1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/MemorySSA.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 cl::opt<bool> EnableStrictReductions(
335     "enable-strict-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns the type of loaded or stored value.
379 static Type *getMemInstValueType(Value *I) {
380   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
381          "Expected Load or Store instruction");
382   if (auto *LI = dyn_cast<LoadInst>(I))
383     return LI->getType();
384   return cast<StoreInst>(I)->getValueOperand()->getType();
385 }
386 
387 /// A helper function that returns true if the given type is irregular. The
388 /// type is irregular if its allocated size doesn't equal the store size of an
389 /// element of the corresponding vector type.
390 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
391   // Determine if an array of N elements of type Ty is "bitcast compatible"
392   // with a <N x Ty> vector.
393   // This is only true if there is no padding between the array elements.
394   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
395 }
396 
397 /// A helper function that returns the reciprocal of the block probability of
398 /// predicated blocks. If we return X, we are assuming the predicated block
399 /// will execute once for every X iterations of the loop header.
400 ///
401 /// TODO: We should use actual block probability here, if available. Currently,
402 ///       we always assume predicated blocks have a 50% chance of executing.
403 static unsigned getReciprocalPredBlockProb() { return 2; }
404 
405 /// A helper function that returns an integer or floating-point constant with
406 /// value C.
407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
408   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
409                            : ConstantFP::get(Ty, C);
410 }
411 
412 /// Returns "best known" trip count for the specified loop \p L as defined by
413 /// the following procedure:
414 ///   1) Returns exact trip count if it is known.
415 ///   2) Returns expected trip count according to profile data if any.
416 ///   3) Returns upper bound estimate if it is known.
417 ///   4) Returns None if all of the above failed.
418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
419   // Check if exact trip count is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
421     return ExpectedTC;
422 
423   // Check if there is an expected trip count available from profile data.
424   if (LoopVectorizeWithBlockFrequency)
425     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
426       return EstimatedTC;
427 
428   // Check if upper bound estimate is known.
429   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
430     return ExpectedTC;
431 
432   return None;
433 }
434 
435 // Forward declare GeneratedRTChecks.
436 class GeneratedRTChecks;
437 
438 namespace llvm {
439 
440 /// InnerLoopVectorizer vectorizes loops which contain only one basic
441 /// block to a specified vectorization factor (VF).
442 /// This class performs the widening of scalars into vectors, or multiple
443 /// scalars. This class also implements the following features:
444 /// * It inserts an epilogue loop for handling loops that don't have iteration
445 ///   counts that are known to be a multiple of the vectorization factor.
446 /// * It handles the code generation for reduction variables.
447 /// * Scalarization (implementation using scalars) of un-vectorizable
448 ///   instructions.
449 /// InnerLoopVectorizer does not perform any vectorization-legality
450 /// checks, and relies on the caller to check for the different legality
451 /// aspects. The InnerLoopVectorizer relies on the
452 /// LoopVectorizationLegality class to provide information about the induction
453 /// and reduction variables that were found to a given vectorization factor.
454 class InnerLoopVectorizer {
455 public:
456   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
457                       LoopInfo *LI, DominatorTree *DT,
458                       const TargetLibraryInfo *TLI,
459                       const TargetTransformInfo *TTI, AssumptionCache *AC,
460                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
461                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
462                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
463                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
464       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
465         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
466         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
467         PSI(PSI), RTChecks(RTChecks) {
468     // Query this against the original loop and save it here because the profile
469     // of the original loop header may change as the transformation happens.
470     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
471         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
472   }
473 
474   virtual ~InnerLoopVectorizer() = default;
475 
476   /// Create a new empty loop that will contain vectorized instructions later
477   /// on, while the old loop will be used as the scalar remainder. Control flow
478   /// is generated around the vectorized (and scalar epilogue) loops consisting
479   /// of various checks and bypasses. Return the pre-header block of the new
480   /// loop.
481   /// In the case of epilogue vectorization, this function is overriden to
482   /// handle the more complex control flow around the loops.
483   virtual BasicBlock *createVectorizedLoopSkeleton();
484 
485   /// Widen a single instruction within the innermost loop.
486   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
487                         VPTransformState &State);
488 
489   /// Widen a single call instruction within the innermost loop.
490   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
491                             VPTransformState &State);
492 
493   /// Widen a single select instruction within the innermost loop.
494   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
495                               bool InvariantCond, VPTransformState &State);
496 
497   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
498   void fixVectorizedLoop(VPTransformState &State);
499 
500   // Return true if any runtime check is added.
501   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
502 
503   /// A type for vectorized values in the new loop. Each value from the
504   /// original loop, when vectorized, is represented by UF vector values in the
505   /// new unrolled loop, where UF is the unroll factor.
506   using VectorParts = SmallVector<Value *, 2>;
507 
508   /// Vectorize a single GetElementPtrInst based on information gathered and
509   /// decisions taken during planning.
510   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
511                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
512                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
513 
514   /// Vectorize a single PHINode in a block. This method handles the induction
515   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
516   /// arbitrary length vectors.
517   void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc,
518                            VPWidenPHIRecipe *PhiR, VPTransformState &State);
519 
520   /// A helper function to scalarize a single Instruction in the innermost loop.
521   /// Generates a sequence of scalar instances for each lane between \p MinLane
522   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
523   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
524   /// Instr's operands.
525   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
526                             const VPIteration &Instance, bool IfPredicateInstr,
527                             VPTransformState &State);
528 
529   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
530   /// is provided, the integer induction variable will first be truncated to
531   /// the corresponding type.
532   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
533                              VPValue *Def, VPValue *CastDef,
534                              VPTransformState &State);
535 
536   /// Construct the vector value of a scalarized value \p V one lane at a time.
537   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
538                                  VPTransformState &State);
539 
540   /// Try to vectorize interleaved access group \p Group with the base address
541   /// given in \p Addr, optionally masking the vector operations if \p
542   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
543   /// values in the vectorized loop.
544   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
545                                 ArrayRef<VPValue *> VPDefs,
546                                 VPTransformState &State, VPValue *Addr,
547                                 ArrayRef<VPValue *> StoredValues,
548                                 VPValue *BlockInMask = nullptr);
549 
550   /// Vectorize Load and Store instructions with the base address given in \p
551   /// Addr, optionally masking the vector operations if \p BlockInMask is
552   /// non-null. Use \p State to translate given VPValues to IR values in the
553   /// vectorized loop.
554   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
555                                   VPValue *Def, VPValue *Addr,
556                                   VPValue *StoredValue, VPValue *BlockInMask);
557 
558   /// Set the debug location in the builder using the debug location in
559   /// the instruction.
560   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
561 
562   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
563   void fixNonInductionPHIs(VPTransformState &State);
564 
565   /// Create a broadcast instruction. This method generates a broadcast
566   /// instruction (shuffle) for loop invariant values and for the induction
567   /// value. If this is the induction variable then we extend it to N, N+1, ...
568   /// this is needed because each iteration in the loop corresponds to a SIMD
569   /// element.
570   virtual Value *getBroadcastInstrs(Value *V);
571 
572 protected:
573   friend class LoopVectorizationPlanner;
574 
575   /// A small list of PHINodes.
576   using PhiVector = SmallVector<PHINode *, 4>;
577 
578   /// A type for scalarized values in the new loop. Each value from the
579   /// original loop, when scalarized, is represented by UF x VF scalar values
580   /// in the new unrolled loop, where UF is the unroll factor and VF is the
581   /// vectorization factor.
582   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
583 
584   /// Set up the values of the IVs correctly when exiting the vector loop.
585   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
586                     Value *CountRoundDown, Value *EndValue,
587                     BasicBlock *MiddleBlock);
588 
589   /// Create a new induction variable inside L.
590   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
591                                    Value *Step, Instruction *DL);
592 
593   /// Handle all cross-iteration phis in the header.
594   void fixCrossIterationPHIs(VPTransformState &State);
595 
596   /// Fix a first-order recurrence. This is the second phase of vectorizing
597   /// this phi node.
598   void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State);
599 
600   /// Fix a reduction cross-iteration phi. This is the second phase of
601   /// vectorizing this phi node.
602   void fixReduction(PHINode *Phi, VPTransformState &State);
603 
604   /// Clear NSW/NUW flags from reduction instructions if necessary.
605   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
606                                VPTransformState &State);
607 
608   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
609   /// means we need to add the appropriate incoming value from the middle
610   /// block as exiting edges from the scalar epilogue loop (if present) are
611   /// already in place, and we exit the vector loop exclusively to the middle
612   /// block.
613   void fixLCSSAPHIs(VPTransformState &State);
614 
615   /// Iteratively sink the scalarized operands of a predicated instruction into
616   /// the block that was created for it.
617   void sinkScalarOperands(Instruction *PredInst);
618 
619   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
620   /// represented as.
621   void truncateToMinimalBitwidths(VPTransformState &State);
622 
623   /// This function adds
624   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
625   /// to each vector element of Val. The sequence starts at StartIndex.
626   /// \p Opcode is relevant for FP induction variable.
627   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
628                                Instruction::BinaryOps Opcode =
629                                Instruction::BinaryOpsEnd);
630 
631   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
632   /// variable on which to base the steps, \p Step is the size of the step, and
633   /// \p EntryVal is the value from the original loop that maps to the steps.
634   /// Note that \p EntryVal doesn't have to be an induction variable - it
635   /// can also be a truncate instruction.
636   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
637                         const InductionDescriptor &ID, VPValue *Def,
638                         VPValue *CastDef, VPTransformState &State);
639 
640   /// Create a vector induction phi node based on an existing scalar one. \p
641   /// EntryVal is the value from the original loop that maps to the vector phi
642   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
643   /// truncate instruction, instead of widening the original IV, we widen a
644   /// version of the IV truncated to \p EntryVal's type.
645   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
646                                        Value *Step, Value *Start,
647                                        Instruction *EntryVal, VPValue *Def,
648                                        VPValue *CastDef,
649                                        VPTransformState &State);
650 
651   /// Returns true if an instruction \p I should be scalarized instead of
652   /// vectorized for the chosen vectorization factor.
653   bool shouldScalarizeInstruction(Instruction *I) const;
654 
655   /// Returns true if we should generate a scalar version of \p IV.
656   bool needsScalarInduction(Instruction *IV) const;
657 
658   /// If there is a cast involved in the induction variable \p ID, which should
659   /// be ignored in the vectorized loop body, this function records the
660   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
661   /// cast. We had already proved that the casted Phi is equal to the uncasted
662   /// Phi in the vectorized loop (under a runtime guard), and therefore
663   /// there is no need to vectorize the cast - the same value can be used in the
664   /// vector loop for both the Phi and the cast.
665   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
666   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
667   ///
668   /// \p EntryVal is the value from the original loop that maps to the vector
669   /// phi node and is used to distinguish what is the IV currently being
670   /// processed - original one (if \p EntryVal is a phi corresponding to the
671   /// original IV) or the "newly-created" one based on the proof mentioned above
672   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
673   /// latter case \p EntryVal is a TruncInst and we must not record anything for
674   /// that IV, but it's error-prone to expect callers of this routine to care
675   /// about that, hence this explicit parameter.
676   void recordVectorLoopValueForInductionCast(
677       const InductionDescriptor &ID, const Instruction *EntryVal,
678       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
679       unsigned Part, unsigned Lane = UINT_MAX);
680 
681   /// Generate a shuffle sequence that will reverse the vector Vec.
682   virtual Value *reverseVector(Value *Vec);
683 
684   /// Returns (and creates if needed) the original loop trip count.
685   Value *getOrCreateTripCount(Loop *NewLoop);
686 
687   /// Returns (and creates if needed) the trip count of the widened loop.
688   Value *getOrCreateVectorTripCount(Loop *NewLoop);
689 
690   /// Returns a bitcasted value to the requested vector type.
691   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
692   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
693                                 const DataLayout &DL);
694 
695   /// Emit a bypass check to see if the vector trip count is zero, including if
696   /// it overflows.
697   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit a bypass check to see if all of the SCEV assumptions we've
700   /// had to make are correct. Returns the block containing the checks or
701   /// nullptr if no checks have been added.
702   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Emit bypass checks to check any memory assumptions we may have made.
705   /// Returns the block containing the checks or nullptr if no checks have been
706   /// added.
707   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
708 
709   /// Compute the transformed value of Index at offset StartValue using step
710   /// StepValue.
711   /// For integer induction, returns StartValue + Index * StepValue.
712   /// For pointer induction, returns StartValue[Index * StepValue].
713   /// FIXME: The newly created binary instructions should contain nsw/nuw
714   /// flags, which can be found from the original scalar operations.
715   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
716                               const DataLayout &DL,
717                               const InductionDescriptor &ID) const;
718 
719   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
720   /// vector loop preheader, middle block and scalar preheader. Also
721   /// allocate a loop object for the new vector loop and return it.
722   Loop *createVectorLoopSkeleton(StringRef Prefix);
723 
724   /// Create new phi nodes for the induction variables to resume iteration count
725   /// in the scalar epilogue, from where the vectorized loop left off (given by
726   /// \p VectorTripCount).
727   /// In cases where the loop skeleton is more complicated (eg. epilogue
728   /// vectorization) and the resume values can come from an additional bypass
729   /// block, the \p AdditionalBypass pair provides information about the bypass
730   /// block and the end value on the edge from bypass to this loop.
731   void createInductionResumeValues(
732       Loop *L, Value *VectorTripCount,
733       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
734 
735   /// Complete the loop skeleton by adding debug MDs, creating appropriate
736   /// conditional branches in the middle block, preparing the builder and
737   /// running the verifier. Take in the vector loop \p L as argument, and return
738   /// the preheader of the completed vector loop.
739   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
740 
741   /// Add additional metadata to \p To that was not present on \p Orig.
742   ///
743   /// Currently this is used to add the noalias annotations based on the
744   /// inserted memchecks.  Use this for instructions that are *cloned* into the
745   /// vector loop.
746   void addNewMetadata(Instruction *To, const Instruction *Orig);
747 
748   /// Add metadata from one instruction to another.
749   ///
750   /// This includes both the original MDs from \p From and additional ones (\see
751   /// addNewMetadata).  Use this for *newly created* instructions in the vector
752   /// loop.
753   void addMetadata(Instruction *To, Instruction *From);
754 
755   /// Similar to the previous function but it adds the metadata to a
756   /// vector of instructions.
757   void addMetadata(ArrayRef<Value *> To, Instruction *From);
758 
759   /// Allow subclasses to override and print debug traces before/after vplan
760   /// execution, when trace information is requested.
761   virtual void printDebugTracesAtStart(){};
762   virtual void printDebugTracesAtEnd(){};
763 
764   /// The original loop.
765   Loop *OrigLoop;
766 
767   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
768   /// dynamic knowledge to simplify SCEV expressions and converts them to a
769   /// more usable form.
770   PredicatedScalarEvolution &PSE;
771 
772   /// Loop Info.
773   LoopInfo *LI;
774 
775   /// Dominator Tree.
776   DominatorTree *DT;
777 
778   /// Alias Analysis.
779   AAResults *AA;
780 
781   /// Target Library Info.
782   const TargetLibraryInfo *TLI;
783 
784   /// Target Transform Info.
785   const TargetTransformInfo *TTI;
786 
787   /// Assumption Cache.
788   AssumptionCache *AC;
789 
790   /// Interface to emit optimization remarks.
791   OptimizationRemarkEmitter *ORE;
792 
793   /// LoopVersioning.  It's only set up (non-null) if memchecks were
794   /// used.
795   ///
796   /// This is currently only used to add no-alias metadata based on the
797   /// memchecks.  The actually versioning is performed manually.
798   std::unique_ptr<LoopVersioning> LVer;
799 
800   /// The vectorization SIMD factor to use. Each vector will have this many
801   /// vector elements.
802   ElementCount VF;
803 
804   /// The vectorization unroll factor to use. Each scalar is vectorized to this
805   /// many different vector instructions.
806   unsigned UF;
807 
808   /// The builder that we use
809   IRBuilder<> Builder;
810 
811   // --- Vectorization state ---
812 
813   /// The vector-loop preheader.
814   BasicBlock *LoopVectorPreHeader;
815 
816   /// The scalar-loop preheader.
817   BasicBlock *LoopScalarPreHeader;
818 
819   /// Middle Block between the vector and the scalar.
820   BasicBlock *LoopMiddleBlock;
821 
822   /// The (unique) ExitBlock of the scalar loop.  Note that
823   /// there can be multiple exiting edges reaching this block.
824   BasicBlock *LoopExitBlock;
825 
826   /// The vector loop body.
827   BasicBlock *LoopVectorBody;
828 
829   /// The scalar loop body.
830   BasicBlock *LoopScalarBody;
831 
832   /// A list of all bypass blocks. The first block is the entry of the loop.
833   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
834 
835   /// The new Induction variable which was added to the new block.
836   PHINode *Induction = nullptr;
837 
838   /// The induction variable of the old basic block.
839   PHINode *OldInduction = nullptr;
840 
841   /// Store instructions that were predicated.
842   SmallVector<Instruction *, 4> PredicatedInstructions;
843 
844   /// Trip count of the original loop.
845   Value *TripCount = nullptr;
846 
847   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
848   Value *VectorTripCount = nullptr;
849 
850   /// The legality analysis.
851   LoopVectorizationLegality *Legal;
852 
853   /// The profitablity analysis.
854   LoopVectorizationCostModel *Cost;
855 
856   // Record whether runtime checks are added.
857   bool AddedSafetyChecks = false;
858 
859   // Holds the end values for each induction variable. We save the end values
860   // so we can later fix-up the external users of the induction variables.
861   DenseMap<PHINode *, Value *> IVEndValues;
862 
863   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
864   // fixed up at the end of vector code generation.
865   SmallVector<PHINode *, 8> OrigPHIsToFix;
866 
867   /// BFI and PSI are used to check for profile guided size optimizations.
868   BlockFrequencyInfo *BFI;
869   ProfileSummaryInfo *PSI;
870 
871   // Whether this loop should be optimized for size based on profile guided size
872   // optimizatios.
873   bool OptForSizeBasedOnProfile;
874 
875   /// Structure to hold information about generated runtime checks, responsible
876   /// for cleaning the checks, if vectorization turns out unprofitable.
877   GeneratedRTChecks &RTChecks;
878 };
879 
880 class InnerLoopUnroller : public InnerLoopVectorizer {
881 public:
882   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
883                     LoopInfo *LI, DominatorTree *DT,
884                     const TargetLibraryInfo *TLI,
885                     const TargetTransformInfo *TTI, AssumptionCache *AC,
886                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
887                     LoopVectorizationLegality *LVL,
888                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
889                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
890       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
891                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
892                             BFI, PSI, Check) {}
893 
894 private:
895   Value *getBroadcastInstrs(Value *V) override;
896   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
897                        Instruction::BinaryOps Opcode =
898                        Instruction::BinaryOpsEnd) override;
899   Value *reverseVector(Value *Vec) override;
900 };
901 
902 /// Encapsulate information regarding vectorization of a loop and its epilogue.
903 /// This information is meant to be updated and used across two stages of
904 /// epilogue vectorization.
905 struct EpilogueLoopVectorizationInfo {
906   ElementCount MainLoopVF = ElementCount::getFixed(0);
907   unsigned MainLoopUF = 0;
908   ElementCount EpilogueVF = ElementCount::getFixed(0);
909   unsigned EpilogueUF = 0;
910   BasicBlock *MainLoopIterationCountCheck = nullptr;
911   BasicBlock *EpilogueIterationCountCheck = nullptr;
912   BasicBlock *SCEVSafetyCheck = nullptr;
913   BasicBlock *MemSafetyCheck = nullptr;
914   Value *TripCount = nullptr;
915   Value *VectorTripCount = nullptr;
916 
917   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
918                                 unsigned EUF)
919       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
920         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
921     assert(EUF == 1 &&
922            "A high UF for the epilogue loop is likely not beneficial.");
923   }
924 };
925 
926 /// An extension of the inner loop vectorizer that creates a skeleton for a
927 /// vectorized loop that has its epilogue (residual) also vectorized.
928 /// The idea is to run the vplan on a given loop twice, firstly to setup the
929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
930 /// from the first step and vectorize the epilogue.  This is achieved by
931 /// deriving two concrete strategy classes from this base class and invoking
932 /// them in succession from the loop vectorizer planner.
933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
934 public:
935   InnerLoopAndEpilogueVectorizer(
936       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
937       DominatorTree *DT, const TargetLibraryInfo *TLI,
938       const TargetTransformInfo *TTI, AssumptionCache *AC,
939       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
940       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
941       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
942       GeneratedRTChecks &Checks)
943       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
944                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
945                             Checks),
946         EPI(EPI) {}
947 
948   // Override this function to handle the more complex control flow around the
949   // three loops.
950   BasicBlock *createVectorizedLoopSkeleton() final override {
951     return createEpilogueVectorizedLoopSkeleton();
952   }
953 
954   /// The interface for creating a vectorized skeleton using one of two
955   /// different strategies, each corresponding to one execution of the vplan
956   /// as described above.
957   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
958 
959   /// Holds and updates state information required to vectorize the main loop
960   /// and its epilogue in two separate passes. This setup helps us avoid
961   /// regenerating and recomputing runtime safety checks. It also helps us to
962   /// shorten the iteration-count-check path length for the cases where the
963   /// iteration count of the loop is so small that the main vector loop is
964   /// completely skipped.
965   EpilogueLoopVectorizationInfo &EPI;
966 };
967 
968 /// A specialized derived class of inner loop vectorizer that performs
969 /// vectorization of *main* loops in the process of vectorizing loops and their
970 /// epilogues.
971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
972 public:
973   EpilogueVectorizerMainLoop(
974       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
975       DominatorTree *DT, const TargetLibraryInfo *TLI,
976       const TargetTransformInfo *TTI, AssumptionCache *AC,
977       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
978       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
979       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
980       GeneratedRTChecks &Check)
981       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
982                                        EPI, LVL, CM, BFI, PSI, Check) {}
983   /// Implements the interface for creating a vectorized skeleton using the
984   /// *main loop* strategy (ie the first pass of vplan execution).
985   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
986 
987 protected:
988   /// Emits an iteration count bypass check once for the main loop (when \p
989   /// ForEpilogue is false) and once for the epilogue loop (when \p
990   /// ForEpilogue is true).
991   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
992                                              bool ForEpilogue);
993   void printDebugTracesAtStart() override;
994   void printDebugTracesAtEnd() override;
995 };
996 
997 // A specialized derived class of inner loop vectorizer that performs
998 // vectorization of *epilogue* loops in the process of vectorizing loops and
999 // their epilogues.
1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
1001 public:
1002   EpilogueVectorizerEpilogueLoop(
1003       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1004       DominatorTree *DT, const TargetLibraryInfo *TLI,
1005       const TargetTransformInfo *TTI, AssumptionCache *AC,
1006       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1007       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1008       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1009       GeneratedRTChecks &Checks)
1010       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1011                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1012   /// Implements the interface for creating a vectorized skeleton using the
1013   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1014   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1015 
1016 protected:
1017   /// Emits an iteration count bypass check after the main vector loop has
1018   /// finished to see if there are any iterations left to execute by either
1019   /// the vector epilogue or the scalar epilogue.
1020   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1021                                                       BasicBlock *Bypass,
1022                                                       BasicBlock *Insert);
1023   void printDebugTracesAtStart() override;
1024   void printDebugTracesAtEnd() override;
1025 };
1026 } // end namespace llvm
1027 
1028 /// Look for a meaningful debug location on the instruction or it's
1029 /// operands.
1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1031   if (!I)
1032     return I;
1033 
1034   DebugLoc Empty;
1035   if (I->getDebugLoc() != Empty)
1036     return I;
1037 
1038   for (Use &Op : I->operands()) {
1039     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1040       if (OpInst->getDebugLoc() != Empty)
1041         return OpInst;
1042   }
1043 
1044   return I;
1045 }
1046 
1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
1048   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
1049     const DILocation *DIL = Inst->getDebugLoc();
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst)) {
1052       assert(!VF.isScalable() && "scalable vectors not yet supported.");
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B.SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     }
1062     else
1063       B.SetCurrentDebugLocation(DIL);
1064   } else
1065     B.SetCurrentDebugLocation(DebugLoc());
1066 }
1067 
1068 /// Write a record \p DebugMsg about vectorization failure to the debug
1069 /// output stream. If \p I is passed, it is an instruction that prevents
1070 /// vectorization.
1071 #ifndef NDEBUG
1072 static void debugVectorizationFailure(const StringRef DebugMsg,
1073     Instruction *I) {
1074   dbgs() << "LV: Not vectorizing: " << DebugMsg;
1075   if (I != nullptr)
1076     dbgs() << " " << *I;
1077   else
1078     dbgs() << '.';
1079   dbgs() << '\n';
1080 }
1081 #endif
1082 
1083 /// Create an analysis remark that explains why vectorization failed
1084 ///
1085 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1086 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1087 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1088 /// the location of the remark.  \return the remark object that can be
1089 /// streamed to.
1090 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1091     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1092   Value *CodeRegion = TheLoop->getHeader();
1093   DebugLoc DL = TheLoop->getStartLoc();
1094 
1095   if (I) {
1096     CodeRegion = I->getParent();
1097     // If there is no debug location attached to the instruction, revert back to
1098     // using the loop's.
1099     if (I->getDebugLoc())
1100       DL = I->getDebugLoc();
1101   }
1102 
1103   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
1104   R << "loop not vectorized: ";
1105   return R;
1106 }
1107 
1108 /// Return a value for Step multiplied by VF.
1109 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1110   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1111   Constant *StepVal = ConstantInt::get(
1112       Step->getType(),
1113       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1114   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1115 }
1116 
1117 namespace llvm {
1118 
1119 /// Return the runtime value for VF.
1120 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1121   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1122   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1123 }
1124 
1125 void reportVectorizationFailure(const StringRef DebugMsg,
1126     const StringRef OREMsg, const StringRef ORETag,
1127     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
1131                 ORETag, TheLoop, I) << OREMsg);
1132 }
1133 
1134 } // end namespace llvm
1135 
1136 #ifndef NDEBUG
1137 /// \return string containing a file name and a line # for the given loop.
1138 static std::string getDebugLocString(const Loop *L) {
1139   std::string Result;
1140   if (L) {
1141     raw_string_ostream OS(Result);
1142     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1143       LoopDbgLoc.print(OS);
1144     else
1145       // Just print the module name.
1146       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1147     OS.flush();
1148   }
1149   return Result;
1150 }
1151 #endif
1152 
1153 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1154                                          const Instruction *Orig) {
1155   // If the loop was versioned with memchecks, add the corresponding no-alias
1156   // metadata.
1157   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1158     LVer->annotateInstWithNoAlias(To, Orig);
1159 }
1160 
1161 void InnerLoopVectorizer::addMetadata(Instruction *To,
1162                                       Instruction *From) {
1163   propagateMetadata(To, From);
1164   addNewMetadata(To, From);
1165 }
1166 
1167 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1168                                       Instruction *From) {
1169   for (Value *V : To) {
1170     if (Instruction *I = dyn_cast<Instruction>(V))
1171       addMetadata(I, From);
1172   }
1173 }
1174 
1175 namespace llvm {
1176 
1177 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1178 // lowered.
1179 enum ScalarEpilogueLowering {
1180 
1181   // The default: allowing scalar epilogues.
1182   CM_ScalarEpilogueAllowed,
1183 
1184   // Vectorization with OptForSize: don't allow epilogues.
1185   CM_ScalarEpilogueNotAllowedOptSize,
1186 
1187   // A special case of vectorisation with OptForSize: loops with a very small
1188   // trip count are considered for vectorization under OptForSize, thereby
1189   // making sure the cost of their loop body is dominant, free of runtime
1190   // guards and scalar iteration overheads.
1191   CM_ScalarEpilogueNotAllowedLowTripLoop,
1192 
1193   // Loop hint predicate indicating an epilogue is undesired.
1194   CM_ScalarEpilogueNotNeededUsePredicate,
1195 
1196   // Directive indicating we must either tail fold or not vectorize
1197   CM_ScalarEpilogueNotAllowedUsePredicate
1198 };
1199 
1200 /// LoopVectorizationCostModel - estimates the expected speedups due to
1201 /// vectorization.
1202 /// In many cases vectorization is not profitable. This can happen because of
1203 /// a number of reasons. In this class we mainly attempt to predict the
1204 /// expected speedup/slowdowns due to the supported instruction set. We use the
1205 /// TargetTransformInfo to query the different backends for the cost of
1206 /// different operations.
1207 class LoopVectorizationCostModel {
1208 public:
1209   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1210                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1211                              LoopVectorizationLegality *Legal,
1212                              const TargetTransformInfo &TTI,
1213                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1214                              AssumptionCache *AC,
1215                              OptimizationRemarkEmitter *ORE, const Function *F,
1216                              const LoopVectorizeHints *Hints,
1217                              InterleavedAccessInfo &IAI)
1218       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1219         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1220         Hints(Hints), InterleaveInfo(IAI) {}
1221 
1222   /// \return An upper bound for the vectorization factor, or None if
1223   /// vectorization and interleaving should be avoided up front.
1224   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1225 
1226   /// \return True if runtime checks are required for vectorization, and false
1227   /// otherwise.
1228   bool runtimeChecksRequired();
1229 
1230   /// \return The most profitable vectorization factor and the cost of that VF.
1231   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1232   /// then this vectorization factor will be selected if vectorization is
1233   /// possible.
1234   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1235   VectorizationFactor
1236   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1237                                     const LoopVectorizationPlanner &LVP);
1238 
1239   /// Setup cost-based decisions for user vectorization factor.
1240   void selectUserVectorizationFactor(ElementCount UserVF) {
1241     collectUniformsAndScalars(UserVF);
1242     collectInstsToScalarize(UserVF);
1243   }
1244 
1245   /// \return The size (in bits) of the smallest and widest types in the code
1246   /// that needs to be vectorized. We ignore values that remain scalar such as
1247   /// 64 bit loop indices.
1248   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1249 
1250   /// \return The desired interleave count.
1251   /// If interleave count has been specified by metadata it will be returned.
1252   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1253   /// are the selected vectorization factor and the cost of the selected VF.
1254   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1255 
1256   /// Memory access instruction may be vectorized in more than one way.
1257   /// Form of instruction after vectorization depends on cost.
1258   /// This function takes cost-based decisions for Load/Store instructions
1259   /// and collects them in a map. This decisions map is used for building
1260   /// the lists of loop-uniform and loop-scalar instructions.
1261   /// The calculated cost is saved with widening decision in order to
1262   /// avoid redundant calculations.
1263   void setCostBasedWideningDecision(ElementCount VF);
1264 
1265   /// A struct that represents some properties of the register usage
1266   /// of a loop.
1267   struct RegisterUsage {
1268     /// Holds the number of loop invariant values that are used in the loop.
1269     /// The key is ClassID of target-provided register class.
1270     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1271     /// Holds the maximum number of concurrent live intervals in the loop.
1272     /// The key is ClassID of target-provided register class.
1273     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1274   };
1275 
1276   /// \return Returns information about the register usages of the loop for the
1277   /// given vectorization factors.
1278   SmallVector<RegisterUsage, 8>
1279   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1280 
1281   /// Collect values we want to ignore in the cost model.
1282   void collectValuesToIgnore();
1283 
1284   /// Split reductions into those that happen in the loop, and those that happen
1285   /// outside. In loop reductions are collected into InLoopReductionChains.
1286   void collectInLoopReductions();
1287 
1288   /// \returns The smallest bitwidth each instruction can be represented with.
1289   /// The vector equivalents of these instructions should be truncated to this
1290   /// type.
1291   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1292     return MinBWs;
1293   }
1294 
1295   /// \returns True if it is more profitable to scalarize instruction \p I for
1296   /// vectorization factor \p VF.
1297   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1298     assert(VF.isVector() &&
1299            "Profitable to scalarize relevant only for VF > 1.");
1300 
1301     // Cost model is not run in the VPlan-native path - return conservative
1302     // result until this changes.
1303     if (EnableVPlanNativePath)
1304       return false;
1305 
1306     auto Scalars = InstsToScalarize.find(VF);
1307     assert(Scalars != InstsToScalarize.end() &&
1308            "VF not yet analyzed for scalarization profitability");
1309     return Scalars->second.find(I) != Scalars->second.end();
1310   }
1311 
1312   /// Returns true if \p I is known to be uniform after vectorization.
1313   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1314     if (VF.isScalar())
1315       return true;
1316 
1317     // Cost model is not run in the VPlan-native path - return conservative
1318     // result until this changes.
1319     if (EnableVPlanNativePath)
1320       return false;
1321 
1322     auto UniformsPerVF = Uniforms.find(VF);
1323     assert(UniformsPerVF != Uniforms.end() &&
1324            "VF not yet analyzed for uniformity");
1325     return UniformsPerVF->second.count(I);
1326   }
1327 
1328   /// Returns true if \p I is known to be scalar after vectorization.
1329   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1330     if (VF.isScalar())
1331       return true;
1332 
1333     // Cost model is not run in the VPlan-native path - return conservative
1334     // result until this changes.
1335     if (EnableVPlanNativePath)
1336       return false;
1337 
1338     auto ScalarsPerVF = Scalars.find(VF);
1339     assert(ScalarsPerVF != Scalars.end() &&
1340            "Scalar values are not calculated for VF");
1341     return ScalarsPerVF->second.count(I);
1342   }
1343 
1344   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1345   /// for vectorization factor \p VF.
1346   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1347     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1348            !isProfitableToScalarize(I, VF) &&
1349            !isScalarAfterVectorization(I, VF);
1350   }
1351 
1352   /// Decision that was taken during cost calculation for memory instruction.
1353   enum InstWidening {
1354     CM_Unknown,
1355     CM_Widen,         // For consecutive accesses with stride +1.
1356     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1357     CM_Interleave,
1358     CM_GatherScatter,
1359     CM_Scalarize
1360   };
1361 
1362   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1363   /// instruction \p I and vector width \p VF.
1364   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1365                            InstructionCost Cost) {
1366     assert(VF.isVector() && "Expected VF >=2");
1367     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1368   }
1369 
1370   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1371   /// interleaving group \p Grp and vector width \p VF.
1372   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1373                            ElementCount VF, InstWidening W,
1374                            InstructionCost Cost) {
1375     assert(VF.isVector() && "Expected VF >=2");
1376     /// Broadcast this decicion to all instructions inside the group.
1377     /// But the cost will be assigned to one instruction only.
1378     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1379       if (auto *I = Grp->getMember(i)) {
1380         if (Grp->getInsertPos() == I)
1381           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1382         else
1383           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1384       }
1385     }
1386   }
1387 
1388   /// Return the cost model decision for the given instruction \p I and vector
1389   /// width \p VF. Return CM_Unknown if this instruction did not pass
1390   /// through the cost modeling.
1391   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1392     assert(VF.isVector() && "Expected VF to be a vector VF");
1393     // Cost model is not run in the VPlan-native path - return conservative
1394     // result until this changes.
1395     if (EnableVPlanNativePath)
1396       return CM_GatherScatter;
1397 
1398     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1399     auto Itr = WideningDecisions.find(InstOnVF);
1400     if (Itr == WideningDecisions.end())
1401       return CM_Unknown;
1402     return Itr->second.first;
1403   }
1404 
1405   /// Return the vectorization cost for the given instruction \p I and vector
1406   /// width \p VF.
1407   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1408     assert(VF.isVector() && "Expected VF >=2");
1409     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1410     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1411            "The cost is not calculated");
1412     return WideningDecisions[InstOnVF].second;
1413   }
1414 
1415   /// Return True if instruction \p I is an optimizable truncate whose operand
1416   /// is an induction variable. Such a truncate will be removed by adding a new
1417   /// induction variable with the destination type.
1418   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1419     // If the instruction is not a truncate, return false.
1420     auto *Trunc = dyn_cast<TruncInst>(I);
1421     if (!Trunc)
1422       return false;
1423 
1424     // Get the source and destination types of the truncate.
1425     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1426     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1427 
1428     // If the truncate is free for the given types, return false. Replacing a
1429     // free truncate with an induction variable would add an induction variable
1430     // update instruction to each iteration of the loop. We exclude from this
1431     // check the primary induction variable since it will need an update
1432     // instruction regardless.
1433     Value *Op = Trunc->getOperand(0);
1434     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1435       return false;
1436 
1437     // If the truncated value is not an induction variable, return false.
1438     return Legal->isInductionPhi(Op);
1439   }
1440 
1441   /// Collects the instructions to scalarize for each predicated instruction in
1442   /// the loop.
1443   void collectInstsToScalarize(ElementCount VF);
1444 
1445   /// Collect Uniform and Scalar values for the given \p VF.
1446   /// The sets depend on CM decision for Load/Store instructions
1447   /// that may be vectorized as interleave, gather-scatter or scalarized.
1448   void collectUniformsAndScalars(ElementCount VF) {
1449     // Do the analysis once.
1450     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1451       return;
1452     setCostBasedWideningDecision(VF);
1453     collectLoopUniforms(VF);
1454     collectLoopScalars(VF);
1455   }
1456 
1457   /// Returns true if the target machine supports masked store operation
1458   /// for the given \p DataType and kind of access to \p Ptr.
1459   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1460     return Legal->isConsecutivePtr(Ptr) &&
1461            TTI.isLegalMaskedStore(DataType, Alignment);
1462   }
1463 
1464   /// Returns true if the target machine supports masked load operation
1465   /// for the given \p DataType and kind of access to \p Ptr.
1466   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1467     return Legal->isConsecutivePtr(Ptr) &&
1468            TTI.isLegalMaskedLoad(DataType, Alignment);
1469   }
1470 
1471   /// Returns true if the target machine supports masked scatter operation
1472   /// for the given \p DataType.
1473   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
1474     return TTI.isLegalMaskedScatter(DataType, Alignment);
1475   }
1476 
1477   /// Returns true if the target machine supports masked gather operation
1478   /// for the given \p DataType.
1479   bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
1480     return TTI.isLegalMaskedGather(DataType, Alignment);
1481   }
1482 
1483   /// Returns true if the target machine can represent \p V as a masked gather
1484   /// or scatter operation.
1485   bool isLegalGatherOrScatter(Value *V) {
1486     bool LI = isa<LoadInst>(V);
1487     bool SI = isa<StoreInst>(V);
1488     if (!LI && !SI)
1489       return false;
1490     auto *Ty = getMemInstValueType(V);
1491     Align Align = getLoadStoreAlignment(V);
1492     return (LI && isLegalMaskedGather(Ty, Align)) ||
1493            (SI && isLegalMaskedScatter(Ty, Align));
1494   }
1495 
1496   /// Returns true if the target machine supports all of the reduction
1497   /// variables found for the given VF.
1498   bool canVectorizeReductions(ElementCount VF) {
1499     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1500       RecurrenceDescriptor RdxDesc = Reduction.second;
1501       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1502     }));
1503   }
1504 
1505   /// Returns true if \p I is an instruction that will be scalarized with
1506   /// predication. Such instructions include conditional stores and
1507   /// instructions that may divide by zero.
1508   /// If a non-zero VF has been calculated, we check if I will be scalarized
1509   /// predication for that VF.
1510   bool
1511   isScalarWithPredication(Instruction *I,
1512                           ElementCount VF = ElementCount::getFixed(1)) const;
1513 
1514   // Returns true if \p I is an instruction that will be predicated either
1515   // through scalar predication or masked load/store or masked gather/scatter.
1516   // Superset of instructions that return true for isScalarWithPredication.
1517   bool isPredicatedInst(Instruction *I) {
1518     if (!blockNeedsPredication(I->getParent()))
1519       return false;
1520     // Loads and stores that need some form of masked operation are predicated
1521     // instructions.
1522     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1523       return Legal->isMaskRequired(I);
1524     return isScalarWithPredication(I);
1525   }
1526 
1527   /// Returns true if \p I is a memory instruction with consecutive memory
1528   /// access that can be widened.
1529   bool
1530   memoryInstructionCanBeWidened(Instruction *I,
1531                                 ElementCount VF = ElementCount::getFixed(1));
1532 
1533   /// Returns true if \p I is a memory instruction in an interleaved-group
1534   /// of memory accesses that can be vectorized with wide vector loads/stores
1535   /// and shuffles.
1536   bool
1537   interleavedAccessCanBeWidened(Instruction *I,
1538                                 ElementCount VF = ElementCount::getFixed(1));
1539 
1540   /// Check if \p Instr belongs to any interleaved access group.
1541   bool isAccessInterleaved(Instruction *Instr) {
1542     return InterleaveInfo.isInterleaved(Instr);
1543   }
1544 
1545   /// Get the interleaved access group that \p Instr belongs to.
1546   const InterleaveGroup<Instruction> *
1547   getInterleavedAccessGroup(Instruction *Instr) {
1548     return InterleaveInfo.getInterleaveGroup(Instr);
1549   }
1550 
1551   /// Returns true if we're required to use a scalar epilogue for at least
1552   /// the final iteration of the original loop.
1553   bool requiresScalarEpilogue() const {
1554     if (!isScalarEpilogueAllowed())
1555       return false;
1556     // If we might exit from anywhere but the latch, must run the exiting
1557     // iteration in scalar form.
1558     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1559       return true;
1560     return InterleaveInfo.requiresScalarEpilogue();
1561   }
1562 
1563   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1564   /// loop hint annotation.
1565   bool isScalarEpilogueAllowed() const {
1566     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1567   }
1568 
1569   /// Returns true if all loop blocks should be masked to fold tail loop.
1570   bool foldTailByMasking() const { return FoldTailByMasking; }
1571 
1572   bool blockNeedsPredication(BasicBlock *BB) const {
1573     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1574   }
1575 
1576   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1577   /// nodes to the chain of instructions representing the reductions. Uses a
1578   /// MapVector to ensure deterministic iteration order.
1579   using ReductionChainMap =
1580       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1581 
1582   /// Return the chain of instructions representing an inloop reduction.
1583   const ReductionChainMap &getInLoopReductionChains() const {
1584     return InLoopReductionChains;
1585   }
1586 
1587   /// Returns true if the Phi is part of an inloop reduction.
1588   bool isInLoopReduction(PHINode *Phi) const {
1589     return InLoopReductionChains.count(Phi);
1590   }
1591 
1592   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1593   /// with factor VF.  Return the cost of the instruction, including
1594   /// scalarization overhead if it's needed.
1595   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1596 
1597   /// Estimate cost of a call instruction CI if it were vectorized with factor
1598   /// VF. Return the cost of the instruction, including scalarization overhead
1599   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1600   /// scalarized -
1601   /// i.e. either vector version isn't available, or is too expensive.
1602   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1603                                     bool &NeedToScalarize) const;
1604 
1605   /// Invalidates decisions already taken by the cost model.
1606   void invalidateCostModelingDecisions() {
1607     WideningDecisions.clear();
1608     Uniforms.clear();
1609     Scalars.clear();
1610   }
1611 
1612 private:
1613   unsigned NumPredStores = 0;
1614 
1615   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1616   /// than zero. One is returned if vectorization should best be avoided due
1617   /// to cost.
1618   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount,
1619                                     ElementCount UserVF);
1620 
1621   /// The vectorization cost is a combination of the cost itself and a boolean
1622   /// indicating whether any of the contributing operations will actually
1623   /// operate on
1624   /// vector values after type legalization in the backend. If this latter value
1625   /// is
1626   /// false, then all operations will be scalarized (i.e. no vectorization has
1627   /// actually taken place).
1628   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1629 
1630   /// Returns the expected execution cost. The unit of the cost does
1631   /// not matter because we use the 'cost' units to compare different
1632   /// vector widths. The cost that is returned is *not* normalized by
1633   /// the factor width.
1634   VectorizationCostTy expectedCost(ElementCount VF);
1635 
1636   /// Returns the execution time cost of an instruction for a given vector
1637   /// width. Vector width of one means scalar.
1638   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1639 
1640   /// The cost-computation logic from getInstructionCost which provides
1641   /// the vector type as an output parameter.
1642   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1643                                      Type *&VectorTy);
1644 
1645   /// Return the cost of instructions in an inloop reduction pattern, if I is
1646   /// part of that pattern.
1647   InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF,
1648                                           Type *VectorTy,
1649                                           TTI::TargetCostKind CostKind);
1650 
1651   /// Calculate vectorization cost of memory instruction \p I.
1652   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1653 
1654   /// The cost computation for scalarized memory instruction.
1655   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1656 
1657   /// The cost computation for interleaving group of memory instructions.
1658   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1659 
1660   /// The cost computation for Gather/Scatter instruction.
1661   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1662 
1663   /// The cost computation for widening instruction \p I with consecutive
1664   /// memory access.
1665   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1666 
1667   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1668   /// Load: scalar load + broadcast.
1669   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1670   /// element)
1671   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1672 
1673   /// Estimate the overhead of scalarizing an instruction. This is a
1674   /// convenience wrapper for the type-based getScalarizationOverhead API.
1675   InstructionCost getScalarizationOverhead(Instruction *I,
1676                                            ElementCount VF) const;
1677 
1678   /// Returns whether the instruction is a load or store and will be a emitted
1679   /// as a vector operation.
1680   bool isConsecutiveLoadOrStore(Instruction *I);
1681 
1682   /// Returns true if an artificially high cost for emulated masked memrefs
1683   /// should be used.
1684   bool useEmulatedMaskMemRefHack(Instruction *I);
1685 
1686   /// Map of scalar integer values to the smallest bitwidth they can be legally
1687   /// represented as. The vector equivalents of these values should be truncated
1688   /// to this type.
1689   MapVector<Instruction *, uint64_t> MinBWs;
1690 
1691   /// A type representing the costs for instructions if they were to be
1692   /// scalarized rather than vectorized. The entries are Instruction-Cost
1693   /// pairs.
1694   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1695 
1696   /// A set containing all BasicBlocks that are known to present after
1697   /// vectorization as a predicated block.
1698   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1699 
1700   /// Records whether it is allowed to have the original scalar loop execute at
1701   /// least once. This may be needed as a fallback loop in case runtime
1702   /// aliasing/dependence checks fail, or to handle the tail/remainder
1703   /// iterations when the trip count is unknown or doesn't divide by the VF,
1704   /// or as a peel-loop to handle gaps in interleave-groups.
1705   /// Under optsize and when the trip count is very small we don't allow any
1706   /// iterations to execute in the scalar loop.
1707   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1708 
1709   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1710   bool FoldTailByMasking = false;
1711 
1712   /// A map holding scalar costs for different vectorization factors. The
1713   /// presence of a cost for an instruction in the mapping indicates that the
1714   /// instruction will be scalarized when vectorizing with the associated
1715   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1716   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1717 
1718   /// Holds the instructions known to be uniform after vectorization.
1719   /// The data is collected per VF.
1720   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1721 
1722   /// Holds the instructions known to be scalar after vectorization.
1723   /// The data is collected per VF.
1724   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1725 
1726   /// Holds the instructions (address computations) that are forced to be
1727   /// scalarized.
1728   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1729 
1730   /// PHINodes of the reductions that should be expanded in-loop along with
1731   /// their associated chains of reduction operations, in program order from top
1732   /// (PHI) to bottom
1733   ReductionChainMap InLoopReductionChains;
1734 
1735   /// A Map of inloop reduction operations and their immediate chain operand.
1736   /// FIXME: This can be removed once reductions can be costed correctly in
1737   /// vplan. This was added to allow quick lookup to the inloop operations,
1738   /// without having to loop through InLoopReductionChains.
1739   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1740 
1741   /// Returns the expected difference in cost from scalarizing the expression
1742   /// feeding a predicated instruction \p PredInst. The instructions to
1743   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1744   /// non-negative return value implies the expression will be scalarized.
1745   /// Currently, only single-use chains are considered for scalarization.
1746   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1747                               ElementCount VF);
1748 
1749   /// Collect the instructions that are uniform after vectorization. An
1750   /// instruction is uniform if we represent it with a single scalar value in
1751   /// the vectorized loop corresponding to each vector iteration. Examples of
1752   /// uniform instructions include pointer operands of consecutive or
1753   /// interleaved memory accesses. Note that although uniformity implies an
1754   /// instruction will be scalar, the reverse is not true. In general, a
1755   /// scalarized instruction will be represented by VF scalar values in the
1756   /// vectorized loop, each corresponding to an iteration of the original
1757   /// scalar loop.
1758   void collectLoopUniforms(ElementCount VF);
1759 
1760   /// Collect the instructions that are scalar after vectorization. An
1761   /// instruction is scalar if it is known to be uniform or will be scalarized
1762   /// during vectorization. Non-uniform scalarized instructions will be
1763   /// represented by VF values in the vectorized loop, each corresponding to an
1764   /// iteration of the original scalar loop.
1765   void collectLoopScalars(ElementCount VF);
1766 
1767   /// Keeps cost model vectorization decision and cost for instructions.
1768   /// Right now it is used for memory instructions only.
1769   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1770                                 std::pair<InstWidening, InstructionCost>>;
1771 
1772   DecisionList WideningDecisions;
1773 
1774   /// Returns true if \p V is expected to be vectorized and it needs to be
1775   /// extracted.
1776   bool needsExtract(Value *V, ElementCount VF) const {
1777     Instruction *I = dyn_cast<Instruction>(V);
1778     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1779         TheLoop->isLoopInvariant(I))
1780       return false;
1781 
1782     // Assume we can vectorize V (and hence we need extraction) if the
1783     // scalars are not computed yet. This can happen, because it is called
1784     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1785     // the scalars are collected. That should be a safe assumption in most
1786     // cases, because we check if the operands have vectorizable types
1787     // beforehand in LoopVectorizationLegality.
1788     return Scalars.find(VF) == Scalars.end() ||
1789            !isScalarAfterVectorization(I, VF);
1790   };
1791 
1792   /// Returns a range containing only operands needing to be extracted.
1793   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1794                                                    ElementCount VF) const {
1795     return SmallVector<Value *, 4>(make_filter_range(
1796         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1797   }
1798 
1799   /// Determines if we have the infrastructure to vectorize loop \p L and its
1800   /// epilogue, assuming the main loop is vectorized by \p VF.
1801   bool isCandidateForEpilogueVectorization(const Loop &L,
1802                                            const ElementCount VF) const;
1803 
1804   /// Returns true if epilogue vectorization is considered profitable, and
1805   /// false otherwise.
1806   /// \p VF is the vectorization factor chosen for the original loop.
1807   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1808 
1809 public:
1810   /// The loop that we evaluate.
1811   Loop *TheLoop;
1812 
1813   /// Predicated scalar evolution analysis.
1814   PredicatedScalarEvolution &PSE;
1815 
1816   /// Loop Info analysis.
1817   LoopInfo *LI;
1818 
1819   /// Vectorization legality.
1820   LoopVectorizationLegality *Legal;
1821 
1822   /// Vector target information.
1823   const TargetTransformInfo &TTI;
1824 
1825   /// Target Library Info.
1826   const TargetLibraryInfo *TLI;
1827 
1828   /// Demanded bits analysis.
1829   DemandedBits *DB;
1830 
1831   /// Assumption cache.
1832   AssumptionCache *AC;
1833 
1834   /// Interface to emit optimization remarks.
1835   OptimizationRemarkEmitter *ORE;
1836 
1837   const Function *TheFunction;
1838 
1839   /// Loop Vectorize Hint.
1840   const LoopVectorizeHints *Hints;
1841 
1842   /// The interleave access information contains groups of interleaved accesses
1843   /// with the same stride and close to each other.
1844   InterleavedAccessInfo &InterleaveInfo;
1845 
1846   /// Values to ignore in the cost model.
1847   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1848 
1849   /// Values to ignore in the cost model when VF > 1.
1850   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1851 
1852   /// Profitable vector factors.
1853   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1854 };
1855 } // end namespace llvm
1856 
1857 /// Helper struct to manage generating runtime checks for vectorization.
1858 ///
1859 /// The runtime checks are created up-front in temporary blocks to allow better
1860 /// estimating the cost and un-linked from the existing IR. After deciding to
1861 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1862 /// temporary blocks are completely removed.
1863 class GeneratedRTChecks {
1864   /// Basic block which contains the generated SCEV checks, if any.
1865   BasicBlock *SCEVCheckBlock = nullptr;
1866 
1867   /// The value representing the result of the generated SCEV checks. If it is
1868   /// nullptr, either no SCEV checks have been generated or they have been used.
1869   Value *SCEVCheckCond = nullptr;
1870 
1871   /// Basic block which contains the generated memory runtime checks, if any.
1872   BasicBlock *MemCheckBlock = nullptr;
1873 
1874   /// The value representing the result of the generated memory runtime checks.
1875   /// If it is nullptr, either no memory runtime checks have been generated or
1876   /// they have been used.
1877   Instruction *MemRuntimeCheckCond = nullptr;
1878 
1879   DominatorTree *DT;
1880   LoopInfo *LI;
1881 
1882   SCEVExpander SCEVExp;
1883   SCEVExpander MemCheckExp;
1884 
1885 public:
1886   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1887                     const DataLayout &DL)
1888       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1889         MemCheckExp(SE, DL, "scev.check") {}
1890 
1891   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1892   /// accurately estimate the cost of the runtime checks. The blocks are
1893   /// un-linked from the IR and is added back during vector code generation. If
1894   /// there is no vector code generation, the check blocks are removed
1895   /// completely.
1896   void Create(Loop *L, const LoopAccessInfo &LAI,
1897               const SCEVUnionPredicate &UnionPred) {
1898 
1899     BasicBlock *LoopHeader = L->getHeader();
1900     BasicBlock *Preheader = L->getLoopPreheader();
1901 
1902     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1903     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1904     // may be used by SCEVExpander. The blocks will be un-linked from their
1905     // predecessors and removed from LI & DT at the end of the function.
1906     if (!UnionPred.isAlwaysTrue()) {
1907       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1908                                   nullptr, "vector.scevcheck");
1909 
1910       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1911           &UnionPred, SCEVCheckBlock->getTerminator());
1912     }
1913 
1914     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1915     if (RtPtrChecking.Need) {
1916       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1917       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1918                                  "vector.memcheck");
1919 
1920       std::tie(std::ignore, MemRuntimeCheckCond) =
1921           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1922                            RtPtrChecking.getChecks(), MemCheckExp);
1923       assert(MemRuntimeCheckCond &&
1924              "no RT checks generated although RtPtrChecking "
1925              "claimed checks are required");
1926     }
1927 
1928     if (!MemCheckBlock && !SCEVCheckBlock)
1929       return;
1930 
1931     // Unhook the temporary block with the checks, update various places
1932     // accordingly.
1933     if (SCEVCheckBlock)
1934       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1935     if (MemCheckBlock)
1936       MemCheckBlock->replaceAllUsesWith(Preheader);
1937 
1938     if (SCEVCheckBlock) {
1939       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1940       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1941       Preheader->getTerminator()->eraseFromParent();
1942     }
1943     if (MemCheckBlock) {
1944       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1945       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1946       Preheader->getTerminator()->eraseFromParent();
1947     }
1948 
1949     DT->changeImmediateDominator(LoopHeader, Preheader);
1950     if (MemCheckBlock) {
1951       DT->eraseNode(MemCheckBlock);
1952       LI->removeBlock(MemCheckBlock);
1953     }
1954     if (SCEVCheckBlock) {
1955       DT->eraseNode(SCEVCheckBlock);
1956       LI->removeBlock(SCEVCheckBlock);
1957     }
1958   }
1959 
1960   /// Remove the created SCEV & memory runtime check blocks & instructions, if
1961   /// unused.
1962   ~GeneratedRTChecks() {
1963     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
1964     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
1965     if (!SCEVCheckCond)
1966       SCEVCleaner.markResultUsed();
1967 
1968     if (!MemRuntimeCheckCond)
1969       MemCheckCleaner.markResultUsed();
1970 
1971     if (MemRuntimeCheckCond) {
1972       auto &SE = *MemCheckExp.getSE();
1973       // Memory runtime check generation creates compares that use expanded
1974       // values. Remove them before running the SCEVExpanderCleaners.
1975       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
1976         if (MemCheckExp.isInsertedInstruction(&I))
1977           continue;
1978         SE.forgetValue(&I);
1979         SE.eraseValueFromMap(&I);
1980         I.eraseFromParent();
1981       }
1982     }
1983     MemCheckCleaner.cleanup();
1984     SCEVCleaner.cleanup();
1985 
1986     if (SCEVCheckCond)
1987       SCEVCheckBlock->eraseFromParent();
1988     if (MemRuntimeCheckCond)
1989       MemCheckBlock->eraseFromParent();
1990   }
1991 
1992   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
1993   /// adjusts the branches to branch to the vector preheader or \p Bypass,
1994   /// depending on the generated condition.
1995   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
1996                              BasicBlock *LoopVectorPreHeader,
1997                              BasicBlock *LoopExitBlock) {
1998     if (!SCEVCheckCond)
1999       return nullptr;
2000     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2001       if (C->isZero())
2002         return nullptr;
2003 
2004     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2005 
2006     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2007     // Create new preheader for vector loop.
2008     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2009       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2010 
2011     SCEVCheckBlock->getTerminator()->eraseFromParent();
2012     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2013     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2014                                                 SCEVCheckBlock);
2015 
2016     DT->addNewBlock(SCEVCheckBlock, Pred);
2017     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2018 
2019     ReplaceInstWithInst(
2020         SCEVCheckBlock->getTerminator(),
2021         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2022     // Mark the check as used, to prevent it from being removed during cleanup.
2023     SCEVCheckCond = nullptr;
2024     return SCEVCheckBlock;
2025   }
2026 
2027   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2028   /// the branches to branch to the vector preheader or \p Bypass, depending on
2029   /// the generated condition.
2030   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2031                                    BasicBlock *LoopVectorPreHeader) {
2032     // Check if we generated code that checks in runtime if arrays overlap.
2033     if (!MemRuntimeCheckCond)
2034       return nullptr;
2035 
2036     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2037     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2038                                                 MemCheckBlock);
2039 
2040     DT->addNewBlock(MemCheckBlock, Pred);
2041     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2042     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2043 
2044     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2045       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2046 
2047     ReplaceInstWithInst(
2048         MemCheckBlock->getTerminator(),
2049         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2050     MemCheckBlock->getTerminator()->setDebugLoc(
2051         Pred->getTerminator()->getDebugLoc());
2052 
2053     // Mark the check as used, to prevent it from being removed during cleanup.
2054     MemRuntimeCheckCond = nullptr;
2055     return MemCheckBlock;
2056   }
2057 };
2058 
2059 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2060 // vectorization. The loop needs to be annotated with #pragma omp simd
2061 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2062 // vector length information is not provided, vectorization is not considered
2063 // explicit. Interleave hints are not allowed either. These limitations will be
2064 // relaxed in the future.
2065 // Please, note that we are currently forced to abuse the pragma 'clang
2066 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2067 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2068 // provides *explicit vectorization hints* (LV can bypass legal checks and
2069 // assume that vectorization is legal). However, both hints are implemented
2070 // using the same metadata (llvm.loop.vectorize, processed by
2071 // LoopVectorizeHints). This will be fixed in the future when the native IR
2072 // representation for pragma 'omp simd' is introduced.
2073 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2074                                    OptimizationRemarkEmitter *ORE) {
2075   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2076   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2077 
2078   // Only outer loops with an explicit vectorization hint are supported.
2079   // Unannotated outer loops are ignored.
2080   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2081     return false;
2082 
2083   Function *Fn = OuterLp->getHeader()->getParent();
2084   if (!Hints.allowVectorization(Fn, OuterLp,
2085                                 true /*VectorizeOnlyWhenForced*/)) {
2086     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2087     return false;
2088   }
2089 
2090   if (Hints.getInterleave() > 1) {
2091     // TODO: Interleave support is future work.
2092     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2093                          "outer loops.\n");
2094     Hints.emitRemarkWithHints();
2095     return false;
2096   }
2097 
2098   return true;
2099 }
2100 
2101 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2102                                   OptimizationRemarkEmitter *ORE,
2103                                   SmallVectorImpl<Loop *> &V) {
2104   // Collect inner loops and outer loops without irreducible control flow. For
2105   // now, only collect outer loops that have explicit vectorization hints. If we
2106   // are stress testing the VPlan H-CFG construction, we collect the outermost
2107   // loop of every loop nest.
2108   if (L.isInnermost() || VPlanBuildStressTest ||
2109       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2110     LoopBlocksRPO RPOT(&L);
2111     RPOT.perform(LI);
2112     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2113       V.push_back(&L);
2114       // TODO: Collect inner loops inside marked outer loops in case
2115       // vectorization fails for the outer loop. Do not invoke
2116       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2117       // already known to be reducible. We can use an inherited attribute for
2118       // that.
2119       return;
2120     }
2121   }
2122   for (Loop *InnerL : L)
2123     collectSupportedLoops(*InnerL, LI, ORE, V);
2124 }
2125 
2126 namespace {
2127 
2128 /// The LoopVectorize Pass.
2129 struct LoopVectorize : public FunctionPass {
2130   /// Pass identification, replacement for typeid
2131   static char ID;
2132 
2133   LoopVectorizePass Impl;
2134 
2135   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2136                          bool VectorizeOnlyWhenForced = false)
2137       : FunctionPass(ID),
2138         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2139     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2140   }
2141 
2142   bool runOnFunction(Function &F) override {
2143     if (skipFunction(F))
2144       return false;
2145 
2146     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2147     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2148     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2149     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2150     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2151     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2152     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2153     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2154     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2155     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2156     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2157     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2158     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2159 
2160     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2161         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2162 
2163     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2164                         GetLAA, *ORE, PSI).MadeAnyChange;
2165   }
2166 
2167   void getAnalysisUsage(AnalysisUsage &AU) const override {
2168     AU.addRequired<AssumptionCacheTracker>();
2169     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2170     AU.addRequired<DominatorTreeWrapperPass>();
2171     AU.addRequired<LoopInfoWrapperPass>();
2172     AU.addRequired<ScalarEvolutionWrapperPass>();
2173     AU.addRequired<TargetTransformInfoWrapperPass>();
2174     AU.addRequired<AAResultsWrapperPass>();
2175     AU.addRequired<LoopAccessLegacyAnalysis>();
2176     AU.addRequired<DemandedBitsWrapperPass>();
2177     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2178     AU.addRequired<InjectTLIMappingsLegacy>();
2179 
2180     // We currently do not preserve loopinfo/dominator analyses with outer loop
2181     // vectorization. Until this is addressed, mark these analyses as preserved
2182     // only for non-VPlan-native path.
2183     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2184     if (!EnableVPlanNativePath) {
2185       AU.addPreserved<LoopInfoWrapperPass>();
2186       AU.addPreserved<DominatorTreeWrapperPass>();
2187     }
2188 
2189     AU.addPreserved<BasicAAWrapperPass>();
2190     AU.addPreserved<GlobalsAAWrapperPass>();
2191     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2192   }
2193 };
2194 
2195 } // end anonymous namespace
2196 
2197 //===----------------------------------------------------------------------===//
2198 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2199 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2200 //===----------------------------------------------------------------------===//
2201 
2202 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2203   // We need to place the broadcast of invariant variables outside the loop,
2204   // but only if it's proven safe to do so. Else, broadcast will be inside
2205   // vector loop body.
2206   Instruction *Instr = dyn_cast<Instruction>(V);
2207   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2208                      (!Instr ||
2209                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2210   // Place the code for broadcasting invariant variables in the new preheader.
2211   IRBuilder<>::InsertPointGuard Guard(Builder);
2212   if (SafeToHoist)
2213     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2214 
2215   // Broadcast the scalar into all locations in the vector.
2216   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2217 
2218   return Shuf;
2219 }
2220 
2221 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2222     const InductionDescriptor &II, Value *Step, Value *Start,
2223     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2224     VPTransformState &State) {
2225   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2226          "Expected either an induction phi-node or a truncate of it!");
2227 
2228   // Construct the initial value of the vector IV in the vector loop preheader
2229   auto CurrIP = Builder.saveIP();
2230   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2231   if (isa<TruncInst>(EntryVal)) {
2232     assert(Start->getType()->isIntegerTy() &&
2233            "Truncation requires an integer type");
2234     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2235     Step = Builder.CreateTrunc(Step, TruncType);
2236     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2237   }
2238   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2239   Value *SteppedStart =
2240       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2241 
2242   // We create vector phi nodes for both integer and floating-point induction
2243   // variables. Here, we determine the kind of arithmetic we will perform.
2244   Instruction::BinaryOps AddOp;
2245   Instruction::BinaryOps MulOp;
2246   if (Step->getType()->isIntegerTy()) {
2247     AddOp = Instruction::Add;
2248     MulOp = Instruction::Mul;
2249   } else {
2250     AddOp = II.getInductionOpcode();
2251     MulOp = Instruction::FMul;
2252   }
2253 
2254   // Multiply the vectorization factor by the step using integer or
2255   // floating-point arithmetic as appropriate.
2256   Type *StepType = Step->getType();
2257   if (Step->getType()->isFloatingPointTy())
2258     StepType = IntegerType::get(StepType->getContext(),
2259                                 StepType->getScalarSizeInBits());
2260   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2261   if (Step->getType()->isFloatingPointTy())
2262     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2263   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2264 
2265   // Create a vector splat to use in the induction update.
2266   //
2267   // FIXME: If the step is non-constant, we create the vector splat with
2268   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2269   //        handle a constant vector splat.
2270   Value *SplatVF = isa<Constant>(Mul)
2271                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2272                        : Builder.CreateVectorSplat(VF, Mul);
2273   Builder.restoreIP(CurrIP);
2274 
2275   // We may need to add the step a number of times, depending on the unroll
2276   // factor. The last of those goes into the PHI.
2277   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2278                                     &*LoopVectorBody->getFirstInsertionPt());
2279   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2280   Instruction *LastInduction = VecInd;
2281   for (unsigned Part = 0; Part < UF; ++Part) {
2282     State.set(Def, LastInduction, Part);
2283 
2284     if (isa<TruncInst>(EntryVal))
2285       addMetadata(LastInduction, EntryVal);
2286     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2287                                           State, Part);
2288 
2289     LastInduction = cast<Instruction>(
2290         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2291     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2292   }
2293 
2294   // Move the last step to the end of the latch block. This ensures consistent
2295   // placement of all induction updates.
2296   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2297   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2298   auto *ICmp = cast<Instruction>(Br->getCondition());
2299   LastInduction->moveBefore(ICmp);
2300   LastInduction->setName("vec.ind.next");
2301 
2302   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2303   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2304 }
2305 
2306 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2307   return Cost->isScalarAfterVectorization(I, VF) ||
2308          Cost->isProfitableToScalarize(I, VF);
2309 }
2310 
2311 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2312   if (shouldScalarizeInstruction(IV))
2313     return true;
2314   auto isScalarInst = [&](User *U) -> bool {
2315     auto *I = cast<Instruction>(U);
2316     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2317   };
2318   return llvm::any_of(IV->users(), isScalarInst);
2319 }
2320 
2321 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2322     const InductionDescriptor &ID, const Instruction *EntryVal,
2323     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2324     unsigned Part, unsigned Lane) {
2325   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2326          "Expected either an induction phi-node or a truncate of it!");
2327 
2328   // This induction variable is not the phi from the original loop but the
2329   // newly-created IV based on the proof that casted Phi is equal to the
2330   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2331   // re-uses the same InductionDescriptor that original IV uses but we don't
2332   // have to do any recording in this case - that is done when original IV is
2333   // processed.
2334   if (isa<TruncInst>(EntryVal))
2335     return;
2336 
2337   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2338   if (Casts.empty())
2339     return;
2340   // Only the first Cast instruction in the Casts vector is of interest.
2341   // The rest of the Casts (if exist) have no uses outside the
2342   // induction update chain itself.
2343   if (Lane < UINT_MAX)
2344     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2345   else
2346     State.set(CastDef, VectorLoopVal, Part);
2347 }
2348 
2349 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2350                                                 TruncInst *Trunc, VPValue *Def,
2351                                                 VPValue *CastDef,
2352                                                 VPTransformState &State) {
2353   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2354          "Primary induction variable must have an integer type");
2355 
2356   auto II = Legal->getInductionVars().find(IV);
2357   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2358 
2359   auto ID = II->second;
2360   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2361 
2362   // The value from the original loop to which we are mapping the new induction
2363   // variable.
2364   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2365 
2366   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2367 
2368   // Generate code for the induction step. Note that induction steps are
2369   // required to be loop-invariant
2370   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2371     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2372            "Induction step should be loop invariant");
2373     if (PSE.getSE()->isSCEVable(IV->getType())) {
2374       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2375       return Exp.expandCodeFor(Step, Step->getType(),
2376                                LoopVectorPreHeader->getTerminator());
2377     }
2378     return cast<SCEVUnknown>(Step)->getValue();
2379   };
2380 
2381   // The scalar value to broadcast. This is derived from the canonical
2382   // induction variable. If a truncation type is given, truncate the canonical
2383   // induction variable and step. Otherwise, derive these values from the
2384   // induction descriptor.
2385   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2386     Value *ScalarIV = Induction;
2387     if (IV != OldInduction) {
2388       ScalarIV = IV->getType()->isIntegerTy()
2389                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2390                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2391                                           IV->getType());
2392       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2393       ScalarIV->setName("offset.idx");
2394     }
2395     if (Trunc) {
2396       auto *TruncType = cast<IntegerType>(Trunc->getType());
2397       assert(Step->getType()->isIntegerTy() &&
2398              "Truncation requires an integer step");
2399       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2400       Step = Builder.CreateTrunc(Step, TruncType);
2401     }
2402     return ScalarIV;
2403   };
2404 
2405   // Create the vector values from the scalar IV, in the absence of creating a
2406   // vector IV.
2407   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2408     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2409     for (unsigned Part = 0; Part < UF; ++Part) {
2410       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2411       Value *EntryPart =
2412           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2413                         ID.getInductionOpcode());
2414       State.set(Def, EntryPart, Part);
2415       if (Trunc)
2416         addMetadata(EntryPart, Trunc);
2417       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2418                                             State, Part);
2419     }
2420   };
2421 
2422   // Fast-math-flags propagate from the original induction instruction.
2423   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2424   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2425     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2426 
2427   // Now do the actual transformations, and start with creating the step value.
2428   Value *Step = CreateStepValue(ID.getStep());
2429   if (VF.isZero() || VF.isScalar()) {
2430     Value *ScalarIV = CreateScalarIV(Step);
2431     CreateSplatIV(ScalarIV, Step);
2432     return;
2433   }
2434 
2435   // Determine if we want a scalar version of the induction variable. This is
2436   // true if the induction variable itself is not widened, or if it has at
2437   // least one user in the loop that is not widened.
2438   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2439   if (!NeedsScalarIV) {
2440     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2441                                     State);
2442     return;
2443   }
2444 
2445   // Try to create a new independent vector induction variable. If we can't
2446   // create the phi node, we will splat the scalar induction variable in each
2447   // loop iteration.
2448   if (!shouldScalarizeInstruction(EntryVal)) {
2449     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2450                                     State);
2451     Value *ScalarIV = CreateScalarIV(Step);
2452     // Create scalar steps that can be used by instructions we will later
2453     // scalarize. Note that the addition of the scalar steps will not increase
2454     // the number of instructions in the loop in the common case prior to
2455     // InstCombine. We will be trading one vector extract for each scalar step.
2456     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2457     return;
2458   }
2459 
2460   // All IV users are scalar instructions, so only emit a scalar IV, not a
2461   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2462   // predicate used by the masked loads/stores.
2463   Value *ScalarIV = CreateScalarIV(Step);
2464   if (!Cost->isScalarEpilogueAllowed())
2465     CreateSplatIV(ScalarIV, Step);
2466   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2467 }
2468 
2469 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2470                                           Instruction::BinaryOps BinOp) {
2471   // Create and check the types.
2472   auto *ValVTy = cast<VectorType>(Val->getType());
2473   ElementCount VLen = ValVTy->getElementCount();
2474 
2475   Type *STy = Val->getType()->getScalarType();
2476   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2477          "Induction Step must be an integer or FP");
2478   assert(Step->getType() == STy && "Step has wrong type");
2479 
2480   SmallVector<Constant *, 8> Indices;
2481 
2482   // Create a vector of consecutive numbers from zero to VF.
2483   VectorType *InitVecValVTy = ValVTy;
2484   Type *InitVecValSTy = STy;
2485   if (STy->isFloatingPointTy()) {
2486     InitVecValSTy =
2487         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2488     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2489   }
2490   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2491 
2492   // Add on StartIdx
2493   Value *StartIdxSplat = Builder.CreateVectorSplat(
2494       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2495   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2496 
2497   if (STy->isIntegerTy()) {
2498     Step = Builder.CreateVectorSplat(VLen, Step);
2499     assert(Step->getType() == Val->getType() && "Invalid step vec");
2500     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2501     // which can be found from the original scalar operations.
2502     Step = Builder.CreateMul(InitVec, Step);
2503     return Builder.CreateAdd(Val, Step, "induction");
2504   }
2505 
2506   // Floating point induction.
2507   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2508          "Binary Opcode should be specified for FP induction");
2509   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2510   Step = Builder.CreateVectorSplat(VLen, Step);
2511   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2512   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2513 }
2514 
2515 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2516                                            Instruction *EntryVal,
2517                                            const InductionDescriptor &ID,
2518                                            VPValue *Def, VPValue *CastDef,
2519                                            VPTransformState &State) {
2520   // We shouldn't have to build scalar steps if we aren't vectorizing.
2521   assert(VF.isVector() && "VF should be greater than one");
2522   // Get the value type and ensure it and the step have the same integer type.
2523   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2524   assert(ScalarIVTy == Step->getType() &&
2525          "Val and Step should have the same type");
2526 
2527   // We build scalar steps for both integer and floating-point induction
2528   // variables. Here, we determine the kind of arithmetic we will perform.
2529   Instruction::BinaryOps AddOp;
2530   Instruction::BinaryOps MulOp;
2531   if (ScalarIVTy->isIntegerTy()) {
2532     AddOp = Instruction::Add;
2533     MulOp = Instruction::Mul;
2534   } else {
2535     AddOp = ID.getInductionOpcode();
2536     MulOp = Instruction::FMul;
2537   }
2538 
2539   // Determine the number of scalars we need to generate for each unroll
2540   // iteration. If EntryVal is uniform, we only need to generate the first
2541   // lane. Otherwise, we generate all VF values.
2542   bool IsUniform =
2543       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2544   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2545   // Compute the scalar steps and save the results in State.
2546   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2547                                      ScalarIVTy->getScalarSizeInBits());
2548   Type *VecIVTy = nullptr;
2549   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2550   if (!IsUniform && VF.isScalable()) {
2551     VecIVTy = VectorType::get(ScalarIVTy, VF);
2552     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2553     SplatStep = Builder.CreateVectorSplat(VF, Step);
2554     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2555   }
2556 
2557   for (unsigned Part = 0; Part < UF; ++Part) {
2558     Value *StartIdx0 =
2559         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2560 
2561     if (!IsUniform && VF.isScalable()) {
2562       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2563       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2564       if (ScalarIVTy->isFloatingPointTy())
2565         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2566       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2567       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2568       State.set(Def, Add, Part);
2569       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2570                                             Part);
2571       // It's useful to record the lane values too for the known minimum number
2572       // of elements so we do those below. This improves the code quality when
2573       // trying to extract the first element, for example.
2574     }
2575 
2576     if (ScalarIVTy->isFloatingPointTy())
2577       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2578 
2579     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2580       Value *StartIdx = Builder.CreateBinOp(
2581           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2582       // The step returned by `createStepForVF` is a runtime-evaluated value
2583       // when VF is scalable. Otherwise, it should be folded into a Constant.
2584       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2585              "Expected StartIdx to be folded to a constant when VF is not "
2586              "scalable");
2587       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2588       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2589       State.set(Def, Add, VPIteration(Part, Lane));
2590       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2591                                             Part, Lane);
2592     }
2593   }
2594 }
2595 
2596 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2597                                                     const VPIteration &Instance,
2598                                                     VPTransformState &State) {
2599   Value *ScalarInst = State.get(Def, Instance);
2600   Value *VectorValue = State.get(Def, Instance.Part);
2601   VectorValue = Builder.CreateInsertElement(
2602       VectorValue, ScalarInst,
2603       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2604   State.set(Def, VectorValue, Instance.Part);
2605 }
2606 
2607 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2608   assert(Vec->getType()->isVectorTy() && "Invalid type");
2609   return Builder.CreateVectorReverse(Vec, "reverse");
2610 }
2611 
2612 // Return whether we allow using masked interleave-groups (for dealing with
2613 // strided loads/stores that reside in predicated blocks, or for dealing
2614 // with gaps).
2615 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2616   // If an override option has been passed in for interleaved accesses, use it.
2617   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2618     return EnableMaskedInterleavedMemAccesses;
2619 
2620   return TTI.enableMaskedInterleavedAccessVectorization();
2621 }
2622 
2623 // Try to vectorize the interleave group that \p Instr belongs to.
2624 //
2625 // E.g. Translate following interleaved load group (factor = 3):
2626 //   for (i = 0; i < N; i+=3) {
2627 //     R = Pic[i];             // Member of index 0
2628 //     G = Pic[i+1];           // Member of index 1
2629 //     B = Pic[i+2];           // Member of index 2
2630 //     ... // do something to R, G, B
2631 //   }
2632 // To:
2633 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2634 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2635 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2636 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2637 //
2638 // Or translate following interleaved store group (factor = 3):
2639 //   for (i = 0; i < N; i+=3) {
2640 //     ... do something to R, G, B
2641 //     Pic[i]   = R;           // Member of index 0
2642 //     Pic[i+1] = G;           // Member of index 1
2643 //     Pic[i+2] = B;           // Member of index 2
2644 //   }
2645 // To:
2646 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2647 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2648 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2649 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2650 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2651 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2652     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2653     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2654     VPValue *BlockInMask) {
2655   Instruction *Instr = Group->getInsertPos();
2656   const DataLayout &DL = Instr->getModule()->getDataLayout();
2657 
2658   // Prepare for the vector type of the interleaved load/store.
2659   Type *ScalarTy = getMemInstValueType(Instr);
2660   unsigned InterleaveFactor = Group->getFactor();
2661   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2662   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2663 
2664   // Prepare for the new pointers.
2665   SmallVector<Value *, 2> AddrParts;
2666   unsigned Index = Group->getIndex(Instr);
2667 
2668   // TODO: extend the masked interleaved-group support to reversed access.
2669   assert((!BlockInMask || !Group->isReverse()) &&
2670          "Reversed masked interleave-group not supported.");
2671 
2672   // If the group is reverse, adjust the index to refer to the last vector lane
2673   // instead of the first. We adjust the index from the first vector lane,
2674   // rather than directly getting the pointer for lane VF - 1, because the
2675   // pointer operand of the interleaved access is supposed to be uniform. For
2676   // uniform instructions, we're only required to generate a value for the
2677   // first vector lane in each unroll iteration.
2678   if (Group->isReverse())
2679     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2680 
2681   for (unsigned Part = 0; Part < UF; Part++) {
2682     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2683     setDebugLocFromInst(Builder, AddrPart);
2684 
2685     // Notice current instruction could be any index. Need to adjust the address
2686     // to the member of index 0.
2687     //
2688     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2689     //       b = A[i];       // Member of index 0
2690     // Current pointer is pointed to A[i+1], adjust it to A[i].
2691     //
2692     // E.g.  A[i+1] = a;     // Member of index 1
2693     //       A[i]   = b;     // Member of index 0
2694     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2695     // Current pointer is pointed to A[i+2], adjust it to A[i].
2696 
2697     bool InBounds = false;
2698     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2699       InBounds = gep->isInBounds();
2700     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2701     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2702 
2703     // Cast to the vector pointer type.
2704     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2705     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2706     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2707   }
2708 
2709   setDebugLocFromInst(Builder, Instr);
2710   Value *PoisonVec = PoisonValue::get(VecTy);
2711 
2712   Value *MaskForGaps = nullptr;
2713   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2714     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2715     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2716   }
2717 
2718   // Vectorize the interleaved load group.
2719   if (isa<LoadInst>(Instr)) {
2720     // For each unroll part, create a wide load for the group.
2721     SmallVector<Value *, 2> NewLoads;
2722     for (unsigned Part = 0; Part < UF; Part++) {
2723       Instruction *NewLoad;
2724       if (BlockInMask || MaskForGaps) {
2725         assert(useMaskedInterleavedAccesses(*TTI) &&
2726                "masked interleaved groups are not allowed.");
2727         Value *GroupMask = MaskForGaps;
2728         if (BlockInMask) {
2729           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2730           Value *ShuffledMask = Builder.CreateShuffleVector(
2731               BlockInMaskPart,
2732               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2733               "interleaved.mask");
2734           GroupMask = MaskForGaps
2735                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2736                                                 MaskForGaps)
2737                           : ShuffledMask;
2738         }
2739         NewLoad =
2740             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2741                                      GroupMask, PoisonVec, "wide.masked.vec");
2742       }
2743       else
2744         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2745                                             Group->getAlign(), "wide.vec");
2746       Group->addMetadata(NewLoad);
2747       NewLoads.push_back(NewLoad);
2748     }
2749 
2750     // For each member in the group, shuffle out the appropriate data from the
2751     // wide loads.
2752     unsigned J = 0;
2753     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2754       Instruction *Member = Group->getMember(I);
2755 
2756       // Skip the gaps in the group.
2757       if (!Member)
2758         continue;
2759 
2760       auto StrideMask =
2761           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2762       for (unsigned Part = 0; Part < UF; Part++) {
2763         Value *StridedVec = Builder.CreateShuffleVector(
2764             NewLoads[Part], StrideMask, "strided.vec");
2765 
2766         // If this member has different type, cast the result type.
2767         if (Member->getType() != ScalarTy) {
2768           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2769           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2770           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2771         }
2772 
2773         if (Group->isReverse())
2774           StridedVec = reverseVector(StridedVec);
2775 
2776         State.set(VPDefs[J], StridedVec, Part);
2777       }
2778       ++J;
2779     }
2780     return;
2781   }
2782 
2783   // The sub vector type for current instruction.
2784   auto *SubVT = VectorType::get(ScalarTy, VF);
2785 
2786   // Vectorize the interleaved store group.
2787   for (unsigned Part = 0; Part < UF; Part++) {
2788     // Collect the stored vector from each member.
2789     SmallVector<Value *, 4> StoredVecs;
2790     for (unsigned i = 0; i < InterleaveFactor; i++) {
2791       // Interleaved store group doesn't allow a gap, so each index has a member
2792       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2793 
2794       Value *StoredVec = State.get(StoredValues[i], Part);
2795 
2796       if (Group->isReverse())
2797         StoredVec = reverseVector(StoredVec);
2798 
2799       // If this member has different type, cast it to a unified type.
2800 
2801       if (StoredVec->getType() != SubVT)
2802         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2803 
2804       StoredVecs.push_back(StoredVec);
2805     }
2806 
2807     // Concatenate all vectors into a wide vector.
2808     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2809 
2810     // Interleave the elements in the wide vector.
2811     Value *IVec = Builder.CreateShuffleVector(
2812         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2813         "interleaved.vec");
2814 
2815     Instruction *NewStoreInstr;
2816     if (BlockInMask) {
2817       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2818       Value *ShuffledMask = Builder.CreateShuffleVector(
2819           BlockInMaskPart,
2820           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2821           "interleaved.mask");
2822       NewStoreInstr = Builder.CreateMaskedStore(
2823           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2824     }
2825     else
2826       NewStoreInstr =
2827           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2828 
2829     Group->addMetadata(NewStoreInstr);
2830   }
2831 }
2832 
2833 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2834     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2835     VPValue *StoredValue, VPValue *BlockInMask) {
2836   // Attempt to issue a wide load.
2837   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2838   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2839 
2840   assert((LI || SI) && "Invalid Load/Store instruction");
2841   assert((!SI || StoredValue) && "No stored value provided for widened store");
2842   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2843 
2844   LoopVectorizationCostModel::InstWidening Decision =
2845       Cost->getWideningDecision(Instr, VF);
2846   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2847           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2848           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2849          "CM decision is not to widen the memory instruction");
2850 
2851   Type *ScalarDataTy = getMemInstValueType(Instr);
2852 
2853   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2854   const Align Alignment = getLoadStoreAlignment(Instr);
2855 
2856   // Determine if the pointer operand of the access is either consecutive or
2857   // reverse consecutive.
2858   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2859   bool ConsecutiveStride =
2860       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2861   bool CreateGatherScatter =
2862       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2863 
2864   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2865   // gather/scatter. Otherwise Decision should have been to Scalarize.
2866   assert((ConsecutiveStride || CreateGatherScatter) &&
2867          "The instruction should be scalarized");
2868   (void)ConsecutiveStride;
2869 
2870   VectorParts BlockInMaskParts(UF);
2871   bool isMaskRequired = BlockInMask;
2872   if (isMaskRequired)
2873     for (unsigned Part = 0; Part < UF; ++Part)
2874       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2875 
2876   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2877     // Calculate the pointer for the specific unroll-part.
2878     GetElementPtrInst *PartPtr = nullptr;
2879 
2880     bool InBounds = false;
2881     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2882       InBounds = gep->isInBounds();
2883     if (Reverse) {
2884       // If the address is consecutive but reversed, then the
2885       // wide store needs to start at the last vector element.
2886       // RunTimeVF =  VScale * VF.getKnownMinValue()
2887       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2888       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2889       // NumElt = -Part * RunTimeVF
2890       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2891       // LastLane = 1 - RunTimeVF
2892       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2893       PartPtr =
2894           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2895       PartPtr->setIsInBounds(InBounds);
2896       PartPtr = cast<GetElementPtrInst>(
2897           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2898       PartPtr->setIsInBounds(InBounds);
2899       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2900         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2901     } else {
2902       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2903       PartPtr = cast<GetElementPtrInst>(
2904           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2905       PartPtr->setIsInBounds(InBounds);
2906     }
2907 
2908     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2909     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2910   };
2911 
2912   // Handle Stores:
2913   if (SI) {
2914     setDebugLocFromInst(Builder, SI);
2915 
2916     for (unsigned Part = 0; Part < UF; ++Part) {
2917       Instruction *NewSI = nullptr;
2918       Value *StoredVal = State.get(StoredValue, Part);
2919       if (CreateGatherScatter) {
2920         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2921         Value *VectorGep = State.get(Addr, Part);
2922         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2923                                             MaskPart);
2924       } else {
2925         if (Reverse) {
2926           // If we store to reverse consecutive memory locations, then we need
2927           // to reverse the order of elements in the stored value.
2928           StoredVal = reverseVector(StoredVal);
2929           // We don't want to update the value in the map as it might be used in
2930           // another expression. So don't call resetVectorValue(StoredVal).
2931         }
2932         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2933         if (isMaskRequired)
2934           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2935                                             BlockInMaskParts[Part]);
2936         else
2937           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2938       }
2939       addMetadata(NewSI, SI);
2940     }
2941     return;
2942   }
2943 
2944   // Handle loads.
2945   assert(LI && "Must have a load instruction");
2946   setDebugLocFromInst(Builder, LI);
2947   for (unsigned Part = 0; Part < UF; ++Part) {
2948     Value *NewLI;
2949     if (CreateGatherScatter) {
2950       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2951       Value *VectorGep = State.get(Addr, Part);
2952       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2953                                          nullptr, "wide.masked.gather");
2954       addMetadata(NewLI, LI);
2955     } else {
2956       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2957       if (isMaskRequired)
2958         NewLI = Builder.CreateMaskedLoad(
2959             VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy),
2960             "wide.masked.load");
2961       else
2962         NewLI =
2963             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2964 
2965       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2966       addMetadata(NewLI, LI);
2967       if (Reverse)
2968         NewLI = reverseVector(NewLI);
2969     }
2970 
2971     State.set(Def, NewLI, Part);
2972   }
2973 }
2974 
2975 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
2976                                                VPUser &User,
2977                                                const VPIteration &Instance,
2978                                                bool IfPredicateInstr,
2979                                                VPTransformState &State) {
2980   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2981 
2982   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2983   // the first lane and part.
2984   if (isa<NoAliasScopeDeclInst>(Instr))
2985     if (!Instance.isFirstIteration())
2986       return;
2987 
2988   setDebugLocFromInst(Builder, Instr);
2989 
2990   // Does this instruction return a value ?
2991   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2992 
2993   Instruction *Cloned = Instr->clone();
2994   if (!IsVoidRetTy)
2995     Cloned->setName(Instr->getName() + ".cloned");
2996 
2997   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2998                                Builder.GetInsertPoint());
2999   // Replace the operands of the cloned instructions with their scalar
3000   // equivalents in the new loop.
3001   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3002     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3003     auto InputInstance = Instance;
3004     if (!Operand || !OrigLoop->contains(Operand) ||
3005         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3006       InputInstance.Lane = VPLane::getFirstLane();
3007     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3008     Cloned->setOperand(op, NewOp);
3009   }
3010   addNewMetadata(Cloned, Instr);
3011 
3012   // Place the cloned scalar in the new loop.
3013   Builder.Insert(Cloned);
3014 
3015   State.set(Def, Cloned, Instance);
3016 
3017   // If we just cloned a new assumption, add it the assumption cache.
3018   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3019     AC->registerAssumption(II);
3020 
3021   // End if-block.
3022   if (IfPredicateInstr)
3023     PredicatedInstructions.push_back(Cloned);
3024 }
3025 
3026 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3027                                                       Value *End, Value *Step,
3028                                                       Instruction *DL) {
3029   BasicBlock *Header = L->getHeader();
3030   BasicBlock *Latch = L->getLoopLatch();
3031   // As we're just creating this loop, it's possible no latch exists
3032   // yet. If so, use the header as this will be a single block loop.
3033   if (!Latch)
3034     Latch = Header;
3035 
3036   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3037   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3038   setDebugLocFromInst(Builder, OldInst);
3039   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3040 
3041   Builder.SetInsertPoint(Latch->getTerminator());
3042   setDebugLocFromInst(Builder, OldInst);
3043 
3044   // Create i+1 and fill the PHINode.
3045   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3046   Induction->addIncoming(Start, L->getLoopPreheader());
3047   Induction->addIncoming(Next, Latch);
3048   // Create the compare.
3049   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3050   Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3051 
3052   // Now we have two terminators. Remove the old one from the block.
3053   Latch->getTerminator()->eraseFromParent();
3054 
3055   return Induction;
3056 }
3057 
3058 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3059   if (TripCount)
3060     return TripCount;
3061 
3062   assert(L && "Create Trip Count for null loop.");
3063   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3064   // Find the loop boundaries.
3065   ScalarEvolution *SE = PSE.getSE();
3066   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3067   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3068          "Invalid loop count");
3069 
3070   Type *IdxTy = Legal->getWidestInductionType();
3071   assert(IdxTy && "No type for induction");
3072 
3073   // The exit count might have the type of i64 while the phi is i32. This can
3074   // happen if we have an induction variable that is sign extended before the
3075   // compare. The only way that we get a backedge taken count is that the
3076   // induction variable was signed and as such will not overflow. In such a case
3077   // truncation is legal.
3078   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3079       IdxTy->getPrimitiveSizeInBits())
3080     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3081   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3082 
3083   // Get the total trip count from the count by adding 1.
3084   const SCEV *ExitCount = SE->getAddExpr(
3085       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3086 
3087   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3088 
3089   // Expand the trip count and place the new instructions in the preheader.
3090   // Notice that the pre-header does not change, only the loop body.
3091   SCEVExpander Exp(*SE, DL, "induction");
3092 
3093   // Count holds the overall loop count (N).
3094   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3095                                 L->getLoopPreheader()->getTerminator());
3096 
3097   if (TripCount->getType()->isPointerTy())
3098     TripCount =
3099         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3100                                     L->getLoopPreheader()->getTerminator());
3101 
3102   return TripCount;
3103 }
3104 
3105 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3106   if (VectorTripCount)
3107     return VectorTripCount;
3108 
3109   Value *TC = getOrCreateTripCount(L);
3110   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3111 
3112   Type *Ty = TC->getType();
3113   // This is where we can make the step a runtime constant.
3114   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3115 
3116   // If the tail is to be folded by masking, round the number of iterations N
3117   // up to a multiple of Step instead of rounding down. This is done by first
3118   // adding Step-1 and then rounding down. Note that it's ok if this addition
3119   // overflows: the vector induction variable will eventually wrap to zero given
3120   // that it starts at zero and its Step is a power of two; the loop will then
3121   // exit, with the last early-exit vector comparison also producing all-true.
3122   if (Cost->foldTailByMasking()) {
3123     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3124            "VF*UF must be a power of 2 when folding tail by masking");
3125     assert(!VF.isScalable() &&
3126            "Tail folding not yet supported for scalable vectors");
3127     TC = Builder.CreateAdd(
3128         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3129   }
3130 
3131   // Now we need to generate the expression for the part of the loop that the
3132   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3133   // iterations are not required for correctness, or N - Step, otherwise. Step
3134   // is equal to the vectorization factor (number of SIMD elements) times the
3135   // unroll factor (number of SIMD instructions).
3136   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3137 
3138   // There are two cases where we need to ensure (at least) the last iteration
3139   // runs in the scalar remainder loop. Thus, if the step evenly divides
3140   // the trip count, we set the remainder to be equal to the step. If the step
3141   // does not evenly divide the trip count, no adjustment is necessary since
3142   // there will already be scalar iterations. Note that the minimum iterations
3143   // check ensures that N >= Step. The cases are:
3144   // 1) If there is a non-reversed interleaved group that may speculatively
3145   //    access memory out-of-bounds.
3146   // 2) If any instruction may follow a conditionally taken exit. That is, if
3147   //    the loop contains multiple exiting blocks, or a single exiting block
3148   //    which is not the latch.
3149   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
3150     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3151     R = Builder.CreateSelect(IsZero, Step, R);
3152   }
3153 
3154   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3155 
3156   return VectorTripCount;
3157 }
3158 
3159 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3160                                                    const DataLayout &DL) {
3161   // Verify that V is a vector type with same number of elements as DstVTy.
3162   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3163   unsigned VF = DstFVTy->getNumElements();
3164   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3165   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3166   Type *SrcElemTy = SrcVecTy->getElementType();
3167   Type *DstElemTy = DstFVTy->getElementType();
3168   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3169          "Vector elements must have same size");
3170 
3171   // Do a direct cast if element types are castable.
3172   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3173     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3174   }
3175   // V cannot be directly casted to desired vector type.
3176   // May happen when V is a floating point vector but DstVTy is a vector of
3177   // pointers or vice-versa. Handle this using a two-step bitcast using an
3178   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3179   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3180          "Only one type should be a pointer type");
3181   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3182          "Only one type should be a floating point type");
3183   Type *IntTy =
3184       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3185   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3186   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3187   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3188 }
3189 
3190 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3191                                                          BasicBlock *Bypass) {
3192   Value *Count = getOrCreateTripCount(L);
3193   // Reuse existing vector loop preheader for TC checks.
3194   // Note that new preheader block is generated for vector loop.
3195   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3196   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3197 
3198   // Generate code to check if the loop's trip count is less than VF * UF, or
3199   // equal to it in case a scalar epilogue is required; this implies that the
3200   // vector trip count is zero. This check also covers the case where adding one
3201   // to the backedge-taken count overflowed leading to an incorrect trip count
3202   // of zero. In this case we will also jump to the scalar loop.
3203   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3204                                           : ICmpInst::ICMP_ULT;
3205 
3206   // If tail is to be folded, vector loop takes care of all iterations.
3207   Value *CheckMinIters = Builder.getFalse();
3208   if (!Cost->foldTailByMasking()) {
3209     Value *Step =
3210         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3211     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3212   }
3213   // Create new preheader for vector loop.
3214   LoopVectorPreHeader =
3215       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3216                  "vector.ph");
3217 
3218   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3219                                DT->getNode(Bypass)->getIDom()) &&
3220          "TC check is expected to dominate Bypass");
3221 
3222   // Update dominator for Bypass & LoopExit.
3223   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3224   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3225 
3226   ReplaceInstWithInst(
3227       TCCheckBlock->getTerminator(),
3228       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3229   LoopBypassBlocks.push_back(TCCheckBlock);
3230 }
3231 
3232 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3233 
3234   BasicBlock *const SCEVCheckBlock =
3235       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3236   if (!SCEVCheckBlock)
3237     return nullptr;
3238 
3239   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3240            (OptForSizeBasedOnProfile &&
3241             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3242          "Cannot SCEV check stride or overflow when optimizing for size");
3243 
3244 
3245   // Update dominator only if this is first RT check.
3246   if (LoopBypassBlocks.empty()) {
3247     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3248     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3249   }
3250 
3251   LoopBypassBlocks.push_back(SCEVCheckBlock);
3252   AddedSafetyChecks = true;
3253   return SCEVCheckBlock;
3254 }
3255 
3256 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3257                                                       BasicBlock *Bypass) {
3258   // VPlan-native path does not do any analysis for runtime checks currently.
3259   if (EnableVPlanNativePath)
3260     return nullptr;
3261 
3262   BasicBlock *const MemCheckBlock =
3263       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3264 
3265   // Check if we generated code that checks in runtime if arrays overlap. We put
3266   // the checks into a separate block to make the more common case of few
3267   // elements faster.
3268   if (!MemCheckBlock)
3269     return nullptr;
3270 
3271   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3272     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3273            "Cannot emit memory checks when optimizing for size, unless forced "
3274            "to vectorize.");
3275     ORE->emit([&]() {
3276       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3277                                         L->getStartLoc(), L->getHeader())
3278              << "Code-size may be reduced by not forcing "
3279                 "vectorization, or by source-code modifications "
3280                 "eliminating the need for runtime checks "
3281                 "(e.g., adding 'restrict').";
3282     });
3283   }
3284 
3285   LoopBypassBlocks.push_back(MemCheckBlock);
3286 
3287   AddedSafetyChecks = true;
3288 
3289   // We currently don't use LoopVersioning for the actual loop cloning but we
3290   // still use it to add the noalias metadata.
3291   LVer = std::make_unique<LoopVersioning>(
3292       *Legal->getLAI(),
3293       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3294       DT, PSE.getSE());
3295   LVer->prepareNoAliasMetadata();
3296   return MemCheckBlock;
3297 }
3298 
3299 Value *InnerLoopVectorizer::emitTransformedIndex(
3300     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3301     const InductionDescriptor &ID) const {
3302 
3303   SCEVExpander Exp(*SE, DL, "induction");
3304   auto Step = ID.getStep();
3305   auto StartValue = ID.getStartValue();
3306   assert(Index->getType() == Step->getType() &&
3307          "Index type does not match StepValue type");
3308 
3309   // Note: the IR at this point is broken. We cannot use SE to create any new
3310   // SCEV and then expand it, hoping that SCEV's simplification will give us
3311   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3312   // lead to various SCEV crashes. So all we can do is to use builder and rely
3313   // on InstCombine for future simplifications. Here we handle some trivial
3314   // cases only.
3315   auto CreateAdd = [&B](Value *X, Value *Y) {
3316     assert(X->getType() == Y->getType() && "Types don't match!");
3317     if (auto *CX = dyn_cast<ConstantInt>(X))
3318       if (CX->isZero())
3319         return Y;
3320     if (auto *CY = dyn_cast<ConstantInt>(Y))
3321       if (CY->isZero())
3322         return X;
3323     return B.CreateAdd(X, Y);
3324   };
3325 
3326   auto CreateMul = [&B](Value *X, Value *Y) {
3327     assert(X->getType() == Y->getType() && "Types don't match!");
3328     if (auto *CX = dyn_cast<ConstantInt>(X))
3329       if (CX->isOne())
3330         return Y;
3331     if (auto *CY = dyn_cast<ConstantInt>(Y))
3332       if (CY->isOne())
3333         return X;
3334     return B.CreateMul(X, Y);
3335   };
3336 
3337   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3338   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3339   // the DomTree is not kept up-to-date for additional blocks generated in the
3340   // vector loop. By using the header as insertion point, we guarantee that the
3341   // expanded instructions dominate all their uses.
3342   auto GetInsertPoint = [this, &B]() {
3343     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3344     if (InsertBB != LoopVectorBody &&
3345         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3346       return LoopVectorBody->getTerminator();
3347     return &*B.GetInsertPoint();
3348   };
3349 
3350   switch (ID.getKind()) {
3351   case InductionDescriptor::IK_IntInduction: {
3352     assert(Index->getType() == StartValue->getType() &&
3353            "Index type does not match StartValue type");
3354     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3355       return B.CreateSub(StartValue, Index);
3356     auto *Offset = CreateMul(
3357         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3358     return CreateAdd(StartValue, Offset);
3359   }
3360   case InductionDescriptor::IK_PtrInduction: {
3361     assert(isa<SCEVConstant>(Step) &&
3362            "Expected constant step for pointer induction");
3363     return B.CreateGEP(
3364         StartValue->getType()->getPointerElementType(), StartValue,
3365         CreateMul(Index,
3366                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3367   }
3368   case InductionDescriptor::IK_FpInduction: {
3369     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3370     auto InductionBinOp = ID.getInductionBinOp();
3371     assert(InductionBinOp &&
3372            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3373             InductionBinOp->getOpcode() == Instruction::FSub) &&
3374            "Original bin op should be defined for FP induction");
3375 
3376     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3377     Value *MulExp = B.CreateFMul(StepValue, Index);
3378     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3379                          "induction");
3380   }
3381   case InductionDescriptor::IK_NoInduction:
3382     return nullptr;
3383   }
3384   llvm_unreachable("invalid enum");
3385 }
3386 
3387 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3388   LoopScalarBody = OrigLoop->getHeader();
3389   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3390   LoopExitBlock = OrigLoop->getUniqueExitBlock();
3391   assert(LoopExitBlock && "Must have an exit block");
3392   assert(LoopVectorPreHeader && "Invalid loop structure");
3393 
3394   LoopMiddleBlock =
3395       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3396                  LI, nullptr, Twine(Prefix) + "middle.block");
3397   LoopScalarPreHeader =
3398       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3399                  nullptr, Twine(Prefix) + "scalar.ph");
3400 
3401   // Set up branch from middle block to the exit and scalar preheader blocks.
3402   // completeLoopSkeleton will update the condition to use an iteration check,
3403   // if required to decide whether to execute the remainder.
3404   BranchInst *BrInst =
3405       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue());
3406   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3407   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3408   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3409 
3410   // We intentionally don't let SplitBlock to update LoopInfo since
3411   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3412   // LoopVectorBody is explicitly added to the correct place few lines later.
3413   LoopVectorBody =
3414       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3415                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3416 
3417   // Update dominator for loop exit.
3418   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3419 
3420   // Create and register the new vector loop.
3421   Loop *Lp = LI->AllocateLoop();
3422   Loop *ParentLoop = OrigLoop->getParentLoop();
3423 
3424   // Insert the new loop into the loop nest and register the new basic blocks
3425   // before calling any utilities such as SCEV that require valid LoopInfo.
3426   if (ParentLoop) {
3427     ParentLoop->addChildLoop(Lp);
3428   } else {
3429     LI->addTopLevelLoop(Lp);
3430   }
3431   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3432   return Lp;
3433 }
3434 
3435 void InnerLoopVectorizer::createInductionResumeValues(
3436     Loop *L, Value *VectorTripCount,
3437     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3438   assert(VectorTripCount && L && "Expected valid arguments");
3439   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3440           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3441          "Inconsistent information about additional bypass.");
3442   // We are going to resume the execution of the scalar loop.
3443   // Go over all of the induction variables that we found and fix the
3444   // PHIs that are left in the scalar version of the loop.
3445   // The starting values of PHI nodes depend on the counter of the last
3446   // iteration in the vectorized loop.
3447   // If we come from a bypass edge then we need to start from the original
3448   // start value.
3449   for (auto &InductionEntry : Legal->getInductionVars()) {
3450     PHINode *OrigPhi = InductionEntry.first;
3451     InductionDescriptor II = InductionEntry.second;
3452 
3453     // Create phi nodes to merge from the  backedge-taken check block.
3454     PHINode *BCResumeVal =
3455         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3456                         LoopScalarPreHeader->getTerminator());
3457     // Copy original phi DL over to the new one.
3458     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3459     Value *&EndValue = IVEndValues[OrigPhi];
3460     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3461     if (OrigPhi == OldInduction) {
3462       // We know what the end value is.
3463       EndValue = VectorTripCount;
3464     } else {
3465       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3466 
3467       // Fast-math-flags propagate from the original induction instruction.
3468       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3469         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3470 
3471       Type *StepType = II.getStep()->getType();
3472       Instruction::CastOps CastOp =
3473           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3474       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3475       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3476       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3477       EndValue->setName("ind.end");
3478 
3479       // Compute the end value for the additional bypass (if applicable).
3480       if (AdditionalBypass.first) {
3481         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3482         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3483                                          StepType, true);
3484         CRD =
3485             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3486         EndValueFromAdditionalBypass =
3487             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3488         EndValueFromAdditionalBypass->setName("ind.end");
3489       }
3490     }
3491     // The new PHI merges the original incoming value, in case of a bypass,
3492     // or the value at the end of the vectorized loop.
3493     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3494 
3495     // Fix the scalar body counter (PHI node).
3496     // The old induction's phi node in the scalar body needs the truncated
3497     // value.
3498     for (BasicBlock *BB : LoopBypassBlocks)
3499       BCResumeVal->addIncoming(II.getStartValue(), BB);
3500 
3501     if (AdditionalBypass.first)
3502       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3503                                             EndValueFromAdditionalBypass);
3504 
3505     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3506   }
3507 }
3508 
3509 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3510                                                       MDNode *OrigLoopID) {
3511   assert(L && "Expected valid loop.");
3512 
3513   // The trip counts should be cached by now.
3514   Value *Count = getOrCreateTripCount(L);
3515   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3516 
3517   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3518 
3519   // Add a check in the middle block to see if we have completed
3520   // all of the iterations in the first vector loop.
3521   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3522   // If tail is to be folded, we know we don't need to run the remainder.
3523   if (!Cost->foldTailByMasking()) {
3524     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3525                                         Count, VectorTripCount, "cmp.n",
3526                                         LoopMiddleBlock->getTerminator());
3527 
3528     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3529     // of the corresponding compare because they may have ended up with
3530     // different line numbers and we want to avoid awkward line stepping while
3531     // debugging. Eg. if the compare has got a line number inside the loop.
3532     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3533     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3534   }
3535 
3536   // Get ready to start creating new instructions into the vectorized body.
3537   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3538          "Inconsistent vector loop preheader");
3539   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3540 
3541   Optional<MDNode *> VectorizedLoopID =
3542       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3543                                       LLVMLoopVectorizeFollowupVectorized});
3544   if (VectorizedLoopID.hasValue()) {
3545     L->setLoopID(VectorizedLoopID.getValue());
3546 
3547     // Do not setAlreadyVectorized if loop attributes have been defined
3548     // explicitly.
3549     return LoopVectorPreHeader;
3550   }
3551 
3552   // Keep all loop hints from the original loop on the vector loop (we'll
3553   // replace the vectorizer-specific hints below).
3554   if (MDNode *LID = OrigLoop->getLoopID())
3555     L->setLoopID(LID);
3556 
3557   LoopVectorizeHints Hints(L, true, *ORE);
3558   Hints.setAlreadyVectorized();
3559 
3560 #ifdef EXPENSIVE_CHECKS
3561   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3562   LI->verify(*DT);
3563 #endif
3564 
3565   return LoopVectorPreHeader;
3566 }
3567 
3568 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3569   /*
3570    In this function we generate a new loop. The new loop will contain
3571    the vectorized instructions while the old loop will continue to run the
3572    scalar remainder.
3573 
3574        [ ] <-- loop iteration number check.
3575     /   |
3576    /    v
3577   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3578   |  /  |
3579   | /   v
3580   ||   [ ]     <-- vector pre header.
3581   |/    |
3582   |     v
3583   |    [  ] \
3584   |    [  ]_|   <-- vector loop.
3585   |     |
3586   |     v
3587   |   -[ ]   <--- middle-block.
3588   |  /  |
3589   | /   v
3590   -|- >[ ]     <--- new preheader.
3591    |    |
3592    |    v
3593    |   [ ] \
3594    |   [ ]_|   <-- old scalar loop to handle remainder.
3595     \   |
3596      \  v
3597       >[ ]     <-- exit block.
3598    ...
3599    */
3600 
3601   // Get the metadata of the original loop before it gets modified.
3602   MDNode *OrigLoopID = OrigLoop->getLoopID();
3603 
3604   // Create an empty vector loop, and prepare basic blocks for the runtime
3605   // checks.
3606   Loop *Lp = createVectorLoopSkeleton("");
3607 
3608   // Now, compare the new count to zero. If it is zero skip the vector loop and
3609   // jump to the scalar loop. This check also covers the case where the
3610   // backedge-taken count is uint##_max: adding one to it will overflow leading
3611   // to an incorrect trip count of zero. In this (rare) case we will also jump
3612   // to the scalar loop.
3613   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3614 
3615   // Generate the code to check any assumptions that we've made for SCEV
3616   // expressions.
3617   emitSCEVChecks(Lp, LoopScalarPreHeader);
3618 
3619   // Generate the code that checks in runtime if arrays overlap. We put the
3620   // checks into a separate block to make the more common case of few elements
3621   // faster.
3622   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3623 
3624   // Some loops have a single integer induction variable, while other loops
3625   // don't. One example is c++ iterators that often have multiple pointer
3626   // induction variables. In the code below we also support a case where we
3627   // don't have a single induction variable.
3628   //
3629   // We try to obtain an induction variable from the original loop as hard
3630   // as possible. However if we don't find one that:
3631   //   - is an integer
3632   //   - counts from zero, stepping by one
3633   //   - is the size of the widest induction variable type
3634   // then we create a new one.
3635   OldInduction = Legal->getPrimaryInduction();
3636   Type *IdxTy = Legal->getWidestInductionType();
3637   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3638   // The loop step is equal to the vectorization factor (num of SIMD elements)
3639   // times the unroll factor (num of SIMD instructions).
3640   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3641   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3642   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3643   Induction =
3644       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3645                               getDebugLocFromInstOrOperands(OldInduction));
3646 
3647   // Emit phis for the new starting index of the scalar loop.
3648   createInductionResumeValues(Lp, CountRoundDown);
3649 
3650   return completeLoopSkeleton(Lp, OrigLoopID);
3651 }
3652 
3653 // Fix up external users of the induction variable. At this point, we are
3654 // in LCSSA form, with all external PHIs that use the IV having one input value,
3655 // coming from the remainder loop. We need those PHIs to also have a correct
3656 // value for the IV when arriving directly from the middle block.
3657 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3658                                        const InductionDescriptor &II,
3659                                        Value *CountRoundDown, Value *EndValue,
3660                                        BasicBlock *MiddleBlock) {
3661   // There are two kinds of external IV usages - those that use the value
3662   // computed in the last iteration (the PHI) and those that use the penultimate
3663   // value (the value that feeds into the phi from the loop latch).
3664   // We allow both, but they, obviously, have different values.
3665 
3666   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3667 
3668   DenseMap<Value *, Value *> MissingVals;
3669 
3670   // An external user of the last iteration's value should see the value that
3671   // the remainder loop uses to initialize its own IV.
3672   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3673   for (User *U : PostInc->users()) {
3674     Instruction *UI = cast<Instruction>(U);
3675     if (!OrigLoop->contains(UI)) {
3676       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3677       MissingVals[UI] = EndValue;
3678     }
3679   }
3680 
3681   // An external user of the penultimate value need to see EndValue - Step.
3682   // The simplest way to get this is to recompute it from the constituent SCEVs,
3683   // that is Start + (Step * (CRD - 1)).
3684   for (User *U : OrigPhi->users()) {
3685     auto *UI = cast<Instruction>(U);
3686     if (!OrigLoop->contains(UI)) {
3687       const DataLayout &DL =
3688           OrigLoop->getHeader()->getModule()->getDataLayout();
3689       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3690 
3691       IRBuilder<> B(MiddleBlock->getTerminator());
3692 
3693       // Fast-math-flags propagate from the original induction instruction.
3694       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3695         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3696 
3697       Value *CountMinusOne = B.CreateSub(
3698           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3699       Value *CMO =
3700           !II.getStep()->getType()->isIntegerTy()
3701               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3702                              II.getStep()->getType())
3703               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3704       CMO->setName("cast.cmo");
3705       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3706       Escape->setName("ind.escape");
3707       MissingVals[UI] = Escape;
3708     }
3709   }
3710 
3711   for (auto &I : MissingVals) {
3712     PHINode *PHI = cast<PHINode>(I.first);
3713     // One corner case we have to handle is two IVs "chasing" each-other,
3714     // that is %IV2 = phi [...], [ %IV1, %latch ]
3715     // In this case, if IV1 has an external use, we need to avoid adding both
3716     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3717     // don't already have an incoming value for the middle block.
3718     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3719       PHI->addIncoming(I.second, MiddleBlock);
3720   }
3721 }
3722 
3723 namespace {
3724 
3725 struct CSEDenseMapInfo {
3726   static bool canHandle(const Instruction *I) {
3727     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3728            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3729   }
3730 
3731   static inline Instruction *getEmptyKey() {
3732     return DenseMapInfo<Instruction *>::getEmptyKey();
3733   }
3734 
3735   static inline Instruction *getTombstoneKey() {
3736     return DenseMapInfo<Instruction *>::getTombstoneKey();
3737   }
3738 
3739   static unsigned getHashValue(const Instruction *I) {
3740     assert(canHandle(I) && "Unknown instruction!");
3741     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3742                                                            I->value_op_end()));
3743   }
3744 
3745   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3746     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3747         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3748       return LHS == RHS;
3749     return LHS->isIdenticalTo(RHS);
3750   }
3751 };
3752 
3753 } // end anonymous namespace
3754 
3755 ///Perform cse of induction variable instructions.
3756 static void cse(BasicBlock *BB) {
3757   // Perform simple cse.
3758   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3759   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3760     Instruction *In = &*I++;
3761 
3762     if (!CSEDenseMapInfo::canHandle(In))
3763       continue;
3764 
3765     // Check if we can replace this instruction with any of the
3766     // visited instructions.
3767     if (Instruction *V = CSEMap.lookup(In)) {
3768       In->replaceAllUsesWith(V);
3769       In->eraseFromParent();
3770       continue;
3771     }
3772 
3773     CSEMap[In] = In;
3774   }
3775 }
3776 
3777 InstructionCost
3778 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3779                                               bool &NeedToScalarize) const {
3780   Function *F = CI->getCalledFunction();
3781   Type *ScalarRetTy = CI->getType();
3782   SmallVector<Type *, 4> Tys, ScalarTys;
3783   for (auto &ArgOp : CI->arg_operands())
3784     ScalarTys.push_back(ArgOp->getType());
3785 
3786   // Estimate cost of scalarized vector call. The source operands are assumed
3787   // to be vectors, so we need to extract individual elements from there,
3788   // execute VF scalar calls, and then gather the result into the vector return
3789   // value.
3790   InstructionCost ScalarCallCost =
3791       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3792   if (VF.isScalar())
3793     return ScalarCallCost;
3794 
3795   // Compute corresponding vector type for return value and arguments.
3796   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3797   for (Type *ScalarTy : ScalarTys)
3798     Tys.push_back(ToVectorTy(ScalarTy, VF));
3799 
3800   // Compute costs of unpacking argument values for the scalar calls and
3801   // packing the return values to a vector.
3802   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3803 
3804   InstructionCost Cost =
3805       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3806 
3807   // If we can't emit a vector call for this function, then the currently found
3808   // cost is the cost we need to return.
3809   NeedToScalarize = true;
3810   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3811   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3812 
3813   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3814     return Cost;
3815 
3816   // If the corresponding vector cost is cheaper, return its cost.
3817   InstructionCost VectorCallCost =
3818       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3819   if (VectorCallCost < Cost) {
3820     NeedToScalarize = false;
3821     Cost = VectorCallCost;
3822   }
3823   return Cost;
3824 }
3825 
3826 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3827   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3828     return Elt;
3829   return VectorType::get(Elt, VF);
3830 }
3831 
3832 InstructionCost
3833 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3834                                                    ElementCount VF) const {
3835   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3836   assert(ID && "Expected intrinsic call!");
3837   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3838   FastMathFlags FMF;
3839   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3840     FMF = FPMO->getFastMathFlags();
3841 
3842   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3843   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3844   SmallVector<Type *> ParamTys;
3845   std::transform(FTy->param_begin(), FTy->param_end(),
3846                  std::back_inserter(ParamTys),
3847                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3848 
3849   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3850                                     dyn_cast<IntrinsicInst>(CI));
3851   return TTI.getIntrinsicInstrCost(CostAttrs,
3852                                    TargetTransformInfo::TCK_RecipThroughput);
3853 }
3854 
3855 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3856   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3857   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3858   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3859 }
3860 
3861 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3862   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3863   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3864   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3865 }
3866 
3867 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3868   // For every instruction `I` in MinBWs, truncate the operands, create a
3869   // truncated version of `I` and reextend its result. InstCombine runs
3870   // later and will remove any ext/trunc pairs.
3871   SmallPtrSet<Value *, 4> Erased;
3872   for (const auto &KV : Cost->getMinimalBitwidths()) {
3873     // If the value wasn't vectorized, we must maintain the original scalar
3874     // type. The absence of the value from State indicates that it
3875     // wasn't vectorized.
3876     VPValue *Def = State.Plan->getVPValue(KV.first);
3877     if (!State.hasAnyVectorValue(Def))
3878       continue;
3879     for (unsigned Part = 0; Part < UF; ++Part) {
3880       Value *I = State.get(Def, Part);
3881       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3882         continue;
3883       Type *OriginalTy = I->getType();
3884       Type *ScalarTruncatedTy =
3885           IntegerType::get(OriginalTy->getContext(), KV.second);
3886       auto *TruncatedTy = FixedVectorType::get(
3887           ScalarTruncatedTy,
3888           cast<FixedVectorType>(OriginalTy)->getNumElements());
3889       if (TruncatedTy == OriginalTy)
3890         continue;
3891 
3892       IRBuilder<> B(cast<Instruction>(I));
3893       auto ShrinkOperand = [&](Value *V) -> Value * {
3894         if (auto *ZI = dyn_cast<ZExtInst>(V))
3895           if (ZI->getSrcTy() == TruncatedTy)
3896             return ZI->getOperand(0);
3897         return B.CreateZExtOrTrunc(V, TruncatedTy);
3898       };
3899 
3900       // The actual instruction modification depends on the instruction type,
3901       // unfortunately.
3902       Value *NewI = nullptr;
3903       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3904         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3905                              ShrinkOperand(BO->getOperand(1)));
3906 
3907         // Any wrapping introduced by shrinking this operation shouldn't be
3908         // considered undefined behavior. So, we can't unconditionally copy
3909         // arithmetic wrapping flags to NewI.
3910         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3911       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3912         NewI =
3913             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3914                          ShrinkOperand(CI->getOperand(1)));
3915       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3916         NewI = B.CreateSelect(SI->getCondition(),
3917                               ShrinkOperand(SI->getTrueValue()),
3918                               ShrinkOperand(SI->getFalseValue()));
3919       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3920         switch (CI->getOpcode()) {
3921         default:
3922           llvm_unreachable("Unhandled cast!");
3923         case Instruction::Trunc:
3924           NewI = ShrinkOperand(CI->getOperand(0));
3925           break;
3926         case Instruction::SExt:
3927           NewI = B.CreateSExtOrTrunc(
3928               CI->getOperand(0),
3929               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3930           break;
3931         case Instruction::ZExt:
3932           NewI = B.CreateZExtOrTrunc(
3933               CI->getOperand(0),
3934               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3935           break;
3936         }
3937       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3938         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3939                              ->getNumElements();
3940         auto *O0 = B.CreateZExtOrTrunc(
3941             SI->getOperand(0),
3942             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3943         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3944                              ->getNumElements();
3945         auto *O1 = B.CreateZExtOrTrunc(
3946             SI->getOperand(1),
3947             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3948 
3949         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3950       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3951         // Don't do anything with the operands, just extend the result.
3952         continue;
3953       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3954         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3955                             ->getNumElements();
3956         auto *O0 = B.CreateZExtOrTrunc(
3957             IE->getOperand(0),
3958             FixedVectorType::get(ScalarTruncatedTy, Elements));
3959         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3960         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3961       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3962         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3963                             ->getNumElements();
3964         auto *O0 = B.CreateZExtOrTrunc(
3965             EE->getOperand(0),
3966             FixedVectorType::get(ScalarTruncatedTy, Elements));
3967         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3968       } else {
3969         // If we don't know what to do, be conservative and don't do anything.
3970         continue;
3971       }
3972 
3973       // Lastly, extend the result.
3974       NewI->takeName(cast<Instruction>(I));
3975       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3976       I->replaceAllUsesWith(Res);
3977       cast<Instruction>(I)->eraseFromParent();
3978       Erased.insert(I);
3979       State.reset(Def, Res, Part);
3980     }
3981   }
3982 
3983   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3984   for (const auto &KV : Cost->getMinimalBitwidths()) {
3985     // If the value wasn't vectorized, we must maintain the original scalar
3986     // type. The absence of the value from State indicates that it
3987     // wasn't vectorized.
3988     VPValue *Def = State.Plan->getVPValue(KV.first);
3989     if (!State.hasAnyVectorValue(Def))
3990       continue;
3991     for (unsigned Part = 0; Part < UF; ++Part) {
3992       Value *I = State.get(Def, Part);
3993       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3994       if (Inst && Inst->use_empty()) {
3995         Value *NewI = Inst->getOperand(0);
3996         Inst->eraseFromParent();
3997         State.reset(Def, NewI, Part);
3998       }
3999     }
4000   }
4001 }
4002 
4003 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4004   // Insert truncates and extends for any truncated instructions as hints to
4005   // InstCombine.
4006   if (VF.isVector())
4007     truncateToMinimalBitwidths(State);
4008 
4009   // Fix widened non-induction PHIs by setting up the PHI operands.
4010   if (OrigPHIsToFix.size()) {
4011     assert(EnableVPlanNativePath &&
4012            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4013     fixNonInductionPHIs(State);
4014   }
4015 
4016   // At this point every instruction in the original loop is widened to a
4017   // vector form. Now we need to fix the recurrences in the loop. These PHI
4018   // nodes are currently empty because we did not want to introduce cycles.
4019   // This is the second stage of vectorizing recurrences.
4020   fixCrossIterationPHIs(State);
4021 
4022   // Forget the original basic block.
4023   PSE.getSE()->forgetLoop(OrigLoop);
4024 
4025   // Fix-up external users of the induction variables.
4026   for (auto &Entry : Legal->getInductionVars())
4027     fixupIVUsers(Entry.first, Entry.second,
4028                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4029                  IVEndValues[Entry.first], LoopMiddleBlock);
4030 
4031   fixLCSSAPHIs(State);
4032   for (Instruction *PI : PredicatedInstructions)
4033     sinkScalarOperands(&*PI);
4034 
4035   // Remove redundant induction instructions.
4036   cse(LoopVectorBody);
4037 
4038   // Set/update profile weights for the vector and remainder loops as original
4039   // loop iterations are now distributed among them. Note that original loop
4040   // represented by LoopScalarBody becomes remainder loop after vectorization.
4041   //
4042   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4043   // end up getting slightly roughened result but that should be OK since
4044   // profile is not inherently precise anyway. Note also possible bypass of
4045   // vector code caused by legality checks is ignored, assigning all the weight
4046   // to the vector loop, optimistically.
4047   //
4048   // For scalable vectorization we can't know at compile time how many iterations
4049   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4050   // vscale of '1'.
4051   setProfileInfoAfterUnrolling(
4052       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4053       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4054 }
4055 
4056 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4057   // In order to support recurrences we need to be able to vectorize Phi nodes.
4058   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4059   // stage #2: We now need to fix the recurrences by adding incoming edges to
4060   // the currently empty PHI nodes. At this point every instruction in the
4061   // original loop is widened to a vector form so we can use them to construct
4062   // the incoming edges.
4063   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
4064     // Handle first-order recurrences and reductions that need to be fixed.
4065     if (Legal->isFirstOrderRecurrence(&Phi))
4066       fixFirstOrderRecurrence(&Phi, State);
4067     else if (Legal->isReductionVariable(&Phi))
4068       fixReduction(&Phi, State);
4069   }
4070 }
4071 
4072 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi,
4073                                                   VPTransformState &State) {
4074   // This is the second phase of vectorizing first-order recurrences. An
4075   // overview of the transformation is described below. Suppose we have the
4076   // following loop.
4077   //
4078   //   for (int i = 0; i < n; ++i)
4079   //     b[i] = a[i] - a[i - 1];
4080   //
4081   // There is a first-order recurrence on "a". For this loop, the shorthand
4082   // scalar IR looks like:
4083   //
4084   //   scalar.ph:
4085   //     s_init = a[-1]
4086   //     br scalar.body
4087   //
4088   //   scalar.body:
4089   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4090   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4091   //     s2 = a[i]
4092   //     b[i] = s2 - s1
4093   //     br cond, scalar.body, ...
4094   //
4095   // In this example, s1 is a recurrence because it's value depends on the
4096   // previous iteration. In the first phase of vectorization, we created a
4097   // temporary value for s1. We now complete the vectorization and produce the
4098   // shorthand vector IR shown below (for VF = 4, UF = 1).
4099   //
4100   //   vector.ph:
4101   //     v_init = vector(..., ..., ..., a[-1])
4102   //     br vector.body
4103   //
4104   //   vector.body
4105   //     i = phi [0, vector.ph], [i+4, vector.body]
4106   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4107   //     v2 = a[i, i+1, i+2, i+3];
4108   //     v3 = vector(v1(3), v2(0, 1, 2))
4109   //     b[i, i+1, i+2, i+3] = v2 - v3
4110   //     br cond, vector.body, middle.block
4111   //
4112   //   middle.block:
4113   //     x = v2(3)
4114   //     br scalar.ph
4115   //
4116   //   scalar.ph:
4117   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4118   //     br scalar.body
4119   //
4120   // After execution completes the vector loop, we extract the next value of
4121   // the recurrence (x) to use as the initial value in the scalar loop.
4122 
4123   // Get the original loop preheader and single loop latch.
4124   auto *Preheader = OrigLoop->getLoopPreheader();
4125   auto *Latch = OrigLoop->getLoopLatch();
4126 
4127   // Get the initial and previous values of the scalar recurrence.
4128   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4129   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4130 
4131   // Create a vector from the initial value.
4132   auto *VectorInit = ScalarInit;
4133   if (VF.isVector()) {
4134     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4135     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4136     VectorInit = Builder.CreateInsertElement(
4137         PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4138         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
4139   }
4140 
4141   VPValue *PhiDef = State.Plan->getVPValue(Phi);
4142   VPValue *PreviousDef = State.Plan->getVPValue(Previous);
4143   // We constructed a temporary phi node in the first phase of vectorization.
4144   // This phi node will eventually be deleted.
4145   Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0)));
4146 
4147   // Create a phi node for the new recurrence. The current value will either be
4148   // the initial value inserted into a vector or loop-varying vector value.
4149   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4150   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4151 
4152   // Get the vectorized previous value of the last part UF - 1. It appears last
4153   // among all unrolled iterations, due to the order of their construction.
4154   Value *PreviousLastPart = State.get(PreviousDef, UF - 1);
4155 
4156   // Find and set the insertion point after the previous value if it is an
4157   // instruction.
4158   BasicBlock::iterator InsertPt;
4159   // Note that the previous value may have been constant-folded so it is not
4160   // guaranteed to be an instruction in the vector loop.
4161   // FIXME: Loop invariant values do not form recurrences. We should deal with
4162   //        them earlier.
4163   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
4164     InsertPt = LoopVectorBody->getFirstInsertionPt();
4165   else {
4166     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
4167     if (isa<PHINode>(PreviousLastPart))
4168       // If the previous value is a phi node, we should insert after all the phi
4169       // nodes in the block containing the PHI to avoid breaking basic block
4170       // verification. Note that the basic block may be different to
4171       // LoopVectorBody, in case we predicate the loop.
4172       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
4173     else
4174       InsertPt = ++PreviousInst->getIterator();
4175   }
4176   Builder.SetInsertPoint(&*InsertPt);
4177 
4178   // We will construct a vector for the recurrence by combining the values for
4179   // the current and previous iterations. This is the required shuffle mask.
4180   assert(!VF.isScalable());
4181   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
4182   ShuffleMask[0] = VF.getKnownMinValue() - 1;
4183   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
4184     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
4185 
4186   // The vector from which to take the initial value for the current iteration
4187   // (actual or unrolled). Initially, this is the vector phi node.
4188   Value *Incoming = VecPhi;
4189 
4190   // Shuffle the current and previous vector and update the vector parts.
4191   for (unsigned Part = 0; Part < UF; ++Part) {
4192     Value *PreviousPart = State.get(PreviousDef, Part);
4193     Value *PhiPart = State.get(PhiDef, Part);
4194     auto *Shuffle =
4195         VF.isVector()
4196             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
4197             : Incoming;
4198     PhiPart->replaceAllUsesWith(Shuffle);
4199     cast<Instruction>(PhiPart)->eraseFromParent();
4200     State.reset(PhiDef, Shuffle, Part);
4201     Incoming = PreviousPart;
4202   }
4203 
4204   // Fix the latch value of the new recurrence in the vector loop.
4205   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4206 
4207   // Extract the last vector element in the middle block. This will be the
4208   // initial value for the recurrence when jumping to the scalar loop.
4209   auto *ExtractForScalar = Incoming;
4210   if (VF.isVector()) {
4211     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4212     ExtractForScalar = Builder.CreateExtractElement(
4213         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
4214         "vector.recur.extract");
4215   }
4216   // Extract the second last element in the middle block if the
4217   // Phi is used outside the loop. We need to extract the phi itself
4218   // and not the last element (the phi update in the current iteration). This
4219   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4220   // when the scalar loop is not run at all.
4221   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4222   if (VF.isVector())
4223     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4224         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
4225         "vector.recur.extract.for.phi");
4226   // When loop is unrolled without vectorizing, initialize
4227   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4228   // `Incoming`. This is analogous to the vectorized case above: extracting the
4229   // second last element when VF > 1.
4230   else if (UF > 1)
4231     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4232 
4233   // Fix the initial value of the original recurrence in the scalar loop.
4234   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4235   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4236   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4237     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4238     Start->addIncoming(Incoming, BB);
4239   }
4240 
4241   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4242   Phi->setName("scalar.recur");
4243 
4244   // Finally, fix users of the recurrence outside the loop. The users will need
4245   // either the last value of the scalar recurrence or the last value of the
4246   // vector recurrence we extracted in the middle block. Since the loop is in
4247   // LCSSA form, we just need to find all the phi nodes for the original scalar
4248   // recurrence in the exit block, and then add an edge for the middle block.
4249   // Note that LCSSA does not imply single entry when the original scalar loop
4250   // had multiple exiting edges (as we always run the last iteration in the
4251   // scalar epilogue); in that case, the exiting path through middle will be
4252   // dynamically dead and the value picked for the phi doesn't matter.
4253   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4254     if (any_of(LCSSAPhi.incoming_values(),
4255                [Phi](Value *V) { return V == Phi; }))
4256       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4257 }
4258 
4259 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4260   return EnableStrictReductions && RdxDesc.isOrdered();
4261 }
4262 
4263 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) {
4264   // Get it's reduction variable descriptor.
4265   assert(Legal->isReductionVariable(Phi) &&
4266          "Unable to find the reduction variable");
4267   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4268 
4269   RecurKind RK = RdxDesc.getRecurrenceKind();
4270   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4271   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4272   setDebugLocFromInst(Builder, ReductionStartValue);
4273   bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi);
4274 
4275   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4276   // This is the vector-clone of the value that leaves the loop.
4277   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4278 
4279   // Wrap flags are in general invalid after vectorization, clear them.
4280   clearReductionWrapFlags(RdxDesc, State);
4281 
4282   // Fix the vector-loop phi.
4283 
4284   // Reductions do not have to start at zero. They can start with
4285   // any loop invariant values.
4286   BasicBlock *Latch = OrigLoop->getLoopLatch();
4287   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4288 
4289   for (unsigned Part = 0; Part < UF; ++Part) {
4290     Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part);
4291     Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part);
4292     if (IsInLoopReductionPhi && useOrderedReductions(RdxDesc) &&
4293         State.VF.isVector())
4294       Val = State.get(State.Plan->getVPValue(LoopVal), UF - 1);
4295     cast<PHINode>(VecRdxPhi)
4296       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4297   }
4298 
4299   // Before each round, move the insertion point right between
4300   // the PHIs and the values we are going to write.
4301   // This allows us to write both PHINodes and the extractelement
4302   // instructions.
4303   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4304 
4305   setDebugLocFromInst(Builder, LoopExitInst);
4306 
4307   Type *PhiTy = Phi->getType();
4308   // If tail is folded by masking, the vector value to leave the loop should be
4309   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4310   // instead of the former. For an inloop reduction the reduction will already
4311   // be predicated, and does not need to be handled here.
4312   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4313     for (unsigned Part = 0; Part < UF; ++Part) {
4314       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4315       Value *Sel = nullptr;
4316       for (User *U : VecLoopExitInst->users()) {
4317         if (isa<SelectInst>(U)) {
4318           assert(!Sel && "Reduction exit feeding two selects");
4319           Sel = U;
4320         } else
4321           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4322       }
4323       assert(Sel && "Reduction exit feeds no select");
4324       State.reset(LoopExitInstDef, Sel, Part);
4325 
4326       // If the target can create a predicated operator for the reduction at no
4327       // extra cost in the loop (for example a predicated vadd), it can be
4328       // cheaper for the select to remain in the loop than be sunk out of it,
4329       // and so use the select value for the phi instead of the old
4330       // LoopExitValue.
4331       if (PreferPredicatedReductionSelect ||
4332           TTI->preferPredicatedReductionSelect(
4333               RdxDesc.getOpcode(), PhiTy,
4334               TargetTransformInfo::ReductionFlags())) {
4335         auto *VecRdxPhi =
4336             cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part));
4337         VecRdxPhi->setIncomingValueForBlock(
4338             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4339       }
4340     }
4341   }
4342 
4343   // If the vector reduction can be performed in a smaller type, we truncate
4344   // then extend the loop exit value to enable InstCombine to evaluate the
4345   // entire expression in the smaller type.
4346   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4347     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4348     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4349     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4350     Builder.SetInsertPoint(
4351         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4352     VectorParts RdxParts(UF);
4353     for (unsigned Part = 0; Part < UF; ++Part) {
4354       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4355       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4356       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4357                                         : Builder.CreateZExt(Trunc, VecTy);
4358       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4359            UI != RdxParts[Part]->user_end();)
4360         if (*UI != Trunc) {
4361           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4362           RdxParts[Part] = Extnd;
4363         } else {
4364           ++UI;
4365         }
4366     }
4367     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4368     for (unsigned Part = 0; Part < UF; ++Part) {
4369       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4370       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4371     }
4372   }
4373 
4374   // Reduce all of the unrolled parts into a single vector.
4375   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4376   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4377 
4378   // The middle block terminator has already been assigned a DebugLoc here (the
4379   // OrigLoop's single latch terminator). We want the whole middle block to
4380   // appear to execute on this line because: (a) it is all compiler generated,
4381   // (b) these instructions are always executed after evaluating the latch
4382   // conditional branch, and (c) other passes may add new predecessors which
4383   // terminate on this line. This is the easiest way to ensure we don't
4384   // accidentally cause an extra step back into the loop while debugging.
4385   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4386   if (IsInLoopReductionPhi && useOrderedReductions(RdxDesc))
4387     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4388   else {
4389     // Floating-point operations should have some FMF to enable the reduction.
4390     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4391     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4392     for (unsigned Part = 1; Part < UF; ++Part) {
4393       Value *RdxPart = State.get(LoopExitInstDef, Part);
4394       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4395         ReducedPartRdx = Builder.CreateBinOp(
4396             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4397       } else {
4398         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4399       }
4400     }
4401   }
4402 
4403   // Create the reduction after the loop. Note that inloop reductions create the
4404   // target reduction in the loop using a Reduction recipe.
4405   if (VF.isVector() && !IsInLoopReductionPhi) {
4406     ReducedPartRdx =
4407         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4408     // If the reduction can be performed in a smaller type, we need to extend
4409     // the reduction to the wider type before we branch to the original loop.
4410     if (PhiTy != RdxDesc.getRecurrenceType())
4411       ReducedPartRdx = RdxDesc.isSigned()
4412                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4413                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4414   }
4415 
4416   // Create a phi node that merges control-flow from the backedge-taken check
4417   // block and the middle block.
4418   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4419                                         LoopScalarPreHeader->getTerminator());
4420   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4421     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4422   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4423 
4424   // Now, we need to fix the users of the reduction variable
4425   // inside and outside of the scalar remainder loop.
4426 
4427   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4428   // in the exit blocks.  See comment on analogous loop in
4429   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4430   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4431     if (any_of(LCSSAPhi.incoming_values(),
4432                [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4433       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4434 
4435   // Fix the scalar loop reduction variable with the incoming reduction sum
4436   // from the vector body and from the backedge value.
4437   int IncomingEdgeBlockIdx =
4438     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4439   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4440   // Pick the other block.
4441   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4442   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4443   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4444 }
4445 
4446 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
4447                                                   VPTransformState &State) {
4448   RecurKind RK = RdxDesc.getRecurrenceKind();
4449   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4450     return;
4451 
4452   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4453   assert(LoopExitInstr && "null loop exit instruction");
4454   SmallVector<Instruction *, 8> Worklist;
4455   SmallPtrSet<Instruction *, 8> Visited;
4456   Worklist.push_back(LoopExitInstr);
4457   Visited.insert(LoopExitInstr);
4458 
4459   while (!Worklist.empty()) {
4460     Instruction *Cur = Worklist.pop_back_val();
4461     if (isa<OverflowingBinaryOperator>(Cur))
4462       for (unsigned Part = 0; Part < UF; ++Part) {
4463         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4464         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4465       }
4466 
4467     for (User *U : Cur->users()) {
4468       Instruction *UI = cast<Instruction>(U);
4469       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4470           Visited.insert(UI).second)
4471         Worklist.push_back(UI);
4472     }
4473   }
4474 }
4475 
4476 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4477   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4478     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4479       // Some phis were already hand updated by the reduction and recurrence
4480       // code above, leave them alone.
4481       continue;
4482 
4483     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4484     // Non-instruction incoming values will have only one value.
4485 
4486     VPLane Lane = VPLane::getFirstLane();
4487     if (isa<Instruction>(IncomingValue) &&
4488         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4489                                            VF))
4490       Lane = VPLane::getLastLaneForVF(VF);
4491 
4492     // Can be a loop invariant incoming value or the last scalar value to be
4493     // extracted from the vectorized loop.
4494     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4495     Value *lastIncomingValue =
4496         OrigLoop->isLoopInvariant(IncomingValue)
4497             ? IncomingValue
4498             : State.get(State.Plan->getVPValue(IncomingValue),
4499                         VPIteration(UF - 1, Lane));
4500     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4501   }
4502 }
4503 
4504 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4505   // The basic block and loop containing the predicated instruction.
4506   auto *PredBB = PredInst->getParent();
4507   auto *VectorLoop = LI->getLoopFor(PredBB);
4508 
4509   // Initialize a worklist with the operands of the predicated instruction.
4510   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4511 
4512   // Holds instructions that we need to analyze again. An instruction may be
4513   // reanalyzed if we don't yet know if we can sink it or not.
4514   SmallVector<Instruction *, 8> InstsToReanalyze;
4515 
4516   // Returns true if a given use occurs in the predicated block. Phi nodes use
4517   // their operands in their corresponding predecessor blocks.
4518   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4519     auto *I = cast<Instruction>(U.getUser());
4520     BasicBlock *BB = I->getParent();
4521     if (auto *Phi = dyn_cast<PHINode>(I))
4522       BB = Phi->getIncomingBlock(
4523           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4524     return BB == PredBB;
4525   };
4526 
4527   // Iteratively sink the scalarized operands of the predicated instruction
4528   // into the block we created for it. When an instruction is sunk, it's
4529   // operands are then added to the worklist. The algorithm ends after one pass
4530   // through the worklist doesn't sink a single instruction.
4531   bool Changed;
4532   do {
4533     // Add the instructions that need to be reanalyzed to the worklist, and
4534     // reset the changed indicator.
4535     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4536     InstsToReanalyze.clear();
4537     Changed = false;
4538 
4539     while (!Worklist.empty()) {
4540       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4541 
4542       // We can't sink an instruction if it is a phi node, is already in the
4543       // predicated block, is not in the loop, or may have side effects.
4544       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4545           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4546         continue;
4547 
4548       // It's legal to sink the instruction if all its uses occur in the
4549       // predicated block. Otherwise, there's nothing to do yet, and we may
4550       // need to reanalyze the instruction.
4551       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4552         InstsToReanalyze.push_back(I);
4553         continue;
4554       }
4555 
4556       // Move the instruction to the beginning of the predicated block, and add
4557       // it's operands to the worklist.
4558       I->moveBefore(&*PredBB->getFirstInsertionPt());
4559       Worklist.insert(I->op_begin(), I->op_end());
4560 
4561       // The sinking may have enabled other instructions to be sunk, so we will
4562       // need to iterate.
4563       Changed = true;
4564     }
4565   } while (Changed);
4566 }
4567 
4568 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4569   for (PHINode *OrigPhi : OrigPHIsToFix) {
4570     VPWidenPHIRecipe *VPPhi =
4571         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4572     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4573     // Make sure the builder has a valid insert point.
4574     Builder.SetInsertPoint(NewPhi);
4575     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4576       VPValue *Inc = VPPhi->getIncomingValue(i);
4577       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4578       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4579     }
4580   }
4581 }
4582 
4583 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4584                                    VPUser &Operands, unsigned UF,
4585                                    ElementCount VF, bool IsPtrLoopInvariant,
4586                                    SmallBitVector &IsIndexLoopInvariant,
4587                                    VPTransformState &State) {
4588   // Construct a vector GEP by widening the operands of the scalar GEP as
4589   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4590   // results in a vector of pointers when at least one operand of the GEP
4591   // is vector-typed. Thus, to keep the representation compact, we only use
4592   // vector-typed operands for loop-varying values.
4593 
4594   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4595     // If we are vectorizing, but the GEP has only loop-invariant operands,
4596     // the GEP we build (by only using vector-typed operands for
4597     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4598     // produce a vector of pointers, we need to either arbitrarily pick an
4599     // operand to broadcast, or broadcast a clone of the original GEP.
4600     // Here, we broadcast a clone of the original.
4601     //
4602     // TODO: If at some point we decide to scalarize instructions having
4603     //       loop-invariant operands, this special case will no longer be
4604     //       required. We would add the scalarization decision to
4605     //       collectLoopScalars() and teach getVectorValue() to broadcast
4606     //       the lane-zero scalar value.
4607     auto *Clone = Builder.Insert(GEP->clone());
4608     for (unsigned Part = 0; Part < UF; ++Part) {
4609       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4610       State.set(VPDef, EntryPart, Part);
4611       addMetadata(EntryPart, GEP);
4612     }
4613   } else {
4614     // If the GEP has at least one loop-varying operand, we are sure to
4615     // produce a vector of pointers. But if we are only unrolling, we want
4616     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4617     // produce with the code below will be scalar (if VF == 1) or vector
4618     // (otherwise). Note that for the unroll-only case, we still maintain
4619     // values in the vector mapping with initVector, as we do for other
4620     // instructions.
4621     for (unsigned Part = 0; Part < UF; ++Part) {
4622       // The pointer operand of the new GEP. If it's loop-invariant, we
4623       // won't broadcast it.
4624       auto *Ptr = IsPtrLoopInvariant
4625                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4626                       : State.get(Operands.getOperand(0), Part);
4627 
4628       // Collect all the indices for the new GEP. If any index is
4629       // loop-invariant, we won't broadcast it.
4630       SmallVector<Value *, 4> Indices;
4631       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4632         VPValue *Operand = Operands.getOperand(I);
4633         if (IsIndexLoopInvariant[I - 1])
4634           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4635         else
4636           Indices.push_back(State.get(Operand, Part));
4637       }
4638 
4639       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4640       // but it should be a vector, otherwise.
4641       auto *NewGEP =
4642           GEP->isInBounds()
4643               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4644                                           Indices)
4645               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4646       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4647              "NewGEP is not a pointer vector");
4648       State.set(VPDef, NewGEP, Part);
4649       addMetadata(NewGEP, GEP);
4650     }
4651   }
4652 }
4653 
4654 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4655                                               RecurrenceDescriptor *RdxDesc,
4656                                               VPWidenPHIRecipe *PhiR,
4657                                               VPTransformState &State) {
4658   PHINode *P = cast<PHINode>(PN);
4659   if (EnableVPlanNativePath) {
4660     // Currently we enter here in the VPlan-native path for non-induction
4661     // PHIs where all control flow is uniform. We simply widen these PHIs.
4662     // Create a vector phi with no operands - the vector phi operands will be
4663     // set at the end of vector code generation.
4664     Type *VecTy = (State.VF.isScalar())
4665                       ? PN->getType()
4666                       : VectorType::get(PN->getType(), State.VF);
4667     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4668     State.set(PhiR, VecPhi, 0);
4669     OrigPHIsToFix.push_back(P);
4670 
4671     return;
4672   }
4673 
4674   assert(PN->getParent() == OrigLoop->getHeader() &&
4675          "Non-header phis should have been handled elsewhere");
4676 
4677   VPValue *StartVPV = PhiR->getStartValue();
4678   Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr;
4679   // In order to support recurrences we need to be able to vectorize Phi nodes.
4680   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4681   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4682   // this value when we vectorize all of the instructions that use the PHI.
4683   if (RdxDesc || Legal->isFirstOrderRecurrence(P)) {
4684     Value *Iden = nullptr;
4685     bool ScalarPHI =
4686         (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4687     Type *VecTy =
4688         ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
4689 
4690     if (RdxDesc) {
4691       assert(Legal->isReductionVariable(P) && StartV &&
4692              "RdxDesc should only be set for reduction variables; in that case "
4693              "a StartV is also required");
4694       RecurKind RK = RdxDesc->getRecurrenceKind();
4695       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
4696         // MinMax reduction have the start value as their identify.
4697         if (ScalarPHI) {
4698           Iden = StartV;
4699         } else {
4700           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4701           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4702           StartV = Iden =
4703               Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
4704         }
4705       } else {
4706         Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
4707             RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags());
4708         Iden = IdenC;
4709 
4710         if (!ScalarPHI) {
4711           Iden = ConstantVector::getSplat(State.VF, IdenC);
4712           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4713           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4714           Constant *Zero = Builder.getInt32(0);
4715           StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
4716         }
4717       }
4718     }
4719 
4720     for (unsigned Part = 0; Part < State.UF; ++Part) {
4721       // This is phase one of vectorizing PHIs.
4722       Value *EntryPart = PHINode::Create(
4723           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4724       State.set(PhiR, EntryPart, Part);
4725       if (StartV) {
4726         // Make sure to add the reduction start value only to the
4727         // first unroll part.
4728         Value *StartVal = (Part == 0) ? StartV : Iden;
4729         cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader);
4730       }
4731     }
4732     return;
4733   }
4734 
4735   assert(!Legal->isReductionVariable(P) &&
4736          "reductions should be handled above");
4737 
4738   setDebugLocFromInst(Builder, P);
4739 
4740   // This PHINode must be an induction variable.
4741   // Make sure that we know about it.
4742   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4743 
4744   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4745   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4746 
4747   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4748   // which can be found from the original scalar operations.
4749   switch (II.getKind()) {
4750   case InductionDescriptor::IK_NoInduction:
4751     llvm_unreachable("Unknown induction");
4752   case InductionDescriptor::IK_IntInduction:
4753   case InductionDescriptor::IK_FpInduction:
4754     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4755   case InductionDescriptor::IK_PtrInduction: {
4756     // Handle the pointer induction variable case.
4757     assert(P->getType()->isPointerTy() && "Unexpected type.");
4758 
4759     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4760       // This is the normalized GEP that starts counting at zero.
4761       Value *PtrInd =
4762           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4763       // Determine the number of scalars we need to generate for each unroll
4764       // iteration. If the instruction is uniform, we only need to generate the
4765       // first lane. Otherwise, we generate all VF values.
4766       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4767       assert((IsUniform || !VF.isScalable()) &&
4768              "Currently unsupported for scalable vectors");
4769       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4770 
4771       Value *RuntimeVF = getRuntimeVF(Builder, PtrInd->getType(), VF);
4772       for (unsigned Part = 0; Part < UF; ++Part) {
4773         Value *PartStart = Builder.CreateMul(
4774             RuntimeVF, ConstantInt::get(PtrInd->getType(), Part));
4775         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4776           Value *Idx = Builder.CreateAdd(
4777               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4778           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4779           Value *SclrGep =
4780               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4781           SclrGep->setName("next.gep");
4782           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4783         }
4784       }
4785       return;
4786     }
4787     assert(isa<SCEVConstant>(II.getStep()) &&
4788            "Induction step not a SCEV constant!");
4789     Type *PhiType = II.getStep()->getType();
4790 
4791     // Build a pointer phi
4792     Value *ScalarStartValue = II.getStartValue();
4793     Type *ScStValueType = ScalarStartValue->getType();
4794     PHINode *NewPointerPhi =
4795         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4796     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4797 
4798     // A pointer induction, performed by using a gep
4799     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4800     Instruction *InductionLoc = LoopLatch->getTerminator();
4801     const SCEV *ScalarStep = II.getStep();
4802     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4803     Value *ScalarStepValue =
4804         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4805     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4806     Value *NumUnrolledElems =
4807         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4808     Value *InductionGEP = GetElementPtrInst::Create(
4809         ScStValueType->getPointerElementType(), NewPointerPhi,
4810         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4811         InductionLoc);
4812     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4813 
4814     // Create UF many actual address geps that use the pointer
4815     // phi as base and a vectorized version of the step value
4816     // (<step*0, ..., step*N>) as offset.
4817     for (unsigned Part = 0; Part < State.UF; ++Part) {
4818       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4819       Value *StartOffsetScalar =
4820           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4821       Value *StartOffset =
4822           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4823       // Create a vector of consecutive numbers from zero to VF.
4824       StartOffset =
4825           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4826 
4827       Value *GEP = Builder.CreateGEP(
4828           ScStValueType->getPointerElementType(), NewPointerPhi,
4829           Builder.CreateMul(
4830               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4831               "vector.gep"));
4832       State.set(PhiR, GEP, Part);
4833     }
4834   }
4835   }
4836 }
4837 
4838 /// A helper function for checking whether an integer division-related
4839 /// instruction may divide by zero (in which case it must be predicated if
4840 /// executed conditionally in the scalar code).
4841 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4842 /// Non-zero divisors that are non compile-time constants will not be
4843 /// converted into multiplication, so we will still end up scalarizing
4844 /// the division, but can do so w/o predication.
4845 static bool mayDivideByZero(Instruction &I) {
4846   assert((I.getOpcode() == Instruction::UDiv ||
4847           I.getOpcode() == Instruction::SDiv ||
4848           I.getOpcode() == Instruction::URem ||
4849           I.getOpcode() == Instruction::SRem) &&
4850          "Unexpected instruction");
4851   Value *Divisor = I.getOperand(1);
4852   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4853   return !CInt || CInt->isZero();
4854 }
4855 
4856 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4857                                            VPUser &User,
4858                                            VPTransformState &State) {
4859   switch (I.getOpcode()) {
4860   case Instruction::Call:
4861   case Instruction::Br:
4862   case Instruction::PHI:
4863   case Instruction::GetElementPtr:
4864   case Instruction::Select:
4865     llvm_unreachable("This instruction is handled by a different recipe.");
4866   case Instruction::UDiv:
4867   case Instruction::SDiv:
4868   case Instruction::SRem:
4869   case Instruction::URem:
4870   case Instruction::Add:
4871   case Instruction::FAdd:
4872   case Instruction::Sub:
4873   case Instruction::FSub:
4874   case Instruction::FNeg:
4875   case Instruction::Mul:
4876   case Instruction::FMul:
4877   case Instruction::FDiv:
4878   case Instruction::FRem:
4879   case Instruction::Shl:
4880   case Instruction::LShr:
4881   case Instruction::AShr:
4882   case Instruction::And:
4883   case Instruction::Or:
4884   case Instruction::Xor: {
4885     // Just widen unops and binops.
4886     setDebugLocFromInst(Builder, &I);
4887 
4888     for (unsigned Part = 0; Part < UF; ++Part) {
4889       SmallVector<Value *, 2> Ops;
4890       for (VPValue *VPOp : User.operands())
4891         Ops.push_back(State.get(VPOp, Part));
4892 
4893       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4894 
4895       if (auto *VecOp = dyn_cast<Instruction>(V))
4896         VecOp->copyIRFlags(&I);
4897 
4898       // Use this vector value for all users of the original instruction.
4899       State.set(Def, V, Part);
4900       addMetadata(V, &I);
4901     }
4902 
4903     break;
4904   }
4905   case Instruction::ICmp:
4906   case Instruction::FCmp: {
4907     // Widen compares. Generate vector compares.
4908     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4909     auto *Cmp = cast<CmpInst>(&I);
4910     setDebugLocFromInst(Builder, Cmp);
4911     for (unsigned Part = 0; Part < UF; ++Part) {
4912       Value *A = State.get(User.getOperand(0), Part);
4913       Value *B = State.get(User.getOperand(1), Part);
4914       Value *C = nullptr;
4915       if (FCmp) {
4916         // Propagate fast math flags.
4917         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4918         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4919         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4920       } else {
4921         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4922       }
4923       State.set(Def, C, Part);
4924       addMetadata(C, &I);
4925     }
4926 
4927     break;
4928   }
4929 
4930   case Instruction::ZExt:
4931   case Instruction::SExt:
4932   case Instruction::FPToUI:
4933   case Instruction::FPToSI:
4934   case Instruction::FPExt:
4935   case Instruction::PtrToInt:
4936   case Instruction::IntToPtr:
4937   case Instruction::SIToFP:
4938   case Instruction::UIToFP:
4939   case Instruction::Trunc:
4940   case Instruction::FPTrunc:
4941   case Instruction::BitCast: {
4942     auto *CI = cast<CastInst>(&I);
4943     setDebugLocFromInst(Builder, CI);
4944 
4945     /// Vectorize casts.
4946     Type *DestTy =
4947         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4948 
4949     for (unsigned Part = 0; Part < UF; ++Part) {
4950       Value *A = State.get(User.getOperand(0), Part);
4951       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4952       State.set(Def, Cast, Part);
4953       addMetadata(Cast, &I);
4954     }
4955     break;
4956   }
4957   default:
4958     // This instruction is not vectorized by simple widening.
4959     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4960     llvm_unreachable("Unhandled instruction!");
4961   } // end of switch.
4962 }
4963 
4964 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4965                                                VPUser &ArgOperands,
4966                                                VPTransformState &State) {
4967   assert(!isa<DbgInfoIntrinsic>(I) &&
4968          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4969   setDebugLocFromInst(Builder, &I);
4970 
4971   Module *M = I.getParent()->getParent()->getParent();
4972   auto *CI = cast<CallInst>(&I);
4973 
4974   SmallVector<Type *, 4> Tys;
4975   for (Value *ArgOperand : CI->arg_operands())
4976     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4977 
4978   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4979 
4980   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4981   // version of the instruction.
4982   // Is it beneficial to perform intrinsic call compared to lib call?
4983   bool NeedToScalarize = false;
4984   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4985   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4986   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4987   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4988          "Instruction should be scalarized elsewhere.");
4989   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4990          "Either the intrinsic cost or vector call cost must be valid");
4991 
4992   for (unsigned Part = 0; Part < UF; ++Part) {
4993     SmallVector<Value *, 4> Args;
4994     for (auto &I : enumerate(ArgOperands.operands())) {
4995       // Some intrinsics have a scalar argument - don't replace it with a
4996       // vector.
4997       Value *Arg;
4998       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4999         Arg = State.get(I.value(), Part);
5000       else
5001         Arg = State.get(I.value(), VPIteration(0, 0));
5002       Args.push_back(Arg);
5003     }
5004 
5005     Function *VectorF;
5006     if (UseVectorIntrinsic) {
5007       // Use vector version of the intrinsic.
5008       Type *TysForDecl[] = {CI->getType()};
5009       if (VF.isVector())
5010         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5011       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5012       assert(VectorF && "Can't retrieve vector intrinsic.");
5013     } else {
5014       // Use vector version of the function call.
5015       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5016 #ifndef NDEBUG
5017       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5018              "Can't create vector function.");
5019 #endif
5020         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5021     }
5022       SmallVector<OperandBundleDef, 1> OpBundles;
5023       CI->getOperandBundlesAsDefs(OpBundles);
5024       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5025 
5026       if (isa<FPMathOperator>(V))
5027         V->copyFastMathFlags(CI);
5028 
5029       State.set(Def, V, Part);
5030       addMetadata(V, &I);
5031   }
5032 }
5033 
5034 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5035                                                  VPUser &Operands,
5036                                                  bool InvariantCond,
5037                                                  VPTransformState &State) {
5038   setDebugLocFromInst(Builder, &I);
5039 
5040   // The condition can be loop invariant  but still defined inside the
5041   // loop. This means that we can't just use the original 'cond' value.
5042   // We have to take the 'vectorized' value and pick the first lane.
5043   // Instcombine will make this a no-op.
5044   auto *InvarCond = InvariantCond
5045                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5046                         : nullptr;
5047 
5048   for (unsigned Part = 0; Part < UF; ++Part) {
5049     Value *Cond =
5050         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5051     Value *Op0 = State.get(Operands.getOperand(1), Part);
5052     Value *Op1 = State.get(Operands.getOperand(2), Part);
5053     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5054     State.set(VPDef, Sel, Part);
5055     addMetadata(Sel, &I);
5056   }
5057 }
5058 
5059 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5060   // We should not collect Scalars more than once per VF. Right now, this
5061   // function is called from collectUniformsAndScalars(), which already does
5062   // this check. Collecting Scalars for VF=1 does not make any sense.
5063   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5064          "This function should not be visited twice for the same VF");
5065 
5066   SmallSetVector<Instruction *, 8> Worklist;
5067 
5068   // These sets are used to seed the analysis with pointers used by memory
5069   // accesses that will remain scalar.
5070   SmallSetVector<Instruction *, 8> ScalarPtrs;
5071   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5072   auto *Latch = TheLoop->getLoopLatch();
5073 
5074   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5075   // The pointer operands of loads and stores will be scalar as long as the
5076   // memory access is not a gather or scatter operation. The value operand of a
5077   // store will remain scalar if the store is scalarized.
5078   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5079     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5080     assert(WideningDecision != CM_Unknown &&
5081            "Widening decision should be ready at this moment");
5082     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5083       if (Ptr == Store->getValueOperand())
5084         return WideningDecision == CM_Scalarize;
5085     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5086            "Ptr is neither a value or pointer operand");
5087     return WideningDecision != CM_GatherScatter;
5088   };
5089 
5090   // A helper that returns true if the given value is a bitcast or
5091   // getelementptr instruction contained in the loop.
5092   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5093     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5094             isa<GetElementPtrInst>(V)) &&
5095            !TheLoop->isLoopInvariant(V);
5096   };
5097 
5098   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5099     if (!isa<PHINode>(Ptr) ||
5100         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5101       return false;
5102     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5103     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5104       return false;
5105     return isScalarUse(MemAccess, Ptr);
5106   };
5107 
5108   // A helper that evaluates a memory access's use of a pointer. If the
5109   // pointer is actually the pointer induction of a loop, it is being
5110   // inserted into Worklist. If the use will be a scalar use, and the
5111   // pointer is only used by memory accesses, we place the pointer in
5112   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5113   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5114     if (isScalarPtrInduction(MemAccess, Ptr)) {
5115       Worklist.insert(cast<Instruction>(Ptr));
5116       Instruction *Update = cast<Instruction>(
5117           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5118       Worklist.insert(Update);
5119       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5120                         << "\n");
5121       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5122                         << "\n");
5123       return;
5124     }
5125     // We only care about bitcast and getelementptr instructions contained in
5126     // the loop.
5127     if (!isLoopVaryingBitCastOrGEP(Ptr))
5128       return;
5129 
5130     // If the pointer has already been identified as scalar (e.g., if it was
5131     // also identified as uniform), there's nothing to do.
5132     auto *I = cast<Instruction>(Ptr);
5133     if (Worklist.count(I))
5134       return;
5135 
5136     // If the use of the pointer will be a scalar use, and all users of the
5137     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5138     // place the pointer in PossibleNonScalarPtrs.
5139     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5140           return isa<LoadInst>(U) || isa<StoreInst>(U);
5141         }))
5142       ScalarPtrs.insert(I);
5143     else
5144       PossibleNonScalarPtrs.insert(I);
5145   };
5146 
5147   // We seed the scalars analysis with three classes of instructions: (1)
5148   // instructions marked uniform-after-vectorization and (2) bitcast,
5149   // getelementptr and (pointer) phi instructions used by memory accesses
5150   // requiring a scalar use.
5151   //
5152   // (1) Add to the worklist all instructions that have been identified as
5153   // uniform-after-vectorization.
5154   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5155 
5156   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5157   // memory accesses requiring a scalar use. The pointer operands of loads and
5158   // stores will be scalar as long as the memory accesses is not a gather or
5159   // scatter operation. The value operand of a store will remain scalar if the
5160   // store is scalarized.
5161   for (auto *BB : TheLoop->blocks())
5162     for (auto &I : *BB) {
5163       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5164         evaluatePtrUse(Load, Load->getPointerOperand());
5165       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5166         evaluatePtrUse(Store, Store->getPointerOperand());
5167         evaluatePtrUse(Store, Store->getValueOperand());
5168       }
5169     }
5170   for (auto *I : ScalarPtrs)
5171     if (!PossibleNonScalarPtrs.count(I)) {
5172       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5173       Worklist.insert(I);
5174     }
5175 
5176   // Insert the forced scalars.
5177   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5178   // induction variable when the PHI user is scalarized.
5179   auto ForcedScalar = ForcedScalars.find(VF);
5180   if (ForcedScalar != ForcedScalars.end())
5181     for (auto *I : ForcedScalar->second)
5182       Worklist.insert(I);
5183 
5184   // Expand the worklist by looking through any bitcasts and getelementptr
5185   // instructions we've already identified as scalar. This is similar to the
5186   // expansion step in collectLoopUniforms(); however, here we're only
5187   // expanding to include additional bitcasts and getelementptr instructions.
5188   unsigned Idx = 0;
5189   while (Idx != Worklist.size()) {
5190     Instruction *Dst = Worklist[Idx++];
5191     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5192       continue;
5193     auto *Src = cast<Instruction>(Dst->getOperand(0));
5194     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5195           auto *J = cast<Instruction>(U);
5196           return !TheLoop->contains(J) || Worklist.count(J) ||
5197                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5198                   isScalarUse(J, Src));
5199         })) {
5200       Worklist.insert(Src);
5201       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5202     }
5203   }
5204 
5205   // An induction variable will remain scalar if all users of the induction
5206   // variable and induction variable update remain scalar.
5207   for (auto &Induction : Legal->getInductionVars()) {
5208     auto *Ind = Induction.first;
5209     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5210 
5211     // If tail-folding is applied, the primary induction variable will be used
5212     // to feed a vector compare.
5213     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5214       continue;
5215 
5216     // Determine if all users of the induction variable are scalar after
5217     // vectorization.
5218     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5219       auto *I = cast<Instruction>(U);
5220       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5221     });
5222     if (!ScalarInd)
5223       continue;
5224 
5225     // Determine if all users of the induction variable update instruction are
5226     // scalar after vectorization.
5227     auto ScalarIndUpdate =
5228         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5229           auto *I = cast<Instruction>(U);
5230           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5231         });
5232     if (!ScalarIndUpdate)
5233       continue;
5234 
5235     // The induction variable and its update instruction will remain scalar.
5236     Worklist.insert(Ind);
5237     Worklist.insert(IndUpdate);
5238     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5239     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5240                       << "\n");
5241   }
5242 
5243   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5244 }
5245 
5246 bool LoopVectorizationCostModel::isScalarWithPredication(
5247     Instruction *I, ElementCount VF) const {
5248   if (!blockNeedsPredication(I->getParent()))
5249     return false;
5250   switch(I->getOpcode()) {
5251   default:
5252     break;
5253   case Instruction::Load:
5254   case Instruction::Store: {
5255     if (!Legal->isMaskRequired(I))
5256       return false;
5257     auto *Ptr = getLoadStorePointerOperand(I);
5258     auto *Ty = getMemInstValueType(I);
5259     // We have already decided how to vectorize this instruction, get that
5260     // result.
5261     if (VF.isVector()) {
5262       InstWidening WideningDecision = getWideningDecision(I, VF);
5263       assert(WideningDecision != CM_Unknown &&
5264              "Widening decision should be ready at this moment");
5265       return WideningDecision == CM_Scalarize;
5266     }
5267     const Align Alignment = getLoadStoreAlignment(I);
5268     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5269                                 isLegalMaskedGather(Ty, Alignment))
5270                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5271                                 isLegalMaskedScatter(Ty, Alignment));
5272   }
5273   case Instruction::UDiv:
5274   case Instruction::SDiv:
5275   case Instruction::SRem:
5276   case Instruction::URem:
5277     return mayDivideByZero(*I);
5278   }
5279   return false;
5280 }
5281 
5282 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5283     Instruction *I, ElementCount VF) {
5284   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5285   assert(getWideningDecision(I, VF) == CM_Unknown &&
5286          "Decision should not be set yet.");
5287   auto *Group = getInterleavedAccessGroup(I);
5288   assert(Group && "Must have a group.");
5289 
5290   // If the instruction's allocated size doesn't equal it's type size, it
5291   // requires padding and will be scalarized.
5292   auto &DL = I->getModule()->getDataLayout();
5293   auto *ScalarTy = getMemInstValueType(I);
5294   if (hasIrregularType(ScalarTy, DL))
5295     return false;
5296 
5297   // Check if masking is required.
5298   // A Group may need masking for one of two reasons: it resides in a block that
5299   // needs predication, or it was decided to use masking to deal with gaps.
5300   bool PredicatedAccessRequiresMasking =
5301       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5302   bool AccessWithGapsRequiresMasking =
5303       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5304   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5305     return true;
5306 
5307   // If masked interleaving is required, we expect that the user/target had
5308   // enabled it, because otherwise it either wouldn't have been created or
5309   // it should have been invalidated by the CostModel.
5310   assert(useMaskedInterleavedAccesses(TTI) &&
5311          "Masked interleave-groups for predicated accesses are not enabled.");
5312 
5313   auto *Ty = getMemInstValueType(I);
5314   const Align Alignment = getLoadStoreAlignment(I);
5315   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5316                           : TTI.isLegalMaskedStore(Ty, Alignment);
5317 }
5318 
5319 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5320     Instruction *I, ElementCount VF) {
5321   // Get and ensure we have a valid memory instruction.
5322   LoadInst *LI = dyn_cast<LoadInst>(I);
5323   StoreInst *SI = dyn_cast<StoreInst>(I);
5324   assert((LI || SI) && "Invalid memory instruction");
5325 
5326   auto *Ptr = getLoadStorePointerOperand(I);
5327 
5328   // In order to be widened, the pointer should be consecutive, first of all.
5329   if (!Legal->isConsecutivePtr(Ptr))
5330     return false;
5331 
5332   // If the instruction is a store located in a predicated block, it will be
5333   // scalarized.
5334   if (isScalarWithPredication(I))
5335     return false;
5336 
5337   // If the instruction's allocated size doesn't equal it's type size, it
5338   // requires padding and will be scalarized.
5339   auto &DL = I->getModule()->getDataLayout();
5340   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5341   if (hasIrregularType(ScalarTy, DL))
5342     return false;
5343 
5344   return true;
5345 }
5346 
5347 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5348   // We should not collect Uniforms more than once per VF. Right now,
5349   // this function is called from collectUniformsAndScalars(), which
5350   // already does this check. Collecting Uniforms for VF=1 does not make any
5351   // sense.
5352 
5353   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5354          "This function should not be visited twice for the same VF");
5355 
5356   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5357   // not analyze again.  Uniforms.count(VF) will return 1.
5358   Uniforms[VF].clear();
5359 
5360   // We now know that the loop is vectorizable!
5361   // Collect instructions inside the loop that will remain uniform after
5362   // vectorization.
5363 
5364   // Global values, params and instructions outside of current loop are out of
5365   // scope.
5366   auto isOutOfScope = [&](Value *V) -> bool {
5367     Instruction *I = dyn_cast<Instruction>(V);
5368     return (!I || !TheLoop->contains(I));
5369   };
5370 
5371   SetVector<Instruction *> Worklist;
5372   BasicBlock *Latch = TheLoop->getLoopLatch();
5373 
5374   // Instructions that are scalar with predication must not be considered
5375   // uniform after vectorization, because that would create an erroneous
5376   // replicating region where only a single instance out of VF should be formed.
5377   // TODO: optimize such seldom cases if found important, see PR40816.
5378   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5379     if (isOutOfScope(I)) {
5380       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5381                         << *I << "\n");
5382       return;
5383     }
5384     if (isScalarWithPredication(I, VF)) {
5385       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5386                         << *I << "\n");
5387       return;
5388     }
5389     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5390     Worklist.insert(I);
5391   };
5392 
5393   // Start with the conditional branch. If the branch condition is an
5394   // instruction contained in the loop that is only used by the branch, it is
5395   // uniform.
5396   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5397   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5398     addToWorklistIfAllowed(Cmp);
5399 
5400   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5401     InstWidening WideningDecision = getWideningDecision(I, VF);
5402     assert(WideningDecision != CM_Unknown &&
5403            "Widening decision should be ready at this moment");
5404 
5405     // A uniform memory op is itself uniform.  We exclude uniform stores
5406     // here as they demand the last lane, not the first one.
5407     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5408       assert(WideningDecision == CM_Scalarize);
5409       return true;
5410     }
5411 
5412     return (WideningDecision == CM_Widen ||
5413             WideningDecision == CM_Widen_Reverse ||
5414             WideningDecision == CM_Interleave);
5415   };
5416 
5417 
5418   // Returns true if Ptr is the pointer operand of a memory access instruction
5419   // I, and I is known to not require scalarization.
5420   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5421     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5422   };
5423 
5424   // Holds a list of values which are known to have at least one uniform use.
5425   // Note that there may be other uses which aren't uniform.  A "uniform use"
5426   // here is something which only demands lane 0 of the unrolled iterations;
5427   // it does not imply that all lanes produce the same value (e.g. this is not
5428   // the usual meaning of uniform)
5429   SetVector<Value *> HasUniformUse;
5430 
5431   // Scan the loop for instructions which are either a) known to have only
5432   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5433   for (auto *BB : TheLoop->blocks())
5434     for (auto &I : *BB) {
5435       // If there's no pointer operand, there's nothing to do.
5436       auto *Ptr = getLoadStorePointerOperand(&I);
5437       if (!Ptr)
5438         continue;
5439 
5440       // A uniform memory op is itself uniform.  We exclude uniform stores
5441       // here as they demand the last lane, not the first one.
5442       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5443         addToWorklistIfAllowed(&I);
5444 
5445       if (isUniformDecision(&I, VF)) {
5446         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5447         HasUniformUse.insert(Ptr);
5448       }
5449     }
5450 
5451   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5452   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5453   // disallows uses outside the loop as well.
5454   for (auto *V : HasUniformUse) {
5455     if (isOutOfScope(V))
5456       continue;
5457     auto *I = cast<Instruction>(V);
5458     auto UsersAreMemAccesses =
5459       llvm::all_of(I->users(), [&](User *U) -> bool {
5460         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5461       });
5462     if (UsersAreMemAccesses)
5463       addToWorklistIfAllowed(I);
5464   }
5465 
5466   // Expand Worklist in topological order: whenever a new instruction
5467   // is added , its users should be already inside Worklist.  It ensures
5468   // a uniform instruction will only be used by uniform instructions.
5469   unsigned idx = 0;
5470   while (idx != Worklist.size()) {
5471     Instruction *I = Worklist[idx++];
5472 
5473     for (auto OV : I->operand_values()) {
5474       // isOutOfScope operands cannot be uniform instructions.
5475       if (isOutOfScope(OV))
5476         continue;
5477       // First order recurrence Phi's should typically be considered
5478       // non-uniform.
5479       auto *OP = dyn_cast<PHINode>(OV);
5480       if (OP && Legal->isFirstOrderRecurrence(OP))
5481         continue;
5482       // If all the users of the operand are uniform, then add the
5483       // operand into the uniform worklist.
5484       auto *OI = cast<Instruction>(OV);
5485       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5486             auto *J = cast<Instruction>(U);
5487             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5488           }))
5489         addToWorklistIfAllowed(OI);
5490     }
5491   }
5492 
5493   // For an instruction to be added into Worklist above, all its users inside
5494   // the loop should also be in Worklist. However, this condition cannot be
5495   // true for phi nodes that form a cyclic dependence. We must process phi
5496   // nodes separately. An induction variable will remain uniform if all users
5497   // of the induction variable and induction variable update remain uniform.
5498   // The code below handles both pointer and non-pointer induction variables.
5499   for (auto &Induction : Legal->getInductionVars()) {
5500     auto *Ind = Induction.first;
5501     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5502 
5503     // Determine if all users of the induction variable are uniform after
5504     // vectorization.
5505     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5506       auto *I = cast<Instruction>(U);
5507       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5508              isVectorizedMemAccessUse(I, Ind);
5509     });
5510     if (!UniformInd)
5511       continue;
5512 
5513     // Determine if all users of the induction variable update instruction are
5514     // uniform after vectorization.
5515     auto UniformIndUpdate =
5516         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5517           auto *I = cast<Instruction>(U);
5518           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5519                  isVectorizedMemAccessUse(I, IndUpdate);
5520         });
5521     if (!UniformIndUpdate)
5522       continue;
5523 
5524     // The induction variable and its update instruction will remain uniform.
5525     addToWorklistIfAllowed(Ind);
5526     addToWorklistIfAllowed(IndUpdate);
5527   }
5528 
5529   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5530 }
5531 
5532 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5533   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5534 
5535   if (Legal->getRuntimePointerChecking()->Need) {
5536     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5537         "runtime pointer checks needed. Enable vectorization of this "
5538         "loop with '#pragma clang loop vectorize(enable)' when "
5539         "compiling with -Os/-Oz",
5540         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5541     return true;
5542   }
5543 
5544   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5545     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5546         "runtime SCEV checks needed. Enable vectorization of this "
5547         "loop with '#pragma clang loop vectorize(enable)' when "
5548         "compiling with -Os/-Oz",
5549         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5550     return true;
5551   }
5552 
5553   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5554   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5555     reportVectorizationFailure("Runtime stride check for small trip count",
5556         "runtime stride == 1 checks needed. Enable vectorization of "
5557         "this loop without such check by compiling with -Os/-Oz",
5558         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5559     return true;
5560   }
5561 
5562   return false;
5563 }
5564 
5565 Optional<ElementCount>
5566 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5567   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5568     // TODO: It may by useful to do since it's still likely to be dynamically
5569     // uniform if the target can skip.
5570     reportVectorizationFailure(
5571         "Not inserting runtime ptr check for divergent target",
5572         "runtime pointer checks needed. Not enabled for divergent target",
5573         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5574     return None;
5575   }
5576 
5577   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5578   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5579   if (TC == 1) {
5580     reportVectorizationFailure("Single iteration (non) loop",
5581         "loop trip count is one, irrelevant for vectorization",
5582         "SingleIterationLoop", ORE, TheLoop);
5583     return None;
5584   }
5585 
5586   switch (ScalarEpilogueStatus) {
5587   case CM_ScalarEpilogueAllowed:
5588     return computeFeasibleMaxVF(TC, UserVF);
5589   case CM_ScalarEpilogueNotAllowedUsePredicate:
5590     LLVM_FALLTHROUGH;
5591   case CM_ScalarEpilogueNotNeededUsePredicate:
5592     LLVM_DEBUG(
5593         dbgs() << "LV: vector predicate hint/switch found.\n"
5594                << "LV: Not allowing scalar epilogue, creating predicated "
5595                << "vector loop.\n");
5596     break;
5597   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5598     // fallthrough as a special case of OptForSize
5599   case CM_ScalarEpilogueNotAllowedOptSize:
5600     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5601       LLVM_DEBUG(
5602           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5603     else
5604       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5605                         << "count.\n");
5606 
5607     // Bail if runtime checks are required, which are not good when optimising
5608     // for size.
5609     if (runtimeChecksRequired())
5610       return None;
5611 
5612     break;
5613   }
5614 
5615   // The only loops we can vectorize without a scalar epilogue, are loops with
5616   // a bottom-test and a single exiting block. We'd have to handle the fact
5617   // that not every instruction executes on the last iteration.  This will
5618   // require a lane mask which varies through the vector loop body.  (TODO)
5619   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5620     // If there was a tail-folding hint/switch, but we can't fold the tail by
5621     // masking, fallback to a vectorization with a scalar epilogue.
5622     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5623       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5624                            "scalar epilogue instead.\n");
5625       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5626       return computeFeasibleMaxVF(TC, UserVF);
5627     }
5628     return None;
5629   }
5630 
5631   // Now try the tail folding
5632 
5633   // Invalidate interleave groups that require an epilogue if we can't mask
5634   // the interleave-group.
5635   if (!useMaskedInterleavedAccesses(TTI)) {
5636     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5637            "No decisions should have been taken at this point");
5638     // Note: There is no need to invalidate any cost modeling decisions here, as
5639     // non where taken so far.
5640     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5641   }
5642 
5643   ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF);
5644   assert(!MaxVF.isScalable() &&
5645          "Scalable vectors do not yet support tail folding");
5646   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5647          "MaxVF must be a power of 2");
5648   unsigned MaxVFtimesIC =
5649       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5650   // Avoid tail folding if the trip count is known to be a multiple of any VF we
5651   // chose.
5652   ScalarEvolution *SE = PSE.getSE();
5653   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5654   const SCEV *ExitCount = SE->getAddExpr(
5655       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5656   const SCEV *Rem = SE->getURemExpr(
5657       SE->applyLoopGuards(ExitCount, TheLoop),
5658       SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5659   if (Rem->isZero()) {
5660     // Accept MaxVF if we do not have a tail.
5661     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5662     return MaxVF;
5663   }
5664 
5665   // If we don't know the precise trip count, or if the trip count that we
5666   // found modulo the vectorization factor is not zero, try to fold the tail
5667   // by masking.
5668   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5669   if (Legal->prepareToFoldTailByMasking()) {
5670     FoldTailByMasking = true;
5671     return MaxVF;
5672   }
5673 
5674   // If there was a tail-folding hint/switch, but we can't fold the tail by
5675   // masking, fallback to a vectorization with a scalar epilogue.
5676   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5677     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5678                          "scalar epilogue instead.\n");
5679     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5680     return MaxVF;
5681   }
5682 
5683   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5684     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5685     return None;
5686   }
5687 
5688   if (TC == 0) {
5689     reportVectorizationFailure(
5690         "Unable to calculate the loop count due to complex control flow",
5691         "unable to calculate the loop count due to complex control flow",
5692         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5693     return None;
5694   }
5695 
5696   reportVectorizationFailure(
5697       "Cannot optimize for size and vectorize at the same time.",
5698       "cannot optimize for size and vectorize at the same time. "
5699       "Enable vectorization of this loop with '#pragma clang loop "
5700       "vectorize(enable)' when compiling with -Os/-Oz",
5701       "NoTailLoopWithOptForSize", ORE, TheLoop);
5702   return None;
5703 }
5704 
5705 ElementCount
5706 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5707                                                  ElementCount UserVF) {
5708   bool IgnoreScalableUserVF = UserVF.isScalable() &&
5709                               !TTI.supportsScalableVectors() &&
5710                               !ForceTargetSupportsScalableVectors;
5711   if (IgnoreScalableUserVF) {
5712     LLVM_DEBUG(
5713         dbgs() << "LV: Ignoring VF=" << UserVF
5714                << " because target does not support scalable vectors.\n");
5715     ORE->emit([&]() {
5716       return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF",
5717                                         TheLoop->getStartLoc(),
5718                                         TheLoop->getHeader())
5719              << "Ignoring VF=" << ore::NV("UserVF", UserVF)
5720              << " because target does not support scalable vectors.";
5721     });
5722   }
5723 
5724   // Beyond this point two scenarios are handled. If UserVF isn't specified
5725   // then a suitable VF is chosen. If UserVF is specified and there are
5726   // dependencies, check if it's legal. However, if a UserVF is specified and
5727   // there are no dependencies, then there's nothing to do.
5728   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5729     if (!canVectorizeReductions(UserVF)) {
5730       reportVectorizationFailure(
5731           "LV: Scalable vectorization not supported for the reduction "
5732           "operations found in this loop. Using fixed-width "
5733           "vectorization instead.",
5734           "Scalable vectorization not supported for the reduction operations "
5735           "found in this loop. Using fixed-width vectorization instead.",
5736           "ScalableVFUnfeasible", ORE, TheLoop);
5737       return computeFeasibleMaxVF(
5738           ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5739     }
5740 
5741     if (Legal->isSafeForAnyVectorWidth())
5742       return UserVF;
5743   }
5744 
5745   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5746   unsigned SmallestType, WidestType;
5747   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5748   unsigned WidestRegister =
5749       TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
5750           .getFixedSize();
5751 
5752   // Get the maximum safe dependence distance in bits computed by LAA.
5753   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5754   // the memory accesses that is most restrictive (involved in the smallest
5755   // dependence distance).
5756   unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits();
5757 
5758   // If the user vectorization factor is legally unsafe, clamp it to a safe
5759   // value. Otherwise, return as is.
5760   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5761     unsigned MaxSafeElements =
5762         PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType);
5763     ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements);
5764 
5765     if (UserVF.isScalable()) {
5766       Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5767 
5768       // Scale VF by vscale before checking if it's safe.
5769       MaxSafeVF = ElementCount::getScalable(
5770           MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5771 
5772       if (MaxSafeVF.isZero()) {
5773         // The dependence distance is too small to use scalable vectors,
5774         // fallback on fixed.
5775         LLVM_DEBUG(
5776             dbgs()
5777             << "LV: Max legal vector width too small, scalable vectorization "
5778                "unfeasible. Using fixed-width vectorization instead.\n");
5779         ORE->emit([&]() {
5780           return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible",
5781                                             TheLoop->getStartLoc(),
5782                                             TheLoop->getHeader())
5783                  << "Max legal vector width too small, scalable vectorization "
5784                  << "unfeasible. Using fixed-width vectorization instead.";
5785         });
5786         return computeFeasibleMaxVF(
5787             ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5788       }
5789     }
5790 
5791     LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n");
5792 
5793     if (ElementCount::isKnownLE(UserVF, MaxSafeVF))
5794       return UserVF;
5795 
5796     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5797                       << " is unsafe, clamping to max safe VF=" << MaxSafeVF
5798                       << ".\n");
5799     ORE->emit([&]() {
5800       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5801                                         TheLoop->getStartLoc(),
5802                                         TheLoop->getHeader())
5803              << "User-specified vectorization factor "
5804              << ore::NV("UserVectorizationFactor", UserVF)
5805              << " is unsafe, clamping to maximum safe vectorization factor "
5806              << ore::NV("VectorizationFactor", MaxSafeVF);
5807     });
5808     return MaxSafeVF;
5809   }
5810 
5811   WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits);
5812 
5813   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5814   // Note that both WidestRegister and WidestType may not be a powers of 2.
5815   auto MaxVectorSize =
5816       ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType));
5817 
5818   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5819                     << " / " << WidestType << " bits.\n");
5820   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5821                     << WidestRegister << " bits.\n");
5822 
5823   assert(MaxVectorSize.getFixedValue() <= WidestRegister &&
5824          "Did not expect to pack so many elements"
5825          " into one vector!");
5826   if (MaxVectorSize.getFixedValue() == 0) {
5827     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5828     return ElementCount::getFixed(1);
5829   } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() &&
5830              isPowerOf2_32(ConstTripCount)) {
5831     // We need to clamp the VF to be the ConstTripCount. There is no point in
5832     // choosing a higher viable VF as done in the loop below.
5833     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5834                       << ConstTripCount << "\n");
5835     return ElementCount::getFixed(ConstTripCount);
5836   }
5837 
5838   ElementCount MaxVF = MaxVectorSize;
5839   if (TTI.shouldMaximizeVectorBandwidth() ||
5840       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5841     // Collect all viable vectorization factors larger than the default MaxVF
5842     // (i.e. MaxVectorSize).
5843     SmallVector<ElementCount, 8> VFs;
5844     auto MaxVectorSizeMaxBW =
5845         ElementCount::getFixed(WidestRegister / SmallestType);
5846     for (ElementCount VS = MaxVectorSize * 2;
5847          ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2)
5848       VFs.push_back(VS);
5849 
5850     // For each VF calculate its register usage.
5851     auto RUs = calculateRegisterUsage(VFs);
5852 
5853     // Select the largest VF which doesn't require more registers than existing
5854     // ones.
5855     for (int i = RUs.size() - 1; i >= 0; --i) {
5856       bool Selected = true;
5857       for (auto &pair : RUs[i].MaxLocalUsers) {
5858         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5859         if (pair.second > TargetNumRegisters)
5860           Selected = false;
5861       }
5862       if (Selected) {
5863         MaxVF = VFs[i];
5864         break;
5865       }
5866     }
5867     if (ElementCount MinVF =
5868             TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) {
5869       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5870         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5871                           << ") with target's minimum: " << MinVF << '\n');
5872         MaxVF = MinVF;
5873       }
5874     }
5875   }
5876   return MaxVF;
5877 }
5878 
5879 VectorizationFactor
5880 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5881   // FIXME: This can be fixed for scalable vectors later, because at this stage
5882   // the LoopVectorizer will only consider vectorizing a loop with scalable
5883   // vectors when the loop has a hint to enable vectorization for a given VF.
5884   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5885 
5886   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5887   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5888   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5889 
5890   auto Width = ElementCount::getFixed(1);
5891   const float ScalarCost = *ExpectedCost.getValue();
5892   float Cost = ScalarCost;
5893 
5894   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5895   if (ForceVectorization && MaxVF.isVector()) {
5896     // Ignore scalar width, because the user explicitly wants vectorization.
5897     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5898     // evaluation.
5899     Cost = std::numeric_limits<float>::max();
5900   }
5901 
5902   for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF);
5903        i *= 2) {
5904     // Notice that the vector loop needs to be executed less times, so
5905     // we need to divide the cost of the vector loops by the width of
5906     // the vector elements.
5907     VectorizationCostTy C = expectedCost(i);
5908     assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
5909     float VectorCost = *C.first.getValue() / (float)i.getFixedValue();
5910     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5911                       << " costs: " << (int)VectorCost << ".\n");
5912     if (!C.second && !ForceVectorization) {
5913       LLVM_DEBUG(
5914           dbgs() << "LV: Not considering vector loop of width " << i
5915                  << " because it will not generate any vector instructions.\n");
5916       continue;
5917     }
5918 
5919     // If profitable add it to ProfitableVF list.
5920     if (VectorCost < ScalarCost) {
5921       ProfitableVFs.push_back(VectorizationFactor(
5922           {i, (unsigned)VectorCost}));
5923     }
5924 
5925     if (VectorCost < Cost) {
5926       Cost = VectorCost;
5927       Width = i;
5928     }
5929   }
5930 
5931   if (!EnableCondStoresVectorization && NumPredStores) {
5932     reportVectorizationFailure("There are conditional stores.",
5933         "store that is conditionally executed prevents vectorization",
5934         "ConditionalStore", ORE, TheLoop);
5935     Width = ElementCount::getFixed(1);
5936     Cost = ScalarCost;
5937   }
5938 
5939   LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs()
5940              << "LV: Vectorization seems to be not beneficial, "
5941              << "but was forced by a user.\n");
5942   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5943   VectorizationFactor Factor = {Width,
5944                                 (unsigned)(Width.getKnownMinValue() * Cost)};
5945   return Factor;
5946 }
5947 
5948 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5949     const Loop &L, ElementCount VF) const {
5950   // Cross iteration phis such as reductions need special handling and are
5951   // currently unsupported.
5952   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
5953         return Legal->isFirstOrderRecurrence(&Phi) ||
5954                Legal->isReductionVariable(&Phi);
5955       }))
5956     return false;
5957 
5958   // Phis with uses outside of the loop require special handling and are
5959   // currently unsupported.
5960   for (auto &Entry : Legal->getInductionVars()) {
5961     // Look for uses of the value of the induction at the last iteration.
5962     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5963     for (User *U : PostInc->users())
5964       if (!L.contains(cast<Instruction>(U)))
5965         return false;
5966     // Look for uses of penultimate value of the induction.
5967     for (User *U : Entry.first->users())
5968       if (!L.contains(cast<Instruction>(U)))
5969         return false;
5970   }
5971 
5972   // Induction variables that are widened require special handling that is
5973   // currently not supported.
5974   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5975         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5976                  this->isProfitableToScalarize(Entry.first, VF));
5977       }))
5978     return false;
5979 
5980   return true;
5981 }
5982 
5983 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5984     const ElementCount VF) const {
5985   // FIXME: We need a much better cost-model to take different parameters such
5986   // as register pressure, code size increase and cost of extra branches into
5987   // account. For now we apply a very crude heuristic and only consider loops
5988   // with vectorization factors larger than a certain value.
5989   // We also consider epilogue vectorization unprofitable for targets that don't
5990   // consider interleaving beneficial (eg. MVE).
5991   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5992     return false;
5993   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
5994     return true;
5995   return false;
5996 }
5997 
5998 VectorizationFactor
5999 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6000     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6001   VectorizationFactor Result = VectorizationFactor::Disabled();
6002   if (!EnableEpilogueVectorization) {
6003     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6004     return Result;
6005   }
6006 
6007   if (!isScalarEpilogueAllowed()) {
6008     LLVM_DEBUG(
6009         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6010                   "allowed.\n";);
6011     return Result;
6012   }
6013 
6014   // FIXME: This can be fixed for scalable vectors later, because at this stage
6015   // the LoopVectorizer will only consider vectorizing a loop with scalable
6016   // vectors when the loop has a hint to enable vectorization for a given VF.
6017   if (MainLoopVF.isScalable()) {
6018     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6019                          "yet supported.\n");
6020     return Result;
6021   }
6022 
6023   // Not really a cost consideration, but check for unsupported cases here to
6024   // simplify the logic.
6025   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6026     LLVM_DEBUG(
6027         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6028                   "not a supported candidate.\n";);
6029     return Result;
6030   }
6031 
6032   if (EpilogueVectorizationForceVF > 1) {
6033     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6034     if (LVP.hasPlanWithVFs(
6035             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6036       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6037     else {
6038       LLVM_DEBUG(
6039           dbgs()
6040               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6041       return Result;
6042     }
6043   }
6044 
6045   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6046       TheLoop->getHeader()->getParent()->hasMinSize()) {
6047     LLVM_DEBUG(
6048         dbgs()
6049             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6050     return Result;
6051   }
6052 
6053   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6054     return Result;
6055 
6056   for (auto &NextVF : ProfitableVFs)
6057     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6058         (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) &&
6059         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6060       Result = NextVF;
6061 
6062   if (Result != VectorizationFactor::Disabled())
6063     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6064                       << Result.Width.getFixedValue() << "\n";);
6065   return Result;
6066 }
6067 
6068 std::pair<unsigned, unsigned>
6069 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6070   unsigned MinWidth = -1U;
6071   unsigned MaxWidth = 8;
6072   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6073 
6074   // For each block.
6075   for (BasicBlock *BB : TheLoop->blocks()) {
6076     // For each instruction in the loop.
6077     for (Instruction &I : BB->instructionsWithoutDebug()) {
6078       Type *T = I.getType();
6079 
6080       // Skip ignored values.
6081       if (ValuesToIgnore.count(&I))
6082         continue;
6083 
6084       // Only examine Loads, Stores and PHINodes.
6085       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6086         continue;
6087 
6088       // Examine PHI nodes that are reduction variables. Update the type to
6089       // account for the recurrence type.
6090       if (auto *PN = dyn_cast<PHINode>(&I)) {
6091         if (!Legal->isReductionVariable(PN))
6092           continue;
6093         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
6094         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6095             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6096                                       RdxDesc.getRecurrenceType(),
6097                                       TargetTransformInfo::ReductionFlags()))
6098           continue;
6099         T = RdxDesc.getRecurrenceType();
6100       }
6101 
6102       // Examine the stored values.
6103       if (auto *ST = dyn_cast<StoreInst>(&I))
6104         T = ST->getValueOperand()->getType();
6105 
6106       // Ignore loaded pointer types and stored pointer types that are not
6107       // vectorizable.
6108       //
6109       // FIXME: The check here attempts to predict whether a load or store will
6110       //        be vectorized. We only know this for certain after a VF has
6111       //        been selected. Here, we assume that if an access can be
6112       //        vectorized, it will be. We should also look at extending this
6113       //        optimization to non-pointer types.
6114       //
6115       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6116           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6117         continue;
6118 
6119       MinWidth = std::min(MinWidth,
6120                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6121       MaxWidth = std::max(MaxWidth,
6122                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6123     }
6124   }
6125 
6126   return {MinWidth, MaxWidth};
6127 }
6128 
6129 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6130                                                            unsigned LoopCost) {
6131   // -- The interleave heuristics --
6132   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6133   // There are many micro-architectural considerations that we can't predict
6134   // at this level. For example, frontend pressure (on decode or fetch) due to
6135   // code size, or the number and capabilities of the execution ports.
6136   //
6137   // We use the following heuristics to select the interleave count:
6138   // 1. If the code has reductions, then we interleave to break the cross
6139   // iteration dependency.
6140   // 2. If the loop is really small, then we interleave to reduce the loop
6141   // overhead.
6142   // 3. We don't interleave if we think that we will spill registers to memory
6143   // due to the increased register pressure.
6144 
6145   if (!isScalarEpilogueAllowed())
6146     return 1;
6147 
6148   // We used the distance for the interleave count.
6149   if (Legal->getMaxSafeDepDistBytes() != -1U)
6150     return 1;
6151 
6152   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6153   const bool HasReductions = !Legal->getReductionVars().empty();
6154   // Do not interleave loops with a relatively small known or estimated trip
6155   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6156   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6157   // because with the above conditions interleaving can expose ILP and break
6158   // cross iteration dependences for reductions.
6159   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6160       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6161     return 1;
6162 
6163   RegisterUsage R = calculateRegisterUsage({VF})[0];
6164   // We divide by these constants so assume that we have at least one
6165   // instruction that uses at least one register.
6166   for (auto& pair : R.MaxLocalUsers) {
6167     pair.second = std::max(pair.second, 1U);
6168   }
6169 
6170   // We calculate the interleave count using the following formula.
6171   // Subtract the number of loop invariants from the number of available
6172   // registers. These registers are used by all of the interleaved instances.
6173   // Next, divide the remaining registers by the number of registers that is
6174   // required by the loop, in order to estimate how many parallel instances
6175   // fit without causing spills. All of this is rounded down if necessary to be
6176   // a power of two. We want power of two interleave count to simplify any
6177   // addressing operations or alignment considerations.
6178   // We also want power of two interleave counts to ensure that the induction
6179   // variable of the vector loop wraps to zero, when tail is folded by masking;
6180   // this currently happens when OptForSize, in which case IC is set to 1 above.
6181   unsigned IC = UINT_MAX;
6182 
6183   for (auto& pair : R.MaxLocalUsers) {
6184     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6185     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6186                       << " registers of "
6187                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6188     if (VF.isScalar()) {
6189       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6190         TargetNumRegisters = ForceTargetNumScalarRegs;
6191     } else {
6192       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6193         TargetNumRegisters = ForceTargetNumVectorRegs;
6194     }
6195     unsigned MaxLocalUsers = pair.second;
6196     unsigned LoopInvariantRegs = 0;
6197     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6198       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6199 
6200     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6201     // Don't count the induction variable as interleaved.
6202     if (EnableIndVarRegisterHeur) {
6203       TmpIC =
6204           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6205                         std::max(1U, (MaxLocalUsers - 1)));
6206     }
6207 
6208     IC = std::min(IC, TmpIC);
6209   }
6210 
6211   // Clamp the interleave ranges to reasonable counts.
6212   unsigned MaxInterleaveCount =
6213       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6214 
6215   // Check if the user has overridden the max.
6216   if (VF.isScalar()) {
6217     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6218       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6219   } else {
6220     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6221       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6222   }
6223 
6224   // If trip count is known or estimated compile time constant, limit the
6225   // interleave count to be less than the trip count divided by VF, provided it
6226   // is at least 1.
6227   //
6228   // For scalable vectors we can't know if interleaving is beneficial. It may
6229   // not be beneficial for small loops if none of the lanes in the second vector
6230   // iterations is enabled. However, for larger loops, there is likely to be a
6231   // similar benefit as for fixed-width vectors. For now, we choose to leave
6232   // the InterleaveCount as if vscale is '1', although if some information about
6233   // the vector is known (e.g. min vector size), we can make a better decision.
6234   if (BestKnownTC) {
6235     MaxInterleaveCount =
6236         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6237     // Make sure MaxInterleaveCount is greater than 0.
6238     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6239   }
6240 
6241   assert(MaxInterleaveCount > 0 &&
6242          "Maximum interleave count must be greater than 0");
6243 
6244   // Clamp the calculated IC to be between the 1 and the max interleave count
6245   // that the target and trip count allows.
6246   if (IC > MaxInterleaveCount)
6247     IC = MaxInterleaveCount;
6248   else
6249     // Make sure IC is greater than 0.
6250     IC = std::max(1u, IC);
6251 
6252   assert(IC > 0 && "Interleave count must be greater than 0.");
6253 
6254   // If we did not calculate the cost for VF (because the user selected the VF)
6255   // then we calculate the cost of VF here.
6256   if (LoopCost == 0) {
6257     assert(expectedCost(VF).first.isValid() && "Expected a valid cost");
6258     LoopCost = *expectedCost(VF).first.getValue();
6259   }
6260 
6261   assert(LoopCost && "Non-zero loop cost expected");
6262 
6263   // Interleave if we vectorized this loop and there is a reduction that could
6264   // benefit from interleaving.
6265   if (VF.isVector() && HasReductions) {
6266     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6267     return IC;
6268   }
6269 
6270   // Note that if we've already vectorized the loop we will have done the
6271   // runtime check and so interleaving won't require further checks.
6272   bool InterleavingRequiresRuntimePointerCheck =
6273       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6274 
6275   // We want to interleave small loops in order to reduce the loop overhead and
6276   // potentially expose ILP opportunities.
6277   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6278                     << "LV: IC is " << IC << '\n'
6279                     << "LV: VF is " << VF << '\n');
6280   const bool AggressivelyInterleaveReductions =
6281       TTI.enableAggressiveInterleaving(HasReductions);
6282   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6283     // We assume that the cost overhead is 1 and we use the cost model
6284     // to estimate the cost of the loop and interleave until the cost of the
6285     // loop overhead is about 5% of the cost of the loop.
6286     unsigned SmallIC =
6287         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6288 
6289     // Interleave until store/load ports (estimated by max interleave count) are
6290     // saturated.
6291     unsigned NumStores = Legal->getNumStores();
6292     unsigned NumLoads = Legal->getNumLoads();
6293     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6294     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6295 
6296     // If we have a scalar reduction (vector reductions are already dealt with
6297     // by this point), we can increase the critical path length if the loop
6298     // we're interleaving is inside another loop. Limit, by default to 2, so the
6299     // critical path only gets increased by one reduction operation.
6300     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6301       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6302       SmallIC = std::min(SmallIC, F);
6303       StoresIC = std::min(StoresIC, F);
6304       LoadsIC = std::min(LoadsIC, F);
6305     }
6306 
6307     if (EnableLoadStoreRuntimeInterleave &&
6308         std::max(StoresIC, LoadsIC) > SmallIC) {
6309       LLVM_DEBUG(
6310           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6311       return std::max(StoresIC, LoadsIC);
6312     }
6313 
6314     // If there are scalar reductions and TTI has enabled aggressive
6315     // interleaving for reductions, we will interleave to expose ILP.
6316     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6317         AggressivelyInterleaveReductions) {
6318       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6319       // Interleave no less than SmallIC but not as aggressive as the normal IC
6320       // to satisfy the rare situation when resources are too limited.
6321       return std::max(IC / 2, SmallIC);
6322     } else {
6323       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6324       return SmallIC;
6325     }
6326   }
6327 
6328   // Interleave if this is a large loop (small loops are already dealt with by
6329   // this point) that could benefit from interleaving.
6330   if (AggressivelyInterleaveReductions) {
6331     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6332     return IC;
6333   }
6334 
6335   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6336   return 1;
6337 }
6338 
6339 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6340 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6341   // This function calculates the register usage by measuring the highest number
6342   // of values that are alive at a single location. Obviously, this is a very
6343   // rough estimation. We scan the loop in a topological order in order and
6344   // assign a number to each instruction. We use RPO to ensure that defs are
6345   // met before their users. We assume that each instruction that has in-loop
6346   // users starts an interval. We record every time that an in-loop value is
6347   // used, so we have a list of the first and last occurrences of each
6348   // instruction. Next, we transpose this data structure into a multi map that
6349   // holds the list of intervals that *end* at a specific location. This multi
6350   // map allows us to perform a linear search. We scan the instructions linearly
6351   // and record each time that a new interval starts, by placing it in a set.
6352   // If we find this value in the multi-map then we remove it from the set.
6353   // The max register usage is the maximum size of the set.
6354   // We also search for instructions that are defined outside the loop, but are
6355   // used inside the loop. We need this number separately from the max-interval
6356   // usage number because when we unroll, loop-invariant values do not take
6357   // more register.
6358   LoopBlocksDFS DFS(TheLoop);
6359   DFS.perform(LI);
6360 
6361   RegisterUsage RU;
6362 
6363   // Each 'key' in the map opens a new interval. The values
6364   // of the map are the index of the 'last seen' usage of the
6365   // instruction that is the key.
6366   using IntervalMap = DenseMap<Instruction *, unsigned>;
6367 
6368   // Maps instruction to its index.
6369   SmallVector<Instruction *, 64> IdxToInstr;
6370   // Marks the end of each interval.
6371   IntervalMap EndPoint;
6372   // Saves the list of instruction indices that are used in the loop.
6373   SmallPtrSet<Instruction *, 8> Ends;
6374   // Saves the list of values that are used in the loop but are
6375   // defined outside the loop, such as arguments and constants.
6376   SmallPtrSet<Value *, 8> LoopInvariants;
6377 
6378   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6379     for (Instruction &I : BB->instructionsWithoutDebug()) {
6380       IdxToInstr.push_back(&I);
6381 
6382       // Save the end location of each USE.
6383       for (Value *U : I.operands()) {
6384         auto *Instr = dyn_cast<Instruction>(U);
6385 
6386         // Ignore non-instruction values such as arguments, constants, etc.
6387         if (!Instr)
6388           continue;
6389 
6390         // If this instruction is outside the loop then record it and continue.
6391         if (!TheLoop->contains(Instr)) {
6392           LoopInvariants.insert(Instr);
6393           continue;
6394         }
6395 
6396         // Overwrite previous end points.
6397         EndPoint[Instr] = IdxToInstr.size();
6398         Ends.insert(Instr);
6399       }
6400     }
6401   }
6402 
6403   // Saves the list of intervals that end with the index in 'key'.
6404   using InstrList = SmallVector<Instruction *, 2>;
6405   DenseMap<unsigned, InstrList> TransposeEnds;
6406 
6407   // Transpose the EndPoints to a list of values that end at each index.
6408   for (auto &Interval : EndPoint)
6409     TransposeEnds[Interval.second].push_back(Interval.first);
6410 
6411   SmallPtrSet<Instruction *, 8> OpenIntervals;
6412   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6413   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6414 
6415   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6416 
6417   // A lambda that gets the register usage for the given type and VF.
6418   const auto &TTICapture = TTI;
6419   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
6420     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6421       return 0U;
6422     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
6423   };
6424 
6425   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6426     Instruction *I = IdxToInstr[i];
6427 
6428     // Remove all of the instructions that end at this location.
6429     InstrList &List = TransposeEnds[i];
6430     for (Instruction *ToRemove : List)
6431       OpenIntervals.erase(ToRemove);
6432 
6433     // Ignore instructions that are never used within the loop.
6434     if (!Ends.count(I))
6435       continue;
6436 
6437     // Skip ignored values.
6438     if (ValuesToIgnore.count(I))
6439       continue;
6440 
6441     // For each VF find the maximum usage of registers.
6442     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6443       // Count the number of live intervals.
6444       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6445 
6446       if (VFs[j].isScalar()) {
6447         for (auto Inst : OpenIntervals) {
6448           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6449           if (RegUsage.find(ClassID) == RegUsage.end())
6450             RegUsage[ClassID] = 1;
6451           else
6452             RegUsage[ClassID] += 1;
6453         }
6454       } else {
6455         collectUniformsAndScalars(VFs[j]);
6456         for (auto Inst : OpenIntervals) {
6457           // Skip ignored values for VF > 1.
6458           if (VecValuesToIgnore.count(Inst))
6459             continue;
6460           if (isScalarAfterVectorization(Inst, VFs[j])) {
6461             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6462             if (RegUsage.find(ClassID) == RegUsage.end())
6463               RegUsage[ClassID] = 1;
6464             else
6465               RegUsage[ClassID] += 1;
6466           } else {
6467             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6468             if (RegUsage.find(ClassID) == RegUsage.end())
6469               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6470             else
6471               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6472           }
6473         }
6474       }
6475 
6476       for (auto& pair : RegUsage) {
6477         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6478           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6479         else
6480           MaxUsages[j][pair.first] = pair.second;
6481       }
6482     }
6483 
6484     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6485                       << OpenIntervals.size() << '\n');
6486 
6487     // Add the current instruction to the list of open intervals.
6488     OpenIntervals.insert(I);
6489   }
6490 
6491   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6492     SmallMapVector<unsigned, unsigned, 4> Invariant;
6493 
6494     for (auto Inst : LoopInvariants) {
6495       unsigned Usage =
6496           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6497       unsigned ClassID =
6498           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6499       if (Invariant.find(ClassID) == Invariant.end())
6500         Invariant[ClassID] = Usage;
6501       else
6502         Invariant[ClassID] += Usage;
6503     }
6504 
6505     LLVM_DEBUG({
6506       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6507       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6508              << " item\n";
6509       for (const auto &pair : MaxUsages[i]) {
6510         dbgs() << "LV(REG): RegisterClass: "
6511                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6512                << " registers\n";
6513       }
6514       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6515              << " item\n";
6516       for (const auto &pair : Invariant) {
6517         dbgs() << "LV(REG): RegisterClass: "
6518                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6519                << " registers\n";
6520       }
6521     });
6522 
6523     RU.LoopInvariantRegs = Invariant;
6524     RU.MaxLocalUsers = MaxUsages[i];
6525     RUs[i] = RU;
6526   }
6527 
6528   return RUs;
6529 }
6530 
6531 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6532   // TODO: Cost model for emulated masked load/store is completely
6533   // broken. This hack guides the cost model to use an artificially
6534   // high enough value to practically disable vectorization with such
6535   // operations, except where previously deployed legality hack allowed
6536   // using very low cost values. This is to avoid regressions coming simply
6537   // from moving "masked load/store" check from legality to cost model.
6538   // Masked Load/Gather emulation was previously never allowed.
6539   // Limited number of Masked Store/Scatter emulation was allowed.
6540   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
6541   return isa<LoadInst>(I) ||
6542          (isa<StoreInst>(I) &&
6543           NumPredStores > NumberOfStoresToPredicate);
6544 }
6545 
6546 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6547   // If we aren't vectorizing the loop, or if we've already collected the
6548   // instructions to scalarize, there's nothing to do. Collection may already
6549   // have occurred if we have a user-selected VF and are now computing the
6550   // expected cost for interleaving.
6551   if (VF.isScalar() || VF.isZero() ||
6552       InstsToScalarize.find(VF) != InstsToScalarize.end())
6553     return;
6554 
6555   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6556   // not profitable to scalarize any instructions, the presence of VF in the
6557   // map will indicate that we've analyzed it already.
6558   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6559 
6560   // Find all the instructions that are scalar with predication in the loop and
6561   // determine if it would be better to not if-convert the blocks they are in.
6562   // If so, we also record the instructions to scalarize.
6563   for (BasicBlock *BB : TheLoop->blocks()) {
6564     if (!blockNeedsPredication(BB))
6565       continue;
6566     for (Instruction &I : *BB)
6567       if (isScalarWithPredication(&I)) {
6568         ScalarCostsTy ScalarCosts;
6569         // Do not apply discount logic if hacked cost is needed
6570         // for emulated masked memrefs.
6571         if (!useEmulatedMaskMemRefHack(&I) &&
6572             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6573           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6574         // Remember that BB will remain after vectorization.
6575         PredicatedBBsAfterVectorization.insert(BB);
6576       }
6577   }
6578 }
6579 
6580 int LoopVectorizationCostModel::computePredInstDiscount(
6581     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6582   assert(!isUniformAfterVectorization(PredInst, VF) &&
6583          "Instruction marked uniform-after-vectorization will be predicated");
6584 
6585   // Initialize the discount to zero, meaning that the scalar version and the
6586   // vector version cost the same.
6587   InstructionCost Discount = 0;
6588 
6589   // Holds instructions to analyze. The instructions we visit are mapped in
6590   // ScalarCosts. Those instructions are the ones that would be scalarized if
6591   // we find that the scalar version costs less.
6592   SmallVector<Instruction *, 8> Worklist;
6593 
6594   // Returns true if the given instruction can be scalarized.
6595   auto canBeScalarized = [&](Instruction *I) -> bool {
6596     // We only attempt to scalarize instructions forming a single-use chain
6597     // from the original predicated block that would otherwise be vectorized.
6598     // Although not strictly necessary, we give up on instructions we know will
6599     // already be scalar to avoid traversing chains that are unlikely to be
6600     // beneficial.
6601     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6602         isScalarAfterVectorization(I, VF))
6603       return false;
6604 
6605     // If the instruction is scalar with predication, it will be analyzed
6606     // separately. We ignore it within the context of PredInst.
6607     if (isScalarWithPredication(I))
6608       return false;
6609 
6610     // If any of the instruction's operands are uniform after vectorization,
6611     // the instruction cannot be scalarized. This prevents, for example, a
6612     // masked load from being scalarized.
6613     //
6614     // We assume we will only emit a value for lane zero of an instruction
6615     // marked uniform after vectorization, rather than VF identical values.
6616     // Thus, if we scalarize an instruction that uses a uniform, we would
6617     // create uses of values corresponding to the lanes we aren't emitting code
6618     // for. This behavior can be changed by allowing getScalarValue to clone
6619     // the lane zero values for uniforms rather than asserting.
6620     for (Use &U : I->operands())
6621       if (auto *J = dyn_cast<Instruction>(U.get()))
6622         if (isUniformAfterVectorization(J, VF))
6623           return false;
6624 
6625     // Otherwise, we can scalarize the instruction.
6626     return true;
6627   };
6628 
6629   // Compute the expected cost discount from scalarizing the entire expression
6630   // feeding the predicated instruction. We currently only consider expressions
6631   // that are single-use instruction chains.
6632   Worklist.push_back(PredInst);
6633   while (!Worklist.empty()) {
6634     Instruction *I = Worklist.pop_back_val();
6635 
6636     // If we've already analyzed the instruction, there's nothing to do.
6637     if (ScalarCosts.find(I) != ScalarCosts.end())
6638       continue;
6639 
6640     // Compute the cost of the vector instruction. Note that this cost already
6641     // includes the scalarization overhead of the predicated instruction.
6642     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6643 
6644     // Compute the cost of the scalarized instruction. This cost is the cost of
6645     // the instruction as if it wasn't if-converted and instead remained in the
6646     // predicated block. We will scale this cost by block probability after
6647     // computing the scalarization overhead.
6648     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6649     InstructionCost ScalarCost =
6650         VF.getKnownMinValue() *
6651         getInstructionCost(I, ElementCount::getFixed(1)).first;
6652 
6653     // Compute the scalarization overhead of needed insertelement instructions
6654     // and phi nodes.
6655     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6656       ScalarCost += TTI.getScalarizationOverhead(
6657           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6658           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6659       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6660       ScalarCost +=
6661           VF.getKnownMinValue() *
6662           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6663     }
6664 
6665     // Compute the scalarization overhead of needed extractelement
6666     // instructions. For each of the instruction's operands, if the operand can
6667     // be scalarized, add it to the worklist; otherwise, account for the
6668     // overhead.
6669     for (Use &U : I->operands())
6670       if (auto *J = dyn_cast<Instruction>(U.get())) {
6671         assert(VectorType::isValidElementType(J->getType()) &&
6672                "Instruction has non-scalar type");
6673         if (canBeScalarized(J))
6674           Worklist.push_back(J);
6675         else if (needsExtract(J, VF)) {
6676           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6677           ScalarCost += TTI.getScalarizationOverhead(
6678               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6679               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6680         }
6681       }
6682 
6683     // Scale the total scalar cost by block probability.
6684     ScalarCost /= getReciprocalPredBlockProb();
6685 
6686     // Compute the discount. A non-negative discount means the vector version
6687     // of the instruction costs more, and scalarizing would be beneficial.
6688     Discount += VectorCost - ScalarCost;
6689     ScalarCosts[I] = ScalarCost;
6690   }
6691 
6692   return *Discount.getValue();
6693 }
6694 
6695 LoopVectorizationCostModel::VectorizationCostTy
6696 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6697   VectorizationCostTy Cost;
6698 
6699   // For each block.
6700   for (BasicBlock *BB : TheLoop->blocks()) {
6701     VectorizationCostTy BlockCost;
6702 
6703     // For each instruction in the old loop.
6704     for (Instruction &I : BB->instructionsWithoutDebug()) {
6705       // Skip ignored values.
6706       if (ValuesToIgnore.count(&I) ||
6707           (VF.isVector() && VecValuesToIgnore.count(&I)))
6708         continue;
6709 
6710       VectorizationCostTy C = getInstructionCost(&I, VF);
6711 
6712       // Check if we should override the cost.
6713       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6714         C.first = InstructionCost(ForceTargetInstructionCost);
6715 
6716       BlockCost.first += C.first;
6717       BlockCost.second |= C.second;
6718       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6719                         << " for VF " << VF << " For instruction: " << I
6720                         << '\n');
6721     }
6722 
6723     // If we are vectorizing a predicated block, it will have been
6724     // if-converted. This means that the block's instructions (aside from
6725     // stores and instructions that may divide by zero) will now be
6726     // unconditionally executed. For the scalar case, we may not always execute
6727     // the predicated block, if it is an if-else block. Thus, scale the block's
6728     // cost by the probability of executing it. blockNeedsPredication from
6729     // Legal is used so as to not include all blocks in tail folded loops.
6730     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6731       BlockCost.first /= getReciprocalPredBlockProb();
6732 
6733     Cost.first += BlockCost.first;
6734     Cost.second |= BlockCost.second;
6735   }
6736 
6737   return Cost;
6738 }
6739 
6740 /// Gets Address Access SCEV after verifying that the access pattern
6741 /// is loop invariant except the induction variable dependence.
6742 ///
6743 /// This SCEV can be sent to the Target in order to estimate the address
6744 /// calculation cost.
6745 static const SCEV *getAddressAccessSCEV(
6746               Value *Ptr,
6747               LoopVectorizationLegality *Legal,
6748               PredicatedScalarEvolution &PSE,
6749               const Loop *TheLoop) {
6750 
6751   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6752   if (!Gep)
6753     return nullptr;
6754 
6755   // We are looking for a gep with all loop invariant indices except for one
6756   // which should be an induction variable.
6757   auto SE = PSE.getSE();
6758   unsigned NumOperands = Gep->getNumOperands();
6759   for (unsigned i = 1; i < NumOperands; ++i) {
6760     Value *Opd = Gep->getOperand(i);
6761     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6762         !Legal->isInductionVariable(Opd))
6763       return nullptr;
6764   }
6765 
6766   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6767   return PSE.getSCEV(Ptr);
6768 }
6769 
6770 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6771   return Legal->hasStride(I->getOperand(0)) ||
6772          Legal->hasStride(I->getOperand(1));
6773 }
6774 
6775 InstructionCost
6776 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6777                                                         ElementCount VF) {
6778   assert(VF.isVector() &&
6779          "Scalarization cost of instruction implies vectorization.");
6780   if (VF.isScalable())
6781     return InstructionCost::getInvalid();
6782 
6783   Type *ValTy = getMemInstValueType(I);
6784   auto SE = PSE.getSE();
6785 
6786   unsigned AS = getLoadStoreAddressSpace(I);
6787   Value *Ptr = getLoadStorePointerOperand(I);
6788   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6789 
6790   // Figure out whether the access is strided and get the stride value
6791   // if it's known in compile time
6792   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6793 
6794   // Get the cost of the scalar memory instruction and address computation.
6795   InstructionCost Cost =
6796       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6797 
6798   // Don't pass *I here, since it is scalar but will actually be part of a
6799   // vectorized loop where the user of it is a vectorized instruction.
6800   const Align Alignment = getLoadStoreAlignment(I);
6801   Cost += VF.getKnownMinValue() *
6802           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6803                               AS, TTI::TCK_RecipThroughput);
6804 
6805   // Get the overhead of the extractelement and insertelement instructions
6806   // we might create due to scalarization.
6807   Cost += getScalarizationOverhead(I, VF);
6808 
6809   // If we have a predicated load/store, it will need extra i1 extracts and
6810   // conditional branches, but may not be executed for each vector lane. Scale
6811   // the cost by the probability of executing the predicated block.
6812   if (isPredicatedInst(I)) {
6813     Cost /= getReciprocalPredBlockProb();
6814 
6815     // Add the cost of an i1 extract and a branch
6816     auto *Vec_i1Ty =
6817         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6818     Cost += TTI.getScalarizationOverhead(
6819         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6820         /*Insert=*/false, /*Extract=*/true);
6821     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6822 
6823     if (useEmulatedMaskMemRefHack(I))
6824       // Artificially setting to a high enough value to practically disable
6825       // vectorization with such operations.
6826       Cost = 3000000;
6827   }
6828 
6829   return Cost;
6830 }
6831 
6832 InstructionCost
6833 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6834                                                     ElementCount VF) {
6835   Type *ValTy = getMemInstValueType(I);
6836   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6837   Value *Ptr = getLoadStorePointerOperand(I);
6838   unsigned AS = getLoadStoreAddressSpace(I);
6839   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6840   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6841 
6842   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6843          "Stride should be 1 or -1 for consecutive memory access");
6844   const Align Alignment = getLoadStoreAlignment(I);
6845   InstructionCost Cost = 0;
6846   if (Legal->isMaskRequired(I))
6847     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6848                                       CostKind);
6849   else
6850     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6851                                 CostKind, I);
6852 
6853   bool Reverse = ConsecutiveStride < 0;
6854   if (Reverse)
6855     Cost +=
6856         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6857   return Cost;
6858 }
6859 
6860 InstructionCost
6861 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6862                                                 ElementCount VF) {
6863   assert(Legal->isUniformMemOp(*I));
6864 
6865   Type *ValTy = getMemInstValueType(I);
6866   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6867   const Align Alignment = getLoadStoreAlignment(I);
6868   unsigned AS = getLoadStoreAddressSpace(I);
6869   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6870   if (isa<LoadInst>(I)) {
6871     return TTI.getAddressComputationCost(ValTy) +
6872            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6873                                CostKind) +
6874            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6875   }
6876   StoreInst *SI = cast<StoreInst>(I);
6877 
6878   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6879   return TTI.getAddressComputationCost(ValTy) +
6880          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6881                              CostKind) +
6882          (isLoopInvariantStoreValue
6883               ? 0
6884               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6885                                        VF.getKnownMinValue() - 1));
6886 }
6887 
6888 InstructionCost
6889 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6890                                                  ElementCount VF) {
6891   Type *ValTy = getMemInstValueType(I);
6892   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6893   const Align Alignment = getLoadStoreAlignment(I);
6894   const Value *Ptr = getLoadStorePointerOperand(I);
6895 
6896   return TTI.getAddressComputationCost(VectorTy) +
6897          TTI.getGatherScatterOpCost(
6898              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6899              TargetTransformInfo::TCK_RecipThroughput, I);
6900 }
6901 
6902 InstructionCost
6903 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6904                                                    ElementCount VF) {
6905   // TODO: Once we have support for interleaving with scalable vectors
6906   // we can calculate the cost properly here.
6907   if (VF.isScalable())
6908     return InstructionCost::getInvalid();
6909 
6910   Type *ValTy = getMemInstValueType(I);
6911   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6912   unsigned AS = getLoadStoreAddressSpace(I);
6913 
6914   auto Group = getInterleavedAccessGroup(I);
6915   assert(Group && "Fail to get an interleaved access group.");
6916 
6917   unsigned InterleaveFactor = Group->getFactor();
6918   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6919 
6920   // Holds the indices of existing members in an interleaved load group.
6921   // An interleaved store group doesn't need this as it doesn't allow gaps.
6922   SmallVector<unsigned, 4> Indices;
6923   if (isa<LoadInst>(I)) {
6924     for (unsigned i = 0; i < InterleaveFactor; i++)
6925       if (Group->getMember(i))
6926         Indices.push_back(i);
6927   }
6928 
6929   // Calculate the cost of the whole interleaved group.
6930   bool UseMaskForGaps =
6931       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
6932   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6933       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6934       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6935 
6936   if (Group->isReverse()) {
6937     // TODO: Add support for reversed masked interleaved access.
6938     assert(!Legal->isMaskRequired(I) &&
6939            "Reverse masked interleaved access not supported.");
6940     Cost +=
6941         Group->getNumMembers() *
6942         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6943   }
6944   return Cost;
6945 }
6946 
6947 InstructionCost LoopVectorizationCostModel::getReductionPatternCost(
6948     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6949   // Early exit for no inloop reductions
6950   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6951     return InstructionCost::getInvalid();
6952   auto *VectorTy = cast<VectorType>(Ty);
6953 
6954   // We are looking for a pattern of, and finding the minimal acceptable cost:
6955   //  reduce(mul(ext(A), ext(B))) or
6956   //  reduce(mul(A, B)) or
6957   //  reduce(ext(A)) or
6958   //  reduce(A).
6959   // The basic idea is that we walk down the tree to do that, finding the root
6960   // reduction instruction in InLoopReductionImmediateChains. From there we find
6961   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6962   // of the components. If the reduction cost is lower then we return it for the
6963   // reduction instruction and 0 for the other instructions in the pattern. If
6964   // it is not we return an invalid cost specifying the orignal cost method
6965   // should be used.
6966   Instruction *RetI = I;
6967   if ((RetI->getOpcode() == Instruction::SExt ||
6968        RetI->getOpcode() == Instruction::ZExt)) {
6969     if (!RetI->hasOneUser())
6970       return InstructionCost::getInvalid();
6971     RetI = RetI->user_back();
6972   }
6973   if (RetI->getOpcode() == Instruction::Mul &&
6974       RetI->user_back()->getOpcode() == Instruction::Add) {
6975     if (!RetI->hasOneUser())
6976       return InstructionCost::getInvalid();
6977     RetI = RetI->user_back();
6978   }
6979 
6980   // Test if the found instruction is a reduction, and if not return an invalid
6981   // cost specifying the parent to use the original cost modelling.
6982   if (!InLoopReductionImmediateChains.count(RetI))
6983     return InstructionCost::getInvalid();
6984 
6985   // Find the reduction this chain is a part of and calculate the basic cost of
6986   // the reduction on its own.
6987   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6988   Instruction *ReductionPhi = LastChain;
6989   while (!isa<PHINode>(ReductionPhi))
6990     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6991 
6992   RecurrenceDescriptor RdxDesc =
6993       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
6994   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6995       RdxDesc.getOpcode(), VectorTy, false, CostKind);
6996 
6997   // Get the operand that was not the reduction chain and match it to one of the
6998   // patterns, returning the better cost if it is found.
6999   Instruction *RedOp = RetI->getOperand(1) == LastChain
7000                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7001                            : dyn_cast<Instruction>(RetI->getOperand(1));
7002 
7003   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7004 
7005   if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) &&
7006       !TheLoop->isLoopInvariant(RedOp)) {
7007     bool IsUnsigned = isa<ZExtInst>(RedOp);
7008     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7009     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7010         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7011         CostKind);
7012 
7013     InstructionCost ExtCost =
7014         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7015                              TTI::CastContextHint::None, CostKind, RedOp);
7016     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7017       return I == RetI ? *RedCost.getValue() : 0;
7018   } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) {
7019     Instruction *Mul = RedOp;
7020     Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0));
7021     Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1));
7022     if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) &&
7023         Op0->getOpcode() == Op1->getOpcode() &&
7024         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7025         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7026       bool IsUnsigned = isa<ZExtInst>(Op0);
7027       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7028       // reduce(mul(ext, ext))
7029       InstructionCost ExtCost =
7030           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7031                                TTI::CastContextHint::None, CostKind, Op0);
7032       InstructionCost MulCost =
7033           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7034 
7035       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7036           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7037           CostKind);
7038 
7039       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7040         return I == RetI ? *RedCost.getValue() : 0;
7041     } else {
7042       InstructionCost MulCost =
7043           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7044 
7045       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7046           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7047           CostKind);
7048 
7049       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7050         return I == RetI ? *RedCost.getValue() : 0;
7051     }
7052   }
7053 
7054   return I == RetI ? BaseCost : InstructionCost::getInvalid();
7055 }
7056 
7057 InstructionCost
7058 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7059                                                      ElementCount VF) {
7060   // Calculate scalar cost only. Vectorization cost should be ready at this
7061   // moment.
7062   if (VF.isScalar()) {
7063     Type *ValTy = getMemInstValueType(I);
7064     const Align Alignment = getLoadStoreAlignment(I);
7065     unsigned AS = getLoadStoreAddressSpace(I);
7066 
7067     return TTI.getAddressComputationCost(ValTy) +
7068            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7069                                TTI::TCK_RecipThroughput, I);
7070   }
7071   return getWideningCost(I, VF);
7072 }
7073 
7074 LoopVectorizationCostModel::VectorizationCostTy
7075 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7076                                                ElementCount VF) {
7077   // If we know that this instruction will remain uniform, check the cost of
7078   // the scalar version.
7079   if (isUniformAfterVectorization(I, VF))
7080     VF = ElementCount::getFixed(1);
7081 
7082   if (VF.isVector() && isProfitableToScalarize(I, VF))
7083     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7084 
7085   // Forced scalars do not have any scalarization overhead.
7086   auto ForcedScalar = ForcedScalars.find(VF);
7087   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7088     auto InstSet = ForcedScalar->second;
7089     if (InstSet.count(I))
7090       return VectorizationCostTy(
7091           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7092            VF.getKnownMinValue()),
7093           false);
7094   }
7095 
7096   Type *VectorTy;
7097   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7098 
7099   bool TypeNotScalarized =
7100       VF.isVector() && VectorTy->isVectorTy() &&
7101       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7102   return VectorizationCostTy(C, TypeNotScalarized);
7103 }
7104 
7105 InstructionCost
7106 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7107                                                      ElementCount VF) const {
7108 
7109   if (VF.isScalable())
7110     return InstructionCost::getInvalid();
7111 
7112   if (VF.isScalar())
7113     return 0;
7114 
7115   InstructionCost Cost = 0;
7116   Type *RetTy = ToVectorTy(I->getType(), VF);
7117   if (!RetTy->isVoidTy() &&
7118       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7119     Cost += TTI.getScalarizationOverhead(
7120         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7121         true, false);
7122 
7123   // Some targets keep addresses scalar.
7124   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7125     return Cost;
7126 
7127   // Some targets support efficient element stores.
7128   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7129     return Cost;
7130 
7131   // Collect operands to consider.
7132   CallInst *CI = dyn_cast<CallInst>(I);
7133   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7134 
7135   // Skip operands that do not require extraction/scalarization and do not incur
7136   // any overhead.
7137   SmallVector<Type *> Tys;
7138   for (auto *V : filterExtractingOperands(Ops, VF))
7139     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7140   return Cost + TTI.getOperandsScalarizationOverhead(
7141                     filterExtractingOperands(Ops, VF), Tys);
7142 }
7143 
7144 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7145   if (VF.isScalar())
7146     return;
7147   NumPredStores = 0;
7148   for (BasicBlock *BB : TheLoop->blocks()) {
7149     // For each instruction in the old loop.
7150     for (Instruction &I : *BB) {
7151       Value *Ptr =  getLoadStorePointerOperand(&I);
7152       if (!Ptr)
7153         continue;
7154 
7155       // TODO: We should generate better code and update the cost model for
7156       // predicated uniform stores. Today they are treated as any other
7157       // predicated store (see added test cases in
7158       // invariant-store-vectorization.ll).
7159       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7160         NumPredStores++;
7161 
7162       if (Legal->isUniformMemOp(I)) {
7163         // TODO: Avoid replicating loads and stores instead of
7164         // relying on instcombine to remove them.
7165         // Load: Scalar load + broadcast
7166         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7167         InstructionCost Cost = getUniformMemOpCost(&I, VF);
7168         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7169         continue;
7170       }
7171 
7172       // We assume that widening is the best solution when possible.
7173       if (memoryInstructionCanBeWidened(&I, VF)) {
7174         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7175         int ConsecutiveStride =
7176                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7177         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7178                "Expected consecutive stride.");
7179         InstWidening Decision =
7180             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7181         setWideningDecision(&I, VF, Decision, Cost);
7182         continue;
7183       }
7184 
7185       // Choose between Interleaving, Gather/Scatter or Scalarization.
7186       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7187       unsigned NumAccesses = 1;
7188       if (isAccessInterleaved(&I)) {
7189         auto Group = getInterleavedAccessGroup(&I);
7190         assert(Group && "Fail to get an interleaved access group.");
7191 
7192         // Make one decision for the whole group.
7193         if (getWideningDecision(&I, VF) != CM_Unknown)
7194           continue;
7195 
7196         NumAccesses = Group->getNumMembers();
7197         if (interleavedAccessCanBeWidened(&I, VF))
7198           InterleaveCost = getInterleaveGroupCost(&I, VF);
7199       }
7200 
7201       InstructionCost GatherScatterCost =
7202           isLegalGatherOrScatter(&I)
7203               ? getGatherScatterCost(&I, VF) * NumAccesses
7204               : InstructionCost::getInvalid();
7205 
7206       InstructionCost ScalarizationCost =
7207           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7208 
7209       // Choose better solution for the current VF,
7210       // write down this decision and use it during vectorization.
7211       InstructionCost Cost;
7212       InstWidening Decision;
7213       if (InterleaveCost <= GatherScatterCost &&
7214           InterleaveCost < ScalarizationCost) {
7215         Decision = CM_Interleave;
7216         Cost = InterleaveCost;
7217       } else if (GatherScatterCost < ScalarizationCost) {
7218         Decision = CM_GatherScatter;
7219         Cost = GatherScatterCost;
7220       } else {
7221         assert(!VF.isScalable() &&
7222                "We cannot yet scalarise for scalable vectors");
7223         Decision = CM_Scalarize;
7224         Cost = ScalarizationCost;
7225       }
7226       // If the instructions belongs to an interleave group, the whole group
7227       // receives the same decision. The whole group receives the cost, but
7228       // the cost will actually be assigned to one instruction.
7229       if (auto Group = getInterleavedAccessGroup(&I))
7230         setWideningDecision(Group, VF, Decision, Cost);
7231       else
7232         setWideningDecision(&I, VF, Decision, Cost);
7233     }
7234   }
7235 
7236   // Make sure that any load of address and any other address computation
7237   // remains scalar unless there is gather/scatter support. This avoids
7238   // inevitable extracts into address registers, and also has the benefit of
7239   // activating LSR more, since that pass can't optimize vectorized
7240   // addresses.
7241   if (TTI.prefersVectorizedAddressing())
7242     return;
7243 
7244   // Start with all scalar pointer uses.
7245   SmallPtrSet<Instruction *, 8> AddrDefs;
7246   for (BasicBlock *BB : TheLoop->blocks())
7247     for (Instruction &I : *BB) {
7248       Instruction *PtrDef =
7249         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7250       if (PtrDef && TheLoop->contains(PtrDef) &&
7251           getWideningDecision(&I, VF) != CM_GatherScatter)
7252         AddrDefs.insert(PtrDef);
7253     }
7254 
7255   // Add all instructions used to generate the addresses.
7256   SmallVector<Instruction *, 4> Worklist;
7257   append_range(Worklist, AddrDefs);
7258   while (!Worklist.empty()) {
7259     Instruction *I = Worklist.pop_back_val();
7260     for (auto &Op : I->operands())
7261       if (auto *InstOp = dyn_cast<Instruction>(Op))
7262         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7263             AddrDefs.insert(InstOp).second)
7264           Worklist.push_back(InstOp);
7265   }
7266 
7267   for (auto *I : AddrDefs) {
7268     if (isa<LoadInst>(I)) {
7269       // Setting the desired widening decision should ideally be handled in
7270       // by cost functions, but since this involves the task of finding out
7271       // if the loaded register is involved in an address computation, it is
7272       // instead changed here when we know this is the case.
7273       InstWidening Decision = getWideningDecision(I, VF);
7274       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7275         // Scalarize a widened load of address.
7276         setWideningDecision(
7277             I, VF, CM_Scalarize,
7278             (VF.getKnownMinValue() *
7279              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7280       else if (auto Group = getInterleavedAccessGroup(I)) {
7281         // Scalarize an interleave group of address loads.
7282         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7283           if (Instruction *Member = Group->getMember(I))
7284             setWideningDecision(
7285                 Member, VF, CM_Scalarize,
7286                 (VF.getKnownMinValue() *
7287                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7288         }
7289       }
7290     } else
7291       // Make sure I gets scalarized and a cost estimate without
7292       // scalarization overhead.
7293       ForcedScalars[VF].insert(I);
7294   }
7295 }
7296 
7297 InstructionCost
7298 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7299                                                Type *&VectorTy) {
7300   Type *RetTy = I->getType();
7301   if (canTruncateToMinimalBitwidth(I, VF))
7302     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7303   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
7304   auto SE = PSE.getSE();
7305   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7306 
7307   // TODO: We need to estimate the cost of intrinsic calls.
7308   switch (I->getOpcode()) {
7309   case Instruction::GetElementPtr:
7310     // We mark this instruction as zero-cost because the cost of GEPs in
7311     // vectorized code depends on whether the corresponding memory instruction
7312     // is scalarized or not. Therefore, we handle GEPs with the memory
7313     // instruction cost.
7314     return 0;
7315   case Instruction::Br: {
7316     // In cases of scalarized and predicated instructions, there will be VF
7317     // predicated blocks in the vectorized loop. Each branch around these
7318     // blocks requires also an extract of its vector compare i1 element.
7319     bool ScalarPredicatedBB = false;
7320     BranchInst *BI = cast<BranchInst>(I);
7321     if (VF.isVector() && BI->isConditional() &&
7322         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7323          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7324       ScalarPredicatedBB = true;
7325 
7326     if (ScalarPredicatedBB) {
7327       // Return cost for branches around scalarized and predicated blocks.
7328       assert(!VF.isScalable() && "scalable vectors not yet supported.");
7329       auto *Vec_i1Ty =
7330           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7331       return (TTI.getScalarizationOverhead(
7332                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7333                   false, true) +
7334               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
7335                VF.getKnownMinValue()));
7336     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7337       // The back-edge branch will remain, as will all scalar branches.
7338       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7339     else
7340       // This branch will be eliminated by if-conversion.
7341       return 0;
7342     // Note: We currently assume zero cost for an unconditional branch inside
7343     // a predicated block since it will become a fall-through, although we
7344     // may decide in the future to call TTI for all branches.
7345   }
7346   case Instruction::PHI: {
7347     auto *Phi = cast<PHINode>(I);
7348 
7349     // First-order recurrences are replaced by vector shuffles inside the loop.
7350     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7351     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7352       return TTI.getShuffleCost(
7353           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7354           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7355 
7356     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7357     // converted into select instructions. We require N - 1 selects per phi
7358     // node, where N is the number of incoming values.
7359     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7360       return (Phi->getNumIncomingValues() - 1) *
7361              TTI.getCmpSelInstrCost(
7362                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7363                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7364                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7365 
7366     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7367   }
7368   case Instruction::UDiv:
7369   case Instruction::SDiv:
7370   case Instruction::URem:
7371   case Instruction::SRem:
7372     // If we have a predicated instruction, it may not be executed for each
7373     // vector lane. Get the scalarization cost and scale this amount by the
7374     // probability of executing the predicated block. If the instruction is not
7375     // predicated, we fall through to the next case.
7376     if (VF.isVector() && isScalarWithPredication(I)) {
7377       InstructionCost Cost = 0;
7378 
7379       // These instructions have a non-void type, so account for the phi nodes
7380       // that we will create. This cost is likely to be zero. The phi node
7381       // cost, if any, should be scaled by the block probability because it
7382       // models a copy at the end of each predicated block.
7383       Cost += VF.getKnownMinValue() *
7384               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7385 
7386       // The cost of the non-predicated instruction.
7387       Cost += VF.getKnownMinValue() *
7388               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7389 
7390       // The cost of insertelement and extractelement instructions needed for
7391       // scalarization.
7392       Cost += getScalarizationOverhead(I, VF);
7393 
7394       // Scale the cost by the probability of executing the predicated blocks.
7395       // This assumes the predicated block for each vector lane is equally
7396       // likely.
7397       return Cost / getReciprocalPredBlockProb();
7398     }
7399     LLVM_FALLTHROUGH;
7400   case Instruction::Add:
7401   case Instruction::FAdd:
7402   case Instruction::Sub:
7403   case Instruction::FSub:
7404   case Instruction::Mul:
7405   case Instruction::FMul:
7406   case Instruction::FDiv:
7407   case Instruction::FRem:
7408   case Instruction::Shl:
7409   case Instruction::LShr:
7410   case Instruction::AShr:
7411   case Instruction::And:
7412   case Instruction::Or:
7413   case Instruction::Xor: {
7414     // Since we will replace the stride by 1 the multiplication should go away.
7415     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7416       return 0;
7417 
7418     // Detect reduction patterns
7419     InstructionCost RedCost;
7420     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7421             .isValid())
7422       return RedCost;
7423 
7424     // Certain instructions can be cheaper to vectorize if they have a constant
7425     // second vector operand. One example of this are shifts on x86.
7426     Value *Op2 = I->getOperand(1);
7427     TargetTransformInfo::OperandValueProperties Op2VP;
7428     TargetTransformInfo::OperandValueKind Op2VK =
7429         TTI.getOperandInfo(Op2, Op2VP);
7430     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7431       Op2VK = TargetTransformInfo::OK_UniformValue;
7432 
7433     SmallVector<const Value *, 4> Operands(I->operand_values());
7434     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7435     return N * TTI.getArithmeticInstrCost(
7436                    I->getOpcode(), VectorTy, CostKind,
7437                    TargetTransformInfo::OK_AnyValue,
7438                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7439   }
7440   case Instruction::FNeg: {
7441     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
7442     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7443     return N * TTI.getArithmeticInstrCost(
7444                    I->getOpcode(), VectorTy, CostKind,
7445                    TargetTransformInfo::OK_AnyValue,
7446                    TargetTransformInfo::OK_AnyValue,
7447                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
7448                    I->getOperand(0), I);
7449   }
7450   case Instruction::Select: {
7451     SelectInst *SI = cast<SelectInst>(I);
7452     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7453     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7454 
7455     const Value *Op0, *Op1;
7456     using namespace llvm::PatternMatch;
7457     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7458                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7459       // select x, y, false --> x & y
7460       // select x, true, y --> x | y
7461       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7462       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7463       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7464       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7465       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7466               Op1->getType()->getScalarSizeInBits() == 1);
7467 
7468       SmallVector<const Value *, 2> Operands{Op0, Op1};
7469       return TTI.getArithmeticInstrCost(
7470           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7471           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7472     }
7473 
7474     Type *CondTy = SI->getCondition()->getType();
7475     if (!ScalarCond)
7476       CondTy = VectorType::get(CondTy, VF);
7477     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7478                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7479   }
7480   case Instruction::ICmp:
7481   case Instruction::FCmp: {
7482     Type *ValTy = I->getOperand(0)->getType();
7483     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7484     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7485       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7486     VectorTy = ToVectorTy(ValTy, VF);
7487     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7488                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7489   }
7490   case Instruction::Store:
7491   case Instruction::Load: {
7492     ElementCount Width = VF;
7493     if (Width.isVector()) {
7494       InstWidening Decision = getWideningDecision(I, Width);
7495       assert(Decision != CM_Unknown &&
7496              "CM decision should be taken at this point");
7497       if (Decision == CM_Scalarize)
7498         Width = ElementCount::getFixed(1);
7499     }
7500     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7501     return getMemoryInstructionCost(I, VF);
7502   }
7503   case Instruction::ZExt:
7504   case Instruction::SExt:
7505   case Instruction::FPToUI:
7506   case Instruction::FPToSI:
7507   case Instruction::FPExt:
7508   case Instruction::PtrToInt:
7509   case Instruction::IntToPtr:
7510   case Instruction::SIToFP:
7511   case Instruction::UIToFP:
7512   case Instruction::Trunc:
7513   case Instruction::FPTrunc:
7514   case Instruction::BitCast: {
7515     // Computes the CastContextHint from a Load/Store instruction.
7516     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7517       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7518              "Expected a load or a store!");
7519 
7520       if (VF.isScalar() || !TheLoop->contains(I))
7521         return TTI::CastContextHint::Normal;
7522 
7523       switch (getWideningDecision(I, VF)) {
7524       case LoopVectorizationCostModel::CM_GatherScatter:
7525         return TTI::CastContextHint::GatherScatter;
7526       case LoopVectorizationCostModel::CM_Interleave:
7527         return TTI::CastContextHint::Interleave;
7528       case LoopVectorizationCostModel::CM_Scalarize:
7529       case LoopVectorizationCostModel::CM_Widen:
7530         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7531                                         : TTI::CastContextHint::Normal;
7532       case LoopVectorizationCostModel::CM_Widen_Reverse:
7533         return TTI::CastContextHint::Reversed;
7534       case LoopVectorizationCostModel::CM_Unknown:
7535         llvm_unreachable("Instr did not go through cost modelling?");
7536       }
7537 
7538       llvm_unreachable("Unhandled case!");
7539     };
7540 
7541     unsigned Opcode = I->getOpcode();
7542     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7543     // For Trunc, the context is the only user, which must be a StoreInst.
7544     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7545       if (I->hasOneUse())
7546         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7547           CCH = ComputeCCH(Store);
7548     }
7549     // For Z/Sext, the context is the operand, which must be a LoadInst.
7550     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7551              Opcode == Instruction::FPExt) {
7552       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7553         CCH = ComputeCCH(Load);
7554     }
7555 
7556     // We optimize the truncation of induction variables having constant
7557     // integer steps. The cost of these truncations is the same as the scalar
7558     // operation.
7559     if (isOptimizableIVTruncate(I, VF)) {
7560       auto *Trunc = cast<TruncInst>(I);
7561       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7562                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7563     }
7564 
7565     // Detect reduction patterns
7566     InstructionCost RedCost;
7567     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7568             .isValid())
7569       return RedCost;
7570 
7571     Type *SrcScalarTy = I->getOperand(0)->getType();
7572     Type *SrcVecTy =
7573         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7574     if (canTruncateToMinimalBitwidth(I, VF)) {
7575       // This cast is going to be shrunk. This may remove the cast or it might
7576       // turn it into slightly different cast. For example, if MinBW == 16,
7577       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7578       //
7579       // Calculate the modified src and dest types.
7580       Type *MinVecTy = VectorTy;
7581       if (Opcode == Instruction::Trunc) {
7582         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7583         VectorTy =
7584             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7585       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7586         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7587         VectorTy =
7588             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7589       }
7590     }
7591 
7592     unsigned N;
7593     if (isScalarAfterVectorization(I, VF)) {
7594       assert(!VF.isScalable() && "VF is assumed to be non scalable");
7595       N = VF.getKnownMinValue();
7596     } else
7597       N = 1;
7598     return N *
7599            TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7600   }
7601   case Instruction::Call: {
7602     bool NeedToScalarize;
7603     CallInst *CI = cast<CallInst>(I);
7604     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7605     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7606       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7607       return std::min(CallCost, IntrinsicCost);
7608     }
7609     return CallCost;
7610   }
7611   case Instruction::ExtractValue:
7612     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7613   default:
7614     // The cost of executing VF copies of the scalar instruction. This opcode
7615     // is unknown. Assume that it is the same as 'mul'.
7616     return VF.getKnownMinValue() * TTI.getArithmeticInstrCost(
7617                                        Instruction::Mul, VectorTy, CostKind) +
7618            getScalarizationOverhead(I, VF);
7619   } // end of switch.
7620 }
7621 
7622 char LoopVectorize::ID = 0;
7623 
7624 static const char lv_name[] = "Loop Vectorization";
7625 
7626 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7627 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7628 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7629 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7630 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7631 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7632 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7633 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7634 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7635 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7636 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7637 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7638 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7639 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7640 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7641 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7642 
7643 namespace llvm {
7644 
7645 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7646 
7647 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7648                               bool VectorizeOnlyWhenForced) {
7649   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7650 }
7651 
7652 } // end namespace llvm
7653 
7654 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7655   // Check if the pointer operand of a load or store instruction is
7656   // consecutive.
7657   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7658     return Legal->isConsecutivePtr(Ptr);
7659   return false;
7660 }
7661 
7662 void LoopVectorizationCostModel::collectValuesToIgnore() {
7663   // Ignore ephemeral values.
7664   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7665 
7666   // Ignore type-promoting instructions we identified during reduction
7667   // detection.
7668   for (auto &Reduction : Legal->getReductionVars()) {
7669     RecurrenceDescriptor &RedDes = Reduction.second;
7670     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7671     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7672   }
7673   // Ignore type-casting instructions we identified during induction
7674   // detection.
7675   for (auto &Induction : Legal->getInductionVars()) {
7676     InductionDescriptor &IndDes = Induction.second;
7677     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7678     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7679   }
7680 }
7681 
7682 void LoopVectorizationCostModel::collectInLoopReductions() {
7683   for (auto &Reduction : Legal->getReductionVars()) {
7684     PHINode *Phi = Reduction.first;
7685     RecurrenceDescriptor &RdxDesc = Reduction.second;
7686 
7687     // We don't collect reductions that are type promoted (yet).
7688     if (RdxDesc.getRecurrenceType() != Phi->getType())
7689       continue;
7690 
7691     // If the target would prefer this reduction to happen "in-loop", then we
7692     // want to record it as such.
7693     unsigned Opcode = RdxDesc.getOpcode();
7694     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7695         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7696                                    TargetTransformInfo::ReductionFlags()))
7697       continue;
7698 
7699     // Check that we can correctly put the reductions into the loop, by
7700     // finding the chain of operations that leads from the phi to the loop
7701     // exit value.
7702     SmallVector<Instruction *, 4> ReductionOperations =
7703         RdxDesc.getReductionOpChain(Phi, TheLoop);
7704     bool InLoop = !ReductionOperations.empty();
7705     if (InLoop) {
7706       InLoopReductionChains[Phi] = ReductionOperations;
7707       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7708       Instruction *LastChain = Phi;
7709       for (auto *I : ReductionOperations) {
7710         InLoopReductionImmediateChains[I] = LastChain;
7711         LastChain = I;
7712       }
7713     }
7714     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7715                       << " reduction for phi: " << *Phi << "\n");
7716   }
7717 }
7718 
7719 // TODO: we could return a pair of values that specify the max VF and
7720 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7721 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7722 // doesn't have a cost model that can choose which plan to execute if
7723 // more than one is generated.
7724 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7725                                  LoopVectorizationCostModel &CM) {
7726   unsigned WidestType;
7727   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7728   return WidestVectorRegBits / WidestType;
7729 }
7730 
7731 VectorizationFactor
7732 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7733   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7734   ElementCount VF = UserVF;
7735   // Outer loop handling: They may require CFG and instruction level
7736   // transformations before even evaluating whether vectorization is profitable.
7737   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7738   // the vectorization pipeline.
7739   if (!OrigLoop->isInnermost()) {
7740     // If the user doesn't provide a vectorization factor, determine a
7741     // reasonable one.
7742     if (UserVF.isZero()) {
7743       VF = ElementCount::getFixed(determineVPlanVF(
7744           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7745               .getFixedSize(),
7746           CM));
7747       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7748 
7749       // Make sure we have a VF > 1 for stress testing.
7750       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7751         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7752                           << "overriding computed VF.\n");
7753         VF = ElementCount::getFixed(4);
7754       }
7755     }
7756     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7757     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7758            "VF needs to be a power of two");
7759     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7760                       << "VF " << VF << " to build VPlans.\n");
7761     buildVPlans(VF, VF);
7762 
7763     // For VPlan build stress testing, we bail out after VPlan construction.
7764     if (VPlanBuildStressTest)
7765       return VectorizationFactor::Disabled();
7766 
7767     return {VF, 0 /*Cost*/};
7768   }
7769 
7770   LLVM_DEBUG(
7771       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7772                 "VPlan-native path.\n");
7773   return VectorizationFactor::Disabled();
7774 }
7775 
7776 Optional<VectorizationFactor>
7777 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7778   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7779   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
7780   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
7781     return None;
7782 
7783   // Invalidate interleave groups if all blocks of loop will be predicated.
7784   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7785       !useMaskedInterleavedAccesses(*TTI)) {
7786     LLVM_DEBUG(
7787         dbgs()
7788         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7789            "which requires masked-interleaved support.\n");
7790     if (CM.InterleaveInfo.invalidateGroups())
7791       // Invalidating interleave groups also requires invalidating all decisions
7792       // based on them, which includes widening decisions and uniform and scalar
7793       // values.
7794       CM.invalidateCostModelingDecisions();
7795   }
7796 
7797   ElementCount MaxVF = MaybeMaxVF.getValue();
7798   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7799 
7800   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF);
7801   if (!UserVF.isZero() &&
7802       (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) {
7803     // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable
7804     // VFs here, this should be reverted to only use legal UserVFs once the
7805     // loop below supports scalable VFs.
7806     ElementCount VF = UserVFIsLegal ? UserVF : MaxVF;
7807     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
7808                       << " VF " << VF << ".\n");
7809     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7810            "VF needs to be a power of two");
7811     // Collect the instructions (and their associated costs) that will be more
7812     // profitable to scalarize.
7813     CM.selectUserVectorizationFactor(VF);
7814     CM.collectInLoopReductions();
7815     buildVPlansWithVPRecipes(VF, VF);
7816     LLVM_DEBUG(printPlans(dbgs()));
7817     return {{VF, 0}};
7818   }
7819 
7820   assert(!MaxVF.isScalable() &&
7821          "Scalable vectors not yet supported beyond this point");
7822 
7823   for (ElementCount VF = ElementCount::getFixed(1);
7824        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7825     // Collect Uniform and Scalar instructions after vectorization with VF.
7826     CM.collectUniformsAndScalars(VF);
7827 
7828     // Collect the instructions (and their associated costs) that will be more
7829     // profitable to scalarize.
7830     if (VF.isVector())
7831       CM.collectInstsToScalarize(VF);
7832   }
7833 
7834   CM.collectInLoopReductions();
7835 
7836   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7837   LLVM_DEBUG(printPlans(dbgs()));
7838   if (MaxVF.isScalar())
7839     return VectorizationFactor::Disabled();
7840 
7841   // Select the optimal vectorization factor.
7842   auto SelectedVF = CM.selectVectorizationFactor(MaxVF);
7843 
7844   // Check if it is profitable to vectorize with runtime checks.
7845   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7846   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7847     bool PragmaThresholdReached =
7848         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7849     bool ThresholdReached =
7850         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7851     if ((ThresholdReached && !Hints.allowReordering()) ||
7852         PragmaThresholdReached) {
7853       ORE->emit([&]() {
7854         return OptimizationRemarkAnalysisAliasing(
7855                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7856                    OrigLoop->getHeader())
7857                << "loop not vectorized: cannot prove it is safe to reorder "
7858                   "memory operations";
7859       });
7860       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7861       Hints.emitRemarkWithHints();
7862       return VectorizationFactor::Disabled();
7863     }
7864   }
7865   return SelectedVF;
7866 }
7867 
7868 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7869   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7870                     << '\n');
7871   BestVF = VF;
7872   BestUF = UF;
7873 
7874   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7875     return !Plan->hasVF(VF);
7876   });
7877   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7878 }
7879 
7880 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7881                                            DominatorTree *DT) {
7882   // Perform the actual loop transformation.
7883 
7884   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7885   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7886   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7887 
7888   VPTransformState State{
7889       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
7890   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7891   State.TripCount = ILV.getOrCreateTripCount(nullptr);
7892   State.CanonicalIV = ILV.Induction;
7893 
7894   ILV.printDebugTracesAtStart();
7895 
7896   //===------------------------------------------------===//
7897   //
7898   // Notice: any optimization or new instruction that go
7899   // into the code below should also be implemented in
7900   // the cost-model.
7901   //
7902   //===------------------------------------------------===//
7903 
7904   // 2. Copy and widen instructions from the old loop into the new loop.
7905   VPlans.front()->execute(&State);
7906 
7907   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7908   //    predication, updating analyses.
7909   ILV.fixVectorizedLoop(State);
7910 
7911   ILV.printDebugTracesAtEnd();
7912 }
7913 
7914 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7915 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7916   for (const auto &Plan : VPlans)
7917     if (PrintVPlansInDotFormat)
7918       Plan->printDOT(O);
7919     else
7920       Plan->print(O);
7921 }
7922 #endif
7923 
7924 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7925     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7926 
7927   // We create new control-flow for the vectorized loop, so the original exit
7928   // conditions will be dead after vectorization if it's only used by the
7929   // terminator
7930   SmallVector<BasicBlock*> ExitingBlocks;
7931   OrigLoop->getExitingBlocks(ExitingBlocks);
7932   for (auto *BB : ExitingBlocks) {
7933     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7934     if (!Cmp || !Cmp->hasOneUse())
7935       continue;
7936 
7937     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7938     if (!DeadInstructions.insert(Cmp).second)
7939       continue;
7940 
7941     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7942     // TODO: can recurse through operands in general
7943     for (Value *Op : Cmp->operands()) {
7944       if (isa<TruncInst>(Op) && Op->hasOneUse())
7945           DeadInstructions.insert(cast<Instruction>(Op));
7946     }
7947   }
7948 
7949   // We create new "steps" for induction variable updates to which the original
7950   // induction variables map. An original update instruction will be dead if
7951   // all its users except the induction variable are dead.
7952   auto *Latch = OrigLoop->getLoopLatch();
7953   for (auto &Induction : Legal->getInductionVars()) {
7954     PHINode *Ind = Induction.first;
7955     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7956 
7957     // If the tail is to be folded by masking, the primary induction variable,
7958     // if exists, isn't dead: it will be used for masking. Don't kill it.
7959     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7960       continue;
7961 
7962     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7963           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7964         }))
7965       DeadInstructions.insert(IndUpdate);
7966 
7967     // We record as "Dead" also the type-casting instructions we had identified
7968     // during induction analysis. We don't need any handling for them in the
7969     // vectorized loop because we have proven that, under a proper runtime
7970     // test guarding the vectorized loop, the value of the phi, and the casted
7971     // value of the phi, are the same. The last instruction in this casting chain
7972     // will get its scalar/vector/widened def from the scalar/vector/widened def
7973     // of the respective phi node. Any other casts in the induction def-use chain
7974     // have no other uses outside the phi update chain, and will be ignored.
7975     InductionDescriptor &IndDes = Induction.second;
7976     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7977     DeadInstructions.insert(Casts.begin(), Casts.end());
7978   }
7979 }
7980 
7981 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7982 
7983 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7984 
7985 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7986                                         Instruction::BinaryOps BinOp) {
7987   // When unrolling and the VF is 1, we only need to add a simple scalar.
7988   Type *Ty = Val->getType();
7989   assert(!Ty->isVectorTy() && "Val must be a scalar");
7990 
7991   if (Ty->isFloatingPointTy()) {
7992     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7993 
7994     // Floating-point operations inherit FMF via the builder's flags.
7995     Value *MulOp = Builder.CreateFMul(C, Step);
7996     return Builder.CreateBinOp(BinOp, Val, MulOp);
7997   }
7998   Constant *C = ConstantInt::get(Ty, StartIdx);
7999   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8000 }
8001 
8002 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8003   SmallVector<Metadata *, 4> MDs;
8004   // Reserve first location for self reference to the LoopID metadata node.
8005   MDs.push_back(nullptr);
8006   bool IsUnrollMetadata = false;
8007   MDNode *LoopID = L->getLoopID();
8008   if (LoopID) {
8009     // First find existing loop unrolling disable metadata.
8010     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8011       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8012       if (MD) {
8013         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8014         IsUnrollMetadata =
8015             S && S->getString().startswith("llvm.loop.unroll.disable");
8016       }
8017       MDs.push_back(LoopID->getOperand(i));
8018     }
8019   }
8020 
8021   if (!IsUnrollMetadata) {
8022     // Add runtime unroll disable metadata.
8023     LLVMContext &Context = L->getHeader()->getContext();
8024     SmallVector<Metadata *, 1> DisableOperands;
8025     DisableOperands.push_back(
8026         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8027     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8028     MDs.push_back(DisableNode);
8029     MDNode *NewLoopID = MDNode::get(Context, MDs);
8030     // Set operand 0 to refer to the loop id itself.
8031     NewLoopID->replaceOperandWith(0, NewLoopID);
8032     L->setLoopID(NewLoopID);
8033   }
8034 }
8035 
8036 //===--------------------------------------------------------------------===//
8037 // EpilogueVectorizerMainLoop
8038 //===--------------------------------------------------------------------===//
8039 
8040 /// This function is partially responsible for generating the control flow
8041 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8042 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8043   MDNode *OrigLoopID = OrigLoop->getLoopID();
8044   Loop *Lp = createVectorLoopSkeleton("");
8045 
8046   // Generate the code to check the minimum iteration count of the vector
8047   // epilogue (see below).
8048   EPI.EpilogueIterationCountCheck =
8049       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8050   EPI.EpilogueIterationCountCheck->setName("iter.check");
8051 
8052   // Generate the code to check any assumptions that we've made for SCEV
8053   // expressions.
8054   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8055 
8056   // Generate the code that checks at runtime if arrays overlap. We put the
8057   // checks into a separate block to make the more common case of few elements
8058   // faster.
8059   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8060 
8061   // Generate the iteration count check for the main loop, *after* the check
8062   // for the epilogue loop, so that the path-length is shorter for the case
8063   // that goes directly through the vector epilogue. The longer-path length for
8064   // the main loop is compensated for, by the gain from vectorizing the larger
8065   // trip count. Note: the branch will get updated later on when we vectorize
8066   // the epilogue.
8067   EPI.MainLoopIterationCountCheck =
8068       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8069 
8070   // Generate the induction variable.
8071   OldInduction = Legal->getPrimaryInduction();
8072   Type *IdxTy = Legal->getWidestInductionType();
8073   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8074   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8075   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8076   EPI.VectorTripCount = CountRoundDown;
8077   Induction =
8078       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8079                               getDebugLocFromInstOrOperands(OldInduction));
8080 
8081   // Skip induction resume value creation here because they will be created in
8082   // the second pass. If we created them here, they wouldn't be used anyway,
8083   // because the vplan in the second pass still contains the inductions from the
8084   // original loop.
8085 
8086   return completeLoopSkeleton(Lp, OrigLoopID);
8087 }
8088 
8089 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8090   LLVM_DEBUG({
8091     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8092            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8093            << ", Main Loop UF:" << EPI.MainLoopUF
8094            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8095            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8096   });
8097 }
8098 
8099 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8100   DEBUG_WITH_TYPE(VerboseDebug, {
8101     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8102   });
8103 }
8104 
8105 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8106     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8107   assert(L && "Expected valid Loop.");
8108   assert(Bypass && "Expected valid bypass basic block.");
8109   unsigned VFactor =
8110       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8111   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8112   Value *Count = getOrCreateTripCount(L);
8113   // Reuse existing vector loop preheader for TC checks.
8114   // Note that new preheader block is generated for vector loop.
8115   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8116   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8117 
8118   // Generate code to check if the loop's trip count is less than VF * UF of the
8119   // main vector loop.
8120   auto P =
8121       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8122 
8123   Value *CheckMinIters = Builder.CreateICmp(
8124       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8125       "min.iters.check");
8126 
8127   if (!ForEpilogue)
8128     TCCheckBlock->setName("vector.main.loop.iter.check");
8129 
8130   // Create new preheader for vector loop.
8131   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8132                                    DT, LI, nullptr, "vector.ph");
8133 
8134   if (ForEpilogue) {
8135     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8136                                  DT->getNode(Bypass)->getIDom()) &&
8137            "TC check is expected to dominate Bypass");
8138 
8139     // Update dominator for Bypass & LoopExit.
8140     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8141     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8142 
8143     LoopBypassBlocks.push_back(TCCheckBlock);
8144 
8145     // Save the trip count so we don't have to regenerate it in the
8146     // vec.epilog.iter.check. This is safe to do because the trip count
8147     // generated here dominates the vector epilog iter check.
8148     EPI.TripCount = Count;
8149   }
8150 
8151   ReplaceInstWithInst(
8152       TCCheckBlock->getTerminator(),
8153       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8154 
8155   return TCCheckBlock;
8156 }
8157 
8158 //===--------------------------------------------------------------------===//
8159 // EpilogueVectorizerEpilogueLoop
8160 //===--------------------------------------------------------------------===//
8161 
8162 /// This function is partially responsible for generating the control flow
8163 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8164 BasicBlock *
8165 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8166   MDNode *OrigLoopID = OrigLoop->getLoopID();
8167   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8168 
8169   // Now, compare the remaining count and if there aren't enough iterations to
8170   // execute the vectorized epilogue skip to the scalar part.
8171   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8172   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8173   LoopVectorPreHeader =
8174       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8175                  LI, nullptr, "vec.epilog.ph");
8176   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8177                                           VecEpilogueIterationCountCheck);
8178 
8179   // Adjust the control flow taking the state info from the main loop
8180   // vectorization into account.
8181   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8182          "expected this to be saved from the previous pass.");
8183   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8184       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8185 
8186   DT->changeImmediateDominator(LoopVectorPreHeader,
8187                                EPI.MainLoopIterationCountCheck);
8188 
8189   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8190       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8191 
8192   if (EPI.SCEVSafetyCheck)
8193     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8194         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8195   if (EPI.MemSafetyCheck)
8196     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8197         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8198 
8199   DT->changeImmediateDominator(
8200       VecEpilogueIterationCountCheck,
8201       VecEpilogueIterationCountCheck->getSinglePredecessor());
8202 
8203   DT->changeImmediateDominator(LoopScalarPreHeader,
8204                                EPI.EpilogueIterationCountCheck);
8205   DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck);
8206 
8207   // Keep track of bypass blocks, as they feed start values to the induction
8208   // phis in the scalar loop preheader.
8209   if (EPI.SCEVSafetyCheck)
8210     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8211   if (EPI.MemSafetyCheck)
8212     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8213   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8214 
8215   // Generate a resume induction for the vector epilogue and put it in the
8216   // vector epilogue preheader
8217   Type *IdxTy = Legal->getWidestInductionType();
8218   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8219                                          LoopVectorPreHeader->getFirstNonPHI());
8220   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8221   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8222                            EPI.MainLoopIterationCountCheck);
8223 
8224   // Generate the induction variable.
8225   OldInduction = Legal->getPrimaryInduction();
8226   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8227   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8228   Value *StartIdx = EPResumeVal;
8229   Induction =
8230       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8231                               getDebugLocFromInstOrOperands(OldInduction));
8232 
8233   // Generate induction resume values. These variables save the new starting
8234   // indexes for the scalar loop. They are used to test if there are any tail
8235   // iterations left once the vector loop has completed.
8236   // Note that when the vectorized epilogue is skipped due to iteration count
8237   // check, then the resume value for the induction variable comes from
8238   // the trip count of the main vector loop, hence passing the AdditionalBypass
8239   // argument.
8240   createInductionResumeValues(Lp, CountRoundDown,
8241                               {VecEpilogueIterationCountCheck,
8242                                EPI.VectorTripCount} /* AdditionalBypass */);
8243 
8244   AddRuntimeUnrollDisableMetaData(Lp);
8245   return completeLoopSkeleton(Lp, OrigLoopID);
8246 }
8247 
8248 BasicBlock *
8249 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8250     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8251 
8252   assert(EPI.TripCount &&
8253          "Expected trip count to have been safed in the first pass.");
8254   assert(
8255       (!isa<Instruction>(EPI.TripCount) ||
8256        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8257       "saved trip count does not dominate insertion point.");
8258   Value *TC = EPI.TripCount;
8259   IRBuilder<> Builder(Insert->getTerminator());
8260   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8261 
8262   // Generate code to check if the loop's trip count is less than VF * UF of the
8263   // vector epilogue loop.
8264   auto P =
8265       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8266 
8267   Value *CheckMinIters = Builder.CreateICmp(
8268       P, Count,
8269       ConstantInt::get(Count->getType(),
8270                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8271       "min.epilog.iters.check");
8272 
8273   ReplaceInstWithInst(
8274       Insert->getTerminator(),
8275       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8276 
8277   LoopBypassBlocks.push_back(Insert);
8278   return Insert;
8279 }
8280 
8281 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8282   LLVM_DEBUG({
8283     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8284            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8285            << ", Main Loop UF:" << EPI.MainLoopUF
8286            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8287            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8288   });
8289 }
8290 
8291 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8292   DEBUG_WITH_TYPE(VerboseDebug, {
8293     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8294   });
8295 }
8296 
8297 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8298     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8299   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8300   bool PredicateAtRangeStart = Predicate(Range.Start);
8301 
8302   for (ElementCount TmpVF = Range.Start * 2;
8303        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8304     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8305       Range.End = TmpVF;
8306       break;
8307     }
8308 
8309   return PredicateAtRangeStart;
8310 }
8311 
8312 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8313 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8314 /// of VF's starting at a given VF and extending it as much as possible. Each
8315 /// vectorization decision can potentially shorten this sub-range during
8316 /// buildVPlan().
8317 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8318                                            ElementCount MaxVF) {
8319   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8320   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8321     VFRange SubRange = {VF, MaxVFPlusOne};
8322     VPlans.push_back(buildVPlan(SubRange));
8323     VF = SubRange.End;
8324   }
8325 }
8326 
8327 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8328                                          VPlanPtr &Plan) {
8329   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8330 
8331   // Look for cached value.
8332   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8333   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8334   if (ECEntryIt != EdgeMaskCache.end())
8335     return ECEntryIt->second;
8336 
8337   VPValue *SrcMask = createBlockInMask(Src, Plan);
8338 
8339   // The terminator has to be a branch inst!
8340   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8341   assert(BI && "Unexpected terminator found");
8342 
8343   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8344     return EdgeMaskCache[Edge] = SrcMask;
8345 
8346   // If source is an exiting block, we know the exit edge is dynamically dead
8347   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8348   // adding uses of an otherwise potentially dead instruction.
8349   if (OrigLoop->isLoopExiting(Src))
8350     return EdgeMaskCache[Edge] = SrcMask;
8351 
8352   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8353   assert(EdgeMask && "No Edge Mask found for condition");
8354 
8355   if (BI->getSuccessor(0) != Dst)
8356     EdgeMask = Builder.createNot(EdgeMask);
8357 
8358   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8359     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8360     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8361     // The select version does not introduce new UB if SrcMask is false and
8362     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8363     VPValue *False = Plan->getOrAddVPValue(
8364         ConstantInt::getFalse(BI->getCondition()->getType()));
8365     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8366   }
8367 
8368   return EdgeMaskCache[Edge] = EdgeMask;
8369 }
8370 
8371 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8372   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8373 
8374   // Look for cached value.
8375   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8376   if (BCEntryIt != BlockMaskCache.end())
8377     return BCEntryIt->second;
8378 
8379   // All-one mask is modelled as no-mask following the convention for masked
8380   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8381   VPValue *BlockMask = nullptr;
8382 
8383   if (OrigLoop->getHeader() == BB) {
8384     if (!CM.blockNeedsPredication(BB))
8385       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8386 
8387     // Create the block in mask as the first non-phi instruction in the block.
8388     VPBuilder::InsertPointGuard Guard(Builder);
8389     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8390     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8391 
8392     // Introduce the early-exit compare IV <= BTC to form header block mask.
8393     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8394     // Start by constructing the desired canonical IV.
8395     VPValue *IV = nullptr;
8396     if (Legal->getPrimaryInduction())
8397       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8398     else {
8399       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8400       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8401       IV = IVRecipe->getVPValue();
8402     }
8403     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8404     bool TailFolded = !CM.isScalarEpilogueAllowed();
8405 
8406     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8407       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8408       // as a second argument, we only pass the IV here and extract the
8409       // tripcount from the transform state where codegen of the VP instructions
8410       // happen.
8411       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8412     } else {
8413       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8414     }
8415     return BlockMaskCache[BB] = BlockMask;
8416   }
8417 
8418   // This is the block mask. We OR all incoming edges.
8419   for (auto *Predecessor : predecessors(BB)) {
8420     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8421     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8422       return BlockMaskCache[BB] = EdgeMask;
8423 
8424     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8425       BlockMask = EdgeMask;
8426       continue;
8427     }
8428 
8429     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8430   }
8431 
8432   return BlockMaskCache[BB] = BlockMask;
8433 }
8434 
8435 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8436                                                 ArrayRef<VPValue *> Operands,
8437                                                 VFRange &Range,
8438                                                 VPlanPtr &Plan) {
8439   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8440          "Must be called with either a load or store");
8441 
8442   auto willWiden = [&](ElementCount VF) -> bool {
8443     if (VF.isScalar())
8444       return false;
8445     LoopVectorizationCostModel::InstWidening Decision =
8446         CM.getWideningDecision(I, VF);
8447     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8448            "CM decision should be taken at this point.");
8449     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8450       return true;
8451     if (CM.isScalarAfterVectorization(I, VF) ||
8452         CM.isProfitableToScalarize(I, VF))
8453       return false;
8454     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8455   };
8456 
8457   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8458     return nullptr;
8459 
8460   VPValue *Mask = nullptr;
8461   if (Legal->isMaskRequired(I))
8462     Mask = createBlockInMask(I->getParent(), Plan);
8463 
8464   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8465     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8466 
8467   StoreInst *Store = cast<StoreInst>(I);
8468   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8469                                             Mask);
8470 }
8471 
8472 VPWidenIntOrFpInductionRecipe *
8473 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8474                                            ArrayRef<VPValue *> Operands) const {
8475   // Check if this is an integer or fp induction. If so, build the recipe that
8476   // produces its scalar and vector values.
8477   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8478   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8479       II.getKind() == InductionDescriptor::IK_FpInduction) {
8480     assert(II.getStartValue() ==
8481            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8482     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8483     return new VPWidenIntOrFpInductionRecipe(
8484         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8485   }
8486 
8487   return nullptr;
8488 }
8489 
8490 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8491     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8492     VPlan &Plan) const {
8493   // Optimize the special case where the source is a constant integer
8494   // induction variable. Notice that we can only optimize the 'trunc' case
8495   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8496   // (c) other casts depend on pointer size.
8497 
8498   // Determine whether \p K is a truncation based on an induction variable that
8499   // can be optimized.
8500   auto isOptimizableIVTruncate =
8501       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8502     return [=](ElementCount VF) -> bool {
8503       return CM.isOptimizableIVTruncate(K, VF);
8504     };
8505   };
8506 
8507   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8508           isOptimizableIVTruncate(I), Range)) {
8509 
8510     InductionDescriptor II =
8511         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8512     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8513     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8514                                              Start, nullptr, I);
8515   }
8516   return nullptr;
8517 }
8518 
8519 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8520                                                 ArrayRef<VPValue *> Operands,
8521                                                 VPlanPtr &Plan) {
8522   // If all incoming values are equal, the incoming VPValue can be used directly
8523   // instead of creating a new VPBlendRecipe.
8524   VPValue *FirstIncoming = Operands[0];
8525   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8526         return FirstIncoming == Inc;
8527       })) {
8528     return Operands[0];
8529   }
8530 
8531   // We know that all PHIs in non-header blocks are converted into selects, so
8532   // we don't have to worry about the insertion order and we can just use the
8533   // builder. At this point we generate the predication tree. There may be
8534   // duplications since this is a simple recursive scan, but future
8535   // optimizations will clean it up.
8536   SmallVector<VPValue *, 2> OperandsWithMask;
8537   unsigned NumIncoming = Phi->getNumIncomingValues();
8538 
8539   for (unsigned In = 0; In < NumIncoming; In++) {
8540     VPValue *EdgeMask =
8541       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8542     assert((EdgeMask || NumIncoming == 1) &&
8543            "Multiple predecessors with one having a full mask");
8544     OperandsWithMask.push_back(Operands[In]);
8545     if (EdgeMask)
8546       OperandsWithMask.push_back(EdgeMask);
8547   }
8548   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8549 }
8550 
8551 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8552                                                    ArrayRef<VPValue *> Operands,
8553                                                    VFRange &Range) const {
8554 
8555   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8556       [this, CI](ElementCount VF) {
8557         return CM.isScalarWithPredication(CI, VF);
8558       },
8559       Range);
8560 
8561   if (IsPredicated)
8562     return nullptr;
8563 
8564   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8565   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8566              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8567              ID == Intrinsic::pseudoprobe ||
8568              ID == Intrinsic::experimental_noalias_scope_decl))
8569     return nullptr;
8570 
8571   auto willWiden = [&](ElementCount VF) -> bool {
8572     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8573     // The following case may be scalarized depending on the VF.
8574     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8575     // version of the instruction.
8576     // Is it beneficial to perform intrinsic call compared to lib call?
8577     bool NeedToScalarize = false;
8578     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8579     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8580     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8581     assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
8582            "Either the intrinsic cost or vector call cost must be valid");
8583     return UseVectorIntrinsic || !NeedToScalarize;
8584   };
8585 
8586   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8587     return nullptr;
8588 
8589   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8590   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8591 }
8592 
8593 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8594   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8595          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8596   // Instruction should be widened, unless it is scalar after vectorization,
8597   // scalarization is profitable or it is predicated.
8598   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8599     return CM.isScalarAfterVectorization(I, VF) ||
8600            CM.isProfitableToScalarize(I, VF) ||
8601            CM.isScalarWithPredication(I, VF);
8602   };
8603   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8604                                                              Range);
8605 }
8606 
8607 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8608                                            ArrayRef<VPValue *> Operands) const {
8609   auto IsVectorizableOpcode = [](unsigned Opcode) {
8610     switch (Opcode) {
8611     case Instruction::Add:
8612     case Instruction::And:
8613     case Instruction::AShr:
8614     case Instruction::BitCast:
8615     case Instruction::FAdd:
8616     case Instruction::FCmp:
8617     case Instruction::FDiv:
8618     case Instruction::FMul:
8619     case Instruction::FNeg:
8620     case Instruction::FPExt:
8621     case Instruction::FPToSI:
8622     case Instruction::FPToUI:
8623     case Instruction::FPTrunc:
8624     case Instruction::FRem:
8625     case Instruction::FSub:
8626     case Instruction::ICmp:
8627     case Instruction::IntToPtr:
8628     case Instruction::LShr:
8629     case Instruction::Mul:
8630     case Instruction::Or:
8631     case Instruction::PtrToInt:
8632     case Instruction::SDiv:
8633     case Instruction::Select:
8634     case Instruction::SExt:
8635     case Instruction::Shl:
8636     case Instruction::SIToFP:
8637     case Instruction::SRem:
8638     case Instruction::Sub:
8639     case Instruction::Trunc:
8640     case Instruction::UDiv:
8641     case Instruction::UIToFP:
8642     case Instruction::URem:
8643     case Instruction::Xor:
8644     case Instruction::ZExt:
8645       return true;
8646     }
8647     return false;
8648   };
8649 
8650   if (!IsVectorizableOpcode(I->getOpcode()))
8651     return nullptr;
8652 
8653   // Success: widen this instruction.
8654   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8655 }
8656 
8657 VPBasicBlock *VPRecipeBuilder::handleReplication(
8658     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8659     VPlanPtr &Plan) {
8660   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8661       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8662       Range);
8663 
8664   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8665       [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); },
8666       Range);
8667 
8668   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8669                                        IsUniform, IsPredicated);
8670   setRecipe(I, Recipe);
8671   Plan->addVPValue(I, Recipe);
8672 
8673   // Find if I uses a predicated instruction. If so, it will use its scalar
8674   // value. Avoid hoisting the insert-element which packs the scalar value into
8675   // a vector value, as that happens iff all users use the vector value.
8676   for (VPValue *Op : Recipe->operands()) {
8677     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8678     if (!PredR)
8679       continue;
8680     auto *RepR =
8681         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8682     assert(RepR->isPredicated() &&
8683            "expected Replicate recipe to be predicated");
8684     RepR->setAlsoPack(false);
8685   }
8686 
8687   // Finalize the recipe for Instr, first if it is not predicated.
8688   if (!IsPredicated) {
8689     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8690     VPBB->appendRecipe(Recipe);
8691     return VPBB;
8692   }
8693   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8694   assert(VPBB->getSuccessors().empty() &&
8695          "VPBB has successors when handling predicated replication.");
8696   // Record predicated instructions for above packing optimizations.
8697   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8698   VPBlockUtils::insertBlockAfter(Region, VPBB);
8699   auto *RegSucc = new VPBasicBlock();
8700   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8701   return RegSucc;
8702 }
8703 
8704 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8705                                                       VPRecipeBase *PredRecipe,
8706                                                       VPlanPtr &Plan) {
8707   // Instructions marked for predication are replicated and placed under an
8708   // if-then construct to prevent side-effects.
8709 
8710   // Generate recipes to compute the block mask for this region.
8711   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8712 
8713   // Build the triangular if-then region.
8714   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8715   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8716   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8717   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8718   auto *PHIRecipe = Instr->getType()->isVoidTy()
8719                         ? nullptr
8720                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8721   if (PHIRecipe) {
8722     Plan->removeVPValueFor(Instr);
8723     Plan->addVPValue(Instr, PHIRecipe);
8724   }
8725   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8726   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8727   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8728 
8729   // Note: first set Entry as region entry and then connect successors starting
8730   // from it in order, to propagate the "parent" of each VPBasicBlock.
8731   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8732   VPBlockUtils::connectBlocks(Pred, Exit);
8733 
8734   return Region;
8735 }
8736 
8737 VPRecipeOrVPValueTy
8738 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8739                                         ArrayRef<VPValue *> Operands,
8740                                         VFRange &Range, VPlanPtr &Plan) {
8741   // First, check for specific widening recipes that deal with calls, memory
8742   // operations, inductions and Phi nodes.
8743   if (auto *CI = dyn_cast<CallInst>(Instr))
8744     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8745 
8746   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8747     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8748 
8749   VPRecipeBase *Recipe;
8750   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8751     if (Phi->getParent() != OrigLoop->getHeader())
8752       return tryToBlend(Phi, Operands, Plan);
8753     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8754       return toVPRecipeResult(Recipe);
8755 
8756     if (Legal->isReductionVariable(Phi)) {
8757       RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8758       assert(RdxDesc.getRecurrenceStartValue() ==
8759              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8760       VPValue *StartV = Operands[0];
8761       return toVPRecipeResult(new VPWidenPHIRecipe(Phi, RdxDesc, *StartV));
8762     }
8763 
8764     return toVPRecipeResult(new VPWidenPHIRecipe(Phi));
8765   }
8766 
8767   if (isa<TruncInst>(Instr) &&
8768       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8769                                                Range, *Plan)))
8770     return toVPRecipeResult(Recipe);
8771 
8772   if (!shouldWiden(Instr, Range))
8773     return nullptr;
8774 
8775   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8776     return toVPRecipeResult(new VPWidenGEPRecipe(
8777         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8778 
8779   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8780     bool InvariantCond =
8781         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8782     return toVPRecipeResult(new VPWidenSelectRecipe(
8783         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8784   }
8785 
8786   return toVPRecipeResult(tryToWiden(Instr, Operands));
8787 }
8788 
8789 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8790                                                         ElementCount MaxVF) {
8791   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8792 
8793   // Collect instructions from the original loop that will become trivially dead
8794   // in the vectorized loop. We don't need to vectorize these instructions. For
8795   // example, original induction update instructions can become dead because we
8796   // separately emit induction "steps" when generating code for the new loop.
8797   // Similarly, we create a new latch condition when setting up the structure
8798   // of the new loop, so the old one can become dead.
8799   SmallPtrSet<Instruction *, 4> DeadInstructions;
8800   collectTriviallyDeadInstructions(DeadInstructions);
8801 
8802   // Add assume instructions we need to drop to DeadInstructions, to prevent
8803   // them from being added to the VPlan.
8804   // TODO: We only need to drop assumes in blocks that get flattend. If the
8805   // control flow is preserved, we should keep them.
8806   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8807   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8808 
8809   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8810   // Dead instructions do not need sinking. Remove them from SinkAfter.
8811   for (Instruction *I : DeadInstructions)
8812     SinkAfter.erase(I);
8813 
8814   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8815   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8816     VFRange SubRange = {VF, MaxVFPlusOne};
8817     VPlans.push_back(
8818         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8819     VF = SubRange.End;
8820   }
8821 }
8822 
8823 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8824     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8825     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
8826 
8827   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8828 
8829   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8830 
8831   // ---------------------------------------------------------------------------
8832   // Pre-construction: record ingredients whose recipes we'll need to further
8833   // process after constructing the initial VPlan.
8834   // ---------------------------------------------------------------------------
8835 
8836   // Mark instructions we'll need to sink later and their targets as
8837   // ingredients whose recipe we'll need to record.
8838   for (auto &Entry : SinkAfter) {
8839     RecipeBuilder.recordRecipeOf(Entry.first);
8840     RecipeBuilder.recordRecipeOf(Entry.second);
8841   }
8842   for (auto &Reduction : CM.getInLoopReductionChains()) {
8843     PHINode *Phi = Reduction.first;
8844     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
8845     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8846 
8847     RecipeBuilder.recordRecipeOf(Phi);
8848     for (auto &R : ReductionOperations) {
8849       RecipeBuilder.recordRecipeOf(R);
8850       // For min/max reducitons, where we have a pair of icmp/select, we also
8851       // need to record the ICmp recipe, so it can be removed later.
8852       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8853         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8854     }
8855   }
8856 
8857   // For each interleave group which is relevant for this (possibly trimmed)
8858   // Range, add it to the set of groups to be later applied to the VPlan and add
8859   // placeholders for its members' Recipes which we'll be replacing with a
8860   // single VPInterleaveRecipe.
8861   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8862     auto applyIG = [IG, this](ElementCount VF) -> bool {
8863       return (VF.isVector() && // Query is illegal for VF == 1
8864               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8865                   LoopVectorizationCostModel::CM_Interleave);
8866     };
8867     if (!getDecisionAndClampRange(applyIG, Range))
8868       continue;
8869     InterleaveGroups.insert(IG);
8870     for (unsigned i = 0; i < IG->getFactor(); i++)
8871       if (Instruction *Member = IG->getMember(i))
8872         RecipeBuilder.recordRecipeOf(Member);
8873   };
8874 
8875   // ---------------------------------------------------------------------------
8876   // Build initial VPlan: Scan the body of the loop in a topological order to
8877   // visit each basic block after having visited its predecessor basic blocks.
8878   // ---------------------------------------------------------------------------
8879 
8880   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
8881   auto Plan = std::make_unique<VPlan>();
8882   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
8883   Plan->setEntry(VPBB);
8884 
8885   // Scan the body of the loop in a topological order to visit each basic block
8886   // after having visited its predecessor basic blocks.
8887   LoopBlocksDFS DFS(OrigLoop);
8888   DFS.perform(LI);
8889 
8890   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8891     // Relevant instructions from basic block BB will be grouped into VPRecipe
8892     // ingredients and fill a new VPBasicBlock.
8893     unsigned VPBBsForBB = 0;
8894     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
8895     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
8896     VPBB = FirstVPBBForBB;
8897     Builder.setInsertPoint(VPBB);
8898 
8899     // Introduce each ingredient into VPlan.
8900     // TODO: Model and preserve debug instrinsics in VPlan.
8901     for (Instruction &I : BB->instructionsWithoutDebug()) {
8902       Instruction *Instr = &I;
8903 
8904       // First filter out irrelevant instructions, to ensure no recipes are
8905       // built for them.
8906       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8907         continue;
8908 
8909       SmallVector<VPValue *, 4> Operands;
8910       auto *Phi = dyn_cast<PHINode>(Instr);
8911       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8912         Operands.push_back(Plan->getOrAddVPValue(
8913             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8914       } else {
8915         auto OpRange = Plan->mapToVPValues(Instr->operands());
8916         Operands = {OpRange.begin(), OpRange.end()};
8917       }
8918       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8919               Instr, Operands, Range, Plan)) {
8920         // If Instr can be simplified to an existing VPValue, use it.
8921         if (RecipeOrValue.is<VPValue *>()) {
8922           Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>());
8923           continue;
8924         }
8925         // Otherwise, add the new recipe.
8926         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8927         for (auto *Def : Recipe->definedValues()) {
8928           auto *UV = Def->getUnderlyingValue();
8929           Plan->addVPValue(UV, Def);
8930         }
8931 
8932         RecipeBuilder.setRecipe(Instr, Recipe);
8933         VPBB->appendRecipe(Recipe);
8934         continue;
8935       }
8936 
8937       // Otherwise, if all widening options failed, Instruction is to be
8938       // replicated. This may create a successor for VPBB.
8939       VPBasicBlock *NextVPBB =
8940           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8941       if (NextVPBB != VPBB) {
8942         VPBB = NextVPBB;
8943         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8944                                     : "");
8945       }
8946     }
8947   }
8948 
8949   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
8950   // may also be empty, such as the last one VPBB, reflecting original
8951   // basic-blocks with no recipes.
8952   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
8953   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
8954   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
8955   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
8956   delete PreEntry;
8957 
8958   // ---------------------------------------------------------------------------
8959   // Transform initial VPlan: Apply previously taken decisions, in order, to
8960   // bring the VPlan to its final state.
8961   // ---------------------------------------------------------------------------
8962 
8963   // Apply Sink-After legal constraints.
8964   for (auto &Entry : SinkAfter) {
8965     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8966     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8967     // If the target is in a replication region, make sure to move Sink to the
8968     // block after it, not into the replication region itself.
8969     if (auto *Region =
8970             dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) {
8971       if (Region->isReplicator()) {
8972         assert(Region->getNumSuccessors() == 1 && "Expected SESE region!");
8973         VPBasicBlock *NextBlock =
8974             cast<VPBasicBlock>(Region->getSuccessors().front());
8975         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8976         continue;
8977       }
8978     }
8979     Sink->moveAfter(Target);
8980   }
8981 
8982   // Interleave memory: for each Interleave Group we marked earlier as relevant
8983   // for this VPlan, replace the Recipes widening its memory instructions with a
8984   // single VPInterleaveRecipe at its insertion point.
8985   for (auto IG : InterleaveGroups) {
8986     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8987         RecipeBuilder.getRecipe(IG->getInsertPos()));
8988     SmallVector<VPValue *, 4> StoredValues;
8989     for (unsigned i = 0; i < IG->getFactor(); ++i)
8990       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
8991         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
8992 
8993     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8994                                         Recipe->getMask());
8995     VPIG->insertBefore(Recipe);
8996     unsigned J = 0;
8997     for (unsigned i = 0; i < IG->getFactor(); ++i)
8998       if (Instruction *Member = IG->getMember(i)) {
8999         if (!Member->getType()->isVoidTy()) {
9000           VPValue *OriginalV = Plan->getVPValue(Member);
9001           Plan->removeVPValueFor(Member);
9002           Plan->addVPValue(Member, VPIG->getVPValue(J));
9003           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9004           J++;
9005         }
9006         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9007       }
9008   }
9009 
9010   // Adjust the recipes for any inloop reductions.
9011   if (Range.Start.isVector())
9012     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
9013 
9014   // Finally, if tail is folded by masking, introduce selects between the phi
9015   // and the live-out instruction of each reduction, at the end of the latch.
9016   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9017     Builder.setInsertPoint(VPBB);
9018     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9019     for (auto &Reduction : Legal->getReductionVars()) {
9020       if (CM.isInLoopReduction(Reduction.first))
9021         continue;
9022       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9023       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9024       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9025     }
9026   }
9027 
9028   std::string PlanName;
9029   raw_string_ostream RSO(PlanName);
9030   ElementCount VF = Range.Start;
9031   Plan->addVF(VF);
9032   RSO << "Initial VPlan for VF={" << VF;
9033   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9034     Plan->addVF(VF);
9035     RSO << "," << VF;
9036   }
9037   RSO << "},UF>=1";
9038   RSO.flush();
9039   Plan->setName(PlanName);
9040 
9041   return Plan;
9042 }
9043 
9044 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9045   // Outer loop handling: They may require CFG and instruction level
9046   // transformations before even evaluating whether vectorization is profitable.
9047   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9048   // the vectorization pipeline.
9049   assert(!OrigLoop->isInnermost());
9050   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9051 
9052   // Create new empty VPlan
9053   auto Plan = std::make_unique<VPlan>();
9054 
9055   // Build hierarchical CFG
9056   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9057   HCFGBuilder.buildHierarchicalCFG();
9058 
9059   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9060        VF *= 2)
9061     Plan->addVF(VF);
9062 
9063   if (EnableVPlanPredication) {
9064     VPlanPredicator VPP(*Plan);
9065     VPP.predicate();
9066 
9067     // Avoid running transformation to recipes until masked code generation in
9068     // VPlan-native path is in place.
9069     return Plan;
9070   }
9071 
9072   SmallPtrSet<Instruction *, 1> DeadInstructions;
9073   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9074                                              Legal->getInductionVars(),
9075                                              DeadInstructions, *PSE.getSE());
9076   return Plan;
9077 }
9078 
9079 // Adjust the recipes for any inloop reductions. The chain of instructions
9080 // leading from the loop exit instr to the phi need to be converted to
9081 // reductions, with one operand being vector and the other being the scalar
9082 // reduction chain.
9083 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9084     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
9085   for (auto &Reduction : CM.getInLoopReductionChains()) {
9086     PHINode *Phi = Reduction.first;
9087     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9088     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9089 
9090     // ReductionOperations are orders top-down from the phi's use to the
9091     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9092     // which of the two operands will remain scalar and which will be reduced.
9093     // For minmax the chain will be the select instructions.
9094     Instruction *Chain = Phi;
9095     for (Instruction *R : ReductionOperations) {
9096       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9097       RecurKind Kind = RdxDesc.getRecurrenceKind();
9098 
9099       VPValue *ChainOp = Plan->getVPValue(Chain);
9100       unsigned FirstOpId;
9101       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9102         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9103                "Expected to replace a VPWidenSelectSC");
9104         FirstOpId = 1;
9105       } else {
9106         assert(isa<VPWidenRecipe>(WidenRecipe) &&
9107                "Expected to replace a VPWidenSC");
9108         FirstOpId = 0;
9109       }
9110       unsigned VecOpId =
9111           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9112       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9113 
9114       auto *CondOp = CM.foldTailByMasking()
9115                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9116                          : nullptr;
9117       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9118           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9119       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9120       Plan->removeVPValueFor(R);
9121       Plan->addVPValue(R, RedRecipe);
9122       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9123       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9124       WidenRecipe->eraseFromParent();
9125 
9126       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9127         VPRecipeBase *CompareRecipe =
9128             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9129         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9130                "Expected to replace a VPWidenSC");
9131         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9132                "Expected no remaining users");
9133         CompareRecipe->eraseFromParent();
9134       }
9135       Chain = R;
9136     }
9137   }
9138 }
9139 
9140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9141 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9142                                VPSlotTracker &SlotTracker) const {
9143   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9144   IG->getInsertPos()->printAsOperand(O, false);
9145   O << ", ";
9146   getAddr()->printAsOperand(O, SlotTracker);
9147   VPValue *Mask = getMask();
9148   if (Mask) {
9149     O << ", ";
9150     Mask->printAsOperand(O, SlotTracker);
9151   }
9152   for (unsigned i = 0; i < IG->getFactor(); ++i)
9153     if (Instruction *I = IG->getMember(i))
9154       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9155 }
9156 #endif
9157 
9158 void VPWidenCallRecipe::execute(VPTransformState &State) {
9159   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9160                                   *this, State);
9161 }
9162 
9163 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9164   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9165                                     this, *this, InvariantCond, State);
9166 }
9167 
9168 void VPWidenRecipe::execute(VPTransformState &State) {
9169   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9170 }
9171 
9172 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9173   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9174                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9175                       IsIndexLoopInvariant, State);
9176 }
9177 
9178 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9179   assert(!State.Instance && "Int or FP induction being replicated.");
9180   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9181                                    getTruncInst(), getVPValue(0),
9182                                    getCastValue(), State);
9183 }
9184 
9185 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9186   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc,
9187                                  this, State);
9188 }
9189 
9190 void VPBlendRecipe::execute(VPTransformState &State) {
9191   State.ILV->setDebugLocFromInst(State.Builder, Phi);
9192   // We know that all PHIs in non-header blocks are converted into
9193   // selects, so we don't have to worry about the insertion order and we
9194   // can just use the builder.
9195   // At this point we generate the predication tree. There may be
9196   // duplications since this is a simple recursive scan, but future
9197   // optimizations will clean it up.
9198 
9199   unsigned NumIncoming = getNumIncomingValues();
9200 
9201   // Generate a sequence of selects of the form:
9202   // SELECT(Mask3, In3,
9203   //        SELECT(Mask2, In2,
9204   //               SELECT(Mask1, In1,
9205   //                      In0)))
9206   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9207   // are essentially undef are taken from In0.
9208   InnerLoopVectorizer::VectorParts Entry(State.UF);
9209   for (unsigned In = 0; In < NumIncoming; ++In) {
9210     for (unsigned Part = 0; Part < State.UF; ++Part) {
9211       // We might have single edge PHIs (blocks) - use an identity
9212       // 'select' for the first PHI operand.
9213       Value *In0 = State.get(getIncomingValue(In), Part);
9214       if (In == 0)
9215         Entry[Part] = In0; // Initialize with the first incoming value.
9216       else {
9217         // Select between the current value and the previous incoming edge
9218         // based on the incoming mask.
9219         Value *Cond = State.get(getMask(In), Part);
9220         Entry[Part] =
9221             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9222       }
9223     }
9224   }
9225   for (unsigned Part = 0; Part < State.UF; ++Part)
9226     State.set(this, Entry[Part], Part);
9227 }
9228 
9229 void VPInterleaveRecipe::execute(VPTransformState &State) {
9230   assert(!State.Instance && "Interleave group being replicated.");
9231   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9232                                       getStoredValues(), getMask());
9233 }
9234 
9235 void VPReductionRecipe::execute(VPTransformState &State) {
9236   assert(!State.Instance && "Reduction being replicated.");
9237   Value *PrevInChain = State.get(getChainOp(), 0);
9238   for (unsigned Part = 0; Part < State.UF; ++Part) {
9239     RecurKind Kind = RdxDesc->getRecurrenceKind();
9240     bool IsOrdered = useOrderedReductions(*RdxDesc);
9241     Value *NewVecOp = State.get(getVecOp(), Part);
9242     if (VPValue *Cond = getCondOp()) {
9243       Value *NewCond = State.get(Cond, Part);
9244       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9245       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9246           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9247       Constant *IdenVec =
9248           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9249       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9250       NewVecOp = Select;
9251     }
9252     Value *NewRed;
9253     Value *NextInChain;
9254     if (IsOrdered) {
9255       NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9256                                       PrevInChain);
9257       PrevInChain = NewRed;
9258     } else {
9259       PrevInChain = State.get(getChainOp(), Part);
9260       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9261     }
9262     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9263       NextInChain =
9264           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9265                          NewRed, PrevInChain);
9266     } else if (IsOrdered)
9267       NextInChain = NewRed;
9268     else {
9269       NextInChain = State.Builder.CreateBinOp(
9270           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9271           PrevInChain);
9272     }
9273     State.set(this, NextInChain, Part);
9274   }
9275 }
9276 
9277 void VPReplicateRecipe::execute(VPTransformState &State) {
9278   if (State.Instance) { // Generate a single instance.
9279     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9280     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9281                                     *State.Instance, IsPredicated, State);
9282     // Insert scalar instance packing it into a vector.
9283     if (AlsoPack && State.VF.isVector()) {
9284       // If we're constructing lane 0, initialize to start from poison.
9285       if (State.Instance->Lane.isFirstLane()) {
9286         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9287         Value *Poison = PoisonValue::get(
9288             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9289         State.set(this, Poison, State.Instance->Part);
9290       }
9291       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9292     }
9293     return;
9294   }
9295 
9296   // Generate scalar instances for all VF lanes of all UF parts, unless the
9297   // instruction is uniform inwhich case generate only the first lane for each
9298   // of the UF parts.
9299   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9300   assert((!State.VF.isScalable() || IsUniform) &&
9301          "Can't scalarize a scalable vector");
9302   for (unsigned Part = 0; Part < State.UF; ++Part)
9303     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9304       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9305                                       VPIteration(Part, Lane), IsPredicated,
9306                                       State);
9307 }
9308 
9309 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9310   assert(State.Instance && "Branch on Mask works only on single instance.");
9311 
9312   unsigned Part = State.Instance->Part;
9313   unsigned Lane = State.Instance->Lane.getKnownLane();
9314 
9315   Value *ConditionBit = nullptr;
9316   VPValue *BlockInMask = getMask();
9317   if (BlockInMask) {
9318     ConditionBit = State.get(BlockInMask, Part);
9319     if (ConditionBit->getType()->isVectorTy())
9320       ConditionBit = State.Builder.CreateExtractElement(
9321           ConditionBit, State.Builder.getInt32(Lane));
9322   } else // Block in mask is all-one.
9323     ConditionBit = State.Builder.getTrue();
9324 
9325   // Replace the temporary unreachable terminator with a new conditional branch,
9326   // whose two destinations will be set later when they are created.
9327   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9328   assert(isa<UnreachableInst>(CurrentTerminator) &&
9329          "Expected to replace unreachable terminator with conditional branch.");
9330   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9331   CondBr->setSuccessor(0, nullptr);
9332   ReplaceInstWithInst(CurrentTerminator, CondBr);
9333 }
9334 
9335 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9336   assert(State.Instance && "Predicated instruction PHI works per instance.");
9337   Instruction *ScalarPredInst =
9338       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9339   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9340   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9341   assert(PredicatingBB && "Predicated block has no single predecessor.");
9342   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9343          "operand must be VPReplicateRecipe");
9344 
9345   // By current pack/unpack logic we need to generate only a single phi node: if
9346   // a vector value for the predicated instruction exists at this point it means
9347   // the instruction has vector users only, and a phi for the vector value is
9348   // needed. In this case the recipe of the predicated instruction is marked to
9349   // also do that packing, thereby "hoisting" the insert-element sequence.
9350   // Otherwise, a phi node for the scalar value is needed.
9351   unsigned Part = State.Instance->Part;
9352   if (State.hasVectorValue(getOperand(0), Part)) {
9353     Value *VectorValue = State.get(getOperand(0), Part);
9354     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9355     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9356     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9357     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9358     if (State.hasVectorValue(this, Part))
9359       State.reset(this, VPhi, Part);
9360     else
9361       State.set(this, VPhi, Part);
9362     // NOTE: Currently we need to update the value of the operand, so the next
9363     // predicated iteration inserts its generated value in the correct vector.
9364     State.reset(getOperand(0), VPhi, Part);
9365   } else {
9366     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9367     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9368     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9369                      PredicatingBB);
9370     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9371     if (State.hasScalarValue(this, *State.Instance))
9372       State.reset(this, Phi, *State.Instance);
9373     else
9374       State.set(this, Phi, *State.Instance);
9375     // NOTE: Currently we need to update the value of the operand, so the next
9376     // predicated iteration inserts its generated value in the correct vector.
9377     State.reset(getOperand(0), Phi, *State.Instance);
9378   }
9379 }
9380 
9381 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9382   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9383   State.ILV->vectorizeMemoryInstruction(&Ingredient, State,
9384                                         StoredValue ? nullptr : getVPValue(),
9385                                         getAddr(), StoredValue, getMask());
9386 }
9387 
9388 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9389 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9390 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9391 // for predication.
9392 static ScalarEpilogueLowering getScalarEpilogueLowering(
9393     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9394     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9395     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9396     LoopVectorizationLegality &LVL) {
9397   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9398   // don't look at hints or options, and don't request a scalar epilogue.
9399   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9400   // LoopAccessInfo (due to code dependency and not being able to reliably get
9401   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9402   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9403   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9404   // back to the old way and vectorize with versioning when forced. See D81345.)
9405   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9406                                                       PGSOQueryType::IRPass) &&
9407                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9408     return CM_ScalarEpilogueNotAllowedOptSize;
9409 
9410   // 2) If set, obey the directives
9411   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9412     switch (PreferPredicateOverEpilogue) {
9413     case PreferPredicateTy::ScalarEpilogue:
9414       return CM_ScalarEpilogueAllowed;
9415     case PreferPredicateTy::PredicateElseScalarEpilogue:
9416       return CM_ScalarEpilogueNotNeededUsePredicate;
9417     case PreferPredicateTy::PredicateOrDontVectorize:
9418       return CM_ScalarEpilogueNotAllowedUsePredicate;
9419     };
9420   }
9421 
9422   // 3) If set, obey the hints
9423   switch (Hints.getPredicate()) {
9424   case LoopVectorizeHints::FK_Enabled:
9425     return CM_ScalarEpilogueNotNeededUsePredicate;
9426   case LoopVectorizeHints::FK_Disabled:
9427     return CM_ScalarEpilogueAllowed;
9428   };
9429 
9430   // 4) if the TTI hook indicates this is profitable, request predication.
9431   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9432                                        LVL.getLAI()))
9433     return CM_ScalarEpilogueNotNeededUsePredicate;
9434 
9435   return CM_ScalarEpilogueAllowed;
9436 }
9437 
9438 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9439   // If Values have been set for this Def return the one relevant for \p Part.
9440   if (hasVectorValue(Def, Part))
9441     return Data.PerPartOutput[Def][Part];
9442 
9443   if (!hasScalarValue(Def, {Part, 0})) {
9444     Value *IRV = Def->getLiveInIRValue();
9445     Value *B = ILV->getBroadcastInstrs(IRV);
9446     set(Def, B, Part);
9447     return B;
9448   }
9449 
9450   Value *ScalarValue = get(Def, {Part, 0});
9451   // If we aren't vectorizing, we can just copy the scalar map values over
9452   // to the vector map.
9453   if (VF.isScalar()) {
9454     set(Def, ScalarValue, Part);
9455     return ScalarValue;
9456   }
9457 
9458   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9459   bool IsUniform = RepR && RepR->isUniform();
9460 
9461   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9462   // Check if there is a scalar value for the selected lane.
9463   if (!hasScalarValue(Def, {Part, LastLane})) {
9464     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9465     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9466            "unexpected recipe found to be invariant");
9467     IsUniform = true;
9468     LastLane = 0;
9469   }
9470 
9471   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9472 
9473   // Set the insert point after the last scalarized instruction. This
9474   // ensures the insertelement sequence will directly follow the scalar
9475   // definitions.
9476   auto OldIP = Builder.saveIP();
9477   auto NewIP = std::next(BasicBlock::iterator(LastInst));
9478   Builder.SetInsertPoint(&*NewIP);
9479 
9480   // However, if we are vectorizing, we need to construct the vector values.
9481   // If the value is known to be uniform after vectorization, we can just
9482   // broadcast the scalar value corresponding to lane zero for each unroll
9483   // iteration. Otherwise, we construct the vector values using
9484   // insertelement instructions. Since the resulting vectors are stored in
9485   // State, we will only generate the insertelements once.
9486   Value *VectorValue = nullptr;
9487   if (IsUniform) {
9488     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9489     set(Def, VectorValue, Part);
9490   } else {
9491     // Initialize packing with insertelements to start from undef.
9492     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9493     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9494     set(Def, Undef, Part);
9495     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9496       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9497     VectorValue = get(Def, Part);
9498   }
9499   Builder.restoreIP(OldIP);
9500   return VectorValue;
9501 }
9502 
9503 // Process the loop in the VPlan-native vectorization path. This path builds
9504 // VPlan upfront in the vectorization pipeline, which allows to apply
9505 // VPlan-to-VPlan transformations from the very beginning without modifying the
9506 // input LLVM IR.
9507 static bool processLoopInVPlanNativePath(
9508     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9509     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9510     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9511     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9512     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9513     LoopVectorizationRequirements &Requirements) {
9514 
9515   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9516     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9517     return false;
9518   }
9519   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9520   Function *F = L->getHeader()->getParent();
9521   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9522 
9523   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9524       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9525 
9526   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9527                                 &Hints, IAI);
9528   // Use the planner for outer loop vectorization.
9529   // TODO: CM is not used at this point inside the planner. Turn CM into an
9530   // optional argument if we don't need it in the future.
9531   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9532                                Requirements, ORE);
9533 
9534   // Get user vectorization factor.
9535   ElementCount UserVF = Hints.getWidth();
9536 
9537   // Plan how to best vectorize, return the best VF and its cost.
9538   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9539 
9540   // If we are stress testing VPlan builds, do not attempt to generate vector
9541   // code. Masked vector code generation support will follow soon.
9542   // Also, do not attempt to vectorize if no vector code will be produced.
9543   if (VPlanBuildStressTest || EnableVPlanPredication ||
9544       VectorizationFactor::Disabled() == VF)
9545     return false;
9546 
9547   LVP.setBestPlan(VF.Width, 1);
9548 
9549   {
9550     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9551                              F->getParent()->getDataLayout());
9552     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9553                            &CM, BFI, PSI, Checks);
9554     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9555                       << L->getHeader()->getParent()->getName() << "\"\n");
9556     LVP.executePlan(LB, DT);
9557   }
9558 
9559   // Mark the loop as already vectorized to avoid vectorizing again.
9560   Hints.setAlreadyVectorized();
9561   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9562   return true;
9563 }
9564 
9565 // Emit a remark if there are stores to floats that required a floating point
9566 // extension. If the vectorized loop was generated with floating point there
9567 // will be a performance penalty from the conversion overhead and the change in
9568 // the vector width.
9569 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9570   SmallVector<Instruction *, 4> Worklist;
9571   for (BasicBlock *BB : L->getBlocks()) {
9572     for (Instruction &Inst : *BB) {
9573       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9574         if (S->getValueOperand()->getType()->isFloatTy())
9575           Worklist.push_back(S);
9576       }
9577     }
9578   }
9579 
9580   // Traverse the floating point stores upwards searching, for floating point
9581   // conversions.
9582   SmallPtrSet<const Instruction *, 4> Visited;
9583   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9584   while (!Worklist.empty()) {
9585     auto *I = Worklist.pop_back_val();
9586     if (!L->contains(I))
9587       continue;
9588     if (!Visited.insert(I).second)
9589       continue;
9590 
9591     // Emit a remark if the floating point store required a floating
9592     // point conversion.
9593     // TODO: More work could be done to identify the root cause such as a
9594     // constant or a function return type and point the user to it.
9595     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9596       ORE->emit([&]() {
9597         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9598                                           I->getDebugLoc(), L->getHeader())
9599                << "floating point conversion changes vector width. "
9600                << "Mixed floating point precision requires an up/down "
9601                << "cast that will negatively impact performance.";
9602       });
9603 
9604     for (Use &Op : I->operands())
9605       if (auto *OpI = dyn_cast<Instruction>(Op))
9606         Worklist.push_back(OpI);
9607   }
9608 }
9609 
9610 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9611     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9612                                !EnableLoopInterleaving),
9613       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9614                               !EnableLoopVectorization) {}
9615 
9616 bool LoopVectorizePass::processLoop(Loop *L) {
9617   assert((EnableVPlanNativePath || L->isInnermost()) &&
9618          "VPlan-native path is not enabled. Only process inner loops.");
9619 
9620 #ifndef NDEBUG
9621   const std::string DebugLocStr = getDebugLocString(L);
9622 #endif /* NDEBUG */
9623 
9624   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9625                     << L->getHeader()->getParent()->getName() << "\" from "
9626                     << DebugLocStr << "\n");
9627 
9628   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9629 
9630   LLVM_DEBUG(
9631       dbgs() << "LV: Loop hints:"
9632              << " force="
9633              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9634                      ? "disabled"
9635                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9636                             ? "enabled"
9637                             : "?"))
9638              << " width=" << Hints.getWidth()
9639              << " unroll=" << Hints.getInterleave() << "\n");
9640 
9641   // Function containing loop
9642   Function *F = L->getHeader()->getParent();
9643 
9644   // Looking at the diagnostic output is the only way to determine if a loop
9645   // was vectorized (other than looking at the IR or machine code), so it
9646   // is important to generate an optimization remark for each loop. Most of
9647   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9648   // generated as OptimizationRemark and OptimizationRemarkMissed are
9649   // less verbose reporting vectorized loops and unvectorized loops that may
9650   // benefit from vectorization, respectively.
9651 
9652   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9653     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9654     return false;
9655   }
9656 
9657   PredicatedScalarEvolution PSE(*SE, *L);
9658 
9659   // Check if it is legal to vectorize the loop.
9660   LoopVectorizationRequirements Requirements;
9661   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
9662                                 &Requirements, &Hints, DB, AC, BFI, PSI);
9663   if (!LVL.canVectorize(EnableVPlanNativePath)) {
9664     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9665     Hints.emitRemarkWithHints();
9666     return false;
9667   }
9668 
9669   // Check the function attributes and profiles to find out if this function
9670   // should be optimized for size.
9671   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9672       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
9673 
9674   // Entrance to the VPlan-native vectorization path. Outer loops are processed
9675   // here. They may require CFG and instruction level transformations before
9676   // even evaluating whether vectorization is profitable. Since we cannot modify
9677   // the incoming IR, we need to build VPlan upfront in the vectorization
9678   // pipeline.
9679   if (!L->isInnermost())
9680     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9681                                         ORE, BFI, PSI, Hints, Requirements);
9682 
9683   assert(L->isInnermost() && "Inner loop expected.");
9684 
9685   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9686   // count by optimizing for size, to minimize overheads.
9687   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
9688   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
9689     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9690                       << "This loop is worth vectorizing only if no scalar "
9691                       << "iteration overheads are incurred.");
9692     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
9693       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9694     else {
9695       LLVM_DEBUG(dbgs() << "\n");
9696       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
9697     }
9698   }
9699 
9700   // Check the function attributes to see if implicit floats are allowed.
9701   // FIXME: This check doesn't seem possibly correct -- what if the loop is
9702   // an integer loop and the vector instructions selected are purely integer
9703   // vector instructions?
9704   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9705     reportVectorizationFailure(
9706         "Can't vectorize when the NoImplicitFloat attribute is used",
9707         "loop not vectorized due to NoImplicitFloat attribute",
9708         "NoImplicitFloat", ORE, L);
9709     Hints.emitRemarkWithHints();
9710     return false;
9711   }
9712 
9713   // Check if the target supports potentially unsafe FP vectorization.
9714   // FIXME: Add a check for the type of safety issue (denormal, signaling)
9715   // for the target we're vectorizing for, to make sure none of the
9716   // additional fp-math flags can help.
9717   if (Hints.isPotentiallyUnsafe() &&
9718       TTI->isFPVectorizationPotentiallyUnsafe()) {
9719     reportVectorizationFailure(
9720         "Potentially unsafe FP op prevents vectorization",
9721         "loop not vectorized due to unsafe FP support.",
9722         "UnsafeFP", ORE, L);
9723     Hints.emitRemarkWithHints();
9724     return false;
9725   }
9726 
9727   if (!Requirements.canVectorizeFPMath(Hints)) {
9728     ORE->emit([&]() {
9729       auto *ExactFPMathInst = Requirements.getExactFPInst();
9730       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9731                                                  ExactFPMathInst->getDebugLoc(),
9732                                                  ExactFPMathInst->getParent())
9733              << "loop not vectorized: cannot prove it is safe to reorder "
9734                 "floating-point operations";
9735     });
9736     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9737                          "reorder floating-point operations\n");
9738     Hints.emitRemarkWithHints();
9739     return false;
9740   }
9741 
9742   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9743   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9744 
9745   // If an override option has been passed in for interleaved accesses, use it.
9746   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9747     UseInterleaved = EnableInterleavedMemAccesses;
9748 
9749   // Analyze interleaved memory accesses.
9750   if (UseInterleaved) {
9751     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
9752   }
9753 
9754   // Use the cost model.
9755   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9756                                 F, &Hints, IAI);
9757   CM.collectValuesToIgnore();
9758 
9759   // Use the planner for vectorization.
9760   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
9761                                Requirements, ORE);
9762 
9763   // Get user vectorization factor and interleave count.
9764   ElementCount UserVF = Hints.getWidth();
9765   unsigned UserIC = Hints.getInterleave();
9766 
9767   // Plan how to best vectorize, return the best VF and its cost.
9768   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
9769 
9770   VectorizationFactor VF = VectorizationFactor::Disabled();
9771   unsigned IC = 1;
9772 
9773   if (MaybeVF) {
9774     VF = *MaybeVF;
9775     // Select the interleave count.
9776     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
9777   }
9778 
9779   // Identify the diagnostic messages that should be produced.
9780   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9781   bool VectorizeLoop = true, InterleaveLoop = true;
9782   if (VF.Width.isScalar()) {
9783     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9784     VecDiagMsg = std::make_pair(
9785         "VectorizationNotBeneficial",
9786         "the cost-model indicates that vectorization is not beneficial");
9787     VectorizeLoop = false;
9788   }
9789 
9790   if (!MaybeVF && UserIC > 1) {
9791     // Tell the user interleaving was avoided up-front, despite being explicitly
9792     // requested.
9793     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
9794                          "interleaving should be avoided up front\n");
9795     IntDiagMsg = std::make_pair(
9796         "InterleavingAvoided",
9797         "Ignoring UserIC, because interleaving was avoided up front");
9798     InterleaveLoop = false;
9799   } else if (IC == 1 && UserIC <= 1) {
9800     // Tell the user interleaving is not beneficial.
9801     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
9802     IntDiagMsg = std::make_pair(
9803         "InterleavingNotBeneficial",
9804         "the cost-model indicates that interleaving is not beneficial");
9805     InterleaveLoop = false;
9806     if (UserIC == 1) {
9807       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
9808       IntDiagMsg.second +=
9809           " and is explicitly disabled or interleave count is set to 1";
9810     }
9811   } else if (IC > 1 && UserIC == 1) {
9812     // Tell the user interleaving is beneficial, but it explicitly disabled.
9813     LLVM_DEBUG(
9814         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
9815     IntDiagMsg = std::make_pair(
9816         "InterleavingBeneficialButDisabled",
9817         "the cost-model indicates that interleaving is beneficial "
9818         "but is explicitly disabled or interleave count is set to 1");
9819     InterleaveLoop = false;
9820   }
9821 
9822   // Override IC if user provided an interleave count.
9823   IC = UserIC > 0 ? UserIC : IC;
9824 
9825   // Emit diagnostic messages, if any.
9826   const char *VAPassName = Hints.vectorizeAnalysisPassName();
9827   if (!VectorizeLoop && !InterleaveLoop) {
9828     // Do not vectorize or interleaving the loop.
9829     ORE->emit([&]() {
9830       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
9831                                       L->getStartLoc(), L->getHeader())
9832              << VecDiagMsg.second;
9833     });
9834     ORE->emit([&]() {
9835       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
9836                                       L->getStartLoc(), L->getHeader())
9837              << IntDiagMsg.second;
9838     });
9839     return false;
9840   } else if (!VectorizeLoop && InterleaveLoop) {
9841     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9842     ORE->emit([&]() {
9843       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
9844                                         L->getStartLoc(), L->getHeader())
9845              << VecDiagMsg.second;
9846     });
9847   } else if (VectorizeLoop && !InterleaveLoop) {
9848     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9849                       << ") in " << DebugLocStr << '\n');
9850     ORE->emit([&]() {
9851       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
9852                                         L->getStartLoc(), L->getHeader())
9853              << IntDiagMsg.second;
9854     });
9855   } else if (VectorizeLoop && InterleaveLoop) {
9856     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9857                       << ") in " << DebugLocStr << '\n');
9858     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9859   }
9860 
9861   bool DisableRuntimeUnroll = false;
9862   MDNode *OrigLoopID = L->getLoopID();
9863   {
9864     // Optimistically generate runtime checks. Drop them if they turn out to not
9865     // be profitable. Limit the scope of Checks, so the cleanup happens
9866     // immediately after vector codegeneration is done.
9867     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9868                              F->getParent()->getDataLayout());
9869     if (!VF.Width.isScalar() || IC > 1)
9870       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
9871     LVP.setBestPlan(VF.Width, IC);
9872 
9873     using namespace ore;
9874     if (!VectorizeLoop) {
9875       assert(IC > 1 && "interleave count should not be 1 or 0");
9876       // If we decided that it is not legal to vectorize the loop, then
9877       // interleave it.
9878       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
9879                                  &CM, BFI, PSI, Checks);
9880       LVP.executePlan(Unroller, DT);
9881 
9882       ORE->emit([&]() {
9883         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
9884                                   L->getHeader())
9885                << "interleaved loop (interleaved count: "
9886                << NV("InterleaveCount", IC) << ")";
9887       });
9888     } else {
9889       // If we decided that it is *legal* to vectorize the loop, then do it.
9890 
9891       // Consider vectorizing the epilogue too if it's profitable.
9892       VectorizationFactor EpilogueVF =
9893           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
9894       if (EpilogueVF.Width.isVector()) {
9895 
9896         // The first pass vectorizes the main loop and creates a scalar epilogue
9897         // to be vectorized by executing the plan (potentially with a different
9898         // factor) again shortly afterwards.
9899         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
9900                                           EpilogueVF.Width.getKnownMinValue(),
9901                                           1);
9902         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
9903                                            EPI, &LVL, &CM, BFI, PSI, Checks);
9904 
9905         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
9906         LVP.executePlan(MainILV, DT);
9907         ++LoopsVectorized;
9908 
9909         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
9910         formLCSSARecursively(*L, *DT, LI, SE);
9911 
9912         // Second pass vectorizes the epilogue and adjusts the control flow
9913         // edges from the first pass.
9914         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
9915         EPI.MainLoopVF = EPI.EpilogueVF;
9916         EPI.MainLoopUF = EPI.EpilogueUF;
9917         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
9918                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
9919                                                  Checks);
9920         LVP.executePlan(EpilogILV, DT);
9921         ++LoopsEpilogueVectorized;
9922 
9923         if (!MainILV.areSafetyChecksAdded())
9924           DisableRuntimeUnroll = true;
9925       } else {
9926         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
9927                                &LVL, &CM, BFI, PSI, Checks);
9928         LVP.executePlan(LB, DT);
9929         ++LoopsVectorized;
9930 
9931         // Add metadata to disable runtime unrolling a scalar loop when there
9932         // are no runtime checks about strides and memory. A scalar loop that is
9933         // rarely used is not worth unrolling.
9934         if (!LB.areSafetyChecksAdded())
9935           DisableRuntimeUnroll = true;
9936       }
9937       // Report the vectorization decision.
9938       ORE->emit([&]() {
9939         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
9940                                   L->getHeader())
9941                << "vectorized loop (vectorization width: "
9942                << NV("VectorizationFactor", VF.Width)
9943                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
9944       });
9945     }
9946 
9947     if (ORE->allowExtraAnalysis(LV_NAME))
9948       checkMixedPrecision(L, ORE);
9949   }
9950 
9951   Optional<MDNode *> RemainderLoopID =
9952       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
9953                                       LLVMLoopVectorizeFollowupEpilogue});
9954   if (RemainderLoopID.hasValue()) {
9955     L->setLoopID(RemainderLoopID.getValue());
9956   } else {
9957     if (DisableRuntimeUnroll)
9958       AddRuntimeUnrollDisableMetaData(L);
9959 
9960     // Mark the loop as already vectorized to avoid vectorizing again.
9961     Hints.setAlreadyVectorized();
9962   }
9963 
9964   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9965   return true;
9966 }
9967 
9968 LoopVectorizeResult LoopVectorizePass::runImpl(
9969     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
9970     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
9971     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
9972     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
9973     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
9974   SE = &SE_;
9975   LI = &LI_;
9976   TTI = &TTI_;
9977   DT = &DT_;
9978   BFI = &BFI_;
9979   TLI = TLI_;
9980   AA = &AA_;
9981   AC = &AC_;
9982   GetLAA = &GetLAA_;
9983   DB = &DB_;
9984   ORE = &ORE_;
9985   PSI = PSI_;
9986 
9987   // Don't attempt if
9988   // 1. the target claims to have no vector registers, and
9989   // 2. interleaving won't help ILP.
9990   //
9991   // The second condition is necessary because, even if the target has no
9992   // vector registers, loop vectorization may still enable scalar
9993   // interleaving.
9994   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
9995       TTI->getMaxInterleaveFactor(1) < 2)
9996     return LoopVectorizeResult(false, false);
9997 
9998   bool Changed = false, CFGChanged = false;
9999 
10000   // The vectorizer requires loops to be in simplified form.
10001   // Since simplification may add new inner loops, it has to run before the
10002   // legality and profitability checks. This means running the loop vectorizer
10003   // will simplify all loops, regardless of whether anything end up being
10004   // vectorized.
10005   for (auto &L : *LI)
10006     Changed |= CFGChanged |=
10007         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10008 
10009   // Build up a worklist of inner-loops to vectorize. This is necessary as
10010   // the act of vectorizing or partially unrolling a loop creates new loops
10011   // and can invalidate iterators across the loops.
10012   SmallVector<Loop *, 8> Worklist;
10013 
10014   for (Loop *L : *LI)
10015     collectSupportedLoops(*L, LI, ORE, Worklist);
10016 
10017   LoopsAnalyzed += Worklist.size();
10018 
10019   // Now walk the identified inner loops.
10020   while (!Worklist.empty()) {
10021     Loop *L = Worklist.pop_back_val();
10022 
10023     // For the inner loops we actually process, form LCSSA to simplify the
10024     // transform.
10025     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10026 
10027     Changed |= CFGChanged |= processLoop(L);
10028   }
10029 
10030   // Process each loop nest in the function.
10031   return LoopVectorizeResult(Changed, CFGChanged);
10032 }
10033 
10034 PreservedAnalyses LoopVectorizePass::run(Function &F,
10035                                          FunctionAnalysisManager &AM) {
10036     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10037     auto &LI = AM.getResult<LoopAnalysis>(F);
10038     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10039     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10040     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10041     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10042     auto &AA = AM.getResult<AAManager>(F);
10043     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10044     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10045     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10046     MemorySSA *MSSA = EnableMSSALoopDependency
10047                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10048                           : nullptr;
10049 
10050     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10051     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10052         [&](Loop &L) -> const LoopAccessInfo & {
10053       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10054                                         TLI, TTI, nullptr, MSSA};
10055       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10056     };
10057     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10058     ProfileSummaryInfo *PSI =
10059         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10060     LoopVectorizeResult Result =
10061         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10062     if (!Result.MadeAnyChange)
10063       return PreservedAnalyses::all();
10064     PreservedAnalyses PA;
10065 
10066     // We currently do not preserve loopinfo/dominator analyses with outer loop
10067     // vectorization. Until this is addressed, mark these analyses as preserved
10068     // only for non-VPlan-native path.
10069     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10070     if (!EnableVPlanNativePath) {
10071       PA.preserve<LoopAnalysis>();
10072       PA.preserve<DominatorTreeAnalysis>();
10073     }
10074     PA.preserve<BasicAA>();
10075     PA.preserve<GlobalsAA>();
10076     if (!Result.MadeCFGChange)
10077       PA.preserveSet<CFGAnalyses>();
10078     return PA;
10079 }
10080