1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "LoopVectorizationPlanner.h" 51 #include "llvm/ADT/APInt.h" 52 #include "llvm/ADT/ArrayRef.h" 53 #include "llvm/ADT/DenseMap.h" 54 #include "llvm/ADT/DenseMapInfo.h" 55 #include "llvm/ADT/Hashing.h" 56 #include "llvm/ADT/MapVector.h" 57 #include "llvm/ADT/None.h" 58 #include "llvm/ADT/Optional.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallPtrSet.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/ADT/SmallVector.h" 64 #include "llvm/ADT/Statistic.h" 65 #include "llvm/ADT/StringRef.h" 66 #include "llvm/ADT/Twine.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/BasicAliasAnalysis.h" 70 #include "llvm/Analysis/BlockFrequencyInfo.h" 71 #include "llvm/Analysis/CFG.h" 72 #include "llvm/Analysis/CodeMetrics.h" 73 #include "llvm/Analysis/DemandedBits.h" 74 #include "llvm/Analysis/GlobalsModRef.h" 75 #include "llvm/Analysis/LoopAccessAnalysis.h" 76 #include "llvm/Analysis/LoopAnalysisManager.h" 77 #include "llvm/Analysis/LoopInfo.h" 78 #include "llvm/Analysis/LoopIterator.h" 79 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 80 #include "llvm/Analysis/ScalarEvolution.h" 81 #include "llvm/Analysis/ScalarEvolutionExpander.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/TargetTransformInfo.h" 85 #include "llvm/Analysis/VectorUtils.h" 86 #include "llvm/IR/Attributes.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DebugInfoMetadata.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/DiagnosticInfo.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/IRBuilder.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Metadata.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/Use.h" 110 #include "llvm/IR/User.h" 111 #include "llvm/IR/Value.h" 112 #include "llvm/IR/ValueHandle.h" 113 #include "llvm/IR/Verifier.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/Compiler.h" 118 #include "llvm/Support/Debug.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/MathExtras.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 123 #include "llvm/Transforms/Utils/LoopSimplify.h" 124 #include "llvm/Transforms/Utils/LoopUtils.h" 125 #include "llvm/Transforms/Utils/LoopVersioning.h" 126 #include <algorithm> 127 #include <cassert> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <functional> 131 #include <iterator> 132 #include <limits> 133 #include <memory> 134 #include <string> 135 #include <tuple> 136 #include <utility> 137 #include <vector> 138 139 using namespace llvm; 140 141 #define LV_NAME "loop-vectorize" 142 #define DEBUG_TYPE LV_NAME 143 144 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 145 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 146 147 static cl::opt<bool> 148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 149 cl::desc("Enable if-conversion during vectorization.")); 150 151 /// Loops with a known constant trip count below this number are vectorized only 152 /// if no scalar iteration overheads are incurred. 153 static cl::opt<unsigned> TinyTripCountVectorThreshold( 154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 155 cl::desc("Loops with a constant trip count that is smaller than this " 156 "value are vectorized only if no scalar iteration overheads " 157 "are incurred.")); 158 159 static cl::opt<bool> MaximizeBandwidth( 160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 161 cl::desc("Maximize bandwidth when selecting vectorization factor which " 162 "will be determined by the smallest type in loop.")); 163 164 static cl::opt<bool> EnableInterleavedMemAccesses( 165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 166 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 167 168 /// Maximum factor for an interleaved memory access. 169 static cl::opt<unsigned> MaxInterleaveGroupFactor( 170 "max-interleave-group-factor", cl::Hidden, 171 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 172 cl::init(8)); 173 174 /// We don't interleave loops with a known constant trip count below this 175 /// number. 176 static const unsigned TinyTripCountInterleaveThreshold = 128; 177 178 static cl::opt<unsigned> ForceTargetNumScalarRegs( 179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's number of scalar registers.")); 181 182 static cl::opt<unsigned> ForceTargetNumVectorRegs( 183 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 184 cl::desc("A flag that overrides the target's number of vector registers.")); 185 186 /// Maximum vectorization interleave count. 187 static const unsigned MaxInterleaveFactor = 16; 188 189 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's max interleave factor for " 192 "scalar loops.")); 193 194 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 196 cl::desc("A flag that overrides the target's max interleave factor for " 197 "vectorized loops.")); 198 199 static cl::opt<unsigned> ForceTargetInstructionCost( 200 "force-target-instruction-cost", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's expected cost for " 202 "an instruction to a single constant value. Mostly " 203 "useful for getting consistent testing.")); 204 205 static cl::opt<unsigned> SmallLoopCost( 206 "small-loop-cost", cl::init(20), cl::Hidden, 207 cl::desc( 208 "The cost of a loop that is considered 'small' by the interleaver.")); 209 210 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 211 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 212 cl::desc("Enable the use of the block frequency analysis to access PGO " 213 "heuristics minimizing code growth in cold regions and being more " 214 "aggressive in hot regions.")); 215 216 // Runtime interleave loops for load/store throughput. 217 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 219 cl::desc( 220 "Enable runtime interleaving until load/store ports are saturated")); 221 222 /// The number of stores in a loop that are allowed to need predication. 223 static cl::opt<unsigned> NumberOfStoresToPredicate( 224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 225 cl::desc("Max number of stores to be predicated behind an if.")); 226 227 static cl::opt<bool> EnableIndVarRegisterHeur( 228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 229 cl::desc("Count the induction variable only once when interleaving")); 230 231 static cl::opt<bool> EnableCondStoresVectorization( 232 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 233 cl::desc("Enable if predication of stores during vectorization.")); 234 235 static cl::opt<unsigned> MaxNestedScalarReductionIC( 236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 237 cl::desc("The maximum interleave count to use when interleaving a scalar " 238 "reduction in a nested loop.")); 239 240 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 242 cl::desc("The maximum allowed number of runtime memory checks with a " 243 "vectorize(enable) pragma.")); 244 245 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 247 cl::desc("The maximum number of SCEV checks allowed.")); 248 249 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 251 cl::desc("The maximum number of SCEV checks allowed with a " 252 "vectorize(enable) pragma")); 253 254 /// Create an analysis remark that explains why vectorization failed 255 /// 256 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 257 /// RemarkName is the identifier for the remark. If \p I is passed it is an 258 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 259 /// the location of the remark. \return the remark object that can be 260 /// streamed to. 261 static OptimizationRemarkAnalysis 262 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 263 Instruction *I = nullptr) { 264 Value *CodeRegion = TheLoop->getHeader(); 265 DebugLoc DL = TheLoop->getStartLoc(); 266 267 if (I) { 268 CodeRegion = I->getParent(); 269 // If there is no debug location attached to the instruction, revert back to 270 // using the loop's. 271 if (I->getDebugLoc()) 272 DL = I->getDebugLoc(); 273 } 274 275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 276 R << "loop not vectorized: "; 277 return R; 278 } 279 280 namespace { 281 282 class LoopVectorizationRequirements; 283 284 } // end anonymous namespace 285 286 /// A helper function for converting Scalar types to vector types. 287 /// If the incoming type is void, we return void. If the VF is 1, we return 288 /// the scalar type. 289 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 290 if (Scalar->isVoidTy() || VF == 1) 291 return Scalar; 292 return VectorType::get(Scalar, VF); 293 } 294 295 // FIXME: The following helper functions have multiple implementations 296 // in the project. They can be effectively organized in a common Load/Store 297 // utilities unit. 298 299 /// A helper function that returns the type of loaded or stored value. 300 static Type *getMemInstValueType(Value *I) { 301 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 302 "Expected Load or Store instruction"); 303 if (auto *LI = dyn_cast<LoadInst>(I)) 304 return LI->getType(); 305 return cast<StoreInst>(I)->getValueOperand()->getType(); 306 } 307 308 /// A helper function that returns the alignment of load or store instruction. 309 static unsigned getMemInstAlignment(Value *I) { 310 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 311 "Expected Load or Store instruction"); 312 if (auto *LI = dyn_cast<LoadInst>(I)) 313 return LI->getAlignment(); 314 return cast<StoreInst>(I)->getAlignment(); 315 } 316 317 /// A helper function that returns the address space of the pointer operand of 318 /// load or store instruction. 319 static unsigned getMemInstAddressSpace(Value *I) { 320 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 321 "Expected Load or Store instruction"); 322 if (auto *LI = dyn_cast<LoadInst>(I)) 323 return LI->getPointerAddressSpace(); 324 return cast<StoreInst>(I)->getPointerAddressSpace(); 325 } 326 327 /// A helper function that returns true if the given type is irregular. The 328 /// type is irregular if its allocated size doesn't equal the store size of an 329 /// element of the corresponding vector type at the given vectorization factor. 330 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 331 // Determine if an array of VF elements of type Ty is "bitcast compatible" 332 // with a <VF x Ty> vector. 333 if (VF > 1) { 334 auto *VectorTy = VectorType::get(Ty, VF); 335 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 336 } 337 338 // If the vectorization factor is one, we just check if an array of type Ty 339 // requires padding between elements. 340 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 341 } 342 343 /// A helper function that returns the reciprocal of the block probability of 344 /// predicated blocks. If we return X, we are assuming the predicated block 345 /// will execute once for every X iterations of the loop header. 346 /// 347 /// TODO: We should use actual block probability here, if available. Currently, 348 /// we always assume predicated blocks have a 50% chance of executing. 349 static unsigned getReciprocalPredBlockProb() { return 2; } 350 351 /// A helper function that adds a 'fast' flag to floating-point operations. 352 static Value *addFastMathFlag(Value *V) { 353 if (isa<FPMathOperator>(V)) { 354 FastMathFlags Flags; 355 Flags.setFast(); 356 cast<Instruction>(V)->setFastMathFlags(Flags); 357 } 358 return V; 359 } 360 361 /// A helper function that returns an integer or floating-point constant with 362 /// value C. 363 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 364 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 365 : ConstantFP::get(Ty, C); 366 } 367 368 namespace llvm { 369 370 /// InnerLoopVectorizer vectorizes loops which contain only one basic 371 /// block to a specified vectorization factor (VF). 372 /// This class performs the widening of scalars into vectors, or multiple 373 /// scalars. This class also implements the following features: 374 /// * It inserts an epilogue loop for handling loops that don't have iteration 375 /// counts that are known to be a multiple of the vectorization factor. 376 /// * It handles the code generation for reduction variables. 377 /// * Scalarization (implementation using scalars) of un-vectorizable 378 /// instructions. 379 /// InnerLoopVectorizer does not perform any vectorization-legality 380 /// checks, and relies on the caller to check for the different legality 381 /// aspects. The InnerLoopVectorizer relies on the 382 /// LoopVectorizationLegality class to provide information about the induction 383 /// and reduction variables that were found to a given vectorization factor. 384 class InnerLoopVectorizer { 385 public: 386 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 387 LoopInfo *LI, DominatorTree *DT, 388 const TargetLibraryInfo *TLI, 389 const TargetTransformInfo *TTI, AssumptionCache *AC, 390 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 391 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 392 LoopVectorizationCostModel *CM) 393 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 394 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 395 Builder(PSE.getSE()->getContext()), 396 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 397 virtual ~InnerLoopVectorizer() = default; 398 399 /// Create a new empty loop. Unlink the old loop and connect the new one. 400 /// Return the pre-header block of the new loop. 401 BasicBlock *createVectorizedLoopSkeleton(); 402 403 /// Widen a single instruction within the innermost loop. 404 void widenInstruction(Instruction &I); 405 406 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 407 void fixVectorizedLoop(); 408 409 // Return true if any runtime check is added. 410 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 411 412 /// A type for vectorized values in the new loop. Each value from the 413 /// original loop, when vectorized, is represented by UF vector values in the 414 /// new unrolled loop, where UF is the unroll factor. 415 using VectorParts = SmallVector<Value *, 2>; 416 417 /// Vectorize a single PHINode in a block. This method handles the induction 418 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 419 /// arbitrary length vectors. 420 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 421 422 /// A helper function to scalarize a single Instruction in the innermost loop. 423 /// Generates a sequence of scalar instances for each lane between \p MinLane 424 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 425 /// inclusive.. 426 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 427 bool IfPredicateInstr); 428 429 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 430 /// is provided, the integer induction variable will first be truncated to 431 /// the corresponding type. 432 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 433 434 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 435 /// vector or scalar value on-demand if one is not yet available. When 436 /// vectorizing a loop, we visit the definition of an instruction before its 437 /// uses. When visiting the definition, we either vectorize or scalarize the 438 /// instruction, creating an entry for it in the corresponding map. (In some 439 /// cases, such as induction variables, we will create both vector and scalar 440 /// entries.) Then, as we encounter uses of the definition, we derive values 441 /// for each scalar or vector use unless such a value is already available. 442 /// For example, if we scalarize a definition and one of its uses is vector, 443 /// we build the required vector on-demand with an insertelement sequence 444 /// when visiting the use. Otherwise, if the use is scalar, we can use the 445 /// existing scalar definition. 446 /// 447 /// Return a value in the new loop corresponding to \p V from the original 448 /// loop at unroll index \p Part. If the value has already been vectorized, 449 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 450 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 451 /// a new vector value on-demand by inserting the scalar values into a vector 452 /// with an insertelement sequence. If the value has been neither vectorized 453 /// nor scalarized, it must be loop invariant, so we simply broadcast the 454 /// value into a vector. 455 Value *getOrCreateVectorValue(Value *V, unsigned Part); 456 457 /// Return a value in the new loop corresponding to \p V from the original 458 /// loop at unroll and vector indices \p Instance. If the value has been 459 /// vectorized but not scalarized, the necessary extractelement instruction 460 /// will be generated. 461 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 462 463 /// Construct the vector value of a scalarized value \p V one lane at a time. 464 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 465 466 /// Try to vectorize the interleaved access group that \p Instr belongs to. 467 void vectorizeInterleaveGroup(Instruction *Instr); 468 469 /// Vectorize Load and Store instructions, optionally masking the vector 470 /// operations if \p BlockInMask is non-null. 471 void vectorizeMemoryInstruction(Instruction *Instr, 472 VectorParts *BlockInMask = nullptr); 473 474 /// \brief Set the debug location in the builder using the debug location in 475 /// the instruction. 476 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 477 478 protected: 479 friend class LoopVectorizationPlanner; 480 481 /// A small list of PHINodes. 482 using PhiVector = SmallVector<PHINode *, 4>; 483 484 /// A type for scalarized values in the new loop. Each value from the 485 /// original loop, when scalarized, is represented by UF x VF scalar values 486 /// in the new unrolled loop, where UF is the unroll factor and VF is the 487 /// vectorization factor. 488 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 489 490 /// Set up the values of the IVs correctly when exiting the vector loop. 491 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 492 Value *CountRoundDown, Value *EndValue, 493 BasicBlock *MiddleBlock); 494 495 /// Create a new induction variable inside L. 496 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 497 Value *Step, Instruction *DL); 498 499 /// Handle all cross-iteration phis in the header. 500 void fixCrossIterationPHIs(); 501 502 /// Fix a first-order recurrence. This is the second phase of vectorizing 503 /// this phi node. 504 void fixFirstOrderRecurrence(PHINode *Phi); 505 506 /// Fix a reduction cross-iteration phi. This is the second phase of 507 /// vectorizing this phi node. 508 void fixReduction(PHINode *Phi); 509 510 /// \brief The Loop exit block may have single value PHI nodes with some 511 /// incoming value. While vectorizing we only handled real values 512 /// that were defined inside the loop and we should have one value for 513 /// each predecessor of its parent basic block. See PR14725. 514 void fixLCSSAPHIs(); 515 516 /// Iteratively sink the scalarized operands of a predicated instruction into 517 /// the block that was created for it. 518 void sinkScalarOperands(Instruction *PredInst); 519 520 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 521 /// represented as. 522 void truncateToMinimalBitwidths(); 523 524 /// Insert the new loop to the loop hierarchy and pass manager 525 /// and update the analysis passes. 526 void updateAnalysis(); 527 528 /// Create a broadcast instruction. This method generates a broadcast 529 /// instruction (shuffle) for loop invariant values and for the induction 530 /// value. If this is the induction variable then we extend it to N, N+1, ... 531 /// this is needed because each iteration in the loop corresponds to a SIMD 532 /// element. 533 virtual Value *getBroadcastInstrs(Value *V); 534 535 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 536 /// to each vector element of Val. The sequence starts at StartIndex. 537 /// \p Opcode is relevant for FP induction variable. 538 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 539 Instruction::BinaryOps Opcode = 540 Instruction::BinaryOpsEnd); 541 542 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 543 /// variable on which to base the steps, \p Step is the size of the step, and 544 /// \p EntryVal is the value from the original loop that maps to the steps. 545 /// Note that \p EntryVal doesn't have to be an induction variable - it 546 /// can also be a truncate instruction. 547 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 548 const InductionDescriptor &ID); 549 550 /// Create a vector induction phi node based on an existing scalar one. \p 551 /// EntryVal is the value from the original loop that maps to the vector phi 552 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 553 /// truncate instruction, instead of widening the original IV, we widen a 554 /// version of the IV truncated to \p EntryVal's type. 555 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 556 Value *Step, Instruction *EntryVal); 557 558 /// Returns true if an instruction \p I should be scalarized instead of 559 /// vectorized for the chosen vectorization factor. 560 bool shouldScalarizeInstruction(Instruction *I) const; 561 562 /// Returns true if we should generate a scalar version of \p IV. 563 bool needsScalarInduction(Instruction *IV) const; 564 565 /// If there is a cast involved in the induction variable \p ID, which should 566 /// be ignored in the vectorized loop body, this function records the 567 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 568 /// cast. We had already proved that the casted Phi is equal to the uncasted 569 /// Phi in the vectorized loop (under a runtime guard), and therefore 570 /// there is no need to vectorize the cast - the same value can be used in the 571 /// vector loop for both the Phi and the cast. 572 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 573 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 574 /// 575 /// \p EntryVal is the value from the original loop that maps to the vector 576 /// phi node and is used to distinguish what is the IV currently being 577 /// processed - original one (if \p EntryVal is a phi corresponding to the 578 /// original IV) or the "newly-created" one based on the proof mentioned above 579 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 580 /// latter case \p EntryVal is a TruncInst and we must not record anything for 581 /// that IV, but it's error-prone to expect callers of this routine to care 582 /// about that, hence this explicit parameter. 583 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 584 const Instruction *EntryVal, 585 Value *VectorLoopValue, 586 unsigned Part, 587 unsigned Lane = UINT_MAX); 588 589 /// Generate a shuffle sequence that will reverse the vector Vec. 590 virtual Value *reverseVector(Value *Vec); 591 592 /// Returns (and creates if needed) the original loop trip count. 593 Value *getOrCreateTripCount(Loop *NewLoop); 594 595 /// Returns (and creates if needed) the trip count of the widened loop. 596 Value *getOrCreateVectorTripCount(Loop *NewLoop); 597 598 /// Returns a bitcasted value to the requested vector type. 599 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 600 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 601 const DataLayout &DL); 602 603 /// Emit a bypass check to see if the vector trip count is zero, including if 604 /// it overflows. 605 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 606 607 /// Emit a bypass check to see if all of the SCEV assumptions we've 608 /// had to make are correct. 609 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 610 611 /// Emit bypass checks to check any memory assumptions we may have made. 612 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 613 614 /// Add additional metadata to \p To that was not present on \p Orig. 615 /// 616 /// Currently this is used to add the noalias annotations based on the 617 /// inserted memchecks. Use this for instructions that are *cloned* into the 618 /// vector loop. 619 void addNewMetadata(Instruction *To, const Instruction *Orig); 620 621 /// Add metadata from one instruction to another. 622 /// 623 /// This includes both the original MDs from \p From and additional ones (\see 624 /// addNewMetadata). Use this for *newly created* instructions in the vector 625 /// loop. 626 void addMetadata(Instruction *To, Instruction *From); 627 628 /// \brief Similar to the previous function but it adds the metadata to a 629 /// vector of instructions. 630 void addMetadata(ArrayRef<Value *> To, Instruction *From); 631 632 /// The original loop. 633 Loop *OrigLoop; 634 635 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 636 /// dynamic knowledge to simplify SCEV expressions and converts them to a 637 /// more usable form. 638 PredicatedScalarEvolution &PSE; 639 640 /// Loop Info. 641 LoopInfo *LI; 642 643 /// Dominator Tree. 644 DominatorTree *DT; 645 646 /// Alias Analysis. 647 AliasAnalysis *AA; 648 649 /// Target Library Info. 650 const TargetLibraryInfo *TLI; 651 652 /// Target Transform Info. 653 const TargetTransformInfo *TTI; 654 655 /// Assumption Cache. 656 AssumptionCache *AC; 657 658 /// Interface to emit optimization remarks. 659 OptimizationRemarkEmitter *ORE; 660 661 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 662 /// used. 663 /// 664 /// This is currently only used to add no-alias metadata based on the 665 /// memchecks. The actually versioning is performed manually. 666 std::unique_ptr<LoopVersioning> LVer; 667 668 /// The vectorization SIMD factor to use. Each vector will have this many 669 /// vector elements. 670 unsigned VF; 671 672 /// The vectorization unroll factor to use. Each scalar is vectorized to this 673 /// many different vector instructions. 674 unsigned UF; 675 676 /// The builder that we use 677 IRBuilder<> Builder; 678 679 // --- Vectorization state --- 680 681 /// The vector-loop preheader. 682 BasicBlock *LoopVectorPreHeader; 683 684 /// The scalar-loop preheader. 685 BasicBlock *LoopScalarPreHeader; 686 687 /// Middle Block between the vector and the scalar. 688 BasicBlock *LoopMiddleBlock; 689 690 /// The ExitBlock of the scalar loop. 691 BasicBlock *LoopExitBlock; 692 693 /// The vector loop body. 694 BasicBlock *LoopVectorBody; 695 696 /// The scalar loop body. 697 BasicBlock *LoopScalarBody; 698 699 /// A list of all bypass blocks. The first block is the entry of the loop. 700 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 701 702 /// The new Induction variable which was added to the new block. 703 PHINode *Induction = nullptr; 704 705 /// The induction variable of the old basic block. 706 PHINode *OldInduction = nullptr; 707 708 /// Maps values from the original loop to their corresponding values in the 709 /// vectorized loop. A key value can map to either vector values, scalar 710 /// values or both kinds of values, depending on whether the key was 711 /// vectorized and scalarized. 712 VectorizerValueMap VectorLoopValueMap; 713 714 /// Store instructions that were predicated. 715 SmallVector<Instruction *, 4> PredicatedInstructions; 716 717 /// Trip count of the original loop. 718 Value *TripCount = nullptr; 719 720 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 721 Value *VectorTripCount = nullptr; 722 723 /// The legality analysis. 724 LoopVectorizationLegality *Legal; 725 726 /// The profitablity analysis. 727 LoopVectorizationCostModel *Cost; 728 729 // Record whether runtime checks are added. 730 bool AddedSafetyChecks = false; 731 732 // Holds the end values for each induction variable. We save the end values 733 // so we can later fix-up the external users of the induction variables. 734 DenseMap<PHINode *, Value *> IVEndValues; 735 }; 736 737 class InnerLoopUnroller : public InnerLoopVectorizer { 738 public: 739 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 740 LoopInfo *LI, DominatorTree *DT, 741 const TargetLibraryInfo *TLI, 742 const TargetTransformInfo *TTI, AssumptionCache *AC, 743 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 744 LoopVectorizationLegality *LVL, 745 LoopVectorizationCostModel *CM) 746 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 747 UnrollFactor, LVL, CM) {} 748 749 private: 750 Value *getBroadcastInstrs(Value *V) override; 751 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 752 Instruction::BinaryOps Opcode = 753 Instruction::BinaryOpsEnd) override; 754 Value *reverseVector(Value *Vec) override; 755 }; 756 757 } // end namespace llvm 758 759 /// \brief Look for a meaningful debug location on the instruction or it's 760 /// operands. 761 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 762 if (!I) 763 return I; 764 765 DebugLoc Empty; 766 if (I->getDebugLoc() != Empty) 767 return I; 768 769 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 770 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 771 if (OpInst->getDebugLoc() != Empty) 772 return OpInst; 773 } 774 775 return I; 776 } 777 778 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 779 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 780 const DILocation *DIL = Inst->getDebugLoc(); 781 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 782 !isa<DbgInfoIntrinsic>(Inst)) 783 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 784 else 785 B.SetCurrentDebugLocation(DIL); 786 } else 787 B.SetCurrentDebugLocation(DebugLoc()); 788 } 789 790 #ifndef NDEBUG 791 /// \return string containing a file name and a line # for the given loop. 792 static std::string getDebugLocString(const Loop *L) { 793 std::string Result; 794 if (L) { 795 raw_string_ostream OS(Result); 796 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 797 LoopDbgLoc.print(OS); 798 else 799 // Just print the module name. 800 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 801 OS.flush(); 802 } 803 return Result; 804 } 805 #endif 806 807 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 808 const Instruction *Orig) { 809 // If the loop was versioned with memchecks, add the corresponding no-alias 810 // metadata. 811 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 812 LVer->annotateInstWithNoAlias(To, Orig); 813 } 814 815 void InnerLoopVectorizer::addMetadata(Instruction *To, 816 Instruction *From) { 817 propagateMetadata(To, From); 818 addNewMetadata(To, From); 819 } 820 821 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 822 Instruction *From) { 823 for (Value *V : To) { 824 if (Instruction *I = dyn_cast<Instruction>(V)) 825 addMetadata(I, From); 826 } 827 } 828 829 namespace llvm { 830 831 /// \brief The group of interleaved loads/stores sharing the same stride and 832 /// close to each other. 833 /// 834 /// Each member in this group has an index starting from 0, and the largest 835 /// index should be less than interleaved factor, which is equal to the absolute 836 /// value of the access's stride. 837 /// 838 /// E.g. An interleaved load group of factor 4: 839 /// for (unsigned i = 0; i < 1024; i+=4) { 840 /// a = A[i]; // Member of index 0 841 /// b = A[i+1]; // Member of index 1 842 /// d = A[i+3]; // Member of index 3 843 /// ... 844 /// } 845 /// 846 /// An interleaved store group of factor 4: 847 /// for (unsigned i = 0; i < 1024; i+=4) { 848 /// ... 849 /// A[i] = a; // Member of index 0 850 /// A[i+1] = b; // Member of index 1 851 /// A[i+2] = c; // Member of index 2 852 /// A[i+3] = d; // Member of index 3 853 /// } 854 /// 855 /// Note: the interleaved load group could have gaps (missing members), but 856 /// the interleaved store group doesn't allow gaps. 857 class InterleaveGroup { 858 public: 859 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 860 : Align(Align), InsertPos(Instr) { 861 assert(Align && "The alignment should be non-zero"); 862 863 Factor = std::abs(Stride); 864 assert(Factor > 1 && "Invalid interleave factor"); 865 866 Reverse = Stride < 0; 867 Members[0] = Instr; 868 } 869 870 bool isReverse() const { return Reverse; } 871 unsigned getFactor() const { return Factor; } 872 unsigned getAlignment() const { return Align; } 873 unsigned getNumMembers() const { return Members.size(); } 874 875 /// \brief Try to insert a new member \p Instr with index \p Index and 876 /// alignment \p NewAlign. The index is related to the leader and it could be 877 /// negative if it is the new leader. 878 /// 879 /// \returns false if the instruction doesn't belong to the group. 880 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 881 assert(NewAlign && "The new member's alignment should be non-zero"); 882 883 int Key = Index + SmallestKey; 884 885 // Skip if there is already a member with the same index. 886 if (Members.count(Key)) 887 return false; 888 889 if (Key > LargestKey) { 890 // The largest index is always less than the interleave factor. 891 if (Index >= static_cast<int>(Factor)) 892 return false; 893 894 LargestKey = Key; 895 } else if (Key < SmallestKey) { 896 // The largest index is always less than the interleave factor. 897 if (LargestKey - Key >= static_cast<int>(Factor)) 898 return false; 899 900 SmallestKey = Key; 901 } 902 903 // It's always safe to select the minimum alignment. 904 Align = std::min(Align, NewAlign); 905 Members[Key] = Instr; 906 return true; 907 } 908 909 /// \brief Get the member with the given index \p Index 910 /// 911 /// \returns nullptr if contains no such member. 912 Instruction *getMember(unsigned Index) const { 913 int Key = SmallestKey + Index; 914 if (!Members.count(Key)) 915 return nullptr; 916 917 return Members.find(Key)->second; 918 } 919 920 /// \brief Get the index for the given member. Unlike the key in the member 921 /// map, the index starts from 0. 922 unsigned getIndex(Instruction *Instr) const { 923 for (auto I : Members) 924 if (I.second == Instr) 925 return I.first - SmallestKey; 926 927 llvm_unreachable("InterleaveGroup contains no such member"); 928 } 929 930 Instruction *getInsertPos() const { return InsertPos; } 931 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 932 933 /// Add metadata (e.g. alias info) from the instructions in this group to \p 934 /// NewInst. 935 /// 936 /// FIXME: this function currently does not add noalias metadata a'la 937 /// addNewMedata. To do that we need to compute the intersection of the 938 /// noalias info from all members. 939 void addMetadata(Instruction *NewInst) const { 940 SmallVector<Value *, 4> VL; 941 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 942 [](std::pair<int, Instruction *> p) { return p.second; }); 943 propagateMetadata(NewInst, VL); 944 } 945 946 private: 947 unsigned Factor; // Interleave Factor. 948 bool Reverse; 949 unsigned Align; 950 DenseMap<int, Instruction *> Members; 951 int SmallestKey = 0; 952 int LargestKey = 0; 953 954 // To avoid breaking dependences, vectorized instructions of an interleave 955 // group should be inserted at either the first load or the last store in 956 // program order. 957 // 958 // E.g. %even = load i32 // Insert Position 959 // %add = add i32 %even // Use of %even 960 // %odd = load i32 961 // 962 // store i32 %even 963 // %odd = add i32 // Def of %odd 964 // store i32 %odd // Insert Position 965 Instruction *InsertPos; 966 }; 967 } // end namespace llvm 968 969 namespace { 970 971 /// \brief Drive the analysis of interleaved memory accesses in the loop. 972 /// 973 /// Use this class to analyze interleaved accesses only when we can vectorize 974 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 975 /// on interleaved accesses is unsafe. 976 /// 977 /// The analysis collects interleave groups and records the relationships 978 /// between the member and the group in a map. 979 class InterleavedAccessInfo { 980 public: 981 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 982 DominatorTree *DT, LoopInfo *LI, 983 const LoopAccessInfo *LAI) 984 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {} 985 986 ~InterleavedAccessInfo() { 987 SmallSet<InterleaveGroup *, 4> DelSet; 988 // Avoid releasing a pointer twice. 989 for (auto &I : InterleaveGroupMap) 990 DelSet.insert(I.second); 991 for (auto *Ptr : DelSet) 992 delete Ptr; 993 } 994 995 /// \brief Analyze the interleaved accesses and collect them in interleave 996 /// groups. Substitute symbolic strides using \p Strides. 997 void analyzeInterleaving(); 998 999 /// \brief Check if \p Instr belongs to any interleave group. 1000 bool isInterleaved(Instruction *Instr) const { 1001 return InterleaveGroupMap.count(Instr); 1002 } 1003 1004 /// \brief Get the interleave group that \p Instr belongs to. 1005 /// 1006 /// \returns nullptr if doesn't have such group. 1007 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1008 if (InterleaveGroupMap.count(Instr)) 1009 return InterleaveGroupMap.find(Instr)->second; 1010 return nullptr; 1011 } 1012 1013 /// \brief Returns true if an interleaved group that may access memory 1014 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1015 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1016 1017 private: 1018 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1019 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1020 /// The interleaved access analysis can also add new predicates (for example 1021 /// by versioning strides of pointers). 1022 PredicatedScalarEvolution &PSE; 1023 1024 Loop *TheLoop; 1025 DominatorTree *DT; 1026 LoopInfo *LI; 1027 const LoopAccessInfo *LAI; 1028 1029 /// True if the loop may contain non-reversed interleaved groups with 1030 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1031 /// out-of-bounds by executing at least one scalar epilogue iteration. 1032 bool RequiresScalarEpilogue = false; 1033 1034 /// Holds the relationships between the members and the interleave group. 1035 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1036 1037 /// Holds dependences among the memory accesses in the loop. It maps a source 1038 /// access to a set of dependent sink accesses. 1039 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1040 1041 /// \brief The descriptor for a strided memory access. 1042 struct StrideDescriptor { 1043 StrideDescriptor() = default; 1044 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1045 unsigned Align) 1046 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1047 1048 // The access's stride. It is negative for a reverse access. 1049 int64_t Stride = 0; 1050 1051 // The scalar expression of this access. 1052 const SCEV *Scev = nullptr; 1053 1054 // The size of the memory object. 1055 uint64_t Size = 0; 1056 1057 // The alignment of this access. 1058 unsigned Align = 0; 1059 }; 1060 1061 /// \brief A type for holding instructions and their stride descriptors. 1062 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1063 1064 /// \brief Create a new interleave group with the given instruction \p Instr, 1065 /// stride \p Stride and alignment \p Align. 1066 /// 1067 /// \returns the newly created interleave group. 1068 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1069 unsigned Align) { 1070 assert(!InterleaveGroupMap.count(Instr) && 1071 "Already in an interleaved access group"); 1072 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1073 return InterleaveGroupMap[Instr]; 1074 } 1075 1076 /// \brief Release the group and remove all the relationships. 1077 void releaseGroup(InterleaveGroup *Group) { 1078 for (unsigned i = 0; i < Group->getFactor(); i++) 1079 if (Instruction *Member = Group->getMember(i)) 1080 InterleaveGroupMap.erase(Member); 1081 1082 delete Group; 1083 } 1084 1085 /// \brief Collect all the accesses with a constant stride in program order. 1086 void collectConstStrideAccesses( 1087 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1088 const ValueToValueMap &Strides); 1089 1090 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1091 static bool isStrided(int Stride) { 1092 unsigned Factor = std::abs(Stride); 1093 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1094 } 1095 1096 /// \brief Returns true if \p BB is a predicated block. 1097 bool isPredicated(BasicBlock *BB) const { 1098 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1099 } 1100 1101 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1102 bool areDependencesValid() const { 1103 return LAI && LAI->getDepChecker().getDependences(); 1104 } 1105 1106 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1107 /// necessary, when constructing interleaved groups. 1108 /// 1109 /// \p A must precede \p B in program order. We return false if reordering is 1110 /// not necessary or is prevented because \p A and \p B may be dependent. 1111 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1112 StrideEntry *B) const { 1113 // Code motion for interleaved accesses can potentially hoist strided loads 1114 // and sink strided stores. The code below checks the legality of the 1115 // following two conditions: 1116 // 1117 // 1. Potentially moving a strided load (B) before any store (A) that 1118 // precedes B, or 1119 // 1120 // 2. Potentially moving a strided store (A) after any load or store (B) 1121 // that A precedes. 1122 // 1123 // It's legal to reorder A and B if we know there isn't a dependence from A 1124 // to B. Note that this determination is conservative since some 1125 // dependences could potentially be reordered safely. 1126 1127 // A is potentially the source of a dependence. 1128 auto *Src = A->first; 1129 auto SrcDes = A->second; 1130 1131 // B is potentially the sink of a dependence. 1132 auto *Sink = B->first; 1133 auto SinkDes = B->second; 1134 1135 // Code motion for interleaved accesses can't violate WAR dependences. 1136 // Thus, reordering is legal if the source isn't a write. 1137 if (!Src->mayWriteToMemory()) 1138 return true; 1139 1140 // At least one of the accesses must be strided. 1141 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1142 return true; 1143 1144 // If dependence information is not available from LoopAccessInfo, 1145 // conservatively assume the instructions can't be reordered. 1146 if (!areDependencesValid()) 1147 return false; 1148 1149 // If we know there is a dependence from source to sink, assume the 1150 // instructions can't be reordered. Otherwise, reordering is legal. 1151 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1152 } 1153 1154 /// \brief Collect the dependences from LoopAccessInfo. 1155 /// 1156 /// We process the dependences once during the interleaved access analysis to 1157 /// enable constant-time dependence queries. 1158 void collectDependences() { 1159 if (!areDependencesValid()) 1160 return; 1161 auto *Deps = LAI->getDepChecker().getDependences(); 1162 for (auto Dep : *Deps) 1163 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1164 } 1165 }; 1166 1167 /// Utility class for getting and setting loop vectorizer hints in the form 1168 /// of loop metadata. 1169 /// This class keeps a number of loop annotations locally (as member variables) 1170 /// and can, upon request, write them back as metadata on the loop. It will 1171 /// initially scan the loop for existing metadata, and will update the local 1172 /// values based on information in the loop. 1173 /// We cannot write all values to metadata, as the mere presence of some info, 1174 /// for example 'force', means a decision has been made. So, we need to be 1175 /// careful NOT to add them if the user hasn't specifically asked so. 1176 class LoopVectorizeHints { 1177 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1178 1179 /// Hint - associates name and validation with the hint value. 1180 struct Hint { 1181 const char *Name; 1182 unsigned Value; // This may have to change for non-numeric values. 1183 HintKind Kind; 1184 1185 Hint(const char *Name, unsigned Value, HintKind Kind) 1186 : Name(Name), Value(Value), Kind(Kind) {} 1187 1188 bool validate(unsigned Val) { 1189 switch (Kind) { 1190 case HK_WIDTH: 1191 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1192 case HK_UNROLL: 1193 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1194 case HK_FORCE: 1195 return (Val <= 1); 1196 case HK_ISVECTORIZED: 1197 return (Val==0 || Val==1); 1198 } 1199 return false; 1200 } 1201 }; 1202 1203 /// Vectorization width. 1204 Hint Width; 1205 1206 /// Vectorization interleave factor. 1207 Hint Interleave; 1208 1209 /// Vectorization forced 1210 Hint Force; 1211 1212 /// Already Vectorized 1213 Hint IsVectorized; 1214 1215 /// Return the loop metadata prefix. 1216 static StringRef Prefix() { return "llvm.loop."; } 1217 1218 /// True if there is any unsafe math in the loop. 1219 bool PotentiallyUnsafe = false; 1220 1221 public: 1222 enum ForceKind { 1223 FK_Undefined = -1, ///< Not selected. 1224 FK_Disabled = 0, ///< Forcing disabled. 1225 FK_Enabled = 1, ///< Forcing enabled. 1226 }; 1227 1228 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1229 OptimizationRemarkEmitter &ORE) 1230 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1231 HK_WIDTH), 1232 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1233 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1234 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1235 // Populate values with existing loop metadata. 1236 getHintsFromMetadata(); 1237 1238 // force-vector-interleave overrides DisableInterleaving. 1239 if (VectorizerParams::isInterleaveForced()) 1240 Interleave.Value = VectorizerParams::VectorizationInterleave; 1241 1242 if (IsVectorized.Value != 1) 1243 // If the vectorization width and interleaving count are both 1 then 1244 // consider the loop to have been already vectorized because there's 1245 // nothing more that we can do. 1246 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1247 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1248 << "LV: Interleaving disabled by the pass manager\n"); 1249 } 1250 1251 /// Mark the loop L as already vectorized by setting the width to 1. 1252 void setAlreadyVectorized() { 1253 IsVectorized.Value = 1; 1254 Hint Hints[] = {IsVectorized}; 1255 writeHintsToMetadata(Hints); 1256 } 1257 1258 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1259 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1260 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1261 emitRemarkWithHints(); 1262 return false; 1263 } 1264 1265 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1266 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1267 emitRemarkWithHints(); 1268 return false; 1269 } 1270 1271 if (getIsVectorized() == 1) { 1272 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1273 // FIXME: Add interleave.disable metadata. This will allow 1274 // vectorize.disable to be used without disabling the pass and errors 1275 // to differentiate between disabled vectorization and a width of 1. 1276 ORE.emit([&]() { 1277 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1278 "AllDisabled", L->getStartLoc(), 1279 L->getHeader()) 1280 << "loop not vectorized: vectorization and interleaving are " 1281 "explicitly disabled, or the loop has already been " 1282 "vectorized"; 1283 }); 1284 return false; 1285 } 1286 1287 return true; 1288 } 1289 1290 /// Dumps all the hint information. 1291 void emitRemarkWithHints() const { 1292 using namespace ore; 1293 1294 ORE.emit([&]() { 1295 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1296 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1297 TheLoop->getStartLoc(), 1298 TheLoop->getHeader()) 1299 << "loop not vectorized: vectorization is explicitly disabled"; 1300 else { 1301 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1302 TheLoop->getStartLoc(), 1303 TheLoop->getHeader()); 1304 R << "loop not vectorized"; 1305 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1306 R << " (Force=" << NV("Force", true); 1307 if (Width.Value != 0) 1308 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1309 if (Interleave.Value != 0) 1310 R << ", Interleave Count=" 1311 << NV("InterleaveCount", Interleave.Value); 1312 R << ")"; 1313 } 1314 return R; 1315 } 1316 }); 1317 } 1318 1319 unsigned getWidth() const { return Width.Value; } 1320 unsigned getInterleave() const { return Interleave.Value; } 1321 unsigned getIsVectorized() const { return IsVectorized.Value; } 1322 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1323 1324 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1325 /// pass name to force the frontend to print the diagnostic. 1326 const char *vectorizeAnalysisPassName() const { 1327 if (getWidth() == 1) 1328 return LV_NAME; 1329 if (getForce() == LoopVectorizeHints::FK_Disabled) 1330 return LV_NAME; 1331 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1332 return LV_NAME; 1333 return OptimizationRemarkAnalysis::AlwaysPrint; 1334 } 1335 1336 bool allowReordering() const { 1337 // When enabling loop hints are provided we allow the vectorizer to change 1338 // the order of operations that is given by the scalar loop. This is not 1339 // enabled by default because can be unsafe or inefficient. For example, 1340 // reordering floating-point operations will change the way round-off 1341 // error accumulates in the loop. 1342 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1343 } 1344 1345 bool isPotentiallyUnsafe() const { 1346 // Avoid FP vectorization if the target is unsure about proper support. 1347 // This may be related to the SIMD unit in the target not handling 1348 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1349 // Otherwise, a sequence of vectorized loops, even without reduction, 1350 // could lead to different end results on the destination vectors. 1351 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1352 } 1353 1354 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1355 1356 private: 1357 /// Find hints specified in the loop metadata and update local values. 1358 void getHintsFromMetadata() { 1359 MDNode *LoopID = TheLoop->getLoopID(); 1360 if (!LoopID) 1361 return; 1362 1363 // First operand should refer to the loop id itself. 1364 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1365 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1366 1367 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1368 const MDString *S = nullptr; 1369 SmallVector<Metadata *, 4> Args; 1370 1371 // The expected hint is either a MDString or a MDNode with the first 1372 // operand a MDString. 1373 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1374 if (!MD || MD->getNumOperands() == 0) 1375 continue; 1376 S = dyn_cast<MDString>(MD->getOperand(0)); 1377 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1378 Args.push_back(MD->getOperand(i)); 1379 } else { 1380 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1381 assert(Args.size() == 0 && "too many arguments for MDString"); 1382 } 1383 1384 if (!S) 1385 continue; 1386 1387 // Check if the hint starts with the loop metadata prefix. 1388 StringRef Name = S->getString(); 1389 if (Args.size() == 1) 1390 setHint(Name, Args[0]); 1391 } 1392 } 1393 1394 /// Checks string hint with one operand and set value if valid. 1395 void setHint(StringRef Name, Metadata *Arg) { 1396 if (!Name.startswith(Prefix())) 1397 return; 1398 Name = Name.substr(Prefix().size(), StringRef::npos); 1399 1400 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1401 if (!C) 1402 return; 1403 unsigned Val = C->getZExtValue(); 1404 1405 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1406 for (auto H : Hints) { 1407 if (Name == H->Name) { 1408 if (H->validate(Val)) 1409 H->Value = Val; 1410 else 1411 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1412 break; 1413 } 1414 } 1415 } 1416 1417 /// Create a new hint from name / value pair. 1418 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1419 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1420 Metadata *MDs[] = {MDString::get(Context, Name), 1421 ConstantAsMetadata::get( 1422 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1423 return MDNode::get(Context, MDs); 1424 } 1425 1426 /// Matches metadata with hint name. 1427 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1428 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1429 if (!Name) 1430 return false; 1431 1432 for (auto H : HintTypes) 1433 if (Name->getString().endswith(H.Name)) 1434 return true; 1435 return false; 1436 } 1437 1438 /// Sets current hints into loop metadata, keeping other values intact. 1439 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1440 if (HintTypes.empty()) 1441 return; 1442 1443 // Reserve the first element to LoopID (see below). 1444 SmallVector<Metadata *, 4> MDs(1); 1445 // If the loop already has metadata, then ignore the existing operands. 1446 MDNode *LoopID = TheLoop->getLoopID(); 1447 if (LoopID) { 1448 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1449 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1450 // If node in update list, ignore old value. 1451 if (!matchesHintMetadataName(Node, HintTypes)) 1452 MDs.push_back(Node); 1453 } 1454 } 1455 1456 // Now, add the missing hints. 1457 for (auto H : HintTypes) 1458 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1459 1460 // Replace current metadata node with new one. 1461 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1462 MDNode *NewLoopID = MDNode::get(Context, MDs); 1463 // Set operand 0 to refer to the loop id itself. 1464 NewLoopID->replaceOperandWith(0, NewLoopID); 1465 1466 TheLoop->setLoopID(NewLoopID); 1467 } 1468 1469 /// The loop these hints belong to. 1470 const Loop *TheLoop; 1471 1472 /// Interface to emit optimization remarks. 1473 OptimizationRemarkEmitter &ORE; 1474 }; 1475 1476 } // end anonymous namespace 1477 1478 static void emitMissedWarning(Function *F, Loop *L, 1479 const LoopVectorizeHints &LH, 1480 OptimizationRemarkEmitter *ORE) { 1481 LH.emitRemarkWithHints(); 1482 1483 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1484 if (LH.getWidth() != 1) 1485 ORE->emit(DiagnosticInfoOptimizationFailure( 1486 DEBUG_TYPE, "FailedRequestedVectorization", 1487 L->getStartLoc(), L->getHeader()) 1488 << "loop not vectorized: " 1489 << "failed explicitly specified loop vectorization"); 1490 else if (LH.getInterleave() != 1) 1491 ORE->emit(DiagnosticInfoOptimizationFailure( 1492 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1493 L->getHeader()) 1494 << "loop not interleaved: " 1495 << "failed explicitly specified loop interleaving"); 1496 } 1497 } 1498 1499 namespace llvm { 1500 1501 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1502 /// to what vectorization factor. 1503 /// This class does not look at the profitability of vectorization, only the 1504 /// legality. This class has two main kinds of checks: 1505 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1506 /// will change the order of memory accesses in a way that will change the 1507 /// correctness of the program. 1508 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1509 /// checks for a number of different conditions, such as the availability of a 1510 /// single induction variable, that all types are supported and vectorize-able, 1511 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1512 /// This class is also used by InnerLoopVectorizer for identifying 1513 /// induction variable and the different reduction variables. 1514 class LoopVectorizationLegality { 1515 public: 1516 LoopVectorizationLegality( 1517 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1518 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1519 const TargetTransformInfo *TTI, 1520 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1521 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1522 LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC) 1523 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1524 ORE(ORE), Requirements(R), Hints(H), DB(DB), AC(AC) {} 1525 1526 /// ReductionList contains the reduction descriptors for all 1527 /// of the reductions that were found in the loop. 1528 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1529 1530 /// InductionList saves induction variables and maps them to the 1531 /// induction descriptor. 1532 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1533 1534 /// RecurrenceSet contains the phi nodes that are recurrences other than 1535 /// inductions and reductions. 1536 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1537 1538 /// Returns true if it is legal to vectorize this loop. 1539 /// This does not mean that it is profitable to vectorize this 1540 /// loop, only that it is legal to do so. 1541 bool canVectorize(); 1542 1543 /// Returns the primary induction variable. 1544 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1545 1546 /// Returns the reduction variables found in the loop. 1547 ReductionList *getReductionVars() { return &Reductions; } 1548 1549 /// Returns the induction variables found in the loop. 1550 InductionList *getInductionVars() { return &Inductions; } 1551 1552 /// Return the first-order recurrences found in the loop. 1553 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1554 1555 /// Return the set of instructions to sink to handle first-order recurrences. 1556 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1557 1558 /// Returns the widest induction type. 1559 Type *getWidestInductionType() { return WidestIndTy; } 1560 1561 /// Returns True if V is a Phi node of an induction variable in this loop. 1562 bool isInductionPhi(const Value *V); 1563 1564 /// Returns True if V is a cast that is part of an induction def-use chain, 1565 /// and had been proven to be redundant under a runtime guard (in other 1566 /// words, the cast has the same SCEV expression as the induction phi). 1567 bool isCastedInductionVariable(const Value *V); 1568 1569 /// Returns True if V can be considered as an induction variable in this 1570 /// loop. V can be the induction phi, or some redundant cast in the def-use 1571 /// chain of the inducion phi. 1572 bool isInductionVariable(const Value *V); 1573 1574 /// Returns True if PN is a reduction variable in this loop. 1575 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1576 1577 /// Returns True if Phi is a first-order recurrence in this loop. 1578 bool isFirstOrderRecurrence(const PHINode *Phi); 1579 1580 /// Return true if the block BB needs to be predicated in order for the loop 1581 /// to be vectorized. 1582 bool blockNeedsPredication(BasicBlock *BB); 1583 1584 /// Check if this pointer is consecutive when vectorizing. This happens 1585 /// when the last index of the GEP is the induction variable, or that the 1586 /// pointer itself is an induction variable. 1587 /// This check allows us to vectorize A[idx] into a wide load/store. 1588 /// Returns: 1589 /// 0 - Stride is unknown or non-consecutive. 1590 /// 1 - Address is consecutive. 1591 /// -1 - Address is consecutive, and decreasing. 1592 /// NOTE: This method must only be used before modifying the original scalar 1593 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1594 int isConsecutivePtr(Value *Ptr); 1595 1596 /// Returns true if the value V is uniform within the loop. 1597 bool isUniform(Value *V); 1598 1599 /// Returns the information that we collected about runtime memory check. 1600 const RuntimePointerChecking *getRuntimePointerChecking() const { 1601 return LAI->getRuntimePointerChecking(); 1602 } 1603 1604 const LoopAccessInfo *getLAI() const { return LAI; } 1605 1606 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1607 1608 uint64_t getMaxSafeRegisterWidth() const { 1609 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1610 } 1611 1612 bool hasStride(Value *V) { return LAI->hasStride(V); } 1613 1614 /// Returns true if vector representation of the instruction \p I 1615 /// requires mask. 1616 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1617 1618 unsigned getNumStores() const { return LAI->getNumStores(); } 1619 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1620 1621 // Returns true if the NoNaN attribute is set on the function. 1622 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1623 1624 private: 1625 /// Check if a single basic block loop is vectorizable. 1626 /// At this point we know that this is a loop with a constant trip count 1627 /// and we only need to check individual instructions. 1628 bool canVectorizeInstrs(); 1629 1630 /// When we vectorize loops we may change the order in which 1631 /// we read and write from memory. This method checks if it is 1632 /// legal to vectorize the code, considering only memory constrains. 1633 /// Returns true if the loop is vectorizable 1634 bool canVectorizeMemory(); 1635 1636 /// Return true if we can vectorize this loop using the IF-conversion 1637 /// transformation. 1638 bool canVectorizeWithIfConvert(); 1639 1640 /// Return true if all of the instructions in the block can be speculatively 1641 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1642 /// and we know that we can read from them without segfault. 1643 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1644 1645 /// Updates the vectorization state by adding \p Phi to the inductions list. 1646 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1647 /// better choice for the main induction than the existing one. 1648 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1649 SmallPtrSetImpl<Value *> &AllowedExit); 1650 1651 /// Create an analysis remark that explains why vectorization failed 1652 /// 1653 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1654 /// an instruction that prevents vectorization. Otherwise the loop is used 1655 /// for the location of the remark. \return the remark object that can be 1656 /// streamed to. 1657 OptimizationRemarkAnalysis 1658 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1659 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1660 RemarkName, TheLoop, I); 1661 } 1662 1663 /// \brief If an access has a symbolic strides, this maps the pointer value to 1664 /// the stride symbol. 1665 const ValueToValueMap *getSymbolicStrides() { 1666 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1667 // it's collected. This happens from canVectorizeWithIfConvert, when the 1668 // pointer is checked to reference consecutive elements suitable for a 1669 // masked access. 1670 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1671 } 1672 1673 /// The loop that we evaluate. 1674 Loop *TheLoop; 1675 1676 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1677 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1678 /// of existing SCEV assumptions. The analysis will also add a minimal set 1679 /// of new predicates if this is required to enable vectorization and 1680 /// unrolling. 1681 PredicatedScalarEvolution &PSE; 1682 1683 /// Target Library Info. 1684 TargetLibraryInfo *TLI; 1685 1686 /// Target Transform Info 1687 const TargetTransformInfo *TTI; 1688 1689 /// Dominator Tree. 1690 DominatorTree *DT; 1691 1692 // LoopAccess analysis. 1693 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1694 1695 // And the loop-accesses info corresponding to this loop. This pointer is 1696 // null until canVectorizeMemory sets it up. 1697 const LoopAccessInfo *LAI = nullptr; 1698 1699 /// Interface to emit optimization remarks. 1700 OptimizationRemarkEmitter *ORE; 1701 1702 // --- vectorization state --- // 1703 1704 /// Holds the primary induction variable. This is the counter of the 1705 /// loop. 1706 PHINode *PrimaryInduction = nullptr; 1707 1708 /// Holds the reduction variables. 1709 ReductionList Reductions; 1710 1711 /// Holds all of the induction variables that we found in the loop. 1712 /// Notice that inductions don't need to start at zero and that induction 1713 /// variables can be pointers. 1714 InductionList Inductions; 1715 1716 /// Holds all the casts that participate in the update chain of the induction 1717 /// variables, and that have been proven to be redundant (possibly under a 1718 /// runtime guard). These casts can be ignored when creating the vectorized 1719 /// loop body. 1720 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1721 1722 /// Holds the phi nodes that are first-order recurrences. 1723 RecurrenceSet FirstOrderRecurrences; 1724 1725 /// Holds instructions that need to sink past other instructions to handle 1726 /// first-order recurrences. 1727 DenseMap<Instruction *, Instruction *> SinkAfter; 1728 1729 /// Holds the widest induction type encountered. 1730 Type *WidestIndTy = nullptr; 1731 1732 /// Allowed outside users. This holds the induction and reduction 1733 /// vars which can be accessed from outside the loop. 1734 SmallPtrSet<Value *, 4> AllowedExit; 1735 1736 /// Can we assume the absence of NaNs. 1737 bool HasFunNoNaNAttr = false; 1738 1739 /// Vectorization requirements that will go through late-evaluation. 1740 LoopVectorizationRequirements *Requirements; 1741 1742 /// Used to emit an analysis of any legality issues. 1743 LoopVectorizeHints *Hints; 1744 1745 /// The demanded bits analsyis is used to compute the minimum type size in 1746 /// which a reduction can be computed. 1747 DemandedBits *DB; 1748 1749 /// The assumption cache analysis is used to compute the minimum type size in 1750 /// which a reduction can be computed. 1751 AssumptionCache *AC; 1752 1753 /// While vectorizing these instructions we have to generate a 1754 /// call to the appropriate masked intrinsic 1755 SmallPtrSet<const Instruction *, 8> MaskedOp; 1756 }; 1757 1758 /// LoopVectorizationCostModel - estimates the expected speedups due to 1759 /// vectorization. 1760 /// In many cases vectorization is not profitable. This can happen because of 1761 /// a number of reasons. In this class we mainly attempt to predict the 1762 /// expected speedup/slowdowns due to the supported instruction set. We use the 1763 /// TargetTransformInfo to query the different backends for the cost of 1764 /// different operations. 1765 class LoopVectorizationCostModel { 1766 public: 1767 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1768 LoopInfo *LI, LoopVectorizationLegality *Legal, 1769 const TargetTransformInfo &TTI, 1770 const TargetLibraryInfo *TLI, DemandedBits *DB, 1771 AssumptionCache *AC, 1772 OptimizationRemarkEmitter *ORE, const Function *F, 1773 const LoopVectorizeHints *Hints, 1774 InterleavedAccessInfo &IAI) 1775 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1776 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 1777 1778 /// \return An upper bound for the vectorization factor, or None if 1779 /// vectorization should be avoided up front. 1780 Optional<unsigned> computeMaxVF(bool OptForSize); 1781 1782 /// \return The most profitable vectorization factor and the cost of that VF. 1783 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1784 /// then this vectorization factor will be selected if vectorization is 1785 /// possible. 1786 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1787 1788 /// Setup cost-based decisions for user vectorization factor. 1789 void selectUserVectorizationFactor(unsigned UserVF) { 1790 collectUniformsAndScalars(UserVF); 1791 collectInstsToScalarize(UserVF); 1792 } 1793 1794 /// \return The size (in bits) of the smallest and widest types in the code 1795 /// that needs to be vectorized. We ignore values that remain scalar such as 1796 /// 64 bit loop indices. 1797 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1798 1799 /// \return The desired interleave count. 1800 /// If interleave count has been specified by metadata it will be returned. 1801 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1802 /// are the selected vectorization factor and the cost of the selected VF. 1803 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1804 unsigned LoopCost); 1805 1806 /// Memory access instruction may be vectorized in more than one way. 1807 /// Form of instruction after vectorization depends on cost. 1808 /// This function takes cost-based decisions for Load/Store instructions 1809 /// and collects them in a map. This decisions map is used for building 1810 /// the lists of loop-uniform and loop-scalar instructions. 1811 /// The calculated cost is saved with widening decision in order to 1812 /// avoid redundant calculations. 1813 void setCostBasedWideningDecision(unsigned VF); 1814 1815 /// \brief A struct that represents some properties of the register usage 1816 /// of a loop. 1817 struct RegisterUsage { 1818 /// Holds the number of loop invariant values that are used in the loop. 1819 unsigned LoopInvariantRegs; 1820 1821 /// Holds the maximum number of concurrent live intervals in the loop. 1822 unsigned MaxLocalUsers; 1823 }; 1824 1825 /// \return Returns information about the register usages of the loop for the 1826 /// given vectorization factors. 1827 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1828 1829 /// Collect values we want to ignore in the cost model. 1830 void collectValuesToIgnore(); 1831 1832 /// \returns The smallest bitwidth each instruction can be represented with. 1833 /// The vector equivalents of these instructions should be truncated to this 1834 /// type. 1835 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1836 return MinBWs; 1837 } 1838 1839 /// \returns True if it is more profitable to scalarize instruction \p I for 1840 /// vectorization factor \p VF. 1841 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1842 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1843 auto Scalars = InstsToScalarize.find(VF); 1844 assert(Scalars != InstsToScalarize.end() && 1845 "VF not yet analyzed for scalarization profitability"); 1846 return Scalars->second.count(I); 1847 } 1848 1849 /// Returns true if \p I is known to be uniform after vectorization. 1850 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1851 if (VF == 1) 1852 return true; 1853 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1854 auto UniformsPerVF = Uniforms.find(VF); 1855 return UniformsPerVF->second.count(I); 1856 } 1857 1858 /// Returns true if \p I is known to be scalar after vectorization. 1859 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1860 if (VF == 1) 1861 return true; 1862 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1863 auto ScalarsPerVF = Scalars.find(VF); 1864 return ScalarsPerVF->second.count(I); 1865 } 1866 1867 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1868 /// for vectorization factor \p VF. 1869 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1870 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1871 !isScalarAfterVectorization(I, VF); 1872 } 1873 1874 /// Decision that was taken during cost calculation for memory instruction. 1875 enum InstWidening { 1876 CM_Unknown, 1877 CM_Widen, // For consecutive accesses with stride +1. 1878 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1879 CM_Interleave, 1880 CM_GatherScatter, 1881 CM_Scalarize 1882 }; 1883 1884 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1885 /// instruction \p I and vector width \p VF. 1886 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1887 unsigned Cost) { 1888 assert(VF >= 2 && "Expected VF >=2"); 1889 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1890 } 1891 1892 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1893 /// interleaving group \p Grp and vector width \p VF. 1894 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1895 InstWidening W, unsigned Cost) { 1896 assert(VF >= 2 && "Expected VF >=2"); 1897 /// Broadcast this decicion to all instructions inside the group. 1898 /// But the cost will be assigned to one instruction only. 1899 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1900 if (auto *I = Grp->getMember(i)) { 1901 if (Grp->getInsertPos() == I) 1902 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1903 else 1904 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1905 } 1906 } 1907 } 1908 1909 /// Return the cost model decision for the given instruction \p I and vector 1910 /// width \p VF. Return CM_Unknown if this instruction did not pass 1911 /// through the cost modeling. 1912 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1913 assert(VF >= 2 && "Expected VF >=2"); 1914 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1915 auto Itr = WideningDecisions.find(InstOnVF); 1916 if (Itr == WideningDecisions.end()) 1917 return CM_Unknown; 1918 return Itr->second.first; 1919 } 1920 1921 /// Return the vectorization cost for the given instruction \p I and vector 1922 /// width \p VF. 1923 unsigned getWideningCost(Instruction *I, unsigned VF) { 1924 assert(VF >= 2 && "Expected VF >=2"); 1925 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1926 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1927 return WideningDecisions[InstOnVF].second; 1928 } 1929 1930 /// Return True if instruction \p I is an optimizable truncate whose operand 1931 /// is an induction variable. Such a truncate will be removed by adding a new 1932 /// induction variable with the destination type. 1933 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1934 // If the instruction is not a truncate, return false. 1935 auto *Trunc = dyn_cast<TruncInst>(I); 1936 if (!Trunc) 1937 return false; 1938 1939 // Get the source and destination types of the truncate. 1940 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1941 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1942 1943 // If the truncate is free for the given types, return false. Replacing a 1944 // free truncate with an induction variable would add an induction variable 1945 // update instruction to each iteration of the loop. We exclude from this 1946 // check the primary induction variable since it will need an update 1947 // instruction regardless. 1948 Value *Op = Trunc->getOperand(0); 1949 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1950 return false; 1951 1952 // If the truncated value is not an induction variable, return false. 1953 return Legal->isInductionPhi(Op); 1954 } 1955 1956 /// Collects the instructions to scalarize for each predicated instruction in 1957 /// the loop. 1958 void collectInstsToScalarize(unsigned VF); 1959 1960 /// Collect Uniform and Scalar values for the given \p VF. 1961 /// The sets depend on CM decision for Load/Store instructions 1962 /// that may be vectorized as interleave, gather-scatter or scalarized. 1963 void collectUniformsAndScalars(unsigned VF) { 1964 // Do the analysis once. 1965 if (VF == 1 || Uniforms.count(VF)) 1966 return; 1967 setCostBasedWideningDecision(VF); 1968 collectLoopUniforms(VF); 1969 collectLoopScalars(VF); 1970 } 1971 1972 /// Returns true if the target machine supports masked store operation 1973 /// for the given \p DataType and kind of access to \p Ptr. 1974 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1975 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1976 } 1977 1978 /// Returns true if the target machine supports masked load operation 1979 /// for the given \p DataType and kind of access to \p Ptr. 1980 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1981 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1982 } 1983 1984 /// Returns true if the target machine supports masked scatter operation 1985 /// for the given \p DataType. 1986 bool isLegalMaskedScatter(Type *DataType) { 1987 return TTI.isLegalMaskedScatter(DataType); 1988 } 1989 1990 /// Returns true if the target machine supports masked gather operation 1991 /// for the given \p DataType. 1992 bool isLegalMaskedGather(Type *DataType) { 1993 return TTI.isLegalMaskedGather(DataType); 1994 } 1995 1996 /// Returns true if the target machine can represent \p V as a masked gather 1997 /// or scatter operation. 1998 bool isLegalGatherOrScatter(Value *V) { 1999 bool LI = isa<LoadInst>(V); 2000 bool SI = isa<StoreInst>(V); 2001 if (!LI && !SI) 2002 return false; 2003 auto *Ty = getMemInstValueType(V); 2004 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 2005 } 2006 2007 /// Returns true if \p I is an instruction that will be scalarized with 2008 /// predication. Such instructions include conditional stores and 2009 /// instructions that may divide by zero. 2010 bool isScalarWithPredication(Instruction *I); 2011 2012 /// Returns true if \p I is a memory instruction with consecutive memory 2013 /// access that can be widened. 2014 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 2015 2016 /// \brief Check if \p Instr belongs to any interleaved access group. 2017 bool isAccessInterleaved(Instruction *Instr) { 2018 return InterleaveInfo.isInterleaved(Instr); 2019 } 2020 2021 /// \brief Get the interleaved access group that \p Instr belongs to. 2022 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 2023 return InterleaveInfo.getInterleaveGroup(Instr); 2024 } 2025 2026 /// \brief Returns true if an interleaved group requires a scalar iteration 2027 /// to handle accesses with gaps. 2028 bool requiresScalarEpilogue() const { 2029 return InterleaveInfo.requiresScalarEpilogue(); 2030 } 2031 2032 private: 2033 unsigned NumPredStores = 0; 2034 2035 /// \return An upper bound for the vectorization factor, larger than zero. 2036 /// One is returned if vectorization should best be avoided due to cost. 2037 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2038 2039 /// The vectorization cost is a combination of the cost itself and a boolean 2040 /// indicating whether any of the contributing operations will actually 2041 /// operate on 2042 /// vector values after type legalization in the backend. If this latter value 2043 /// is 2044 /// false, then all operations will be scalarized (i.e. no vectorization has 2045 /// actually taken place). 2046 using VectorizationCostTy = std::pair<unsigned, bool>; 2047 2048 /// Returns the expected execution cost. The unit of the cost does 2049 /// not matter because we use the 'cost' units to compare different 2050 /// vector widths. The cost that is returned is *not* normalized by 2051 /// the factor width. 2052 VectorizationCostTy expectedCost(unsigned VF); 2053 2054 /// Returns the execution time cost of an instruction for a given vector 2055 /// width. Vector width of one means scalar. 2056 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2057 2058 /// The cost-computation logic from getInstructionCost which provides 2059 /// the vector type as an output parameter. 2060 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2061 2062 /// Calculate vectorization cost of memory instruction \p I. 2063 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2064 2065 /// The cost computation for scalarized memory instruction. 2066 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2067 2068 /// The cost computation for interleaving group of memory instructions. 2069 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2070 2071 /// The cost computation for Gather/Scatter instruction. 2072 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2073 2074 /// The cost computation for widening instruction \p I with consecutive 2075 /// memory access. 2076 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2077 2078 /// The cost calculation for Load instruction \p I with uniform pointer - 2079 /// scalar load + broadcast. 2080 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2081 2082 /// Returns whether the instruction is a load or store and will be a emitted 2083 /// as a vector operation. 2084 bool isConsecutiveLoadOrStore(Instruction *I); 2085 2086 /// Returns true if an artificially high cost for emulated masked memrefs 2087 /// should be used. 2088 bool useEmulatedMaskMemRefHack(Instruction *I); 2089 2090 /// Create an analysis remark that explains why vectorization failed 2091 /// 2092 /// \p RemarkName is the identifier for the remark. \return the remark object 2093 /// that can be streamed to. 2094 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2095 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2096 RemarkName, TheLoop); 2097 } 2098 2099 /// Map of scalar integer values to the smallest bitwidth they can be legally 2100 /// represented as. The vector equivalents of these values should be truncated 2101 /// to this type. 2102 MapVector<Instruction *, uint64_t> MinBWs; 2103 2104 /// A type representing the costs for instructions if they were to be 2105 /// scalarized rather than vectorized. The entries are Instruction-Cost 2106 /// pairs. 2107 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2108 2109 /// A set containing all BasicBlocks that are known to present after 2110 /// vectorization as a predicated block. 2111 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2112 2113 /// A map holding scalar costs for different vectorization factors. The 2114 /// presence of a cost for an instruction in the mapping indicates that the 2115 /// instruction will be scalarized when vectorizing with the associated 2116 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2117 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2118 2119 /// Holds the instructions known to be uniform after vectorization. 2120 /// The data is collected per VF. 2121 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2122 2123 /// Holds the instructions known to be scalar after vectorization. 2124 /// The data is collected per VF. 2125 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2126 2127 /// Holds the instructions (address computations) that are forced to be 2128 /// scalarized. 2129 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2130 2131 /// Returns the expected difference in cost from scalarizing the expression 2132 /// feeding a predicated instruction \p PredInst. The instructions to 2133 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2134 /// non-negative return value implies the expression will be scalarized. 2135 /// Currently, only single-use chains are considered for scalarization. 2136 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2137 unsigned VF); 2138 2139 /// Collect the instructions that are uniform after vectorization. An 2140 /// instruction is uniform if we represent it with a single scalar value in 2141 /// the vectorized loop corresponding to each vector iteration. Examples of 2142 /// uniform instructions include pointer operands of consecutive or 2143 /// interleaved memory accesses. Note that although uniformity implies an 2144 /// instruction will be scalar, the reverse is not true. In general, a 2145 /// scalarized instruction will be represented by VF scalar values in the 2146 /// vectorized loop, each corresponding to an iteration of the original 2147 /// scalar loop. 2148 void collectLoopUniforms(unsigned VF); 2149 2150 /// Collect the instructions that are scalar after vectorization. An 2151 /// instruction is scalar if it is known to be uniform or will be scalarized 2152 /// during vectorization. Non-uniform scalarized instructions will be 2153 /// represented by VF values in the vectorized loop, each corresponding to an 2154 /// iteration of the original scalar loop. 2155 void collectLoopScalars(unsigned VF); 2156 2157 /// Keeps cost model vectorization decision and cost for instructions. 2158 /// Right now it is used for memory instructions only. 2159 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2160 std::pair<InstWidening, unsigned>>; 2161 2162 DecisionList WideningDecisions; 2163 2164 public: 2165 /// The loop that we evaluate. 2166 Loop *TheLoop; 2167 2168 /// Predicated scalar evolution analysis. 2169 PredicatedScalarEvolution &PSE; 2170 2171 /// Loop Info analysis. 2172 LoopInfo *LI; 2173 2174 /// Vectorization legality. 2175 LoopVectorizationLegality *Legal; 2176 2177 /// Vector target information. 2178 const TargetTransformInfo &TTI; 2179 2180 /// Target Library Info. 2181 const TargetLibraryInfo *TLI; 2182 2183 /// Demanded bits analysis. 2184 DemandedBits *DB; 2185 2186 /// Assumption cache. 2187 AssumptionCache *AC; 2188 2189 /// Interface to emit optimization remarks. 2190 OptimizationRemarkEmitter *ORE; 2191 2192 const Function *TheFunction; 2193 2194 /// Loop Vectorize Hint. 2195 const LoopVectorizeHints *Hints; 2196 2197 /// The interleave access information contains groups of interleaved accesses 2198 /// with the same stride and close to each other. 2199 InterleavedAccessInfo &InterleaveInfo; 2200 2201 /// Values to ignore in the cost model. 2202 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2203 2204 /// Values to ignore in the cost model when VF > 1. 2205 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2206 }; 2207 2208 } // end namespace llvm 2209 2210 namespace { 2211 2212 /// \brief This holds vectorization requirements that must be verified late in 2213 /// the process. The requirements are set by legalize and costmodel. Once 2214 /// vectorization has been determined to be possible and profitable the 2215 /// requirements can be verified by looking for metadata or compiler options. 2216 /// For example, some loops require FP commutativity which is only allowed if 2217 /// vectorization is explicitly specified or if the fast-math compiler option 2218 /// has been provided. 2219 /// Late evaluation of these requirements allows helpful diagnostics to be 2220 /// composed that tells the user what need to be done to vectorize the loop. For 2221 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2222 /// evaluation should be used only when diagnostics can generated that can be 2223 /// followed by a non-expert user. 2224 class LoopVectorizationRequirements { 2225 public: 2226 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2227 2228 void addUnsafeAlgebraInst(Instruction *I) { 2229 // First unsafe algebra instruction. 2230 if (!UnsafeAlgebraInst) 2231 UnsafeAlgebraInst = I; 2232 } 2233 2234 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2235 2236 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2237 const char *PassName = Hints.vectorizeAnalysisPassName(); 2238 bool Failed = false; 2239 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2240 ORE.emit([&]() { 2241 return OptimizationRemarkAnalysisFPCommute( 2242 PassName, "CantReorderFPOps", 2243 UnsafeAlgebraInst->getDebugLoc(), 2244 UnsafeAlgebraInst->getParent()) 2245 << "loop not vectorized: cannot prove it is safe to reorder " 2246 "floating-point operations"; 2247 }); 2248 Failed = true; 2249 } 2250 2251 // Test if runtime memcheck thresholds are exceeded. 2252 bool PragmaThresholdReached = 2253 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2254 bool ThresholdReached = 2255 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2256 if ((ThresholdReached && !Hints.allowReordering()) || 2257 PragmaThresholdReached) { 2258 ORE.emit([&]() { 2259 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2260 L->getStartLoc(), 2261 L->getHeader()) 2262 << "loop not vectorized: cannot prove it is safe to reorder " 2263 "memory operations"; 2264 }); 2265 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2266 Failed = true; 2267 } 2268 2269 return Failed; 2270 } 2271 2272 private: 2273 unsigned NumRuntimePointerChecks = 0; 2274 Instruction *UnsafeAlgebraInst = nullptr; 2275 2276 /// Interface to emit optimization remarks. 2277 OptimizationRemarkEmitter &ORE; 2278 }; 2279 2280 } // end anonymous namespace 2281 2282 static void addAcyclicInnerLoop(Loop &L, LoopInfo &LI, 2283 SmallVectorImpl<Loop *> &V) { 2284 if (L.empty()) { 2285 LoopBlocksRPO RPOT(&L); 2286 RPOT.perform(&LI); 2287 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2288 V.push_back(&L); 2289 return; 2290 } 2291 for (Loop *InnerL : L) 2292 addAcyclicInnerLoop(*InnerL, LI, V); 2293 } 2294 2295 namespace { 2296 2297 /// The LoopVectorize Pass. 2298 struct LoopVectorize : public FunctionPass { 2299 /// Pass identification, replacement for typeid 2300 static char ID; 2301 2302 LoopVectorizePass Impl; 2303 2304 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2305 : FunctionPass(ID) { 2306 Impl.DisableUnrolling = NoUnrolling; 2307 Impl.AlwaysVectorize = AlwaysVectorize; 2308 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2309 } 2310 2311 bool runOnFunction(Function &F) override { 2312 if (skipFunction(F)) 2313 return false; 2314 2315 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2316 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2317 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2318 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2319 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2320 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2321 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2322 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2323 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2324 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2325 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2326 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2327 2328 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2329 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2330 2331 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2332 GetLAA, *ORE); 2333 } 2334 2335 void getAnalysisUsage(AnalysisUsage &AU) const override { 2336 AU.addRequired<AssumptionCacheTracker>(); 2337 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2338 AU.addRequired<DominatorTreeWrapperPass>(); 2339 AU.addRequired<LoopInfoWrapperPass>(); 2340 AU.addRequired<ScalarEvolutionWrapperPass>(); 2341 AU.addRequired<TargetTransformInfoWrapperPass>(); 2342 AU.addRequired<AAResultsWrapperPass>(); 2343 AU.addRequired<LoopAccessLegacyAnalysis>(); 2344 AU.addRequired<DemandedBitsWrapperPass>(); 2345 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2346 AU.addPreserved<LoopInfoWrapperPass>(); 2347 AU.addPreserved<DominatorTreeWrapperPass>(); 2348 AU.addPreserved<BasicAAWrapperPass>(); 2349 AU.addPreserved<GlobalsAAWrapperPass>(); 2350 } 2351 }; 2352 2353 } // end anonymous namespace 2354 2355 //===----------------------------------------------------------------------===// 2356 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2357 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2358 //===----------------------------------------------------------------------===// 2359 2360 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2361 // We need to place the broadcast of invariant variables outside the loop. 2362 Instruction *Instr = dyn_cast<Instruction>(V); 2363 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2364 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2365 2366 // Place the code for broadcasting invariant variables in the new preheader. 2367 IRBuilder<>::InsertPointGuard Guard(Builder); 2368 if (Invariant) 2369 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2370 2371 // Broadcast the scalar into all locations in the vector. 2372 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2373 2374 return Shuf; 2375 } 2376 2377 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2378 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2379 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2380 "Expected either an induction phi-node or a truncate of it!"); 2381 Value *Start = II.getStartValue(); 2382 2383 // Construct the initial value of the vector IV in the vector loop preheader 2384 auto CurrIP = Builder.saveIP(); 2385 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2386 if (isa<TruncInst>(EntryVal)) { 2387 assert(Start->getType()->isIntegerTy() && 2388 "Truncation requires an integer type"); 2389 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2390 Step = Builder.CreateTrunc(Step, TruncType); 2391 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2392 } 2393 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2394 Value *SteppedStart = 2395 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2396 2397 // We create vector phi nodes for both integer and floating-point induction 2398 // variables. Here, we determine the kind of arithmetic we will perform. 2399 Instruction::BinaryOps AddOp; 2400 Instruction::BinaryOps MulOp; 2401 if (Step->getType()->isIntegerTy()) { 2402 AddOp = Instruction::Add; 2403 MulOp = Instruction::Mul; 2404 } else { 2405 AddOp = II.getInductionOpcode(); 2406 MulOp = Instruction::FMul; 2407 } 2408 2409 // Multiply the vectorization factor by the step using integer or 2410 // floating-point arithmetic as appropriate. 2411 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2412 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2413 2414 // Create a vector splat to use in the induction update. 2415 // 2416 // FIXME: If the step is non-constant, we create the vector splat with 2417 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2418 // handle a constant vector splat. 2419 Value *SplatVF = isa<Constant>(Mul) 2420 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2421 : Builder.CreateVectorSplat(VF, Mul); 2422 Builder.restoreIP(CurrIP); 2423 2424 // We may need to add the step a number of times, depending on the unroll 2425 // factor. The last of those goes into the PHI. 2426 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2427 &*LoopVectorBody->getFirstInsertionPt()); 2428 Instruction *LastInduction = VecInd; 2429 for (unsigned Part = 0; Part < UF; ++Part) { 2430 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2431 2432 if (isa<TruncInst>(EntryVal)) 2433 addMetadata(LastInduction, EntryVal); 2434 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 2435 2436 LastInduction = cast<Instruction>(addFastMathFlag( 2437 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2438 } 2439 2440 // Move the last step to the end of the latch block. This ensures consistent 2441 // placement of all induction updates. 2442 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2443 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2444 auto *ICmp = cast<Instruction>(Br->getCondition()); 2445 LastInduction->moveBefore(ICmp); 2446 LastInduction->setName("vec.ind.next"); 2447 2448 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2449 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2450 } 2451 2452 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2453 return Cost->isScalarAfterVectorization(I, VF) || 2454 Cost->isProfitableToScalarize(I, VF); 2455 } 2456 2457 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2458 if (shouldScalarizeInstruction(IV)) 2459 return true; 2460 auto isScalarInst = [&](User *U) -> bool { 2461 auto *I = cast<Instruction>(U); 2462 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2463 }; 2464 return llvm::any_of(IV->users(), isScalarInst); 2465 } 2466 2467 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2468 const InductionDescriptor &ID, const Instruction *EntryVal, 2469 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 2470 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2471 "Expected either an induction phi-node or a truncate of it!"); 2472 2473 // This induction variable is not the phi from the original loop but the 2474 // newly-created IV based on the proof that casted Phi is equal to the 2475 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2476 // re-uses the same InductionDescriptor that original IV uses but we don't 2477 // have to do any recording in this case - that is done when original IV is 2478 // processed. 2479 if (isa<TruncInst>(EntryVal)) 2480 return; 2481 2482 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2483 if (Casts.empty()) 2484 return; 2485 // Only the first Cast instruction in the Casts vector is of interest. 2486 // The rest of the Casts (if exist) have no uses outside the 2487 // induction update chain itself. 2488 Instruction *CastInst = *Casts.begin(); 2489 if (Lane < UINT_MAX) 2490 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2491 else 2492 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2493 } 2494 2495 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2496 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2497 "Primary induction variable must have an integer type"); 2498 2499 auto II = Legal->getInductionVars()->find(IV); 2500 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2501 2502 auto ID = II->second; 2503 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2504 2505 // The scalar value to broadcast. This will be derived from the canonical 2506 // induction variable. 2507 Value *ScalarIV = nullptr; 2508 2509 // The value from the original loop to which we are mapping the new induction 2510 // variable. 2511 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2512 2513 // True if we have vectorized the induction variable. 2514 auto VectorizedIV = false; 2515 2516 // Determine if we want a scalar version of the induction variable. This is 2517 // true if the induction variable itself is not widened, or if it has at 2518 // least one user in the loop that is not widened. 2519 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2520 2521 // Generate code for the induction step. Note that induction steps are 2522 // required to be loop-invariant 2523 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2524 "Induction step should be loop invariant"); 2525 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2526 Value *Step = nullptr; 2527 if (PSE.getSE()->isSCEVable(IV->getType())) { 2528 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2529 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2530 LoopVectorPreHeader->getTerminator()); 2531 } else { 2532 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2533 } 2534 2535 // Try to create a new independent vector induction variable. If we can't 2536 // create the phi node, we will splat the scalar induction variable in each 2537 // loop iteration. 2538 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2539 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2540 VectorizedIV = true; 2541 } 2542 2543 // If we haven't yet vectorized the induction variable, or if we will create 2544 // a scalar one, we need to define the scalar induction variable and step 2545 // values. If we were given a truncation type, truncate the canonical 2546 // induction variable and step. Otherwise, derive these values from the 2547 // induction descriptor. 2548 if (!VectorizedIV || NeedsScalarIV) { 2549 ScalarIV = Induction; 2550 if (IV != OldInduction) { 2551 ScalarIV = IV->getType()->isIntegerTy() 2552 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2553 : Builder.CreateCast(Instruction::SIToFP, Induction, 2554 IV->getType()); 2555 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2556 ScalarIV->setName("offset.idx"); 2557 } 2558 if (Trunc) { 2559 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2560 assert(Step->getType()->isIntegerTy() && 2561 "Truncation requires an integer step"); 2562 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2563 Step = Builder.CreateTrunc(Step, TruncType); 2564 } 2565 } 2566 2567 // If we haven't yet vectorized the induction variable, splat the scalar 2568 // induction variable, and build the necessary step vectors. 2569 // TODO: Don't do it unless the vectorized IV is really required. 2570 if (!VectorizedIV) { 2571 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2572 for (unsigned Part = 0; Part < UF; ++Part) { 2573 Value *EntryPart = 2574 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2575 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2576 if (Trunc) 2577 addMetadata(EntryPart, Trunc); 2578 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2579 } 2580 } 2581 2582 // If an induction variable is only used for counting loop iterations or 2583 // calculating addresses, it doesn't need to be widened. Create scalar steps 2584 // that can be used by instructions we will later scalarize. Note that the 2585 // addition of the scalar steps will not increase the number of instructions 2586 // in the loop in the common case prior to InstCombine. We will be trading 2587 // one vector extract for each scalar step. 2588 if (NeedsScalarIV) 2589 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2590 } 2591 2592 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2593 Instruction::BinaryOps BinOp) { 2594 // Create and check the types. 2595 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2596 int VLen = Val->getType()->getVectorNumElements(); 2597 2598 Type *STy = Val->getType()->getScalarType(); 2599 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2600 "Induction Step must be an integer or FP"); 2601 assert(Step->getType() == STy && "Step has wrong type"); 2602 2603 SmallVector<Constant *, 8> Indices; 2604 2605 if (STy->isIntegerTy()) { 2606 // Create a vector of consecutive numbers from zero to VF. 2607 for (int i = 0; i < VLen; ++i) 2608 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2609 2610 // Add the consecutive indices to the vector value. 2611 Constant *Cv = ConstantVector::get(Indices); 2612 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2613 Step = Builder.CreateVectorSplat(VLen, Step); 2614 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2615 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2616 // which can be found from the original scalar operations. 2617 Step = Builder.CreateMul(Cv, Step); 2618 return Builder.CreateAdd(Val, Step, "induction"); 2619 } 2620 2621 // Floating point induction. 2622 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2623 "Binary Opcode should be specified for FP induction"); 2624 // Create a vector of consecutive numbers from zero to VF. 2625 for (int i = 0; i < VLen; ++i) 2626 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2627 2628 // Add the consecutive indices to the vector value. 2629 Constant *Cv = ConstantVector::get(Indices); 2630 2631 Step = Builder.CreateVectorSplat(VLen, Step); 2632 2633 // Floating point operations had to be 'fast' to enable the induction. 2634 FastMathFlags Flags; 2635 Flags.setFast(); 2636 2637 Value *MulOp = Builder.CreateFMul(Cv, Step); 2638 if (isa<Instruction>(MulOp)) 2639 // Have to check, MulOp may be a constant 2640 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2641 2642 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2643 if (isa<Instruction>(BOp)) 2644 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2645 return BOp; 2646 } 2647 2648 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2649 Instruction *EntryVal, 2650 const InductionDescriptor &ID) { 2651 // We shouldn't have to build scalar steps if we aren't vectorizing. 2652 assert(VF > 1 && "VF should be greater than one"); 2653 2654 // Get the value type and ensure it and the step have the same integer type. 2655 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2656 assert(ScalarIVTy == Step->getType() && 2657 "Val and Step should have the same type"); 2658 2659 // We build scalar steps for both integer and floating-point induction 2660 // variables. Here, we determine the kind of arithmetic we will perform. 2661 Instruction::BinaryOps AddOp; 2662 Instruction::BinaryOps MulOp; 2663 if (ScalarIVTy->isIntegerTy()) { 2664 AddOp = Instruction::Add; 2665 MulOp = Instruction::Mul; 2666 } else { 2667 AddOp = ID.getInductionOpcode(); 2668 MulOp = Instruction::FMul; 2669 } 2670 2671 // Determine the number of scalars we need to generate for each unroll 2672 // iteration. If EntryVal is uniform, we only need to generate the first 2673 // lane. Otherwise, we generate all VF values. 2674 unsigned Lanes = 2675 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2676 : VF; 2677 // Compute the scalar steps and save the results in VectorLoopValueMap. 2678 for (unsigned Part = 0; Part < UF; ++Part) { 2679 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2680 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2681 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2682 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2683 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2684 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2685 } 2686 } 2687 } 2688 2689 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2690 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2691 ValueToValueMap(); 2692 2693 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2694 if (Stride == 1 || Stride == -1) 2695 return Stride; 2696 return 0; 2697 } 2698 2699 bool LoopVectorizationLegality::isUniform(Value *V) { 2700 return LAI->isUniform(V); 2701 } 2702 2703 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2704 assert(V != Induction && "The new induction variable should not be used."); 2705 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2706 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2707 2708 // If we have a stride that is replaced by one, do it here. 2709 if (Legal->hasStride(V)) 2710 V = ConstantInt::get(V->getType(), 1); 2711 2712 // If we have a vector mapped to this value, return it. 2713 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2714 return VectorLoopValueMap.getVectorValue(V, Part); 2715 2716 // If the value has not been vectorized, check if it has been scalarized 2717 // instead. If it has been scalarized, and we actually need the value in 2718 // vector form, we will construct the vector values on demand. 2719 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2720 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2721 2722 // If we've scalarized a value, that value should be an instruction. 2723 auto *I = cast<Instruction>(V); 2724 2725 // If we aren't vectorizing, we can just copy the scalar map values over to 2726 // the vector map. 2727 if (VF == 1) { 2728 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2729 return ScalarValue; 2730 } 2731 2732 // Get the last scalar instruction we generated for V and Part. If the value 2733 // is known to be uniform after vectorization, this corresponds to lane zero 2734 // of the Part unroll iteration. Otherwise, the last instruction is the one 2735 // we created for the last vector lane of the Part unroll iteration. 2736 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2737 auto *LastInst = cast<Instruction>( 2738 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2739 2740 // Set the insert point after the last scalarized instruction. This ensures 2741 // the insertelement sequence will directly follow the scalar definitions. 2742 auto OldIP = Builder.saveIP(); 2743 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2744 Builder.SetInsertPoint(&*NewIP); 2745 2746 // However, if we are vectorizing, we need to construct the vector values. 2747 // If the value is known to be uniform after vectorization, we can just 2748 // broadcast the scalar value corresponding to lane zero for each unroll 2749 // iteration. Otherwise, we construct the vector values using insertelement 2750 // instructions. Since the resulting vectors are stored in 2751 // VectorLoopValueMap, we will only generate the insertelements once. 2752 Value *VectorValue = nullptr; 2753 if (Cost->isUniformAfterVectorization(I, VF)) { 2754 VectorValue = getBroadcastInstrs(ScalarValue); 2755 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2756 } else { 2757 // Initialize packing with insertelements to start from undef. 2758 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2759 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2760 for (unsigned Lane = 0; Lane < VF; ++Lane) 2761 packScalarIntoVectorValue(V, {Part, Lane}); 2762 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2763 } 2764 Builder.restoreIP(OldIP); 2765 return VectorValue; 2766 } 2767 2768 // If this scalar is unknown, assume that it is a constant or that it is 2769 // loop invariant. Broadcast V and save the value for future uses. 2770 Value *B = getBroadcastInstrs(V); 2771 VectorLoopValueMap.setVectorValue(V, Part, B); 2772 return B; 2773 } 2774 2775 Value * 2776 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2777 const VPIteration &Instance) { 2778 // If the value is not an instruction contained in the loop, it should 2779 // already be scalar. 2780 if (OrigLoop->isLoopInvariant(V)) 2781 return V; 2782 2783 assert(Instance.Lane > 0 2784 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2785 : true && "Uniform values only have lane zero"); 2786 2787 // If the value from the original loop has not been vectorized, it is 2788 // represented by UF x VF scalar values in the new loop. Return the requested 2789 // scalar value. 2790 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2791 return VectorLoopValueMap.getScalarValue(V, Instance); 2792 2793 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2794 // for the given unroll part. If this entry is not a vector type (i.e., the 2795 // vectorization factor is one), there is no need to generate an 2796 // extractelement instruction. 2797 auto *U = getOrCreateVectorValue(V, Instance.Part); 2798 if (!U->getType()->isVectorTy()) { 2799 assert(VF == 1 && "Value not scalarized has non-vector type"); 2800 return U; 2801 } 2802 2803 // Otherwise, the value from the original loop has been vectorized and is 2804 // represented by UF vector values. Extract and return the requested scalar 2805 // value from the appropriate vector lane. 2806 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2807 } 2808 2809 void InnerLoopVectorizer::packScalarIntoVectorValue( 2810 Value *V, const VPIteration &Instance) { 2811 assert(V != Induction && "The new induction variable should not be used."); 2812 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2813 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2814 2815 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2816 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2817 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2818 Builder.getInt32(Instance.Lane)); 2819 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2820 } 2821 2822 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2823 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2824 SmallVector<Constant *, 8> ShuffleMask; 2825 for (unsigned i = 0; i < VF; ++i) 2826 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2827 2828 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2829 ConstantVector::get(ShuffleMask), 2830 "reverse"); 2831 } 2832 2833 // Try to vectorize the interleave group that \p Instr belongs to. 2834 // 2835 // E.g. Translate following interleaved load group (factor = 3): 2836 // for (i = 0; i < N; i+=3) { 2837 // R = Pic[i]; // Member of index 0 2838 // G = Pic[i+1]; // Member of index 1 2839 // B = Pic[i+2]; // Member of index 2 2840 // ... // do something to R, G, B 2841 // } 2842 // To: 2843 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2844 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2845 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2846 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2847 // 2848 // Or translate following interleaved store group (factor = 3): 2849 // for (i = 0; i < N; i+=3) { 2850 // ... do something to R, G, B 2851 // Pic[i] = R; // Member of index 0 2852 // Pic[i+1] = G; // Member of index 1 2853 // Pic[i+2] = B; // Member of index 2 2854 // } 2855 // To: 2856 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2857 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2858 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2859 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2860 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2861 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2862 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr); 2863 assert(Group && "Fail to get an interleaved access group."); 2864 2865 // Skip if current instruction is not the insert position. 2866 if (Instr != Group->getInsertPos()) 2867 return; 2868 2869 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2870 Value *Ptr = getLoadStorePointerOperand(Instr); 2871 2872 // Prepare for the vector type of the interleaved load/store. 2873 Type *ScalarTy = getMemInstValueType(Instr); 2874 unsigned InterleaveFactor = Group->getFactor(); 2875 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2876 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2877 2878 // Prepare for the new pointers. 2879 setDebugLocFromInst(Builder, Ptr); 2880 SmallVector<Value *, 2> NewPtrs; 2881 unsigned Index = Group->getIndex(Instr); 2882 2883 // If the group is reverse, adjust the index to refer to the last vector lane 2884 // instead of the first. We adjust the index from the first vector lane, 2885 // rather than directly getting the pointer for lane VF - 1, because the 2886 // pointer operand of the interleaved access is supposed to be uniform. For 2887 // uniform instructions, we're only required to generate a value for the 2888 // first vector lane in each unroll iteration. 2889 if (Group->isReverse()) 2890 Index += (VF - 1) * Group->getFactor(); 2891 2892 for (unsigned Part = 0; Part < UF; Part++) { 2893 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2894 2895 // Notice current instruction could be any index. Need to adjust the address 2896 // to the member of index 0. 2897 // 2898 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2899 // b = A[i]; // Member of index 0 2900 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2901 // 2902 // E.g. A[i+1] = a; // Member of index 1 2903 // A[i] = b; // Member of index 0 2904 // A[i+2] = c; // Member of index 2 (Current instruction) 2905 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2906 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2907 2908 // Cast to the vector pointer type. 2909 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2910 } 2911 2912 setDebugLocFromInst(Builder, Instr); 2913 Value *UndefVec = UndefValue::get(VecTy); 2914 2915 // Vectorize the interleaved load group. 2916 if (isa<LoadInst>(Instr)) { 2917 // For each unroll part, create a wide load for the group. 2918 SmallVector<Value *, 2> NewLoads; 2919 for (unsigned Part = 0; Part < UF; Part++) { 2920 auto *NewLoad = Builder.CreateAlignedLoad( 2921 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2922 Group->addMetadata(NewLoad); 2923 NewLoads.push_back(NewLoad); 2924 } 2925 2926 // For each member in the group, shuffle out the appropriate data from the 2927 // wide loads. 2928 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2929 Instruction *Member = Group->getMember(I); 2930 2931 // Skip the gaps in the group. 2932 if (!Member) 2933 continue; 2934 2935 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2936 for (unsigned Part = 0; Part < UF; Part++) { 2937 Value *StridedVec = Builder.CreateShuffleVector( 2938 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2939 2940 // If this member has different type, cast the result type. 2941 if (Member->getType() != ScalarTy) { 2942 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2943 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2944 } 2945 2946 if (Group->isReverse()) 2947 StridedVec = reverseVector(StridedVec); 2948 2949 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2950 } 2951 } 2952 return; 2953 } 2954 2955 // The sub vector type for current instruction. 2956 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2957 2958 // Vectorize the interleaved store group. 2959 for (unsigned Part = 0; Part < UF; Part++) { 2960 // Collect the stored vector from each member. 2961 SmallVector<Value *, 4> StoredVecs; 2962 for (unsigned i = 0; i < InterleaveFactor; i++) { 2963 // Interleaved store group doesn't allow a gap, so each index has a member 2964 Instruction *Member = Group->getMember(i); 2965 assert(Member && "Fail to get a member from an interleaved store group"); 2966 2967 Value *StoredVec = getOrCreateVectorValue( 2968 cast<StoreInst>(Member)->getValueOperand(), Part); 2969 if (Group->isReverse()) 2970 StoredVec = reverseVector(StoredVec); 2971 2972 // If this member has different type, cast it to a unified type. 2973 2974 if (StoredVec->getType() != SubVT) 2975 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2976 2977 StoredVecs.push_back(StoredVec); 2978 } 2979 2980 // Concatenate all vectors into a wide vector. 2981 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2982 2983 // Interleave the elements in the wide vector. 2984 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2985 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2986 "interleaved.vec"); 2987 2988 Instruction *NewStoreInstr = 2989 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2990 2991 Group->addMetadata(NewStoreInstr); 2992 } 2993 } 2994 2995 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2996 VectorParts *BlockInMask) { 2997 // Attempt to issue a wide load. 2998 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2999 StoreInst *SI = dyn_cast<StoreInst>(Instr); 3000 3001 assert((LI || SI) && "Invalid Load/Store instruction"); 3002 3003 LoopVectorizationCostModel::InstWidening Decision = 3004 Cost->getWideningDecision(Instr, VF); 3005 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3006 "CM decision should be taken at this point"); 3007 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3008 return vectorizeInterleaveGroup(Instr); 3009 3010 Type *ScalarDataTy = getMemInstValueType(Instr); 3011 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3012 Value *Ptr = getLoadStorePointerOperand(Instr); 3013 unsigned Alignment = getMemInstAlignment(Instr); 3014 // An alignment of 0 means target abi alignment. We need to use the scalar's 3015 // target abi alignment in such a case. 3016 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3017 if (!Alignment) 3018 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3019 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3020 3021 // Determine if the pointer operand of the access is either consecutive or 3022 // reverse consecutive. 3023 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3024 bool ConsecutiveStride = 3025 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3026 bool CreateGatherScatter = 3027 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3028 3029 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3030 // gather/scatter. Otherwise Decision should have been to Scalarize. 3031 assert((ConsecutiveStride || CreateGatherScatter) && 3032 "The instruction should be scalarized"); 3033 3034 // Handle consecutive loads/stores. 3035 if (ConsecutiveStride) 3036 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3037 3038 VectorParts Mask; 3039 bool isMaskRequired = BlockInMask; 3040 if (isMaskRequired) 3041 Mask = *BlockInMask; 3042 3043 // Handle Stores: 3044 if (SI) { 3045 setDebugLocFromInst(Builder, SI); 3046 3047 for (unsigned Part = 0; Part < UF; ++Part) { 3048 Instruction *NewSI = nullptr; 3049 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3050 if (CreateGatherScatter) { 3051 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3052 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3053 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3054 MaskPart); 3055 } else { 3056 // Calculate the pointer for the specific unroll-part. 3057 Value *PartPtr = 3058 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3059 3060 if (Reverse) { 3061 // If we store to reverse consecutive memory locations, then we need 3062 // to reverse the order of elements in the stored value. 3063 StoredVal = reverseVector(StoredVal); 3064 // We don't want to update the value in the map as it might be used in 3065 // another expression. So don't call resetVectorValue(StoredVal). 3066 3067 // If the address is consecutive but reversed, then the 3068 // wide store needs to start at the last vector element. 3069 PartPtr = 3070 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3071 PartPtr = 3072 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3073 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3074 Mask[Part] = reverseVector(Mask[Part]); 3075 } 3076 3077 Value *VecPtr = 3078 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3079 3080 if (isMaskRequired) 3081 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3082 Mask[Part]); 3083 else 3084 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3085 } 3086 addMetadata(NewSI, SI); 3087 } 3088 return; 3089 } 3090 3091 // Handle loads. 3092 assert(LI && "Must have a load instruction"); 3093 setDebugLocFromInst(Builder, LI); 3094 for (unsigned Part = 0; Part < UF; ++Part) { 3095 Value *NewLI; 3096 if (CreateGatherScatter) { 3097 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3098 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3099 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3100 nullptr, "wide.masked.gather"); 3101 addMetadata(NewLI, LI); 3102 } else { 3103 // Calculate the pointer for the specific unroll-part. 3104 Value *PartPtr = 3105 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3106 3107 if (Reverse) { 3108 // If the address is consecutive but reversed, then the 3109 // wide load needs to start at the last vector element. 3110 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3111 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3112 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3113 Mask[Part] = reverseVector(Mask[Part]); 3114 } 3115 3116 Value *VecPtr = 3117 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3118 if (isMaskRequired) 3119 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3120 UndefValue::get(DataTy), 3121 "wide.masked.load"); 3122 else 3123 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3124 3125 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3126 addMetadata(NewLI, LI); 3127 if (Reverse) 3128 NewLI = reverseVector(NewLI); 3129 } 3130 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3131 } 3132 } 3133 3134 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3135 const VPIteration &Instance, 3136 bool IfPredicateInstr) { 3137 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3138 3139 setDebugLocFromInst(Builder, Instr); 3140 3141 // Does this instruction return a value ? 3142 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3143 3144 Instruction *Cloned = Instr->clone(); 3145 if (!IsVoidRetTy) 3146 Cloned->setName(Instr->getName() + ".cloned"); 3147 3148 // Replace the operands of the cloned instructions with their scalar 3149 // equivalents in the new loop. 3150 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3151 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3152 Cloned->setOperand(op, NewOp); 3153 } 3154 addNewMetadata(Cloned, Instr); 3155 3156 // Place the cloned scalar in the new loop. 3157 Builder.Insert(Cloned); 3158 3159 // Add the cloned scalar to the scalar map entry. 3160 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3161 3162 // If we just cloned a new assumption, add it the assumption cache. 3163 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3164 if (II->getIntrinsicID() == Intrinsic::assume) 3165 AC->registerAssumption(II); 3166 3167 // End if-block. 3168 if (IfPredicateInstr) 3169 PredicatedInstructions.push_back(Cloned); 3170 } 3171 3172 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3173 Value *End, Value *Step, 3174 Instruction *DL) { 3175 BasicBlock *Header = L->getHeader(); 3176 BasicBlock *Latch = L->getLoopLatch(); 3177 // As we're just creating this loop, it's possible no latch exists 3178 // yet. If so, use the header as this will be a single block loop. 3179 if (!Latch) 3180 Latch = Header; 3181 3182 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3183 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3184 setDebugLocFromInst(Builder, OldInst); 3185 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3186 3187 Builder.SetInsertPoint(Latch->getTerminator()); 3188 setDebugLocFromInst(Builder, OldInst); 3189 3190 // Create i+1 and fill the PHINode. 3191 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3192 Induction->addIncoming(Start, L->getLoopPreheader()); 3193 Induction->addIncoming(Next, Latch); 3194 // Create the compare. 3195 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3196 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3197 3198 // Now we have two terminators. Remove the old one from the block. 3199 Latch->getTerminator()->eraseFromParent(); 3200 3201 return Induction; 3202 } 3203 3204 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3205 if (TripCount) 3206 return TripCount; 3207 3208 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3209 // Find the loop boundaries. 3210 ScalarEvolution *SE = PSE.getSE(); 3211 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3212 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3213 "Invalid loop count"); 3214 3215 Type *IdxTy = Legal->getWidestInductionType(); 3216 3217 // The exit count might have the type of i64 while the phi is i32. This can 3218 // happen if we have an induction variable that is sign extended before the 3219 // compare. The only way that we get a backedge taken count is that the 3220 // induction variable was signed and as such will not overflow. In such a case 3221 // truncation is legal. 3222 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3223 IdxTy->getPrimitiveSizeInBits()) 3224 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3225 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3226 3227 // Get the total trip count from the count by adding 1. 3228 const SCEV *ExitCount = SE->getAddExpr( 3229 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3230 3231 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3232 3233 // Expand the trip count and place the new instructions in the preheader. 3234 // Notice that the pre-header does not change, only the loop body. 3235 SCEVExpander Exp(*SE, DL, "induction"); 3236 3237 // Count holds the overall loop count (N). 3238 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3239 L->getLoopPreheader()->getTerminator()); 3240 3241 if (TripCount->getType()->isPointerTy()) 3242 TripCount = 3243 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3244 L->getLoopPreheader()->getTerminator()); 3245 3246 return TripCount; 3247 } 3248 3249 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3250 if (VectorTripCount) 3251 return VectorTripCount; 3252 3253 Value *TC = getOrCreateTripCount(L); 3254 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3255 3256 // Now we need to generate the expression for the part of the loop that the 3257 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3258 // iterations are not required for correctness, or N - Step, otherwise. Step 3259 // is equal to the vectorization factor (number of SIMD elements) times the 3260 // unroll factor (number of SIMD instructions). 3261 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3262 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3263 3264 // If there is a non-reversed interleaved group that may speculatively access 3265 // memory out-of-bounds, we need to ensure that there will be at least one 3266 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3267 // the trip count, we set the remainder to be equal to the step. If the step 3268 // does not evenly divide the trip count, no adjustment is necessary since 3269 // there will already be scalar iterations. Note that the minimum iterations 3270 // check ensures that N >= Step. 3271 if (VF > 1 && Cost->requiresScalarEpilogue()) { 3272 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3273 R = Builder.CreateSelect(IsZero, Step, R); 3274 } 3275 3276 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3277 3278 return VectorTripCount; 3279 } 3280 3281 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3282 const DataLayout &DL) { 3283 // Verify that V is a vector type with same number of elements as DstVTy. 3284 unsigned VF = DstVTy->getNumElements(); 3285 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3286 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3287 Type *SrcElemTy = SrcVecTy->getElementType(); 3288 Type *DstElemTy = DstVTy->getElementType(); 3289 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3290 "Vector elements must have same size"); 3291 3292 // Do a direct cast if element types are castable. 3293 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3294 return Builder.CreateBitOrPointerCast(V, DstVTy); 3295 } 3296 // V cannot be directly casted to desired vector type. 3297 // May happen when V is a floating point vector but DstVTy is a vector of 3298 // pointers or vice-versa. Handle this using a two-step bitcast using an 3299 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3300 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3301 "Only one type should be a pointer type"); 3302 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3303 "Only one type should be a floating point type"); 3304 Type *IntTy = 3305 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3306 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3307 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3308 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3309 } 3310 3311 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3312 BasicBlock *Bypass) { 3313 Value *Count = getOrCreateTripCount(L); 3314 BasicBlock *BB = L->getLoopPreheader(); 3315 IRBuilder<> Builder(BB->getTerminator()); 3316 3317 // Generate code to check if the loop's trip count is less than VF * UF, or 3318 // equal to it in case a scalar epilogue is required; this implies that the 3319 // vector trip count is zero. This check also covers the case where adding one 3320 // to the backedge-taken count overflowed leading to an incorrect trip count 3321 // of zero. In this case we will also jump to the scalar loop. 3322 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3323 : ICmpInst::ICMP_ULT; 3324 Value *CheckMinIters = Builder.CreateICmp( 3325 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3326 3327 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3328 // Update dominator tree immediately if the generated block is a 3329 // LoopBypassBlock because SCEV expansions to generate loop bypass 3330 // checks may query it before the current function is finished. 3331 DT->addNewBlock(NewBB, BB); 3332 if (L->getParentLoop()) 3333 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3334 ReplaceInstWithInst(BB->getTerminator(), 3335 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3336 LoopBypassBlocks.push_back(BB); 3337 } 3338 3339 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3340 BasicBlock *BB = L->getLoopPreheader(); 3341 3342 // Generate the code to check that the SCEV assumptions that we made. 3343 // We want the new basic block to start at the first instruction in a 3344 // sequence of instructions that form a check. 3345 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3346 "scev.check"); 3347 Value *SCEVCheck = 3348 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3349 3350 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3351 if (C->isZero()) 3352 return; 3353 3354 // Create a new block containing the stride check. 3355 BB->setName("vector.scevcheck"); 3356 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3357 // Update dominator tree immediately if the generated block is a 3358 // LoopBypassBlock because SCEV expansions to generate loop bypass 3359 // checks may query it before the current function is finished. 3360 DT->addNewBlock(NewBB, BB); 3361 if (L->getParentLoop()) 3362 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3363 ReplaceInstWithInst(BB->getTerminator(), 3364 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3365 LoopBypassBlocks.push_back(BB); 3366 AddedSafetyChecks = true; 3367 } 3368 3369 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3370 BasicBlock *BB = L->getLoopPreheader(); 3371 3372 // Generate the code that checks in runtime if arrays overlap. We put the 3373 // checks into a separate block to make the more common case of few elements 3374 // faster. 3375 Instruction *FirstCheckInst; 3376 Instruction *MemRuntimeCheck; 3377 std::tie(FirstCheckInst, MemRuntimeCheck) = 3378 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3379 if (!MemRuntimeCheck) 3380 return; 3381 3382 // Create a new block containing the memory check. 3383 BB->setName("vector.memcheck"); 3384 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3385 // Update dominator tree immediately if the generated block is a 3386 // LoopBypassBlock because SCEV expansions to generate loop bypass 3387 // checks may query it before the current function is finished. 3388 DT->addNewBlock(NewBB, BB); 3389 if (L->getParentLoop()) 3390 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3391 ReplaceInstWithInst(BB->getTerminator(), 3392 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3393 LoopBypassBlocks.push_back(BB); 3394 AddedSafetyChecks = true; 3395 3396 // We currently don't use LoopVersioning for the actual loop cloning but we 3397 // still use it to add the noalias metadata. 3398 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3399 PSE.getSE()); 3400 LVer->prepareNoAliasMetadata(); 3401 } 3402 3403 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3404 /* 3405 In this function we generate a new loop. The new loop will contain 3406 the vectorized instructions while the old loop will continue to run the 3407 scalar remainder. 3408 3409 [ ] <-- loop iteration number check. 3410 / | 3411 / v 3412 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3413 | / | 3414 | / v 3415 || [ ] <-- vector pre header. 3416 |/ | 3417 | v 3418 | [ ] \ 3419 | [ ]_| <-- vector loop. 3420 | | 3421 | v 3422 | -[ ] <--- middle-block. 3423 | / | 3424 | / v 3425 -|- >[ ] <--- new preheader. 3426 | | 3427 | v 3428 | [ ] \ 3429 | [ ]_| <-- old scalar loop to handle remainder. 3430 \ | 3431 \ v 3432 >[ ] <-- exit block. 3433 ... 3434 */ 3435 3436 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3437 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3438 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3439 assert(VectorPH && "Invalid loop structure"); 3440 assert(ExitBlock && "Must have an exit block"); 3441 3442 // Some loops have a single integer induction variable, while other loops 3443 // don't. One example is c++ iterators that often have multiple pointer 3444 // induction variables. In the code below we also support a case where we 3445 // don't have a single induction variable. 3446 // 3447 // We try to obtain an induction variable from the original loop as hard 3448 // as possible. However if we don't find one that: 3449 // - is an integer 3450 // - counts from zero, stepping by one 3451 // - is the size of the widest induction variable type 3452 // then we create a new one. 3453 OldInduction = Legal->getPrimaryInduction(); 3454 Type *IdxTy = Legal->getWidestInductionType(); 3455 3456 // Split the single block loop into the two loop structure described above. 3457 BasicBlock *VecBody = 3458 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3459 BasicBlock *MiddleBlock = 3460 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3461 BasicBlock *ScalarPH = 3462 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3463 3464 // Create and register the new vector loop. 3465 Loop *Lp = LI->AllocateLoop(); 3466 Loop *ParentLoop = OrigLoop->getParentLoop(); 3467 3468 // Insert the new loop into the loop nest and register the new basic blocks 3469 // before calling any utilities such as SCEV that require valid LoopInfo. 3470 if (ParentLoop) { 3471 ParentLoop->addChildLoop(Lp); 3472 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3473 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3474 } else { 3475 LI->addTopLevelLoop(Lp); 3476 } 3477 Lp->addBasicBlockToLoop(VecBody, *LI); 3478 3479 // Find the loop boundaries. 3480 Value *Count = getOrCreateTripCount(Lp); 3481 3482 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3483 3484 // Now, compare the new count to zero. If it is zero skip the vector loop and 3485 // jump to the scalar loop. This check also covers the case where the 3486 // backedge-taken count is uint##_max: adding one to it will overflow leading 3487 // to an incorrect trip count of zero. In this (rare) case we will also jump 3488 // to the scalar loop. 3489 emitMinimumIterationCountCheck(Lp, ScalarPH); 3490 3491 // Generate the code to check any assumptions that we've made for SCEV 3492 // expressions. 3493 emitSCEVChecks(Lp, ScalarPH); 3494 3495 // Generate the code that checks in runtime if arrays overlap. We put the 3496 // checks into a separate block to make the more common case of few elements 3497 // faster. 3498 emitMemRuntimeChecks(Lp, ScalarPH); 3499 3500 // Generate the induction variable. 3501 // The loop step is equal to the vectorization factor (num of SIMD elements) 3502 // times the unroll factor (num of SIMD instructions). 3503 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3504 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3505 Induction = 3506 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3507 getDebugLocFromInstOrOperands(OldInduction)); 3508 3509 // We are going to resume the execution of the scalar loop. 3510 // Go over all of the induction variables that we found and fix the 3511 // PHIs that are left in the scalar version of the loop. 3512 // The starting values of PHI nodes depend on the counter of the last 3513 // iteration in the vectorized loop. 3514 // If we come from a bypass edge then we need to start from the original 3515 // start value. 3516 3517 // This variable saves the new starting index for the scalar loop. It is used 3518 // to test if there are any tail iterations left once the vector loop has 3519 // completed. 3520 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3521 for (auto &InductionEntry : *List) { 3522 PHINode *OrigPhi = InductionEntry.first; 3523 InductionDescriptor II = InductionEntry.second; 3524 3525 // Create phi nodes to merge from the backedge-taken check block. 3526 PHINode *BCResumeVal = PHINode::Create( 3527 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3528 Value *&EndValue = IVEndValues[OrigPhi]; 3529 if (OrigPhi == OldInduction) { 3530 // We know what the end value is. 3531 EndValue = CountRoundDown; 3532 } else { 3533 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3534 Type *StepType = II.getStep()->getType(); 3535 Instruction::CastOps CastOp = 3536 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3537 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3538 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3539 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3540 EndValue->setName("ind.end"); 3541 } 3542 3543 // The new PHI merges the original incoming value, in case of a bypass, 3544 // or the value at the end of the vectorized loop. 3545 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3546 3547 // Fix the scalar body counter (PHI node). 3548 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3549 3550 // The old induction's phi node in the scalar body needs the truncated 3551 // value. 3552 for (BasicBlock *BB : LoopBypassBlocks) 3553 BCResumeVal->addIncoming(II.getStartValue(), BB); 3554 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3555 } 3556 3557 // Add a check in the middle block to see if we have completed 3558 // all of the iterations in the first vector loop. 3559 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3560 Value *CmpN = 3561 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3562 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3563 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3564 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3565 3566 // Get ready to start creating new instructions into the vectorized body. 3567 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3568 3569 // Save the state. 3570 LoopVectorPreHeader = Lp->getLoopPreheader(); 3571 LoopScalarPreHeader = ScalarPH; 3572 LoopMiddleBlock = MiddleBlock; 3573 LoopExitBlock = ExitBlock; 3574 LoopVectorBody = VecBody; 3575 LoopScalarBody = OldBasicBlock; 3576 3577 // Keep all loop hints from the original loop on the vector loop (we'll 3578 // replace the vectorizer-specific hints below). 3579 if (MDNode *LID = OrigLoop->getLoopID()) 3580 Lp->setLoopID(LID); 3581 3582 LoopVectorizeHints Hints(Lp, true, *ORE); 3583 Hints.setAlreadyVectorized(); 3584 3585 return LoopVectorPreHeader; 3586 } 3587 3588 // Fix up external users of the induction variable. At this point, we are 3589 // in LCSSA form, with all external PHIs that use the IV having one input value, 3590 // coming from the remainder loop. We need those PHIs to also have a correct 3591 // value for the IV when arriving directly from the middle block. 3592 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3593 const InductionDescriptor &II, 3594 Value *CountRoundDown, Value *EndValue, 3595 BasicBlock *MiddleBlock) { 3596 // There are two kinds of external IV usages - those that use the value 3597 // computed in the last iteration (the PHI) and those that use the penultimate 3598 // value (the value that feeds into the phi from the loop latch). 3599 // We allow both, but they, obviously, have different values. 3600 3601 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3602 3603 DenseMap<Value *, Value *> MissingVals; 3604 3605 // An external user of the last iteration's value should see the value that 3606 // the remainder loop uses to initialize its own IV. 3607 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3608 for (User *U : PostInc->users()) { 3609 Instruction *UI = cast<Instruction>(U); 3610 if (!OrigLoop->contains(UI)) { 3611 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3612 MissingVals[UI] = EndValue; 3613 } 3614 } 3615 3616 // An external user of the penultimate value need to see EndValue - Step. 3617 // The simplest way to get this is to recompute it from the constituent SCEVs, 3618 // that is Start + (Step * (CRD - 1)). 3619 for (User *U : OrigPhi->users()) { 3620 auto *UI = cast<Instruction>(U); 3621 if (!OrigLoop->contains(UI)) { 3622 const DataLayout &DL = 3623 OrigLoop->getHeader()->getModule()->getDataLayout(); 3624 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3625 3626 IRBuilder<> B(MiddleBlock->getTerminator()); 3627 Value *CountMinusOne = B.CreateSub( 3628 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3629 Value *CMO = 3630 !II.getStep()->getType()->isIntegerTy() 3631 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3632 II.getStep()->getType()) 3633 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3634 CMO->setName("cast.cmo"); 3635 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3636 Escape->setName("ind.escape"); 3637 MissingVals[UI] = Escape; 3638 } 3639 } 3640 3641 for (auto &I : MissingVals) { 3642 PHINode *PHI = cast<PHINode>(I.first); 3643 // One corner case we have to handle is two IVs "chasing" each-other, 3644 // that is %IV2 = phi [...], [ %IV1, %latch ] 3645 // In this case, if IV1 has an external use, we need to avoid adding both 3646 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3647 // don't already have an incoming value for the middle block. 3648 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3649 PHI->addIncoming(I.second, MiddleBlock); 3650 } 3651 } 3652 3653 namespace { 3654 3655 struct CSEDenseMapInfo { 3656 static bool canHandle(const Instruction *I) { 3657 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3658 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3659 } 3660 3661 static inline Instruction *getEmptyKey() { 3662 return DenseMapInfo<Instruction *>::getEmptyKey(); 3663 } 3664 3665 static inline Instruction *getTombstoneKey() { 3666 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3667 } 3668 3669 static unsigned getHashValue(const Instruction *I) { 3670 assert(canHandle(I) && "Unknown instruction!"); 3671 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3672 I->value_op_end())); 3673 } 3674 3675 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3676 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3677 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3678 return LHS == RHS; 3679 return LHS->isIdenticalTo(RHS); 3680 } 3681 }; 3682 3683 } // end anonymous namespace 3684 3685 ///\brief Perform cse of induction variable instructions. 3686 static void cse(BasicBlock *BB) { 3687 // Perform simple cse. 3688 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3689 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3690 Instruction *In = &*I++; 3691 3692 if (!CSEDenseMapInfo::canHandle(In)) 3693 continue; 3694 3695 // Check if we can replace this instruction with any of the 3696 // visited instructions. 3697 if (Instruction *V = CSEMap.lookup(In)) { 3698 In->replaceAllUsesWith(V); 3699 In->eraseFromParent(); 3700 continue; 3701 } 3702 3703 CSEMap[In] = In; 3704 } 3705 } 3706 3707 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3708 /// convenience wrapper for the type-based getScalarizationOverhead API. 3709 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3710 const TargetTransformInfo &TTI) { 3711 if (VF == 1) 3712 return 0; 3713 3714 unsigned Cost = 0; 3715 Type *RetTy = ToVectorTy(I->getType(), VF); 3716 if (!RetTy->isVoidTy() && 3717 (!isa<LoadInst>(I) || 3718 !TTI.supportsEfficientVectorElementLoadStore())) 3719 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3720 3721 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3722 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3723 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3724 } 3725 else if (!isa<StoreInst>(I) || 3726 !TTI.supportsEfficientVectorElementLoadStore()) { 3727 SmallVector<const Value *, 4> Operands(I->operand_values()); 3728 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3729 } 3730 3731 return Cost; 3732 } 3733 3734 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3735 // Return the cost of the instruction, including scalarization overhead if it's 3736 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3737 // i.e. either vector version isn't available, or is too expensive. 3738 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3739 const TargetTransformInfo &TTI, 3740 const TargetLibraryInfo *TLI, 3741 bool &NeedToScalarize) { 3742 Function *F = CI->getCalledFunction(); 3743 StringRef FnName = CI->getCalledFunction()->getName(); 3744 Type *ScalarRetTy = CI->getType(); 3745 SmallVector<Type *, 4> Tys, ScalarTys; 3746 for (auto &ArgOp : CI->arg_operands()) 3747 ScalarTys.push_back(ArgOp->getType()); 3748 3749 // Estimate cost of scalarized vector call. The source operands are assumed 3750 // to be vectors, so we need to extract individual elements from there, 3751 // execute VF scalar calls, and then gather the result into the vector return 3752 // value. 3753 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3754 if (VF == 1) 3755 return ScalarCallCost; 3756 3757 // Compute corresponding vector type for return value and arguments. 3758 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3759 for (Type *ScalarTy : ScalarTys) 3760 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3761 3762 // Compute costs of unpacking argument values for the scalar calls and 3763 // packing the return values to a vector. 3764 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3765 3766 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3767 3768 // If we can't emit a vector call for this function, then the currently found 3769 // cost is the cost we need to return. 3770 NeedToScalarize = true; 3771 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3772 return Cost; 3773 3774 // If the corresponding vector cost is cheaper, return its cost. 3775 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3776 if (VectorCallCost < Cost) { 3777 NeedToScalarize = false; 3778 return VectorCallCost; 3779 } 3780 return Cost; 3781 } 3782 3783 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3784 // factor VF. Return the cost of the instruction, including scalarization 3785 // overhead if it's needed. 3786 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3787 const TargetTransformInfo &TTI, 3788 const TargetLibraryInfo *TLI) { 3789 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3790 assert(ID && "Expected intrinsic call!"); 3791 3792 FastMathFlags FMF; 3793 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3794 FMF = FPMO->getFastMathFlags(); 3795 3796 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3797 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3798 } 3799 3800 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3801 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3802 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3803 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3804 } 3805 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3806 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3807 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3808 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3809 } 3810 3811 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3812 // For every instruction `I` in MinBWs, truncate the operands, create a 3813 // truncated version of `I` and reextend its result. InstCombine runs 3814 // later and will remove any ext/trunc pairs. 3815 SmallPtrSet<Value *, 4> Erased; 3816 for (const auto &KV : Cost->getMinimalBitwidths()) { 3817 // If the value wasn't vectorized, we must maintain the original scalar 3818 // type. The absence of the value from VectorLoopValueMap indicates that it 3819 // wasn't vectorized. 3820 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3821 continue; 3822 for (unsigned Part = 0; Part < UF; ++Part) { 3823 Value *I = getOrCreateVectorValue(KV.first, Part); 3824 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3825 continue; 3826 Type *OriginalTy = I->getType(); 3827 Type *ScalarTruncatedTy = 3828 IntegerType::get(OriginalTy->getContext(), KV.second); 3829 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3830 OriginalTy->getVectorNumElements()); 3831 if (TruncatedTy == OriginalTy) 3832 continue; 3833 3834 IRBuilder<> B(cast<Instruction>(I)); 3835 auto ShrinkOperand = [&](Value *V) -> Value * { 3836 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3837 if (ZI->getSrcTy() == TruncatedTy) 3838 return ZI->getOperand(0); 3839 return B.CreateZExtOrTrunc(V, TruncatedTy); 3840 }; 3841 3842 // The actual instruction modification depends on the instruction type, 3843 // unfortunately. 3844 Value *NewI = nullptr; 3845 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3846 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3847 ShrinkOperand(BO->getOperand(1))); 3848 3849 // Any wrapping introduced by shrinking this operation shouldn't be 3850 // considered undefined behavior. So, we can't unconditionally copy 3851 // arithmetic wrapping flags to NewI. 3852 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3853 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3854 NewI = 3855 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3856 ShrinkOperand(CI->getOperand(1))); 3857 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3858 NewI = B.CreateSelect(SI->getCondition(), 3859 ShrinkOperand(SI->getTrueValue()), 3860 ShrinkOperand(SI->getFalseValue())); 3861 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3862 switch (CI->getOpcode()) { 3863 default: 3864 llvm_unreachable("Unhandled cast!"); 3865 case Instruction::Trunc: 3866 NewI = ShrinkOperand(CI->getOperand(0)); 3867 break; 3868 case Instruction::SExt: 3869 NewI = B.CreateSExtOrTrunc( 3870 CI->getOperand(0), 3871 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3872 break; 3873 case Instruction::ZExt: 3874 NewI = B.CreateZExtOrTrunc( 3875 CI->getOperand(0), 3876 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3877 break; 3878 } 3879 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3880 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3881 auto *O0 = B.CreateZExtOrTrunc( 3882 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3883 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3884 auto *O1 = B.CreateZExtOrTrunc( 3885 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3886 3887 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3888 } else if (isa<LoadInst>(I)) { 3889 // Don't do anything with the operands, just extend the result. 3890 continue; 3891 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3892 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3893 auto *O0 = B.CreateZExtOrTrunc( 3894 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3895 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3896 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3897 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3898 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3899 auto *O0 = B.CreateZExtOrTrunc( 3900 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3901 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3902 } else { 3903 llvm_unreachable("Unhandled instruction type!"); 3904 } 3905 3906 // Lastly, extend the result. 3907 NewI->takeName(cast<Instruction>(I)); 3908 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3909 I->replaceAllUsesWith(Res); 3910 cast<Instruction>(I)->eraseFromParent(); 3911 Erased.insert(I); 3912 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3913 } 3914 } 3915 3916 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3917 for (const auto &KV : Cost->getMinimalBitwidths()) { 3918 // If the value wasn't vectorized, we must maintain the original scalar 3919 // type. The absence of the value from VectorLoopValueMap indicates that it 3920 // wasn't vectorized. 3921 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3922 continue; 3923 for (unsigned Part = 0; Part < UF; ++Part) { 3924 Value *I = getOrCreateVectorValue(KV.first, Part); 3925 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3926 if (Inst && Inst->use_empty()) { 3927 Value *NewI = Inst->getOperand(0); 3928 Inst->eraseFromParent(); 3929 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3930 } 3931 } 3932 } 3933 } 3934 3935 void InnerLoopVectorizer::fixVectorizedLoop() { 3936 // Insert truncates and extends for any truncated instructions as hints to 3937 // InstCombine. 3938 if (VF > 1) 3939 truncateToMinimalBitwidths(); 3940 3941 // At this point every instruction in the original loop is widened to a 3942 // vector form. Now we need to fix the recurrences in the loop. These PHI 3943 // nodes are currently empty because we did not want to introduce cycles. 3944 // This is the second stage of vectorizing recurrences. 3945 fixCrossIterationPHIs(); 3946 3947 // Update the dominator tree. 3948 // 3949 // FIXME: After creating the structure of the new loop, the dominator tree is 3950 // no longer up-to-date, and it remains that way until we update it 3951 // here. An out-of-date dominator tree is problematic for SCEV, 3952 // because SCEVExpander uses it to guide code generation. The 3953 // vectorizer use SCEVExpanders in several places. Instead, we should 3954 // keep the dominator tree up-to-date as we go. 3955 updateAnalysis(); 3956 3957 // Fix-up external users of the induction variables. 3958 for (auto &Entry : *Legal->getInductionVars()) 3959 fixupIVUsers(Entry.first, Entry.second, 3960 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3961 IVEndValues[Entry.first], LoopMiddleBlock); 3962 3963 fixLCSSAPHIs(); 3964 for (Instruction *PI : PredicatedInstructions) 3965 sinkScalarOperands(&*PI); 3966 3967 // Remove redundant induction instructions. 3968 cse(LoopVectorBody); 3969 } 3970 3971 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3972 // In order to support recurrences we need to be able to vectorize Phi nodes. 3973 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3974 // stage #2: We now need to fix the recurrences by adding incoming edges to 3975 // the currently empty PHI nodes. At this point every instruction in the 3976 // original loop is widened to a vector form so we can use them to construct 3977 // the incoming edges. 3978 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3979 // Handle first-order recurrences and reductions that need to be fixed. 3980 if (Legal->isFirstOrderRecurrence(&Phi)) 3981 fixFirstOrderRecurrence(&Phi); 3982 else if (Legal->isReductionVariable(&Phi)) 3983 fixReduction(&Phi); 3984 } 3985 } 3986 3987 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3988 // This is the second phase of vectorizing first-order recurrences. An 3989 // overview of the transformation is described below. Suppose we have the 3990 // following loop. 3991 // 3992 // for (int i = 0; i < n; ++i) 3993 // b[i] = a[i] - a[i - 1]; 3994 // 3995 // There is a first-order recurrence on "a". For this loop, the shorthand 3996 // scalar IR looks like: 3997 // 3998 // scalar.ph: 3999 // s_init = a[-1] 4000 // br scalar.body 4001 // 4002 // scalar.body: 4003 // i = phi [0, scalar.ph], [i+1, scalar.body] 4004 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4005 // s2 = a[i] 4006 // b[i] = s2 - s1 4007 // br cond, scalar.body, ... 4008 // 4009 // In this example, s1 is a recurrence because it's value depends on the 4010 // previous iteration. In the first phase of vectorization, we created a 4011 // temporary value for s1. We now complete the vectorization and produce the 4012 // shorthand vector IR shown below (for VF = 4, UF = 1). 4013 // 4014 // vector.ph: 4015 // v_init = vector(..., ..., ..., a[-1]) 4016 // br vector.body 4017 // 4018 // vector.body 4019 // i = phi [0, vector.ph], [i+4, vector.body] 4020 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4021 // v2 = a[i, i+1, i+2, i+3]; 4022 // v3 = vector(v1(3), v2(0, 1, 2)) 4023 // b[i, i+1, i+2, i+3] = v2 - v3 4024 // br cond, vector.body, middle.block 4025 // 4026 // middle.block: 4027 // x = v2(3) 4028 // br scalar.ph 4029 // 4030 // scalar.ph: 4031 // s_init = phi [x, middle.block], [a[-1], otherwise] 4032 // br scalar.body 4033 // 4034 // After execution completes the vector loop, we extract the next value of 4035 // the recurrence (x) to use as the initial value in the scalar loop. 4036 4037 // Get the original loop preheader and single loop latch. 4038 auto *Preheader = OrigLoop->getLoopPreheader(); 4039 auto *Latch = OrigLoop->getLoopLatch(); 4040 4041 // Get the initial and previous values of the scalar recurrence. 4042 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4043 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4044 4045 // Create a vector from the initial value. 4046 auto *VectorInit = ScalarInit; 4047 if (VF > 1) { 4048 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4049 VectorInit = Builder.CreateInsertElement( 4050 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4051 Builder.getInt32(VF - 1), "vector.recur.init"); 4052 } 4053 4054 // We constructed a temporary phi node in the first phase of vectorization. 4055 // This phi node will eventually be deleted. 4056 Builder.SetInsertPoint( 4057 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4058 4059 // Create a phi node for the new recurrence. The current value will either be 4060 // the initial value inserted into a vector or loop-varying vector value. 4061 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4062 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4063 4064 // Get the vectorized previous value of the last part UF - 1. It appears last 4065 // among all unrolled iterations, due to the order of their construction. 4066 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4067 4068 // Set the insertion point after the previous value if it is an instruction. 4069 // Note that the previous value may have been constant-folded so it is not 4070 // guaranteed to be an instruction in the vector loop. Also, if the previous 4071 // value is a phi node, we should insert after all the phi nodes to avoid 4072 // breaking basic block verification. 4073 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4074 isa<PHINode>(PreviousLastPart)) 4075 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4076 else 4077 Builder.SetInsertPoint( 4078 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4079 4080 // We will construct a vector for the recurrence by combining the values for 4081 // the current and previous iterations. This is the required shuffle mask. 4082 SmallVector<Constant *, 8> ShuffleMask(VF); 4083 ShuffleMask[0] = Builder.getInt32(VF - 1); 4084 for (unsigned I = 1; I < VF; ++I) 4085 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4086 4087 // The vector from which to take the initial value for the current iteration 4088 // (actual or unrolled). Initially, this is the vector phi node. 4089 Value *Incoming = VecPhi; 4090 4091 // Shuffle the current and previous vector and update the vector parts. 4092 for (unsigned Part = 0; Part < UF; ++Part) { 4093 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4094 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4095 auto *Shuffle = 4096 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4097 ConstantVector::get(ShuffleMask)) 4098 : Incoming; 4099 PhiPart->replaceAllUsesWith(Shuffle); 4100 cast<Instruction>(PhiPart)->eraseFromParent(); 4101 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4102 Incoming = PreviousPart; 4103 } 4104 4105 // Fix the latch value of the new recurrence in the vector loop. 4106 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4107 4108 // Extract the last vector element in the middle block. This will be the 4109 // initial value for the recurrence when jumping to the scalar loop. 4110 auto *ExtractForScalar = Incoming; 4111 if (VF > 1) { 4112 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4113 ExtractForScalar = Builder.CreateExtractElement( 4114 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4115 } 4116 // Extract the second last element in the middle block if the 4117 // Phi is used outside the loop. We need to extract the phi itself 4118 // and not the last element (the phi update in the current iteration). This 4119 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4120 // when the scalar loop is not run at all. 4121 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4122 if (VF > 1) 4123 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4124 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4125 // When loop is unrolled without vectorizing, initialize 4126 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4127 // `Incoming`. This is analogous to the vectorized case above: extracting the 4128 // second last element when VF > 1. 4129 else if (UF > 1) 4130 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4131 4132 // Fix the initial value of the original recurrence in the scalar loop. 4133 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4134 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4135 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4136 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4137 Start->addIncoming(Incoming, BB); 4138 } 4139 4140 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4141 Phi->setName("scalar.recur"); 4142 4143 // Finally, fix users of the recurrence outside the loop. The users will need 4144 // either the last value of the scalar recurrence or the last value of the 4145 // vector recurrence we extracted in the middle block. Since the loop is in 4146 // LCSSA form, we just need to find the phi node for the original scalar 4147 // recurrence in the exit block, and then add an edge for the middle block. 4148 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4149 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4150 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4151 break; 4152 } 4153 } 4154 } 4155 4156 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4157 Constant *Zero = Builder.getInt32(0); 4158 4159 // Get it's reduction variable descriptor. 4160 assert(Legal->isReductionVariable(Phi) && 4161 "Unable to find the reduction variable"); 4162 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4163 4164 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4165 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4166 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4167 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4168 RdxDesc.getMinMaxRecurrenceKind(); 4169 setDebugLocFromInst(Builder, ReductionStartValue); 4170 4171 // We need to generate a reduction vector from the incoming scalar. 4172 // To do so, we need to generate the 'identity' vector and override 4173 // one of the elements with the incoming scalar reduction. We need 4174 // to do it in the vector-loop preheader. 4175 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4176 4177 // This is the vector-clone of the value that leaves the loop. 4178 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4179 4180 // Find the reduction identity variable. Zero for addition, or, xor, 4181 // one for multiplication, -1 for And. 4182 Value *Identity; 4183 Value *VectorStart; 4184 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4185 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4186 // MinMax reduction have the start value as their identify. 4187 if (VF == 1) { 4188 VectorStart = Identity = ReductionStartValue; 4189 } else { 4190 VectorStart = Identity = 4191 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4192 } 4193 } else { 4194 // Handle other reduction kinds: 4195 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4196 RK, VecTy->getScalarType()); 4197 if (VF == 1) { 4198 Identity = Iden; 4199 // This vector is the Identity vector where the first element is the 4200 // incoming scalar reduction. 4201 VectorStart = ReductionStartValue; 4202 } else { 4203 Identity = ConstantVector::getSplat(VF, Iden); 4204 4205 // This vector is the Identity vector where the first element is the 4206 // incoming scalar reduction. 4207 VectorStart = 4208 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4209 } 4210 } 4211 4212 // Fix the vector-loop phi. 4213 4214 // Reductions do not have to start at zero. They can start with 4215 // any loop invariant values. 4216 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4217 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4218 for (unsigned Part = 0; Part < UF; ++Part) { 4219 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4220 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4221 // Make sure to add the reduction stat value only to the 4222 // first unroll part. 4223 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4224 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4225 cast<PHINode>(VecRdxPhi) 4226 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4227 } 4228 4229 // Before each round, move the insertion point right between 4230 // the PHIs and the values we are going to write. 4231 // This allows us to write both PHINodes and the extractelement 4232 // instructions. 4233 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4234 4235 setDebugLocFromInst(Builder, LoopExitInst); 4236 4237 // If the vector reduction can be performed in a smaller type, we truncate 4238 // then extend the loop exit value to enable InstCombine to evaluate the 4239 // entire expression in the smaller type. 4240 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4241 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4242 Builder.SetInsertPoint( 4243 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4244 VectorParts RdxParts(UF); 4245 for (unsigned Part = 0; Part < UF; ++Part) { 4246 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4247 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4248 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4249 : Builder.CreateZExt(Trunc, VecTy); 4250 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4251 UI != RdxParts[Part]->user_end();) 4252 if (*UI != Trunc) { 4253 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4254 RdxParts[Part] = Extnd; 4255 } else { 4256 ++UI; 4257 } 4258 } 4259 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4260 for (unsigned Part = 0; Part < UF; ++Part) { 4261 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4262 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4263 } 4264 } 4265 4266 // Reduce all of the unrolled parts into a single vector. 4267 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4268 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4269 setDebugLocFromInst(Builder, ReducedPartRdx); 4270 for (unsigned Part = 1; Part < UF; ++Part) { 4271 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4272 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4273 // Floating point operations had to be 'fast' to enable the reduction. 4274 ReducedPartRdx = addFastMathFlag( 4275 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4276 ReducedPartRdx, "bin.rdx")); 4277 else 4278 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4279 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4280 } 4281 4282 if (VF > 1) { 4283 bool NoNaN = Legal->hasFunNoNaNAttr(); 4284 ReducedPartRdx = 4285 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4286 // If the reduction can be performed in a smaller type, we need to extend 4287 // the reduction to the wider type before we branch to the original loop. 4288 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4289 ReducedPartRdx = 4290 RdxDesc.isSigned() 4291 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4292 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4293 } 4294 4295 // Create a phi node that merges control-flow from the backedge-taken check 4296 // block and the middle block. 4297 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4298 LoopScalarPreHeader->getTerminator()); 4299 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4300 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4301 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4302 4303 // Now, we need to fix the users of the reduction variable 4304 // inside and outside of the scalar remainder loop. 4305 // We know that the loop is in LCSSA form. We need to update the 4306 // PHI nodes in the exit blocks. 4307 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4308 // All PHINodes need to have a single entry edge, or two if 4309 // we already fixed them. 4310 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4311 4312 // We found a reduction value exit-PHI. Update it with the 4313 // incoming bypass edge. 4314 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4315 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4316 } // end of the LCSSA phi scan. 4317 4318 // Fix the scalar loop reduction variable with the incoming reduction sum 4319 // from the vector body and from the backedge value. 4320 int IncomingEdgeBlockIdx = 4321 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4322 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4323 // Pick the other block. 4324 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4325 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4326 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4327 } 4328 4329 void InnerLoopVectorizer::fixLCSSAPHIs() { 4330 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4331 if (LCSSAPhi.getNumIncomingValues() == 1) { 4332 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 4333 "Incoming value isn't loop invariant"); 4334 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 4335 } 4336 } 4337 } 4338 4339 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4340 // The basic block and loop containing the predicated instruction. 4341 auto *PredBB = PredInst->getParent(); 4342 auto *VectorLoop = LI->getLoopFor(PredBB); 4343 4344 // Initialize a worklist with the operands of the predicated instruction. 4345 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4346 4347 // Holds instructions that we need to analyze again. An instruction may be 4348 // reanalyzed if we don't yet know if we can sink it or not. 4349 SmallVector<Instruction *, 8> InstsToReanalyze; 4350 4351 // Returns true if a given use occurs in the predicated block. Phi nodes use 4352 // their operands in their corresponding predecessor blocks. 4353 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4354 auto *I = cast<Instruction>(U.getUser()); 4355 BasicBlock *BB = I->getParent(); 4356 if (auto *Phi = dyn_cast<PHINode>(I)) 4357 BB = Phi->getIncomingBlock( 4358 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4359 return BB == PredBB; 4360 }; 4361 4362 // Iteratively sink the scalarized operands of the predicated instruction 4363 // into the block we created for it. When an instruction is sunk, it's 4364 // operands are then added to the worklist. The algorithm ends after one pass 4365 // through the worklist doesn't sink a single instruction. 4366 bool Changed; 4367 do { 4368 // Add the instructions that need to be reanalyzed to the worklist, and 4369 // reset the changed indicator. 4370 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4371 InstsToReanalyze.clear(); 4372 Changed = false; 4373 4374 while (!Worklist.empty()) { 4375 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4376 4377 // We can't sink an instruction if it is a phi node, is already in the 4378 // predicated block, is not in the loop, or may have side effects. 4379 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4380 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4381 continue; 4382 4383 // It's legal to sink the instruction if all its uses occur in the 4384 // predicated block. Otherwise, there's nothing to do yet, and we may 4385 // need to reanalyze the instruction. 4386 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4387 InstsToReanalyze.push_back(I); 4388 continue; 4389 } 4390 4391 // Move the instruction to the beginning of the predicated block, and add 4392 // it's operands to the worklist. 4393 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4394 Worklist.insert(I->op_begin(), I->op_end()); 4395 4396 // The sinking may have enabled other instructions to be sunk, so we will 4397 // need to iterate. 4398 Changed = true; 4399 } 4400 } while (Changed); 4401 } 4402 4403 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4404 unsigned VF) { 4405 assert(PN->getParent() == OrigLoop->getHeader() && 4406 "Non-header phis should have been handled elsewhere"); 4407 4408 PHINode *P = cast<PHINode>(PN); 4409 // In order to support recurrences we need to be able to vectorize Phi nodes. 4410 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4411 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4412 // this value when we vectorize all of the instructions that use the PHI. 4413 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4414 for (unsigned Part = 0; Part < UF; ++Part) { 4415 // This is phase one of vectorizing PHIs. 4416 Type *VecTy = 4417 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4418 Value *EntryPart = PHINode::Create( 4419 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4420 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4421 } 4422 return; 4423 } 4424 4425 setDebugLocFromInst(Builder, P); 4426 4427 // This PHINode must be an induction variable. 4428 // Make sure that we know about it. 4429 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4430 4431 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4432 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4433 4434 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4435 // which can be found from the original scalar operations. 4436 switch (II.getKind()) { 4437 case InductionDescriptor::IK_NoInduction: 4438 llvm_unreachable("Unknown induction"); 4439 case InductionDescriptor::IK_IntInduction: 4440 case InductionDescriptor::IK_FpInduction: 4441 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4442 case InductionDescriptor::IK_PtrInduction: { 4443 // Handle the pointer induction variable case. 4444 assert(P->getType()->isPointerTy() && "Unexpected type."); 4445 // This is the normalized GEP that starts counting at zero. 4446 Value *PtrInd = Induction; 4447 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4448 // Determine the number of scalars we need to generate for each unroll 4449 // iteration. If the instruction is uniform, we only need to generate the 4450 // first lane. Otherwise, we generate all VF values. 4451 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4452 // These are the scalar results. Notice that we don't generate vector GEPs 4453 // because scalar GEPs result in better code. 4454 for (unsigned Part = 0; Part < UF; ++Part) { 4455 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4456 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4457 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4458 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4459 SclrGep->setName("next.gep"); 4460 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4461 } 4462 } 4463 return; 4464 } 4465 } 4466 } 4467 4468 /// A helper function for checking whether an integer division-related 4469 /// instruction may divide by zero (in which case it must be predicated if 4470 /// executed conditionally in the scalar code). 4471 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4472 /// Non-zero divisors that are non compile-time constants will not be 4473 /// converted into multiplication, so we will still end up scalarizing 4474 /// the division, but can do so w/o predication. 4475 static bool mayDivideByZero(Instruction &I) { 4476 assert((I.getOpcode() == Instruction::UDiv || 4477 I.getOpcode() == Instruction::SDiv || 4478 I.getOpcode() == Instruction::URem || 4479 I.getOpcode() == Instruction::SRem) && 4480 "Unexpected instruction"); 4481 Value *Divisor = I.getOperand(1); 4482 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4483 return !CInt || CInt->isZero(); 4484 } 4485 4486 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4487 switch (I.getOpcode()) { 4488 case Instruction::Br: 4489 case Instruction::PHI: 4490 llvm_unreachable("This instruction is handled by a different recipe."); 4491 case Instruction::GetElementPtr: { 4492 // Construct a vector GEP by widening the operands of the scalar GEP as 4493 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4494 // results in a vector of pointers when at least one operand of the GEP 4495 // is vector-typed. Thus, to keep the representation compact, we only use 4496 // vector-typed operands for loop-varying values. 4497 auto *GEP = cast<GetElementPtrInst>(&I); 4498 4499 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4500 // If we are vectorizing, but the GEP has only loop-invariant operands, 4501 // the GEP we build (by only using vector-typed operands for 4502 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4503 // produce a vector of pointers, we need to either arbitrarily pick an 4504 // operand to broadcast, or broadcast a clone of the original GEP. 4505 // Here, we broadcast a clone of the original. 4506 // 4507 // TODO: If at some point we decide to scalarize instructions having 4508 // loop-invariant operands, this special case will no longer be 4509 // required. We would add the scalarization decision to 4510 // collectLoopScalars() and teach getVectorValue() to broadcast 4511 // the lane-zero scalar value. 4512 auto *Clone = Builder.Insert(GEP->clone()); 4513 for (unsigned Part = 0; Part < UF; ++Part) { 4514 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4515 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4516 addMetadata(EntryPart, GEP); 4517 } 4518 } else { 4519 // If the GEP has at least one loop-varying operand, we are sure to 4520 // produce a vector of pointers. But if we are only unrolling, we want 4521 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4522 // produce with the code below will be scalar (if VF == 1) or vector 4523 // (otherwise). Note that for the unroll-only case, we still maintain 4524 // values in the vector mapping with initVector, as we do for other 4525 // instructions. 4526 for (unsigned Part = 0; Part < UF; ++Part) { 4527 // The pointer operand of the new GEP. If it's loop-invariant, we 4528 // won't broadcast it. 4529 auto *Ptr = 4530 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4531 ? GEP->getPointerOperand() 4532 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4533 4534 // Collect all the indices for the new GEP. If any index is 4535 // loop-invariant, we won't broadcast it. 4536 SmallVector<Value *, 4> Indices; 4537 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4538 if (OrigLoop->isLoopInvariant(U.get())) 4539 Indices.push_back(U.get()); 4540 else 4541 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4542 } 4543 4544 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4545 // but it should be a vector, otherwise. 4546 auto *NewGEP = GEP->isInBounds() 4547 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4548 : Builder.CreateGEP(Ptr, Indices); 4549 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4550 "NewGEP is not a pointer vector"); 4551 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4552 addMetadata(NewGEP, GEP); 4553 } 4554 } 4555 4556 break; 4557 } 4558 case Instruction::UDiv: 4559 case Instruction::SDiv: 4560 case Instruction::SRem: 4561 case Instruction::URem: 4562 case Instruction::Add: 4563 case Instruction::FAdd: 4564 case Instruction::Sub: 4565 case Instruction::FSub: 4566 case Instruction::Mul: 4567 case Instruction::FMul: 4568 case Instruction::FDiv: 4569 case Instruction::FRem: 4570 case Instruction::Shl: 4571 case Instruction::LShr: 4572 case Instruction::AShr: 4573 case Instruction::And: 4574 case Instruction::Or: 4575 case Instruction::Xor: { 4576 // Just widen binops. 4577 auto *BinOp = cast<BinaryOperator>(&I); 4578 setDebugLocFromInst(Builder, BinOp); 4579 4580 for (unsigned Part = 0; Part < UF; ++Part) { 4581 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4582 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4583 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4584 4585 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4586 VecOp->copyIRFlags(BinOp); 4587 4588 // Use this vector value for all users of the original instruction. 4589 VectorLoopValueMap.setVectorValue(&I, Part, V); 4590 addMetadata(V, BinOp); 4591 } 4592 4593 break; 4594 } 4595 case Instruction::Select: { 4596 // Widen selects. 4597 // If the selector is loop invariant we can create a select 4598 // instruction with a scalar condition. Otherwise, use vector-select. 4599 auto *SE = PSE.getSE(); 4600 bool InvariantCond = 4601 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4602 setDebugLocFromInst(Builder, &I); 4603 4604 // The condition can be loop invariant but still defined inside the 4605 // loop. This means that we can't just use the original 'cond' value. 4606 // We have to take the 'vectorized' value and pick the first lane. 4607 // Instcombine will make this a no-op. 4608 4609 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4610 4611 for (unsigned Part = 0; Part < UF; ++Part) { 4612 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4613 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4614 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4615 Value *Sel = 4616 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4617 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4618 addMetadata(Sel, &I); 4619 } 4620 4621 break; 4622 } 4623 4624 case Instruction::ICmp: 4625 case Instruction::FCmp: { 4626 // Widen compares. Generate vector compares. 4627 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4628 auto *Cmp = dyn_cast<CmpInst>(&I); 4629 setDebugLocFromInst(Builder, Cmp); 4630 for (unsigned Part = 0; Part < UF; ++Part) { 4631 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4632 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4633 Value *C = nullptr; 4634 if (FCmp) { 4635 // Propagate fast math flags. 4636 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4637 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4638 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4639 } else { 4640 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4641 } 4642 VectorLoopValueMap.setVectorValue(&I, Part, C); 4643 addMetadata(C, &I); 4644 } 4645 4646 break; 4647 } 4648 4649 case Instruction::ZExt: 4650 case Instruction::SExt: 4651 case Instruction::FPToUI: 4652 case Instruction::FPToSI: 4653 case Instruction::FPExt: 4654 case Instruction::PtrToInt: 4655 case Instruction::IntToPtr: 4656 case Instruction::SIToFP: 4657 case Instruction::UIToFP: 4658 case Instruction::Trunc: 4659 case Instruction::FPTrunc: 4660 case Instruction::BitCast: { 4661 auto *CI = dyn_cast<CastInst>(&I); 4662 setDebugLocFromInst(Builder, CI); 4663 4664 /// Vectorize casts. 4665 Type *DestTy = 4666 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4667 4668 for (unsigned Part = 0; Part < UF; ++Part) { 4669 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4670 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4671 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4672 addMetadata(Cast, &I); 4673 } 4674 break; 4675 } 4676 4677 case Instruction::Call: { 4678 // Ignore dbg intrinsics. 4679 if (isa<DbgInfoIntrinsic>(I)) 4680 break; 4681 setDebugLocFromInst(Builder, &I); 4682 4683 Module *M = I.getParent()->getParent()->getParent(); 4684 auto *CI = cast<CallInst>(&I); 4685 4686 StringRef FnName = CI->getCalledFunction()->getName(); 4687 Function *F = CI->getCalledFunction(); 4688 Type *RetTy = ToVectorTy(CI->getType(), VF); 4689 SmallVector<Type *, 4> Tys; 4690 for (Value *ArgOperand : CI->arg_operands()) 4691 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4692 4693 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4694 4695 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4696 // version of the instruction. 4697 // Is it beneficial to perform intrinsic call compared to lib call? 4698 bool NeedToScalarize; 4699 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4700 bool UseVectorIntrinsic = 4701 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4702 assert((UseVectorIntrinsic || !NeedToScalarize) && 4703 "Instruction should be scalarized elsewhere."); 4704 4705 for (unsigned Part = 0; Part < UF; ++Part) { 4706 SmallVector<Value *, 4> Args; 4707 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4708 Value *Arg = CI->getArgOperand(i); 4709 // Some intrinsics have a scalar argument - don't replace it with a 4710 // vector. 4711 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4712 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4713 Args.push_back(Arg); 4714 } 4715 4716 Function *VectorF; 4717 if (UseVectorIntrinsic) { 4718 // Use vector version of the intrinsic. 4719 Type *TysForDecl[] = {CI->getType()}; 4720 if (VF > 1) 4721 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4722 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4723 } else { 4724 // Use vector version of the library call. 4725 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4726 assert(!VFnName.empty() && "Vector function name is empty."); 4727 VectorF = M->getFunction(VFnName); 4728 if (!VectorF) { 4729 // Generate a declaration 4730 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4731 VectorF = 4732 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4733 VectorF->copyAttributesFrom(F); 4734 } 4735 } 4736 assert(VectorF && "Can't create vector function."); 4737 4738 SmallVector<OperandBundleDef, 1> OpBundles; 4739 CI->getOperandBundlesAsDefs(OpBundles); 4740 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4741 4742 if (isa<FPMathOperator>(V)) 4743 V->copyFastMathFlags(CI); 4744 4745 VectorLoopValueMap.setVectorValue(&I, Part, V); 4746 addMetadata(V, &I); 4747 } 4748 4749 break; 4750 } 4751 4752 default: 4753 // This instruction is not vectorized by simple widening. 4754 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4755 llvm_unreachable("Unhandled instruction!"); 4756 } // end of switch. 4757 } 4758 4759 void InnerLoopVectorizer::updateAnalysis() { 4760 // Forget the original basic block. 4761 PSE.getSE()->forgetLoop(OrigLoop); 4762 4763 // Update the dominator tree information. 4764 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4765 "Entry does not dominate exit."); 4766 4767 DT->addNewBlock(LoopMiddleBlock, 4768 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4769 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4770 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4771 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4772 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4773 } 4774 4775 /// \brief Check whether it is safe to if-convert this phi node. 4776 /// 4777 /// Phi nodes with constant expressions that can trap are not safe to if 4778 /// convert. 4779 static bool canIfConvertPHINodes(BasicBlock *BB) { 4780 for (PHINode &Phi : BB->phis()) { 4781 for (Value *V : Phi.incoming_values()) 4782 if (auto *C = dyn_cast<Constant>(V)) 4783 if (C->canTrap()) 4784 return false; 4785 } 4786 return true; 4787 } 4788 4789 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4790 if (!EnableIfConversion) { 4791 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4792 << "if-conversion is disabled"); 4793 return false; 4794 } 4795 4796 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4797 4798 // A list of pointers that we can safely read and write to. 4799 SmallPtrSet<Value *, 8> SafePointes; 4800 4801 // Collect safe addresses. 4802 for (BasicBlock *BB : TheLoop->blocks()) { 4803 if (blockNeedsPredication(BB)) 4804 continue; 4805 4806 for (Instruction &I : *BB) 4807 if (auto *Ptr = getLoadStorePointerOperand(&I)) 4808 SafePointes.insert(Ptr); 4809 } 4810 4811 // Collect the blocks that need predication. 4812 BasicBlock *Header = TheLoop->getHeader(); 4813 for (BasicBlock *BB : TheLoop->blocks()) { 4814 // We don't support switch statements inside loops. 4815 if (!isa<BranchInst>(BB->getTerminator())) { 4816 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4817 << "loop contains a switch statement"); 4818 return false; 4819 } 4820 4821 // We must be able to predicate all blocks that need to be predicated. 4822 if (blockNeedsPredication(BB)) { 4823 if (!blockCanBePredicated(BB, SafePointes)) { 4824 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4825 << "control flow cannot be substituted for a select"); 4826 return false; 4827 } 4828 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4829 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4830 << "control flow cannot be substituted for a select"); 4831 return false; 4832 } 4833 } 4834 4835 // We can if-convert this loop. 4836 return true; 4837 } 4838 4839 bool LoopVectorizationLegality::canVectorize() { 4840 // Store the result and return it at the end instead of exiting early, in case 4841 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4842 bool Result = true; 4843 4844 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 4845 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4846 // be canonicalized. 4847 if (!TheLoop->getLoopPreheader()) { 4848 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 4849 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4850 << "loop control flow is not understood by vectorizer"); 4851 if (DoExtraAnalysis) 4852 Result = false; 4853 else 4854 return false; 4855 } 4856 4857 // FIXME: The code is currently dead, since the loop gets sent to 4858 // LoopVectorizationLegality is already an innermost loop. 4859 // 4860 // We can only vectorize innermost loops. 4861 if (!TheLoop->empty()) { 4862 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4863 << "loop is not the innermost loop"); 4864 if (DoExtraAnalysis) 4865 Result = false; 4866 else 4867 return false; 4868 } 4869 4870 // We must have a single backedge. 4871 if (TheLoop->getNumBackEdges() != 1) { 4872 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4873 << "loop control flow is not understood by vectorizer"); 4874 if (DoExtraAnalysis) 4875 Result = false; 4876 else 4877 return false; 4878 } 4879 4880 // We must have a single exiting block. 4881 if (!TheLoop->getExitingBlock()) { 4882 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4883 << "loop control flow is not understood by vectorizer"); 4884 if (DoExtraAnalysis) 4885 Result = false; 4886 else 4887 return false; 4888 } 4889 4890 // We only handle bottom-tested loops, i.e. loop in which the condition is 4891 // checked at the end of each iteration. With that we can assume that all 4892 // instructions in the loop are executed the same number of times. 4893 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4894 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4895 << "loop control flow is not understood by vectorizer"); 4896 if (DoExtraAnalysis) 4897 Result = false; 4898 else 4899 return false; 4900 } 4901 4902 // We need to have a loop header. 4903 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4904 << '\n'); 4905 4906 // Check if we can if-convert non-single-bb loops. 4907 unsigned NumBlocks = TheLoop->getNumBlocks(); 4908 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4909 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4910 if (DoExtraAnalysis) 4911 Result = false; 4912 else 4913 return false; 4914 } 4915 4916 // Check if we can vectorize the instructions and CFG in this loop. 4917 if (!canVectorizeInstrs()) { 4918 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4919 if (DoExtraAnalysis) 4920 Result = false; 4921 else 4922 return false; 4923 } 4924 4925 // Go over each instruction and look at memory deps. 4926 if (!canVectorizeMemory()) { 4927 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4928 if (DoExtraAnalysis) 4929 Result = false; 4930 else 4931 return false; 4932 } 4933 4934 DEBUG(dbgs() << "LV: We can vectorize this loop" 4935 << (LAI->getRuntimePointerChecking()->Need 4936 ? " (with a runtime bound check)" 4937 : "") 4938 << "!\n"); 4939 4940 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4941 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4942 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4943 4944 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4945 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 4946 << "Too many SCEV assumptions need to be made and checked " 4947 << "at runtime"); 4948 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4949 if (DoExtraAnalysis) 4950 Result = false; 4951 else 4952 return false; 4953 } 4954 4955 // Okay! We've done all the tests. If any have failed, return false. Otherwise 4956 // we can vectorize, and at this point we don't have any other mem analysis 4957 // which may limit our maximum vectorization factor, so just return true with 4958 // no restrictions. 4959 return Result; 4960 } 4961 4962 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4963 if (Ty->isPointerTy()) 4964 return DL.getIntPtrType(Ty); 4965 4966 // It is possible that char's or short's overflow when we ask for the loop's 4967 // trip count, work around this by changing the type size. 4968 if (Ty->getScalarSizeInBits() < 32) 4969 return Type::getInt32Ty(Ty->getContext()); 4970 4971 return Ty; 4972 } 4973 4974 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4975 Ty0 = convertPointerToIntegerType(DL, Ty0); 4976 Ty1 = convertPointerToIntegerType(DL, Ty1); 4977 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4978 return Ty0; 4979 return Ty1; 4980 } 4981 4982 /// \brief Check that the instruction has outside loop users and is not an 4983 /// identified reduction variable. 4984 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4985 SmallPtrSetImpl<Value *> &AllowedExit) { 4986 // Reduction and Induction instructions are allowed to have exit users. All 4987 // other instructions must not have external users. 4988 if (!AllowedExit.count(Inst)) 4989 // Check that all of the users of the loop are inside the BB. 4990 for (User *U : Inst->users()) { 4991 Instruction *UI = cast<Instruction>(U); 4992 // This user may be a reduction exit value. 4993 if (!TheLoop->contains(UI)) { 4994 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4995 return true; 4996 } 4997 } 4998 return false; 4999 } 5000 5001 void LoopVectorizationLegality::addInductionPhi( 5002 PHINode *Phi, const InductionDescriptor &ID, 5003 SmallPtrSetImpl<Value *> &AllowedExit) { 5004 Inductions[Phi] = ID; 5005 5006 // In case this induction also comes with casts that we know we can ignore 5007 // in the vectorized loop body, record them here. All casts could be recorded 5008 // here for ignoring, but suffices to record only the first (as it is the 5009 // only one that may bw used outside the cast sequence). 5010 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5011 if (!Casts.empty()) 5012 InductionCastsToIgnore.insert(*Casts.begin()); 5013 5014 Type *PhiTy = Phi->getType(); 5015 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5016 5017 // Get the widest type. 5018 if (!PhiTy->isFloatingPointTy()) { 5019 if (!WidestIndTy) 5020 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5021 else 5022 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5023 } 5024 5025 // Int inductions are special because we only allow one IV. 5026 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5027 ID.getConstIntStepValue() && 5028 ID.getConstIntStepValue()->isOne() && 5029 isa<Constant>(ID.getStartValue()) && 5030 cast<Constant>(ID.getStartValue())->isNullValue()) { 5031 5032 // Use the phi node with the widest type as induction. Use the last 5033 // one if there are multiple (no good reason for doing this other 5034 // than it is expedient). We've checked that it begins at zero and 5035 // steps by one, so this is a canonical induction variable. 5036 if (!PrimaryInduction || PhiTy == WidestIndTy) 5037 PrimaryInduction = Phi; 5038 } 5039 5040 // Both the PHI node itself, and the "post-increment" value feeding 5041 // back into the PHI node may have external users. 5042 // We can allow those uses, except if the SCEVs we have for them rely 5043 // on predicates that only hold within the loop, since allowing the exit 5044 // currently means re-using this SCEV outside the loop. 5045 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5046 AllowedExit.insert(Phi); 5047 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5048 } 5049 5050 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5051 } 5052 5053 bool LoopVectorizationLegality::canVectorizeInstrs() { 5054 BasicBlock *Header = TheLoop->getHeader(); 5055 5056 // Look for the attribute signaling the absence of NaNs. 5057 Function &F = *Header->getParent(); 5058 HasFunNoNaNAttr = 5059 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5060 5061 // For each block in the loop. 5062 for (BasicBlock *BB : TheLoop->blocks()) { 5063 // Scan the instructions in the block and look for hazards. 5064 for (Instruction &I : *BB) { 5065 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5066 Type *PhiTy = Phi->getType(); 5067 // Check that this PHI type is allowed. 5068 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5069 !PhiTy->isPointerTy()) { 5070 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5071 << "loop control flow is not understood by vectorizer"); 5072 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5073 return false; 5074 } 5075 5076 // If this PHINode is not in the header block, then we know that we 5077 // can convert it to select during if-conversion. No need to check if 5078 // the PHIs in this block are induction or reduction variables. 5079 if (BB != Header) { 5080 // Check that this instruction has no outside users or is an 5081 // identified reduction value with an outside user. 5082 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5083 continue; 5084 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5085 << "value could not be identified as " 5086 "an induction or reduction variable"); 5087 return false; 5088 } 5089 5090 // We only allow if-converted PHIs with exactly two incoming values. 5091 if (Phi->getNumIncomingValues() != 2) { 5092 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5093 << "control flow not understood by vectorizer"); 5094 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5095 return false; 5096 } 5097 5098 RecurrenceDescriptor RedDes; 5099 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 5100 DT)) { 5101 if (RedDes.hasUnsafeAlgebra()) 5102 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5103 AllowedExit.insert(RedDes.getLoopExitInstr()); 5104 Reductions[Phi] = RedDes; 5105 continue; 5106 } 5107 5108 InductionDescriptor ID; 5109 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5110 addInductionPhi(Phi, ID, AllowedExit); 5111 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5112 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5113 continue; 5114 } 5115 5116 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5117 SinkAfter, DT)) { 5118 FirstOrderRecurrences.insert(Phi); 5119 continue; 5120 } 5121 5122 // As a last resort, coerce the PHI to a AddRec expression 5123 // and re-try classifying it a an induction PHI. 5124 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5125 addInductionPhi(Phi, ID, AllowedExit); 5126 continue; 5127 } 5128 5129 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5130 << "value that could not be identified as " 5131 "reduction is used outside the loop"); 5132 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5133 return false; 5134 } // end of PHI handling 5135 5136 // We handle calls that: 5137 // * Are debug info intrinsics. 5138 // * Have a mapping to an IR intrinsic. 5139 // * Have a vector version available. 5140 auto *CI = dyn_cast<CallInst>(&I); 5141 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5142 !isa<DbgInfoIntrinsic>(CI) && 5143 !(CI->getCalledFunction() && TLI && 5144 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5145 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5146 << "call instruction cannot be vectorized"); 5147 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5148 return false; 5149 } 5150 5151 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5152 // second argument is the same (i.e. loop invariant) 5153 if (CI && hasVectorInstrinsicScalarOpd( 5154 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5155 auto *SE = PSE.getSE(); 5156 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5157 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5158 << "intrinsic instruction cannot be vectorized"); 5159 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5160 return false; 5161 } 5162 } 5163 5164 // Check that the instruction return type is vectorizable. 5165 // Also, we can't vectorize extractelement instructions. 5166 if ((!VectorType::isValidElementType(I.getType()) && 5167 !I.getType()->isVoidTy()) || 5168 isa<ExtractElementInst>(I)) { 5169 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5170 << "instruction return type cannot be vectorized"); 5171 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5172 return false; 5173 } 5174 5175 // Check that the stored type is vectorizable. 5176 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5177 Type *T = ST->getValueOperand()->getType(); 5178 if (!VectorType::isValidElementType(T)) { 5179 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5180 << "store instruction cannot be vectorized"); 5181 return false; 5182 } 5183 5184 // FP instructions can allow unsafe algebra, thus vectorizable by 5185 // non-IEEE-754 compliant SIMD units. 5186 // This applies to floating-point math operations and calls, not memory 5187 // operations, shuffles, or casts, as they don't change precision or 5188 // semantics. 5189 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5190 !I.isFast()) { 5191 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5192 Hints->setPotentiallyUnsafe(); 5193 } 5194 5195 // Reduction instructions are allowed to have exit users. 5196 // All other instructions must not have external users. 5197 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5198 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5199 << "value cannot be used outside the loop"); 5200 return false; 5201 } 5202 } // next instr. 5203 } 5204 5205 if (!PrimaryInduction) { 5206 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5207 if (Inductions.empty()) { 5208 ORE->emit(createMissedAnalysis("NoInductionVariable") 5209 << "loop induction variable could not be identified"); 5210 return false; 5211 } 5212 } 5213 5214 // Now we know the widest induction type, check if our found induction 5215 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5216 // will create another. 5217 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5218 PrimaryInduction = nullptr; 5219 5220 return true; 5221 } 5222 5223 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5224 // We should not collect Scalars more than once per VF. Right now, this 5225 // function is called from collectUniformsAndScalars(), which already does 5226 // this check. Collecting Scalars for VF=1 does not make any sense. 5227 assert(VF >= 2 && !Scalars.count(VF) && 5228 "This function should not be visited twice for the same VF"); 5229 5230 SmallSetVector<Instruction *, 8> Worklist; 5231 5232 // These sets are used to seed the analysis with pointers used by memory 5233 // accesses that will remain scalar. 5234 SmallSetVector<Instruction *, 8> ScalarPtrs; 5235 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5236 5237 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5238 // The pointer operands of loads and stores will be scalar as long as the 5239 // memory access is not a gather or scatter operation. The value operand of a 5240 // store will remain scalar if the store is scalarized. 5241 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5242 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5243 assert(WideningDecision != CM_Unknown && 5244 "Widening decision should be ready at this moment"); 5245 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5246 if (Ptr == Store->getValueOperand()) 5247 return WideningDecision == CM_Scalarize; 5248 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5249 "Ptr is neither a value or pointer operand"); 5250 return WideningDecision != CM_GatherScatter; 5251 }; 5252 5253 // A helper that returns true if the given value is a bitcast or 5254 // getelementptr instruction contained in the loop. 5255 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5256 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5257 isa<GetElementPtrInst>(V)) && 5258 !TheLoop->isLoopInvariant(V); 5259 }; 5260 5261 // A helper that evaluates a memory access's use of a pointer. If the use 5262 // will be a scalar use, and the pointer is only used by memory accesses, we 5263 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5264 // PossibleNonScalarPtrs. 5265 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5266 // We only care about bitcast and getelementptr instructions contained in 5267 // the loop. 5268 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5269 return; 5270 5271 // If the pointer has already been identified as scalar (e.g., if it was 5272 // also identified as uniform), there's nothing to do. 5273 auto *I = cast<Instruction>(Ptr); 5274 if (Worklist.count(I)) 5275 return; 5276 5277 // If the use of the pointer will be a scalar use, and all users of the 5278 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5279 // place the pointer in PossibleNonScalarPtrs. 5280 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5281 return isa<LoadInst>(U) || isa<StoreInst>(U); 5282 })) 5283 ScalarPtrs.insert(I); 5284 else 5285 PossibleNonScalarPtrs.insert(I); 5286 }; 5287 5288 // We seed the scalars analysis with three classes of instructions: (1) 5289 // instructions marked uniform-after-vectorization, (2) bitcast and 5290 // getelementptr instructions used by memory accesses requiring a scalar use, 5291 // and (3) pointer induction variables and their update instructions (we 5292 // currently only scalarize these). 5293 // 5294 // (1) Add to the worklist all instructions that have been identified as 5295 // uniform-after-vectorization. 5296 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5297 5298 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5299 // memory accesses requiring a scalar use. The pointer operands of loads and 5300 // stores will be scalar as long as the memory accesses is not a gather or 5301 // scatter operation. The value operand of a store will remain scalar if the 5302 // store is scalarized. 5303 for (auto *BB : TheLoop->blocks()) 5304 for (auto &I : *BB) { 5305 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5306 evaluatePtrUse(Load, Load->getPointerOperand()); 5307 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5308 evaluatePtrUse(Store, Store->getPointerOperand()); 5309 evaluatePtrUse(Store, Store->getValueOperand()); 5310 } 5311 } 5312 for (auto *I : ScalarPtrs) 5313 if (!PossibleNonScalarPtrs.count(I)) { 5314 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5315 Worklist.insert(I); 5316 } 5317 5318 // (3) Add to the worklist all pointer induction variables and their update 5319 // instructions. 5320 // 5321 // TODO: Once we are able to vectorize pointer induction variables we should 5322 // no longer insert them into the worklist here. 5323 auto *Latch = TheLoop->getLoopLatch(); 5324 for (auto &Induction : *Legal->getInductionVars()) { 5325 auto *Ind = Induction.first; 5326 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5327 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5328 continue; 5329 Worklist.insert(Ind); 5330 Worklist.insert(IndUpdate); 5331 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5332 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5333 } 5334 5335 // Insert the forced scalars. 5336 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5337 // induction variable when the PHI user is scalarized. 5338 if (ForcedScalars.count(VF)) 5339 for (auto *I : ForcedScalars.find(VF)->second) 5340 Worklist.insert(I); 5341 5342 // Expand the worklist by looking through any bitcasts and getelementptr 5343 // instructions we've already identified as scalar. This is similar to the 5344 // expansion step in collectLoopUniforms(); however, here we're only 5345 // expanding to include additional bitcasts and getelementptr instructions. 5346 unsigned Idx = 0; 5347 while (Idx != Worklist.size()) { 5348 Instruction *Dst = Worklist[Idx++]; 5349 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5350 continue; 5351 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5352 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5353 auto *J = cast<Instruction>(U); 5354 return !TheLoop->contains(J) || Worklist.count(J) || 5355 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5356 isScalarUse(J, Src)); 5357 })) { 5358 Worklist.insert(Src); 5359 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5360 } 5361 } 5362 5363 // An induction variable will remain scalar if all users of the induction 5364 // variable and induction variable update remain scalar. 5365 for (auto &Induction : *Legal->getInductionVars()) { 5366 auto *Ind = Induction.first; 5367 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5368 5369 // We already considered pointer induction variables, so there's no reason 5370 // to look at their users again. 5371 // 5372 // TODO: Once we are able to vectorize pointer induction variables we 5373 // should no longer skip over them here. 5374 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5375 continue; 5376 5377 // Determine if all users of the induction variable are scalar after 5378 // vectorization. 5379 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5380 auto *I = cast<Instruction>(U); 5381 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5382 }); 5383 if (!ScalarInd) 5384 continue; 5385 5386 // Determine if all users of the induction variable update instruction are 5387 // scalar after vectorization. 5388 auto ScalarIndUpdate = 5389 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5390 auto *I = cast<Instruction>(U); 5391 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5392 }); 5393 if (!ScalarIndUpdate) 5394 continue; 5395 5396 // The induction variable and its update instruction will remain scalar. 5397 Worklist.insert(Ind); 5398 Worklist.insert(IndUpdate); 5399 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5400 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5401 } 5402 5403 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5404 } 5405 5406 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) { 5407 if (!Legal->blockNeedsPredication(I->getParent())) 5408 return false; 5409 switch(I->getOpcode()) { 5410 default: 5411 break; 5412 case Instruction::Load: 5413 case Instruction::Store: { 5414 if (!Legal->isMaskRequired(I)) 5415 return false; 5416 auto *Ptr = getLoadStorePointerOperand(I); 5417 auto *Ty = getMemInstValueType(I); 5418 return isa<LoadInst>(I) ? 5419 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 5420 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 5421 } 5422 case Instruction::UDiv: 5423 case Instruction::SDiv: 5424 case Instruction::SRem: 5425 case Instruction::URem: 5426 return mayDivideByZero(*I); 5427 } 5428 return false; 5429 } 5430 5431 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 5432 unsigned VF) { 5433 // Get and ensure we have a valid memory instruction. 5434 LoadInst *LI = dyn_cast<LoadInst>(I); 5435 StoreInst *SI = dyn_cast<StoreInst>(I); 5436 assert((LI || SI) && "Invalid memory instruction"); 5437 5438 auto *Ptr = getLoadStorePointerOperand(I); 5439 5440 // In order to be widened, the pointer should be consecutive, first of all. 5441 if (!Legal->isConsecutivePtr(Ptr)) 5442 return false; 5443 5444 // If the instruction is a store located in a predicated block, it will be 5445 // scalarized. 5446 if (isScalarWithPredication(I)) 5447 return false; 5448 5449 // If the instruction's allocated size doesn't equal it's type size, it 5450 // requires padding and will be scalarized. 5451 auto &DL = I->getModule()->getDataLayout(); 5452 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5453 if (hasIrregularType(ScalarTy, DL, VF)) 5454 return false; 5455 5456 return true; 5457 } 5458 5459 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5460 // We should not collect Uniforms more than once per VF. Right now, 5461 // this function is called from collectUniformsAndScalars(), which 5462 // already does this check. Collecting Uniforms for VF=1 does not make any 5463 // sense. 5464 5465 assert(VF >= 2 && !Uniforms.count(VF) && 5466 "This function should not be visited twice for the same VF"); 5467 5468 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5469 // not analyze again. Uniforms.count(VF) will return 1. 5470 Uniforms[VF].clear(); 5471 5472 // We now know that the loop is vectorizable! 5473 // Collect instructions inside the loop that will remain uniform after 5474 // vectorization. 5475 5476 // Global values, params and instructions outside of current loop are out of 5477 // scope. 5478 auto isOutOfScope = [&](Value *V) -> bool { 5479 Instruction *I = dyn_cast<Instruction>(V); 5480 return (!I || !TheLoop->contains(I)); 5481 }; 5482 5483 SetVector<Instruction *> Worklist; 5484 BasicBlock *Latch = TheLoop->getLoopLatch(); 5485 5486 // Start with the conditional branch. If the branch condition is an 5487 // instruction contained in the loop that is only used by the branch, it is 5488 // uniform. 5489 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5490 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5491 Worklist.insert(Cmp); 5492 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5493 } 5494 5495 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5496 // are pointers that are treated like consecutive pointers during 5497 // vectorization. The pointer operands of interleaved accesses are an 5498 // example. 5499 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5500 5501 // Holds pointer operands of instructions that are possibly non-uniform. 5502 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5503 5504 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5505 InstWidening WideningDecision = getWideningDecision(I, VF); 5506 assert(WideningDecision != CM_Unknown && 5507 "Widening decision should be ready at this moment"); 5508 5509 return (WideningDecision == CM_Widen || 5510 WideningDecision == CM_Widen_Reverse || 5511 WideningDecision == CM_Interleave); 5512 }; 5513 // Iterate over the instructions in the loop, and collect all 5514 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5515 // that a consecutive-like pointer operand will be scalarized, we collect it 5516 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5517 // getelementptr instruction can be used by both vectorized and scalarized 5518 // memory instructions. For example, if a loop loads and stores from the same 5519 // location, but the store is conditional, the store will be scalarized, and 5520 // the getelementptr won't remain uniform. 5521 for (auto *BB : TheLoop->blocks()) 5522 for (auto &I : *BB) { 5523 // If there's no pointer operand, there's nothing to do. 5524 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5525 if (!Ptr) 5526 continue; 5527 5528 // True if all users of Ptr are memory accesses that have Ptr as their 5529 // pointer operand. 5530 auto UsersAreMemAccesses = 5531 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5532 return getLoadStorePointerOperand(U) == Ptr; 5533 }); 5534 5535 // Ensure the memory instruction will not be scalarized or used by 5536 // gather/scatter, making its pointer operand non-uniform. If the pointer 5537 // operand is used by any instruction other than a memory access, we 5538 // conservatively assume the pointer operand may be non-uniform. 5539 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5540 PossibleNonUniformPtrs.insert(Ptr); 5541 5542 // If the memory instruction will be vectorized and its pointer operand 5543 // is consecutive-like, or interleaving - the pointer operand should 5544 // remain uniform. 5545 else 5546 ConsecutiveLikePtrs.insert(Ptr); 5547 } 5548 5549 // Add to the Worklist all consecutive and consecutive-like pointers that 5550 // aren't also identified as possibly non-uniform. 5551 for (auto *V : ConsecutiveLikePtrs) 5552 if (!PossibleNonUniformPtrs.count(V)) { 5553 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5554 Worklist.insert(V); 5555 } 5556 5557 // Expand Worklist in topological order: whenever a new instruction 5558 // is added , its users should be either already inside Worklist, or 5559 // out of scope. It ensures a uniform instruction will only be used 5560 // by uniform instructions or out of scope instructions. 5561 unsigned idx = 0; 5562 while (idx != Worklist.size()) { 5563 Instruction *I = Worklist[idx++]; 5564 5565 for (auto OV : I->operand_values()) { 5566 if (isOutOfScope(OV)) 5567 continue; 5568 auto *OI = cast<Instruction>(OV); 5569 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5570 auto *J = cast<Instruction>(U); 5571 return !TheLoop->contains(J) || Worklist.count(J) || 5572 (OI == getLoadStorePointerOperand(J) && 5573 isUniformDecision(J, VF)); 5574 })) { 5575 Worklist.insert(OI); 5576 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5577 } 5578 } 5579 } 5580 5581 // Returns true if Ptr is the pointer operand of a memory access instruction 5582 // I, and I is known to not require scalarization. 5583 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5584 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5585 }; 5586 5587 // For an instruction to be added into Worklist above, all its users inside 5588 // the loop should also be in Worklist. However, this condition cannot be 5589 // true for phi nodes that form a cyclic dependence. We must process phi 5590 // nodes separately. An induction variable will remain uniform if all users 5591 // of the induction variable and induction variable update remain uniform. 5592 // The code below handles both pointer and non-pointer induction variables. 5593 for (auto &Induction : *Legal->getInductionVars()) { 5594 auto *Ind = Induction.first; 5595 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5596 5597 // Determine if all users of the induction variable are uniform after 5598 // vectorization. 5599 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5600 auto *I = cast<Instruction>(U); 5601 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5602 isVectorizedMemAccessUse(I, Ind); 5603 }); 5604 if (!UniformInd) 5605 continue; 5606 5607 // Determine if all users of the induction variable update instruction are 5608 // uniform after vectorization. 5609 auto UniformIndUpdate = 5610 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5611 auto *I = cast<Instruction>(U); 5612 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5613 isVectorizedMemAccessUse(I, IndUpdate); 5614 }); 5615 if (!UniformIndUpdate) 5616 continue; 5617 5618 // The induction variable and its update instruction will remain uniform. 5619 Worklist.insert(Ind); 5620 Worklist.insert(IndUpdate); 5621 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5622 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5623 } 5624 5625 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5626 } 5627 5628 bool LoopVectorizationLegality::canVectorizeMemory() { 5629 LAI = &(*GetLAA)(*TheLoop); 5630 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5631 if (LAR) { 5632 ORE->emit([&]() { 5633 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5634 "loop not vectorized: ", *LAR); 5635 }); 5636 } 5637 if (!LAI->canVectorizeMemory()) 5638 return false; 5639 5640 if (LAI->hasStoreToLoopInvariantAddress()) { 5641 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5642 << "write to a loop invariant address could not be vectorized"); 5643 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5644 return false; 5645 } 5646 5647 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5648 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5649 5650 return true; 5651 } 5652 5653 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5654 Value *In0 = const_cast<Value *>(V); 5655 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5656 if (!PN) 5657 return false; 5658 5659 return Inductions.count(PN); 5660 } 5661 5662 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5663 auto *Inst = dyn_cast<Instruction>(V); 5664 return (Inst && InductionCastsToIgnore.count(Inst)); 5665 } 5666 5667 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5668 return isInductionPhi(V) || isCastedInductionVariable(V); 5669 } 5670 5671 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5672 return FirstOrderRecurrences.count(Phi); 5673 } 5674 5675 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5676 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5677 } 5678 5679 bool LoopVectorizationLegality::blockCanBePredicated( 5680 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5681 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5682 5683 for (Instruction &I : *BB) { 5684 // Check that we don't have a constant expression that can trap as operand. 5685 for (Value *Operand : I.operands()) { 5686 if (auto *C = dyn_cast<Constant>(Operand)) 5687 if (C->canTrap()) 5688 return false; 5689 } 5690 // We might be able to hoist the load. 5691 if (I.mayReadFromMemory()) { 5692 auto *LI = dyn_cast<LoadInst>(&I); 5693 if (!LI) 5694 return false; 5695 if (!SafePtrs.count(LI->getPointerOperand())) { 5696 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5697 // Otherwise, record that the load needs (real or emulated) masking 5698 // and let the cost model decide. 5699 if (!IsAnnotatedParallel) 5700 MaskedOp.insert(LI); 5701 continue; 5702 } 5703 } 5704 5705 if (I.mayWriteToMemory()) { 5706 auto *SI = dyn_cast<StoreInst>(&I); 5707 if (!SI) 5708 return false; 5709 // Predicated store requires some form of masking: 5710 // 1) masked store HW instruction, 5711 // 2) emulation via load-blend-store (only if safe and legal to do so, 5712 // be aware on the race conditions), or 5713 // 3) element-by-element predicate check and scalar store. 5714 MaskedOp.insert(SI); 5715 continue; 5716 } 5717 if (I.mayThrow()) 5718 return false; 5719 } 5720 5721 return true; 5722 } 5723 5724 void InterleavedAccessInfo::collectConstStrideAccesses( 5725 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5726 const ValueToValueMap &Strides) { 5727 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5728 5729 // Since it's desired that the load/store instructions be maintained in 5730 // "program order" for the interleaved access analysis, we have to visit the 5731 // blocks in the loop in reverse postorder (i.e., in a topological order). 5732 // Such an ordering will ensure that any load/store that may be executed 5733 // before a second load/store will precede the second load/store in 5734 // AccessStrideInfo. 5735 LoopBlocksDFS DFS(TheLoop); 5736 DFS.perform(LI); 5737 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5738 for (auto &I : *BB) { 5739 auto *LI = dyn_cast<LoadInst>(&I); 5740 auto *SI = dyn_cast<StoreInst>(&I); 5741 if (!LI && !SI) 5742 continue; 5743 5744 Value *Ptr = getLoadStorePointerOperand(&I); 5745 // We don't check wrapping here because we don't know yet if Ptr will be 5746 // part of a full group or a group with gaps. Checking wrapping for all 5747 // pointers (even those that end up in groups with no gaps) will be overly 5748 // conservative. For full groups, wrapping should be ok since if we would 5749 // wrap around the address space we would do a memory access at nullptr 5750 // even without the transformation. The wrapping checks are therefore 5751 // deferred until after we've formed the interleaved groups. 5752 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5753 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5754 5755 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5756 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5757 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5758 5759 // An alignment of 0 means target ABI alignment. 5760 unsigned Align = getMemInstAlignment(&I); 5761 if (!Align) 5762 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5763 5764 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5765 } 5766 } 5767 5768 // Analyze interleaved accesses and collect them into interleaved load and 5769 // store groups. 5770 // 5771 // When generating code for an interleaved load group, we effectively hoist all 5772 // loads in the group to the location of the first load in program order. When 5773 // generating code for an interleaved store group, we sink all stores to the 5774 // location of the last store. This code motion can change the order of load 5775 // and store instructions and may break dependences. 5776 // 5777 // The code generation strategy mentioned above ensures that we won't violate 5778 // any write-after-read (WAR) dependences. 5779 // 5780 // E.g., for the WAR dependence: a = A[i]; // (1) 5781 // A[i] = b; // (2) 5782 // 5783 // The store group of (2) is always inserted at or below (2), and the load 5784 // group of (1) is always inserted at or above (1). Thus, the instructions will 5785 // never be reordered. All other dependences are checked to ensure the 5786 // correctness of the instruction reordering. 5787 // 5788 // The algorithm visits all memory accesses in the loop in bottom-up program 5789 // order. Program order is established by traversing the blocks in the loop in 5790 // reverse postorder when collecting the accesses. 5791 // 5792 // We visit the memory accesses in bottom-up order because it can simplify the 5793 // construction of store groups in the presence of write-after-write (WAW) 5794 // dependences. 5795 // 5796 // E.g., for the WAW dependence: A[i] = a; // (1) 5797 // A[i] = b; // (2) 5798 // A[i + 1] = c; // (3) 5799 // 5800 // We will first create a store group with (3) and (2). (1) can't be added to 5801 // this group because it and (2) are dependent. However, (1) can be grouped 5802 // with other accesses that may precede it in program order. Note that a 5803 // bottom-up order does not imply that WAW dependences should not be checked. 5804 void InterleavedAccessInfo::analyzeInterleaving() { 5805 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5806 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 5807 5808 // Holds all accesses with a constant stride. 5809 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5810 collectConstStrideAccesses(AccessStrideInfo, Strides); 5811 5812 if (AccessStrideInfo.empty()) 5813 return; 5814 5815 // Collect the dependences in the loop. 5816 collectDependences(); 5817 5818 // Holds all interleaved store groups temporarily. 5819 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5820 // Holds all interleaved load groups temporarily. 5821 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5822 5823 // Search in bottom-up program order for pairs of accesses (A and B) that can 5824 // form interleaved load or store groups. In the algorithm below, access A 5825 // precedes access B in program order. We initialize a group for B in the 5826 // outer loop of the algorithm, and then in the inner loop, we attempt to 5827 // insert each A into B's group if: 5828 // 5829 // 1. A and B have the same stride, 5830 // 2. A and B have the same memory object size, and 5831 // 3. A belongs in B's group according to its distance from B. 5832 // 5833 // Special care is taken to ensure group formation will not break any 5834 // dependences. 5835 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5836 BI != E; ++BI) { 5837 Instruction *B = BI->first; 5838 StrideDescriptor DesB = BI->second; 5839 5840 // Initialize a group for B if it has an allowable stride. Even if we don't 5841 // create a group for B, we continue with the bottom-up algorithm to ensure 5842 // we don't break any of B's dependences. 5843 InterleaveGroup *Group = nullptr; 5844 if (isStrided(DesB.Stride)) { 5845 Group = getInterleaveGroup(B); 5846 if (!Group) { 5847 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5848 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5849 } 5850 if (B->mayWriteToMemory()) 5851 StoreGroups.insert(Group); 5852 else 5853 LoadGroups.insert(Group); 5854 } 5855 5856 for (auto AI = std::next(BI); AI != E; ++AI) { 5857 Instruction *A = AI->first; 5858 StrideDescriptor DesA = AI->second; 5859 5860 // Our code motion strategy implies that we can't have dependences 5861 // between accesses in an interleaved group and other accesses located 5862 // between the first and last member of the group. Note that this also 5863 // means that a group can't have more than one member at a given offset. 5864 // The accesses in a group can have dependences with other accesses, but 5865 // we must ensure we don't extend the boundaries of the group such that 5866 // we encompass those dependent accesses. 5867 // 5868 // For example, assume we have the sequence of accesses shown below in a 5869 // stride-2 loop: 5870 // 5871 // (1, 2) is a group | A[i] = a; // (1) 5872 // | A[i-1] = b; // (2) | 5873 // A[i-3] = c; // (3) 5874 // A[i] = d; // (4) | (2, 4) is not a group 5875 // 5876 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5877 // but not with (4). If we did, the dependent access (3) would be within 5878 // the boundaries of the (2, 4) group. 5879 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5880 // If a dependence exists and A is already in a group, we know that A 5881 // must be a store since A precedes B and WAR dependences are allowed. 5882 // Thus, A would be sunk below B. We release A's group to prevent this 5883 // illegal code motion. A will then be free to form another group with 5884 // instructions that precede it. 5885 if (isInterleaved(A)) { 5886 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5887 StoreGroups.remove(StoreGroup); 5888 releaseGroup(StoreGroup); 5889 } 5890 5891 // If a dependence exists and A is not already in a group (or it was 5892 // and we just released it), B might be hoisted above A (if B is a 5893 // load) or another store might be sunk below A (if B is a store). In 5894 // either case, we can't add additional instructions to B's group. B 5895 // will only form a group with instructions that it precedes. 5896 break; 5897 } 5898 5899 // At this point, we've checked for illegal code motion. If either A or B 5900 // isn't strided, there's nothing left to do. 5901 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5902 continue; 5903 5904 // Ignore A if it's already in a group or isn't the same kind of memory 5905 // operation as B. 5906 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory 5907 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() 5908 // should have returned false - except for the case we asked for optimization 5909 // remarks. 5910 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) 5911 || (A->mayWriteToMemory() != B->mayWriteToMemory())) 5912 continue; 5913 5914 // Check rules 1 and 2. Ignore A if its stride or size is different from 5915 // that of B. 5916 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5917 continue; 5918 5919 // Ignore A if the memory object of A and B don't belong to the same 5920 // address space 5921 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 5922 continue; 5923 5924 // Calculate the distance from A to B. 5925 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5926 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5927 if (!DistToB) 5928 continue; 5929 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5930 5931 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5932 // size. 5933 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5934 continue; 5935 5936 // Ignore A if either A or B is in a predicated block. Although we 5937 // currently prevent group formation for predicated accesses, we may be 5938 // able to relax this limitation in the future once we handle more 5939 // complicated blocks. 5940 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5941 continue; 5942 5943 // The index of A is the index of B plus A's distance to B in multiples 5944 // of the size. 5945 int IndexA = 5946 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5947 5948 // Try to insert A into B's group. 5949 if (Group->insertMember(A, IndexA, DesA.Align)) { 5950 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5951 << " into the interleave group with" << *B << '\n'); 5952 InterleaveGroupMap[A] = Group; 5953 5954 // Set the first load in program order as the insert position. 5955 if (A->mayReadFromMemory()) 5956 Group->setInsertPos(A); 5957 } 5958 } // Iteration over A accesses. 5959 } // Iteration over B accesses. 5960 5961 // Remove interleaved store groups with gaps. 5962 for (InterleaveGroup *Group : StoreGroups) 5963 if (Group->getNumMembers() != Group->getFactor()) { 5964 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 5965 "to gaps.\n"); 5966 releaseGroup(Group); 5967 } 5968 // Remove interleaved groups with gaps (currently only loads) whose memory 5969 // accesses may wrap around. We have to revisit the getPtrStride analysis, 5970 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 5971 // not check wrapping (see documentation there). 5972 // FORNOW we use Assume=false; 5973 // TODO: Change to Assume=true but making sure we don't exceed the threshold 5974 // of runtime SCEV assumptions checks (thereby potentially failing to 5975 // vectorize altogether). 5976 // Additional optional optimizations: 5977 // TODO: If we are peeling the loop and we know that the first pointer doesn't 5978 // wrap then we can deduce that all pointers in the group don't wrap. 5979 // This means that we can forcefully peel the loop in order to only have to 5980 // check the first pointer for no-wrap. When we'll change to use Assume=true 5981 // we'll only need at most one runtime check per interleaved group. 5982 for (InterleaveGroup *Group : LoadGroups) { 5983 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 5984 // load would wrap around the address space we would do a memory access at 5985 // nullptr even without the transformation. 5986 if (Group->getNumMembers() == Group->getFactor()) 5987 continue; 5988 5989 // Case 2: If first and last members of the group don't wrap this implies 5990 // that all the pointers in the group don't wrap. 5991 // So we check only group member 0 (which is always guaranteed to exist), 5992 // and group member Factor - 1; If the latter doesn't exist we rely on 5993 // peeling (if it is a non-reveresed accsess -- see Case 3). 5994 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 5995 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 5996 /*ShouldCheckWrap=*/true)) { 5997 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 5998 "first group member potentially pointer-wrapping.\n"); 5999 releaseGroup(Group); 6000 continue; 6001 } 6002 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6003 if (LastMember) { 6004 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 6005 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6006 /*ShouldCheckWrap=*/true)) { 6007 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6008 "last group member potentially pointer-wrapping.\n"); 6009 releaseGroup(Group); 6010 } 6011 } else { 6012 // Case 3: A non-reversed interleaved load group with gaps: We need 6013 // to execute at least one scalar epilogue iteration. This will ensure 6014 // we don't speculatively access memory out-of-bounds. We only need 6015 // to look for a member at index factor - 1, since every group must have 6016 // a member at index zero. 6017 if (Group->isReverse()) { 6018 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6019 "a reverse access with gaps.\n"); 6020 releaseGroup(Group); 6021 continue; 6022 } 6023 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6024 RequiresScalarEpilogue = true; 6025 } 6026 } 6027 } 6028 6029 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6030 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6031 // TODO: It may by useful to do since it's still likely to be dynamically 6032 // uniform if the target can skip. 6033 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6034 6035 ORE->emit( 6036 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6037 << "runtime pointer checks needed. Not enabled for divergent target"); 6038 6039 return None; 6040 } 6041 6042 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6043 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6044 return computeFeasibleMaxVF(OptForSize, TC); 6045 6046 if (Legal->getRuntimePointerChecking()->Need) { 6047 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6048 << "runtime pointer checks needed. Enable vectorization of this " 6049 "loop with '#pragma clang loop vectorize(enable)' when " 6050 "compiling with -Os/-Oz"); 6051 DEBUG(dbgs() 6052 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6053 return None; 6054 } 6055 6056 // If we optimize the program for size, avoid creating the tail loop. 6057 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6058 6059 // If we don't know the precise trip count, don't try to vectorize. 6060 if (TC < 2) { 6061 ORE->emit( 6062 createMissedAnalysis("UnknownLoopCountComplexCFG") 6063 << "unable to calculate the loop count due to complex control flow"); 6064 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6065 return None; 6066 } 6067 6068 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6069 6070 if (TC % MaxVF != 0) { 6071 // If the trip count that we found modulo the vectorization factor is not 6072 // zero then we require a tail. 6073 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6074 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6075 // smaller MaxVF that does not require a scalar epilog. 6076 6077 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6078 << "cannot optimize for size and vectorize at the " 6079 "same time. Enable vectorization of this loop " 6080 "with '#pragma clang loop vectorize(enable)' " 6081 "when compiling with -Os/-Oz"); 6082 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6083 return None; 6084 } 6085 6086 return MaxVF; 6087 } 6088 6089 unsigned 6090 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6091 unsigned ConstTripCount) { 6092 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6093 unsigned SmallestType, WidestType; 6094 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6095 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6096 6097 // Get the maximum safe dependence distance in bits computed by LAA. 6098 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6099 // the memory accesses that is most restrictive (involved in the smallest 6100 // dependence distance). 6101 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6102 6103 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6104 6105 unsigned MaxVectorSize = WidestRegister / WidestType; 6106 6107 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6108 << WidestType << " bits.\n"); 6109 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6110 << " bits.\n"); 6111 6112 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6113 " into one vector!"); 6114 if (MaxVectorSize == 0) { 6115 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6116 MaxVectorSize = 1; 6117 return MaxVectorSize; 6118 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6119 isPowerOf2_32(ConstTripCount)) { 6120 // We need to clamp the VF to be the ConstTripCount. There is no point in 6121 // choosing a higher viable VF as done in the loop below. 6122 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6123 << ConstTripCount << "\n"); 6124 MaxVectorSize = ConstTripCount; 6125 return MaxVectorSize; 6126 } 6127 6128 unsigned MaxVF = MaxVectorSize; 6129 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 6130 (MaximizeBandwidth && !OptForSize)) { 6131 // Collect all viable vectorization factors larger than the default MaxVF 6132 // (i.e. MaxVectorSize). 6133 SmallVector<unsigned, 8> VFs; 6134 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6135 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6136 VFs.push_back(VS); 6137 6138 // For each VF calculate its register usage. 6139 auto RUs = calculateRegisterUsage(VFs); 6140 6141 // Select the largest VF which doesn't require more registers than existing 6142 // ones. 6143 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6144 for (int i = RUs.size() - 1; i >= 0; --i) { 6145 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6146 MaxVF = VFs[i]; 6147 break; 6148 } 6149 } 6150 } 6151 return MaxVF; 6152 } 6153 6154 VectorizationFactor 6155 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6156 float Cost = expectedCost(1).first; 6157 const float ScalarCost = Cost; 6158 unsigned Width = 1; 6159 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6160 6161 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6162 // Ignore scalar width, because the user explicitly wants vectorization. 6163 if (ForceVectorization && MaxVF > 1) { 6164 Width = 2; 6165 Cost = expectedCost(Width).first / (float)Width; 6166 } 6167 6168 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6169 // Notice that the vector loop needs to be executed less times, so 6170 // we need to divide the cost of the vector loops by the width of 6171 // the vector elements. 6172 VectorizationCostTy C = expectedCost(i); 6173 float VectorCost = C.first / (float)i; 6174 DEBUG(dbgs() << "LV: Vector loop of width " << i 6175 << " costs: " << (int)VectorCost << ".\n"); 6176 if (!C.second && !ForceVectorization) { 6177 DEBUG( 6178 dbgs() << "LV: Not considering vector loop of width " << i 6179 << " because it will not generate any vector instructions.\n"); 6180 continue; 6181 } 6182 if (VectorCost < Cost) { 6183 Cost = VectorCost; 6184 Width = i; 6185 } 6186 } 6187 6188 if (!EnableCondStoresVectorization && NumPredStores) { 6189 ORE->emit(createMissedAnalysis("ConditionalStore") 6190 << "store that is conditionally executed prevents vectorization"); 6191 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6192 Width = 1; 6193 Cost = ScalarCost; 6194 } 6195 6196 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6197 << "LV: Vectorization seems to be not beneficial, " 6198 << "but was forced by a user.\n"); 6199 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6200 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6201 return Factor; 6202 } 6203 6204 std::pair<unsigned, unsigned> 6205 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6206 unsigned MinWidth = -1U; 6207 unsigned MaxWidth = 8; 6208 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6209 6210 // For each block. 6211 for (BasicBlock *BB : TheLoop->blocks()) { 6212 // For each instruction in the loop. 6213 for (Instruction &I : *BB) { 6214 Type *T = I.getType(); 6215 6216 // Skip ignored values. 6217 if (ValuesToIgnore.count(&I)) 6218 continue; 6219 6220 // Only examine Loads, Stores and PHINodes. 6221 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6222 continue; 6223 6224 // Examine PHI nodes that are reduction variables. Update the type to 6225 // account for the recurrence type. 6226 if (auto *PN = dyn_cast<PHINode>(&I)) { 6227 if (!Legal->isReductionVariable(PN)) 6228 continue; 6229 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6230 T = RdxDesc.getRecurrenceType(); 6231 } 6232 6233 // Examine the stored values. 6234 if (auto *ST = dyn_cast<StoreInst>(&I)) 6235 T = ST->getValueOperand()->getType(); 6236 6237 // Ignore loaded pointer types and stored pointer types that are not 6238 // vectorizable. 6239 // 6240 // FIXME: The check here attempts to predict whether a load or store will 6241 // be vectorized. We only know this for certain after a VF has 6242 // been selected. Here, we assume that if an access can be 6243 // vectorized, it will be. We should also look at extending this 6244 // optimization to non-pointer types. 6245 // 6246 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6247 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6248 continue; 6249 6250 MinWidth = std::min(MinWidth, 6251 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6252 MaxWidth = std::max(MaxWidth, 6253 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6254 } 6255 } 6256 6257 return {MinWidth, MaxWidth}; 6258 } 6259 6260 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6261 unsigned VF, 6262 unsigned LoopCost) { 6263 // -- The interleave heuristics -- 6264 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6265 // There are many micro-architectural considerations that we can't predict 6266 // at this level. For example, frontend pressure (on decode or fetch) due to 6267 // code size, or the number and capabilities of the execution ports. 6268 // 6269 // We use the following heuristics to select the interleave count: 6270 // 1. If the code has reductions, then we interleave to break the cross 6271 // iteration dependency. 6272 // 2. If the loop is really small, then we interleave to reduce the loop 6273 // overhead. 6274 // 3. We don't interleave if we think that we will spill registers to memory 6275 // due to the increased register pressure. 6276 6277 // When we optimize for size, we don't interleave. 6278 if (OptForSize) 6279 return 1; 6280 6281 // We used the distance for the interleave count. 6282 if (Legal->getMaxSafeDepDistBytes() != -1U) 6283 return 1; 6284 6285 // Do not interleave loops with a relatively small trip count. 6286 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6287 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6288 return 1; 6289 6290 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6291 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6292 << " registers\n"); 6293 6294 if (VF == 1) { 6295 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6296 TargetNumRegisters = ForceTargetNumScalarRegs; 6297 } else { 6298 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6299 TargetNumRegisters = ForceTargetNumVectorRegs; 6300 } 6301 6302 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6303 // We divide by these constants so assume that we have at least one 6304 // instruction that uses at least one register. 6305 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6306 6307 // We calculate the interleave count using the following formula. 6308 // Subtract the number of loop invariants from the number of available 6309 // registers. These registers are used by all of the interleaved instances. 6310 // Next, divide the remaining registers by the number of registers that is 6311 // required by the loop, in order to estimate how many parallel instances 6312 // fit without causing spills. All of this is rounded down if necessary to be 6313 // a power of two. We want power of two interleave count to simplify any 6314 // addressing operations or alignment considerations. 6315 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6316 R.MaxLocalUsers); 6317 6318 // Don't count the induction variable as interleaved. 6319 if (EnableIndVarRegisterHeur) 6320 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6321 std::max(1U, (R.MaxLocalUsers - 1))); 6322 6323 // Clamp the interleave ranges to reasonable counts. 6324 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6325 6326 // Check if the user has overridden the max. 6327 if (VF == 1) { 6328 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6329 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6330 } else { 6331 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6332 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6333 } 6334 6335 // If we did not calculate the cost for VF (because the user selected the VF) 6336 // then we calculate the cost of VF here. 6337 if (LoopCost == 0) 6338 LoopCost = expectedCost(VF).first; 6339 6340 // Clamp the calculated IC to be between the 1 and the max interleave count 6341 // that the target allows. 6342 if (IC > MaxInterleaveCount) 6343 IC = MaxInterleaveCount; 6344 else if (IC < 1) 6345 IC = 1; 6346 6347 // Interleave if we vectorized this loop and there is a reduction that could 6348 // benefit from interleaving. 6349 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6350 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6351 return IC; 6352 } 6353 6354 // Note that if we've already vectorized the loop we will have done the 6355 // runtime check and so interleaving won't require further checks. 6356 bool InterleavingRequiresRuntimePointerCheck = 6357 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6358 6359 // We want to interleave small loops in order to reduce the loop overhead and 6360 // potentially expose ILP opportunities. 6361 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6362 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6363 // We assume that the cost overhead is 1 and we use the cost model 6364 // to estimate the cost of the loop and interleave until the cost of the 6365 // loop overhead is about 5% of the cost of the loop. 6366 unsigned SmallIC = 6367 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6368 6369 // Interleave until store/load ports (estimated by max interleave count) are 6370 // saturated. 6371 unsigned NumStores = Legal->getNumStores(); 6372 unsigned NumLoads = Legal->getNumLoads(); 6373 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6374 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6375 6376 // If we have a scalar reduction (vector reductions are already dealt with 6377 // by this point), we can increase the critical path length if the loop 6378 // we're interleaving is inside another loop. Limit, by default to 2, so the 6379 // critical path only gets increased by one reduction operation. 6380 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6381 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6382 SmallIC = std::min(SmallIC, F); 6383 StoresIC = std::min(StoresIC, F); 6384 LoadsIC = std::min(LoadsIC, F); 6385 } 6386 6387 if (EnableLoadStoreRuntimeInterleave && 6388 std::max(StoresIC, LoadsIC) > SmallIC) { 6389 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6390 return std::max(StoresIC, LoadsIC); 6391 } 6392 6393 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6394 return SmallIC; 6395 } 6396 6397 // Interleave if this is a large loop (small loops are already dealt with by 6398 // this point) that could benefit from interleaving. 6399 bool HasReductions = !Legal->getReductionVars()->empty(); 6400 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6401 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6402 return IC; 6403 } 6404 6405 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6406 return 1; 6407 } 6408 6409 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6410 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6411 // This function calculates the register usage by measuring the highest number 6412 // of values that are alive at a single location. Obviously, this is a very 6413 // rough estimation. We scan the loop in a topological order in order and 6414 // assign a number to each instruction. We use RPO to ensure that defs are 6415 // met before their users. We assume that each instruction that has in-loop 6416 // users starts an interval. We record every time that an in-loop value is 6417 // used, so we have a list of the first and last occurrences of each 6418 // instruction. Next, we transpose this data structure into a multi map that 6419 // holds the list of intervals that *end* at a specific location. This multi 6420 // map allows us to perform a linear search. We scan the instructions linearly 6421 // and record each time that a new interval starts, by placing it in a set. 6422 // If we find this value in the multi-map then we remove it from the set. 6423 // The max register usage is the maximum size of the set. 6424 // We also search for instructions that are defined outside the loop, but are 6425 // used inside the loop. We need this number separately from the max-interval 6426 // usage number because when we unroll, loop-invariant values do not take 6427 // more register. 6428 LoopBlocksDFS DFS(TheLoop); 6429 DFS.perform(LI); 6430 6431 RegisterUsage RU; 6432 6433 // Each 'key' in the map opens a new interval. The values 6434 // of the map are the index of the 'last seen' usage of the 6435 // instruction that is the key. 6436 using IntervalMap = DenseMap<Instruction *, unsigned>; 6437 6438 // Maps instruction to its index. 6439 DenseMap<unsigned, Instruction *> IdxToInstr; 6440 // Marks the end of each interval. 6441 IntervalMap EndPoint; 6442 // Saves the list of instruction indices that are used in the loop. 6443 SmallSet<Instruction *, 8> Ends; 6444 // Saves the list of values that are used in the loop but are 6445 // defined outside the loop, such as arguments and constants. 6446 SmallPtrSet<Value *, 8> LoopInvariants; 6447 6448 unsigned Index = 0; 6449 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6450 for (Instruction &I : *BB) { 6451 IdxToInstr[Index++] = &I; 6452 6453 // Save the end location of each USE. 6454 for (Value *U : I.operands()) { 6455 auto *Instr = dyn_cast<Instruction>(U); 6456 6457 // Ignore non-instruction values such as arguments, constants, etc. 6458 if (!Instr) 6459 continue; 6460 6461 // If this instruction is outside the loop then record it and continue. 6462 if (!TheLoop->contains(Instr)) { 6463 LoopInvariants.insert(Instr); 6464 continue; 6465 } 6466 6467 // Overwrite previous end points. 6468 EndPoint[Instr] = Index; 6469 Ends.insert(Instr); 6470 } 6471 } 6472 } 6473 6474 // Saves the list of intervals that end with the index in 'key'. 6475 using InstrList = SmallVector<Instruction *, 2>; 6476 DenseMap<unsigned, InstrList> TransposeEnds; 6477 6478 // Transpose the EndPoints to a list of values that end at each index. 6479 for (auto &Interval : EndPoint) 6480 TransposeEnds[Interval.second].push_back(Interval.first); 6481 6482 SmallSet<Instruction *, 8> OpenIntervals; 6483 6484 // Get the size of the widest register. 6485 unsigned MaxSafeDepDist = -1U; 6486 if (Legal->getMaxSafeDepDistBytes() != -1U) 6487 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6488 unsigned WidestRegister = 6489 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6490 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6491 6492 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6493 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6494 6495 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6496 6497 // A lambda that gets the register usage for the given type and VF. 6498 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6499 if (Ty->isTokenTy()) 6500 return 0U; 6501 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6502 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6503 }; 6504 6505 for (unsigned int i = 0; i < Index; ++i) { 6506 Instruction *I = IdxToInstr[i]; 6507 6508 // Remove all of the instructions that end at this location. 6509 InstrList &List = TransposeEnds[i]; 6510 for (Instruction *ToRemove : List) 6511 OpenIntervals.erase(ToRemove); 6512 6513 // Ignore instructions that are never used within the loop. 6514 if (!Ends.count(I)) 6515 continue; 6516 6517 // Skip ignored values. 6518 if (ValuesToIgnore.count(I)) 6519 continue; 6520 6521 // For each VF find the maximum usage of registers. 6522 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6523 if (VFs[j] == 1) { 6524 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6525 continue; 6526 } 6527 collectUniformsAndScalars(VFs[j]); 6528 // Count the number of live intervals. 6529 unsigned RegUsage = 0; 6530 for (auto Inst : OpenIntervals) { 6531 // Skip ignored values for VF > 1. 6532 if (VecValuesToIgnore.count(Inst) || 6533 isScalarAfterVectorization(Inst, VFs[j])) 6534 continue; 6535 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6536 } 6537 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6538 } 6539 6540 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6541 << OpenIntervals.size() << '\n'); 6542 6543 // Add the current instruction to the list of open intervals. 6544 OpenIntervals.insert(I); 6545 } 6546 6547 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6548 unsigned Invariant = 0; 6549 if (VFs[i] == 1) 6550 Invariant = LoopInvariants.size(); 6551 else { 6552 for (auto Inst : LoopInvariants) 6553 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6554 } 6555 6556 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6557 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6558 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6559 6560 RU.LoopInvariantRegs = Invariant; 6561 RU.MaxLocalUsers = MaxUsages[i]; 6562 RUs[i] = RU; 6563 } 6564 6565 return RUs; 6566 } 6567 6568 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6569 // TODO: Cost model for emulated masked load/store is completely 6570 // broken. This hack guides the cost model to use an artificially 6571 // high enough value to practically disable vectorization with such 6572 // operations, except where previously deployed legality hack allowed 6573 // using very low cost values. This is to avoid regressions coming simply 6574 // from moving "masked load/store" check from legality to cost model. 6575 // Masked Load/Gather emulation was previously never allowed. 6576 // Limited number of Masked Store/Scatter emulation was allowed. 6577 assert(isScalarWithPredication(I) && 6578 "Expecting a scalar emulated instruction"); 6579 return isa<LoadInst>(I) || 6580 (isa<StoreInst>(I) && 6581 NumPredStores > NumberOfStoresToPredicate); 6582 } 6583 6584 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6585 // If we aren't vectorizing the loop, or if we've already collected the 6586 // instructions to scalarize, there's nothing to do. Collection may already 6587 // have occurred if we have a user-selected VF and are now computing the 6588 // expected cost for interleaving. 6589 if (VF < 2 || InstsToScalarize.count(VF)) 6590 return; 6591 6592 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6593 // not profitable to scalarize any instructions, the presence of VF in the 6594 // map will indicate that we've analyzed it already. 6595 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6596 6597 // Find all the instructions that are scalar with predication in the loop and 6598 // determine if it would be better to not if-convert the blocks they are in. 6599 // If so, we also record the instructions to scalarize. 6600 for (BasicBlock *BB : TheLoop->blocks()) { 6601 if (!Legal->blockNeedsPredication(BB)) 6602 continue; 6603 for (Instruction &I : *BB) 6604 if (isScalarWithPredication(&I)) { 6605 ScalarCostsTy ScalarCosts; 6606 // Do not apply discount logic if hacked cost is needed 6607 // for emulated masked memrefs. 6608 if (!useEmulatedMaskMemRefHack(&I) && 6609 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6610 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6611 // Remember that BB will remain after vectorization. 6612 PredicatedBBsAfterVectorization.insert(BB); 6613 } 6614 } 6615 } 6616 6617 int LoopVectorizationCostModel::computePredInstDiscount( 6618 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6619 unsigned VF) { 6620 assert(!isUniformAfterVectorization(PredInst, VF) && 6621 "Instruction marked uniform-after-vectorization will be predicated"); 6622 6623 // Initialize the discount to zero, meaning that the scalar version and the 6624 // vector version cost the same. 6625 int Discount = 0; 6626 6627 // Holds instructions to analyze. The instructions we visit are mapped in 6628 // ScalarCosts. Those instructions are the ones that would be scalarized if 6629 // we find that the scalar version costs less. 6630 SmallVector<Instruction *, 8> Worklist; 6631 6632 // Returns true if the given instruction can be scalarized. 6633 auto canBeScalarized = [&](Instruction *I) -> bool { 6634 // We only attempt to scalarize instructions forming a single-use chain 6635 // from the original predicated block that would otherwise be vectorized. 6636 // Although not strictly necessary, we give up on instructions we know will 6637 // already be scalar to avoid traversing chains that are unlikely to be 6638 // beneficial. 6639 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6640 isScalarAfterVectorization(I, VF)) 6641 return false; 6642 6643 // If the instruction is scalar with predication, it will be analyzed 6644 // separately. We ignore it within the context of PredInst. 6645 if (isScalarWithPredication(I)) 6646 return false; 6647 6648 // If any of the instruction's operands are uniform after vectorization, 6649 // the instruction cannot be scalarized. This prevents, for example, a 6650 // masked load from being scalarized. 6651 // 6652 // We assume we will only emit a value for lane zero of an instruction 6653 // marked uniform after vectorization, rather than VF identical values. 6654 // Thus, if we scalarize an instruction that uses a uniform, we would 6655 // create uses of values corresponding to the lanes we aren't emitting code 6656 // for. This behavior can be changed by allowing getScalarValue to clone 6657 // the lane zero values for uniforms rather than asserting. 6658 for (Use &U : I->operands()) 6659 if (auto *J = dyn_cast<Instruction>(U.get())) 6660 if (isUniformAfterVectorization(J, VF)) 6661 return false; 6662 6663 // Otherwise, we can scalarize the instruction. 6664 return true; 6665 }; 6666 6667 // Returns true if an operand that cannot be scalarized must be extracted 6668 // from a vector. We will account for this scalarization overhead below. Note 6669 // that the non-void predicated instructions are placed in their own blocks, 6670 // and their return values are inserted into vectors. Thus, an extract would 6671 // still be required. 6672 auto needsExtract = [&](Instruction *I) -> bool { 6673 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6674 }; 6675 6676 // Compute the expected cost discount from scalarizing the entire expression 6677 // feeding the predicated instruction. We currently only consider expressions 6678 // that are single-use instruction chains. 6679 Worklist.push_back(PredInst); 6680 while (!Worklist.empty()) { 6681 Instruction *I = Worklist.pop_back_val(); 6682 6683 // If we've already analyzed the instruction, there's nothing to do. 6684 if (ScalarCosts.count(I)) 6685 continue; 6686 6687 // Compute the cost of the vector instruction. Note that this cost already 6688 // includes the scalarization overhead of the predicated instruction. 6689 unsigned VectorCost = getInstructionCost(I, VF).first; 6690 6691 // Compute the cost of the scalarized instruction. This cost is the cost of 6692 // the instruction as if it wasn't if-converted and instead remained in the 6693 // predicated block. We will scale this cost by block probability after 6694 // computing the scalarization overhead. 6695 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6696 6697 // Compute the scalarization overhead of needed insertelement instructions 6698 // and phi nodes. 6699 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6700 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6701 true, false); 6702 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6703 } 6704 6705 // Compute the scalarization overhead of needed extractelement 6706 // instructions. For each of the instruction's operands, if the operand can 6707 // be scalarized, add it to the worklist; otherwise, account for the 6708 // overhead. 6709 for (Use &U : I->operands()) 6710 if (auto *J = dyn_cast<Instruction>(U.get())) { 6711 assert(VectorType::isValidElementType(J->getType()) && 6712 "Instruction has non-scalar type"); 6713 if (canBeScalarized(J)) 6714 Worklist.push_back(J); 6715 else if (needsExtract(J)) 6716 ScalarCost += TTI.getScalarizationOverhead( 6717 ToVectorTy(J->getType(),VF), false, true); 6718 } 6719 6720 // Scale the total scalar cost by block probability. 6721 ScalarCost /= getReciprocalPredBlockProb(); 6722 6723 // Compute the discount. A non-negative discount means the vector version 6724 // of the instruction costs more, and scalarizing would be beneficial. 6725 Discount += VectorCost - ScalarCost; 6726 ScalarCosts[I] = ScalarCost; 6727 } 6728 6729 return Discount; 6730 } 6731 6732 LoopVectorizationCostModel::VectorizationCostTy 6733 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6734 VectorizationCostTy Cost; 6735 6736 // For each block. 6737 for (BasicBlock *BB : TheLoop->blocks()) { 6738 VectorizationCostTy BlockCost; 6739 6740 // For each instruction in the old loop. 6741 for (Instruction &I : *BB) { 6742 // Skip dbg intrinsics. 6743 if (isa<DbgInfoIntrinsic>(I)) 6744 continue; 6745 6746 // Skip ignored values. 6747 if (ValuesToIgnore.count(&I) || 6748 (VF > 1 && VecValuesToIgnore.count(&I))) 6749 continue; 6750 6751 VectorizationCostTy C = getInstructionCost(&I, VF); 6752 6753 // Check if we should override the cost. 6754 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6755 C.first = ForceTargetInstructionCost; 6756 6757 BlockCost.first += C.first; 6758 BlockCost.second |= C.second; 6759 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6760 << VF << " For instruction: " << I << '\n'); 6761 } 6762 6763 // If we are vectorizing a predicated block, it will have been 6764 // if-converted. This means that the block's instructions (aside from 6765 // stores and instructions that may divide by zero) will now be 6766 // unconditionally executed. For the scalar case, we may not always execute 6767 // the predicated block. Thus, scale the block's cost by the probability of 6768 // executing it. 6769 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6770 BlockCost.first /= getReciprocalPredBlockProb(); 6771 6772 Cost.first += BlockCost.first; 6773 Cost.second |= BlockCost.second; 6774 } 6775 6776 return Cost; 6777 } 6778 6779 /// \brief Gets Address Access SCEV after verifying that the access pattern 6780 /// is loop invariant except the induction variable dependence. 6781 /// 6782 /// This SCEV can be sent to the Target in order to estimate the address 6783 /// calculation cost. 6784 static const SCEV *getAddressAccessSCEV( 6785 Value *Ptr, 6786 LoopVectorizationLegality *Legal, 6787 PredicatedScalarEvolution &PSE, 6788 const Loop *TheLoop) { 6789 6790 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6791 if (!Gep) 6792 return nullptr; 6793 6794 // We are looking for a gep with all loop invariant indices except for one 6795 // which should be an induction variable. 6796 auto SE = PSE.getSE(); 6797 unsigned NumOperands = Gep->getNumOperands(); 6798 for (unsigned i = 1; i < NumOperands; ++i) { 6799 Value *Opd = Gep->getOperand(i); 6800 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6801 !Legal->isInductionVariable(Opd)) 6802 return nullptr; 6803 } 6804 6805 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6806 return PSE.getSCEV(Ptr); 6807 } 6808 6809 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6810 return Legal->hasStride(I->getOperand(0)) || 6811 Legal->hasStride(I->getOperand(1)); 6812 } 6813 6814 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6815 unsigned VF) { 6816 Type *ValTy = getMemInstValueType(I); 6817 auto SE = PSE.getSE(); 6818 6819 unsigned Alignment = getMemInstAlignment(I); 6820 unsigned AS = getMemInstAddressSpace(I); 6821 Value *Ptr = getLoadStorePointerOperand(I); 6822 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6823 6824 // Figure out whether the access is strided and get the stride value 6825 // if it's known in compile time 6826 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6827 6828 // Get the cost of the scalar memory instruction and address computation. 6829 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6830 6831 Cost += VF * 6832 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6833 AS, I); 6834 6835 // Get the overhead of the extractelement and insertelement instructions 6836 // we might create due to scalarization. 6837 Cost += getScalarizationOverhead(I, VF, TTI); 6838 6839 // If we have a predicated store, it may not be executed for each vector 6840 // lane. Scale the cost by the probability of executing the predicated 6841 // block. 6842 if (isScalarWithPredication(I)) { 6843 Cost /= getReciprocalPredBlockProb(); 6844 6845 if (useEmulatedMaskMemRefHack(I)) 6846 // Artificially setting to a high enough value to practically disable 6847 // vectorization with such operations. 6848 Cost = 3000000; 6849 } 6850 6851 return Cost; 6852 } 6853 6854 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6855 unsigned VF) { 6856 Type *ValTy = getMemInstValueType(I); 6857 Type *VectorTy = ToVectorTy(ValTy, VF); 6858 unsigned Alignment = getMemInstAlignment(I); 6859 Value *Ptr = getLoadStorePointerOperand(I); 6860 unsigned AS = getMemInstAddressSpace(I); 6861 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6862 6863 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6864 "Stride should be 1 or -1 for consecutive memory access"); 6865 unsigned Cost = 0; 6866 if (Legal->isMaskRequired(I)) 6867 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6868 else 6869 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6870 6871 bool Reverse = ConsecutiveStride < 0; 6872 if (Reverse) 6873 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6874 return Cost; 6875 } 6876 6877 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6878 unsigned VF) { 6879 LoadInst *LI = cast<LoadInst>(I); 6880 Type *ValTy = LI->getType(); 6881 Type *VectorTy = ToVectorTy(ValTy, VF); 6882 unsigned Alignment = LI->getAlignment(); 6883 unsigned AS = LI->getPointerAddressSpace(); 6884 6885 return TTI.getAddressComputationCost(ValTy) + 6886 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6887 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6888 } 6889 6890 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6891 unsigned VF) { 6892 Type *ValTy = getMemInstValueType(I); 6893 Type *VectorTy = ToVectorTy(ValTy, VF); 6894 unsigned Alignment = getMemInstAlignment(I); 6895 Value *Ptr = getLoadStorePointerOperand(I); 6896 6897 return TTI.getAddressComputationCost(VectorTy) + 6898 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6899 Legal->isMaskRequired(I), Alignment); 6900 } 6901 6902 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6903 unsigned VF) { 6904 Type *ValTy = getMemInstValueType(I); 6905 Type *VectorTy = ToVectorTy(ValTy, VF); 6906 unsigned AS = getMemInstAddressSpace(I); 6907 6908 auto Group = getInterleavedAccessGroup(I); 6909 assert(Group && "Fail to get an interleaved access group."); 6910 6911 unsigned InterleaveFactor = Group->getFactor(); 6912 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6913 6914 // Holds the indices of existing members in an interleaved load group. 6915 // An interleaved store group doesn't need this as it doesn't allow gaps. 6916 SmallVector<unsigned, 4> Indices; 6917 if (isa<LoadInst>(I)) { 6918 for (unsigned i = 0; i < InterleaveFactor; i++) 6919 if (Group->getMember(i)) 6920 Indices.push_back(i); 6921 } 6922 6923 // Calculate the cost of the whole interleaved group. 6924 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 6925 Group->getFactor(), Indices, 6926 Group->getAlignment(), AS); 6927 6928 if (Group->isReverse()) 6929 Cost += Group->getNumMembers() * 6930 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6931 return Cost; 6932 } 6933 6934 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6935 unsigned VF) { 6936 // Calculate scalar cost only. Vectorization cost should be ready at this 6937 // moment. 6938 if (VF == 1) { 6939 Type *ValTy = getMemInstValueType(I); 6940 unsigned Alignment = getMemInstAlignment(I); 6941 unsigned AS = getMemInstAddressSpace(I); 6942 6943 return TTI.getAddressComputationCost(ValTy) + 6944 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 6945 } 6946 return getWideningCost(I, VF); 6947 } 6948 6949 LoopVectorizationCostModel::VectorizationCostTy 6950 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6951 // If we know that this instruction will remain uniform, check the cost of 6952 // the scalar version. 6953 if (isUniformAfterVectorization(I, VF)) 6954 VF = 1; 6955 6956 if (VF > 1 && isProfitableToScalarize(I, VF)) 6957 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6958 6959 // Forced scalars do not have any scalarization overhead. 6960 if (VF > 1 && ForcedScalars.count(VF) && 6961 ForcedScalars.find(VF)->second.count(I)) 6962 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6963 6964 Type *VectorTy; 6965 unsigned C = getInstructionCost(I, VF, VectorTy); 6966 6967 bool TypeNotScalarized = 6968 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6969 return VectorizationCostTy(C, TypeNotScalarized); 6970 } 6971 6972 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6973 if (VF == 1) 6974 return; 6975 NumPredStores = 0; 6976 for (BasicBlock *BB : TheLoop->blocks()) { 6977 // For each instruction in the old loop. 6978 for (Instruction &I : *BB) { 6979 Value *Ptr = getLoadStorePointerOperand(&I); 6980 if (!Ptr) 6981 continue; 6982 6983 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6984 NumPredStores++; 6985 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 6986 // Scalar load + broadcast 6987 unsigned Cost = getUniformMemOpCost(&I, VF); 6988 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6989 continue; 6990 } 6991 6992 // We assume that widening is the best solution when possible. 6993 if (memoryInstructionCanBeWidened(&I, VF)) { 6994 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6995 int ConsecutiveStride = 6996 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6997 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6998 "Expected consecutive stride."); 6999 InstWidening Decision = 7000 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7001 setWideningDecision(&I, VF, Decision, Cost); 7002 continue; 7003 } 7004 7005 // Choose between Interleaving, Gather/Scatter or Scalarization. 7006 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7007 unsigned NumAccesses = 1; 7008 if (isAccessInterleaved(&I)) { 7009 auto Group = getInterleavedAccessGroup(&I); 7010 assert(Group && "Fail to get an interleaved access group."); 7011 7012 // Make one decision for the whole group. 7013 if (getWideningDecision(&I, VF) != CM_Unknown) 7014 continue; 7015 7016 NumAccesses = Group->getNumMembers(); 7017 InterleaveCost = getInterleaveGroupCost(&I, VF); 7018 } 7019 7020 unsigned GatherScatterCost = 7021 isLegalGatherOrScatter(&I) 7022 ? getGatherScatterCost(&I, VF) * NumAccesses 7023 : std::numeric_limits<unsigned>::max(); 7024 7025 unsigned ScalarizationCost = 7026 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7027 7028 // Choose better solution for the current VF, 7029 // write down this decision and use it during vectorization. 7030 unsigned Cost; 7031 InstWidening Decision; 7032 if (InterleaveCost <= GatherScatterCost && 7033 InterleaveCost < ScalarizationCost) { 7034 Decision = CM_Interleave; 7035 Cost = InterleaveCost; 7036 } else if (GatherScatterCost < ScalarizationCost) { 7037 Decision = CM_GatherScatter; 7038 Cost = GatherScatterCost; 7039 } else { 7040 Decision = CM_Scalarize; 7041 Cost = ScalarizationCost; 7042 } 7043 // If the instructions belongs to an interleave group, the whole group 7044 // receives the same decision. The whole group receives the cost, but 7045 // the cost will actually be assigned to one instruction. 7046 if (auto Group = getInterleavedAccessGroup(&I)) 7047 setWideningDecision(Group, VF, Decision, Cost); 7048 else 7049 setWideningDecision(&I, VF, Decision, Cost); 7050 } 7051 } 7052 7053 // Make sure that any load of address and any other address computation 7054 // remains scalar unless there is gather/scatter support. This avoids 7055 // inevitable extracts into address registers, and also has the benefit of 7056 // activating LSR more, since that pass can't optimize vectorized 7057 // addresses. 7058 if (TTI.prefersVectorizedAddressing()) 7059 return; 7060 7061 // Start with all scalar pointer uses. 7062 SmallPtrSet<Instruction *, 8> AddrDefs; 7063 for (BasicBlock *BB : TheLoop->blocks()) 7064 for (Instruction &I : *BB) { 7065 Instruction *PtrDef = 7066 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7067 if (PtrDef && TheLoop->contains(PtrDef) && 7068 getWideningDecision(&I, VF) != CM_GatherScatter) 7069 AddrDefs.insert(PtrDef); 7070 } 7071 7072 // Add all instructions used to generate the addresses. 7073 SmallVector<Instruction *, 4> Worklist; 7074 for (auto *I : AddrDefs) 7075 Worklist.push_back(I); 7076 while (!Worklist.empty()) { 7077 Instruction *I = Worklist.pop_back_val(); 7078 for (auto &Op : I->operands()) 7079 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7080 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7081 AddrDefs.insert(InstOp).second) 7082 Worklist.push_back(InstOp); 7083 } 7084 7085 for (auto *I : AddrDefs) { 7086 if (isa<LoadInst>(I)) { 7087 // Setting the desired widening decision should ideally be handled in 7088 // by cost functions, but since this involves the task of finding out 7089 // if the loaded register is involved in an address computation, it is 7090 // instead changed here when we know this is the case. 7091 InstWidening Decision = getWideningDecision(I, VF); 7092 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7093 // Scalarize a widened load of address. 7094 setWideningDecision(I, VF, CM_Scalarize, 7095 (VF * getMemoryInstructionCost(I, 1))); 7096 else if (auto Group = getInterleavedAccessGroup(I)) { 7097 // Scalarize an interleave group of address loads. 7098 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7099 if (Instruction *Member = Group->getMember(I)) 7100 setWideningDecision(Member, VF, CM_Scalarize, 7101 (VF * getMemoryInstructionCost(Member, 1))); 7102 } 7103 } 7104 } else 7105 // Make sure I gets scalarized and a cost estimate without 7106 // scalarization overhead. 7107 ForcedScalars[VF].insert(I); 7108 } 7109 } 7110 7111 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7112 unsigned VF, 7113 Type *&VectorTy) { 7114 Type *RetTy = I->getType(); 7115 if (canTruncateToMinimalBitwidth(I, VF)) 7116 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7117 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7118 auto SE = PSE.getSE(); 7119 7120 // TODO: We need to estimate the cost of intrinsic calls. 7121 switch (I->getOpcode()) { 7122 case Instruction::GetElementPtr: 7123 // We mark this instruction as zero-cost because the cost of GEPs in 7124 // vectorized code depends on whether the corresponding memory instruction 7125 // is scalarized or not. Therefore, we handle GEPs with the memory 7126 // instruction cost. 7127 return 0; 7128 case Instruction::Br: { 7129 // In cases of scalarized and predicated instructions, there will be VF 7130 // predicated blocks in the vectorized loop. Each branch around these 7131 // blocks requires also an extract of its vector compare i1 element. 7132 bool ScalarPredicatedBB = false; 7133 BranchInst *BI = cast<BranchInst>(I); 7134 if (VF > 1 && BI->isConditional() && 7135 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7136 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7137 ScalarPredicatedBB = true; 7138 7139 if (ScalarPredicatedBB) { 7140 // Return cost for branches around scalarized and predicated blocks. 7141 Type *Vec_i1Ty = 7142 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7143 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7144 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7145 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7146 // The back-edge branch will remain, as will all scalar branches. 7147 return TTI.getCFInstrCost(Instruction::Br); 7148 else 7149 // This branch will be eliminated by if-conversion. 7150 return 0; 7151 // Note: We currently assume zero cost for an unconditional branch inside 7152 // a predicated block since it will become a fall-through, although we 7153 // may decide in the future to call TTI for all branches. 7154 } 7155 case Instruction::PHI: { 7156 auto *Phi = cast<PHINode>(I); 7157 7158 // First-order recurrences are replaced by vector shuffles inside the loop. 7159 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7160 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7161 VectorTy, VF - 1, VectorTy); 7162 7163 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7164 // converted into select instructions. We require N - 1 selects per phi 7165 // node, where N is the number of incoming values. 7166 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7167 return (Phi->getNumIncomingValues() - 1) * 7168 TTI.getCmpSelInstrCost( 7169 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7170 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7171 7172 return TTI.getCFInstrCost(Instruction::PHI); 7173 } 7174 case Instruction::UDiv: 7175 case Instruction::SDiv: 7176 case Instruction::URem: 7177 case Instruction::SRem: 7178 // If we have a predicated instruction, it may not be executed for each 7179 // vector lane. Get the scalarization cost and scale this amount by the 7180 // probability of executing the predicated block. If the instruction is not 7181 // predicated, we fall through to the next case. 7182 if (VF > 1 && isScalarWithPredication(I)) { 7183 unsigned Cost = 0; 7184 7185 // These instructions have a non-void type, so account for the phi nodes 7186 // that we will create. This cost is likely to be zero. The phi node 7187 // cost, if any, should be scaled by the block probability because it 7188 // models a copy at the end of each predicated block. 7189 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7190 7191 // The cost of the non-predicated instruction. 7192 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7193 7194 // The cost of insertelement and extractelement instructions needed for 7195 // scalarization. 7196 Cost += getScalarizationOverhead(I, VF, TTI); 7197 7198 // Scale the cost by the probability of executing the predicated blocks. 7199 // This assumes the predicated block for each vector lane is equally 7200 // likely. 7201 return Cost / getReciprocalPredBlockProb(); 7202 } 7203 LLVM_FALLTHROUGH; 7204 case Instruction::Add: 7205 case Instruction::FAdd: 7206 case Instruction::Sub: 7207 case Instruction::FSub: 7208 case Instruction::Mul: 7209 case Instruction::FMul: 7210 case Instruction::FDiv: 7211 case Instruction::FRem: 7212 case Instruction::Shl: 7213 case Instruction::LShr: 7214 case Instruction::AShr: 7215 case Instruction::And: 7216 case Instruction::Or: 7217 case Instruction::Xor: { 7218 // Since we will replace the stride by 1 the multiplication should go away. 7219 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7220 return 0; 7221 // Certain instructions can be cheaper to vectorize if they have a constant 7222 // second vector operand. One example of this are shifts on x86. 7223 TargetTransformInfo::OperandValueKind Op1VK = 7224 TargetTransformInfo::OK_AnyValue; 7225 TargetTransformInfo::OperandValueKind Op2VK = 7226 TargetTransformInfo::OK_AnyValue; 7227 TargetTransformInfo::OperandValueProperties Op1VP = 7228 TargetTransformInfo::OP_None; 7229 TargetTransformInfo::OperandValueProperties Op2VP = 7230 TargetTransformInfo::OP_None; 7231 Value *Op2 = I->getOperand(1); 7232 7233 // Check for a splat or for a non uniform vector of constants. 7234 if (isa<ConstantInt>(Op2)) { 7235 ConstantInt *CInt = cast<ConstantInt>(Op2); 7236 if (CInt && CInt->getValue().isPowerOf2()) 7237 Op2VP = TargetTransformInfo::OP_PowerOf2; 7238 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7239 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7240 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7241 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7242 if (SplatValue) { 7243 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7244 if (CInt && CInt->getValue().isPowerOf2()) 7245 Op2VP = TargetTransformInfo::OP_PowerOf2; 7246 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7247 } 7248 } else if (Legal->isUniform(Op2)) { 7249 Op2VK = TargetTransformInfo::OK_UniformValue; 7250 } 7251 SmallVector<const Value *, 4> Operands(I->operand_values()); 7252 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7253 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7254 Op2VK, Op1VP, Op2VP, Operands); 7255 } 7256 case Instruction::Select: { 7257 SelectInst *SI = cast<SelectInst>(I); 7258 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7259 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7260 Type *CondTy = SI->getCondition()->getType(); 7261 if (!ScalarCond) 7262 CondTy = VectorType::get(CondTy, VF); 7263 7264 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7265 } 7266 case Instruction::ICmp: 7267 case Instruction::FCmp: { 7268 Type *ValTy = I->getOperand(0)->getType(); 7269 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7270 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7271 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7272 VectorTy = ToVectorTy(ValTy, VF); 7273 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7274 } 7275 case Instruction::Store: 7276 case Instruction::Load: { 7277 unsigned Width = VF; 7278 if (Width > 1) { 7279 InstWidening Decision = getWideningDecision(I, Width); 7280 assert(Decision != CM_Unknown && 7281 "CM decision should be taken at this point"); 7282 if (Decision == CM_Scalarize) 7283 Width = 1; 7284 } 7285 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7286 return getMemoryInstructionCost(I, VF); 7287 } 7288 case Instruction::ZExt: 7289 case Instruction::SExt: 7290 case Instruction::FPToUI: 7291 case Instruction::FPToSI: 7292 case Instruction::FPExt: 7293 case Instruction::PtrToInt: 7294 case Instruction::IntToPtr: 7295 case Instruction::SIToFP: 7296 case Instruction::UIToFP: 7297 case Instruction::Trunc: 7298 case Instruction::FPTrunc: 7299 case Instruction::BitCast: { 7300 // We optimize the truncation of induction variables having constant 7301 // integer steps. The cost of these truncations is the same as the scalar 7302 // operation. 7303 if (isOptimizableIVTruncate(I, VF)) { 7304 auto *Trunc = cast<TruncInst>(I); 7305 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7306 Trunc->getSrcTy(), Trunc); 7307 } 7308 7309 Type *SrcScalarTy = I->getOperand(0)->getType(); 7310 Type *SrcVecTy = 7311 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7312 if (canTruncateToMinimalBitwidth(I, VF)) { 7313 // This cast is going to be shrunk. This may remove the cast or it might 7314 // turn it into slightly different cast. For example, if MinBW == 16, 7315 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7316 // 7317 // Calculate the modified src and dest types. 7318 Type *MinVecTy = VectorTy; 7319 if (I->getOpcode() == Instruction::Trunc) { 7320 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7321 VectorTy = 7322 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7323 } else if (I->getOpcode() == Instruction::ZExt || 7324 I->getOpcode() == Instruction::SExt) { 7325 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7326 VectorTy = 7327 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7328 } 7329 } 7330 7331 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7332 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7333 } 7334 case Instruction::Call: { 7335 bool NeedToScalarize; 7336 CallInst *CI = cast<CallInst>(I); 7337 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7338 if (getVectorIntrinsicIDForCall(CI, TLI)) 7339 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7340 return CallCost; 7341 } 7342 default: 7343 // The cost of executing VF copies of the scalar instruction. This opcode 7344 // is unknown. Assume that it is the same as 'mul'. 7345 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7346 getScalarizationOverhead(I, VF, TTI); 7347 } // end of switch. 7348 } 7349 7350 char LoopVectorize::ID = 0; 7351 7352 static const char lv_name[] = "Loop Vectorization"; 7353 7354 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7355 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7356 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7357 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7358 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7359 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7360 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7361 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7362 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7363 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7364 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7365 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7366 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7367 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7368 7369 namespace llvm { 7370 7371 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7372 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7373 } 7374 7375 } // end namespace llvm 7376 7377 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7378 // Check if the pointer operand of a load or store instruction is 7379 // consecutive. 7380 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7381 return Legal->isConsecutivePtr(Ptr); 7382 return false; 7383 } 7384 7385 void LoopVectorizationCostModel::collectValuesToIgnore() { 7386 // Ignore ephemeral values. 7387 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7388 7389 // Ignore type-promoting instructions we identified during reduction 7390 // detection. 7391 for (auto &Reduction : *Legal->getReductionVars()) { 7392 RecurrenceDescriptor &RedDes = Reduction.second; 7393 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7394 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7395 } 7396 // Ignore type-casting instructions we identified during induction 7397 // detection. 7398 for (auto &Induction : *Legal->getInductionVars()) { 7399 InductionDescriptor &IndDes = Induction.second; 7400 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7401 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7402 } 7403 } 7404 7405 VectorizationFactor 7406 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7407 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7408 const VectorizationFactor NoVectorization = {1U, 0U}; 7409 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7410 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7411 return NoVectorization; 7412 7413 if (UserVF) { 7414 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7415 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7416 // Collect the instructions (and their associated costs) that will be more 7417 // profitable to scalarize. 7418 CM.selectUserVectorizationFactor(UserVF); 7419 buildVPlans(UserVF, UserVF); 7420 DEBUG(printPlans(dbgs())); 7421 return {UserVF, 0}; 7422 } 7423 7424 unsigned MaxVF = MaybeMaxVF.getValue(); 7425 assert(MaxVF != 0 && "MaxVF is zero."); 7426 7427 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7428 // Collect Uniform and Scalar instructions after vectorization with VF. 7429 CM.collectUniformsAndScalars(VF); 7430 7431 // Collect the instructions (and their associated costs) that will be more 7432 // profitable to scalarize. 7433 if (VF > 1) 7434 CM.collectInstsToScalarize(VF); 7435 } 7436 7437 buildVPlans(1, MaxVF); 7438 DEBUG(printPlans(dbgs())); 7439 if (MaxVF == 1) 7440 return NoVectorization; 7441 7442 // Select the optimal vectorization factor. 7443 return CM.selectVectorizationFactor(MaxVF); 7444 } 7445 7446 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7447 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7448 BestVF = VF; 7449 BestUF = UF; 7450 7451 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7452 return !Plan->hasVF(VF); 7453 }); 7454 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7455 } 7456 7457 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7458 DominatorTree *DT) { 7459 // Perform the actual loop transformation. 7460 7461 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7462 VPCallbackILV CallbackILV(ILV); 7463 7464 VPTransformState State{BestVF, BestUF, LI, 7465 DT, ILV.Builder, ILV.VectorLoopValueMap, 7466 &ILV, CallbackILV}; 7467 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7468 7469 //===------------------------------------------------===// 7470 // 7471 // Notice: any optimization or new instruction that go 7472 // into the code below should also be implemented in 7473 // the cost-model. 7474 // 7475 //===------------------------------------------------===// 7476 7477 // 2. Copy and widen instructions from the old loop into the new loop. 7478 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7479 VPlans.front()->execute(&State); 7480 7481 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7482 // predication, updating analyses. 7483 ILV.fixVectorizedLoop(); 7484 } 7485 7486 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7487 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7488 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7489 7490 // We create new control-flow for the vectorized loop, so the original 7491 // condition will be dead after vectorization if it's only used by the 7492 // branch. 7493 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7494 if (Cmp && Cmp->hasOneUse()) 7495 DeadInstructions.insert(Cmp); 7496 7497 // We create new "steps" for induction variable updates to which the original 7498 // induction variables map. An original update instruction will be dead if 7499 // all its users except the induction variable are dead. 7500 for (auto &Induction : *Legal->getInductionVars()) { 7501 PHINode *Ind = Induction.first; 7502 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7503 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7504 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7505 })) 7506 DeadInstructions.insert(IndUpdate); 7507 7508 // We record as "Dead" also the type-casting instructions we had identified 7509 // during induction analysis. We don't need any handling for them in the 7510 // vectorized loop because we have proven that, under a proper runtime 7511 // test guarding the vectorized loop, the value of the phi, and the casted 7512 // value of the phi, are the same. The last instruction in this casting chain 7513 // will get its scalar/vector/widened def from the scalar/vector/widened def 7514 // of the respective phi node. Any other casts in the induction def-use chain 7515 // have no other uses outside the phi update chain, and will be ignored. 7516 InductionDescriptor &IndDes = Induction.second; 7517 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7518 DeadInstructions.insert(Casts.begin(), Casts.end()); 7519 } 7520 } 7521 7522 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7523 7524 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7525 7526 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7527 Instruction::BinaryOps BinOp) { 7528 // When unrolling and the VF is 1, we only need to add a simple scalar. 7529 Type *Ty = Val->getType(); 7530 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7531 7532 if (Ty->isFloatingPointTy()) { 7533 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7534 7535 // Floating point operations had to be 'fast' to enable the unrolling. 7536 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7537 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7538 } 7539 Constant *C = ConstantInt::get(Ty, StartIdx); 7540 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7541 } 7542 7543 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7544 SmallVector<Metadata *, 4> MDs; 7545 // Reserve first location for self reference to the LoopID metadata node. 7546 MDs.push_back(nullptr); 7547 bool IsUnrollMetadata = false; 7548 MDNode *LoopID = L->getLoopID(); 7549 if (LoopID) { 7550 // First find existing loop unrolling disable metadata. 7551 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7552 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7553 if (MD) { 7554 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7555 IsUnrollMetadata = 7556 S && S->getString().startswith("llvm.loop.unroll.disable"); 7557 } 7558 MDs.push_back(LoopID->getOperand(i)); 7559 } 7560 } 7561 7562 if (!IsUnrollMetadata) { 7563 // Add runtime unroll disable metadata. 7564 LLVMContext &Context = L->getHeader()->getContext(); 7565 SmallVector<Metadata *, 1> DisableOperands; 7566 DisableOperands.push_back( 7567 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7568 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7569 MDs.push_back(DisableNode); 7570 MDNode *NewLoopID = MDNode::get(Context, MDs); 7571 // Set operand 0 to refer to the loop id itself. 7572 NewLoopID->replaceOperandWith(0, NewLoopID); 7573 L->setLoopID(NewLoopID); 7574 } 7575 } 7576 7577 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7578 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7579 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7580 bool PredicateAtRangeStart = Predicate(Range.Start); 7581 7582 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7583 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7584 Range.End = TmpVF; 7585 break; 7586 } 7587 7588 return PredicateAtRangeStart; 7589 } 7590 7591 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7592 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7593 /// of VF's starting at a given VF and extending it as much as possible. Each 7594 /// vectorization decision can potentially shorten this sub-range during 7595 /// buildVPlan(). 7596 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7597 7598 // Collect conditions feeding internal conditional branches; they need to be 7599 // represented in VPlan for it to model masking. 7600 SmallPtrSet<Value *, 1> NeedDef; 7601 7602 auto *Latch = OrigLoop->getLoopLatch(); 7603 for (BasicBlock *BB : OrigLoop->blocks()) { 7604 if (BB == Latch) 7605 continue; 7606 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7607 if (Branch && Branch->isConditional()) 7608 NeedDef.insert(Branch->getCondition()); 7609 } 7610 7611 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7612 VFRange SubRange = {VF, MaxVF + 1}; 7613 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7614 VF = SubRange.End; 7615 } 7616 } 7617 7618 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7619 BasicBlock *Dst, 7620 VPlanPtr &Plan) { 7621 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7622 7623 // Look for cached value. 7624 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7625 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7626 if (ECEntryIt != EdgeMaskCache.end()) 7627 return ECEntryIt->second; 7628 7629 VPValue *SrcMask = createBlockInMask(Src, Plan); 7630 7631 // The terminator has to be a branch inst! 7632 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7633 assert(BI && "Unexpected terminator found"); 7634 7635 if (!BI->isConditional()) 7636 return EdgeMaskCache[Edge] = SrcMask; 7637 7638 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7639 assert(EdgeMask && "No Edge Mask found for condition"); 7640 7641 if (BI->getSuccessor(0) != Dst) 7642 EdgeMask = Builder.createNot(EdgeMask); 7643 7644 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7645 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7646 7647 return EdgeMaskCache[Edge] = EdgeMask; 7648 } 7649 7650 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7651 VPlanPtr &Plan) { 7652 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7653 7654 // Look for cached value. 7655 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7656 if (BCEntryIt != BlockMaskCache.end()) 7657 return BCEntryIt->second; 7658 7659 // All-one mask is modelled as no-mask following the convention for masked 7660 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7661 VPValue *BlockMask = nullptr; 7662 7663 // Loop incoming mask is all-one. 7664 if (OrigLoop->getHeader() == BB) 7665 return BlockMaskCache[BB] = BlockMask; 7666 7667 // This is the block mask. We OR all incoming edges. 7668 for (auto *Predecessor : predecessors(BB)) { 7669 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7670 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7671 return BlockMaskCache[BB] = EdgeMask; 7672 7673 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7674 BlockMask = EdgeMask; 7675 continue; 7676 } 7677 7678 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7679 } 7680 7681 return BlockMaskCache[BB] = BlockMask; 7682 } 7683 7684 VPInterleaveRecipe * 7685 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7686 VFRange &Range) { 7687 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I); 7688 if (!IG) 7689 return nullptr; 7690 7691 // Now check if IG is relevant for VF's in the given range. 7692 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7693 return [=](unsigned VF) -> bool { 7694 return (VF >= 2 && // Query is illegal for VF == 1 7695 CM.getWideningDecision(I, VF) == 7696 LoopVectorizationCostModel::CM_Interleave); 7697 }; 7698 }; 7699 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7700 return nullptr; 7701 7702 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7703 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7704 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7705 assert(I == IG->getInsertPos() && 7706 "Generating a recipe for an adjunct member of an interleave group"); 7707 7708 return new VPInterleaveRecipe(IG); 7709 } 7710 7711 VPWidenMemoryInstructionRecipe * 7712 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7713 VPlanPtr &Plan) { 7714 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7715 return nullptr; 7716 7717 auto willWiden = [&](unsigned VF) -> bool { 7718 if (VF == 1) 7719 return false; 7720 if (CM.isScalarAfterVectorization(I, VF) || 7721 CM.isProfitableToScalarize(I, VF)) 7722 return false; 7723 LoopVectorizationCostModel::InstWidening Decision = 7724 CM.getWideningDecision(I, VF); 7725 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7726 "CM decision should be taken at this point."); 7727 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7728 "Interleave memory opportunity should be caught earlier."); 7729 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7730 }; 7731 7732 if (!getDecisionAndClampRange(willWiden, Range)) 7733 return nullptr; 7734 7735 VPValue *Mask = nullptr; 7736 if (Legal->isMaskRequired(I)) 7737 Mask = createBlockInMask(I->getParent(), Plan); 7738 7739 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7740 } 7741 7742 VPWidenIntOrFpInductionRecipe * 7743 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7744 VFRange &Range) { 7745 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7746 // Check if this is an integer or fp induction. If so, build the recipe that 7747 // produces its scalar and vector values. 7748 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7749 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7750 II.getKind() == InductionDescriptor::IK_FpInduction) 7751 return new VPWidenIntOrFpInductionRecipe(Phi); 7752 7753 return nullptr; 7754 } 7755 7756 // Optimize the special case where the source is a constant integer 7757 // induction variable. Notice that we can only optimize the 'trunc' case 7758 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7759 // (c) other casts depend on pointer size. 7760 7761 // Determine whether \p K is a truncation based on an induction variable that 7762 // can be optimized. 7763 auto isOptimizableIVTruncate = 7764 [&](Instruction *K) -> std::function<bool(unsigned)> { 7765 return 7766 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7767 }; 7768 7769 if (isa<TruncInst>(I) && 7770 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7771 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7772 cast<TruncInst>(I)); 7773 return nullptr; 7774 } 7775 7776 VPBlendRecipe * 7777 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7778 PHINode *Phi = dyn_cast<PHINode>(I); 7779 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7780 return nullptr; 7781 7782 // We know that all PHIs in non-header blocks are converted into selects, so 7783 // we don't have to worry about the insertion order and we can just use the 7784 // builder. At this point we generate the predication tree. There may be 7785 // duplications since this is a simple recursive scan, but future 7786 // optimizations will clean it up. 7787 7788 SmallVector<VPValue *, 2> Masks; 7789 unsigned NumIncoming = Phi->getNumIncomingValues(); 7790 for (unsigned In = 0; In < NumIncoming; In++) { 7791 VPValue *EdgeMask = 7792 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7793 assert((EdgeMask || NumIncoming == 1) && 7794 "Multiple predecessors with one having a full mask"); 7795 if (EdgeMask) 7796 Masks.push_back(EdgeMask); 7797 } 7798 return new VPBlendRecipe(Phi, Masks); 7799 } 7800 7801 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7802 VFRange &Range) { 7803 if (CM.isScalarWithPredication(I)) 7804 return false; 7805 7806 auto IsVectorizableOpcode = [](unsigned Opcode) { 7807 switch (Opcode) { 7808 case Instruction::Add: 7809 case Instruction::And: 7810 case Instruction::AShr: 7811 case Instruction::BitCast: 7812 case Instruction::Br: 7813 case Instruction::Call: 7814 case Instruction::FAdd: 7815 case Instruction::FCmp: 7816 case Instruction::FDiv: 7817 case Instruction::FMul: 7818 case Instruction::FPExt: 7819 case Instruction::FPToSI: 7820 case Instruction::FPToUI: 7821 case Instruction::FPTrunc: 7822 case Instruction::FRem: 7823 case Instruction::FSub: 7824 case Instruction::GetElementPtr: 7825 case Instruction::ICmp: 7826 case Instruction::IntToPtr: 7827 case Instruction::Load: 7828 case Instruction::LShr: 7829 case Instruction::Mul: 7830 case Instruction::Or: 7831 case Instruction::PHI: 7832 case Instruction::PtrToInt: 7833 case Instruction::SDiv: 7834 case Instruction::Select: 7835 case Instruction::SExt: 7836 case Instruction::Shl: 7837 case Instruction::SIToFP: 7838 case Instruction::SRem: 7839 case Instruction::Store: 7840 case Instruction::Sub: 7841 case Instruction::Trunc: 7842 case Instruction::UDiv: 7843 case Instruction::UIToFP: 7844 case Instruction::URem: 7845 case Instruction::Xor: 7846 case Instruction::ZExt: 7847 return true; 7848 } 7849 return false; 7850 }; 7851 7852 if (!IsVectorizableOpcode(I->getOpcode())) 7853 return false; 7854 7855 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7856 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7857 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7858 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7859 return false; 7860 } 7861 7862 auto willWiden = [&](unsigned VF) -> bool { 7863 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 7864 CM.isProfitableToScalarize(I, VF))) 7865 return false; 7866 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7867 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7868 // The following case may be scalarized depending on the VF. 7869 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7870 // version of the instruction. 7871 // Is it beneficial to perform intrinsic call compared to lib call? 7872 bool NeedToScalarize; 7873 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 7874 bool UseVectorIntrinsic = 7875 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 7876 return UseVectorIntrinsic || !NeedToScalarize; 7877 } 7878 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 7879 assert(CM.getWideningDecision(I, VF) == 7880 LoopVectorizationCostModel::CM_Scalarize && 7881 "Memory widening decisions should have been taken care by now"); 7882 return false; 7883 } 7884 return true; 7885 }; 7886 7887 if (!getDecisionAndClampRange(willWiden, Range)) 7888 return false; 7889 7890 // Success: widen this instruction. We optimize the common case where 7891 // consecutive instructions can be represented by a single recipe. 7892 if (!VPBB->empty()) { 7893 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 7894 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 7895 return true; 7896 } 7897 7898 VPBB->appendRecipe(new VPWidenRecipe(I)); 7899 return true; 7900 } 7901 7902 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 7903 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7904 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7905 VPlanPtr &Plan) { 7906 bool IsUniform = getDecisionAndClampRange( 7907 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7908 Range); 7909 7910 bool IsPredicated = CM.isScalarWithPredication(I); 7911 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7912 7913 // Find if I uses a predicated instruction. If so, it will use its scalar 7914 // value. Avoid hoisting the insert-element which packs the scalar value into 7915 // a vector value, as that happens iff all users use the vector value. 7916 for (auto &Op : I->operands()) 7917 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7918 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7919 PredInst2Recipe[PredInst]->setAlsoPack(false); 7920 7921 // Finalize the recipe for Instr, first if it is not predicated. 7922 if (!IsPredicated) { 7923 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7924 VPBB->appendRecipe(Recipe); 7925 return VPBB; 7926 } 7927 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7928 assert(VPBB->getSuccessors().empty() && 7929 "VPBB has successors when handling predicated replication."); 7930 // Record predicated instructions for above packing optimizations. 7931 PredInst2Recipe[I] = Recipe; 7932 VPBlockBase *Region = 7933 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 7934 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 7935 } 7936 7937 VPRegionBlock * 7938 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 7939 VPRecipeBase *PredRecipe, 7940 VPlanPtr &Plan) { 7941 // Instructions marked for predication are replicated and placed under an 7942 // if-then construct to prevent side-effects. 7943 7944 // Generate recipes to compute the block mask for this region. 7945 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7946 7947 // Build the triangular if-then region. 7948 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7949 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7950 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7951 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7952 auto *PHIRecipe = 7953 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7954 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7955 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7956 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7957 7958 // Note: first set Entry as region entry and then connect successors starting 7959 // from it in order, to propagate the "parent" of each VPBasicBlock. 7960 Entry->setTwoSuccessors(Pred, Exit); 7961 Pred->setOneSuccessor(Exit); 7962 7963 return Region; 7964 } 7965 7966 LoopVectorizationPlanner::VPlanPtr 7967 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 7968 const SmallPtrSetImpl<Value *> &NeedDef) { 7969 EdgeMaskCache.clear(); 7970 BlockMaskCache.clear(); 7971 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7972 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 7973 7974 // Collect instructions from the original loop that will become trivially dead 7975 // in the vectorized loop. We don't need to vectorize these instructions. For 7976 // example, original induction update instructions can become dead because we 7977 // separately emit induction "steps" when generating code for the new loop. 7978 // Similarly, we create a new latch condition when setting up the structure 7979 // of the new loop, so the old one can become dead. 7980 SmallPtrSet<Instruction *, 4> DeadInstructions; 7981 collectTriviallyDeadInstructions(DeadInstructions); 7982 7983 // Hold a mapping from predicated instructions to their recipes, in order to 7984 // fix their AlsoPack behavior if a user is determined to replicate and use a 7985 // scalar instead of vector value. 7986 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7987 7988 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7989 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7990 auto Plan = llvm::make_unique<VPlan>(VPBB); 7991 7992 // Represent values that will have defs inside VPlan. 7993 for (Value *V : NeedDef) 7994 Plan->addVPValue(V); 7995 7996 // Scan the body of the loop in a topological order to visit each basic block 7997 // after having visited its predecessor basic blocks. 7998 LoopBlocksDFS DFS(OrigLoop); 7999 DFS.perform(LI); 8000 8001 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8002 // Relevant instructions from basic block BB will be grouped into VPRecipe 8003 // ingredients and fill a new VPBasicBlock. 8004 unsigned VPBBsForBB = 0; 8005 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8006 VPBB->setOneSuccessor(FirstVPBBForBB); 8007 VPBB = FirstVPBBForBB; 8008 Builder.setInsertPoint(VPBB); 8009 8010 std::vector<Instruction *> Ingredients; 8011 8012 // Organize the ingredients to vectorize from current basic block in the 8013 // right order. 8014 for (Instruction &I : *BB) { 8015 Instruction *Instr = &I; 8016 8017 // First filter out irrelevant instructions, to ensure no recipes are 8018 // built for them. 8019 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8020 DeadInstructions.count(Instr)) 8021 continue; 8022 8023 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8024 // member of the IG, do not construct any Recipe for it. 8025 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr); 8026 if (IG && Instr != IG->getInsertPos() && 8027 Range.Start >= 2 && // Query is illegal for VF == 1 8028 CM.getWideningDecision(Instr, Range.Start) == 8029 LoopVectorizationCostModel::CM_Interleave) { 8030 if (SinkAfterInverse.count(Instr)) 8031 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8032 continue; 8033 } 8034 8035 // Move instructions to handle first-order recurrences, step 1: avoid 8036 // handling this instruction until after we've handled the instruction it 8037 // should follow. 8038 auto SAIt = SinkAfter.find(Instr); 8039 if (SAIt != SinkAfter.end()) { 8040 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8041 << " to vectorize a 1st order recurrence.\n"); 8042 SinkAfterInverse[SAIt->second] = Instr; 8043 continue; 8044 } 8045 8046 Ingredients.push_back(Instr); 8047 8048 // Move instructions to handle first-order recurrences, step 2: push the 8049 // instruction to be sunk at its insertion point. 8050 auto SAInvIt = SinkAfterInverse.find(Instr); 8051 if (SAInvIt != SinkAfterInverse.end()) 8052 Ingredients.push_back(SAInvIt->second); 8053 } 8054 8055 // Introduce each ingredient into VPlan. 8056 for (Instruction *Instr : Ingredients) { 8057 VPRecipeBase *Recipe = nullptr; 8058 8059 // Check if Instr should belong to an interleave memory recipe, or already 8060 // does. In the latter case Instr is irrelevant. 8061 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8062 VPBB->appendRecipe(Recipe); 8063 continue; 8064 } 8065 8066 // Check if Instr is a memory operation that should be widened. 8067 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8068 VPBB->appendRecipe(Recipe); 8069 continue; 8070 } 8071 8072 // Check if Instr should form some PHI recipe. 8073 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8074 VPBB->appendRecipe(Recipe); 8075 continue; 8076 } 8077 if ((Recipe = tryToBlend(Instr, Plan))) { 8078 VPBB->appendRecipe(Recipe); 8079 continue; 8080 } 8081 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8082 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8083 continue; 8084 } 8085 8086 // Check if Instr is to be widened by a general VPWidenRecipe, after 8087 // having first checked for specific widening recipes that deal with 8088 // Interleave Groups, Inductions and Phi nodes. 8089 if (tryToWiden(Instr, VPBB, Range)) 8090 continue; 8091 8092 // Otherwise, if all widening options failed, Instruction is to be 8093 // replicated. This may create a successor for VPBB. 8094 VPBasicBlock *NextVPBB = 8095 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8096 if (NextVPBB != VPBB) { 8097 VPBB = NextVPBB; 8098 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8099 : ""); 8100 } 8101 } 8102 } 8103 8104 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8105 // may also be empty, such as the last one VPBB, reflecting original 8106 // basic-blocks with no recipes. 8107 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8108 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8109 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8110 PreEntry->disconnectSuccessor(Entry); 8111 delete PreEntry; 8112 8113 std::string PlanName; 8114 raw_string_ostream RSO(PlanName); 8115 unsigned VF = Range.Start; 8116 Plan->addVF(VF); 8117 RSO << "Initial VPlan for VF={" << VF; 8118 for (VF *= 2; VF < Range.End; VF *= 2) { 8119 Plan->addVF(VF); 8120 RSO << "," << VF; 8121 } 8122 RSO << "},UF>=1"; 8123 RSO.flush(); 8124 Plan->setName(PlanName); 8125 8126 return Plan; 8127 } 8128 8129 Value* LoopVectorizationPlanner::VPCallbackILV:: 8130 getOrCreateVectorValues(Value *V, unsigned Part) { 8131 return ILV.getOrCreateVectorValue(V, Part); 8132 } 8133 8134 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8135 O << " +\n" 8136 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8137 IG->getInsertPos()->printAsOperand(O, false); 8138 O << "\\l\""; 8139 for (unsigned i = 0; i < IG->getFactor(); ++i) 8140 if (Instruction *I = IG->getMember(i)) 8141 O << " +\n" 8142 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8143 } 8144 8145 void VPWidenRecipe::execute(VPTransformState &State) { 8146 for (auto &Instr : make_range(Begin, End)) 8147 State.ILV->widenInstruction(Instr); 8148 } 8149 8150 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8151 assert(!State.Instance && "Int or FP induction being replicated."); 8152 State.ILV->widenIntOrFpInduction(IV, Trunc); 8153 } 8154 8155 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8156 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8157 } 8158 8159 void VPBlendRecipe::execute(VPTransformState &State) { 8160 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8161 // We know that all PHIs in non-header blocks are converted into 8162 // selects, so we don't have to worry about the insertion order and we 8163 // can just use the builder. 8164 // At this point we generate the predication tree. There may be 8165 // duplications since this is a simple recursive scan, but future 8166 // optimizations will clean it up. 8167 8168 unsigned NumIncoming = Phi->getNumIncomingValues(); 8169 8170 assert((User || NumIncoming == 1) && 8171 "Multiple predecessors with predecessors having a full mask"); 8172 // Generate a sequence of selects of the form: 8173 // SELECT(Mask3, In3, 8174 // SELECT(Mask2, In2, 8175 // ( ...))) 8176 InnerLoopVectorizer::VectorParts Entry(State.UF); 8177 for (unsigned In = 0; In < NumIncoming; ++In) { 8178 for (unsigned Part = 0; Part < State.UF; ++Part) { 8179 // We might have single edge PHIs (blocks) - use an identity 8180 // 'select' for the first PHI operand. 8181 Value *In0 = 8182 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8183 if (In == 0) 8184 Entry[Part] = In0; // Initialize with the first incoming value. 8185 else { 8186 // Select between the current value and the previous incoming edge 8187 // based on the incoming mask. 8188 Value *Cond = State.get(User->getOperand(In), Part); 8189 Entry[Part] = 8190 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8191 } 8192 } 8193 } 8194 for (unsigned Part = 0; Part < State.UF; ++Part) 8195 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8196 } 8197 8198 void VPInterleaveRecipe::execute(VPTransformState &State) { 8199 assert(!State.Instance && "Interleave group being replicated."); 8200 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8201 } 8202 8203 void VPReplicateRecipe::execute(VPTransformState &State) { 8204 if (State.Instance) { // Generate a single instance. 8205 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8206 // Insert scalar instance packing it into a vector. 8207 if (AlsoPack && State.VF > 1) { 8208 // If we're constructing lane 0, initialize to start from undef. 8209 if (State.Instance->Lane == 0) { 8210 Value *Undef = 8211 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8212 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8213 } 8214 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8215 } 8216 return; 8217 } 8218 8219 // Generate scalar instances for all VF lanes of all UF parts, unless the 8220 // instruction is uniform inwhich case generate only the first lane for each 8221 // of the UF parts. 8222 unsigned EndLane = IsUniform ? 1 : State.VF; 8223 for (unsigned Part = 0; Part < State.UF; ++Part) 8224 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8225 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8226 } 8227 8228 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8229 assert(State.Instance && "Branch on Mask works only on single instance."); 8230 8231 unsigned Part = State.Instance->Part; 8232 unsigned Lane = State.Instance->Lane; 8233 8234 Value *ConditionBit = nullptr; 8235 if (!User) // Block in mask is all-one. 8236 ConditionBit = State.Builder.getTrue(); 8237 else { 8238 VPValue *BlockInMask = User->getOperand(0); 8239 ConditionBit = State.get(BlockInMask, Part); 8240 if (ConditionBit->getType()->isVectorTy()) 8241 ConditionBit = State.Builder.CreateExtractElement( 8242 ConditionBit, State.Builder.getInt32(Lane)); 8243 } 8244 8245 // Replace the temporary unreachable terminator with a new conditional branch, 8246 // whose two destinations will be set later when they are created. 8247 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8248 assert(isa<UnreachableInst>(CurrentTerminator) && 8249 "Expected to replace unreachable terminator with conditional branch."); 8250 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8251 CondBr->setSuccessor(0, nullptr); 8252 ReplaceInstWithInst(CurrentTerminator, CondBr); 8253 } 8254 8255 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8256 assert(State.Instance && "Predicated instruction PHI works per instance."); 8257 Instruction *ScalarPredInst = cast<Instruction>( 8258 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8259 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8260 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8261 assert(PredicatingBB && "Predicated block has no single predecessor."); 8262 8263 // By current pack/unpack logic we need to generate only a single phi node: if 8264 // a vector value for the predicated instruction exists at this point it means 8265 // the instruction has vector users only, and a phi for the vector value is 8266 // needed. In this case the recipe of the predicated instruction is marked to 8267 // also do that packing, thereby "hoisting" the insert-element sequence. 8268 // Otherwise, a phi node for the scalar value is needed. 8269 unsigned Part = State.Instance->Part; 8270 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8271 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8272 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8273 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8274 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8275 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8276 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8277 } else { 8278 Type *PredInstType = PredInst->getType(); 8279 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8280 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8281 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8282 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8283 } 8284 } 8285 8286 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8287 if (!User) 8288 return State.ILV->vectorizeMemoryInstruction(&Instr); 8289 8290 // Last (and currently only) operand is a mask. 8291 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8292 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8293 for (unsigned Part = 0; Part < State.UF; ++Part) 8294 MaskValues[Part] = State.get(Mask, Part); 8295 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8296 } 8297 8298 bool LoopVectorizePass::processLoop(Loop *L) { 8299 assert(L->empty() && "Only process inner loops."); 8300 8301 #ifndef NDEBUG 8302 const std::string DebugLocStr = getDebugLocString(L); 8303 #endif /* NDEBUG */ 8304 8305 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8306 << L->getHeader()->getParent()->getName() << "\" from " 8307 << DebugLocStr << "\n"); 8308 8309 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8310 8311 DEBUG(dbgs() << "LV: Loop hints:" 8312 << " force=" 8313 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8314 ? "disabled" 8315 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8316 ? "enabled" 8317 : "?")) 8318 << " width=" << Hints.getWidth() 8319 << " unroll=" << Hints.getInterleave() << "\n"); 8320 8321 // Function containing loop 8322 Function *F = L->getHeader()->getParent(); 8323 8324 // Looking at the diagnostic output is the only way to determine if a loop 8325 // was vectorized (other than looking at the IR or machine code), so it 8326 // is important to generate an optimization remark for each loop. Most of 8327 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8328 // generated as OptimizationRemark and OptimizationRemarkMissed are 8329 // less verbose reporting vectorized loops and unvectorized loops that may 8330 // benefit from vectorization, respectively. 8331 8332 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8333 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8334 return false; 8335 } 8336 8337 PredicatedScalarEvolution PSE(*SE, *L); 8338 8339 // Check if it is legal to vectorize the loop. 8340 LoopVectorizationRequirements Requirements(*ORE); 8341 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8342 &Requirements, &Hints, DB, AC); 8343 if (!LVL.canVectorize()) { 8344 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8345 emitMissedWarning(F, L, Hints, ORE); 8346 return false; 8347 } 8348 8349 // Check the function attributes to find out if this function should be 8350 // optimized for size. 8351 bool OptForSize = 8352 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8353 8354 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8355 // count by optimizing for size, to minimize overheads. 8356 // Prefer constant trip counts over profile data, over upper bound estimate. 8357 unsigned ExpectedTC = 0; 8358 bool HasExpectedTC = false; 8359 if (const SCEVConstant *ConstExits = 8360 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 8361 const APInt &ExitsCount = ConstExits->getAPInt(); 8362 // We are interested in small values for ExpectedTC. Skip over those that 8363 // can't fit an unsigned. 8364 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 8365 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 8366 HasExpectedTC = true; 8367 } 8368 } 8369 // ExpectedTC may be large because it's bound by a variable. Check 8370 // profiling information to validate we should vectorize. 8371 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8372 auto EstimatedTC = getLoopEstimatedTripCount(L); 8373 if (EstimatedTC) { 8374 ExpectedTC = *EstimatedTC; 8375 HasExpectedTC = true; 8376 } 8377 } 8378 if (!HasExpectedTC) { 8379 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8380 HasExpectedTC = (ExpectedTC > 0); 8381 } 8382 8383 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8384 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8385 << "This loop is worth vectorizing only if no scalar " 8386 << "iteration overheads are incurred."); 8387 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8388 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8389 else { 8390 DEBUG(dbgs() << "\n"); 8391 // Loops with a very small trip count are considered for vectorization 8392 // under OptForSize, thereby making sure the cost of their loop body is 8393 // dominant, free of runtime guards and scalar iteration overheads. 8394 OptForSize = true; 8395 } 8396 } 8397 8398 // Check the function attributes to see if implicit floats are allowed. 8399 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8400 // an integer loop and the vector instructions selected are purely integer 8401 // vector instructions? 8402 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8403 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8404 "attribute is used.\n"); 8405 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8406 "NoImplicitFloat", L) 8407 << "loop not vectorized due to NoImplicitFloat attribute"); 8408 emitMissedWarning(F, L, Hints, ORE); 8409 return false; 8410 } 8411 8412 // Check if the target supports potentially unsafe FP vectorization. 8413 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8414 // for the target we're vectorizing for, to make sure none of the 8415 // additional fp-math flags can help. 8416 if (Hints.isPotentiallyUnsafe() && 8417 TTI->isFPVectorizationPotentiallyUnsafe()) { 8418 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8419 ORE->emit( 8420 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8421 << "loop not vectorized due to unsafe FP support."); 8422 emitMissedWarning(F, L, Hints, ORE); 8423 return false; 8424 } 8425 8426 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8427 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8428 8429 // If an override option has been passed in for interleaved accesses, use it. 8430 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8431 UseInterleaved = EnableInterleavedMemAccesses; 8432 8433 // Analyze interleaved memory accesses. 8434 if (UseInterleaved) { 8435 IAI.analyzeInterleaving(); 8436 } 8437 8438 // Use the cost model. 8439 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8440 &Hints, IAI); 8441 CM.collectValuesToIgnore(); 8442 8443 // Use the planner for vectorization. 8444 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8445 8446 // Get user vectorization factor. 8447 unsigned UserVF = Hints.getWidth(); 8448 8449 // Plan how to best vectorize, return the best VF and its cost. 8450 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 8451 8452 // Select the interleave count. 8453 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8454 8455 // Get user interleave count. 8456 unsigned UserIC = Hints.getInterleave(); 8457 8458 // Identify the diagnostic messages that should be produced. 8459 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8460 bool VectorizeLoop = true, InterleaveLoop = true; 8461 if (Requirements.doesNotMeet(F, L, Hints)) { 8462 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8463 "requirements.\n"); 8464 emitMissedWarning(F, L, Hints, ORE); 8465 return false; 8466 } 8467 8468 if (VF.Width == 1) { 8469 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8470 VecDiagMsg = std::make_pair( 8471 "VectorizationNotBeneficial", 8472 "the cost-model indicates that vectorization is not beneficial"); 8473 VectorizeLoop = false; 8474 } 8475 8476 if (IC == 1 && UserIC <= 1) { 8477 // Tell the user interleaving is not beneficial. 8478 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8479 IntDiagMsg = std::make_pair( 8480 "InterleavingNotBeneficial", 8481 "the cost-model indicates that interleaving is not beneficial"); 8482 InterleaveLoop = false; 8483 if (UserIC == 1) { 8484 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8485 IntDiagMsg.second += 8486 " and is explicitly disabled or interleave count is set to 1"; 8487 } 8488 } else if (IC > 1 && UserIC == 1) { 8489 // Tell the user interleaving is beneficial, but it explicitly disabled. 8490 DEBUG(dbgs() 8491 << "LV: Interleaving is beneficial but is explicitly disabled."); 8492 IntDiagMsg = std::make_pair( 8493 "InterleavingBeneficialButDisabled", 8494 "the cost-model indicates that interleaving is beneficial " 8495 "but is explicitly disabled or interleave count is set to 1"); 8496 InterleaveLoop = false; 8497 } 8498 8499 // Override IC if user provided an interleave count. 8500 IC = UserIC > 0 ? UserIC : IC; 8501 8502 // Emit diagnostic messages, if any. 8503 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8504 if (!VectorizeLoop && !InterleaveLoop) { 8505 // Do not vectorize or interleaving the loop. 8506 ORE->emit([&]() { 8507 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8508 L->getStartLoc(), L->getHeader()) 8509 << VecDiagMsg.second; 8510 }); 8511 ORE->emit([&]() { 8512 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8513 L->getStartLoc(), L->getHeader()) 8514 << IntDiagMsg.second; 8515 }); 8516 return false; 8517 } else if (!VectorizeLoop && InterleaveLoop) { 8518 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8519 ORE->emit([&]() { 8520 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8521 L->getStartLoc(), L->getHeader()) 8522 << VecDiagMsg.second; 8523 }); 8524 } else if (VectorizeLoop && !InterleaveLoop) { 8525 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8526 << DebugLocStr << '\n'); 8527 ORE->emit([&]() { 8528 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8529 L->getStartLoc(), L->getHeader()) 8530 << IntDiagMsg.second; 8531 }); 8532 } else if (VectorizeLoop && InterleaveLoop) { 8533 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8534 << DebugLocStr << '\n'); 8535 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8536 } 8537 8538 LVP.setBestPlan(VF.Width, IC); 8539 8540 using namespace ore; 8541 8542 if (!VectorizeLoop) { 8543 assert(IC > 1 && "interleave count should not be 1 or 0"); 8544 // If we decided that it is not legal to vectorize the loop, then 8545 // interleave it. 8546 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8547 &CM); 8548 LVP.executePlan(Unroller, DT); 8549 8550 ORE->emit([&]() { 8551 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8552 L->getHeader()) 8553 << "interleaved loop (interleaved count: " 8554 << NV("InterleaveCount", IC) << ")"; 8555 }); 8556 } else { 8557 // If we decided that it is *legal* to vectorize the loop, then do it. 8558 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8559 &LVL, &CM); 8560 LVP.executePlan(LB, DT); 8561 ++LoopsVectorized; 8562 8563 // Add metadata to disable runtime unrolling a scalar loop when there are 8564 // no runtime checks about strides and memory. A scalar loop that is 8565 // rarely used is not worth unrolling. 8566 if (!LB.areSafetyChecksAdded()) 8567 AddRuntimeUnrollDisableMetaData(L); 8568 8569 // Report the vectorization decision. 8570 ORE->emit([&]() { 8571 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8572 L->getHeader()) 8573 << "vectorized loop (vectorization width: " 8574 << NV("VectorizationFactor", VF.Width) 8575 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8576 }); 8577 } 8578 8579 // Mark the loop as already vectorized to avoid vectorizing again. 8580 Hints.setAlreadyVectorized(); 8581 8582 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8583 return true; 8584 } 8585 8586 bool LoopVectorizePass::runImpl( 8587 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8588 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8589 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8590 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8591 OptimizationRemarkEmitter &ORE_) { 8592 SE = &SE_; 8593 LI = &LI_; 8594 TTI = &TTI_; 8595 DT = &DT_; 8596 BFI = &BFI_; 8597 TLI = TLI_; 8598 AA = &AA_; 8599 AC = &AC_; 8600 GetLAA = &GetLAA_; 8601 DB = &DB_; 8602 ORE = &ORE_; 8603 8604 // Don't attempt if 8605 // 1. the target claims to have no vector registers, and 8606 // 2. interleaving won't help ILP. 8607 // 8608 // The second condition is necessary because, even if the target has no 8609 // vector registers, loop vectorization may still enable scalar 8610 // interleaving. 8611 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8612 return false; 8613 8614 bool Changed = false; 8615 8616 // The vectorizer requires loops to be in simplified form. 8617 // Since simplification may add new inner loops, it has to run before the 8618 // legality and profitability checks. This means running the loop vectorizer 8619 // will simplify all loops, regardless of whether anything end up being 8620 // vectorized. 8621 for (auto &L : *LI) 8622 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8623 8624 // Build up a worklist of inner-loops to vectorize. This is necessary as 8625 // the act of vectorizing or partially unrolling a loop creates new loops 8626 // and can invalidate iterators across the loops. 8627 SmallVector<Loop *, 8> Worklist; 8628 8629 for (Loop *L : *LI) 8630 addAcyclicInnerLoop(*L, *LI, Worklist); 8631 8632 LoopsAnalyzed += Worklist.size(); 8633 8634 // Now walk the identified inner loops. 8635 while (!Worklist.empty()) { 8636 Loop *L = Worklist.pop_back_val(); 8637 8638 // For the inner loops we actually process, form LCSSA to simplify the 8639 // transform. 8640 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8641 8642 Changed |= processLoop(L); 8643 } 8644 8645 // Process each loop nest in the function. 8646 return Changed; 8647 } 8648 8649 PreservedAnalyses LoopVectorizePass::run(Function &F, 8650 FunctionAnalysisManager &AM) { 8651 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8652 auto &LI = AM.getResult<LoopAnalysis>(F); 8653 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8654 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8655 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8656 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8657 auto &AA = AM.getResult<AAManager>(F); 8658 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8659 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8660 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8661 8662 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8663 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8664 [&](Loop &L) -> const LoopAccessInfo & { 8665 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8666 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8667 }; 8668 bool Changed = 8669 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8670 if (!Changed) 8671 return PreservedAnalyses::all(); 8672 PreservedAnalyses PA; 8673 PA.preserve<LoopAnalysis>(); 8674 PA.preserve<DominatorTreeAnalysis>(); 8675 PA.preserve<BasicAA>(); 8676 PA.preserve<GlobalsAA>(); 8677 return PA; 8678 } 8679