraseFromParent();
3624       Erased.insert(I);
3625       State.reset(Def, Res, Part);
3626     }
3627   }
3628 
3629   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3630   for (const auto &KV : Cost->getMinimalBitwidths()) {
3631     // If the value wasn't vectorized, we must maintain the original scalar
3632     // type. The absence of the value from State indicates that it
3633     // wasn't vectorized.
3634     // FIXME: Should not rely on getVPValue at this point.
3635     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3636     if (!State.hasAnyVectorValue(Def))
3637       continue;
3638     for (unsigned Part = 0; Part < UF; ++Part) {
3639       Value *I = State.get(Def, Part);
3640       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3641       if (Inst && Inst->use_empty()) {
3642         Value *NewI = Inst->getOperand(0);
3643         Inst->eraseFromParent();
3644         State.reset(Def, NewI, Part);
3645       }
3646     }
3647   }
3648 }
3649 
3650 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
3651                                             VPlan &Plan) {
3652   // Insert truncates and extends for any truncated instructions as hints to
3653   // InstCombine.
3654   if (VF.isVector())
3655     truncateToMinimalBitwidths(State);
3656 
3657   // Fix widened non-induction PHIs by setting up the PHI operands.
3658   if (EnableVPlanNativePath)
3659     fixNonInductionPHIs(Plan, State);
3660 
3661   // At this point every instruction in the original loop is widened to a
3662   // vector form. Now we need to fix the recurrences in the loop. These PHI
3663   // nodes are currently empty because we did not want to introduce cycles.
3664   // This is the second stage of vectorizing recurrences.
3665   fixCrossIterationPHIs(State);
3666 
3667   // Forget the original basic block.
3668   PSE.getSE()->forgetLoop(OrigLoop);
3669 
3670   VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
3671   Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
3672   if (Cost->requiresScalarEpilogue(VF)) {
3673     // No edge from the middle block to the unique exit block has been inserted
3674     // and there is nothing to fix from vector loop; phis should have incoming
3675     // from scalar loop only.
3676     Plan.clearLiveOuts();
3677   } else {
3678     // If we inserted an edge from the middle block to the unique exit block,
3679     // update uses outside the loop (phis) to account for the newly inserted
3680     // edge.
3681 
3682     // Fix-up external users of the induction variables.
3683     for (auto &Entry : Legal->getInductionVars())
3684       fixupIVUsers(Entry.first, Entry.second,
3685                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3686                    IVEndValues[Entry.first], LoopMiddleBlock,
3687                    VectorLoop->getHeader(), Plan);
3688   }
3689 
3690   // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
3691   // in the exit block, so update the builder.
3692   State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
3693   for (auto &KV : Plan.getLiveOuts())
3694     KV.second->fixPhi(Plan, State);
3695 
3696   for (Instruction *PI : PredicatedInstructions)
3697     sinkScalarOperands(&*PI);
3698 
3699   // Remove redundant induction instructions.
3700   cse(VectorLoop->getHeader());
3701 
3702   // Set/update profile weights for the vector and remainder loops as original
3703   // loop iterations are now distributed among them. Note that original loop
3704   // represented by LoopScalarBody becomes remainder loop after vectorization.
3705   //
3706   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3707   // end up getting slightly roughened result but that should be OK since
3708   // profile is not inherently precise anyway. Note also possible bypass of
3709   // vector code caused by legality checks is ignored, assigning all the weight
3710   // to the vector loop, optimistically.
3711   //
3712   // For scalable vectorization we can't know at compile time how many iterations
3713   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3714   // vscale of '1'.
3715   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3716                                LI->getLoopFor(LoopScalarBody),
3717                                VF.getKnownMinValue() * UF);
3718 }
3719 
3720 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3721   // In order to support recurrences we need to be able to vectorize Phi nodes.
3722   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3723   // stage #2: We now need to fix the recurrences by adding incoming edges to
3724   // the currently empty PHI nodes. At this point every instruction in the
3725   // original loop is widened to a vector form so we can use them to construct
3726   // the incoming edges.
3727   VPBasicBlock *Header =
3728       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3729   for (VPRecipeBase &R : Header->phis()) {
3730     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3731       fixReduction(ReductionPhi, State);
3732     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3733       fixFirstOrderRecurrence(FOR, State);
3734   }
3735 }
3736 
3737 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3738     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3739   // This is the second phase of vectorizing first-order recurrences. An
3740   // overview of the transformation is described below. Suppose we have the
3741   // following loop.
3742   //
3743   //   for (int i = 0; i < n; ++i)
3744   //     b[i] = a[i] - a[i - 1];
3745   //
3746   // There is a first-order recurrence on "a". For this loop, the shorthand
3747   // scalar IR looks like:
3748   //
3749   //   scalar.ph:
3750   //     s_init = a[-1]
3751   //     br scalar.body
3752   //
3753   //   scalar.body:
3754   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3755   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3756   //     s2 = a[i]
3757   //     b[i] = s2 - s1
3758   //     br cond, scalar.body, ...
3759   //
3760   // In this example, s1 is a recurrence because it's value depends on the
3761   // previous iteration. In the first phase of vectorization, we created a
3762   // vector phi v1 for s1. We now complete the vectorization and produce the
3763   // shorthand vector IR shown below (for VF = 4, UF = 1).
3764   //
3765   //   vector.ph:
3766   //     v_init = vector(..., ..., ..., a[-1])
3767   //     br vector.body
3768   //
3769   //   vector.body
3770   //     i = phi [0, vector.ph], [i+4, vector.body]
3771   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3772   //     v2 = a[i, i+1, i+2, i+3];
3773   //     v3 = vector(v1(3), v2(0, 1, 2))
3774   //     b[i, i+1, i+2, i+3] = v2 - v3
3775   //     br cond, vector.body, middle.block
3776   //
3777   //   middle.block:
3778   //     x = v2(3)
3779   //     br scalar.ph
3780   //
3781   //   scalar.ph:
3782   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3783   //     br scalar.body
3784   //
3785   // After execution completes the vector loop, we extract the next value of
3786   // the recurrence (x) to use as the initial value in the scalar loop.
3787 
3788   // Extract the last vector element in the middle block. This will be the
3789   // initial value for the recurrence when jumping to the scalar loop.
3790   VPValue *PreviousDef = PhiR->getBackedgeValue();
3791   Value *Incoming = State.get(PreviousDef, UF - 1);
3792   auto *ExtractForScalar = Incoming;
3793   auto *IdxTy = Builder.getInt32Ty();
3794   if (VF.isVector()) {
3795     auto *One = ConstantInt::get(IdxTy, 1);
3796     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3797     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3798     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3799     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3800                                                     "vector.recur.extract");
3801   }
3802   // Extract the second last element in the middle block if the
3803   // Phi is used outside the loop. We need to extract the phi itself
3804   // and not the last element (the phi update in the current iteration). This
3805   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3806   // when the scalar loop is not run at all.
3807   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3808   if (VF.isVector()) {
3809     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3810     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3811     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3812         Incoming, Idx, "vector.recur.extract.for.phi");
3813   } else if (UF > 1)
3814     // When loop is unrolled without vectorizing, initialize
3815     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3816     // of `Incoming`. This is analogous to the vectorized case above: extracting
3817     // the second last element when VF > 1.
3818     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3819 
3820   // Fix the initial value of the original recurrence in the scalar loop.
3821   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3822   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3823   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3824   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3825   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3826     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3827     Start->addIncoming(Incoming, BB);
3828   }
3829 
3830   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3831   Phi->setName("scalar.recur");
3832 
3833   // Finally, fix users of the recurrence outside the loop. The users will need
3834   // either the last value of the scalar recurrence or the last value of the
3835   // vector recurrence we extracted in the middle block. Since the loop is in
3836   // LCSSA form, we just need to find all the phi nodes for the original scalar
3837   // recurrence in the exit block, and then add an edge for the middle block.
3838   // Note that LCSSA does not imply single entry when the original scalar loop
3839   // had multiple exiting edges (as we always run the last iteration in the
3840   // scalar epilogue); in that case, there is no edge from middle to exit and
3841   // and thus no phis which needed updated.
3842   if (!Cost->requiresScalarEpilogue(VF))
3843     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3844       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) {
3845         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3846         State.Plan->removeLiveOut(&LCSSAPhi);
3847       }
3848 }
3849 
3850 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3851                                        VPTransformState &State) {
3852   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3853   // Get it's reduction variable descriptor.
3854   assert(Legal->isReductionVariable(OrigPhi) &&
3855          "Unable to find the reduction variable");
3856   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3857 
3858   RecurKind RK = RdxDesc.getRecurrenceKind();
3859   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3860   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3861   setDebugLocFromInst(ReductionStartValue);
3862 
3863   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3864   // This is the vector-clone of the value that leaves the loop.
3865   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3866 
3867   // Wrap flags are in general invalid after vectorization, clear them.
3868   clearReductionWrapFlags(PhiR, State);
3869 
3870   // Before each round, move the insertion point right between
3871   // the PHIs and the values we are going to write.
3872   // This allows us to write both PHINodes and the extractelement
3873   // instructions.
3874   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3875 
3876   setDebugLocFromInst(LoopExitInst);
3877 
3878   Type *PhiTy = OrigPhi->getType();
3879 
3880   VPBasicBlock *LatchVPBB =
3881       PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
3882   BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
3883   // If tail is folded by masking, the vector value to leave the loop should be
3884   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3885   // instead of the former. For an inloop reduction the reduction will already
3886   // be predicated, and does not need to be handled here.
3887   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3888     for (unsigned Part = 0; Part < UF; ++Part) {
3889       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3890       SelectInst *Sel = nullptr;
3891       for (User *U : VecLoopExitInst->users()) {
3892         if (isa<SelectInst>(U)) {
3893           assert(!Sel && "Reduction exit feeding two selects");
3894           Sel = cast<SelectInst>(U);
3895         } else
3896           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3897       }
3898       assert(Sel && "Reduction exit feeds no select");
3899       State.reset(LoopExitInstDef, Sel, Part);
3900 
3901       if (isa<FPMathOperator>(Sel))
3902         Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
3903 
3904       // If the target can create a predicated operator for the reduction at no
3905       // extra cost in the loop (for example a predicated vadd), it can be
3906       // cheaper for the select to remain in the loop than be sunk out of it,
3907       // and so use the select value for the phi instead of the old
3908       // LoopExitValue.
3909       if (PreferPredicatedReductionSelect ||
3910           TTI->preferPredicatedReductionSelect(
3911               RdxDesc.getOpcode(), PhiTy,
3912               TargetTransformInfo::ReductionFlags())) {
3913         auto *VecRdxPhi =
3914             cast<PHINode>(State.get(PhiR, Part));
3915         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3916       }
3917     }
3918   }
3919 
3920   // If the vector reduction can be performed in a smaller type, we truncate
3921   // then extend the loop exit value to enable InstCombine to evaluate the
3922   // entire expression in the smaller type.
3923   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3924     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3925     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3926     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3927     VectorParts RdxParts(UF);
3928     for (unsigned Part = 0; Part < UF; ++Part) {
3929       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3930       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3931       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3932                                         : Builder.CreateZExt(Trunc, VecTy);
3933       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3934         if (U != Trunc) {
3935           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3936           RdxParts[Part] = Extnd;
3937         }
3938     }
3939     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3940     for (unsigned Part = 0; Part < UF; ++Part) {
3941       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3942       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3943     }
3944   }
3945 
3946   // Reduce all of the unrolled parts into a single vector.
3947   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3948   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3949 
3950   // The middle block terminator has already been assigned a DebugLoc here (the
3951   // OrigLoop's single latch terminator). We want the whole middle block to
3952   // appear to execute on this line because: (a) it is all compiler generated,
3953   // (b) these instructions are always executed after evaluating the latch
3954   // conditional branch, and (c) other passes may add new predecessors which
3955   // terminate on this line. This is the easiest way to ensure we don't
3956   // accidentally cause an extra step back into the loop while debugging.
3957   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3958   if (PhiR->isOrdered())
3959     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3960   else {
3961     // Floating-point operations should have some FMF to enable the reduction.
3962     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3963     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3964     for (unsigned Part = 1; Part < UF; ++Part) {
3965       Value *RdxPart = State.get(LoopExitInstDef, Part);
3966       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3967         ReducedPartRdx = Builder.CreateBinOp(
3968             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3969       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3970         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3971                                            ReducedPartRdx, RdxPart);
3972       else
3973         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3974     }
3975   }
3976 
3977   // Create the reduction after the loop. Note that inloop reductions create the
3978   // target reduction in the loop using a Reduction recipe.
3979   if (VF.isVector() && !PhiR->isInLoop()) {
3980     ReducedPartRdx =
3981         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3982     // If the reduction can be performed in a smaller type, we need to extend
3983     // the reduction to the wider type before we branch to the original loop.
3984     if (PhiTy != RdxDesc.getRecurrenceType())
3985       ReducedPartRdx = RdxDesc.isSigned()
3986                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3987                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3988   }
3989 
3990   PHINode *ResumePhi =
3991       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3992 
3993   // Create a phi node that merges control-flow from the backedge-taken check
3994   // block and the middle block.
3995   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3996                                         LoopScalarPreHeader->getTerminator());
3997 
3998   // If we are fixing reductions in the epilogue loop then we should already
3999   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4000   // we carry over the incoming values correctly.
4001   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4002     if (Incoming == LoopMiddleBlock)
4003       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4004     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4005       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4006                               Incoming);
4007     else
4008       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4009   }
4010 
4011   // Set the resume value for this reduction
4012   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4013 
4014   // If there were stores of the reduction value to a uniform memory address
4015   // inside the loop, create the final store here.
4016   if (StoreInst *SI = RdxDesc.IntermediateStore) {
4017     StoreInst *NewSI =
4018         Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
4019     propagateMetadata(NewSI, SI);
4020 
4021     // If the reduction value is used in other places,
4022     // then let the code below create PHI's for that.
4023   }
4024 
4025   // Now, we need to fix the users of the reduction variable
4026   // inside and outside of the scalar remainder loop.
4027 
4028   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4029   // in the exit blocks.  See comment on analogous loop in
4030   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4031   if (!Cost->requiresScalarEpilogue(VF))
4032     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4033       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
4034         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4035         State.Plan->removeLiveOut(&LCSSAPhi);
4036       }
4037 
4038   // Fix the scalar loop reduction variable with the incoming reduction sum
4039   // from the vector body and from the backedge value.
4040   int IncomingEdgeBlockIdx =
4041       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4042   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4043   // Pick the other block.
4044   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4045   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4046   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4047 }
4048 
4049 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
4050                                                   VPTransformState &State) {
4051   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4052   RecurKind RK = RdxDesc.getRecurrenceKind();
4053   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4054     return;
4055 
4056   SmallVector<VPValue *, 8> Worklist;
4057   SmallPtrSet<VPValue *, 8> Visited;
4058   Worklist.push_back(PhiR);
4059   Visited.insert(PhiR);
4060 
4061   while (!Worklist.empty()) {
4062     VPValue *Cur = Worklist.pop_back_val();
4063     for (unsigned Part = 0; Part < UF; ++Part) {
4064       Value *V = State.get(Cur, Part);
4065       if (!isa<OverflowingBinaryOperator>(V))
4066         break;
4067       cast<Instruction>(V)->dropPoisonGeneratingFlags();
4068       }
4069 
4070       for (VPUser *U : Cur->users()) {
4071         auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
4072         if (!UserRecipe)
4073           continue;
4074         for (VPValue *V : UserRecipe->definedValues())
4075           if (Visited.insert(V).second)
4076             Worklist.push_back(V);
4077       }
4078   }
4079 }
4080 
4081 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4082   // The basic block and loop containing the predicated instruction.
4083   auto *PredBB = PredInst->getParent();
4084   auto *VectorLoop = LI->getLoopFor(PredBB);
4085 
4086   // Initialize a worklist with the operands of the predicated instruction.
4087   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4088 
4089   // Holds instructions that we need to analyze again. An instruction may be
4090   // reanalyzed if we don't yet know if we can sink it or not.
4091   SmallVector<Instruction *, 8> InstsToReanalyze;
4092 
4093   // Returns true if a given use occurs in the predicated block. Phi nodes use
4094   // their operands in their corresponding predecessor blocks.
4095   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4096     auto *I = cast<Instruction>(U.getUser());
4097     BasicBlock *BB = I->getParent();
4098     if (auto *Phi = dyn_cast<PHINode>(I))
4099       BB = Phi->getIncomingBlock(
4100           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4101     return BB == PredBB;
4102   };
4103 
4104   // Iteratively sink the scalarized operands of the predicated instruction
4105   // into the block we created for it. When an instruction is sunk, it's
4106   // operands are then added to the worklist. The algorithm ends after one pass
4107   // through the worklist doesn't sink a single instruction.
4108   bool Changed;
4109   do {
4110     // Add the instructions that need to be reanalyzed to the worklist, and
4111     // reset the changed indicator.
4112     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4113     InstsToReanalyze.clear();
4114     Changed = false;
4115 
4116     while (!Worklist.empty()) {
4117       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4118 
4119       // We can't sink an instruction if it is a phi node, is not in the loop,
4120       // or may have side effects.
4121       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4122           I->mayHaveSideEffects())
4123         continue;
4124 
4125       // If the instruction is already in PredBB, check if we can sink its
4126       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4127       // sinking the scalar instruction I, hence it appears in PredBB; but it
4128       // may have failed to sink I's operands (recursively), which we try
4129       // (again) here.
4130       if (I->getParent() == PredBB) {
4131         Worklist.insert(I->op_begin(), I->op_end());
4132         continue;
4133       }
4134 
4135       // It's legal to sink the instruction if all its uses occur in the
4136       // predicated block. Otherwise, there's nothing to do yet, and we may
4137       // need to reanalyze the instruction.
4138       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4139         InstsToReanalyze.push_back(I);
4140         continue;
4141       }
4142 
4143       // Move the instruction to the beginning of the predicated block, and add
4144       // it's operands to the worklist.
4145       I->moveBefore(&*PredBB->getFirstInsertionPt());
4146       Worklist.insert(I->op_begin(), I->op_end());
4147 
4148       // The sinking may have enabled other instructions to be sunk, so we will
4149       // need to iterate.
4150       Changed = true;
4151     }
4152   } while (Changed);
4153 }
4154 
4155 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
4156                                               VPTransformState &State) {
4157   auto Iter = depth_first(
4158       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()));
4159   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4160     for (VPRecipeBase &P : VPBB->phis()) {
4161       VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
4162       if (!VPPhi)
4163         continue;
4164       PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4165       // Make sure the builder has a valid insert point.
4166       Builder.SetInsertPoint(NewPhi);
4167       for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4168         VPValue *Inc = VPPhi->getIncomingValue(i);
4169         VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4170         NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4171       }
4172     }
4173   }
4174 }
4175 
4176 bool InnerLoopVectorizer::useOrderedReductions(
4177     const RecurrenceDescriptor &RdxDesc) {
4178   return Cost->useOrderedReductions(RdxDesc);
4179 }
4180 
4181 /// A helper function for checking whether an integer division-related
4182 /// instruction may divide by zero (in which case it must be predicated if
4183 /// executed conditionally in the scalar code).
4184 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4185 /// Non-zero divisors that are non compile-time constants will not be
4186 /// converted into multiplication, so we will still end up scalarizing
4187 /// the division, but can do so w/o predication.
4188 static bool mayDivideByZero(Instruction &I) {
4189   assert((I.getOpcode() == Instruction::UDiv ||
4190           I.getOpcode() == Instruction::SDiv ||
4191           I.getOpcode() == Instruction::URem ||
4192           I.getOpcode() == Instruction::SRem) &&
4193          "Unexpected instruction");
4194   Value *Divisor = I.getOperand(1);
4195   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4196   return !CInt || CInt->isZero();
4197 }
4198 
4199 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4200                                                VPUser &ArgOperands,
4201                                                VPTransformState &State) {
4202   assert(!isa<DbgInfoIntrinsic>(I) &&
4203          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4204   setDebugLocFromInst(&I);
4205 
4206   Module *M = I.getParent()->getParent()->getParent();
4207   auto *CI = cast<CallInst>(&I);
4208 
4209   SmallVector<Type *, 4> Tys;
4210   for (Value *ArgOperand : CI->args())
4211     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4212 
4213   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4214 
4215   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4216   // version of the instruction.
4217   // Is it beneficial to perform intrinsic call compared to lib call?
4218   bool NeedToScalarize = false;
4219   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4220   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4221   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4222   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4223          "Instruction should be scalarized elsewhere.");
4224   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4225          "Either the intrinsic cost or vector call cost must be valid");
4226 
4227   for (unsigned Part = 0; Part < UF; ++Part) {
4228     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4229     SmallVector<Value *, 4> Args;
4230     for (auto &I : enumerate(ArgOperands.operands())) {
4231       // Some intrinsics have a scalar argument - don't replace it with a
4232       // vector.
4233       Value *Arg;
4234       if (!UseVectorIntrinsic ||
4235           !isVectorIntrinsicWithScalarOpAtArg(ID, I.index()))
4236         Arg = State.get(I.value(), Part);
4237       else
4238         Arg = State.get(I.value(), VPIteration(0, 0));
4239       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index()))
4240         TysForDecl.push_back(Arg->getType());
4241       Args.push_back(Arg);
4242     }
4243 
4244     Function *VectorF;
4245     if (UseVectorIntrinsic) {
4246       // Use vector version of the intrinsic.
4247       if (VF.isVector())
4248         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4249       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4250       assert(VectorF && "Can't retrieve vector intrinsic.");
4251     } else {
4252       // Use vector version of the function call.
4253       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4254 #ifndef NDEBUG
4255       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4256              "Can't create vector function.");
4257 #endif
4258         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4259     }
4260       SmallVector<OperandBundleDef, 1> OpBundles;
4261       CI->getOperandBundlesAsDefs(OpBundles);
4262       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4263 
4264       if (isa<FPMathOperator>(V))
4265         V->copyFastMathFlags(CI);
4266 
4267       State.set(Def, V, Part);
4268       addMetadata(V, &I);
4269   }
4270 }
4271 
4272 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4273   // We should not collect Scalars more than once per VF. Right now, this
4274   // function is called from collectUniformsAndScalars(), which already does
4275   // this check. Collecting Scalars for VF=1 does not make any sense.
4276   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4277          "This function should not be visited twice for the same VF");
4278 
4279   // This avoids any chances of creating a REPLICATE recipe during planning
4280   // since that would result in generation of scalarized code during execution,
4281   // which is not supported for scalable vectors.
4282   if (VF.isScalable()) {
4283     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4284     return;
4285   }
4286 
4287   SmallSetVector<Instruction *, 8> Worklist;
4288 
4289   // These sets are used to seed the analysis with pointers used by memory
4290   // accesses that will remain scalar.
4291   SmallSetVector<Instruction *, 8> ScalarPtrs;
4292   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4293   auto *Latch = TheLoop->getLoopLatch();
4294 
4295   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4296   // The pointer operands of loads and stores will be scalar as long as the
4297   // memory access is not a gather or scatter operation. The value operand of a
4298   // store will remain scalar if the store is scalarized.
4299   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4300     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4301     assert(WideningDecision != CM_Unknown &&
4302            "Widening decision should be ready at this moment");
4303     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4304       if (Ptr == Store->getValueOperand())
4305         return WideningDecision == CM_Scalarize;
4306     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4307            "Ptr is neither a value or pointer operand");
4308     return WideningDecision != CM_GatherScatter;
4309   };
4310 
4311   // A helper that returns true if the given value is a bitcast or
4312   // getelementptr instruction contained in the loop.
4313   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4314     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4315             isa<GetElementPtrInst>(V)) &&
4316            !TheLoop->isLoopInvariant(V);
4317   };
4318 
4319   // A helper that evaluates a memory access's use of a pointer. If the use will
4320   // be a scalar use and the pointer is only used by memory accesses, we place
4321   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4322   // PossibleNonScalarPtrs.
4323   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4324     // We only care about bitcast and getelementptr instructions contained in
4325     // the loop.
4326     if (!isLoopVaryingBitCastOrGEP(Ptr))
4327       return;
4328 
4329     // If the pointer has already been identified as scalar (e.g., if it was
4330     // also identified as uniform), there's nothing to do.
4331     auto *I = cast<Instruction>(Ptr);
4332     if (Worklist.count(I))
4333       return;
4334 
4335     // If the use of the pointer will be a scalar use, and all users of the
4336     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4337     // place the pointer in PossibleNonScalarPtrs.
4338     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4339           return isa<LoadInst>(U) || isa<StoreInst>(U);
4340         }))
4341       ScalarPtrs.insert(I);
4342     else
4343       PossibleNonScalarPtrs.insert(I);
4344   };
4345 
4346   // We seed the scalars analysis with three classes of instructions: (1)
4347   // instructions marked uniform-after-vectorization and (2) bitcast,
4348   // getelementptr and (pointer) phi instructions used by memory accesses
4349   // requiring a scalar use.
4350   //
4351   // (1) Add to the worklist all instructions that have been identified as
4352   // uniform-after-vectorization.
4353   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4354 
4355   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4356   // memory accesses requiring a scalar use. The pointer operands of loads and
4357   // stores will be scalar as long as the memory accesses is not a gather or
4358   // scatter operation. The value operand of a store will remain scalar if the
4359   // store is scalarized.
4360   for (auto *BB : TheLoop->blocks())
4361     for (auto &I : *BB) {
4362       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4363         evaluatePtrUse(Load, Load->getPointerOperand());
4364       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4365         evaluatePtrUse(Store, Store->getPointerOperand());
4366         evaluatePtrUse(Store, Store->getValueOperand());
4367       }
4368     }
4369   for (auto *I : ScalarPtrs)
4370     if (!PossibleNonScalarPtrs.count(I)) {
4371       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4372       Worklist.insert(I);
4373     }
4374 
4375   // Insert the forced scalars.
4376   // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
4377   // induction variable when the PHI user is scalarized.
4378   auto ForcedScalar = ForcedScalars.find(VF);
4379   if (ForcedScalar != ForcedScalars.end())
4380     for (auto *I : ForcedScalar->second)
4381       Worklist.insert(I);
4382 
4383   // Expand the worklist by looking through any bitcasts and getelementptr
4384   // instructions we've already identified as scalar. This is similar to the
4385   // expansion step in collectLoopUniforms(); however, here we're only
4386   // expanding to include additional bitcasts and getelementptr instructions.
4387   unsigned Idx = 0;
4388   while (Idx != Worklist.size()) {
4389     Instruction *Dst = Worklist[Idx++];
4390     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4391       continue;
4392     auto *Src = cast<Instruction>(Dst->getOperand(0));
4393     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4394           auto *J = cast<Instruction>(U);
4395           return !TheLoop->contains(J) || Worklist.count(J) ||
4396                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4397                   isScalarUse(J, Src));
4398         })) {
4399       Worklist.insert(Src);
4400       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4401     }
4402   }
4403 
4404   // An induction variable will remain scalar if all users of the induction
4405   // variable and induction variable update remain scalar.
4406   for (auto &Induction : Legal->getInductionVars()) {
4407     auto *Ind = Induction.first;
4408     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4409 
4410     // If tail-folding is applied, the primary induction variable will be used
4411     // to feed a vector compare.
4412     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4413       continue;
4414 
4415     // Returns true if \p Indvar is a pointer induction that is used directly by
4416     // load/store instruction \p I.
4417     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4418                                               Instruction *I) {
4419       return Induction.second.getKind() ==
4420                  InductionDescriptor::IK_PtrInduction &&
4421              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4422              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4423     };
4424 
4425     // Determine if all users of the induction variable are scalar after
4426     // vectorization.
4427     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4428       auto *I = cast<Instruction>(U);
4429       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4430              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4431     });
4432     if (!ScalarInd)
4433       continue;
4434 
4435     // Determine if all users of the induction variable update instruction are
4436     // scalar after vectorization.
4437     auto ScalarIndUpdate =
4438         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4439           auto *I = cast<Instruction>(U);
4440           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4441                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4442         });
4443     if (!ScalarIndUpdate)
4444       continue;
4445 
4446     // The induction variable and its update instruction will remain scalar.
4447     Worklist.insert(Ind);
4448     Worklist.insert(IndUpdate);
4449     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4450     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4451                       << "\n");
4452   }
4453 
4454   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4455 }
4456 
4457 bool LoopVectorizationCostModel::isScalarWithPredication(
4458     Instruction *I, ElementCount VF) const {
4459   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4460     return false;
4461   switch(I->getOpcode()) {
4462   default:
4463     break;
4464   case Instruction::Load:
4465   case Instruction::Store: {
4466     if (!Legal->isMaskRequired(I))
4467       return false;
4468     auto *Ptr = getLoadStorePointerOperand(I);
4469     auto *Ty = getLoadStoreType(I);
4470     Type *VTy = Ty;
4471     if (VF.isVector())
4472       VTy = VectorType::get(Ty, VF);
4473     const Align Alignment = getLoadStoreAlignment(I);
4474     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4475                                 TTI.isLegalMaskedGather(VTy, Alignment))
4476                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4477                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4478   }
4479   case Instruction::UDiv:
4480   case Instruction::SDiv:
4481   case Instruction::SRem:
4482   case Instruction::URem:
4483     return mayDivideByZero(*I);
4484   }
4485   return false;
4486 }
4487 
4488 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4489     Instruction *I, ElementCount VF) {
4490   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4491   assert(getWideningDecision(I, VF) == CM_Unknown &&
4492          "Decision should not be set yet.");
4493   auto *Group = getInterleavedAccessGroup(I);
4494   assert(Group && "Must have a group.");
4495 
4496   // If the instruction's allocated size doesn't equal it's type size, it
4497   // requires padding and will be scalarized.
4498   auto &DL = I->getModule()->getDataLayout();
4499   auto *ScalarTy = getLoadStoreType(I);
4500   if (hasIrregularType(ScalarTy, DL))
4501     return false;
4502 
4503   // If the group involves a non-integral pointer, we may not be able to
4504   // losslessly cast all values to a common type.
4505   unsigned InterleaveFactor = Group->getFactor();
4506   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4507   for (unsigned i = 0; i < InterleaveFactor; i++) {
4508     Instruction *Member = Group->getMember(i);
4509     if (!Member)
4510       continue;
4511     auto *MemberTy = getLoadStoreType(Member);
4512     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4513     // Don't coerce non-integral pointers to integers or vice versa.
4514     if (MemberNI != ScalarNI) {
4515       // TODO: Consider adding special nullptr value case here
4516       return false;
4517     } else if (MemberNI && ScalarNI &&
4518                ScalarTy->getPointerAddressSpace() !=
4519                MemberTy->getPointerAddressSpace()) {
4520       return false;
4521     }
4522   }
4523 
4524   // Check if masking is required.
4525   // A Group may need masking for one of two reasons: it resides in a block that
4526   // needs predication, or it was decided to use masking to deal with gaps
4527   // (either a gap at the end of a load-access that may result in a speculative
4528   // load, or any gaps in a store-access).
4529   bool PredicatedAccessRequiresMasking =
4530       blockNeedsPredicationForAnyReason(I->getParent()) &&
4531       Legal->isMaskRequired(I);
4532   bool LoadAccessWithGapsRequiresEpilogMasking =
4533       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4534       !isScalarEpilogueAllowed();
4535   bool StoreAccessWithGapsRequiresMasking =
4536       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4537   if (!PredicatedAccessRequiresMasking &&
4538       !LoadAccessWithGapsRequiresEpilogMasking &&
4539       !StoreAccessWithGapsRequiresMasking)
4540     return true;
4541 
4542   // If masked interleaving is required, we expect that the user/target had
4543   // enabled it, because otherwise it either wouldn't have been created or
4544   // it should have been invalidated by the CostModel.
4545   assert(useMaskedInterleavedAccesses(TTI) &&
4546          "Masked interleave-groups for predicated accesses are not enabled.");
4547 
4548   if (Group->isReverse())
4549     return false;
4550 
4551   auto *Ty = getLoadStoreType(I);
4552   const Align Alignment = getLoadStoreAlignment(I);
4553   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4554                           : TTI.isLegalMaskedStore(Ty, Alignment);
4555 }
4556 
4557 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4558     Instruction *I, ElementCount VF) {
4559   // Get and ensure we have a valid memory instruction.
4560   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4561 
4562   auto *Ptr = getLoadStorePointerOperand(I);
4563   auto *ScalarTy = getLoadStoreType(I);
4564 
4565   // In order to be widened, the pointer should be consecutive, first of all.
4566   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4567     return false;
4568 
4569   // If the instruction is a store located in a predicated block, it will be
4570   // scalarized.
4571   if (isScalarWithPredication(I, VF))
4572     return false;
4573 
4574   // If the instruction's allocated size doesn't equal it's type size, it
4575   // requires padding and will be scalarized.
4576   auto &DL = I->getModule()->getDataLayout();
4577   if (hasIrregularType(ScalarTy, DL))
4578     return false;
4579 
4580   return true;
4581 }
4582 
4583 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4584   // We should not collect Uniforms more than once per VF. Right now,
4585   // this function is called from collectUniformsAndScalars(), which
4586   // already does this check. Collecting Uniforms for VF=1 does not make any
4587   // sense.
4588 
4589   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4590          "This function should not be visited twice for the same VF");
4591 
4592   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4593   // not analyze again.  Uniforms.count(VF) will return 1.
4594   Uniforms[VF].clear();
4595 
4596   // We now know that the loop is vectorizable!
4597   // Collect instructions inside the loop that will remain uniform after
4598   // vectorization.
4599 
4600   // Global values, params and instructions outside of current loop are out of
4601   // scope.
4602   auto isOutOfScope = [&](Value *V) -> bool {
4603     Instruction *I = dyn_cast<Instruction>(V);
4604     return (!I || !TheLoop->contains(I));
4605   };
4606 
4607   // Worklist containing uniform instructions demanding lane 0.
4608   SetVector<Instruction *> Worklist;
4609   BasicBlock *Latch = TheLoop->getLoopLatch();
4610 
4611   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4612   // that are scalar with predication must not be considered uniform after
4613   // vectorization, because that would create an erroneous replicating region
4614   // where only a single instance out of VF should be formed.
4615   // TODO: optimize such seldom cases if found important, see PR40816.
4616   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4617     if (isOutOfScope(I)) {
4618       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4619                         << *I << "\n");
4620       return;
4621     }
4622     if (isScalarWithPredication(I, VF)) {
4623       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4624                         << *I << "\n");
4625       return;
4626     }
4627     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4628     Worklist.insert(I);
4629   };
4630 
4631   // Start with the conditional branch. If the branch condition is an
4632   // instruction contained in the loop that is only used by the branch, it is
4633   // uniform.
4634   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4635   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4636     addToWorklistIfAllowed(Cmp);
4637 
4638   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4639     InstWidening WideningDecision = getWideningDecision(I, VF);
4640     assert(WideningDecision != CM_Unknown &&
4641            "Widening decision should be ready at this moment");
4642 
4643     // A uniform memory op is itself uniform.  We exclude uniform stores
4644     // here as they demand the last lane, not the first one.
4645     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4646       assert(WideningDecision == CM_Scalarize);
4647       return true;
4648     }
4649 
4650     return (WideningDecision == CM_Widen ||
4651             WideningDecision == CM_Widen_Reverse ||
4652             WideningDecision == CM_Interleave);
4653   };
4654 
4655 
4656   // Returns true if Ptr is the pointer operand of a memory access instruction
4657   // I, and I is known to not require scalarization.
4658   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4659     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4660   };
4661 
4662   // Holds a list of values which are known to have at least one uniform use.
4663   // Note that there may be other uses which aren't uniform.  A "uniform use"
4664   // here is something which only demands lane 0 of the unrolled iterations;
4665   // it does not imply that all lanes produce the same value (e.g. this is not
4666   // the usual meaning of uniform)
4667   SetVector<Value *> HasUniformUse;
4668 
4669   // Scan the loop for instructions which are either a) known to have only
4670   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4671   for (auto *BB : TheLoop->blocks())
4672     for (auto &I : *BB) {
4673       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4674         switch (II->getIntrinsicID()) {
4675         case Intrinsic::sideeffect:
4676         case Intrinsic::experimental_noalias_scope_decl:
4677         case Intrinsic::assume:
4678         case Intrinsic::lifetime_start:
4679         case Intrinsic::lifetime_end:
4680           if (TheLoop->hasLoopInvariantOperands(&I))
4681             addToWorklistIfAllowed(&I);
4682           break;
4683         default:
4684           break;
4685         }
4686       }
4687 
4688       // ExtractValue instructions must be uniform, because the operands are
4689       // known to be loop-invariant.
4690       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4691         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4692                "Expected aggregate value to be loop invariant");
4693         addToWorklistIfAllowed(EVI);
4694         continue;
4695       }
4696 
4697       // If there's no pointer operand, there's nothing to do.
4698       auto *Ptr = getLoadStorePointerOperand(&I);
4699       if (!Ptr)
4700         continue;
4701 
4702       // A uniform memory op is itself uniform.  We exclude uniform stores
4703       // here as they demand the last lane, not the first one.
4704       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4705         addToWorklistIfAllowed(&I);
4706 
4707       if (isUniformDecision(&I, VF)) {
4708         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4709         HasUniformUse.insert(Ptr);
4710       }
4711     }
4712 
4713   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4714   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4715   // disallows uses outside the loop as well.
4716   for (auto *V : HasUniformUse) {
4717     if (isOutOfScope(V))
4718       continue;
4719     auto *I = cast<Instruction>(V);
4720     auto UsersAreMemAccesses =
4721       llvm::all_of(I->users(), [&](User *U) -> bool {
4722         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4723       });
4724     if (UsersAreMemAccesses)
4725       addToWorklistIfAllowed(I);
4726   }
4727 
4728   // Expand Worklist in topological order: whenever a new instruction
4729   // is added , its users should be already inside Worklist.  It ensures
4730   // a uniform instruction will only be used by uniform instructions.
4731   unsigned idx = 0;
4732   while (idx != Worklist.size()) {
4733     Instruction *I = Worklist[idx++];
4734 
4735     for (auto OV : I->operand_values()) {
4736       // isOutOfScope operands cannot be uniform instructions.
4737       if (isOutOfScope(OV))
4738         continue;
4739       // First order recurrence Phi's should typically be considered
4740       // non-uniform.
4741       auto *OP = dyn_cast<PHINode>(OV);
4742       if (OP && Legal->isFirstOrderRecurrence(OP))
4743         continue;
4744       // If all the users of the operand are uniform, then add the
4745       // operand into the uniform worklist.
4746       auto *OI = cast<Instruction>(OV);
4747       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4748             auto *J = cast<Instruction>(U);
4749             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4750           }))
4751         addToWorklistIfAllowed(OI);
4752     }
4753   }
4754 
4755   // For an instruction to be added into Worklist above, all its users inside
4756   // the loop should also be in Worklist. However, this condition cannot be
4757   // true for phi nodes that form a cyclic dependence. We must process phi
4758   // nodes separately. An induction variable will remain uniform if all users
4759   // of the induction variable and induction variable update remain uniform.
4760   // The code below handles both pointer and non-pointer induction variables.
4761   for (auto &Induction : Legal->getInductionVars()) {
4762     auto *Ind = Induction.first;
4763     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4764 
4765     // Determine if all users of the induction variable are uniform after
4766     // vectorization.
4767     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4768       auto *I = cast<Instruction>(U);
4769       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4770              isVectorizedMemAccessUse(I, Ind);
4771     });
4772     if (!UniformInd)
4773       continue;
4774 
4775     // Determine if all users of the induction variable update instruction are
4776     // uniform after vectorization.
4777     auto UniformIndUpdate =
4778         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4779           auto *I = cast<Instruction>(U);
4780           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4781                  isVectorizedMemAccessUse(I, IndUpdate);
4782         });
4783     if (!UniformIndUpdate)
4784       continue;
4785 
4786     // The induction variable and its update instruction will remain uniform.
4787     addToWorklistIfAllowed(Ind);
4788     addToWorklistIfAllowed(IndUpdate);
4789   }
4790 
4791   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4792 }
4793 
4794 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4795   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4796 
4797   if (Legal->getRuntimePointerChecking()->Need) {
4798     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4799         "runtime pointer checks needed. Enable vectorization of this "
4800         "loop with '#pragma clang loop vectorize(enable)' when "
4801         "compiling with -Os/-Oz",
4802         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4803     return true;
4804   }
4805 
4806   if (!PSE.getPredicate().isAlwaysTrue()) {
4807     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4808         "runtime SCEV checks needed. Enable vectorization of this "
4809         "loop with '#pragma clang loop vectorize(enable)' when "
4810         "compiling with -Os/-Oz",
4811         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4812     return true;
4813   }
4814 
4815   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4816   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4817     reportVectorizationFailure("Runtime stride check for small trip count",
4818         "runtime stride == 1 checks needed. Enable vectorization of "
4819         "this loop without such check by compiling with -Os/-Oz",
4820         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4821     return true;
4822   }
4823 
4824   return false;
4825 }
4826 
4827 ElementCount
4828 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4829   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4830     return ElementCount::getScalable(0);
4831 
4832   if (Hints->isScalableVectorizationDisabled()) {
4833     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4834                             "ScalableVectorizationDisabled", ORE, TheLoop);
4835     return ElementCount::getScalable(0);
4836   }
4837 
4838   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4839 
4840   auto MaxScalableVF = ElementCount::getScalable(
4841       std::numeric_limits<ElementCount::ScalarTy>::max());
4842 
4843   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4844   // FIXME: While for scalable vectors this is currently sufficient, this should
4845   // be replaced by a more detailed mechanism that filters out specific VFs,
4846   // instead of invalidating vectorization for a whole set of VFs based on the
4847   // MaxVF.
4848 
4849   // Disable scalable vectorization if the loop contains unsupported reductions.
4850   if (!canVectorizeReductions(MaxScalableVF)) {
4851     reportVectorizationInfo(
4852         "Scalable vectorization not supported for the reduction "
4853         "operations found in this loop.",
4854         "ScalableVFUnfeasible", ORE, TheLoop);
4855     return ElementCount::getScalable(0);
4856   }
4857 
4858   // Disable scalable vectorization if the loop contains any instructions
4859   // with element types not supported for scalable vectors.
4860   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4861         return !Ty->isVoidTy() &&
4862                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4863       })) {
4864     reportVectorizationInfo("Scalable vectorization is not supported "
4865                             "for all element types found in this loop.",
4866                             "ScalableVFUnfeasible", ORE, TheLoop);
4867     return ElementCount::getScalable(0);
4868   }
4869 
4870   if (Legal->isSafeForAnyVectorWidth())
4871     return MaxScalableVF;
4872 
4873   // Limit MaxScalableVF by the maximum safe dependence distance.
4874   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4875   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4876     MaxVScale =
4877         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4878   MaxScalableVF = ElementCount::getScalable(
4879       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4880   if (!MaxScalableVF)
4881     reportVectorizationInfo(
4882         "Max legal vector width too small, scalable vectorization "
4883         "unfeasible.",
4884         "ScalableVFUnfeasible", ORE, TheLoop);
4885 
4886   return MaxScalableVF;
4887 }
4888 
4889 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4890     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4891   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4892   unsigned SmallestType, WidestType;
4893   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4894 
4895   // Get the maximum safe dependence distance in bits computed by LAA.
4896   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4897   // the memory accesses that is most restrictive (involved in the smallest
4898   // dependence distance).
4899   unsigned MaxSafeElements =
4900       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4901 
4902   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4903   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4904 
4905   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4906                     << ".\n");
4907   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4908                     << ".\n");
4909 
4910   // First analyze the UserVF, fall back if the UserVF should be ignored.
4911   if (UserVF) {
4912     auto MaxSafeUserVF =
4913         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4914 
4915     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4916       // If `VF=vscale x N` is safe, then so is `VF=N`
4917       if (UserVF.isScalable())
4918         return FixedScalableVFPair(
4919             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4920       else
4921         return UserVF;
4922     }
4923 
4924     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4925 
4926     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4927     // is better to ignore the hint and let the compiler choose a suitable VF.
4928     if (!UserVF.isScalable()) {
4929       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4930                         << " is unsafe, clamping to max safe VF="
4931                         << MaxSafeFixedVF << ".\n");
4932       ORE->emit([&]() {
4933         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4934                                           TheLoop->getStartLoc(),
4935                                           TheLoop->getHeader())
4936                << "User-specified vectorization factor "
4937                << ore::NV("UserVectorizationFactor", UserVF)
4938                << " is unsafe, clamping to maximum safe vectorization factor "
4939                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4940       });
4941       return MaxSafeFixedVF;
4942     }
4943 
4944     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4945       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4946                         << " is ignored because scalable vectors are not "
4947                            "available.\n");
4948       ORE->emit([&]() {
4949         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4950                                           TheLoop->getStartLoc(),
4951                                           TheLoop->getHeader())
4952                << "User-specified vectorization factor "
4953                << ore::NV("UserVectorizationFactor", UserVF)
4954                << " is ignored because the target does not support scalable "
4955                   "vectors. The compiler will pick a more suitable value.";
4956       });
4957     } else {
4958       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4959                         << " is unsafe. Ignoring scalable UserVF.\n");
4960       ORE->emit([&]() {
4961         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4962                                           TheLoop->getStartLoc(),
4963                                           TheLoop->getHeader())
4964                << "User-specified vectorization factor "
4965                << ore::NV("UserVectorizationFactor", UserVF)
4966                << " is unsafe. Ignoring the hint to let the compiler pick a "
4967                   "more suitable value.";
4968       });
4969     }
4970   }
4971 
4972   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4973                     << " / " << WidestType << " bits.\n");
4974 
4975   FixedScalableVFPair Result(ElementCount::getFixed(1),
4976                              ElementCount::getScalable(0));
4977   if (auto MaxVF =
4978           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4979                                   MaxSafeFixedVF, FoldTailByMasking))
4980     Result.FixedVF = MaxVF;
4981 
4982   if (auto MaxVF =
4983           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4984                                   MaxSafeScalableVF, FoldTailByMasking))
4985     if (MaxVF.isScalable()) {
4986       Result.ScalableVF = MaxVF;
4987       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4988                         << "\n");
4989     }
4990 
4991   return Result;
4992 }
4993 
4994 FixedScalableVFPair
4995 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
4996   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4997     // TODO: It may by useful to do since it's still likely to be dynamically
4998     // uniform if the target can skip.
4999     reportVectorizationFailure(
5000         "Not inserting runtime ptr check for divergent target",
5001         "runtime pointer checks needed. Not enabled for divergent target",
5002         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5003     return FixedScalableVFPair::getNone();
5004   }
5005 
5006   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5007   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5008   if (TC == 1) {
5009     reportVectorizationFailure("Single iteration (non) loop",
5010         "loop trip count is one, irrelevant for vectorization",
5011         "SingleIterationLoop", ORE, TheLoop);
5012     return FixedScalableVFPair::getNone();
5013   }
5014 
5015   switch (ScalarEpilogueStatus) {
5016   case CM_ScalarEpilogueAllowed:
5017     return computeFeasibleMaxVF(TC, UserVF, false);
5018   case CM_ScalarEpilogueNotAllowedUsePredicate:
5019     LLVM_FALLTHROUGH;
5020   case CM_ScalarEpilogueNotNeededUsePredicate:
5021     LLVM_DEBUG(
5022         dbgs() << "LV: vector predicate hint/switch found.\n"
5023                << "LV: Not allowing scalar epilogue, creating predicated "
5024                << "vector loop.\n");
5025     break;
5026   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5027     // fallthrough as a special case of OptForSize
5028   case CM_ScalarEpilogueNotAllowedOptSize:
5029     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5030       LLVM_DEBUG(
5031           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5032     else
5033       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5034                         << "count.\n");
5035 
5036     // Bail if runtime checks are required, which are not good when optimising
5037     // for size.
5038     if (runtimeChecksRequired())
5039       return FixedScalableVFPair::getNone();
5040 
5041     break;
5042   }
5043 
5044   // The only loops we can vectorize without a scalar epilogue, are loops with
5045   // a bottom-test and a single exiting block. We'd have to handle the fact
5046   // that not every instruction executes on the last iteration.  This will
5047   // require a lane mask which varies through the vector loop body.  (TODO)
5048   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5049     // If there was a tail-folding hint/switch, but we can't fold the tail by
5050     // masking, fallback to a vectorization with a scalar epilogue.
5051     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5052       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5053                            "scalar epilogue instead.\n");
5054       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5055       return computeFeasibleMaxVF(TC, UserVF, false);
5056     }
5057     return FixedScalableVFPair::getNone();
5058   }
5059 
5060   // Now try the tail folding
5061 
5062   // Invalidate interleave groups that require an epilogue if we can't mask
5063   // the interleave-group.
5064   if (!useMaskedInterleavedAccesses(TTI)) {
5065     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5066            "No decisions should have been taken at this point");
5067     // Note: There is no need to invalidate any cost modeling decisions here, as
5068     // non where taken so far.
5069     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5070   }
5071 
5072   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5073   // Avoid tail folding if the trip count is known to be a multiple of any VF
5074   // we chose.
5075   // FIXME: The condition below pessimises the case for fixed-width vectors,
5076   // when scalable VFs are also candidates for vectorization.
5077   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5078     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5079     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5080            "MaxFixedVF must be a power of 2");
5081     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5082                                    : MaxFixedVF.getFixedValue();
5083     ScalarEvolution *SE = PSE.getSE();
5084     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5085     const SCEV *ExitCount = SE->getAddExpr(
5086         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5087     const SCEV *Rem = SE->getURemExpr(
5088         SE->applyLoopGuards(ExitCount, TheLoop),
5089         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5090     if (Rem->isZero()) {
5091       // Accept MaxFixedVF if we do not have a tail.
5092       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5093       return MaxFactors;
5094     }
5095   }
5096 
5097   // If we don't know the precise trip count, or if the trip count that we
5098   // found modulo the vectorization factor is not zero, try to fold the tail
5099   // by masking.
5100   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5101   if (Legal->prepareToFoldTailByMasking()) {
5102     FoldTailByMasking = true;
5103     return MaxFactors;
5104   }
5105 
5106   // If there was a tail-folding hint/switch, but we can't fold the tail by
5107   // masking, fallback to a vectorization with a scalar epilogue.
5108   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5109     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5110                          "scalar epilogue instead.\n");
5111     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5112     return MaxFactors;
5113   }
5114 
5115   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5116     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5117     return FixedScalableVFPair::getNone();
5118   }
5119 
5120   if (TC == 0) {
5121     reportVectorizationFailure(
5122         "Unable to calculate the loop count due to complex control flow",
5123         "unable to calculate the loop count due to complex control flow",
5124         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5125     return FixedScalableVFPair::getNone();
5126   }
5127 
5128   reportVectorizationFailure(
5129       "Cannot optimize for size and vectorize at the same time.",
5130       "cannot optimize for size and vectorize at the same time. "
5131       "Enable vectorization of this loop with '#pragma clang loop "
5132       "vectorize(enable)' when compiling with -Os/-Oz",
5133       "NoTailLoopWithOptForSize", ORE, TheLoop);
5134   return FixedScalableVFPair::getNone();
5135 }
5136 
5137 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5138     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5139     ElementCount MaxSafeVF, bool FoldTailByMasking) {
5140   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5141   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5142       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5143                            : TargetTransformInfo::RGK_FixedWidthVector);
5144 
5145   // Convenience function to return the minimum of two ElementCounts.
5146   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5147     assert((LHS.isScalable() == RHS.isScalable()) &&
5148            "Scalable flags must match");
5149     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5150   };
5151 
5152   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5153   // Note that both WidestRegister and WidestType may not be a powers of 2.
5154   auto MaxVectorElementCount = ElementCount::get(
5155       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5156       ComputeScalableMaxVF);
5157   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5158   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5159                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5160 
5161   if (!MaxVectorElementCount) {
5162     LLVM_DEBUG(dbgs() << "LV: The target has no "
5163                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5164                       << " vector registers.\n");
5165     return ElementCount::getFixed(1);
5166   }
5167 
5168   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5169   if (ConstTripCount &&
5170       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5171       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5172     // If loop trip count (TC) is known at compile time there is no point in
5173     // choosing VF greater than TC (as done in the loop below). Select maximum
5174     // power of two which doesn't exceed TC.
5175     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5176     // when the TC is less than or equal to the known number of lanes.
5177     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5178     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5179                          "exceeding the constant trip count: "
5180                       << ClampedConstTripCount << "\n");
5181     return ElementCount::getFixed(ClampedConstTripCount);
5182   }
5183 
5184   TargetTransformInfo::RegisterKind RegKind =
5185       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5186                            : TargetTransformInfo::RGK_FixedWidthVector;
5187   ElementCount MaxVF = MaxVectorElementCount;
5188   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5189                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5190     auto MaxVectorElementCountMaxBW = ElementCount::get(
5191         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5192         ComputeScalableMaxVF);
5193     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5194 
5195     // Collect all viable vectorization factors larger than the default MaxVF
5196     // (i.e. MaxVectorElementCount).
5197     SmallVector<ElementCount, 8> VFs;
5198     for (ElementCount VS = MaxVectorElementCount * 2;
5199          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5200       VFs.push_back(VS);
5201 
5202     // For each VF calculate its register usage.
5203     auto RUs = calculateRegisterUsage(VFs);
5204 
5205     // Select the largest VF which doesn't require more registers than existing
5206     // ones.
5207     for (int i = RUs.size() - 1; i >= 0; --i) {
5208       bool Selected = true;
5209       for (auto &pair : RUs[i].MaxLocalUsers) {
5210         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5211         if (pair.second > TargetNumRegisters)
5212           Selected = false;
5213       }
5214       if (Selected) {
5215         MaxVF = VFs[i];
5216         break;
5217       }
5218     }
5219     if (ElementCount MinVF =
5220             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5221       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5222         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5223                           << ") with target's minimum: " << MinVF << '\n');
5224         MaxVF = MinVF;
5225       }
5226     }
5227 
5228     // Invalidate any widening decisions we might have made, in case the loop
5229     // requires prediction (decided later), but we have already made some
5230     // load/store widening decisions.
5231     invalidateCostModelingDecisions();
5232   }
5233   return MaxVF;
5234 }
5235 
5236 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5237   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5238     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5239     auto Min = Attr.getVScaleRangeMin();
5240     auto Max = Attr.getVScaleRangeMax();
5241     if (Max && Min == Max)
5242       return Max;
5243   }
5244 
5245   return TTI.getVScaleForTuning();
5246 }
5247 
5248 bool LoopVectorizationCostModel::isMoreProfitable(
5249     const VectorizationFactor &A, const VectorizationFactor &B) const {
5250   InstructionCost CostA = A.Cost;
5251   InstructionCost CostB = B.Cost;
5252 
5253   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5254 
5255   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5256       MaxTripCount) {
5257     // If we are folding the tail and the trip count is a known (possibly small)
5258     // constant, the trip count will be rounded up to an integer number of
5259     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5260     // which we compare directly. When not folding the tail, the total cost will
5261     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5262     // approximated with the per-lane cost below instead of using the tripcount
5263     // as here.
5264     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5265     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5266     return RTCostA < RTCostB;
5267   }
5268 
5269   // Improve estimate for the vector width if it is scalable.
5270   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5271   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5272   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5273     if (A.Width.isScalable())
5274       EstimatedWidthA *= VScale.getValue();
5275     if (B.Width.isScalable())
5276       EstimatedWidthB *= VScale.getValue();
5277   }
5278 
5279   // Assume vscale may be larger than 1 (or the value being tuned for),
5280   // so that scalable vectorization is slightly favorable over fixed-width
5281   // vectorization.
5282   if (A.Width.isScalable() && !B.Width.isScalable())
5283     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5284 
5285   // To avoid the need for FP division:
5286   //      (CostA / A.Width) < (CostB / B.Width)
5287   // <=>  (CostA * B.Width) < (CostB * A.Width)
5288   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5289 }
5290 
5291 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5292     const ElementCountSet &VFCandidates) {
5293   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5294   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5295   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5296   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5297          "Expected Scalar VF to be a candidate");
5298 
5299   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5300   VectorizationFactor ChosenFactor = ScalarCost;
5301 
5302   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5303   if (ForceVectorization && VFCandidates.size() > 1) {
5304     // Ignore scalar width, because the user explicitly wants vectorization.
5305     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5306     // evaluation.
5307     ChosenFactor.Cost = InstructionCost::getMax();
5308   }
5309 
5310   SmallVector<InstructionVFPair> InvalidCosts;
5311   for (const auto &i : VFCandidates) {
5312     // The cost for scalar VF=1 is already calculated, so ignore it.
5313     if (i.isScalar())
5314       continue;
5315 
5316     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5317     VectorizationFactor Candidate(i, C.first);
5318 
5319 #ifndef NDEBUG
5320     unsigned AssumedMinimumVscale = 1;
5321     if (Optional<unsigned> VScale = getVScaleForTuning())
5322       AssumedMinimumVscale = VScale.getValue();
5323     unsigned Width =
5324         Candidate.Width.isScalable()
5325             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5326             : Candidate.Width.getFixedValue();
5327     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5328                       << " costs: " << (Candidate.Cost / Width));
5329     if (i.isScalable())
5330       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5331                         << AssumedMinimumVscale << ")");
5332     LLVM_DEBUG(dbgs() << ".\n");
5333 #endif
5334 
5335     if (!C.second && !ForceVectorization) {
5336       LLVM_DEBUG(
5337           dbgs() << "LV: Not considering vector loop of width " << i
5338                  << " because it will not generate any vector instructions.\n");
5339       continue;
5340     }
5341 
5342     // If profitable add it to ProfitableVF list.
5343     if (isMoreProfitable(Candidate, ScalarCost))
5344       ProfitableVFs.push_back(Candidate);
5345 
5346     if (isMoreProfitable(Candidate, ChosenFactor))
5347       ChosenFactor = Candidate;
5348   }
5349 
5350   // Emit a report of VFs with invalid costs in the loop.
5351   if (!InvalidCosts.empty()) {
5352     // Group the remarks per instruction, keeping the instruction order from
5353     // InvalidCosts.
5354     std::map<Instruction *, unsigned> Numbering;
5355     unsigned I = 0;
5356     for (auto &Pair : InvalidCosts)
5357       if (!Numbering.count(Pair.first))
5358         Numbering[Pair.first] = I++;
5359 
5360     // Sort the list, first on instruction(number) then on VF.
5361     llvm::sort(InvalidCosts,
5362                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5363                  if (Numbering[A.first] != Numbering[B.first])
5364                    return Numbering[A.first] < Numbering[B.first];
5365                  ElementCountComparator ECC;
5366                  return ECC(A.second, B.second);
5367                });
5368 
5369     // For a list of ordered instruction-vf pairs:
5370     //   [(load, vf1), (load, vf2), (store, vf1)]
5371     // Group the instructions together to emit separate remarks for:
5372     //   load  (vf1, vf2)
5373     //   store (vf1)
5374     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5375     auto Subset = ArrayRef<InstructionVFPair>();
5376     do {
5377       if (Subset.empty())
5378         Subset = Tail.take_front(1);
5379 
5380       Instruction *I = Subset.front().first;
5381 
5382       // If the next instruction is different, or if there are no other pairs,
5383       // emit a remark for the collated subset. e.g.
5384       //   [(load, vf1), (load, vf2))]
5385       // to emit:
5386       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5387       if (Subset == Tail || Tail[Subset.size()].first != I) {
5388         std::string OutString;
5389         raw_string_ostream OS(OutString);
5390         assert(!Subset.empty() && "Unexpected empty range");
5391         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5392         for (auto &Pair : Subset)
5393           OS << (Pair.second == Subset.front().second ? "" : ", ")
5394              << Pair.second;
5395         OS << "):";
5396         if (auto *CI = dyn_cast<CallInst>(I))
5397           OS << " call to " << CI->getCalledFunction()->getName();
5398         else
5399           OS << " " << I->getOpcodeName();
5400         OS.flush();
5401         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5402         Tail = Tail.drop_front(Subset.size());
5403         Subset = {};
5404       } else
5405         // Grow the subset by one element
5406         Subset = Tail.take_front(Subset.size() + 1);
5407     } while (!Tail.empty());
5408   }
5409 
5410   if (!EnableCondStoresVectorization && NumPredStores) {
5411     reportVectorizationFailure("There are conditional stores.",
5412         "store that is conditionally executed prevents vectorization",
5413         "ConditionalStore", ORE, TheLoop);
5414     ChosenFactor = ScalarCost;
5415   }
5416 
5417   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5418                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5419              << "LV: Vectorization seems to be not beneficial, "
5420              << "but was forced by a user.\n");
5421   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5422   return ChosenFactor;
5423 }
5424 
5425 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5426     const Loop &L, ElementCount VF) const {
5427   // Cross iteration phis such as reductions need special handling and are
5428   // currently unsupported.
5429   if (any_of(L.getHeader()->phis(),
5430              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5431     return false;
5432 
5433   // Phis with uses outside of the loop require special handling and are
5434   // currently unsupported.
5435   for (auto &Entry : Legal->getInductionVars()) {
5436     // Look for uses of the value of the induction at the last iteration.
5437     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5438     for (User *U : PostInc->users())
5439       if (!L.contains(cast<Instruction>(U)))
5440         return false;
5441     // Look for uses of penultimate value of the induction.
5442     for (User *U : Entry.first->users())
5443       if (!L.contains(cast<Instruction>(U)))
5444         return false;
5445   }
5446 
5447   // Induction variables that are widened require special handling that is
5448   // currently not supported.
5449   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5450         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5451                  this->isProfitableToScalarize(Entry.first, VF));
5452       }))
5453     return false;
5454 
5455   // Epilogue vectorization code has not been auditted to ensure it handles
5456   // non-latch exits properly.  It may be fine, but it needs auditted and
5457   // tested.
5458   if (L.getExitingBlock() != L.getLoopLatch())
5459     return false;
5460 
5461   return true;
5462 }
5463 
5464 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5465     const ElementCount VF) const {
5466   // FIXME: We need a much better cost-model to take different parameters such
5467   // as register pressure, code size increase and cost of extra branches into
5468   // account. For now we apply a very crude heuristic and only consider loops
5469   // with vectorization factors larger than a certain value.
5470   // We also consider epilogue vectorization unprofitable for targets that don't
5471   // consider interleaving beneficial (eg. MVE).
5472   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5473     return false;
5474   // FIXME: We should consider changing the threshold for scalable
5475   // vectors to take VScaleForTuning into account.
5476   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5477     return true;
5478   return false;
5479 }
5480 
5481 VectorizationFactor
5482 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5483     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5484   VectorizationFactor Result = VectorizationFactor::Disabled();
5485   if (!EnableEpilogueVectorization) {
5486     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5487     return Result;
5488   }
5489 
5490   if (!isScalarEpilogueAllowed()) {
5491     LLVM_DEBUG(
5492         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5493                   "allowed.\n";);
5494     return Result;
5495   }
5496 
5497   // Not really a cost consideration, but check for unsupported cases here to
5498   // simplify the logic.
5499   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5500     LLVM_DEBUG(
5501         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5502                   "not a supported candidate.\n";);
5503     return Result;
5504   }
5505 
5506   if (EpilogueVectorizationForceVF > 1) {
5507     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5508     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5509     if (LVP.hasPlanWithVF(ForcedEC))
5510       return {ForcedEC, 0};
5511     else {
5512       LLVM_DEBUG(
5513           dbgs()
5514               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5515       return Result;
5516     }
5517   }
5518 
5519   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5520       TheLoop->getHeader()->getParent()->hasMinSize()) {
5521     LLVM_DEBUG(
5522         dbgs()
5523             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5524     return Result;
5525   }
5526 
5527   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5528     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5529                          "this loop\n");
5530     return Result;
5531   }
5532 
5533   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5534   // the main loop handles 8 lanes per iteration. We could still benefit from
5535   // vectorizing the epilogue loop with VF=4.
5536   ElementCount EstimatedRuntimeVF = MainLoopVF;
5537   if (MainLoopVF.isScalable()) {
5538     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5539     if (Optional<unsigned> VScale = getVScaleForTuning())
5540       EstimatedRuntimeVF *= VScale.getValue();
5541   }
5542 
5543   for (auto &NextVF : ProfitableVFs)
5544     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5545           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5546          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5547         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5548         LVP.hasPlanWithVF(NextVF.Width))
5549       Result = NextVF;
5550 
5551   if (Result != VectorizationFactor::Disabled())
5552     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5553                       << Result.Width << "\n";);
5554   return Result;
5555 }
5556 
5557 std::pair<unsigned, unsigned>
5558 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5559   unsigned MinWidth = -1U;
5560   unsigned MaxWidth = 8;
5561   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5562   // For in-loop reductions, no element types are added to ElementTypesInLoop
5563   // if there are no loads/stores in the loop. In this case, check through the
5564   // reduction variables to determine the maximum width.
5565   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5566     // Reset MaxWidth so that we can find the smallest type used by recurrences
5567     // in the loop.
5568     MaxWidth = -1U;
5569     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5570       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5571       // When finding the min width used by the recurrence we need to account
5572       // for casts on the input operands of the recurrence.
5573       MaxWidth = std::min<unsigned>(
5574           MaxWidth, std::min<unsigned>(
5575                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5576                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5577     }
5578   } else {
5579     for (Type *T : ElementTypesInLoop) {
5580       MinWidth = std::min<unsigned>(
5581           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5582       MaxWidth = std::max<unsigned>(
5583           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5584     }
5585   }
5586   return {MinWidth, MaxWidth};
5587 }
5588 
5589 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5590   ElementTypesInLoop.clear();
5591   // For each block.
5592   for (BasicBlock *BB : TheLoop->blocks()) {
5593     // For each instruction in the loop.
5594     for (Instruction &I : BB->instructionsWithoutDebug()) {
5595       Type *T = I.getType();
5596 
5597       // Skip ignored values.
5598       if (ValuesToIgnore.count(&I))
5599         continue;
5600 
5601       // Only examine Loads, Stores and PHINodes.
5602       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5603         continue;
5604 
5605       // Examine PHI nodes that are reduction variables. Update the type to
5606       // account for the recurrence type.
5607       if (auto *PN = dyn_cast<PHINode>(&I)) {
5608         if (!Legal->isReductionVariable(PN))
5609           continue;
5610         const RecurrenceDescriptor &RdxDesc =
5611             Legal->getReductionVars().find(PN)->second;
5612         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5613             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5614                                       RdxDesc.getRecurrenceType(),
5615                                       TargetTransformInfo::ReductionFlags()))
5616           continue;
5617         T = RdxDesc.getRecurrenceType();
5618       }
5619 
5620       // Examine the stored values.
5621       if (auto *ST = dyn_cast<StoreInst>(&I))
5622         T = ST->getValueOperand()->getType();
5623 
5624       assert(T->isSized() &&
5625              "Expected the load/store/recurrence type to be sized");
5626 
5627       ElementTypesInLoop.insert(T);
5628     }
5629   }
5630 }
5631 
5632 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5633                                                            unsigned LoopCost) {
5634   // -- The interleave heuristics --
5635   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5636   // There are many micro-architectural considerations that we can't predict
5637   // at this level. For example, frontend pressure (on decode or fetch) due to
5638   // code size, or the number and capabilities of the execution ports.
5639   //
5640   // We use the following heuristics to select the interleave count:
5641   // 1. If the code has reductions, then we interleave to break the cross
5642   // iteration dependency.
5643   // 2. If the loop is really small, then we interleave to reduce the loop
5644   // overhead.
5645   // 3. We don't interleave if we think that we will spill registers to memory
5646   // due to the increased register pressure.
5647 
5648   if (!isScalarEpilogueAllowed())
5649     return 1;
5650 
5651   // We used the distance for the interleave count.
5652   if (Legal->getMaxSafeDepDistBytes() != -1U)
5653     return 1;
5654 
5655   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5656   const bool HasReductions = !Legal->getReductionVars().empty();
5657   // Do not interleave loops with a relatively small known or estimated trip
5658   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5659   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5660   // because with the above conditions interleaving can expose ILP and break
5661   // cross iteration dependences for reductions.
5662   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5663       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5664     return 1;
5665 
5666   // If we did not calculate the cost for VF (because the user selected the VF)
5667   // then we calculate the cost of VF here.
5668   if (LoopCost == 0) {
5669     InstructionCost C = expectedCost(VF).first;
5670     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5671     LoopCost = *C.getValue();
5672 
5673     // Loop body is free and there is no need for interleaving.
5674     if (LoopCost == 0)
5675       return 1;
5676   }
5677 
5678   RegisterUsage R = calculateRegisterUsage({VF})[0];
5679   // We divide by these constants so assume that we have at least one
5680   // instruction that uses at least one register.
5681   for (auto& pair : R.MaxLocalUsers) {
5682     pair.second = std::max(pair.second, 1U);
5683   }
5684 
5685   // We calculate the interleave count using the following formula.
5686   // Subtract the number of loop invariants from the number of available
5687   // registers. These registers are used by all of the interleaved instances.
5688   // Next, divide the remaining registers by the number of registers that is
5689   // required by the loop, in order to estimate how many parallel instances
5690   // fit without causing spills. All of this is rounded down if necessary to be
5691   // a power of two. We want power of two interleave count to simplify any
5692   // addressing operations or alignment considerations.
5693   // We also want power of two interleave counts to ensure that the induction
5694   // variable of the vector loop wraps to zero, when tail is folded by masking;
5695   // this currently happens when OptForSize, in which case IC is set to 1 above.
5696   unsigned IC = UINT_MAX;
5697 
5698   for (auto& pair : R.MaxLocalUsers) {
5699     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5700     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5701                       << " registers of "
5702                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5703     if (VF.isScalar()) {
5704       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5705         TargetNumRegisters = ForceTargetNumScalarRegs;
5706     } else {
5707       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5708         TargetNumRegisters = ForceTargetNumVectorRegs;
5709     }
5710     unsigned MaxLocalUsers = pair.second;
5711     unsigned LoopInvariantRegs = 0;
5712     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5713       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5714 
5715     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5716     // Don't count the induction variable as interleaved.
5717     if (EnableIndVarRegisterHeur) {
5718       TmpIC =
5719           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5720                         std::max(1U, (MaxLocalUsers - 1)));
5721     }
5722 
5723     IC = std::min(IC, TmpIC);
5724   }
5725 
5726   // Clamp the interleave ranges to reasonable counts.
5727   unsigned MaxInterleaveCount =
5728       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5729 
5730   // Check if the user has overridden the max.
5731   if (VF.isScalar()) {
5732     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5733       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5734   } else {
5735     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5736       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5737   }
5738 
5739   // If trip count is known or estimated compile time constant, limit the
5740   // interleave count to be less than the trip count divided by VF, provided it
5741   // is at least 1.
5742   //
5743   // For scalable vectors we can't know if interleaving is beneficial. It may
5744   // not be beneficial for small loops if none of the lanes in the second vector
5745   // iterations is enabled. However, for larger loops, there is likely to be a
5746   // similar benefit as for fixed-width vectors. For now, we choose to leave
5747   // the InterleaveCount as if vscale is '1', although if some information about
5748   // the vector is known (e.g. min vector size), we can make a better decision.
5749   if (BestKnownTC) {
5750     MaxInterleaveCount =
5751         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5752     // Make sure MaxInterleaveCount is greater than 0.
5753     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5754   }
5755 
5756   assert(MaxInterleaveCount > 0 &&
5757          "Maximum interleave count must be greater than 0");
5758 
5759   // Clamp the calculated IC to be between the 1 and the max interleave count
5760   // that the target and trip count allows.
5761   if (IC > MaxInterleaveCount)
5762     IC = MaxInterleaveCount;
5763   else
5764     // Make sure IC is greater than 0.
5765     IC = std::max(1u, IC);
5766 
5767   assert(IC > 0 && "Interleave count must be greater than 0.");
5768 
5769   // Interleave if we vectorized this loop and there is a reduction that could
5770   // benefit from interleaving.
5771   if (VF.isVector() && HasReductions) {
5772     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5773     return IC;
5774   }
5775 
5776   // For any scalar loop that either requires runtime checks or predication we
5777   // are better off leaving this to the unroller. Note that if we've already
5778   // vectorized the loop we will have done the runtime check and so interleaving
5779   // won't require further checks.
5780   bool ScalarInterleavingRequiresPredication =
5781       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5782          return Legal->blockNeedsPredication(BB);
5783        }));
5784   bool ScalarInterleavingRequiresRuntimePointerCheck =
5785       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5786 
5787   // We want to interleave small loops in order to reduce the loop overhead and
5788   // potentially expose ILP opportunities.
5789   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5790                     << "LV: IC is " << IC << '\n'
5791                     << "LV: VF is " << VF << '\n');
5792   const bool AggressivelyInterleaveReductions =
5793       TTI.enableAggressiveInterleaving(HasReductions);
5794   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5795       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5796     // We assume that the cost overhead is 1 and we use the cost model
5797     // to estimate the cost of the loop and interleave until the cost of the
5798     // loop overhead is about 5% of the cost of the loop.
5799     unsigned SmallIC =
5800         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5801 
5802     // Interleave until store/load ports (estimated by max interleave count) are
5803     // saturated.
5804     unsigned NumStores = Legal->getNumStores();
5805     unsigned NumLoads = Legal->getNumLoads();
5806     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5807     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5808 
5809     // There is little point in interleaving for reductions containing selects
5810     // and compares when VF=1 since it may just create more overhead than it's
5811     // worth for loops with small trip counts. This is because we still have to
5812     // do the final reduction after the loop.
5813     bool HasSelectCmpReductions =
5814         HasReductions &&
5815         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5816           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5817           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5818               RdxDesc.getRecurrenceKind());
5819         });
5820     if (HasSelectCmpReductions) {
5821       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5822       return 1;
5823     }
5824 
5825     // If we have a scalar reduction (vector reductions are already dealt with
5826     // by this point), we can increase the critical path length if the loop
5827     // we're interleaving is inside another loop. For tree-wise reductions
5828     // set the limit to 2, and for ordered reductions it's best to disable
5829     // interleaving entirely.
5830     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5831       bool HasOrderedReductions =
5832           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5833             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5834             return RdxDesc.isOrdered();
5835           });
5836       if (HasOrderedReductions) {
5837         LLVM_DEBUG(
5838             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5839         return 1;
5840       }
5841 
5842       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5843       SmallIC = std::min(SmallIC, F);
5844       StoresIC = std::min(StoresIC, F);
5845       LoadsIC = std::min(LoadsIC, F);
5846     }
5847 
5848     if (EnableLoadStoreRuntimeInterleave &&
5849         std::max(StoresIC, LoadsIC) > SmallIC) {
5850       LLVM_DEBUG(
5851           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5852       return std::max(StoresIC, LoadsIC);
5853     }
5854 
5855     // If there are scalar reductions and TTI has enabled aggressive
5856     // interleaving for reductions, we will interleave to expose ILP.
5857     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5858         AggressivelyInterleaveReductions) {
5859       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5860       // Interleave no less than SmallIC but not as aggressive as the normal IC
5861       // to satisfy the rare situation when resources are too limited.
5862       return std::max(IC / 2, SmallIC);
5863     } else {
5864       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5865       return SmallIC;
5866     }
5867   }
5868 
5869   // Interleave if this is a large loop (small loops are already dealt with by
5870   // this point) that could benefit from interleaving.
5871   if (AggressivelyInterleaveReductions) {
5872     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5873     return IC;
5874   }
5875 
5876   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5877   return 1;
5878 }
5879 
5880 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5881 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5882   // This function calculates the register usage by measuring the highest number
5883   // of values that are alive at a single location. Obviously, this is a very
5884   // rough estimation. We scan the loop in a topological order in order and
5885   // assign a number to each instruction. We use RPO to ensure that defs are
5886   // met before their users. We assume that each instruction that has in-loop
5887   // users starts an interval. We record every time that an in-loop value is
5888   // used, so we have a list of the first and last occurrences of each
5889   // instruction. Next, we transpose this data structure into a multi map that
5890   // holds the list of intervals that *end* at a specific location. This multi
5891   // map allows us to perform a linear search. We scan the instructions linearly
5892   // and record each time that a new interval starts, by placing it in a set.
5893   // If we find this value in the multi-map then we remove it from the set.
5894   // The max register usage is the maximum size of the set.
5895   // We also search for instructions that are defined outside the loop, but are
5896   // used inside the loop. We need this number separately from the max-interval
5897   // usage number because when we unroll, loop-invariant values do not take
5898   // more register.
5899   LoopBlocksDFS DFS(TheLoop);
5900   DFS.perform(LI);
5901 
5902   RegisterUsage RU;
5903 
5904   // Each 'key' in the map opens a new interval. The values
5905   // of the map are the index of the 'last seen' usage of the
5906   // instruction that is the key.
5907   using IntervalMap = DenseMap<Instruction *, unsigned>;
5908 
5909   // Maps instruction to its index.
5910   SmallVector<Instruction *, 64> IdxToInstr;
5911   // Marks the end of each interval.
5912   IntervalMap EndPoint;
5913   // Saves the list of instruction indices that are used in the loop.
5914   SmallPtrSet<Instruction *, 8> Ends;
5915   // Saves the list of values that are used in the loop but are
5916   // defined outside the loop, such as arguments and constants.
5917   SmallPtrSet<Value *, 8> LoopInvariants;
5918 
5919   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5920     for (Instruction &I : BB->instructionsWithoutDebug()) {
5921       IdxToInstr.push_back(&I);
5922 
5923       // Save the end location of each USE.
5924       for (Value *U : I.operands()) {
5925         auto *Instr = dyn_cast<Instruction>(U);
5926 
5927         // Ignore non-instruction values such as arguments, constants, etc.
5928         if (!Instr)
5929           continue;
5930 
5931         // If this instruction is outside the loop then record it and continue.
5932         if (!TheLoop->contains(Instr)) {
5933           LoopInvariants.insert(Instr);
5934           continue;
5935         }
5936 
5937         // Overwrite previous end points.
5938         EndPoint[Instr] = IdxToInstr.size();
5939         Ends.insert(Instr);
5940       }
5941     }
5942   }
5943 
5944   // Saves the list of intervals that end with the index in 'key'.
5945   using InstrList = SmallVector<Instruction *, 2>;
5946   DenseMap<unsigned, InstrList> TransposeEnds;
5947 
5948   // Transpose the EndPoints to a list of values that end at each index.
5949   for (auto &Interval : EndPoint)
5950     TransposeEnds[Interval.second].push_back(Interval.first);
5951 
5952   SmallPtrSet<Instruction *, 8> OpenIntervals;
5953   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5954   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5955 
5956   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5957 
5958   auto GetRegUsage = [&TTI = TTI](Type *Ty, ElementCount VF) -> unsigned {
5959     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5960       return 0;
5961     return TTI.getRegUsageForType(VectorType::get(Ty, VF));
5962   };
5963 
5964   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5965     Instruction *I = IdxToInstr[i];
5966 
5967     // Remove all of the instructions that end at this location.
5968     InstrList &List = TransposeEnds[i];
5969     for (Instruction *ToRemove : List)
5970       OpenIntervals.erase(ToRemove);
5971 
5972     // Ignore instructions that are never used within the loop.
5973     if (!Ends.count(I))
5974       continue;
5975 
5976     // Skip ignored values.
5977     if (ValuesToIgnore.count(I))
5978       continue;
5979 
5980     // For each VF find the maximum usage of registers.
5981     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5982       // Count the number of live intervals.
5983       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5984 
5985       if (VFs[j].isScalar()) {
5986         for (auto Inst : OpenIntervals) {
5987           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5988           if (RegUsage.find(ClassID) == RegUsage.end())
5989             RegUsage[ClassID] = 1;
5990           else
5991             RegUsage[ClassID] += 1;
5992         }
5993       } else {
5994         collectUniformsAndScalars(VFs[j]);
5995         for (auto Inst : OpenIntervals) {
5996           // Skip ignored values for VF > 1.
5997           if (VecValuesToIgnore.count(Inst))
5998             continue;
5999           if (isScalarAfterVectorization(Inst, VFs[j])) {
6000             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6001             if (RegUsage.find(ClassID) == RegUsage.end())
6002               RegUsage[ClassID] = 1;
6003             else
6004               RegUsage[ClassID] += 1;
6005           } else {
6006             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6007             if (RegUsage.find(ClassID) == RegUsage.end())
6008               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6009             else
6010               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6011           }
6012         }
6013       }
6014 
6015       for (auto& pair : RegUsage) {
6016         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6017           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6018         else
6019           MaxUsages[j][pair.first] = pair.second;
6020       }
6021     }
6022 
6023     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6024                       << OpenIntervals.size() << '\n');
6025 
6026     // Add the current instruction to the list of open intervals.
6027     OpenIntervals.insert(I);
6028   }
6029 
6030   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6031     SmallMapVector<unsigned, unsigned, 4> Invariant;
6032 
6033     for (auto Inst : LoopInvariants) {
6034       unsigned Usage =
6035           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6036       unsigned ClassID =
6037           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6038       if (Invariant.find(ClassID) == Invariant.end())
6039         Invariant[ClassID] = Usage;
6040       else
6041         Invariant[ClassID] += Usage;
6042     }
6043 
6044     LLVM_DEBUG({
6045       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6046       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6047              << " item\n";
6048       for (const auto &pair : MaxUsages[i]) {
6049         dbgs() << "LV(REG): RegisterClass: "
6050                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6051                << " registers\n";
6052       }
6053       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6054              << " item\n";
6055       for (const auto &pair : Invariant) {
6056         dbgs() << "LV(REG): RegisterClass: "
6057                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6058                << " registers\n";
6059       }
6060     });
6061 
6062     RU.LoopInvariantRegs = Invariant;
6063     RU.MaxLocalUsers = MaxUsages[i];
6064     RUs[i] = RU;
6065   }
6066 
6067   return RUs;
6068 }
6069 
6070 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6071                                                            ElementCount VF) {
6072   // TODO: Cost model for emulated masked load/store is completely
6073   // broken. This hack guides the cost model to use an artificially
6074   // high enough value to practically disable vectorization with such
6075   // operations, except where previously deployed legality hack allowed
6076   // using very low cost values. This is to avoid regressions coming simply
6077   // from moving "masked load/store" check from legality to cost model.
6078   // Masked Load/Gather emulation was previously never allowed.
6079   // Limited number of Masked Store/Scatter emulation was allowed.
6080   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6081   return isa<LoadInst>(I) ||
6082          (isa<StoreInst>(I) &&
6083           NumPredStores > NumberOfStoresToPredicate);
6084 }
6085 
6086 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6087   // If we aren't vectorizing the loop, or if we've already collected the
6088   // instructions to scalarize, there's nothing to do. Collection may already
6089   // have occurred if we have a user-selected VF and are now computing the
6090   // expected cost for interleaving.
6091   if (VF.isScalar() || VF.isZero() ||
6092       InstsToScalarize.find(VF) != InstsToScalarize.end())
6093     return;
6094 
6095   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6096   // not profitable to scalarize any instructions, the presence of VF in the
6097   // map will indicate that we've analyzed it already.
6098   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6099 
6100   // Find all the instructions that are scalar with predication in the loop and
6101   // determine if it would be better to not if-convert the blocks they are in.
6102   // If so, we also record the instructions to scalarize.
6103   for (BasicBlock *BB : TheLoop->blocks()) {
6104     if (!blockNeedsPredicationForAnyReason(BB))
6105       continue;
6106     for (Instruction &I : *BB)
6107       if (isScalarWithPredication(&I, VF)) {
6108         ScalarCostsTy ScalarCosts;
6109         // Do not apply discount if scalable, because that would lead to
6110         // invalid scalarization costs.
6111         // Do not apply discount logic if hacked cost is needed
6112         // for emulated masked memrefs.
6113         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6114             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6115           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6116         // Remember that BB will remain after vectorization.
6117         PredicatedBBsAfterVectorization.insert(BB);
6118       }
6119   }
6120 }
6121 
6122 int LoopVectorizationCostModel::computePredInstDiscount(
6123     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6124   assert(!isUniformAfterVectorization(PredInst, VF) &&
6125          "Instruction marked uniform-after-vectorization will be predicated");
6126 
6127   // Initialize the discount to zero, meaning that the scalar version and the
6128   // vector version cost the same.
6129   InstructionCost Discount = 0;
6130 
6131   // Holds instructions to analyze. The instructions we visit are mapped in
6132   // ScalarCosts. Those instructions are the ones that would be scalarized if
6133   // we find that the scalar version costs less.
6134   SmallVector<Instruction *, 8> Worklist;
6135 
6136   // Returns true if the given instruction can be scalarized.
6137   auto canBeScalarized = [&](Instruction *I) -> bool {
6138     // We only attempt to scalarize instructions forming a single-use chain
6139     // from the original predicated block that would otherwise be vectorized.
6140     // Although not strictly necessary, we give up on instructions we know will
6141     // already be scalar to avoid traversing chains that are unlikely to be
6142     // beneficial.
6143     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6144         isScalarAfterVectorization(I, VF))
6145       return false;
6146 
6147     // If the instruction is scalar with predication, it will be analyzed
6148     // separately. We ignore it within the context of PredInst.
6149     if (isScalarWithPredication(I, VF))
6150       return false;
6151 
6152     // If any of the instruction's operands are uniform after vectorization,
6153     // the instruction cannot be scalarized. This prevents, for example, a
6154     // masked load from being scalarized.
6155     //
6156     // We assume we will only emit a value for lane zero of an instruction
6157     // marked uniform after vectorization, rather than VF identical values.
6158     // Thus, if we scalarize an instruction that uses a uniform, we would
6159     // create uses of values corresponding to the lanes we aren't emitting code
6160     // for. This behavior can be changed by allowing getScalarValue to clone
6161     // the lane zero values for uniforms rather than asserting.
6162     for (Use &U : I->operands())
6163       if (auto *J = dyn_cast<Instruction>(U.get()))
6164         if (isUniformAfterVectorization(J, VF))
6165           return false;
6166 
6167     // Otherwise, we can scalarize the instruction.
6168     return true;
6169   };
6170 
6171   // Compute the expected cost discount from scalarizing the entire expression
6172   // feeding the predicated instruction. We currently only consider expressions
6173   // that are single-use instruction chains.
6174   Worklist.push_back(PredInst);
6175   while (!Worklist.empty()) {
6176     Instruction *I = Worklist.pop_back_val();
6177 
6178     // If we've already analyzed the instruction, there's nothing to do.
6179     if (ScalarCosts.find(I) != ScalarCosts.end())
6180       continue;
6181 
6182     // Compute the cost of the vector instruction. Note that this cost already
6183     // includes the scalarization overhead of the predicated instruction.
6184     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6185 
6186     // Compute the cost of the scalarized instruction. This cost is the cost of
6187     // the instruction as if it wasn't if-converted and instead remained in the
6188     // predicated block. We will scale this cost by block probability after
6189     // computing the scalarization overhead.
6190     InstructionCost ScalarCost =
6191         VF.getFixedValue() *
6192         getInstructionCost(I, ElementCount::getFixed(1)).first;
6193 
6194     // Compute the scalarization overhead of needed insertelement instructions
6195     // and phi nodes.
6196     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6197       ScalarCost += TTI.getScalarizationOverhead(
6198           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6199           APInt::getAllOnes(VF.getFixedValue()), true, false);
6200       ScalarCost +=
6201           VF.getFixedValue() *
6202           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6203     }
6204 
6205     // Compute the scalarization overhead of needed extractelement
6206     // instructions. For each of the instruction's operands, if the operand can
6207     // be scalarized, add it to the worklist; otherwise, account for the
6208     // overhead.
6209     for (Use &U : I->operands())
6210       if (auto *J = dyn_cast<Instruction>(U.get())) {
6211         assert(VectorType::isValidElementType(J->getType()) &&
6212                "Instruction has non-scalar type");
6213         if (canBeScalarized(J))
6214           Worklist.push_back(J);
6215         else if (needsExtract(J, VF)) {
6216           ScalarCost += TTI.getScalarizationOverhead(
6217               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6218               APInt::getAllOnes(VF.getFixedValue()), false, true);
6219         }
6220       }
6221 
6222     // Scale the total scalar cost by block probability.
6223     ScalarCost /= getReciprocalPredBlockProb();
6224 
6225     // Compute the discount. A non-negative discount means the vector version
6226     // of the instruction costs more, and scalarizing would be beneficial.
6227     Discount += VectorCost - ScalarCost;
6228     ScalarCosts[I] = ScalarCost;
6229   }
6230 
6231   return *Discount.getValue();
6232 }
6233 
6234 LoopVectorizationCostModel::VectorizationCostTy
6235 LoopVectorizationCostModel::expectedCost(
6236     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6237   VectorizationCostTy Cost;
6238 
6239   // For each block.
6240   for (BasicBlock *BB : TheLoop->blocks()) {
6241     VectorizationCostTy BlockCost;
6242 
6243     // For each instruction in the old loop.
6244     for (Instruction &I : BB->instructionsWithoutDebug()) {
6245       // Skip ignored values.
6246       if (ValuesToIgnore.count(&I) ||
6247           (VF.isVector() && VecValuesToIgnore.count(&I)))
6248         continue;
6249 
6250       VectorizationCostTy C = getInstructionCost(&I, VF);
6251 
6252       // Check if we should override the cost.
6253       if (C.first.isValid() &&
6254           ForceTargetInstructionCost.getNumOccurrences() > 0)
6255         C.first = InstructionCost(ForceTargetInstructionCost);
6256 
6257       // Keep a list of instructions with invalid costs.
6258       if (Invalid && !C.first.isValid())
6259         Invalid->emplace_back(&I, VF);
6260 
6261       BlockCost.first += C.first;
6262       BlockCost.second |= C.second;
6263       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6264                         << " for VF " << VF << " For instruction: " << I
6265                         << '\n');
6266     }
6267 
6268     // If we are vectorizing a predicated block, it will have been
6269     // if-converted. This means that the block's instructions (aside from
6270     // stores and instructions that may divide by zero) will now be
6271     // unconditionally executed. For the scalar case, we may not always execute
6272     // the predicated block, if it is an if-else block. Thus, scale the block's
6273     // cost by the probability of executing it. blockNeedsPredication from
6274     // Legal is used so as to not include all blocks in tail folded loops.
6275     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6276       BlockCost.first /= getReciprocalPredBlockProb();
6277 
6278     Cost.first += BlockCost.first;
6279     Cost.second |= BlockCost.second;
6280   }
6281 
6282   return Cost;
6283 }
6284 
6285 /// Gets Address Access SCEV after verifying that the access pattern
6286 /// is loop invariant except the induction variable dependence.
6287 ///
6288 /// This SCEV can be sent to the Target in order to estimate the address
6289 /// calculation cost.
6290 static const SCEV *getAddressAccessSCEV(
6291               Value *Ptr,
6292               LoopVectorizationLegality *Legal,
6293               PredicatedScalarEvolution &PSE,
6294               const Loop *TheLoop) {
6295 
6296   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6297   if (!Gep)
6298     return nullptr;
6299 
6300   // We are looking for a gep with all loop invariant indices except for one
6301   // which should be an induction variable.
6302   auto SE = PSE.getSE();
6303   unsigned NumOperands = Gep->getNumOperands();
6304   for (unsigned i = 1; i < NumOperands; ++i) {
6305     Value *Opd = Gep->getOperand(i);
6306     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6307         !Legal->isInductionVariable(Opd))
6308       return nullptr;
6309   }
6310 
6311   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6312   return PSE.getSCEV(Ptr);
6313 }
6314 
6315 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6316   return Legal->hasStride(I->getOperand(0)) ||
6317          Legal->hasStride(I->getOperand(1));
6318 }
6319 
6320 InstructionCost
6321 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6322                                                         ElementCount VF) {
6323   assert(VF.isVector() &&
6324          "Scalarization cost of instruction implies vectorization.");
6325   if (VF.isScalable())
6326     return InstructionCost::getInvalid();
6327 
6328   Type *ValTy = getLoadStoreType(I);
6329   auto SE = PSE.getSE();
6330 
6331   unsigned AS = getLoadStoreAddressSpace(I);
6332   Value *Ptr = getLoadStorePointerOperand(I);
6333   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6334   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6335   //       that it is being called from this specific place.
6336 
6337   // Figure out whether the access is strided and get the stride value
6338   // if it's known in compile time
6339   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6340 
6341   // Get the cost of the scalar memory instruction and address computation.
6342   InstructionCost Cost =
6343       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6344 
6345   // Don't pass *I here, since it is scalar but will actually be part of a
6346   // vectorized loop where the user of it is a vectorized instruction.
6347   const Align Alignment = getLoadStoreAlignment(I);
6348   Cost += VF.getKnownMinValue() *
6349           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6350                               AS, TTI::TCK_RecipThroughput);
6351 
6352   // Get the overhead of the extractelement and insertelement instructions
6353   // we might create due to scalarization.
6354   Cost += getScalarizationOverhead(I, VF);
6355 
6356   // If we have a predicated load/store, it will need extra i1 extracts and
6357   // conditional branches, but may not be executed for each vector lane. Scale
6358   // the cost by the probability of executing the predicated block.
6359   if (isPredicatedInst(I, VF)) {
6360     Cost /= getReciprocalPredBlockProb();
6361 
6362     // Add the cost of an i1 extract and a branch
6363     auto *Vec_i1Ty =
6364         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6365     Cost += TTI.getScalarizationOverhead(
6366         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6367         /*Insert=*/false, /*Extract=*/true);
6368     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6369 
6370     if (useEmulatedMaskMemRefHack(I, VF))
6371       // Artificially setting to a high enough value to practically disable
6372       // vectorization with such operations.
6373       Cost = 3000000;
6374   }
6375 
6376   return Cost;
6377 }
6378 
6379 InstructionCost
6380 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6381                                                     ElementCount VF) {
6382   Type *ValTy = getLoadStoreType(I);
6383   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6384   Value *Ptr = getLoadStorePointerOperand(I);
6385   unsigned AS = getLoadStoreAddressSpace(I);
6386   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6387   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6388 
6389   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6390          "Stride should be 1 or -1 for consecutive memory access");
6391   const Align Alignment = getLoadStoreAlignment(I);
6392   InstructionCost Cost = 0;
6393   if (Legal->isMaskRequired(I))
6394     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6395                                       CostKind);
6396   else
6397     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6398                                 CostKind, I);
6399 
6400   bool Reverse = ConsecutiveStride < 0;
6401   if (Reverse)
6402     Cost +=
6403         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6404   return Cost;
6405 }
6406 
6407 InstructionCost
6408 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6409                                                 ElementCount VF) {
6410   assert(Legal->isUniformMemOp(*I));
6411 
6412   Type *ValTy = getLoadStoreType(I);
6413   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6414   const Align Alignment = getLoadStoreAlignment(I);
6415   unsigned AS = getLoadStoreAddressSpace(I);
6416   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6417   if (isa<LoadInst>(I)) {
6418     return TTI.getAddressComputationCost(ValTy) +
6419            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6420                                CostKind) +
6421            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6422   }
6423   StoreInst *SI = cast<StoreInst>(I);
6424 
6425   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6426   return TTI.getAddressComputationCost(ValTy) +
6427          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6428                              CostKind) +
6429          (isLoopInvariantStoreValue
6430               ? 0
6431               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6432                                        VF.getKnownMinValue() - 1));
6433 }
6434 
6435 InstructionCost
6436 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6437                                                  ElementCount VF) {
6438   Type *ValTy = getLoadStoreType(I);
6439   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6440   const Align Alignment = getLoadStoreAlignment(I);
6441   const Value *Ptr = getLoadStorePointerOperand(I);
6442 
6443   return TTI.getAddressComputationCost(VectorTy) +
6444          TTI.getGatherScatterOpCost(
6445              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6446              TargetTransformInfo::TCK_RecipThroughput, I);
6447 }
6448 
6449 InstructionCost
6450 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6451                                                    ElementCount VF) {
6452   // TODO: Once we have support for interleaving with scalable vectors
6453   // we can calculate the cost properly here.
6454   if (VF.isScalable())
6455     return InstructionCost::getInvalid();
6456 
6457   Type *ValTy = getLoadStoreType(I);
6458   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6459   unsigned AS = getLoadStoreAddressSpace(I);
6460 
6461   auto Group = getInterleavedAccessGroup(I);
6462   assert(Group && "Fail to get an interleaved access group.");
6463 
6464   unsigned InterleaveFactor = Group->getFactor();
6465   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6466 
6467   // Holds the indices of existing members in the interleaved group.
6468   SmallVector<unsigned, 4> Indices;
6469   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6470     if (Group->getMember(IF))
6471       Indices.push_back(IF);
6472 
6473   // Calculate the cost of the whole interleaved group.
6474   bool UseMaskForGaps =
6475       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6476       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6477   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6478       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6479       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6480 
6481   if (Group->isReverse()) {
6482     // TODO: Add support for reversed masked interleaved access.
6483     assert(!Legal->isMaskRequired(I) &&
6484            "Reverse masked interleaved access not supported.");
6485     Cost +=
6486         Group->getNumMembers() *
6487         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6488   }
6489   return Cost;
6490 }
6491 
6492 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6493     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6494   using namespace llvm::PatternMatch;
6495   // Early exit for no inloop reductions
6496   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6497     return None;
6498   auto *VectorTy = cast<VectorType>(Ty);
6499 
6500   // We are looking for a pattern of, and finding the minimal acceptable cost:
6501   //  reduce(mul(ext(A), ext(B))) or
6502   //  reduce(mul(A, B)) or
6503   //  reduce(ext(A)) or
6504   //  reduce(A).
6505   // The basic idea is that we walk down the tree to do that, finding the root
6506   // reduction instruction in InLoopReductionImmediateChains. From there we find
6507   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6508   // of the components. If the reduction cost is lower then we return it for the
6509   // reduction instruction and 0 for the other instructions in the pattern. If
6510   // it is not we return an invalid cost specifying the orignal cost method
6511   // should be used.
6512   Instruction *RetI = I;
6513   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6514     if (!RetI->hasOneUser())
6515       return None;
6516     RetI = RetI->user_back();
6517   }
6518   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6519       RetI->user_back()->getOpcode() == Instruction::Add) {
6520     if (!RetI->hasOneUser())
6521       return None;
6522     RetI = RetI->user_back();
6523   }
6524 
6525   // Test if the found instruction is a reduction, and if not return an invalid
6526   // cost specifying the parent to use the original cost modelling.
6527   if (!InLoopReductionImmediateChains.count(RetI))
6528     return None;
6529 
6530   // Find the reduction this chain is a part of and calculate the basic cost of
6531   // the reduction on its own.
6532   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6533   Instruction *ReductionPhi = LastChain;
6534   while (!isa<PHINode>(ReductionPhi))
6535     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6536 
6537   const RecurrenceDescriptor &RdxDesc =
6538       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6539 
6540   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6541       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6542 
6543   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6544   // normal fmul instruction to the cost of the fadd reduction.
6545   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6546     BaseCost +=
6547         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6548 
6549   // If we're using ordered reductions then we can just return the base cost
6550   // here, since getArithmeticReductionCost calculates the full ordered
6551   // reduction cost when FP reassociation is not allowed.
6552   if (useOrderedReductions(RdxDesc))
6553     return BaseCost;
6554 
6555   // Get the operand that was not the reduction chain and match it to one of the
6556   // patterns, returning the better cost if it is found.
6557   Instruction *RedOp = RetI->getOperand(1) == LastChain
6558                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6559                            : dyn_cast<Instruction>(RetI->getOperand(1));
6560 
6561   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6562 
6563   Instruction *Op0, *Op1;
6564   if (RedOp &&
6565       match(RedOp,
6566             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6567       match(Op0, m_ZExtOrSExt(m_Value())) &&
6568       Op0->getOpcode() == Op1->getOpcode() &&
6569       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6570       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6571       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6572 
6573     // Matched reduce(ext(mul(ext(A), ext(B)))
6574     // Note that the extend opcodes need to all match, or if A==B they will have
6575     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6576     // which is equally fine.
6577     bool IsUnsigned = isa<ZExtInst>(Op0);
6578     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6579     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6580 
6581     InstructionCost ExtCost =
6582         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6583                              TTI::CastContextHint::None, CostKind, Op0);
6584     InstructionCost MulCost =
6585         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6586     InstructionCost Ext2Cost =
6587         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6588                              TTI::CastContextHint::None, CostKind, RedOp);
6589 
6590     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6591         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6592         CostKind);
6593 
6594     if (RedCost.isValid() &&
6595         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6596       return I == RetI ? RedCost : 0;
6597   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6598              !TheLoop->isLoopInvariant(RedOp)) {
6599     // Matched reduce(ext(A))
6600     bool IsUnsigned = isa<ZExtInst>(RedOp);
6601     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6602     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6603         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6604         CostKind);
6605 
6606     InstructionCost ExtCost =
6607         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6608                              TTI::CastContextHint::None, CostKind, RedOp);
6609     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6610       return I == RetI ? RedCost : 0;
6611   } else if (RedOp &&
6612              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6613     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6614         Op0->getOpcode() == Op1->getOpcode() &&
6615         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6616       bool IsUnsigned = isa<ZExtInst>(Op0);
6617       Type *Op0Ty = Op0->getOperand(0)->getType();
6618       Type *Op1Ty = Op1->getOperand(0)->getType();
6619       Type *LargestOpTy =
6620           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6621                                                                     : Op0Ty;
6622       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6623 
6624       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6625       // different sizes. We take the largest type as the ext to reduce, and add
6626       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6627       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6628           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6629           TTI::CastContextHint::None, CostKind, Op0);
6630       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6631           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6632           TTI::CastContextHint::None, CostKind, Op1);
6633       InstructionCost MulCost =
6634           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6635 
6636       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6637           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6638           CostKind);
6639       InstructionCost ExtraExtCost = 0;
6640       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6641         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6642         ExtraExtCost = TTI.getCastInstrCost(
6643             ExtraExtOp->getOpcode(), ExtType,
6644             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6645             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6646       }
6647 
6648       if (RedCost.isValid() &&
6649           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6650         return I == RetI ? RedCost : 0;
6651     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6652       // Matched reduce(mul())
6653       InstructionCost MulCost =
6654           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6655 
6656       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6657           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6658           CostKind);
6659 
6660       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6661         return I == RetI ? RedCost : 0;
6662     }
6663   }
6664 
6665   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6666 }
6667 
6668 InstructionCost
6669 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6670                                                      ElementCount VF) {
6671   // Calculate scalar cost only. Vectorization cost should be ready at this
6672   // moment.
6673   if (VF.isScalar()) {
6674     Type *ValTy = getLoadStoreType(I);
6675     const Align Alignment = getLoadStoreAlignment(I);
6676     unsigned AS = getLoadStoreAddressSpace(I);
6677 
6678     return TTI.getAddressComputationCost(ValTy) +
6679            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6680                                TTI::TCK_RecipThroughput, I);
6681   }
6682   return getWideningCost(I, VF);
6683 }
6684 
6685 LoopVectorizationCostModel::VectorizationCostTy
6686 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6687                                                ElementCount VF) {
6688   // If we know that this instruction will remain uniform, check the cost of
6689   // the scalar version.
6690   if (isUniformAfterVectorization(I, VF))
6691     VF = ElementCount::getFixed(1);
6692 
6693   if (VF.isVector() && isProfitableToScalarize(I, VF))
6694     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6695 
6696   // Forced scalars do not have any scalarization overhead.
6697   auto ForcedScalar = ForcedScalars.find(VF);
6698   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6699     auto InstSet = ForcedScalar->second;
6700     if (InstSet.count(I))
6701       return VectorizationCostTy(
6702           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6703            VF.getKnownMinValue()),
6704           false);
6705   }
6706 
6707   Type *VectorTy;
6708   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6709 
6710   bool TypeNotScalarized = false;
6711   if (VF.isVector() && VectorTy->isVectorTy()) {
6712     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6713     if (NumParts)
6714       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6715     else
6716       C = InstructionCost::getInvalid();
6717   }
6718   return VectorizationCostTy(C, TypeNotScalarized);
6719 }
6720 
6721 InstructionCost
6722 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6723                                                      ElementCount VF) const {
6724 
6725   // There is no mechanism yet to create a scalable scalarization loop,
6726   // so this is currently Invalid.
6727   if (VF.isScalable())
6728     return InstructionCost::getInvalid();
6729 
6730   if (VF.isScalar())
6731     return 0;
6732 
6733   InstructionCost Cost = 0;
6734   Type *RetTy = ToVectorTy(I->getType(), VF);
6735   if (!RetTy->isVoidTy() &&
6736       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6737     Cost += TTI.getScalarizationOverhead(
6738         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6739         false);
6740 
6741   // Some targets keep addresses scalar.
6742   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6743     return Cost;
6744 
6745   // Some targets support efficient element stores.
6746   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6747     return Cost;
6748 
6749   // Collect operands to consider.
6750   CallInst *CI = dyn_cast<CallInst>(I);
6751   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6752 
6753   // Skip operands that do not require extraction/scalarization and do not incur
6754   // any overhead.
6755   SmallVector<Type *> Tys;
6756   for (auto *V : filterExtractingOperands(Ops, VF))
6757     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6758   return Cost + TTI.getOperandsScalarizationOverhead(
6759                     filterExtractingOperands(Ops, VF), Tys);
6760 }
6761 
6762 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6763   if (VF.isScalar())
6764     return;
6765   NumPredStores = 0;
6766   for (BasicBlock *BB : TheLoop->blocks()) {
6767     // For each instruction in the old loop.
6768     for (Instruction &I : *BB) {
6769       Value *Ptr =  getLoadStorePointerOperand(&I);
6770       if (!Ptr)
6771         continue;
6772 
6773       // TODO: We should generate better code and update the cost model for
6774       // predicated uniform stores. Today they are treated as any other
6775       // predicated store (see added test cases in
6776       // invariant-store-vectorization.ll).
6777       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6778         NumPredStores++;
6779 
6780       if (Legal->isUniformMemOp(I)) {
6781         // TODO: Avoid replicating loads and stores instead of
6782         // relying on instcombine to remove them.
6783         // Load: Scalar load + broadcast
6784         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6785         InstructionCost Cost;
6786         if (isa<StoreInst>(&I) && VF.isScalable() &&
6787             isLegalGatherOrScatter(&I, VF)) {
6788           Cost = getGatherScatterCost(&I, VF);
6789           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6790         } else {
6791           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
6792                  "Cannot yet scalarize uniform stores");
6793           Cost = getUniformMemOpCost(&I, VF);
6794           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6795         }
6796         continue;
6797       }
6798 
6799       // We assume that widening is the best solution when possible.
6800       if (memoryInstructionCanBeWidened(&I, VF)) {
6801         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6802         int ConsecutiveStride = Legal->isConsecutivePtr(
6803             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6804         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6805                "Expected consecutive stride.");
6806         InstWidening Decision =
6807             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6808         setWideningDecision(&I, VF, Decision, Cost);
6809         continue;
6810       }
6811 
6812       // Choose between Interleaving, Gather/Scatter or Scalarization.
6813       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6814       unsigned NumAccesses = 1;
6815       if (isAccessInterleaved(&I)) {
6816         auto Group = getInterleavedAccessGroup(&I);
6817         assert(Group && "Fail to get an interleaved access group.");
6818 
6819         // Make one decision for the whole group.
6820         if (getWideningDecision(&I, VF) != CM_Unknown)
6821           continue;
6822 
6823         NumAccesses = Group->getNumMembers();
6824         if (interleavedAccessCanBeWidened(&I, VF))
6825           InterleaveCost = getInterleaveGroupCost(&I, VF);
6826       }
6827 
6828       InstructionCost GatherScatterCost =
6829           isLegalGatherOrScatter(&I, VF)
6830               ? getGatherScatterCost(&I, VF) * NumAccesses
6831               : InstructionCost::getInvalid();
6832 
6833       InstructionCost ScalarizationCost =
6834           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6835 
6836       // Choose better solution for the current VF,
6837       // write down this decision and use it during vectorization.
6838       InstructionCost Cost;
6839       InstWidening Decision;
6840       if (InterleaveCost <= GatherScatterCost &&
6841           InterleaveCost < ScalarizationCost) {
6842         Decision = CM_Interleave;
6843         Cost = InterleaveCost;
6844       } else if (GatherScatterCost < ScalarizationCost) {
6845         Decision = CM_GatherScatter;
6846         Cost = GatherScatterCost;
6847       } else {
6848         Decision = CM_Scalarize;
6849         Cost = ScalarizationCost;
6850       }
6851       // If the instructions belongs to an interleave group, the whole group
6852       // receives the same decision. The whole group receives the cost, but
6853       // the cost will actually be assigned to one instruction.
6854       if (auto Group = getInterleavedAccessGroup(&I))
6855         setWideningDecision(Group, VF, Decision, Cost);
6856       else
6857         setWideningDecision(&I, VF, Decision, Cost);
6858     }
6859   }
6860 
6861   // Make sure that any load of address and any other address computation
6862   // remains scalar unless there is gather/scatter support. This avoids
6863   // inevitable extracts into address registers, and also has the benefit of
6864   // activating LSR more, since that pass can't optimize vectorized
6865   // addresses.
6866   if (TTI.prefersVectorizedAddressing())
6867     return;
6868 
6869   // Start with all scalar pointer uses.
6870   SmallPtrSet<Instruction *, 8> AddrDefs;
6871   for (BasicBlock *BB : TheLoop->blocks())
6872     for (Instruction &I : *BB) {
6873       Instruction *PtrDef =
6874         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6875       if (PtrDef && TheLoop->contains(PtrDef) &&
6876           getWideningDecision(&I, VF) != CM_GatherScatter)
6877         AddrDefs.insert(PtrDef);
6878     }
6879 
6880   // Add all instructions used to generate the addresses.
6881   SmallVector<Instruction *, 4> Worklist;
6882   append_range(Worklist, AddrDefs);
6883   while (!Worklist.empty()) {
6884     Instruction *I = Worklist.pop_back_val();
6885     for (auto &Op : I->operands())
6886       if (auto *InstOp = dyn_cast<Instruction>(Op))
6887         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6888             AddrDefs.insert(InstOp).second)
6889           Worklist.push_back(InstOp);
6890   }
6891 
6892   for (auto *I : AddrDefs) {
6893     if (isa<LoadInst>(I)) {
6894       // Setting the desired widening decision should ideally be handled in
6895       // by cost functions, but since this involves the task of finding out
6896       // if the loaded register is involved in an address computation, it is
6897       // instead changed here when we know this is the case.
6898       InstWidening Decision = getWideningDecision(I, VF);
6899       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6900         // Scalarize a widened load of address.
6901         setWideningDecision(
6902             I, VF, CM_Scalarize,
6903             (VF.getKnownMinValue() *
6904              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6905       else if (auto Group = getInterleavedAccessGroup(I)) {
6906         // Scalarize an interleave group of address loads.
6907         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6908           if (Instruction *Member = Group->getMember(I))
6909             setWideningDecision(
6910                 Member, VF, CM_Scalarize,
6911                 (VF.getKnownMinValue() *
6912                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6913         }
6914       }
6915     } else
6916       // Make sure I gets scalarized and a cost estimate without
6917       // scalarization overhead.
6918       ForcedScalars[VF].insert(I);
6919   }
6920 }
6921 
6922 InstructionCost
6923 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6924                                                Type *&VectorTy) {
6925   Type *RetTy = I->getType();
6926   if (canTruncateToMinimalBitwidth(I, VF))
6927     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6928   auto SE = PSE.getSE();
6929   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6930 
6931   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6932                                                 ElementCount VF) -> bool {
6933     if (VF.isScalar())
6934       return true;
6935 
6936     auto Scalarized = InstsToScalarize.find(VF);
6937     assert(Scalarized != InstsToScalarize.end() &&
6938            "VF not yet analyzed for scalarization profitability");
6939     return !Scalarized->second.count(I) &&
6940            llvm::all_of(I->users(), [&](User *U) {
6941              auto *UI = cast<Instruction>(U);
6942              return !Scalarized->second.count(UI);
6943            });
6944   };
6945   (void) hasSingleCopyAfterVectorization;
6946 
6947   if (isScalarAfterVectorization(I, VF)) {
6948     // With the exception of GEPs and PHIs, after scalarization there should
6949     // only be one copy of the instruction generated in the loop. This is
6950     // because the VF is either 1, or any instructions that need scalarizing
6951     // have already been dealt with by the the time we get here. As a result,
6952     // it means we don't have to multiply the instruction cost by VF.
6953     assert(I->getOpcode() == Instruction::GetElementPtr ||
6954            I->getOpcode() == Instruction::PHI ||
6955            (I->getOpcode() == Instruction::BitCast &&
6956             I->getType()->isPointerTy()) ||
6957            hasSingleCopyAfterVectorization(I, VF));
6958     VectorTy = RetTy;
6959   } else
6960     VectorTy = ToVectorTy(RetTy, VF);
6961 
6962   // TODO: We need to estimate the cost of intrinsic calls.
6963   switch (I->getOpcode()) {
6964   case Instruction::GetElementPtr:
6965     // We mark this instruction as zero-cost because the cost of GEPs in
6966     // vectorized code depends on whether the corresponding memory instruction
6967     // is scalarized or not. Therefore, we handle GEPs with the memory
6968     // instruction cost.
6969     return 0;
6970   case Instruction::Br: {
6971     // In cases of scalarized and predicated instructions, there will be VF
6972     // predicated blocks in the vectorized loop. Each branch around these
6973     // blocks requires also an extract of its vector compare i1 element.
6974     bool ScalarPredicatedBB = false;
6975     BranchInst *BI = cast<BranchInst>(I);
6976     if (VF.isVector() && BI->isConditional() &&
6977         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6978          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6979       ScalarPredicatedBB = true;
6980 
6981     if (ScalarPredicatedBB) {
6982       // Not possible to scalarize scalable vector with predicated instructions.
6983       if (VF.isScalable())
6984         return InstructionCost::getInvalid();
6985       // Return cost for branches around scalarized and predicated blocks.
6986       auto *Vec_i1Ty =
6987           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6988       return (
6989           TTI.getScalarizationOverhead(
6990               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
6991           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6992     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6993       // The back-edge branch will remain, as will all scalar branches.
6994       return TTI.getCFInstrCost(Instruction::Br, CostKind);
6995     else
6996       // This branch will be eliminated by if-conversion.
6997       return 0;
6998     // Note: We currently assume zero cost for an unconditional branch inside
6999     // a predicated block since it will become a fall-through, although we
7000     // may decide in the future to call TTI for all branches.
7001   }
7002   case Instruction::PHI: {
7003     auto *Phi = cast<PHINode>(I);
7004 
7005     // First-order recurrences are replaced by vector shuffles inside the loop.
7006     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7007     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7008       return TTI.getShuffleCost(
7009           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7010           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7011 
7012     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7013     // converted into select instructions. We require N - 1 selects per phi
7014     // node, where N is the number of incoming values.
7015     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7016       return (Phi->getNumIncomingValues() - 1) *
7017              TTI.getCmpSelInstrCost(
7018                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7019                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7020                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7021 
7022     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7023   }
7024   case Instruction::UDiv:
7025   case Instruction::SDiv:
7026   case Instruction::URem:
7027   case Instruction::SRem:
7028     // If we have a predicated instruction, it may not be executed for each
7029     // vector lane. Get the scalarization cost and scale this amount by the
7030     // probability of executing the predicated block. If the instruction is not
7031     // predicated, we fall through to the next case.
7032     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7033       InstructionCost Cost = 0;
7034 
7035       // These instructions have a non-void type, so account for the phi nodes
7036       // that we will create. This cost is likely to be zero. The phi node
7037       // cost, if any, should be scaled by the block probability because it
7038       // models a copy at the end of each predicated block.
7039       Cost += VF.getKnownMinValue() *
7040               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7041 
7042       // The cost of the non-predicated instruction.
7043       Cost += VF.getKnownMinValue() *
7044               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7045 
7046       // The cost of insertelement and extractelement instructions needed for
7047       // scalarization.
7048       Cost += getScalarizationOverhead(I, VF);
7049 
7050       // Scale the cost by the probability of executing the predicated blocks.
7051       // This assumes the predicated block for each vector lane is equally
7052       // likely.
7053       return Cost / getReciprocalPredBlockProb();
7054     }
7055     LLVM_FALLTHROUGH;
7056   case Instruction::Add:
7057   case Instruction::FAdd:
7058   case Instruction::Sub:
7059   case Instruction::FSub:
7060   case Instruction::Mul:
7061   case Instruction::FMul:
7062   case Instruction::FDiv:
7063   case Instruction::FRem:
7064   case Instruction::Shl:
7065   case Instruction::LShr:
7066   case Instruction::AShr:
7067   case Instruction::And:
7068   case Instruction::Or:
7069   case Instruction::Xor: {
7070     // Since we will replace the stride by 1 the multiplication should go away.
7071     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7072       return 0;
7073 
7074     // Detect reduction patterns
7075     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7076       return *RedCost;
7077 
7078     // Certain instructions can be cheaper to vectorize if they have a constant
7079     // second vector operand. One example of this are shifts on x86.
7080     Value *Op2 = I->getOperand(1);
7081     TargetTransformInfo::OperandValueProperties Op2VP;
7082     TargetTransformInfo::OperandValueKind Op2VK =
7083         TTI.getOperandInfo(Op2, Op2VP);
7084     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7085       Op2VK = TargetTransformInfo::OK_UniformValue;
7086 
7087     SmallVector<const Value *, 4> Operands(I->operand_values());
7088     return TTI.getArithmeticInstrCost(
7089         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7090         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7091   }
7092   case Instruction::FNeg: {
7093     return TTI.getArithmeticInstrCost(
7094         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7095         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7096         TargetTransformInfo::OP_None, I->getOperand(0), I);
7097   }
7098   case Instruction::Select: {
7099     SelectInst *SI = cast<SelectInst>(I);
7100     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7101     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7102 
7103     const Value *Op0, *Op1;
7104     using namespace llvm::PatternMatch;
7105     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7106                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7107       // select x, y, false --> x & y
7108       // select x, true, y --> x | y
7109       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7110       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7111       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7112       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7113       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7114               Op1->getType()->getScalarSizeInBits() == 1);
7115 
7116       SmallVector<const Value *, 2> Operands{Op0, Op1};
7117       return TTI.getArithmeticInstrCost(
7118           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7119           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7120     }
7121 
7122     Type *CondTy = SI->getCondition()->getType();
7123     if (!ScalarCond)
7124       CondTy = VectorType::get(CondTy, VF);
7125 
7126     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7127     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7128       Pred = Cmp->getPredicate();
7129     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7130                                   CostKind, I);
7131   }
7132   case Instruction::ICmp:
7133   case Instruction::FCmp: {
7134     Type *ValTy = I->getOperand(0)->getType();
7135     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7136     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7137       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7138     VectorTy = ToVectorTy(ValTy, VF);
7139     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7140                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7141                                   I);
7142   }
7143   case Instruction::Store:
7144   case Instruction::Load: {
7145     ElementCount Width = VF;
7146     if (Width.isVector()) {
7147       InstWidening Decision = getWideningDecision(I, Width);
7148       assert(Decision != CM_Unknown &&
7149              "CM decision should be taken at this point");
7150       if (Decision == CM_Scalarize)
7151         Width = ElementCount::getFixed(1);
7152     }
7153     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7154     return getMemoryInstructionCost(I, VF);
7155   }
7156   case Instruction::BitCast:
7157     if (I->getType()->isPointerTy())
7158       return 0;
7159     LLVM_FALLTHROUGH;
7160   case Instruction::ZExt:
7161   case Instruction::SExt:
7162   case Instruction::FPToUI:
7163   case Instruction::FPToSI:
7164   case Instruction::FPExt:
7165   case Instruction::PtrToInt:
7166   case Instruction::IntToPtr:
7167   case Instruction::SIToFP:
7168   case Instruction::UIToFP:
7169   case Instruction::Trunc:
7170   case Instruction::FPTrunc: {
7171     // Computes the CastContextHint from a Load/Store instruction.
7172     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7173       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7174              "Expected a load or a store!");
7175 
7176       if (VF.isScalar() || !TheLoop->contains(I))
7177         return TTI::CastContextHint::Normal;
7178 
7179       switch (getWideningDecision(I, VF)) {
7180       case LoopVectorizationCostModel::CM_GatherScatter:
7181         return TTI::CastContextHint::GatherScatter;
7182       case LoopVectorizationCostModel::CM_Interleave:
7183         return TTI::CastContextHint::Interleave;
7184       case LoopVectorizationCostModel::CM_Scalarize:
7185       case LoopVectorizationCostModel::CM_Widen:
7186         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7187                                         : TTI::CastContextHint::Normal;
7188       case LoopVectorizationCostModel::CM_Widen_Reverse:
7189         return TTI::CastContextHint::Reversed;
7190       case LoopVectorizationCostModel::CM_Unknown:
7191         llvm_unreachable("Instr did not go through cost modelling?");
7192       }
7193 
7194       llvm_unreachable("Unhandled case!");
7195     };
7196 
7197     unsigned Opcode = I->getOpcode();
7198     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7199     // For Trunc, the context is the only user, which must be a StoreInst.
7200     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7201       if (I->hasOneUse())
7202         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7203           CCH = ComputeCCH(Store);
7204     }
7205     // For Z/Sext, the context is the operand, which must be a LoadInst.
7206     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7207              Opcode == Instruction::FPExt) {
7208       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7209         CCH = ComputeCCH(Load);
7210     }
7211 
7212     // We optimize the truncation of induction variables having constant
7213     // integer steps. The cost of these truncations is the same as the scalar
7214     // operation.
7215     if (isOptimizableIVTruncate(I, VF)) {
7216       auto *Trunc = cast<TruncInst>(I);
7217       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7218                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7219     }
7220 
7221     // Detect reduction patterns
7222     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7223       return *RedCost;
7224 
7225     Type *SrcScalarTy = I->getOperand(0)->getType();
7226     Type *SrcVecTy =
7227         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7228     if (canTruncateToMinimalBitwidth(I, VF)) {
7229       // This cast is going to be shrunk. This may remove the cast or it might
7230       // turn it into slightly different cast. For example, if MinBW == 16,
7231       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7232       //
7233       // Calculate the modified src and dest types.
7234       Type *MinVecTy = VectorTy;
7235       if (Opcode == Instruction::Trunc) {
7236         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7237         VectorTy =
7238             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7239       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7240         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7241         VectorTy =
7242             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7243       }
7244     }
7245 
7246     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7247   }
7248   case Instruction::Call: {
7249     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7250       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7251         return *RedCost;
7252     bool NeedToScalarize;
7253     CallInst *CI = cast<CallInst>(I);
7254     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7255     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7256       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7257       return std::min(CallCost, IntrinsicCost);
7258     }
7259     return CallCost;
7260   }
7261   case Instruction::ExtractValue:
7262     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7263   case Instruction::Alloca:
7264     // We cannot easily widen alloca to a scalable alloca, as
7265     // the result would need to be a vector of pointers.
7266     if (VF.isScalable())
7267       return InstructionCost::getInvalid();
7268     LLVM_FALLTHROUGH;
7269   default:
7270     // This opcode is unknown. Assume that it is the same as 'mul'.
7271     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7272   } // end of switch.
7273 }
7274 
7275 char LoopVectorize::ID = 0;
7276 
7277 static const char lv_name[] = "Loop Vectorization";
7278 
7279 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7280 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7281 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7282 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7283 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7284 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7285 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7286 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7287 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7288 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7289 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7290 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7291 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7292 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7293 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7294 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7295 
7296 namespace llvm {
7297 
7298 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7299 
7300 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7301                               bool VectorizeOnlyWhenForced) {
7302   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7303 }
7304 
7305 } // end namespace llvm
7306 
7307 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7308   // Check if the pointer operand of a load or store instruction is
7309   // consecutive.
7310   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7311     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7312   return false;
7313 }
7314 
7315 void LoopVectorizationCostModel::collectValuesToIgnore() {
7316   // Ignore ephemeral values.
7317   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7318 
7319   // Find all stores to invariant variables. Since they are going to sink
7320   // outside the loop we do not need calculate cost for them.
7321   for (BasicBlock *BB : TheLoop->blocks())
7322     for (Instruction &I : *BB) {
7323       StoreInst *SI;
7324       if ((SI = dyn_cast<StoreInst>(&I)) &&
7325           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
7326         ValuesToIgnore.insert(&I);
7327     }
7328 
7329   // Ignore type-promoting instructions we identified during reduction
7330   // detection.
7331   for (auto &Reduction : Legal->getReductionVars()) {
7332     const RecurrenceDescriptor &RedDes = Reduction.second;
7333     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7334     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7335   }
7336   // Ignore type-casting instructions we identified during induction
7337   // detection.
7338   for (auto &Induction : Legal->getInductionVars()) {
7339     const InductionDescriptor &IndDes = Induction.second;
7340     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7341     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7342   }
7343 }
7344 
7345 void LoopVectorizationCostModel::collectInLoopReductions() {
7346   for (auto &Reduction : Legal->getReductionVars()) {
7347     PHINode *Phi = Reduction.first;
7348     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7349 
7350     // We don't collect reductions that are type promoted (yet).
7351     if (RdxDesc.getRecurrenceType() != Phi->getType())
7352       continue;
7353 
7354     // If the target would prefer this reduction to happen "in-loop", then we
7355     // want to record it as such.
7356     unsigned Opcode = RdxDesc.getOpcode();
7357     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7358         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7359                                    TargetTransformInfo::ReductionFlags()))
7360       continue;
7361 
7362     // Check that we can correctly put the reductions into the loop, by
7363     // finding the chain of operations that leads from the phi to the loop
7364     // exit value.
7365     SmallVector<Instruction *, 4> ReductionOperations =
7366         RdxDesc.getReductionOpChain(Phi, TheLoop);
7367     bool InLoop = !ReductionOperations.empty();
7368     if (InLoop) {
7369       InLoopReductionChains[Phi] = ReductionOperations;
7370       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7371       Instruction *LastChain = Phi;
7372       for (auto *I : ReductionOperations) {
7373         InLoopReductionImmediateChains[I] = LastChain;
7374         LastChain = I;
7375       }
7376     }
7377     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7378                       << " reduction for phi: " << *Phi << "\n");
7379   }
7380 }
7381 
7382 // TODO: we could return a pair of values that specify the max VF and
7383 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7384 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7385 // doesn't have a cost model that can choose which plan to execute if
7386 // more than one is generated.
7387 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7388                                  LoopVectorizationCostModel &CM) {
7389   unsigned WidestType;
7390   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7391   return WidestVectorRegBits / WidestType;
7392 }
7393 
7394 VectorizationFactor
7395 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7396   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7397   ElementCount VF = UserVF;
7398   // Outer loop handling: They may require CFG and instruction level
7399   // transformations before even evaluating whether vectorization is profitable.
7400   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7401   // the vectorization pipeline.
7402   if (!OrigLoop->isInnermost()) {
7403     // If the user doesn't provide a vectorization factor, determine a
7404     // reasonable one.
7405     if (UserVF.isZero()) {
7406       VF = ElementCount::getFixed(determineVPlanVF(
7407           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7408               .getFixedSize(),
7409           CM));
7410       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7411 
7412       // Make sure we have a VF > 1 for stress testing.
7413       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7414         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7415                           << "overriding computed VF.\n");
7416         VF = ElementCount::getFixed(4);
7417       }
7418     }
7419     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7420     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7421            "VF needs to be a power of two");
7422     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7423                       << "VF " << VF << " to build VPlans.\n");
7424     buildVPlans(VF, VF);
7425 
7426     // For VPlan build stress testing, we bail out after VPlan construction.
7427     if (VPlanBuildStressTest)
7428       return VectorizationFactor::Disabled();
7429 
7430     return {VF, 0 /*Cost*/};
7431   }
7432 
7433   LLVM_DEBUG(
7434       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7435                 "VPlan-native path.\n");
7436   return VectorizationFactor::Disabled();
7437 }
7438 
7439 bool LoopVectorizationPlanner::requiresTooManyRuntimeChecks() const {
7440   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7441   return (NumRuntimePointerChecks >
7442               VectorizerParams::RuntimeMemoryCheckThreshold &&
7443           !Hints.allowReordering()) ||
7444          NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7445 }
7446 
7447 Optional<VectorizationFactor>
7448 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7449   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7450   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7451   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7452     return None;
7453 
7454   // Invalidate interleave groups if all blocks of loop will be predicated.
7455   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7456       !useMaskedInterleavedAccesses(*TTI)) {
7457     LLVM_DEBUG(
7458         dbgs()
7459         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7460            "which requires masked-interleaved support.\n");
7461     if (CM.InterleaveInfo.invalidateGroups())
7462       // Invalidating interleave groups also requires invalidating all decisions
7463       // based on them, which includes widening decisions and uniform and scalar
7464       // values.
7465       CM.invalidateCostModelingDecisions();
7466   }
7467 
7468   ElementCount MaxUserVF =
7469       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7470   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7471   if (!UserVF.isZero() && UserVFIsLegal) {
7472     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7473            "VF needs to be a power of two");
7474     // Collect the instructions (and their associated costs) that will be more
7475     // profitable to scalarize.
7476     if (CM.selectUserVectorizationFactor(UserVF)) {
7477       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7478       CM.collectInLoopReductions();
7479       buildVPlansWithVPRecipes(UserVF, UserVF);
7480       LLVM_DEBUG(printPlans(dbgs()));
7481       return {{UserVF, 0}};
7482     } else
7483       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7484                               "InvalidCost", ORE, OrigLoop);
7485   }
7486 
7487   // Populate the set of Vectorization Factor Candidates.
7488   ElementCountSet VFCandidates;
7489   for (auto VF = ElementCount::getFixed(1);
7490        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7491     VFCandidates.insert(VF);
7492   for (auto VF = ElementCount::getScalable(1);
7493        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7494     VFCandidates.insert(VF);
7495 
7496   for (const auto &VF : VFCandidates) {
7497     // Collect Uniform and Scalar instructions after vectorization with VF.
7498     CM.collectUniformsAndScalars(VF);
7499 
7500     // Collect the instructions (and their associated costs) that will be more
7501     // profitable to scalarize.
7502     if (VF.isVector())
7503       CM.collectInstsToScalarize(VF);
7504   }
7505 
7506   CM.collectInLoopReductions();
7507   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7508   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7509 
7510   LLVM_DEBUG(printPlans(dbgs()));
7511   if (!MaxFactors.hasVector())
7512     return VectorizationFactor::Disabled();
7513 
7514   // Select the optimal vectorization factor.
7515   return CM.selectVectorizationFactor(VFCandidates);
7516 }
7517 
7518 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7519   assert(count_if(VPlans,
7520                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7521              1 &&
7522          "Best VF has not a single VPlan.");
7523 
7524   for (const VPlanPtr &Plan : VPlans) {
7525     if (Plan->hasVF(VF))
7526       return *Plan.get();
7527   }
7528   llvm_unreachable("No plan found!");
7529 }
7530 
7531 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7532   SmallVector<Metadata *, 4> MDs;
7533   // Reserve first location for self reference to the LoopID metadata node.
7534   MDs.push_back(nullptr);
7535   bool IsUnrollMetadata = false;
7536   MDNode *LoopID = L->getLoopID();
7537   if (LoopID) {
7538     // First find existing loop unrolling disable metadata.
7539     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7540       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7541       if (MD) {
7542         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7543         IsUnrollMetadata =
7544             S && S->getString().startswith("llvm.loop.unroll.disable");
7545       }
7546       MDs.push_back(LoopID->getOperand(i));
7547     }
7548   }
7549 
7550   if (!IsUnrollMetadata) {
7551     // Add runtime unroll disable metadata.
7552     LLVMContext &Context = L->getHeader()->getContext();
7553     SmallVector<Metadata *, 1> DisableOperands;
7554     DisableOperands.push_back(
7555         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7556     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7557     MDs.push_back(DisableNode);
7558     MDNode *NewLoopID = MDNode::get(Context, MDs);
7559     // Set operand 0 to refer to the loop id itself.
7560     NewLoopID->replaceOperandWith(0, NewLoopID);
7561     L->setLoopID(NewLoopID);
7562   }
7563 }
7564 
7565 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7566                                            VPlan &BestVPlan,
7567                                            InnerLoopVectorizer &ILV,
7568                                            DominatorTree *DT) {
7569   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7570                     << '\n');
7571 
7572   // Perform the actual loop transformation.
7573 
7574   // 1. Set up the skeleton for vectorization, including vector pre-header and
7575   // middle block. The vector loop is created during VPlan execution.
7576   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7577   Value *CanonicalIVStartValue;
7578   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7579       ILV.createVectorizedLoopSkeleton();
7580   ILV.collectPoisonGeneratingRecipes(State);
7581 
7582   ILV.printDebugTracesAtStart();
7583 
7584   //===------------------------------------------------===//
7585   //
7586   // Notice: any optimization or new instruction that go
7587   // into the code below should also be implemented in
7588   // the cost-model.
7589   //
7590   //===------------------------------------------------===//
7591 
7592   // 2. Copy and widen instructions from the old loop into the new loop.
7593   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7594                              ILV.getOrCreateVectorTripCount(nullptr),
7595                              CanonicalIVStartValue, State);
7596   BestVPlan.execute(&State);
7597 
7598   // Keep all loop hints from the original loop on the vector loop (we'll
7599   // replace the vectorizer-specific hints below).
7600   MDNode *OrigLoopID = OrigLoop->getLoopID();
7601 
7602   Optional<MDNode *> VectorizedLoopID =
7603       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7604                                       LLVMLoopVectorizeFollowupVectorized});
7605 
7606   VPBasicBlock *HeaderVPBB =
7607       BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
7608   Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
7609   if (VectorizedLoopID.hasValue())
7610     L->setLoopID(VectorizedLoopID.getValue());
7611   else {
7612     // Keep all loop hints from the original loop on the vector loop (we'll
7613     // replace the vectorizer-specific hints below).
7614     if (MDNode *LID = OrigLoop->getLoopID())
7615       L->setLoopID(LID);
7616 
7617     LoopVectorizeHints Hints(L, true, *ORE);
7618     Hints.setAlreadyVectorized();
7619   }
7620   // Disable runtime unrolling when vectorizing the epilogue loop.
7621   if (CanonicalIVStartValue)
7622     AddRuntimeUnrollDisableMetaData(L);
7623 
7624   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7625   //    predication, updating analyses.
7626   ILV.fixVectorizedLoop(State, BestVPlan);
7627 
7628   ILV.printDebugTracesAtEnd();
7629 }
7630 
7631 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7632 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7633   for (const auto &Plan : VPlans)
7634     if (PrintVPlansInDotFormat)
7635       Plan->printDOT(O);
7636     else
7637       Plan->print(O);
7638 }
7639 #endif
7640 
7641 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7642     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7643 
7644   // We create new control-flow for the vectorized loop, so the original exit
7645   // conditions will be dead after vectorization if it's only used by the
7646   // terminator
7647   SmallVector<BasicBlock*> ExitingBlocks;
7648   OrigLoop->getExitingBlocks(ExitingBlocks);
7649   for (auto *BB : ExitingBlocks) {
7650     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7651     if (!Cmp || !Cmp->hasOneUse())
7652       continue;
7653 
7654     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7655     if (!DeadInstructions.insert(Cmp).second)
7656       continue;
7657 
7658     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7659     // TODO: can recurse through operands in general
7660     for (Value *Op : Cmp->operands()) {
7661       if (isa<TruncInst>(Op) && Op->hasOneUse())
7662           DeadInstructions.insert(cast<Instruction>(Op));
7663     }
7664   }
7665 
7666   // We create new "steps" for induction variable updates to which the original
7667   // induction variables map. An original update instruction will be dead if
7668   // all its users except the induction variable are dead.
7669   auto *Latch = OrigLoop->getLoopLatch();
7670   for (auto &Induction : Legal->getInductionVars()) {
7671     PHINode *Ind = Induction.first;
7672     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7673 
7674     // If the tail is to be folded by masking, the primary induction variable,
7675     // if exists, isn't dead: it will be used for masking. Don't kill it.
7676     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7677       continue;
7678 
7679     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7680           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7681         }))
7682       DeadInstructions.insert(IndUpdate);
7683   }
7684 }
7685 
7686 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7687 
7688 //===--------------------------------------------------------------------===//
7689 // EpilogueVectorizerMainLoop
7690 //===--------------------------------------------------------------------===//
7691 
7692 /// This function is partially responsible for generating the control flow
7693 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7694 std::pair<BasicBlock *, Value *>
7695 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7696   MDNode *OrigLoopID = OrigLoop->getLoopID();
7697 
7698   // Workaround!  Compute the trip count of the original loop and cache it
7699   // before we start modifying the CFG.  This code has a systemic problem
7700   // wherein it tries to run analysis over partially constructed IR; this is
7701   // wrong, and not simply for SCEV.  The trip count of the original loop
7702   // simply happens to be prone to hitting this in practice.  In theory, we
7703   // can hit the same issue for any SCEV, or ValueTracking query done during
7704   // mutation.  See PR49900.
7705   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7706   createVectorLoopSkeleton("");
7707 
7708   // Generate the code to check the minimum iteration count of the vector
7709   // epilogue (see below).
7710   EPI.EpilogueIterationCountCheck =
7711       emitIterationCountCheck(LoopScalarPreHeader, true);
7712   EPI.EpilogueIterationCountCheck->setName("iter.check");
7713 
7714   // Generate the code to check any assumptions that we've made for SCEV
7715   // expressions.
7716   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7717 
7718   // Generate the code that checks at runtime if arrays overlap. We put the
7719   // checks into a separate block to make the more common case of few elements
7720   // faster.
7721   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7722 
7723   // Generate the iteration count check for the main loop, *after* the check
7724   // for the epilogue loop, so that the path-length is shorter for the case
7725   // that goes directly through the vector epilogue. The longer-path length for
7726   // the main loop is compensated for, by the gain from vectorizing the larger
7727   // trip count. Note: the branch will get updated later on when we vectorize
7728   // the epilogue.
7729   EPI.MainLoopIterationCountCheck =
7730       emitIterationCountCheck(LoopScalarPreHeader, false);
7731 
7732   // Generate the induction variable.
7733   EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
7734 
7735   // Skip induction resume value creation here because they will be created in
7736   // the second pass. If we created them here, they wouldn't be used anyway,
7737   // because the vplan in the second pass still contains the inductions from the
7738   // original loop.
7739 
7740   return {completeLoopSkeleton(OrigLoopID), nullptr};
7741 }
7742 
7743 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7744   LLVM_DEBUG({
7745     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7746            << "Main Loop VF:" << EPI.MainLoopVF
7747            << ", Main Loop UF:" << EPI.MainLoopUF
7748            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7749            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7750   });
7751 }
7752 
7753 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7754   DEBUG_WITH_TYPE(VerboseDebug, {
7755     dbgs() << "intermediate fn:\n"
7756            << *OrigLoop->getHeader()->getParent() << "\n";
7757   });
7758 }
7759 
7760 BasicBlock *
7761 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
7762                                                     bool ForEpilogue) {
7763   assert(Bypass && "Expected valid bypass basic block.");
7764   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7765   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7766   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7767   // Reuse existing vector loop preheader for TC checks.
7768   // Note that new preheader block is generated for vector loop.
7769   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7770   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7771 
7772   // Generate code to check if the loop's trip count is less than VF * UF of the
7773   // main vector loop.
7774   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7775       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7776 
7777   Value *CheckMinIters = Builder.CreateICmp(
7778       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7779       "min.iters.check");
7780 
7781   if (!ForEpilogue)
7782     TCCheckBlock->setName("vector.main.loop.iter.check");
7783 
7784   // Create new preheader for vector loop.
7785   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7786                                    DT, LI, nullptr, "vector.ph");
7787 
7788   if (ForEpilogue) {
7789     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7790                                  DT->getNode(Bypass)->getIDom()) &&
7791            "TC check is expected to dominate Bypass");
7792 
7793     // Update dominator for Bypass & LoopExit.
7794     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7795     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7796       // For loops with multiple exits, there's no edge from the middle block
7797       // to exit blocks (as the epilogue must run) and thus no need to update
7798       // the immediate dominator of the exit blocks.
7799       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7800 
7801     LoopBypassBlocks.push_back(TCCheckBlock);
7802 
7803     // Save the trip count so we don't have to regenerate it in the
7804     // vec.epilog.iter.check. This is safe to do because the trip count
7805     // generated here dominates the vector epilog iter check.
7806     EPI.TripCount = Count;
7807   }
7808 
7809   ReplaceInstWithInst(
7810       TCCheckBlock->getTerminator(),
7811       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7812 
7813   return TCCheckBlock;
7814 }
7815 
7816 //===--------------------------------------------------------------------===//
7817 // EpilogueVectorizerEpilogueLoop
7818 //===--------------------------------------------------------------------===//
7819 
7820 /// This function is partially responsible for generating the control flow
7821 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7822 std::pair<BasicBlock *, Value *>
7823 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7824   MDNode *OrigLoopID = OrigLoop->getLoopID();
7825   createVectorLoopSkeleton("vec.epilog.");
7826 
7827   // Now, compare the remaining count and if there aren't enough iterations to
7828   // execute the vectorized epilogue skip to the scalar part.
7829   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7830   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7831   LoopVectorPreHeader =
7832       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7833                  LI, nullptr, "vec.epilog.ph");
7834   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7835                                           VecEpilogueIterationCountCheck);
7836 
7837   // Adjust the control flow taking the state info from the main loop
7838   // vectorization into account.
7839   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7840          "expected this to be saved from the previous pass.");
7841   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7842       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7843 
7844   DT->changeImmediateDominator(LoopVectorPreHeader,
7845                                EPI.MainLoopIterationCountCheck);
7846 
7847   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7848       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7849 
7850   if (EPI.SCEVSafetyCheck)
7851     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7852         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7853   if (EPI.MemSafetyCheck)
7854     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7855         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7856 
7857   DT->changeImmediateDominator(
7858       VecEpilogueIterationCountCheck,
7859       VecEpilogueIterationCountCheck->getSinglePredecessor());
7860 
7861   DT->changeImmediateDominator(LoopScalarPreHeader,
7862                                EPI.EpilogueIterationCountCheck);
7863   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7864     // If there is an epilogue which must run, there's no edge from the
7865     // middle block to exit blocks  and thus no need to update the immediate
7866     // dominator of the exit blocks.
7867     DT->changeImmediateDominator(LoopExitBlock,
7868                                  EPI.EpilogueIterationCountCheck);
7869 
7870   // Keep track of bypass blocks, as they feed start values to the induction
7871   // phis in the scalar loop preheader.
7872   if (EPI.SCEVSafetyCheck)
7873     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7874   if (EPI.MemSafetyCheck)
7875     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7876   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7877 
7878   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7879   // merge control-flow from the latch block and the middle block. Update the
7880   // incoming values here and move the Phi into the preheader.
7881   SmallVector<PHINode *, 4> PhisInBlock;
7882   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7883     PhisInBlock.push_back(&Phi);
7884 
7885   for (PHINode *Phi : PhisInBlock) {
7886     Phi->replaceIncomingBlockWith(
7887         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7888         VecEpilogueIterationCountCheck);
7889     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7890     if (EPI.SCEVSafetyCheck)
7891       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7892     if (EPI.MemSafetyCheck)
7893       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7894     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7895   }
7896 
7897   // Generate a resume induction for the vector epilogue and put it in the
7898   // vector epilogue preheader
7899   Type *IdxTy = Legal->getWidestInductionType();
7900   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7901                                          LoopVectorPreHeader->getFirstNonPHI());
7902   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7903   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7904                            EPI.MainLoopIterationCountCheck);
7905 
7906   // Generate induction resume values. These variables save the new starting
7907   // indexes for the scalar loop. They are used to test if there are any tail
7908   // iterations left once the vector loop has completed.
7909   // Note that when the vectorized epilogue is skipped due to iteration count
7910   // check, then the resume value for the induction variable comes from
7911   // the trip count of the main vector loop, hence passing the AdditionalBypass
7912   // argument.
7913   createInductionResumeValues({VecEpilogueIterationCountCheck,
7914                                EPI.VectorTripCount} /* AdditionalBypass */);
7915 
7916   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7917 }
7918 
7919 BasicBlock *
7920 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7921     BasicBlock *Bypass, BasicBlock *Insert) {
7922 
7923   assert(EPI.TripCount &&
7924          "Expected trip count to have been safed in the first pass.");
7925   assert(
7926       (!isa<Instruction>(EPI.TripCount) ||
7927        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7928       "saved trip count does not dominate insertion point.");
7929   Value *TC = EPI.TripCount;
7930   IRBuilder<> Builder(Insert->getTerminator());
7931   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7932 
7933   // Generate code to check if the loop's trip count is less than VF * UF of the
7934   // vector epilogue loop.
7935   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7936       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7937 
7938   Value *CheckMinIters =
7939       Builder.CreateICmp(P, Count,
7940                          createStepForVF(Builder, Count->getType(),
7941                                          EPI.EpilogueVF, EPI.EpilogueUF),
7942                          "min.epilog.iters.check");
7943 
7944   ReplaceInstWithInst(
7945       Insert->getTerminator(),
7946       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7947 
7948   LoopBypassBlocks.push_back(Insert);
7949   return Insert;
7950 }
7951 
7952 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7953   LLVM_DEBUG({
7954     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7955            << "Epilogue Loop VF:" << EPI.EpilogueVF
7956            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7957   });
7958 }
7959 
7960 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7961   DEBUG_WITH_TYPE(VerboseDebug, {
7962     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7963   });
7964 }
7965 
7966 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7967     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7968   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7969   bool PredicateAtRangeStart = Predicate(Range.Start);
7970 
7971   for (ElementCount TmpVF = Range.Start * 2;
7972        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7973     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7974       Range.End = TmpVF;
7975       break;
7976     }
7977 
7978   return PredicateAtRangeStart;
7979 }
7980 
7981 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7982 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7983 /// of VF's starting at a given VF and extending it as much as possible. Each
7984 /// vectorization decision can potentially shorten this sub-range during
7985 /// buildVPlan().
7986 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
7987                                            ElementCount MaxVF) {
7988   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7989   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7990     VFRange SubRange = {VF, MaxVFPlusOne};
7991     VPlans.push_back(buildVPlan(SubRange));
7992     VF = SubRange.End;
7993   }
7994 }
7995 
7996 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
7997                                          VPlanPtr &Plan) {
7998   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
7999 
8000   // Look for cached value.
8001   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8002   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8003   if (ECEntryIt != EdgeMaskCache.end())
8004     return ECEntryIt->second;
8005 
8006   VPValue *SrcMask = createBlockInMask(Src, Plan);
8007 
8008   // The terminator has to be a branch inst!
8009   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8010   assert(BI && "Unexpected terminator found");
8011 
8012   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8013     return EdgeMaskCache[Edge] = SrcMask;
8014 
8015   // If source is an exiting block, we know the exit edge is dynamically dead
8016   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8017   // adding uses of an otherwise potentially dead instruction.
8018   if (OrigLoop->isLoopExiting(Src))
8019     return EdgeMaskCache[Edge] = SrcMask;
8020 
8021   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8022   assert(EdgeMask && "No Edge Mask found for condition");
8023 
8024   if (BI->getSuccessor(0) != Dst)
8025     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8026 
8027   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8028     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8029     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8030     // The select version does not introduce new UB if SrcMask is false and
8031     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8032     VPValue *False = Plan->getOrAddVPValue(
8033         ConstantInt::getFalse(BI->getCondition()->getType()));
8034     EdgeMask =
8035         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8036   }
8037 
8038   return EdgeMaskCache[Edge] = EdgeMask;
8039 }
8040 
8041 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8042   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8043 
8044   // Look for cached value.
8045   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8046   if (BCEntryIt != BlockMaskCache.end())
8047     return BCEntryIt->second;
8048 
8049   // All-one mask is modelled as no-mask following the convention for masked
8050   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8051   VPValue *BlockMask = nullptr;
8052 
8053   if (OrigLoop->getHeader() == BB) {
8054     if (!CM.blockNeedsPredicationForAnyReason(BB))
8055       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8056 
8057     // Introduce the early-exit compare IV <= BTC to form header block mask.
8058     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8059     // constructing the desired canonical IV in the header block as its first
8060     // non-phi instructions.
8061     assert(CM.foldTailByMasking() && "must fold the tail");
8062     VPBasicBlock *HeaderVPBB =
8063         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8064     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8065     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8066     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8067 
8068     VPBuilder::InsertPointGuard Guard(Builder);
8069     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8070     if (CM.TTI.emitGetActiveLaneMask()) {
8071       VPValue *TC = Plan->getOrCreateTripCount();
8072       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8073     } else {
8074       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8075       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8076     }
8077     return BlockMaskCache[BB] = BlockMask;
8078   }
8079 
8080   // This is the block mask. We OR all incoming edges.
8081   for (auto *Predecessor : predecessors(BB)) {
8082     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8083     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8084       return BlockMaskCache[BB] = EdgeMask;
8085 
8086     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8087       BlockMask = EdgeMask;
8088       continue;
8089     }
8090 
8091     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8092   }
8093 
8094   return BlockMaskCache[BB] = BlockMask;
8095 }
8096 
8097 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8098                                                 ArrayRef<VPValue *> Operands,
8099                                                 VFRange &Range,
8100                                                 VPlanPtr &Plan) {
8101   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8102          "Must be called with either a load or store");
8103 
8104   auto willWiden = [&](ElementCount VF) -> bool {
8105     LoopVectorizationCostModel::InstWidening Decision =
8106         CM.getWideningDecision(I, VF);
8107     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8108            "CM decision should be taken at this point.");
8109     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8110       return true;
8111     if (CM.isScalarAfterVectorization(I, VF) ||
8112         CM.isProfitableToScalarize(I, VF))
8113       return false;
8114     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8115   };
8116 
8117   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8118     return nullptr;
8119 
8120   VPValue *Mask = nullptr;
8121   if (Legal->isMaskRequired(I))
8122     Mask = createBlockInMask(I->getParent(), Plan);
8123 
8124   // Determine if the pointer operand of the access is either consecutive or
8125   // reverse consecutive.
8126   LoopVectorizationCostModel::InstWidening Decision =
8127       CM.getWideningDecision(I, Range.Start);
8128   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8129   bool Consecutive =
8130       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8131 
8132   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8133     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8134                                               Consecutive, Reverse);
8135 
8136   StoreInst *Store = cast<StoreInst>(I);
8137   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8138                                             Mask, Consecutive, Reverse);
8139 }
8140 
8141 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
8142 /// insert a recipe to expand the step for the induction recipe.
8143 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
8144     PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
8145     const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
8146     VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
8147   // Returns true if an instruction \p I should be scalarized instead of
8148   // vectorized for the chosen vectorization factor.
8149   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8150     return CM.isScalarAfterVectorization(I, VF) ||
8151            CM.isProfitableToScalarize(I, VF);
8152   };
8153 
8154   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8155       [&](ElementCount VF) {
8156         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8157       },
8158       Range);
8159   assert(IndDesc.getStartValue() ==
8160          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8161   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8162          "step must be loop invariant");
8163 
8164   VPValue *Step =
8165       vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
8166   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8167     return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
8168                                              !NeedsScalarIVOnly);
8169   }
8170   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8171   return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
8172                                            !NeedsScalarIVOnly);
8173 }
8174 
8175 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8176     PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
8177 
8178   // Check if this is an integer or fp induction. If so, build the recipe that
8179   // produces its scalar and vector values.
8180   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8181     return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
8182                                        *PSE.getSE(), *OrigLoop, Range);
8183 
8184   // Check if this is pointer induction. If so, build the recipe for it.
8185   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8186     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8187                                              *PSE.getSE());
8188   return nullptr;
8189 }
8190 
8191 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8192     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
8193   // Optimize the special case where the source is a constant integer
8194   // induction variable. Notice that we can only optimize the 'trunc' case
8195   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8196   // (c) other casts depend on pointer size.
8197 
8198   // Determine whether \p K is a truncation based on an induction variable that
8199   // can be optimized.
8200   auto isOptimizableIVTruncate =
8201       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8202     return [=](ElementCount VF) -> bool {
8203       return CM.isOptimizableIVTruncate(K, VF);
8204     };
8205   };
8206 
8207   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8208           isOptimizableIVTruncate(I), Range)) {
8209 
8210     auto *Phi = cast<PHINode>(I->getOperand(0));
8211     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8212     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8213     return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
8214                                        *PSE.getSE(), *OrigLoop, Range);
8215   }
8216   return nullptr;
8217 }
8218 
8219 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8220                                                 ArrayRef<VPValue *> Operands,
8221                                                 VPlanPtr &Plan) {
8222   // If all incoming values are equal, the incoming VPValue can be used directly
8223   // instead of creating a new VPBlendRecipe.
8224   VPValue *FirstIncoming = Operands[0];
8225   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8226         return FirstIncoming == Inc;
8227       })) {
8228     return Operands[0];
8229   }
8230 
8231   unsigned NumIncoming = Phi->getNumIncomingValues();
8232   // For in-loop reductions, we do not need to create an additional select.
8233   VPValue *InLoopVal = nullptr;
8234   for (unsigned In = 0; In < NumIncoming; In++) {
8235     PHINode *PhiOp =
8236         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8237     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8238       assert(!InLoopVal && "Found more than one in-loop reduction!");
8239       InLoopVal = Operands[In];
8240     }
8241   }
8242 
8243   assert((!InLoopVal || NumIncoming == 2) &&
8244          "Found an in-loop reduction for PHI with unexpected number of "
8245          "incoming values");
8246   if (InLoopVal)
8247     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8248 
8249   // We know that all PHIs in non-header blocks are converted into selects, so
8250   // we don't have to worry about the insertion order and we can just use the
8251   // builder. At this point we generate the predication tree. There may be
8252   // duplications since this is a simple recursive scan, but future
8253   // optimizations will clean it up.
8254   SmallVector<VPValue *, 2> OperandsWithMask;
8255 
8256   for (unsigned In = 0; In < NumIncoming; In++) {
8257     VPValue *EdgeMask =
8258       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8259     assert((EdgeMask || NumIncoming == 1) &&
8260            "Multiple predecessors with one having a full mask");
8261     OperandsWithMask.push_back(Operands[In]);
8262     if (EdgeMask)
8263       OperandsWithMask.push_back(EdgeMask);
8264   }
8265   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8266 }
8267 
8268 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8269                                                    ArrayRef<VPValue *> Operands,
8270                                                    VFRange &Range) const {
8271 
8272   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8273       [this, CI](ElementCount VF) {
8274         return CM.isScalarWithPredication(CI, VF);
8275       },
8276       Range);
8277 
8278   if (IsPredicated)
8279     return nullptr;
8280 
8281   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8282   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8283              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8284              ID == Intrinsic::pseudoprobe ||
8285              ID == Intrinsic::experimental_noalias_scope_decl))
8286     return nullptr;
8287 
8288   auto willWiden = [&](ElementCount VF) -> bool {
8289     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8290     // The following case may be scalarized depending on the VF.
8291     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8292     // version of the instruction.
8293     // Is it beneficial to perform intrinsic call compared to lib call?
8294     bool NeedToScalarize = false;
8295     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8296     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8297     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8298     return UseVectorIntrinsic || !NeedToScalarize;
8299   };
8300 
8301   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8302     return nullptr;
8303 
8304   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8305   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8306 }
8307 
8308 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8309   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8310          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8311   // Instruction should be widened, unless it is scalar after vectorization,
8312   // scalarization is profitable or it is predicated.
8313   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8314     return CM.isScalarAfterVectorization(I, VF) ||
8315            CM.isProfitableToScalarize(I, VF) ||
8316            CM.isScalarWithPredication(I, VF);
8317   };
8318   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8319                                                              Range);
8320 }
8321 
8322 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8323                                            ArrayRef<VPValue *> Operands) const {
8324   auto IsVectorizableOpcode = [](unsigned Opcode) {
8325     switch (Opcode) {
8326     case Instruction::Add:
8327     case Instruction::And:
8328     case Instruction::AShr:
8329     case Instruction::BitCast:
8330     case Instruction::FAdd:
8331     case Instruction::FCmp:
8332     case Instruction::FDiv:
8333     case Instruction::FMul:
8334     case Instruction::FNeg:
8335     case Instruction::FPExt:
8336     case Instruction::FPToSI:
8337     case Instruction::FPToUI:
8338     case Instruction::FPTrunc:
8339     case Instruction::FRem:
8340     case Instruction::FSub:
8341     case Instruction::ICmp:
8342     case Instruction::IntToPtr:
8343     case Instruction::LShr:
8344     case Instruction::Mul:
8345     case Instruction::Or:
8346     case Instruction::PtrToInt:
8347     case Instruction::SDiv:
8348     case Instruction::Select:
8349     case Instruction::SExt:
8350     case Instruction::Shl:
8351     case Instruction::SIToFP:
8352     case Instruction::SRem:
8353     case Instruction::Sub:
8354     case Instruction::Trunc:
8355     case Instruction::UDiv:
8356     case Instruction::UIToFP:
8357     case Instruction::URem:
8358     case Instruction::Xor:
8359     case Instruction::ZExt:
8360     case Instruction::Freeze:
8361       return true;
8362     }
8363     return false;
8364   };
8365 
8366   if (!IsVectorizableOpcode(I->getOpcode()))
8367     return nullptr;
8368 
8369   // Success: widen this instruction.
8370   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8371 }
8372 
8373 void VPRecipeBuilder::fixHeaderPhis() {
8374   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8375   for (VPHeaderPHIRecipe *R : PhisToFix) {
8376     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8377     VPRecipeBase *IncR =
8378         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8379     R->addOperand(IncR->getVPSingleValue());
8380   }
8381 }
8382 
8383 VPBasicBlock *VPRecipeBuilder::handleReplication(
8384     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8385     VPlanPtr &Plan) {
8386   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8387       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8388       Range);
8389 
8390   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8391       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8392       Range);
8393 
8394   // Even if the instruction is not marked as uniform, there are certain
8395   // intrinsic calls that can be effectively treated as such, so we check for
8396   // them here. Conservatively, we only do this for scalable vectors, since
8397   // for fixed-width VFs we can always fall back on full scalarization.
8398   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8399     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8400     case Intrinsic::assume:
8401     case Intrinsic::lifetime_start:
8402     case Intrinsic::lifetime_end:
8403       // For scalable vectors if one of the operands is variant then we still
8404       // want to mark as uniform, which will generate one instruction for just
8405       // the first lane of the vector. We can't scalarize the call in the same
8406       // way as for fixed-width vectors because we don't know how many lanes
8407       // there are.
8408       //
8409       // The reasons for doing it this way for scalable vectors are:
8410       //   1. For the assume intrinsic generating the instruction for the first
8411       //      lane is still be better than not generating any at all. For
8412       //      example, the input may be a splat across all lanes.
8413       //   2. For the lifetime start/end intrinsics the pointer operand only
8414       //      does anything useful when the input comes from a stack object,
8415       //      which suggests it should always be uniform. For non-stack objects
8416       //      the effect is to poison the object, which still allows us to
8417       //      remove the call.
8418       IsUniform = true;
8419       break;
8420     default:
8421       break;
8422     }
8423   }
8424 
8425   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8426                                        IsUniform, IsPredicated);
8427   setRecipe(I, Recipe);
8428   Plan->addVPValue(I, Recipe);
8429 
8430   // Find if I uses a predicated instruction. If so, it will use its scalar
8431   // value. Avoid hoisting the insert-element which packs the scalar value into
8432   // a vector value, as that happens iff all users use the vector value.
8433   for (VPValue *Op : Recipe->operands()) {
8434     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8435     if (!PredR)
8436       continue;
8437     auto *RepR =
8438         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8439     assert(RepR->isPredicated() &&
8440            "expected Replicate recipe to be predicated");
8441     RepR->setAlsoPack(false);
8442   }
8443 
8444   // Finalize the recipe for Instr, first if it is not predicated.
8445   if (!IsPredicated) {
8446     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8447     VPBB->appendRecipe(Recipe);
8448     return VPBB;
8449   }
8450   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8451 
8452   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8453   assert(SingleSucc && "VPBB must have a single successor when handling "
8454                        "predicated replication.");
8455   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8456   // Record predicated instructions for above packing optimizations.
8457   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8458   VPBlockUtils::insertBlockAfter(Region, VPBB);
8459   auto *RegSucc = new VPBasicBlock();
8460   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8461   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8462   return RegSucc;
8463 }
8464 
8465 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8466                                                       VPRecipeBase *PredRecipe,
8467                                                       VPlanPtr &Plan) {
8468   // Instructions marked for predication are replicated and placed under an
8469   // if-then construct to prevent side-effects.
8470 
8471   // Generate recipes to compute the block mask for this region.
8472   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8473 
8474   // Build the triangular if-then region.
8475   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8476   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8477   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8478   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8479   auto *PHIRecipe = Instr->getType()->isVoidTy()
8480                         ? nullptr
8481                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8482   if (PHIRecipe) {
8483     Plan->removeVPValueFor(Instr);
8484     Plan->addVPValue(Instr, PHIRecipe);
8485   }
8486   auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8487   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8488   VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
8489 
8490   // Note: first set Entry as region entry and then connect successors starting
8491   // from it in order, to propagate the "parent" of each VPBasicBlock.
8492   VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
8493   VPBlockUtils::connectBlocks(Pred, Exiting);
8494 
8495   return Region;
8496 }
8497 
8498 VPRecipeOrVPValueTy
8499 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8500                                         ArrayRef<VPValue *> Operands,
8501                                         VFRange &Range, VPlanPtr &Plan) {
8502   // First, check for specific widening recipes that deal with inductions, Phi
8503   // nodes, calls and memory operations.
8504   VPRecipeBase *Recipe;
8505   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8506     if (Phi->getParent() != OrigLoop->getHeader())
8507       return tryToBlend(Phi, Operands, Plan);
8508     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
8509       return toVPRecipeResult(Recipe);
8510 
8511     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8512     assert((Legal->isReductionVariable(Phi) ||
8513             Legal->isFirstOrderRecurrence(Phi)) &&
8514            "can only widen reductions and first-order recurrences here");
8515     VPValue *StartV = Operands[0];
8516     if (Legal->isReductionVariable(Phi)) {
8517       const RecurrenceDescriptor &RdxDesc =
8518           Legal->getReductionVars().find(Phi)->second;
8519       assert(RdxDesc.getRecurrenceStartValue() ==
8520              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8521       PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8522                                            CM.isInLoopReduction(Phi),
8523                                            CM.useOrderedReductions(RdxDesc));
8524     } else {
8525       PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8526     }
8527 
8528     // Record the incoming value from the backedge, so we can add the incoming
8529     // value from the backedge after all recipes have been created.
8530     recordRecipeOf(cast<Instruction>(
8531         Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8532     PhisToFix.push_back(PhiRecipe);
8533     return toVPRecipeResult(PhiRecipe);
8534   }
8535 
8536   if (isa<TruncInst>(Instr) &&
8537       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8538                                                Range, *Plan)))
8539     return toVPRecipeResult(Recipe);
8540 
8541   // All widen recipes below deal only with VF > 1.
8542   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8543           [&](ElementCount VF) { return VF.isScalar(); }, Range))
8544     return nullptr;
8545 
8546   if (auto *CI = dyn_cast<CallInst>(Instr))
8547     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8548 
8549   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8550     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8551 
8552   if (!shouldWiden(Instr, Range))
8553     return nullptr;
8554 
8555   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8556     return toVPRecipeResult(new VPWidenGEPRecipe(
8557         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8558 
8559   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8560     bool InvariantCond =
8561         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8562     return toVPRecipeResult(new VPWidenSelectRecipe(
8563         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8564   }
8565 
8566   return toVPRecipeResult(tryToWiden(Instr, Operands));
8567 }
8568 
8569 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8570                                                         ElementCount MaxVF) {
8571   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8572 
8573   // Collect instructions from the original loop that will become trivially dead
8574   // in the vectorized loop. We don't need to vectorize these instructions. For
8575   // example, original induction update instructions can become dead because we
8576   // separately emit induction "steps" when generating code for the new loop.
8577   // Similarly, we create a new latch condition when setting up the structure
8578   // of the new loop, so the old one can become dead.
8579   SmallPtrSet<Instruction *, 4> DeadInstructions;
8580   collectTriviallyDeadInstructions(DeadInstructions);
8581 
8582   // Add assume instructions we need to drop to DeadInstructions, to prevent
8583   // them from being added to the VPlan.
8584   // TODO: We only need to drop assumes in blocks that get flattend. If the
8585   // control flow is preserved, we should keep them.
8586   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8587   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8588 
8589   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8590   // Dead instructions do not need sinking. Remove them from SinkAfter.
8591   for (Instruction *I : DeadInstructions)
8592     SinkAfter.erase(I);
8593 
8594   // Cannot sink instructions after dead instructions (there won't be any
8595   // recipes for them). Instead, find the first non-dead previous instruction.
8596   for (auto &P : Legal->getSinkAfter()) {
8597     Instruction *SinkTarget = P.second;
8598     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8599     (void)FirstInst;
8600     while (DeadInstructions.contains(SinkTarget)) {
8601       assert(
8602           SinkTarget != FirstInst &&
8603           "Must find a live instruction (at least the one feeding the "
8604           "first-order recurrence PHI) before reaching beginning of the block");
8605       SinkTarget = SinkTarget->getPrevNode();
8606       assert(SinkTarget != P.first &&
8607              "sink source equals target, no sinking required");
8608     }
8609     P.second = SinkTarget;
8610   }
8611 
8612   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8613   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8614     VFRange SubRange = {VF, MaxVFPlusOne};
8615     VPlans.push_back(
8616         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8617     VF = SubRange.End;
8618   }
8619 }
8620 
8621 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8622 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8623 // BranchOnCount VPInstruction to the latch.
8624 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8625                                   bool HasNUW) {
8626   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8627   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8628 
8629   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8630   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8631   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8632   Header->insert(CanonicalIVPHI, Header->begin());
8633 
8634   auto *CanonicalIVIncrement =
8635       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8636                                : VPInstruction::CanonicalIVIncrement,
8637                         {CanonicalIVPHI}, DL);
8638   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8639 
8640   VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
8641   EB->appendRecipe(CanonicalIVIncrement);
8642 
8643   auto *BranchOnCount =
8644       new VPInstruction(VPInstruction::BranchOnCount,
8645                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8646   EB->appendRecipe(BranchOnCount);
8647 }
8648 
8649 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
8650 // original exit block.
8651 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
8652                                 VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
8653                                 VPlan &Plan) {
8654   BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
8655   BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
8656   // Only handle single-exit loops with unique exit blocks for now.
8657   if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
8658     return;
8659 
8660   // Introduce VPUsers modeling the exit values.
8661   for (PHINode &ExitPhi : ExitBB->phis()) {
8662     Value *IncomingValue =
8663         ExitPhi.getIncomingValueForBlock(ExitingBB);
8664     VPValue *V = Plan.getOrAddVPValue(IncomingValue, true);
8665     Plan.addLiveOut(&ExitPhi, V);
8666   }
8667 }
8668 
8669 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8670     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8671     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8672 
8673   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8674 
8675   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8676 
8677   // ---------------------------------------------------------------------------
8678   // Pre-construction: record ingredients whose recipes we'll need to further
8679   // process after constructing the initial VPlan.
8680   // ---------------------------------------------------------------------------
8681 
8682   // Mark instructions we'll need to sink later and their targets as
8683   // ingredients whose recipe we'll need to record.
8684   for (auto &Entry : SinkAfter) {
8685     RecipeBuilder.recordRecipeOf(Entry.first);
8686     RecipeBuilder.recordRecipeOf(Entry.second);
8687   }
8688   for (auto &Reduction : CM.getInLoopReductionChains()) {
8689     PHINode *Phi = Reduction.first;
8690     RecurKind Kind =
8691         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8692     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8693 
8694     RecipeBuilder.recordRecipeOf(Phi);
8695     for (auto &R : ReductionOperations) {
8696       RecipeBuilder.recordRecipeOf(R);
8697       // For min/max reductions, where we have a pair of icmp/select, we also
8698       // need to record the ICmp recipe, so it can be removed later.
8699       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8700              "Only min/max recurrences allowed for inloop reductions");
8701       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8702         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8703     }
8704   }
8705 
8706   // For each interleave group which is relevant for this (possibly trimmed)
8707   // Range, add it to the set of groups to be later applied to the VPlan and add
8708   // placeholders for its members' Recipes which we'll be replacing with a
8709   // single VPInterleaveRecipe.
8710   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8711     auto applyIG = [IG, this](ElementCount VF) -> bool {
8712       return (VF.isVector() && // Query is illegal for VF == 1
8713               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8714                   LoopVectorizationCostModel::CM_Interleave);
8715     };
8716     if (!getDecisionAndClampRange(applyIG, Range))
8717       continue;
8718     InterleaveGroups.insert(IG);
8719     for (unsigned i = 0; i < IG->getFactor(); i++)
8720       if (Instruction *Member = IG->getMember(i))
8721         RecipeBuilder.recordRecipeOf(Member);
8722   };
8723 
8724   // ---------------------------------------------------------------------------
8725   // Build initial VPlan: Scan the body of the loop in a topological order to
8726   // visit each basic block after having visited its predecessor basic blocks.
8727   // ---------------------------------------------------------------------------
8728 
8729   // Create initial VPlan skeleton, starting with a block for the pre-header,
8730   // followed by a region for the vector loop, followed by the middle block. The
8731   // skeleton vector loop region contains a header and latch block.
8732   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8733   auto Plan = std::make_unique<VPlan>(Preheader);
8734 
8735   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8736   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8737   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8738   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8739   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8740   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
8741   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
8742 
8743   Instruction *DLInst =
8744       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8745   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8746                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8747                         !CM.foldTailByMasking());
8748 
8749   // Scan the body of the loop in a topological order to visit each basic block
8750   // after having visited its predecessor basic blocks.
8751   LoopBlocksDFS DFS(OrigLoop);
8752   DFS.perform(LI);
8753 
8754   VPBasicBlock *VPBB = HeaderVPBB;
8755   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8756   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8757     // Relevant instructions from basic block BB will be grouped into VPRecipe
8758     // ingredients and fill a new VPBasicBlock.
8759     unsigned VPBBsForBB = 0;
8760     if (VPBB != HeaderVPBB)
8761       VPBB->setName(BB->getName());
8762     Builder.setInsertPoint(VPBB);
8763 
8764     // Introduce each ingredient into VPlan.
8765     // TODO: Model and preserve debug intrinsics in VPlan.
8766     for (Instruction &I : BB->instructionsWithoutDebug()) {
8767       Instruction *Instr = &I;
8768 
8769       // First filter out irrelevant instructions, to ensure no recipes are
8770       // built for them.
8771       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8772         continue;
8773 
8774       SmallVector<VPValue *, 4> Operands;
8775       auto *Phi = dyn_cast<PHINode>(Instr);
8776       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8777         Operands.push_back(Plan->getOrAddVPValue(
8778             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8779       } else {
8780         auto OpRange = Plan->mapToVPValues(Instr->operands());
8781         Operands = {OpRange.begin(), OpRange.end()};
8782       }
8783 
8784       // Invariant stores inside loop will be deleted and a single store
8785       // with the final reduction value will be added to the exit block
8786       StoreInst *SI;
8787       if ((SI = dyn_cast<StoreInst>(&I)) &&
8788           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
8789         continue;
8790 
8791       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8792               Instr, Operands, Range, Plan)) {
8793         // If Instr can be simplified to an existing VPValue, use it.
8794         if (RecipeOrValue.is<VPValue *>()) {
8795           auto *VPV = RecipeOrValue.get<VPValue *>();
8796           Plan->addVPValue(Instr, VPV);
8797           // If the re-used value is a recipe, register the recipe for the
8798           // instruction, in case the recipe for Instr needs to be recorded.
8799           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8800             RecipeBuilder.setRecipe(Instr, R);
8801           continue;
8802         }
8803         // Otherwise, add the new recipe.
8804         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8805         for (auto *Def : Recipe->definedValues()) {
8806           auto *UV = Def->getUnderlyingValue();
8807           Plan->addVPValue(UV, Def);
8808         }
8809 
8810         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8811             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8812           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8813           // of the header block. That can happen for truncates of induction
8814           // variables. Those recipes are moved to the phi section of the header
8815           // block after applying SinkAfter, which relies on the original
8816           // position of the trunc.
8817           assert(isa<TruncInst>(Instr));
8818           InductionsToMove.push_back(
8819               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8820         }
8821         RecipeBuilder.setRecipe(Instr, Recipe);
8822         VPBB->appendRecipe(Recipe);
8823         continue;
8824       }
8825 
8826       // Otherwise, if all widening options failed, Instruction is to be
8827       // replicated. This may create a successor for VPBB.
8828       VPBasicBlock *NextVPBB =
8829           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8830       if (NextVPBB != VPBB) {
8831         VPBB = NextVPBB;
8832         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8833                                     : "");
8834       }
8835     }
8836 
8837     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8838     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8839   }
8840 
8841   HeaderVPBB->setName("vector.body");
8842 
8843   // Fold the last, empty block into its predecessor.
8844   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8845   assert(VPBB && "expected to fold last (empty) block");
8846   // After here, VPBB should not be used.
8847   VPBB = nullptr;
8848 
8849   addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
8850 
8851   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8852          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8853          "entry block must be set to a VPRegionBlock having a non-empty entry "
8854          "VPBasicBlock");
8855   RecipeBuilder.fixHeaderPhis();
8856 
8857   // ---------------------------------------------------------------------------
8858   // Transform initial VPlan: Apply previously taken decisions, in order, to
8859   // bring the VPlan to its final state.
8860   // ---------------------------------------------------------------------------
8861 
8862   // Apply Sink-After legal constraints.
8863   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8864     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8865     if (Region && Region->isReplicator()) {
8866       assert(Region->getNumSuccessors() == 1 &&
8867              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8868       assert(R->getParent()->size() == 1 &&
8869              "A recipe in an original replicator region must be the only "
8870              "recipe in its block");
8871       return Region;
8872     }
8873     return nullptr;
8874   };
8875   for (auto &Entry : SinkAfter) {
8876     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8877     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8878 
8879     auto *TargetRegion = GetReplicateRegion(Target);
8880     auto *SinkRegion = GetReplicateRegion(Sink);
8881     if (!SinkRegion) {
8882       // If the sink source is not a replicate region, sink the recipe directly.
8883       if (TargetRegion) {
8884         // The target is in a replication region, make sure to move Sink to
8885         // the block after it, not into the replication region itself.
8886         VPBasicBlock *NextBlock =
8887             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8888         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8889       } else
8890         Sink->moveAfter(Target);
8891       continue;
8892     }
8893 
8894     // The sink source is in a replicate region. Unhook the region from the CFG.
8895     auto *SinkPred = SinkRegion->getSinglePredecessor();
8896     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8897     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8898     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8899     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8900 
8901     if (TargetRegion) {
8902       // The target recipe is also in a replicate region, move the sink region
8903       // after the target region.
8904       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8905       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8906       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8907       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8908     } else {
8909       // The sink source is in a replicate region, we need to move the whole
8910       // replicate region, which should only contain a single recipe in the
8911       // main block.
8912       auto *SplitBlock =
8913           Target->getParent()->splitAt(std::next(Target->getIterator()));
8914 
8915       auto *SplitPred = SplitBlock->getSinglePredecessor();
8916 
8917       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8918       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8919       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8920     }
8921   }
8922 
8923   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8924   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8925 
8926   // Now that sink-after is done, move induction recipes for optimized truncates
8927   // to the phi section of the header block.
8928   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8929     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8930 
8931   // Adjust the recipes for any inloop reductions.
8932   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
8933                              RecipeBuilder, Range.Start);
8934 
8935   // Introduce a recipe to combine the incoming and previous values of a
8936   // first-order recurrence.
8937   for (VPRecipeBase &R :
8938        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8939     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8940     if (!RecurPhi)
8941       continue;
8942 
8943     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8944     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8945     auto *Region = GetReplicateRegion(PrevRecipe);
8946     if (Region)
8947       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
8948     if (Region || PrevRecipe->isPhi())
8949       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8950     else
8951       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8952 
8953     auto *RecurSplice = cast<VPInstruction>(
8954         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8955                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8956 
8957     RecurPhi->replaceAllUsesWith(RecurSplice);
8958     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8959     // all users.
8960     RecurSplice->setOperand(0, RecurPhi);
8961   }
8962 
8963   // Interleave memory: for each Interleave Group we marked earlier as relevant
8964   // for this VPlan, replace the Recipes widening its memory instructions with a
8965   // single VPInterleaveRecipe at its insertion point.
8966   for (auto IG : InterleaveGroups) {
8967     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8968         RecipeBuilder.getRecipe(IG->getInsertPos()));
8969     SmallVector<VPValue *, 4> StoredValues;
8970     for (unsigned i = 0; i < IG->getFactor(); ++i)
8971       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8972         auto *StoreR =
8973             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8974         StoredValues.push_back(StoreR->getStoredValue());
8975       }
8976 
8977     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8978                                         Recipe->getMask());
8979     VPIG->insertBefore(Recipe);
8980     unsigned J = 0;
8981     for (unsigned i = 0; i < IG->getFactor(); ++i)
8982       if (Instruction *Member = IG->getMember(i)) {
8983         if (!Member->getType()->isVoidTy()) {
8984           VPValue *OriginalV = Plan->getVPValue(Member);
8985           Plan->removeVPValueFor(Member);
8986           Plan->addVPValue(Member, VPIG->getVPValue(J));
8987           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8988           J++;
8989         }
8990         RecipeBuilder.getRecipe(Member)->eraseFromParent();
8991       }
8992   }
8993 
8994   // From this point onwards, VPlan-to-VPlan transformations may change the plan
8995   // in ways that accessing values using original IR values is incorrect.
8996   Plan->disableValue2VPValue();
8997 
8998   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
8999   VPlanTransforms::sinkScalarOperands(*Plan);
9000   VPlanTransforms::mergeReplicateRegions(*Plan);
9001   VPlanTransforms::removeDeadRecipes(*Plan);
9002   VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
9003 
9004   std::string PlanName;
9005   raw_string_ostream RSO(PlanName);
9006   ElementCount VF = Range.Start;
9007   Plan->addVF(VF);
9008   RSO << "Initial VPlan for VF={" << VF;
9009   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9010     Plan->addVF(VF);
9011     RSO << "," << VF;
9012   }
9013   RSO << "},UF>=1";
9014   RSO.flush();
9015   Plan->setName(PlanName);
9016 
9017   // Fold Exit block into its predecessor if possible.
9018   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9019   // VPBasicBlock as exit.
9020   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting());
9021 
9022   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9023   return Plan;
9024 }
9025 
9026 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9027   // Outer loop handling: They may require CFG and instruction level
9028   // transformations before even evaluating whether vectorization is profitable.
9029   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9030   // the vectorization pipeline.
9031   assert(!OrigLoop->isInnermost());
9032   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9033 
9034   // Create new empty VPlan
9035   auto Plan = std::make_unique<VPlan>();
9036 
9037   // Build hierarchical CFG
9038   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9039   HCFGBuilder.buildHierarchicalCFG();
9040 
9041   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9042        VF *= 2)
9043     Plan->addVF(VF);
9044 
9045   SmallPtrSet<Instruction *, 1> DeadInstructions;
9046   VPlanTransforms::VPInstructionsToVPRecipes(
9047       OrigLoop, Plan,
9048       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9049       DeadInstructions, *PSE.getSE());
9050 
9051   // Remove the existing terminator of the exiting block of the top-most region.
9052   // A BranchOnCount will be added instead when adding the canonical IV recipes.
9053   auto *Term =
9054       Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9055   Term->eraseFromParent();
9056 
9057   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9058                         true);
9059   return Plan;
9060 }
9061 
9062 // Adjust the recipes for reductions. For in-loop reductions the chain of
9063 // instructions leading from the loop exit instr to the phi need to be converted
9064 // to reductions, with one operand being vector and the other being the scalar
9065 // reduction chain. For other reductions, a select is introduced between the phi
9066 // and live-out recipes when folding the tail.
9067 void LoopVectorizationPlanner::adjustRecipesForReductions(
9068     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9069     ElementCount MinVF) {
9070   for (auto &Reduction : CM.getInLoopReductionChains()) {
9071     PHINode *Phi = Reduction.first;
9072     const RecurrenceDescriptor &RdxDesc =
9073         Legal->getReductionVars().find(Phi)->second;
9074     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9075 
9076     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9077       continue;
9078 
9079     // ReductionOperations are orders top-down from the phi's use to the
9080     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9081     // which of the two operands will remain scalar and which will be reduced.
9082     // For minmax the chain will be the select instructions.
9083     Instruction *Chain = Phi;
9084     for (Instruction *R : ReductionOperations) {
9085       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9086       RecurKind Kind = RdxDesc.getRecurrenceKind();
9087 
9088       VPValue *ChainOp = Plan->getVPValue(Chain);
9089       unsigned FirstOpId;
9090       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9091              "Only min/max recurrences allowed for inloop reductions");
9092       // Recognize a call to the llvm.fmuladd intrinsic.
9093       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9094       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9095              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9096       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9097         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9098                "Expected to replace a VPWidenSelectSC");
9099         FirstOpId = 1;
9100       } else {
9101         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9102                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9103                "Expected to replace a VPWidenSC");
9104         FirstOpId = 0;
9105       }
9106       unsigned VecOpId =
9107           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9108       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9109 
9110       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9111                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9112                          : nullptr;
9113 
9114       if (IsFMulAdd) {
9115         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9116         // need to create an fmul recipe to use as the vector operand for the
9117         // fadd reduction.
9118         VPInstruction *FMulRecipe = new VPInstruction(
9119             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9120         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9121         WidenRecipe->getParent()->insert(FMulRecipe,
9122                                          WidenRecipe->getIterator());
9123         VecOp = FMulRecipe;
9124       }
9125       VPReductionRecipe *RedRecipe =
9126           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9127       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9128       Plan->removeVPValueFor(R);
9129       Plan->addVPValue(R, RedRecipe);
9130       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9131       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9132       WidenRecipe->eraseFromParent();
9133 
9134       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9135         VPRecipeBase *CompareRecipe =
9136             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9137         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9138                "Expected to replace a VPWidenSC");
9139         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9140                "Expected no remaining users");
9141         CompareRecipe->eraseFromParent();
9142       }
9143       Chain = R;
9144     }
9145   }
9146 
9147   // If tail is folded by masking, introduce selects between the phi
9148   // and the live-out instruction of each reduction, at the beginning of the
9149   // dedicated latch block.
9150   if (CM.foldTailByMasking()) {
9151     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9152     for (VPRecipeBase &R :
9153          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9154       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9155       if (!PhiR || PhiR->isInLoop())
9156         continue;
9157       VPValue *Cond =
9158           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9159       VPValue *Red = PhiR->getBackedgeValue();
9160       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9161              "reduction recipe must be defined before latch");
9162       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9163     }
9164   }
9165 }
9166 
9167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9168 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9169                                VPSlotTracker &SlotTracker) const {
9170   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9171   IG->getInsertPos()->printAsOperand(O, false);
9172   O << ", ";
9173   getAddr()->printAsOperand(O, SlotTracker);
9174   VPValue *Mask = getMask();
9175   if (Mask) {
9176     O << ", ";
9177     Mask->printAsOperand(O, SlotTracker);
9178   }
9179 
9180   unsigned OpIdx = 0;
9181   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9182     if (!IG->getMember(i))
9183       continue;
9184     if (getNumStoreOperands() > 0) {
9185       O << "\n" << Indent << "  store ";
9186       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9187       O << " to index " << i;
9188     } else {
9189       O << "\n" << Indent << "  ";
9190       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9191       O << " = load from index " << i;
9192     }
9193     ++OpIdx;
9194   }
9195 }
9196 #endif
9197 
9198 void VPWidenCallRecipe::execute(VPTransformState &State) {
9199   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9200                                   *this, State);
9201 }
9202 
9203 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9204   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9205   State.ILV->setDebugLocFromInst(&I);
9206 
9207   // The condition can be loop invariant  but still defined inside the
9208   // loop. This means that we can't just use the original 'cond' value.
9209   // We have to take the 'vectorized' value and pick the first lane.
9210   // Instcombine will make this a no-op.
9211   auto *InvarCond =
9212       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9213 
9214   for (unsigned Part = 0; Part < State.UF; ++Part) {
9215     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9216     Value *Op0 = State.get(getOperand(1), Part);
9217     Value *Op1 = State.get(getOperand(2), Part);
9218     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9219     State.set(this, Sel, Part);
9220     State.ILV->addMetadata(Sel, &I);
9221   }
9222 }
9223 
9224 void VPWidenRecipe::execute(VPTransformState &State) {
9225   auto &I = *cast<Instruction>(getUnderlyingValue());
9226   auto &Builder = State.Builder;
9227   switch (I.getOpcode()) {
9228   case Instruction::Call:
9229   case Instruction::Br:
9230   case Instruction::PHI:
9231   case Instruction::GetElementPtr:
9232   case Instruction::Select:
9233     llvm_unreachable("This instruction is handled by a different recipe.");
9234   case Instruction::UDiv:
9235   case Instruction::SDiv:
9236   case Instruction::SRem:
9237   case Instruction::URem:
9238   case Instruction::Add:
9239   case Instruction::FAdd:
9240   case Instruction::Sub:
9241   case Instruction::FSub:
9242   case Instruction::FNeg:
9243   case Instruction::Mul:
9244   case Instruction::FMul:
9245   case Instruction::FDiv:
9246   case Instruction::FRem:
9247   case Instruction::Shl:
9248   case Instruction::LShr:
9249   case Instruction::AShr:
9250   case Instruction::And:
9251   case Instruction::Or:
9252   case Instruction::Xor: {
9253     // Just widen unops and binops.
9254     State.ILV->setDebugLocFromInst(&I);
9255 
9256     for (unsigned Part = 0; Part < State.UF; ++Part) {
9257       SmallVector<Value *, 2> Ops;
9258       for (VPValue *VPOp : operands())
9259         Ops.push_back(State.get(VPOp, Part));
9260 
9261       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9262 
9263       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9264         VecOp->copyIRFlags(&I);
9265 
9266         // If the instruction is vectorized and was in a basic block that needed
9267         // predication, we can't propagate poison-generating flags (nuw/nsw,
9268         // exact, etc.). The control flow has been linearized and the
9269         // instruction is no longer guarded by the predicate, which could make
9270         // the flag properties to no longer hold.
9271         if (State.MayGeneratePoisonRecipes.contains(this))
9272           VecOp->dropPoisonGeneratingFlags();
9273       }
9274 
9275       // Use this vector value for all users of the original instruction.
9276       State.set(this, V, Part);
9277       State.ILV->addMetadata(V, &I);
9278     }
9279 
9280     break;
9281   }
9282   case Instruction::Freeze: {
9283     State.ILV->setDebugLocFromInst(&I);
9284 
9285     for (unsigned Part = 0; Part < State.UF; ++Part) {
9286       Value *Op = State.get(getOperand(0), Part);
9287 
9288       Value *Freeze = Builder.CreateFreeze(Op);
9289       State.set(this, Freeze, Part);
9290     }
9291     break;
9292   }
9293   case Instruction::ICmp:
9294   case Instruction::FCmp: {
9295     // Widen compares. Generate vector compares.
9296     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9297     auto *Cmp = cast<CmpInst>(&I);
9298     State.ILV->setDebugLocFromInst(Cmp);
9299     for (unsigned Part = 0; Part < State.UF; ++Part) {
9300       Value *A = State.get(getOperand(0), Part);
9301       Value *B = State.get(getOperand(1), Part);
9302       Value *C = nullptr;
9303       if (FCmp) {
9304         // Propagate fast math flags.
9305         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9306         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9307         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9308       } else {
9309         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9310       }
9311       State.set(this, C, Part);
9312       State.ILV->addMetadata(C, &I);
9313     }
9314 
9315     break;
9316   }
9317 
9318   case Instruction::ZExt:
9319   case Instruction::SExt:
9320   case Instruction::FPToUI:
9321   case Instruction::FPToSI:
9322   case Instruction::FPExt:
9323   case Instruction::PtrToInt:
9324   case Instruction::IntToPtr:
9325   case Instruction::SIToFP:
9326   case Instruction::UIToFP:
9327   case Instruction::Trunc:
9328   case Instruction::FPTrunc:
9329   case Instruction::BitCast: {
9330     auto *CI = cast<CastInst>(&I);
9331     State.ILV->setDebugLocFromInst(CI);
9332 
9333     /// Vectorize casts.
9334     Type *DestTy = (State.VF.isScalar())
9335                        ? CI->getType()
9336                        : VectorType::get(CI->getType(), State.VF);
9337 
9338     for (unsigned Part = 0; Part < State.UF; ++Part) {
9339       Value *A = State.get(getOperand(0), Part);
9340       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9341       State.set(this, Cast, Part);
9342       State.ILV->addMetadata(Cast, &I);
9343     }
9344     break;
9345   }
9346   default:
9347     // This instruction is not vectorized by simple widening.
9348     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9349     llvm_unreachable("Unhandled instruction!");
9350   } // end of switch.
9351 }
9352 
9353 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9354   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9355   // Construct a vector GEP by widening the operands of the scalar GEP as
9356   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9357   // results in a vector of pointers when at least one operand of the GEP
9358   // is vector-typed. Thus, to keep the representation compact, we only use
9359   // vector-typed operands for loop-varying values.
9360 
9361   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9362     // If we are vectorizing, but the GEP has only loop-invariant operands,
9363     // the GEP we build (by only using vector-typed operands for
9364     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9365     // produce a vector of pointers, we need to either arbitrarily pick an
9366     // operand to broadcast, or broadcast a clone of the original GEP.
9367     // Here, we broadcast a clone of the original.
9368     //
9369     // TODO: If at some point we decide to scalarize instructions having
9370     //       loop-invariant operands, this special case will no longer be
9371     //       required. We would add the scalarization decision to
9372     //       collectLoopScalars() and teach getVectorValue() to broadcast
9373     //       the lane-zero scalar value.
9374     auto *Clone = State.Builder.Insert(GEP->clone());
9375     for (unsigned Part = 0; Part < State.UF; ++Part) {
9376       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9377       State.set(this, EntryPart, Part);
9378       State.ILV->addMetadata(EntryPart, GEP);
9379     }
9380   } else {
9381     // If the GEP has at least one loop-varying operand, we are sure to
9382     // produce a vector of pointers. But if we are only unrolling, we want
9383     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9384     // produce with the code below will be scalar (if VF == 1) or vector
9385     // (otherwise). Note that for the unroll-only case, we still maintain
9386     // values in the vector mapping with initVector, as we do for other
9387     // instructions.
9388     for (unsigned Part = 0; Part < State.UF; ++Part) {
9389       // The pointer operand of the new GEP. If it's loop-invariant, we
9390       // won't broadcast it.
9391       auto *Ptr = IsPtrLoopInvariant
9392                       ? State.get(getOperand(0), VPIteration(0, 0))
9393                       : State.get(getOperand(0), Part);
9394 
9395       // Collect all the indices for the new GEP. If any index is
9396       // loop-invariant, we won't broadcast it.
9397       SmallVector<Value *, 4> Indices;
9398       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9399         VPValue *Operand = getOperand(I);
9400         if (IsIndexLoopInvariant[I - 1])
9401           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9402         else
9403           Indices.push_back(State.get(Operand, Part));
9404       }
9405 
9406       // If the GEP instruction is vectorized and was in a basic block that
9407       // needed predication, we can't propagate the poison-generating 'inbounds'
9408       // flag. The control flow has been linearized and the GEP is no longer
9409       // guarded by the predicate, which could make the 'inbounds' properties to
9410       // no longer hold.
9411       bool IsInBounds =
9412           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9413 
9414       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9415       // but it should be a vector, otherwise.
9416       auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr,
9417                                              Indices, "", IsInBounds);
9418       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9419              "NewGEP is not a pointer vector");
9420       State.set(this, NewGEP, Part);
9421       State.ILV->addMetadata(NewGEP, GEP);
9422     }
9423   }
9424 }
9425 
9426 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9427   assert(!State.Instance && "Int or FP induction being replicated.");
9428 
9429   Value *Start = getStartValue()->getLiveInIRValue();
9430   const InductionDescriptor &ID = getInductionDescriptor();
9431   TruncInst *Trunc = getTruncInst();
9432   IRBuilderBase &Builder = State.Builder;
9433   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9434   assert(State.VF.isVector() && "must have vector VF");
9435 
9436   // The value from the original loop to which we are mapping the new induction
9437   // variable.
9438   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9439 
9440   // Fast-math-flags propagate from the original induction instruction.
9441   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9442   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9443     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9444 
9445   // Now do the actual transformations, and start with fetching the step value.
9446   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9447 
9448   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9449          "Expected either an induction phi-node or a truncate of it!");
9450 
9451   // Construct the initial value of the vector IV in the vector loop preheader
9452   auto CurrIP = Builder.saveIP();
9453   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9454   Builder.SetInsertPoint(VectorPH->getTerminator());
9455   if (isa<TruncInst>(EntryVal)) {
9456     assert(Start->getType()->isIntegerTy() &&
9457            "Truncation requires an integer type");
9458     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9459     Step = Builder.CreateTrunc(Step, TruncType);
9460     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9461   }
9462 
9463   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9464   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9465   Value *SteppedStart = getStepVector(
9466       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9467 
9468   // We create vector phi nodes for both integer and floating-point induction
9469   // variables. Here, we determine the kind of arithmetic we will perform.
9470   Instruction::BinaryOps AddOp;
9471   Instruction::BinaryOps MulOp;
9472   if (Step->getType()->isIntegerTy()) {
9473     AddOp = Instruction::Add;
9474     MulOp = Instruction::Mul;
9475   } else {
9476     AddOp = ID.getInductionOpcode();
9477     MulOp = Instruction::FMul;
9478   }
9479 
9480   // Multiply the vectorization factor by the step using integer or
9481   // floating-point arithmetic as appropriate.
9482   Type *StepType = Step->getType();
9483   Value *RuntimeVF;
9484   if (Step->getType()->isFloatingPointTy())
9485     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9486   else
9487     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9488   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9489 
9490   // Create a vector splat to use in the induction update.
9491   //
9492   // FIXME: If the step is non-constant, we create the vector splat with
9493   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9494   //        handle a constant vector splat.
9495   Value *SplatVF = isa<Constant>(Mul)
9496                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9497                        : Builder.CreateVectorSplat(State.VF, Mul);
9498   Builder.restoreIP(CurrIP);
9499 
9500   // We may need to add the step a number of times, depending on the unroll
9501   // factor. The last of those goes into the PHI.
9502   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9503                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9504   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9505   Instruction *LastInduction = VecInd;
9506   for (unsigned Part = 0; Part < State.UF; ++Part) {
9507     State.set(this, LastInduction, Part);
9508 
9509     if (isa<TruncInst>(EntryVal))
9510       State.ILV->addMetadata(LastInduction, EntryVal);
9511 
9512     LastInduction = cast<Instruction>(
9513         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9514     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9515   }
9516 
9517   LastInduction->setName("vec.ind.next");
9518   VecInd->addIncoming(SteppedStart, VectorPH);
9519   // Add induction update using an incorrect block temporarily. The phi node
9520   // will be fixed after VPlan execution. Note that at this point the latch
9521   // block cannot be used, as it does not exist yet.
9522   // TODO: Model increment value in VPlan, by turning the recipe into a
9523   // multi-def and a subclass of VPHeaderPHIRecipe.
9524   VecInd->addIncoming(LastInduction, VectorPH);
9525 }
9526 
9527 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9528   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9529          "Not a pointer induction according to InductionDescriptor!");
9530   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9531          "Unexpected type.");
9532 
9533   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9534   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9535 
9536   if (onlyScalarsGenerated(State.VF)) {
9537     // This is the normalized GEP that starts counting at zero.
9538     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9539         CanonicalIV, IndDesc.getStep()->getType());
9540     // Determine the number of scalars we need to generate for each unroll
9541     // iteration. If the instruction is uniform, we only need to generate the
9542     // first lane. Otherwise, we generate all VF values.
9543     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9544     assert((IsUniform || !State.VF.isScalable()) &&
9545            "Cannot scalarize a scalable VF");
9546     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9547 
9548     for (unsigned Part = 0; Part < State.UF; ++Part) {
9549       Value *PartStart =
9550           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9551 
9552       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9553         Value *Idx = State.Builder.CreateAdd(
9554             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9555         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9556 
9557         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9558                                       State.CFG.PrevBB->getTerminator());
9559         Value *SclrGep = emitTransformedIndex(
9560             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9561         SclrGep->setName("next.gep");
9562         State.set(this, SclrGep, VPIteration(Part, Lane));
9563       }
9564     }
9565     return;
9566   }
9567 
9568   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9569          "Induction step not a SCEV constant!");
9570   Type *PhiType = IndDesc.getStep()->getType();
9571 
9572   // Build a pointer phi
9573   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9574   Type *ScStValueType = ScalarStartValue->getType();
9575   PHINode *NewPointerPhi =
9576       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9577 
9578   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9579   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9580 
9581   // A pointer induction, performed by using a gep
9582   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9583   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9584 
9585   const SCEV *ScalarStep = IndDesc.getStep();
9586   SCEVExpander Exp(SE, DL, "induction");
9587   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9588   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9589   Value *NumUnrolledElems =
9590       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9591   Value *InductionGEP = GetElementPtrInst::Create(
9592       IndDesc.getElementType(), NewPointerPhi,
9593       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9594       InductionLoc);
9595   // Add induction update using an incorrect block temporarily. The phi node
9596   // will be fixed after VPlan execution. Note that at this point the latch
9597   // block cannot be used, as it does not exist yet.
9598   // TODO: Model increment value in VPlan, by turning the recipe into a
9599   // multi-def and a subclass of VPHeaderPHIRecipe.
9600   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9601 
9602   // Create UF many actual address geps that use the pointer
9603   // phi as base and a vectorized version of the step value
9604   // (<step*0, ..., step*N>) as offset.
9605   for (unsigned Part = 0; Part < State.UF; ++Part) {
9606     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9607     Value *StartOffsetScalar =
9608         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9609     Value *StartOffset =
9610         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9611     // Create a vector of consecutive numbers from zero to VF.
9612     StartOffset = State.Builder.CreateAdd(
9613         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9614 
9615     Value *GEP = State.Builder.CreateGEP(
9616         IndDesc.getElementType(), NewPointerPhi,
9617         State.Builder.CreateMul(
9618             StartOffset,
9619             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9620             "vector.gep"));
9621     State.set(this, GEP, Part);
9622   }
9623 }
9624 
9625 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9626   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9627 
9628   // Fast-math-flags propagate from the original induction instruction.
9629   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9630   if (IndDesc.getInductionBinOp() &&
9631       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9632     State.Builder.setFastMathFlags(
9633         IndDesc.getInductionBinOp()->getFastMathFlags());
9634 
9635   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9636   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9637     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9638     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9639     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9640       ScalarIV =
9641           Ty->isIntegerTy()
9642               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9643               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9644       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9645                                       getStartValue()->getLiveInIRValue(), Step,
9646                                       IndDesc);
9647       ScalarIV->setName("offset.idx");
9648     }
9649     if (TruncToTy) {
9650       assert(Step->getType()->isIntegerTy() &&
9651              "Truncation requires an integer step");
9652       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9653       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9654     }
9655     return ScalarIV;
9656   };
9657 
9658   Value *ScalarIV = CreateScalarIV(Step);
9659   if (State.VF.isVector()) {
9660     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9661     return;
9662   }
9663 
9664   for (unsigned Part = 0; Part < State.UF; ++Part) {
9665     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9666     Value *EntryPart;
9667     if (Step->getType()->isFloatingPointTy()) {
9668       Value *StartIdx =
9669           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9670       // Floating-point operations inherit FMF via the builder's flags.
9671       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9672       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9673                                             ScalarIV, MulOp);
9674     } else {
9675       Value *StartIdx =
9676           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9677       EntryPart = State.Builder.CreateAdd(
9678           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9679     }
9680     State.set(this, EntryPart, Part);
9681   }
9682 }
9683 
9684 void VPBlendRecipe::execute(VPTransformState &State) {
9685   State.ILV->setDebugLocFromInst(Phi);
9686   // We know that all PHIs in non-header blocks are converted into
9687   // selects, so we don't have to worry about the insertion order and we
9688   // can just use the builder.
9689   // At this point we generate the predication tree. There may be
9690   // duplications since this is a simple recursive scan, but future
9691   // optimizations will clean it up.
9692 
9693   unsigned NumIncoming = getNumIncomingValues();
9694 
9695   // Generate a sequence of selects of the form:
9696   // SELECT(Mask3, In3,
9697   //        SELECT(Mask2, In2,
9698   //               SELECT(Mask1, In1,
9699   //                      In0)))
9700   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9701   // are essentially undef are taken from In0.
9702   InnerLoopVectorizer::VectorParts Entry(State.UF);
9703   for (unsigned In = 0; In < NumIncoming; ++In) {
9704     for (unsigned Part = 0; Part < State.UF; ++Part) {
9705       // We might have single edge PHIs (blocks) - use an identity
9706       // 'select' for the first PHI operand.
9707       Value *In0 = State.get(getIncomingValue(In), Part);
9708       if (In == 0)
9709         Entry[Part] = In0; // Initialize with the first incoming value.
9710       else {
9711         // Select between the current value and the previous incoming edge
9712         // based on the incoming mask.
9713         Value *Cond = State.get(getMask(In), Part);
9714         Entry[Part] =
9715             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9716       }
9717     }
9718   }
9719   for (unsigned Part = 0; Part < State.UF; ++Part)
9720     State.set(this, Entry[Part], Part);
9721 }
9722 
9723 void VPInterleaveRecipe::execute(VPTransformState &State) {
9724   assert(!State.Instance && "Interleave group being replicated.");
9725   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9726                                       getStoredValues(), getMask());
9727 }
9728 
9729 void VPReductionRecipe::execute(VPTransformState &State) {
9730   assert(!State.Instance && "Reduction being replicated.");
9731   Value *PrevInChain = State.get(getChainOp(), 0);
9732   RecurKind Kind = RdxDesc->getRecurrenceKind();
9733   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9734   // Propagate the fast-math flags carried by the underlying instruction.
9735   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9736   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9737   for (unsigned Part = 0; Part < State.UF; ++Part) {
9738     Value *NewVecOp = State.get(getVecOp(), Part);
9739     if (VPValue *Cond = getCondOp()) {
9740       Value *NewCond = State.get(Cond, Part);
9741       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9742       Value *Iden = RdxDesc->getRecurrenceIdentity(
9743           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9744       Value *IdenVec =
9745           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9746       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9747       NewVecOp = Select;
9748     }
9749     Value *NewRed;
9750     Value *NextInChain;
9751     if (IsOrdered) {
9752       if (State.VF.isVector())
9753         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9754                                         PrevInChain);
9755       else
9756         NewRed = State.Builder.CreateBinOp(
9757             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9758             NewVecOp);
9759       PrevInChain = NewRed;
9760     } else {
9761       PrevInChain = State.get(getChainOp(), Part);
9762       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9763     }
9764     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9765       NextInChain =
9766           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9767                          NewRed, PrevInChain);
9768     } else if (IsOrdered)
9769       NextInChain = NewRed;
9770     else
9771       NextInChain = State.Builder.CreateBinOp(
9772           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9773           PrevInChain);
9774     State.set(this, NextInChain, Part);
9775   }
9776 }
9777 
9778 void VPReplicateRecipe::execute(VPTransformState &State) {
9779   if (State.Instance) { // Generate a single instance.
9780     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9781     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9782                                     IsPredicated, State);
9783     // Insert scalar instance packing it into a vector.
9784     if (AlsoPack && State.VF.isVector()) {
9785       // If we're constructing lane 0, initialize to start from poison.
9786       if (State.Instance->Lane.isFirstLane()) {
9787         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9788         Value *Poison = PoisonValue::get(
9789             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9790         State.set(this, Poison, State.Instance->Part);
9791       }
9792       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9793     }
9794     return;
9795   }
9796 
9797   // Generate scalar instances for all VF lanes of all UF parts, unless the
9798   // instruction is uniform inwhich case generate only the first lane for each
9799   // of the UF parts.
9800   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9801   assert((!State.VF.isScalable() || IsUniform) &&
9802          "Can't scalarize a scalable vector");
9803   for (unsigned Part = 0; Part < State.UF; ++Part)
9804     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9805       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9806                                       VPIteration(Part, Lane), IsPredicated,
9807                                       State);
9808 }
9809 
9810 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9811   assert(State.Instance && "Branch on Mask works only on single instance.");
9812 
9813   unsigned Part = State.Instance->Part;
9814   unsigned Lane = State.Instance->Lane.getKnownLane();
9815 
9816   Value *ConditionBit = nullptr;
9817   VPValue *BlockInMask = getMask();
9818   if (BlockInMask) {
9819     ConditionBit = State.get(BlockInMask, Part);
9820     if (ConditionBit->getType()->isVectorTy())
9821       ConditionBit = State.Builder.CreateExtractElement(
9822           ConditionBit, State.Builder.getInt32(Lane));
9823   } else // Block in mask is all-one.
9824     ConditionBit = State.Builder.getTrue();
9825 
9826   // Replace the temporary unreachable terminator with a new conditional branch,
9827   // whose two destinations will be set later when they are created.
9828   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9829   assert(isa<UnreachableInst>(CurrentTerminator) &&
9830          "Expected to replace unreachable terminator with conditional branch.");
9831   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9832   CondBr->setSuccessor(0, nullptr);
9833   ReplaceInstWithInst(CurrentTerminator, CondBr);
9834 }
9835 
9836 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9837   assert(State.Instance && "Predicated instruction PHI works per instance.");
9838   Instruction *ScalarPredInst =
9839       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9840   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9841   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9842   assert(PredicatingBB && "Predicated block has no single predecessor.");
9843   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9844          "operand must be VPReplicateRecipe");
9845 
9846   // By current pack/unpack logic we need to generate only a single phi node: if
9847   // a vector value for the predicated instruction exists at this point it means
9848   // the instruction has vector users only, and a phi for the vector value is
9849   // needed. In this case the recipe of the predicated instruction is marked to
9850   // also do that packing, thereby "hoisting" the insert-element sequence.
9851   // Otherwise, a phi node for the scalar value is needed.
9852   unsigned Part = State.Instance->Part;
9853   if (State.hasVectorValue(getOperand(0), Part)) {
9854     Value *VectorValue = State.get(getOperand(0), Part);
9855     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9856     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9857     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9858     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9859     if (State.hasVectorValue(this, Part))
9860       State.reset(this, VPhi, Part);
9861     else
9862       State.set(this, VPhi, Part);
9863     // NOTE: Currently we need to update the value of the operand, so the next
9864     // predicated iteration inserts its generated value in the correct vector.
9865     State.reset(getOperand(0), VPhi, Part);
9866   } else {
9867     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9868     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9869     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9870                      PredicatingBB);
9871     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9872     if (State.hasScalarValue(this, *State.Instance))
9873       State.reset(this, Phi, *State.Instance);
9874     else
9875       State.set(this, Phi, *State.Instance);
9876     // NOTE: Currently we need to update the value of the operand, so the next
9877     // predicated iteration inserts its generated value in the correct vector.
9878     State.reset(getOperand(0), Phi, *State.Instance);
9879   }
9880 }
9881 
9882 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9883   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9884 
9885   // Attempt to issue a wide load.
9886   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9887   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9888 
9889   assert((LI || SI) && "Invalid Load/Store instruction");
9890   assert((!SI || StoredValue) && "No stored value provided for widened store");
9891   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9892 
9893   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9894 
9895   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9896   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9897   bool CreateGatherScatter = !Consecutive;
9898 
9899   auto &Builder = State.Builder;
9900   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9901   bool isMaskRequired = getMask();
9902   if (isMaskRequired)
9903     for (unsigned Part = 0; Part < State.UF; ++Part)
9904       BlockInMaskParts[Part] = State.get(getMask(), Part);
9905 
9906   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9907     // Calculate the pointer for the specific unroll-part.
9908     GetElementPtrInst *PartPtr = nullptr;
9909 
9910     bool InBounds = false;
9911     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9912       InBounds = gep->isInBounds();
9913     if (Reverse) {
9914       // If the address is consecutive but reversed, then the
9915       // wide store needs to start at the last vector element.
9916       // RunTimeVF =  VScale * VF.getKnownMinValue()
9917       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9918       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9919       // NumElt = -Part * RunTimeVF
9920       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9921       // LastLane = 1 - RunTimeVF
9922       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9923       PartPtr =
9924           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9925       PartPtr->setIsInBounds(InBounds);
9926       PartPtr = cast<GetElementPtrInst>(
9927           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9928       PartPtr->setIsInBounds(InBounds);
9929       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9930         BlockInMaskParts[Part] =
9931             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9932     } else {
9933       Value *Increment =
9934           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9935       PartPtr = cast<GetElementPtrInst>(
9936           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9937       PartPtr->setIsInBounds(InBounds);
9938     }
9939 
9940     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9941     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9942   };
9943 
9944   // Handle Stores:
9945   if (SI) {
9946     State.ILV->setDebugLocFromInst(SI);
9947 
9948     for (unsigned Part = 0; Part < State.UF; ++Part) {
9949       Instruction *NewSI = nullptr;
9950       Value *StoredVal = State.get(StoredValue, Part);
9951       if (CreateGatherScatter) {
9952         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9953         Value *VectorGep = State.get(getAddr(), Part);
9954         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9955                                             MaskPart);
9956       } else {
9957         if (Reverse) {
9958           // If we store to reverse consecutive memory locations, then we need
9959           // to reverse the order of elements in the stored value.
9960           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9961           // We don't want to update the value in the map as it might be used in
9962           // another expression. So don't call resetVectorValue(StoredVal).
9963         }
9964         auto *VecPtr =
9965             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9966         if (isMaskRequired)
9967           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9968                                             BlockInMaskParts[Part]);
9969         else
9970           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9971       }
9972       State.ILV->addMetadata(NewSI, SI);
9973     }
9974     return;
9975   }
9976 
9977   // Handle loads.
9978   assert(LI && "Must have a load instruction");
9979   State.ILV->setDebugLocFromInst(LI);
9980   for (unsigned Part = 0; Part < State.UF; ++Part) {
9981     Value *NewLI;
9982     if (CreateGatherScatter) {
9983       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9984       Value *VectorGep = State.get(getAddr(), Part);
9985       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
9986                                          nullptr, "wide.masked.gather");
9987       State.ILV->addMetadata(NewLI, LI);
9988     } else {
9989       auto *VecPtr =
9990           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9991       if (isMaskRequired)
9992         NewLI = Builder.CreateMaskedLoad(
9993             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
9994             PoisonValue::get(DataTy), "wide.masked.load");
9995       else
9996         NewLI =
9997             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
9998 
9999       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10000       State.ILV->addMetadata(NewLI, LI);
10001       if (Reverse)
10002         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10003     }
10004 
10005     State.set(getVPSingleValue(), NewLI, Part);
10006   }
10007 }
10008 
10009 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10010 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10011 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10012 // for predication.
10013 static ScalarEpilogueLowering getScalarEpilogueLowering(
10014     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10015     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10016     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10017     LoopVectorizationLegality &LVL) {
10018   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10019   // don't look at hints or options, and don't request a scalar epilogue.
10020   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10021   // LoopAccessInfo (due to code dependency and not being able to reliably get
10022   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10023   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10024   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10025   // back to the old way and vectorize with versioning when forced. See D81345.)
10026   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10027                                                       PGSOQueryType::IRPass) &&
10028                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10029     return CM_ScalarEpilogueNotAllowedOptSize;
10030 
10031   // 2) If set, obey the directives
10032   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10033     switch (PreferPredicateOverEpilogue) {
10034     case PreferPredicateTy::ScalarEpilogue:
10035       return CM_ScalarEpilogueAllowed;
10036     case PreferPredicateTy::PredicateElseScalarEpilogue:
10037       return CM_ScalarEpilogueNotNeededUsePredicate;
10038     case PreferPredicateTy::PredicateOrDontVectorize:
10039       return CM_ScalarEpilogueNotAllowedUsePredicate;
10040     };
10041   }
10042 
10043   // 3) If set, obey the hints
10044   switch (Hints.getPredicate()) {
10045   case LoopVectorizeHints::FK_Enabled:
10046     return CM_ScalarEpilogueNotNeededUsePredicate;
10047   case LoopVectorizeHints::FK_Disabled:
10048     return CM_ScalarEpilogueAllowed;
10049   };
10050 
10051   // 4) if the TTI hook indicates this is profitable, request predication.
10052   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10053                                        LVL.getLAI()))
10054     return CM_ScalarEpilogueNotNeededUsePredicate;
10055 
10056   return CM_ScalarEpilogueAllowed;
10057 }
10058 
10059 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10060   // If Values have been set for this Def return the one relevant for \p Part.
10061   if (hasVectorValue(Def, Part))
10062     return Data.PerPartOutput[Def][Part];
10063 
10064   if (!hasScalarValue(Def, {Part, 0})) {
10065     Value *IRV = Def->getLiveInIRValue();
10066     Value *B = ILV->getBroadcastInstrs(IRV);
10067     set(Def, B, Part);
10068     return B;
10069   }
10070 
10071   Value *ScalarValue = get(Def, {Part, 0});
10072   // If we aren't vectorizing, we can just copy the scalar map values over
10073   // to the vector map.
10074   if (VF.isScalar()) {
10075     set(Def, ScalarValue, Part);
10076     return ScalarValue;
10077   }
10078 
10079   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10080   bool IsUniform = RepR && RepR->isUniform();
10081 
10082   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10083   // Check if there is a scalar value for the selected lane.
10084   if (!hasScalarValue(Def, {Part, LastLane})) {
10085     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10086     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10087             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10088            "unexpected recipe found to be invariant");
10089     IsUniform = true;
10090     LastLane = 0;
10091   }
10092 
10093   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10094   // Set the insert point after the last scalarized instruction or after the
10095   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10096   // will directly follow the scalar definitions.
10097   auto OldIP = Builder.saveIP();
10098   auto NewIP =
10099       isa<PHINode>(LastInst)
10100           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10101           : std::next(BasicBlock::iterator(LastInst));
10102   Builder.SetInsertPoint(&*NewIP);
10103 
10104   // However, if we are vectorizing, we need to construct the vector values.
10105   // If the value is known to be uniform after vectorization, we can just
10106   // broadcast the scalar value corresponding to lane zero for each unroll
10107   // iteration. Otherwise, we construct the vector values using
10108   // insertelement instructions. Since the resulting vectors are stored in
10109   // State, we will only generate the insertelements once.
10110   Value *VectorValue = nullptr;
10111   if (IsUniform) {
10112     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10113     set(Def, VectorValue, Part);
10114   } else {
10115     // Initialize packing with insertelements to start from undef.
10116     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10117     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10118     set(Def, Undef, Part);
10119     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10120       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10121     VectorValue = get(Def, Part);
10122   }
10123   Builder.restoreIP(OldIP);
10124   return VectorValue;
10125 }
10126 
10127 // Process the loop in the VPlan-native vectorization path. This path builds
10128 // VPlan upfront in the vectorization pipeline, which allows to apply
10129 // VPlan-to-VPlan transformations from the very beginning without modifying the
10130 // input LLVM IR.
10131 static bool processLoopInVPlanNativePath(
10132     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10133     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10134     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10135     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10136     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10137     LoopVectorizationRequirements &Requirements) {
10138 
10139   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10140     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10141     return false;
10142   }
10143   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10144   Function *F = L->getHeader()->getParent();
10145   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10146 
10147   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10148       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10149 
10150   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10151                                 &Hints, IAI);
10152   // Use the planner for outer loop vectorization.
10153   // TODO: CM is not used at this point inside the planner. Turn CM into an
10154   // optional argument if we don't need it in the future.
10155   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10156                                Requirements, ORE);
10157 
10158   // Get user vectorization factor.
10159   ElementCount UserVF = Hints.getWidth();
10160 
10161   CM.collectElementTypesForWidening();
10162 
10163   // Plan how to best vectorize, return the best VF and its cost.
10164   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10165 
10166   // If we are stress testing VPlan builds, do not attempt to generate vector
10167   // code. Masked vector code generation support will follow soon.
10168   // Also, do not attempt to vectorize if no vector code will be produced.
10169   if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
10170     return false;
10171 
10172   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10173 
10174   {
10175     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10176                              F->getParent()->getDataLayout());
10177     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10178                            &CM, BFI, PSI, Checks);
10179     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10180                       << L->getHeader()->getParent()->getName() << "\"\n");
10181     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10182   }
10183 
10184   // Mark the loop as already vectorized to avoid vectorizing again.
10185   Hints.setAlreadyVectorized();
10186   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10187   return true;
10188 }
10189 
10190 // Emit a remark if there are stores to floats that required a floating point
10191 // extension. If the vectorized loop was generated with floating point there
10192 // will be a performance penalty from the conversion overhead and the change in
10193 // the vector width.
10194 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10195   SmallVector<Instruction *, 4> Worklist;
10196   for (BasicBlock *BB : L->getBlocks()) {
10197     for (Instruction &Inst : *BB) {
10198       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10199         if (S->getValueOperand()->getType()->isFloatTy())
10200           Worklist.push_back(S);
10201       }
10202     }
10203   }
10204 
10205   // Traverse the floating point stores upwards searching, for floating point
10206   // conversions.
10207   SmallPtrSet<const Instruction *, 4> Visited;
10208   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10209   while (!Worklist.empty()) {
10210     auto *I = Worklist.pop_back_val();
10211     if (!L->contains(I))
10212       continue;
10213     if (!Visited.insert(I).second)
10214       continue;
10215 
10216     // Emit a remark if the floating point store required a floating
10217     // point conversion.
10218     // TODO: More work could be done to identify the root cause such as a
10219     // constant or a function return type and point the user to it.
10220     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10221       ORE->emit([&]() {
10222         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10223                                           I->getDebugLoc(), L->getHeader())
10224                << "floating point conversion changes vector width. "
10225                << "Mixed floating point precision requires an up/down "
10226                << "cast that will negatively impact performance.";
10227       });
10228 
10229     for (Use &Op : I->operands())
10230       if (auto *OpI = dyn_cast<Instruction>(Op))
10231         Worklist.push_back(OpI);
10232   }
10233 }
10234 
10235 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10236     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10237                                !EnableLoopInterleaving),
10238       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10239                               !EnableLoopVectorization) {}
10240 
10241 bool LoopVectorizePass::processLoop(Loop *L) {
10242   assert((EnableVPlanNativePath || L->isInnermost()) &&
10243          "VPlan-native path is not enabled. Only process inner loops.");
10244 
10245 #ifndef NDEBUG
10246   const std::string DebugLocStr = getDebugLocString(L);
10247 #endif /* NDEBUG */
10248 
10249   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10250                     << L->getHeader()->getParent()->getName() << "' from "
10251                     << DebugLocStr << "\n");
10252 
10253   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10254 
10255   LLVM_DEBUG(
10256       dbgs() << "LV: Loop hints:"
10257              << " force="
10258              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10259                      ? "disabled"
10260                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10261                             ? "enabled"
10262                             : "?"))
10263              << " width=" << Hints.getWidth()
10264              << " interleave=" << Hints.getInterleave() << "\n");
10265 
10266   // Function containing loop
10267   Function *F = L->getHeader()->getParent();
10268 
10269   // Looking at the diagnostic output is the only way to determine if a loop
10270   // was vectorized (other than looking at the IR or machine code), so it
10271   // is important to generate an optimization remark for each loop. Most of
10272   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10273   // generated as OptimizationRemark and OptimizationRemarkMissed are
10274   // less verbose reporting vectorized loops and unvectorized loops that may
10275   // benefit from vectorization, respectively.
10276 
10277   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10278     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10279     return false;
10280   }
10281 
10282   PredicatedScalarEvolution PSE(*SE, *L);
10283 
10284   // Check if it is legal to vectorize the loop.
10285   LoopVectorizationRequirements Requirements;
10286   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10287                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10288   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10289     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10290     Hints.emitRemarkWithHints();
10291     return false;
10292   }
10293 
10294   // Check the function attributes and profiles to find out if this function
10295   // should be optimized for size.
10296   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10297       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10298 
10299   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10300   // here. They may require CFG and instruction level transformations before
10301   // even evaluating whether vectorization is profitable. Since we cannot modify
10302   // the incoming IR, we need to build VPlan upfront in the vectorization
10303   // pipeline.
10304   if (!L->isInnermost())
10305     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10306                                         ORE, BFI, PSI, Hints, Requirements);
10307 
10308   assert(L->isInnermost() && "Inner loop expected.");
10309 
10310   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10311   // count by optimizing for size, to minimize overheads.
10312   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10313   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10314     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10315                       << "This loop is worth vectorizing only if no scalar "
10316                       << "iteration overheads are incurred.");
10317     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10318       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10319     else {
10320       LLVM_DEBUG(dbgs() << "\n");
10321       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10322     }
10323   }
10324 
10325   // Check the function attributes to see if implicit floats are allowed.
10326   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10327   // an integer loop and the vector instructions selected are purely integer
10328   // vector instructions?
10329   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10330     reportVectorizationFailure(
10331         "Can't vectorize when the NoImplicitFloat attribute is used",
10332         "loop not vectorized due to NoImplicitFloat attribute",
10333         "NoImplicitFloat", ORE, L);
10334     Hints.emitRemarkWithHints();
10335     return false;
10336   }
10337 
10338   // Check if the target supports potentially unsafe FP vectorization.
10339   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10340   // for the target we're vectorizing for, to make sure none of the
10341   // additional fp-math flags can help.
10342   if (Hints.isPotentiallyUnsafe() &&
10343       TTI->isFPVectorizationPotentiallyUnsafe()) {
10344     reportVectorizationFailure(
10345         "Potentially unsafe FP op prevents vectorization",
10346         "loop not vectorized due to unsafe FP support.",
10347         "UnsafeFP", ORE, L);
10348     Hints.emitRemarkWithHints();
10349     return false;
10350   }
10351 
10352   bool AllowOrderedReductions;
10353   // If the flag is set, use that instead and override the TTI behaviour.
10354   if (ForceOrderedReductions.getNumOccurrences() > 0)
10355     AllowOrderedReductions = ForceOrderedReductions;
10356   else
10357     AllowOrderedReductions = TTI->enableOrderedReductions();
10358   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10359     ORE->emit([&]() {
10360       auto *ExactFPMathInst = Requirements.getExactFPInst();
10361       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10362                                                  ExactFPMathInst->getDebugLoc(),
10363                                                  ExactFPMathInst->getParent())
10364              << "loop not vectorized: cannot prove it is safe to reorder "
10365                 "floating-point operations";
10366     });
10367     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10368                          "reorder floating-point operations\n");
10369     Hints.emitRemarkWithHints();
10370     return false;
10371   }
10372 
10373   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10374   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10375 
10376   // If an override option has been passed in for interleaved accesses, use it.
10377   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10378     UseInterleaved = EnableInterleavedMemAccesses;
10379 
10380   // Analyze interleaved memory accesses.
10381   if (UseInterleaved) {
10382     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10383   }
10384 
10385   // Use the cost model.
10386   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10387                                 F, &Hints, IAI);
10388   CM.collectValuesToIgnore();
10389   CM.collectElementTypesForWidening();
10390 
10391   // Use the planner for vectorization.
10392   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10393                                Requirements, ORE);
10394 
10395   // Get user vectorization factor and interleave count.
10396   ElementCount UserVF = Hints.getWidth();
10397   unsigned UserIC = Hints.getInterleave();
10398 
10399   // Plan how to best vectorize, return the best VF and its cost.
10400   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10401 
10402   VectorizationFactor VF = VectorizationFactor::Disabled();
10403   unsigned IC = 1;
10404 
10405   if (MaybeVF) {
10406     if (LVP.requiresTooManyRuntimeChecks()) {
10407       ORE->emit([&]() {
10408         return OptimizationRemarkAnalysisAliasing(
10409                    DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10410                    L->getHeader())
10411                << "loop not vectorized: cannot prove it is safe to reorder "
10412                   "memory operations";
10413       });
10414       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10415       Hints.emitRemarkWithHints();
10416       return false;
10417     }
10418     VF = *MaybeVF;
10419     // Select the interleave count.
10420     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10421   }
10422 
10423   // Identify the diagnostic messages that should be produced.
10424   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10425   bool VectorizeLoop = true, InterleaveLoop = true;
10426   if (VF.Width.isScalar()) {
10427     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10428     VecDiagMsg = std::make_pair(
10429         "VectorizationNotBeneficial",
10430         "the cost-model indicates that vectorization is not beneficial");
10431     VectorizeLoop = false;
10432   }
10433 
10434   if (!MaybeVF && UserIC > 1) {
10435     // Tell the user interleaving was avoided up-front, despite being explicitly
10436     // requested.
10437     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10438                          "interleaving should be avoided up front\n");
10439     IntDiagMsg = std::make_pair(
10440         "InterleavingAvoided",
10441         "Ignoring UserIC, because interleaving was avoided up front");
10442     InterleaveLoop = false;
10443   } else if (IC == 1 && UserIC <= 1) {
10444     // Tell the user interleaving is not beneficial.
10445     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10446     IntDiagMsg = std::make_pair(
10447         "InterleavingNotBeneficial",
10448         "the cost-model indicates that interleaving is not beneficial");
10449     InterleaveLoop = false;
10450     if (UserIC == 1) {
10451       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10452       IntDiagMsg.second +=
10453           " and is explicitly disabled or interleave count is set to 1";
10454     }
10455   } else if (IC > 1 && UserIC == 1) {
10456     // Tell the user interleaving is beneficial, but it explicitly disabled.
10457     LLVM_DEBUG(
10458         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10459     IntDiagMsg = std::make_pair(
10460         "InterleavingBeneficialButDisabled",
10461         "the cost-model indicates that interleaving is beneficial "
10462         "but is explicitly disabled or interleave count is set to 1");
10463     InterleaveLoop = false;
10464   }
10465 
10466   // Override IC if user provided an interleave count.
10467   IC = UserIC > 0 ? UserIC : IC;
10468 
10469   // Emit diagnostic messages, if any.
10470   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10471   if (!VectorizeLoop && !InterleaveLoop) {
10472     // Do not vectorize or interleaving the loop.
10473     ORE->emit([&]() {
10474       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10475                                       L->getStartLoc(), L->getHeader())
10476              << VecDiagMsg.second;
10477     });
10478     ORE->emit([&]() {
10479       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10480                                       L->getStartLoc(), L->getHeader())
10481              << IntDiagMsg.second;
10482     });
10483     return false;
10484   } else if (!VectorizeLoop && InterleaveLoop) {
10485     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10486     ORE->emit([&]() {
10487       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10488                                         L->getStartLoc(), L->getHeader())
10489              << VecDiagMsg.second;
10490     });
10491   } else if (VectorizeLoop && !InterleaveLoop) {
10492     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10493                       << ") in " << DebugLocStr << '\n');
10494     ORE->emit([&]() {
10495       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10496                                         L->getStartLoc(), L->getHeader())
10497              << IntDiagMsg.second;
10498     });
10499   } else if (VectorizeLoop && InterleaveLoop) {
10500     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10501                       << ") in " << DebugLocStr << '\n');
10502     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10503   }
10504 
10505   bool DisableRuntimeUnroll = false;
10506   MDNode *OrigLoopID = L->getLoopID();
10507   {
10508     // Optimistically generate runtime checks. Drop them if they turn out to not
10509     // be profitable. Limit the scope of Checks, so the cleanup happens
10510     // immediately after vector codegeneration is done.
10511     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10512                              F->getParent()->getDataLayout());
10513     if (!VF.Width.isScalar() || IC > 1)
10514       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, IC);
10515 
10516     using namespace ore;
10517     if (!VectorizeLoop) {
10518       assert(IC > 1 && "interleave count should not be 1 or 0");
10519       // If we decided that it is not legal to vectorize the loop, then
10520       // interleave it.
10521       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10522                                  &CM, BFI, PSI, Checks);
10523 
10524       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10525       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10526 
10527       ORE->emit([&]() {
10528         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10529                                   L->getHeader())
10530                << "interleaved loop (interleaved count: "
10531                << NV("InterleaveCount", IC) << ")";
10532       });
10533     } else {
10534       // If we decided that it is *legal* to vectorize the loop, then do it.
10535 
10536       // Consider vectorizing the epilogue too if it's profitable.
10537       VectorizationFactor EpilogueVF =
10538           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10539       if (EpilogueVF.Width.isVector()) {
10540 
10541         // The first pass vectorizes the main loop and creates a scalar epilogue
10542         // to be vectorized by executing the plan (potentially with a different
10543         // factor) again shortly afterwards.
10544         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10545         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10546                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10547 
10548         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10549         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10550                         DT);
10551         ++LoopsVectorized;
10552 
10553         // Second pass vectorizes the epilogue and adjusts the control flow
10554         // edges from the first pass.
10555         EPI.MainLoopVF = EPI.EpilogueVF;
10556         EPI.MainLoopUF = EPI.EpilogueUF;
10557         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10558                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10559                                                  Checks);
10560 
10561         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10562         VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
10563         VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
10564         Header->setName("vec.epilog.vector.body");
10565 
10566         // Ensure that the start values for any VPReductionPHIRecipes are
10567         // updated before vectorising the epilogue loop.
10568         for (VPRecipeBase &R : Header->phis()) {
10569           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10570             if (auto *Resume = MainILV.getReductionResumeValue(
10571                     ReductionPhi->getRecurrenceDescriptor())) {
10572               VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume);
10573               ReductionPhi->setOperand(0, StartVal);
10574             }
10575           }
10576         }
10577 
10578         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10579                         DT);
10580         ++LoopsEpilogueVectorized;
10581 
10582         if (!MainILV.areSafetyChecksAdded())
10583           DisableRuntimeUnroll = true;
10584       } else {
10585         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10586                                &LVL, &CM, BFI, PSI, Checks);
10587 
10588         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10589         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10590         ++LoopsVectorized;
10591 
10592         // Add metadata to disable runtime unrolling a scalar loop when there
10593         // are no runtime checks about strides and memory. A scalar loop that is
10594         // rarely used is not worth unrolling.
10595         if (!LB.areSafetyChecksAdded())
10596           DisableRuntimeUnroll = true;
10597       }
10598       // Report the vectorization decision.
10599       ORE->emit([&]() {
10600         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10601                                   L->getHeader())
10602                << "vectorized loop (vectorization width: "
10603                << NV("VectorizationFactor", VF.Width)
10604                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10605       });
10606     }
10607 
10608     if (ORE->allowExtraAnalysis(LV_NAME))
10609       checkMixedPrecision(L, ORE);
10610   }
10611 
10612   Optional<MDNode *> RemainderLoopID =
10613       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10614                                       LLVMLoopVectorizeFollowupEpilogue});
10615   if (RemainderLoopID.hasValue()) {
10616     L->setLoopID(RemainderLoopID.getValue());
10617   } else {
10618     if (DisableRuntimeUnroll)
10619       AddRuntimeUnrollDisableMetaData(L);
10620 
10621     // Mark the loop as already vectorized to avoid vectorizing again.
10622     Hints.setAlreadyVectorized();
10623   }
10624 
10625   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10626   return true;
10627 }
10628 
10629 LoopVectorizeResult LoopVectorizePass::runImpl(
10630     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10631     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10632     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10633     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10634     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10635   SE = &SE_;
10636   LI = &LI_;
10637   TTI = &TTI_;
10638   DT = &DT_;
10639   BFI = &BFI_;
10640   TLI = TLI_;
10641   AA = &AA_;
10642   AC = &AC_;
10643   GetLAA = &GetLAA_;
10644   DB = &DB_;
10645   ORE = &ORE_;
10646   PSI = PSI_;
10647 
10648   // Don't attempt if
10649   // 1. the target claims to have no vector registers, and
10650   // 2. interleaving won't help ILP.
10651   //
10652   // The second condition is necessary because, even if the target has no
10653   // vector registers, loop vectorization may still enable scalar
10654   // interleaving.
10655   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10656       TTI->getMaxInterleaveFactor(1) < 2)
10657     return LoopVectorizeResult(false, false);
10658 
10659   bool Changed = false, CFGChanged = false;
10660 
10661   // The vectorizer requires loops to be in simplified form.
10662   // Since simplification may add new inner loops, it has to run before the
10663   // legality and profitability checks. This means running the loop vectorizer
10664   // will simplify all loops, regardless of whether anything end up being
10665   // vectorized.
10666   for (auto &L : *LI)
10667     Changed |= CFGChanged |=
10668         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10669 
10670   // Build up a worklist of inner-loops to vectorize. This is necessary as
10671   // the act of vectorizing or partially unrolling a loop creates new loops
10672   // and can invalidate iterators across the loops.
10673   SmallVector<Loop *, 8> Worklist;
10674 
10675   for (Loop *L : *LI)
10676     collectSupportedLoops(*L, LI, ORE, Worklist);
10677 
10678   LoopsAnalyzed += Worklist.size();
10679 
10680   // Now walk the identified inner loops.
10681   while (!Worklist.empty()) {
10682     Loop *L = Worklist.pop_back_val();
10683 
10684     // For the inner loops we actually process, form LCSSA to simplify the
10685     // transform.
10686     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10687 
10688     Changed |= CFGChanged |= processLoop(L);
10689   }
10690 
10691   // Process each loop nest in the function.
10692   return LoopVectorizeResult(Changed, CFGChanged);
10693 }
10694 
10695 PreservedAnalyses LoopVectorizePass::run(Function &F,
10696                                          FunctionAnalysisManager &AM) {
10697     auto &LI = AM.getResult<LoopAnalysis>(F);
10698     // There are no loops in the function. Return before computing other expensive
10699     // analyses.
10700     if (LI.empty())
10701       return PreservedAnalyses::all();
10702     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10703     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10704     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10705     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10706     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10707     auto &AA = AM.getResult<AAManager>(F);
10708     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10709     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10710     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10711 
10712     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10713     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10714         [&](Loop &L) -> const LoopAccessInfo & {
10715       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10716                                         TLI, TTI, nullptr, nullptr, nullptr};
10717       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10718     };
10719     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10720     ProfileSummaryInfo *PSI =
10721         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10722     LoopVectorizeResult Result =
10723         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10724     if (!Result.MadeAnyChange)
10725       return PreservedAnalyses::all();
10726     PreservedAnalyses PA;
10727 
10728     // We currently do not preserve loopinfo/dominator analyses with outer loop
10729     // vectorization. Until this is addressed, mark these analyses as preserved
10730     // only for non-VPlan-native path.
10731     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10732     if (!EnableVPlanNativePath) {
10733       PA.preserve<LoopAnalysis>();
10734       PA.preserve<DominatorTreeAnalysis>();
10735     }
10736 
10737     if (Result.MadeCFGChange) {
10738       // Making CFG changes likely means a loop got vectorized. Indicate that
10739       // extra simplification passes should be run.
10740       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10741       // be run if runtime checks have been added.
10742       AM.getResult<ShouldRunExtraVectorPasses>(F);
10743       PA.preserve<ShouldRunExtraVectorPasses>();
10744     } else {
10745       PA.preserveSet<CFGAnalyses>();
10746     }
10747     return PA;
10748 }
10749 
10750 void LoopVectorizePass::printPipeline(
10751     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10752   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10753       OS, MapClassName2PassName);
10754 
10755   OS << "<";
10756   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10757   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10758   OS << ">";
10759 }
10760