1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 AnalysisKey ShouldRunExtraVectorPasses::Key;
432 
433 /// InnerLoopVectorizer vectorizes loops which contain only one basic
434 /// block to a specified vectorization factor (VF).
435 /// This class performs the widening of scalars into vectors, or multiple
436 /// scalars. This class also implements the following features:
437 /// * It inserts an epilogue loop for handling loops that don't have iteration
438 ///   counts that are known to be a multiple of the vectorization factor.
439 /// * It handles the code generation for reduction variables.
440 /// * Scalarization (implementation using scalars) of un-vectorizable
441 ///   instructions.
442 /// InnerLoopVectorizer does not perform any vectorization-legality
443 /// checks, and relies on the caller to check for the different legality
444 /// aspects. The InnerLoopVectorizer relies on the
445 /// LoopVectorizationLegality class to provide information about the induction
446 /// and reduction variables that were found to a given vectorization factor.
447 class InnerLoopVectorizer {
448 public:
449   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
450                       LoopInfo *LI, DominatorTree *DT,
451                       const TargetLibraryInfo *TLI,
452                       const TargetTransformInfo *TTI, AssumptionCache *AC,
453                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
454                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
455                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
456                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
457       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
458         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
459         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
460         PSI(PSI), RTChecks(RTChecks) {
461     // Query this against the original loop and save it here because the profile
462     // of the original loop header may change as the transformation happens.
463     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
464         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   }
466 
467   virtual ~InnerLoopVectorizer() = default;
468 
469   /// Create a new empty loop that will contain vectorized instructions later
470   /// on, while the old loop will be used as the scalar remainder. Control flow
471   /// is generated around the vectorized (and scalar epilogue) loops consisting
472   /// of various checks and bypasses. Return the pre-header block of the new
473   /// loop and the start value for the canonical induction, if it is != 0. The
474   /// latter is the case when vectorizing the epilogue loop. In the case of
475   /// epilogue vectorization, this function is overriden to handle the more
476   /// complex control flow around the loops.
477   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
478 
479   /// Widen a single call instruction within the innermost loop.
480   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
481                             VPTransformState &State);
482 
483   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
484   void fixVectorizedLoop(VPTransformState &State);
485 
486   // Return true if any runtime check is added.
487   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
488 
489   /// A type for vectorized values in the new loop. Each value from the
490   /// original loop, when vectorized, is represented by UF vector values in the
491   /// new unrolled loop, where UF is the unroll factor.
492   using VectorParts = SmallVector<Value *, 2>;
493 
494   /// Vectorize a single first-order recurrence or pointer induction PHINode in
495   /// a block. This method handles the induction variable canonicalization. It
496   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
497   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
498                            VPTransformState &State);
499 
500   /// A helper function to scalarize a single Instruction in the innermost loop.
501   /// Generates a sequence of scalar instances for each lane between \p MinLane
502   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
503   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
504   /// Instr's operands.
505   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
506                             const VPIteration &Instance, bool IfPredicateInstr,
507                             VPTransformState &State);
508 
509   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
510   /// is provided, the integer induction variable will first be truncated to
511   /// the corresponding type. \p CanonicalIV is the scalar value generated for
512   /// the canonical induction variable.
513   void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def,
514                              VPTransformState &State, Value *CanonicalIV);
515 
516   /// Construct the vector value of a scalarized value \p V one lane at a time.
517   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
518                                  VPTransformState &State);
519 
520   /// Try to vectorize interleaved access group \p Group with the base address
521   /// given in \p Addr, optionally masking the vector operations if \p
522   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
523   /// values in the vectorized loop.
524   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
525                                 ArrayRef<VPValue *> VPDefs,
526                                 VPTransformState &State, VPValue *Addr,
527                                 ArrayRef<VPValue *> StoredValues,
528                                 VPValue *BlockInMask = nullptr);
529 
530   /// Set the debug location in the builder \p Ptr using the debug location in
531   /// \p V. If \p Ptr is None then it uses the class member's Builder.
532   void setDebugLocFromInst(const Value *V,
533                            Optional<IRBuilder<> *> CustomBuilder = None);
534 
535   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
536   void fixNonInductionPHIs(VPTransformState &State);
537 
538   /// Returns true if the reordering of FP operations is not allowed, but we are
539   /// able to vectorize with strict in-order reductions for the given RdxDesc.
540   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
541 
542   /// Create a broadcast instruction. This method generates a broadcast
543   /// instruction (shuffle) for loop invariant values and for the induction
544   /// value. If this is the induction variable then we extend it to N, N+1, ...
545   /// this is needed because each iteration in the loop corresponds to a SIMD
546   /// element.
547   virtual Value *getBroadcastInstrs(Value *V);
548 
549   /// Add metadata from one instruction to another.
550   ///
551   /// This includes both the original MDs from \p From and additional ones (\see
552   /// addNewMetadata).  Use this for *newly created* instructions in the vector
553   /// loop.
554   void addMetadata(Instruction *To, Instruction *From);
555 
556   /// Similar to the previous function but it adds the metadata to a
557   /// vector of instructions.
558   void addMetadata(ArrayRef<Value *> To, Instruction *From);
559 
560   // Returns the resume value (bc.merge.rdx) for a reduction as
561   // generated by fixReduction.
562   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
563 
564 protected:
565   friend class LoopVectorizationPlanner;
566 
567   /// A small list of PHINodes.
568   using PhiVector = SmallVector<PHINode *, 4>;
569 
570   /// A type for scalarized values in the new loop. Each value from the
571   /// original loop, when scalarized, is represented by UF x VF scalar values
572   /// in the new unrolled loop, where UF is the unroll factor and VF is the
573   /// vectorization factor.
574   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
575 
576   /// Set up the values of the IVs correctly when exiting the vector loop.
577   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
578                     Value *CountRoundDown, Value *EndValue,
579                     BasicBlock *MiddleBlock);
580 
581   /// Introduce a conditional branch (on true, condition to be set later) at the
582   /// end of the header=latch connecting it to itself (across the backedge) and
583   /// to the exit block of \p L.
584   void createHeaderBranch(Loop *L);
585 
586   /// Handle all cross-iteration phis in the header.
587   void fixCrossIterationPHIs(VPTransformState &State);
588 
589   /// Create the exit value of first order recurrences in the middle block and
590   /// update their users.
591   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
592                                VPTransformState &State);
593 
594   /// Create code for the loop exit value of the reduction.
595   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
596 
597   /// Clear NSW/NUW flags from reduction instructions if necessary.
598   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
599                                VPTransformState &State);
600 
601   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
602   /// means we need to add the appropriate incoming value from the middle
603   /// block as exiting edges from the scalar epilogue loop (if present) are
604   /// already in place, and we exit the vector loop exclusively to the middle
605   /// block.
606   void fixLCSSAPHIs(VPTransformState &State);
607 
608   /// Iteratively sink the scalarized operands of a predicated instruction into
609   /// the block that was created for it.
610   void sinkScalarOperands(Instruction *PredInst);
611 
612   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
613   /// represented as.
614   void truncateToMinimalBitwidths(VPTransformState &State);
615 
616   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
617   /// variable on which to base the steps, \p Step is the size of the step, and
618   /// \p EntryVal is the value from the original loop that maps to the steps.
619   /// Note that \p EntryVal doesn't have to be an induction variable - it
620   /// can also be a truncate instruction.
621   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
622                         const InductionDescriptor &ID, VPValue *Def,
623                         VPTransformState &State);
624 
625   /// Create a vector induction phi node based on an existing scalar one. \p
626   /// EntryVal is the value from the original loop that maps to the vector phi
627   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
628   /// truncate instruction, instead of widening the original IV, we widen a
629   /// version of the IV truncated to \p EntryVal's type.
630   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
631                                        Value *Step, Value *Start,
632                                        Instruction *EntryVal, VPValue *Def,
633                                        VPTransformState &State);
634 
635   /// Returns (and creates if needed) the original loop trip count.
636   Value *getOrCreateTripCount(Loop *NewLoop);
637 
638   /// Returns (and creates if needed) the trip count of the widened loop.
639   Value *getOrCreateVectorTripCount(Loop *NewLoop);
640 
641   /// Returns a bitcasted value to the requested vector type.
642   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
643   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
644                                 const DataLayout &DL);
645 
646   /// Emit a bypass check to see if the vector trip count is zero, including if
647   /// it overflows.
648   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
649 
650   /// Emit a bypass check to see if all of the SCEV assumptions we've
651   /// had to make are correct. Returns the block containing the checks or
652   /// nullptr if no checks have been added.
653   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
654 
655   /// Emit bypass checks to check any memory assumptions we may have made.
656   /// Returns the block containing the checks or nullptr if no checks have been
657   /// added.
658   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
659 
660   /// Compute the transformed value of Index at offset StartValue using step
661   /// StepValue.
662   /// For integer induction, returns StartValue + Index * StepValue.
663   /// For pointer induction, returns StartValue[Index * StepValue].
664   /// FIXME: The newly created binary instructions should contain nsw/nuw
665   /// flags, which can be found from the original scalar operations.
666   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
667                               const DataLayout &DL,
668                               const InductionDescriptor &ID,
669                               BasicBlock *VectorHeader) const;
670 
671   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
672   /// vector loop preheader, middle block and scalar preheader. Also
673   /// allocate a loop object for the new vector loop and return it.
674   Loop *createVectorLoopSkeleton(StringRef Prefix);
675 
676   /// Create new phi nodes for the induction variables to resume iteration count
677   /// in the scalar epilogue, from where the vectorized loop left off.
678   /// In cases where the loop skeleton is more complicated (eg. epilogue
679   /// vectorization) and the resume values can come from an additional bypass
680   /// block, the \p AdditionalBypass pair provides information about the bypass
681   /// block and the end value on the edge from bypass to this loop.
682   void createInductionResumeValues(
683       Loop *L,
684       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
685 
686   /// Complete the loop skeleton by adding debug MDs, creating appropriate
687   /// conditional branches in the middle block, preparing the builder and
688   /// running the verifier. Take in the vector loop \p L as argument, and return
689   /// the preheader of the completed vector loop.
690   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
691 
692   /// Add additional metadata to \p To that was not present on \p Orig.
693   ///
694   /// Currently this is used to add the noalias annotations based on the
695   /// inserted memchecks.  Use this for instructions that are *cloned* into the
696   /// vector loop.
697   void addNewMetadata(Instruction *To, const Instruction *Orig);
698 
699   /// Collect poison-generating recipes that may generate a poison value that is
700   /// used after vectorization, even when their operands are not poison. Those
701   /// recipes meet the following conditions:
702   ///  * Contribute to the address computation of a recipe generating a widen
703   ///    memory load/store (VPWidenMemoryInstructionRecipe or
704   ///    VPInterleaveRecipe).
705   ///  * Such a widen memory load/store has at least one underlying Instruction
706   ///    that is in a basic block that needs predication and after vectorization
707   ///    the generated instruction won't be predicated.
708   void collectPoisonGeneratingRecipes(VPTransformState &State);
709 
710   /// Allow subclasses to override and print debug traces before/after vplan
711   /// execution, when trace information is requested.
712   virtual void printDebugTracesAtStart(){};
713   virtual void printDebugTracesAtEnd(){};
714 
715   /// The original loop.
716   Loop *OrigLoop;
717 
718   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
719   /// dynamic knowledge to simplify SCEV expressions and converts them to a
720   /// more usable form.
721   PredicatedScalarEvolution &PSE;
722 
723   /// Loop Info.
724   LoopInfo *LI;
725 
726   /// Dominator Tree.
727   DominatorTree *DT;
728 
729   /// Alias Analysis.
730   AAResults *AA;
731 
732   /// Target Library Info.
733   const TargetLibraryInfo *TLI;
734 
735   /// Target Transform Info.
736   const TargetTransformInfo *TTI;
737 
738   /// Assumption Cache.
739   AssumptionCache *AC;
740 
741   /// Interface to emit optimization remarks.
742   OptimizationRemarkEmitter *ORE;
743 
744   /// LoopVersioning.  It's only set up (non-null) if memchecks were
745   /// used.
746   ///
747   /// This is currently only used to add no-alias metadata based on the
748   /// memchecks.  The actually versioning is performed manually.
749   std::unique_ptr<LoopVersioning> LVer;
750 
751   /// The vectorization SIMD factor to use. Each vector will have this many
752   /// vector elements.
753   ElementCount VF;
754 
755   /// The vectorization unroll factor to use. Each scalar is vectorized to this
756   /// many different vector instructions.
757   unsigned UF;
758 
759   /// The builder that we use
760   IRBuilder<> Builder;
761 
762   // --- Vectorization state ---
763 
764   /// The vector-loop preheader.
765   BasicBlock *LoopVectorPreHeader;
766 
767   /// The scalar-loop preheader.
768   BasicBlock *LoopScalarPreHeader;
769 
770   /// Middle Block between the vector and the scalar.
771   BasicBlock *LoopMiddleBlock;
772 
773   /// The unique ExitBlock of the scalar loop if one exists.  Note that
774   /// there can be multiple exiting edges reaching this block.
775   BasicBlock *LoopExitBlock;
776 
777   /// The vector loop body.
778   BasicBlock *LoopVectorBody;
779 
780   /// The scalar loop body.
781   BasicBlock *LoopScalarBody;
782 
783   /// A list of all bypass blocks. The first block is the entry of the loop.
784   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
785 
786   /// Store instructions that were predicated.
787   SmallVector<Instruction *, 4> PredicatedInstructions;
788 
789   /// Trip count of the original loop.
790   Value *TripCount = nullptr;
791 
792   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
793   Value *VectorTripCount = nullptr;
794 
795   /// The legality analysis.
796   LoopVectorizationLegality *Legal;
797 
798   /// The profitablity analysis.
799   LoopVectorizationCostModel *Cost;
800 
801   // Record whether runtime checks are added.
802   bool AddedSafetyChecks = false;
803 
804   // Holds the end values for each induction variable. We save the end values
805   // so we can later fix-up the external users of the induction variables.
806   DenseMap<PHINode *, Value *> IVEndValues;
807 
808   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
809   // fixed up at the end of vector code generation.
810   SmallVector<PHINode *, 8> OrigPHIsToFix;
811 
812   /// BFI and PSI are used to check for profile guided size optimizations.
813   BlockFrequencyInfo *BFI;
814   ProfileSummaryInfo *PSI;
815 
816   // Whether this loop should be optimized for size based on profile guided size
817   // optimizatios.
818   bool OptForSizeBasedOnProfile;
819 
820   /// Structure to hold information about generated runtime checks, responsible
821   /// for cleaning the checks, if vectorization turns out unprofitable.
822   GeneratedRTChecks &RTChecks;
823 
824   // Holds the resume values for reductions in the loops, used to set the
825   // correct start value of reduction PHIs when vectorizing the epilogue.
826   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
827       ReductionResumeValues;
828 };
829 
830 class InnerLoopUnroller : public InnerLoopVectorizer {
831 public:
832   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
833                     LoopInfo *LI, DominatorTree *DT,
834                     const TargetLibraryInfo *TLI,
835                     const TargetTransformInfo *TTI, AssumptionCache *AC,
836                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
837                     LoopVectorizationLegality *LVL,
838                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
839                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
840       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
841                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
842                             BFI, PSI, Check) {}
843 
844 private:
845   Value *getBroadcastInstrs(Value *V) override;
846 };
847 
848 /// Encapsulate information regarding vectorization of a loop and its epilogue.
849 /// This information is meant to be updated and used across two stages of
850 /// epilogue vectorization.
851 struct EpilogueLoopVectorizationInfo {
852   ElementCount MainLoopVF = ElementCount::getFixed(0);
853   unsigned MainLoopUF = 0;
854   ElementCount EpilogueVF = ElementCount::getFixed(0);
855   unsigned EpilogueUF = 0;
856   BasicBlock *MainLoopIterationCountCheck = nullptr;
857   BasicBlock *EpilogueIterationCountCheck = nullptr;
858   BasicBlock *SCEVSafetyCheck = nullptr;
859   BasicBlock *MemSafetyCheck = nullptr;
860   Value *TripCount = nullptr;
861   Value *VectorTripCount = nullptr;
862 
863   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
864                                 ElementCount EVF, unsigned EUF)
865       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
866     assert(EUF == 1 &&
867            "A high UF for the epilogue loop is likely not beneficial.");
868   }
869 };
870 
871 /// An extension of the inner loop vectorizer that creates a skeleton for a
872 /// vectorized loop that has its epilogue (residual) also vectorized.
873 /// The idea is to run the vplan on a given loop twice, firstly to setup the
874 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
875 /// from the first step and vectorize the epilogue.  This is achieved by
876 /// deriving two concrete strategy classes from this base class and invoking
877 /// them in succession from the loop vectorizer planner.
878 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
879 public:
880   InnerLoopAndEpilogueVectorizer(
881       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
882       DominatorTree *DT, const TargetLibraryInfo *TLI,
883       const TargetTransformInfo *TTI, AssumptionCache *AC,
884       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
885       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
886       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
887       GeneratedRTChecks &Checks)
888       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
889                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
890                             Checks),
891         EPI(EPI) {}
892 
893   // Override this function to handle the more complex control flow around the
894   // three loops.
895   std::pair<BasicBlock *, Value *>
896   createVectorizedLoopSkeleton() final override {
897     return createEpilogueVectorizedLoopSkeleton();
898   }
899 
900   /// The interface for creating a vectorized skeleton using one of two
901   /// different strategies, each corresponding to one execution of the vplan
902   /// as described above.
903   virtual std::pair<BasicBlock *, Value *>
904   createEpilogueVectorizedLoopSkeleton() = 0;
905 
906   /// Holds and updates state information required to vectorize the main loop
907   /// and its epilogue in two separate passes. This setup helps us avoid
908   /// regenerating and recomputing runtime safety checks. It also helps us to
909   /// shorten the iteration-count-check path length for the cases where the
910   /// iteration count of the loop is so small that the main vector loop is
911   /// completely skipped.
912   EpilogueLoopVectorizationInfo &EPI;
913 };
914 
915 /// A specialized derived class of inner loop vectorizer that performs
916 /// vectorization of *main* loops in the process of vectorizing loops and their
917 /// epilogues.
918 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
919 public:
920   EpilogueVectorizerMainLoop(
921       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
922       DominatorTree *DT, const TargetLibraryInfo *TLI,
923       const TargetTransformInfo *TTI, AssumptionCache *AC,
924       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
925       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
926       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
927       GeneratedRTChecks &Check)
928       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
929                                        EPI, LVL, CM, BFI, PSI, Check) {}
930   /// Implements the interface for creating a vectorized skeleton using the
931   /// *main loop* strategy (ie the first pass of vplan execution).
932   std::pair<BasicBlock *, Value *>
933   createEpilogueVectorizedLoopSkeleton() final override;
934 
935 protected:
936   /// Emits an iteration count bypass check once for the main loop (when \p
937   /// ForEpilogue is false) and once for the epilogue loop (when \p
938   /// ForEpilogue is true).
939   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
940                                              bool ForEpilogue);
941   void printDebugTracesAtStart() override;
942   void printDebugTracesAtEnd() override;
943 };
944 
945 // A specialized derived class of inner loop vectorizer that performs
946 // vectorization of *epilogue* loops in the process of vectorizing loops and
947 // their epilogues.
948 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
949 public:
950   EpilogueVectorizerEpilogueLoop(
951       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
952       DominatorTree *DT, const TargetLibraryInfo *TLI,
953       const TargetTransformInfo *TTI, AssumptionCache *AC,
954       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
955       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
956       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
957       GeneratedRTChecks &Checks)
958       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
959                                        EPI, LVL, CM, BFI, PSI, Checks) {}
960   /// Implements the interface for creating a vectorized skeleton using the
961   /// *epilogue loop* strategy (ie the second pass of vplan execution).
962   std::pair<BasicBlock *, Value *>
963   createEpilogueVectorizedLoopSkeleton() final override;
964 
965 protected:
966   /// Emits an iteration count bypass check after the main vector loop has
967   /// finished to see if there are any iterations left to execute by either
968   /// the vector epilogue or the scalar epilogue.
969   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
970                                                       BasicBlock *Bypass,
971                                                       BasicBlock *Insert);
972   void printDebugTracesAtStart() override;
973   void printDebugTracesAtEnd() override;
974 };
975 } // end namespace llvm
976 
977 /// Look for a meaningful debug location on the instruction or it's
978 /// operands.
979 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
980   if (!I)
981     return I;
982 
983   DebugLoc Empty;
984   if (I->getDebugLoc() != Empty)
985     return I;
986 
987   for (Use &Op : I->operands()) {
988     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
989       if (OpInst->getDebugLoc() != Empty)
990         return OpInst;
991   }
992 
993   return I;
994 }
995 
996 void InnerLoopVectorizer::setDebugLocFromInst(
997     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
998   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
999   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1000     const DILocation *DIL = Inst->getDebugLoc();
1001 
1002     // When a FSDiscriminator is enabled, we don't need to add the multiply
1003     // factors to the discriminators.
1004     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1005         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1006       // FIXME: For scalable vectors, assume vscale=1.
1007       auto NewDIL =
1008           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1009       if (NewDIL)
1010         B->SetCurrentDebugLocation(NewDIL.getValue());
1011       else
1012         LLVM_DEBUG(dbgs()
1013                    << "Failed to create new discriminator: "
1014                    << DIL->getFilename() << " Line: " << DIL->getLine());
1015     } else
1016       B->SetCurrentDebugLocation(DIL);
1017   } else
1018     B->SetCurrentDebugLocation(DebugLoc());
1019 }
1020 
1021 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1022 /// is passed, the message relates to that particular instruction.
1023 #ifndef NDEBUG
1024 static void debugVectorizationMessage(const StringRef Prefix,
1025                                       const StringRef DebugMsg,
1026                                       Instruction *I) {
1027   dbgs() << "LV: " << Prefix << DebugMsg;
1028   if (I != nullptr)
1029     dbgs() << " " << *I;
1030   else
1031     dbgs() << '.';
1032   dbgs() << '\n';
1033 }
1034 #endif
1035 
1036 /// Create an analysis remark that explains why vectorization failed
1037 ///
1038 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1039 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1040 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1041 /// the location of the remark.  \return the remark object that can be
1042 /// streamed to.
1043 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1044     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1045   Value *CodeRegion = TheLoop->getHeader();
1046   DebugLoc DL = TheLoop->getStartLoc();
1047 
1048   if (I) {
1049     CodeRegion = I->getParent();
1050     // If there is no debug location attached to the instruction, revert back to
1051     // using the loop's.
1052     if (I->getDebugLoc())
1053       DL = I->getDebugLoc();
1054   }
1055 
1056   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1057 }
1058 
1059 namespace llvm {
1060 
1061 /// Return a value for Step multiplied by VF.
1062 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1063                        int64_t Step) {
1064   assert(Ty->isIntegerTy() && "Expected an integer step");
1065   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1066   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1067 }
1068 
1069 /// Return the runtime value for VF.
1070 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1071   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1072   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1073 }
1074 
1075 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1076   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1077   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1078   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1079   return B.CreateUIToFP(RuntimeVF, FTy);
1080 }
1081 
1082 void reportVectorizationFailure(const StringRef DebugMsg,
1083                                 const StringRef OREMsg, const StringRef ORETag,
1084                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1085                                 Instruction *I) {
1086   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1087   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1088   ORE->emit(
1089       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1090       << "loop not vectorized: " << OREMsg);
1091 }
1092 
1093 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1094                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1095                              Instruction *I) {
1096   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1097   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1098   ORE->emit(
1099       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1100       << Msg);
1101 }
1102 
1103 } // end namespace llvm
1104 
1105 #ifndef NDEBUG
1106 /// \return string containing a file name and a line # for the given loop.
1107 static std::string getDebugLocString(const Loop *L) {
1108   std::string Result;
1109   if (L) {
1110     raw_string_ostream OS(Result);
1111     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1112       LoopDbgLoc.print(OS);
1113     else
1114       // Just print the module name.
1115       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1116     OS.flush();
1117   }
1118   return Result;
1119 }
1120 #endif
1121 
1122 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1123                                          const Instruction *Orig) {
1124   // If the loop was versioned with memchecks, add the corresponding no-alias
1125   // metadata.
1126   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1127     LVer->annotateInstWithNoAlias(To, Orig);
1128 }
1129 
1130 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1131     VPTransformState &State) {
1132 
1133   // Collect recipes in the backward slice of `Root` that may generate a poison
1134   // value that is used after vectorization.
1135   SmallPtrSet<VPRecipeBase *, 16> Visited;
1136   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1137     SmallVector<VPRecipeBase *, 16> Worklist;
1138     Worklist.push_back(Root);
1139 
1140     // Traverse the backward slice of Root through its use-def chain.
1141     while (!Worklist.empty()) {
1142       VPRecipeBase *CurRec = Worklist.back();
1143       Worklist.pop_back();
1144 
1145       if (!Visited.insert(CurRec).second)
1146         continue;
1147 
1148       // Prune search if we find another recipe generating a widen memory
1149       // instruction. Widen memory instructions involved in address computation
1150       // will lead to gather/scatter instructions, which don't need to be
1151       // handled.
1152       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1153           isa<VPInterleaveRecipe>(CurRec) ||
1154           isa<VPCanonicalIVPHIRecipe>(CurRec))
1155         continue;
1156 
1157       // This recipe contributes to the address computation of a widen
1158       // load/store. Collect recipe if its underlying instruction has
1159       // poison-generating flags.
1160       Instruction *Instr = CurRec->getUnderlyingInstr();
1161       if (Instr && Instr->hasPoisonGeneratingFlags())
1162         State.MayGeneratePoisonRecipes.insert(CurRec);
1163 
1164       // Add new definitions to the worklist.
1165       for (VPValue *operand : CurRec->operands())
1166         if (VPDef *OpDef = operand->getDef())
1167           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1168     }
1169   });
1170 
1171   // Traverse all the recipes in the VPlan and collect the poison-generating
1172   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1173   // VPInterleaveRecipe.
1174   auto Iter = depth_first(
1175       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1176   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1177     for (VPRecipeBase &Recipe : *VPBB) {
1178       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1179         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1180         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1181         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1182             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1183           collectPoisonGeneratingInstrsInBackwardSlice(
1184               cast<VPRecipeBase>(AddrDef));
1185       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1186         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1187         if (AddrDef) {
1188           // Check if any member of the interleave group needs predication.
1189           const InterleaveGroup<Instruction> *InterGroup =
1190               InterleaveRec->getInterleaveGroup();
1191           bool NeedPredication = false;
1192           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1193                I < NumMembers; ++I) {
1194             Instruction *Member = InterGroup->getMember(I);
1195             if (Member)
1196               NeedPredication |=
1197                   Legal->blockNeedsPredication(Member->getParent());
1198           }
1199 
1200           if (NeedPredication)
1201             collectPoisonGeneratingInstrsInBackwardSlice(
1202                 cast<VPRecipeBase>(AddrDef));
1203         }
1204       }
1205     }
1206   }
1207 }
1208 
1209 void InnerLoopVectorizer::addMetadata(Instruction *To,
1210                                       Instruction *From) {
1211   propagateMetadata(To, From);
1212   addNewMetadata(To, From);
1213 }
1214 
1215 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1216                                       Instruction *From) {
1217   for (Value *V : To) {
1218     if (Instruction *I = dyn_cast<Instruction>(V))
1219       addMetadata(I, From);
1220   }
1221 }
1222 
1223 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1224     const RecurrenceDescriptor &RdxDesc) {
1225   auto It = ReductionResumeValues.find(&RdxDesc);
1226   assert(It != ReductionResumeValues.end() &&
1227          "Expected to find a resume value for the reduction.");
1228   return It->second;
1229 }
1230 
1231 namespace llvm {
1232 
1233 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1234 // lowered.
1235 enum ScalarEpilogueLowering {
1236 
1237   // The default: allowing scalar epilogues.
1238   CM_ScalarEpilogueAllowed,
1239 
1240   // Vectorization with OptForSize: don't allow epilogues.
1241   CM_ScalarEpilogueNotAllowedOptSize,
1242 
1243   // A special case of vectorisation with OptForSize: loops with a very small
1244   // trip count are considered for vectorization under OptForSize, thereby
1245   // making sure the cost of their loop body is dominant, free of runtime
1246   // guards and scalar iteration overheads.
1247   CM_ScalarEpilogueNotAllowedLowTripLoop,
1248 
1249   // Loop hint predicate indicating an epilogue is undesired.
1250   CM_ScalarEpilogueNotNeededUsePredicate,
1251 
1252   // Directive indicating we must either tail fold or not vectorize
1253   CM_ScalarEpilogueNotAllowedUsePredicate
1254 };
1255 
1256 /// ElementCountComparator creates a total ordering for ElementCount
1257 /// for the purposes of using it in a set structure.
1258 struct ElementCountComparator {
1259   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1260     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1261            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1262   }
1263 };
1264 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1265 
1266 /// LoopVectorizationCostModel - estimates the expected speedups due to
1267 /// vectorization.
1268 /// In many cases vectorization is not profitable. This can happen because of
1269 /// a number of reasons. In this class we mainly attempt to predict the
1270 /// expected speedup/slowdowns due to the supported instruction set. We use the
1271 /// TargetTransformInfo to query the different backends for the cost of
1272 /// different operations.
1273 class LoopVectorizationCostModel {
1274 public:
1275   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1276                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1277                              LoopVectorizationLegality *Legal,
1278                              const TargetTransformInfo &TTI,
1279                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1280                              AssumptionCache *AC,
1281                              OptimizationRemarkEmitter *ORE, const Function *F,
1282                              const LoopVectorizeHints *Hints,
1283                              InterleavedAccessInfo &IAI)
1284       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1285         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1286         Hints(Hints), InterleaveInfo(IAI) {}
1287 
1288   /// \return An upper bound for the vectorization factors (both fixed and
1289   /// scalable). If the factors are 0, vectorization and interleaving should be
1290   /// avoided up front.
1291   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1292 
1293   /// \return True if runtime checks are required for vectorization, and false
1294   /// otherwise.
1295   bool runtimeChecksRequired();
1296 
1297   /// \return The most profitable vectorization factor and the cost of that VF.
1298   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1299   /// then this vectorization factor will be selected if vectorization is
1300   /// possible.
1301   VectorizationFactor
1302   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1303 
1304   VectorizationFactor
1305   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1306                                     const LoopVectorizationPlanner &LVP);
1307 
1308   /// Setup cost-based decisions for user vectorization factor.
1309   /// \return true if the UserVF is a feasible VF to be chosen.
1310   bool selectUserVectorizationFactor(ElementCount UserVF) {
1311     collectUniformsAndScalars(UserVF);
1312     collectInstsToScalarize(UserVF);
1313     return expectedCost(UserVF).first.isValid();
1314   }
1315 
1316   /// \return The size (in bits) of the smallest and widest types in the code
1317   /// that needs to be vectorized. We ignore values that remain scalar such as
1318   /// 64 bit loop indices.
1319   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1320 
1321   /// \return The desired interleave count.
1322   /// If interleave count has been specified by metadata it will be returned.
1323   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1324   /// are the selected vectorization factor and the cost of the selected VF.
1325   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1326 
1327   /// Memory access instruction may be vectorized in more than one way.
1328   /// Form of instruction after vectorization depends on cost.
1329   /// This function takes cost-based decisions for Load/Store instructions
1330   /// and collects them in a map. This decisions map is used for building
1331   /// the lists of loop-uniform and loop-scalar instructions.
1332   /// The calculated cost is saved with widening decision in order to
1333   /// avoid redundant calculations.
1334   void setCostBasedWideningDecision(ElementCount VF);
1335 
1336   /// A struct that represents some properties of the register usage
1337   /// of a loop.
1338   struct RegisterUsage {
1339     /// Holds the number of loop invariant values that are used in the loop.
1340     /// The key is ClassID of target-provided register class.
1341     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1342     /// Holds the maximum number of concurrent live intervals in the loop.
1343     /// The key is ClassID of target-provided register class.
1344     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1345   };
1346 
1347   /// \return Returns information about the register usages of the loop for the
1348   /// given vectorization factors.
1349   SmallVector<RegisterUsage, 8>
1350   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1351 
1352   /// Collect values we want to ignore in the cost model.
1353   void collectValuesToIgnore();
1354 
1355   /// Collect all element types in the loop for which widening is needed.
1356   void collectElementTypesForWidening();
1357 
1358   /// Split reductions into those that happen in the loop, and those that happen
1359   /// outside. In loop reductions are collected into InLoopReductionChains.
1360   void collectInLoopReductions();
1361 
1362   /// Returns true if we should use strict in-order reductions for the given
1363   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1364   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1365   /// of FP operations.
1366   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1367     return !Hints->allowReordering() && RdxDesc.isOrdered();
1368   }
1369 
1370   /// \returns The smallest bitwidth each instruction can be represented with.
1371   /// The vector equivalents of these instructions should be truncated to this
1372   /// type.
1373   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1374     return MinBWs;
1375   }
1376 
1377   /// \returns True if it is more profitable to scalarize instruction \p I for
1378   /// vectorization factor \p VF.
1379   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1380     assert(VF.isVector() &&
1381            "Profitable to scalarize relevant only for VF > 1.");
1382 
1383     // Cost model is not run in the VPlan-native path - return conservative
1384     // result until this changes.
1385     if (EnableVPlanNativePath)
1386       return false;
1387 
1388     auto Scalars = InstsToScalarize.find(VF);
1389     assert(Scalars != InstsToScalarize.end() &&
1390            "VF not yet analyzed for scalarization profitability");
1391     return Scalars->second.find(I) != Scalars->second.end();
1392   }
1393 
1394   /// Returns true if \p I is known to be uniform after vectorization.
1395   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1396     if (VF.isScalar())
1397       return true;
1398 
1399     // Cost model is not run in the VPlan-native path - return conservative
1400     // result until this changes.
1401     if (EnableVPlanNativePath)
1402       return false;
1403 
1404     auto UniformsPerVF = Uniforms.find(VF);
1405     assert(UniformsPerVF != Uniforms.end() &&
1406            "VF not yet analyzed for uniformity");
1407     return UniformsPerVF->second.count(I);
1408   }
1409 
1410   /// Returns true if \p I is known to be scalar after vectorization.
1411   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1412     if (VF.isScalar())
1413       return true;
1414 
1415     // Cost model is not run in the VPlan-native path - return conservative
1416     // result until this changes.
1417     if (EnableVPlanNativePath)
1418       return false;
1419 
1420     auto ScalarsPerVF = Scalars.find(VF);
1421     assert(ScalarsPerVF != Scalars.end() &&
1422            "Scalar values are not calculated for VF");
1423     return ScalarsPerVF->second.count(I);
1424   }
1425 
1426   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1427   /// for vectorization factor \p VF.
1428   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1429     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1430            !isProfitableToScalarize(I, VF) &&
1431            !isScalarAfterVectorization(I, VF);
1432   }
1433 
1434   /// Decision that was taken during cost calculation for memory instruction.
1435   enum InstWidening {
1436     CM_Unknown,
1437     CM_Widen,         // For consecutive accesses with stride +1.
1438     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1439     CM_Interleave,
1440     CM_GatherScatter,
1441     CM_Scalarize
1442   };
1443 
1444   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1445   /// instruction \p I and vector width \p VF.
1446   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1447                            InstructionCost Cost) {
1448     assert(VF.isVector() && "Expected VF >=2");
1449     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1450   }
1451 
1452   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1453   /// interleaving group \p Grp and vector width \p VF.
1454   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1455                            ElementCount VF, InstWidening W,
1456                            InstructionCost Cost) {
1457     assert(VF.isVector() && "Expected VF >=2");
1458     /// Broadcast this decicion to all instructions inside the group.
1459     /// But the cost will be assigned to one instruction only.
1460     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1461       if (auto *I = Grp->getMember(i)) {
1462         if (Grp->getInsertPos() == I)
1463           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1464         else
1465           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1466       }
1467     }
1468   }
1469 
1470   /// Return the cost model decision for the given instruction \p I and vector
1471   /// width \p VF. Return CM_Unknown if this instruction did not pass
1472   /// through the cost modeling.
1473   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1474     assert(VF.isVector() && "Expected VF to be a vector VF");
1475     // Cost model is not run in the VPlan-native path - return conservative
1476     // result until this changes.
1477     if (EnableVPlanNativePath)
1478       return CM_GatherScatter;
1479 
1480     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1481     auto Itr = WideningDecisions.find(InstOnVF);
1482     if (Itr == WideningDecisions.end())
1483       return CM_Unknown;
1484     return Itr->second.first;
1485   }
1486 
1487   /// Return the vectorization cost for the given instruction \p I and vector
1488   /// width \p VF.
1489   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1490     assert(VF.isVector() && "Expected VF >=2");
1491     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1492     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1493            "The cost is not calculated");
1494     return WideningDecisions[InstOnVF].second;
1495   }
1496 
1497   /// Return True if instruction \p I is an optimizable truncate whose operand
1498   /// is an induction variable. Such a truncate will be removed by adding a new
1499   /// induction variable with the destination type.
1500   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1501     // If the instruction is not a truncate, return false.
1502     auto *Trunc = dyn_cast<TruncInst>(I);
1503     if (!Trunc)
1504       return false;
1505 
1506     // Get the source and destination types of the truncate.
1507     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1508     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1509 
1510     // If the truncate is free for the given types, return false. Replacing a
1511     // free truncate with an induction variable would add an induction variable
1512     // update instruction to each iteration of the loop. We exclude from this
1513     // check the primary induction variable since it will need an update
1514     // instruction regardless.
1515     Value *Op = Trunc->getOperand(0);
1516     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1517       return false;
1518 
1519     // If the truncated value is not an induction variable, return false.
1520     return Legal->isInductionPhi(Op);
1521   }
1522 
1523   /// Collects the instructions to scalarize for each predicated instruction in
1524   /// the loop.
1525   void collectInstsToScalarize(ElementCount VF);
1526 
1527   /// Collect Uniform and Scalar values for the given \p VF.
1528   /// The sets depend on CM decision for Load/Store instructions
1529   /// that may be vectorized as interleave, gather-scatter or scalarized.
1530   void collectUniformsAndScalars(ElementCount VF) {
1531     // Do the analysis once.
1532     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1533       return;
1534     setCostBasedWideningDecision(VF);
1535     collectLoopUniforms(VF);
1536     collectLoopScalars(VF);
1537   }
1538 
1539   /// Returns true if the target machine supports masked store operation
1540   /// for the given \p DataType and kind of access to \p Ptr.
1541   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1542     return Legal->isConsecutivePtr(DataType, Ptr) &&
1543            TTI.isLegalMaskedStore(DataType, Alignment);
1544   }
1545 
1546   /// Returns true if the target machine supports masked load operation
1547   /// for the given \p DataType and kind of access to \p Ptr.
1548   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1549     return Legal->isConsecutivePtr(DataType, Ptr) &&
1550            TTI.isLegalMaskedLoad(DataType, Alignment);
1551   }
1552 
1553   /// Returns true if the target machine can represent \p V as a masked gather
1554   /// or scatter operation.
1555   bool isLegalGatherOrScatter(Value *V,
1556                               ElementCount VF = ElementCount::getFixed(1)) {
1557     bool LI = isa<LoadInst>(V);
1558     bool SI = isa<StoreInst>(V);
1559     if (!LI && !SI)
1560       return false;
1561     auto *Ty = getLoadStoreType(V);
1562     Align Align = getLoadStoreAlignment(V);
1563     if (VF.isVector())
1564       Ty = VectorType::get(Ty, VF);
1565     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1566            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1567   }
1568 
1569   /// Returns true if the target machine supports all of the reduction
1570   /// variables found for the given VF.
1571   bool canVectorizeReductions(ElementCount VF) const {
1572     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1573       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1574       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1575     }));
1576   }
1577 
1578   /// Returns true if \p I is an instruction that will be scalarized with
1579   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1580   /// instructions include conditional stores and instructions that may divide
1581   /// by zero.
1582   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1583 
1584   // Returns true if \p I is an instruction that will be predicated either
1585   // through scalar predication or masked load/store or masked gather/scatter.
1586   // \p VF is the vectorization factor that will be used to vectorize \p I.
1587   // Superset of instructions that return true for isScalarWithPredication.
1588   bool isPredicatedInst(Instruction *I, ElementCount VF,
1589                         bool IsKnownUniform = false) {
1590     // When we know the load is uniform and the original scalar loop was not
1591     // predicated we don't need to mark it as a predicated instruction. Any
1592     // vectorised blocks created when tail-folding are something artificial we
1593     // have introduced and we know there is always at least one active lane.
1594     // That's why we call Legal->blockNeedsPredication here because it doesn't
1595     // query tail-folding.
1596     if (IsKnownUniform && isa<LoadInst>(I) &&
1597         !Legal->blockNeedsPredication(I->getParent()))
1598       return false;
1599     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1600       return false;
1601     // Loads and stores that need some form of masked operation are predicated
1602     // instructions.
1603     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1604       return Legal->isMaskRequired(I);
1605     return isScalarWithPredication(I, VF);
1606   }
1607 
1608   /// Returns true if \p I is a memory instruction with consecutive memory
1609   /// access that can be widened.
1610   bool
1611   memoryInstructionCanBeWidened(Instruction *I,
1612                                 ElementCount VF = ElementCount::getFixed(1));
1613 
1614   /// Returns true if \p I is a memory instruction in an interleaved-group
1615   /// of memory accesses that can be vectorized with wide vector loads/stores
1616   /// and shuffles.
1617   bool
1618   interleavedAccessCanBeWidened(Instruction *I,
1619                                 ElementCount VF = ElementCount::getFixed(1));
1620 
1621   /// Check if \p Instr belongs to any interleaved access group.
1622   bool isAccessInterleaved(Instruction *Instr) {
1623     return InterleaveInfo.isInterleaved(Instr);
1624   }
1625 
1626   /// Get the interleaved access group that \p Instr belongs to.
1627   const InterleaveGroup<Instruction> *
1628   getInterleavedAccessGroup(Instruction *Instr) {
1629     return InterleaveInfo.getInterleaveGroup(Instr);
1630   }
1631 
1632   /// Returns true if we're required to use a scalar epilogue for at least
1633   /// the final iteration of the original loop.
1634   bool requiresScalarEpilogue(ElementCount VF) const {
1635     if (!isScalarEpilogueAllowed())
1636       return false;
1637     // If we might exit from anywhere but the latch, must run the exiting
1638     // iteration in scalar form.
1639     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1640       return true;
1641     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1642   }
1643 
1644   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1645   /// loop hint annotation.
1646   bool isScalarEpilogueAllowed() const {
1647     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1648   }
1649 
1650   /// Returns true if all loop blocks should be masked to fold tail loop.
1651   bool foldTailByMasking() const { return FoldTailByMasking; }
1652 
1653   /// Returns true if the instructions in this block requires predication
1654   /// for any reason, e.g. because tail folding now requires a predicate
1655   /// or because the block in the original loop was predicated.
1656   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1657     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1658   }
1659 
1660   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1661   /// nodes to the chain of instructions representing the reductions. Uses a
1662   /// MapVector to ensure deterministic iteration order.
1663   using ReductionChainMap =
1664       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1665 
1666   /// Return the chain of instructions representing an inloop reduction.
1667   const ReductionChainMap &getInLoopReductionChains() const {
1668     return InLoopReductionChains;
1669   }
1670 
1671   /// Returns true if the Phi is part of an inloop reduction.
1672   bool isInLoopReduction(PHINode *Phi) const {
1673     return InLoopReductionChains.count(Phi);
1674   }
1675 
1676   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1677   /// with factor VF.  Return the cost of the instruction, including
1678   /// scalarization overhead if it's needed.
1679   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1680 
1681   /// Estimate cost of a call instruction CI if it were vectorized with factor
1682   /// VF. Return the cost of the instruction, including scalarization overhead
1683   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1684   /// scalarized -
1685   /// i.e. either vector version isn't available, or is too expensive.
1686   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1687                                     bool &NeedToScalarize) const;
1688 
1689   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1690   /// that of B.
1691   bool isMoreProfitable(const VectorizationFactor &A,
1692                         const VectorizationFactor &B) const;
1693 
1694   /// Invalidates decisions already taken by the cost model.
1695   void invalidateCostModelingDecisions() {
1696     WideningDecisions.clear();
1697     Uniforms.clear();
1698     Scalars.clear();
1699   }
1700 
1701 private:
1702   unsigned NumPredStores = 0;
1703 
1704   /// \return An upper bound for the vectorization factors for both
1705   /// fixed and scalable vectorization, where the minimum-known number of
1706   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1707   /// disabled or unsupported, then the scalable part will be equal to
1708   /// ElementCount::getScalable(0).
1709   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1710                                            ElementCount UserVF,
1711                                            bool FoldTailByMasking);
1712 
1713   /// \return the maximized element count based on the targets vector
1714   /// registers and the loop trip-count, but limited to a maximum safe VF.
1715   /// This is a helper function of computeFeasibleMaxVF.
1716   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1717   /// issue that occurred on one of the buildbots which cannot be reproduced
1718   /// without having access to the properietary compiler (see comments on
1719   /// D98509). The issue is currently under investigation and this workaround
1720   /// will be removed as soon as possible.
1721   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1722                                        unsigned SmallestType,
1723                                        unsigned WidestType,
1724                                        const ElementCount &MaxSafeVF,
1725                                        bool FoldTailByMasking);
1726 
1727   /// \return the maximum legal scalable VF, based on the safe max number
1728   /// of elements.
1729   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1730 
1731   /// The vectorization cost is a combination of the cost itself and a boolean
1732   /// indicating whether any of the contributing operations will actually
1733   /// operate on vector values after type legalization in the backend. If this
1734   /// latter value is false, then all operations will be scalarized (i.e. no
1735   /// vectorization has actually taken place).
1736   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1737 
1738   /// Returns the expected execution cost. The unit of the cost does
1739   /// not matter because we use the 'cost' units to compare different
1740   /// vector widths. The cost that is returned is *not* normalized by
1741   /// the factor width. If \p Invalid is not nullptr, this function
1742   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1743   /// each instruction that has an Invalid cost for the given VF.
1744   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1745   VectorizationCostTy
1746   expectedCost(ElementCount VF,
1747                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1748 
1749   /// Returns the execution time cost of an instruction for a given vector
1750   /// width. Vector width of one means scalar.
1751   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1752 
1753   /// The cost-computation logic from getInstructionCost which provides
1754   /// the vector type as an output parameter.
1755   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1756                                      Type *&VectorTy);
1757 
1758   /// Return the cost of instructions in an inloop reduction pattern, if I is
1759   /// part of that pattern.
1760   Optional<InstructionCost>
1761   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1762                           TTI::TargetCostKind CostKind);
1763 
1764   /// Calculate vectorization cost of memory instruction \p I.
1765   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1766 
1767   /// The cost computation for scalarized memory instruction.
1768   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1769 
1770   /// The cost computation for interleaving group of memory instructions.
1771   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1772 
1773   /// The cost computation for Gather/Scatter instruction.
1774   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1775 
1776   /// The cost computation for widening instruction \p I with consecutive
1777   /// memory access.
1778   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1779 
1780   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1781   /// Load: scalar load + broadcast.
1782   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1783   /// element)
1784   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1785 
1786   /// Estimate the overhead of scalarizing an instruction. This is a
1787   /// convenience wrapper for the type-based getScalarizationOverhead API.
1788   InstructionCost getScalarizationOverhead(Instruction *I,
1789                                            ElementCount VF) const;
1790 
1791   /// Returns whether the instruction is a load or store and will be a emitted
1792   /// as a vector operation.
1793   bool isConsecutiveLoadOrStore(Instruction *I);
1794 
1795   /// Returns true if an artificially high cost for emulated masked memrefs
1796   /// should be used.
1797   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1798 
1799   /// Map of scalar integer values to the smallest bitwidth they can be legally
1800   /// represented as. The vector equivalents of these values should be truncated
1801   /// to this type.
1802   MapVector<Instruction *, uint64_t> MinBWs;
1803 
1804   /// A type representing the costs for instructions if they were to be
1805   /// scalarized rather than vectorized. The entries are Instruction-Cost
1806   /// pairs.
1807   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1808 
1809   /// A set containing all BasicBlocks that are known to present after
1810   /// vectorization as a predicated block.
1811   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1812 
1813   /// Records whether it is allowed to have the original scalar loop execute at
1814   /// least once. This may be needed as a fallback loop in case runtime
1815   /// aliasing/dependence checks fail, or to handle the tail/remainder
1816   /// iterations when the trip count is unknown or doesn't divide by the VF,
1817   /// or as a peel-loop to handle gaps in interleave-groups.
1818   /// Under optsize and when the trip count is very small we don't allow any
1819   /// iterations to execute in the scalar loop.
1820   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1821 
1822   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1823   bool FoldTailByMasking = false;
1824 
1825   /// A map holding scalar costs for different vectorization factors. The
1826   /// presence of a cost for an instruction in the mapping indicates that the
1827   /// instruction will be scalarized when vectorizing with the associated
1828   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1829   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1830 
1831   /// Holds the instructions known to be uniform after vectorization.
1832   /// The data is collected per VF.
1833   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1834 
1835   /// Holds the instructions known to be scalar after vectorization.
1836   /// The data is collected per VF.
1837   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1838 
1839   /// Holds the instructions (address computations) that are forced to be
1840   /// scalarized.
1841   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1842 
1843   /// PHINodes of the reductions that should be expanded in-loop along with
1844   /// their associated chains of reduction operations, in program order from top
1845   /// (PHI) to bottom
1846   ReductionChainMap InLoopReductionChains;
1847 
1848   /// A Map of inloop reduction operations and their immediate chain operand.
1849   /// FIXME: This can be removed once reductions can be costed correctly in
1850   /// vplan. This was added to allow quick lookup to the inloop operations,
1851   /// without having to loop through InLoopReductionChains.
1852   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1853 
1854   /// Returns the expected difference in cost from scalarizing the expression
1855   /// feeding a predicated instruction \p PredInst. The instructions to
1856   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1857   /// non-negative return value implies the expression will be scalarized.
1858   /// Currently, only single-use chains are considered for scalarization.
1859   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1860                               ElementCount VF);
1861 
1862   /// Collect the instructions that are uniform after vectorization. An
1863   /// instruction is uniform if we represent it with a single scalar value in
1864   /// the vectorized loop corresponding to each vector iteration. Examples of
1865   /// uniform instructions include pointer operands of consecutive or
1866   /// interleaved memory accesses. Note that although uniformity implies an
1867   /// instruction will be scalar, the reverse is not true. In general, a
1868   /// scalarized instruction will be represented by VF scalar values in the
1869   /// vectorized loop, each corresponding to an iteration of the original
1870   /// scalar loop.
1871   void collectLoopUniforms(ElementCount VF);
1872 
1873   /// Collect the instructions that are scalar after vectorization. An
1874   /// instruction is scalar if it is known to be uniform or will be scalarized
1875   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1876   /// to the list if they are used by a load/store instruction that is marked as
1877   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1878   /// VF values in the vectorized loop, each corresponding to an iteration of
1879   /// the original scalar loop.
1880   void collectLoopScalars(ElementCount VF);
1881 
1882   /// Keeps cost model vectorization decision and cost for instructions.
1883   /// Right now it is used for memory instructions only.
1884   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1885                                 std::pair<InstWidening, InstructionCost>>;
1886 
1887   DecisionList WideningDecisions;
1888 
1889   /// Returns true if \p V is expected to be vectorized and it needs to be
1890   /// extracted.
1891   bool needsExtract(Value *V, ElementCount VF) const {
1892     Instruction *I = dyn_cast<Instruction>(V);
1893     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1894         TheLoop->isLoopInvariant(I))
1895       return false;
1896 
1897     // Assume we can vectorize V (and hence we need extraction) if the
1898     // scalars are not computed yet. This can happen, because it is called
1899     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1900     // the scalars are collected. That should be a safe assumption in most
1901     // cases, because we check if the operands have vectorizable types
1902     // beforehand in LoopVectorizationLegality.
1903     return Scalars.find(VF) == Scalars.end() ||
1904            !isScalarAfterVectorization(I, VF);
1905   };
1906 
1907   /// Returns a range containing only operands needing to be extracted.
1908   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1909                                                    ElementCount VF) const {
1910     return SmallVector<Value *, 4>(make_filter_range(
1911         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1912   }
1913 
1914   /// Determines if we have the infrastructure to vectorize loop \p L and its
1915   /// epilogue, assuming the main loop is vectorized by \p VF.
1916   bool isCandidateForEpilogueVectorization(const Loop &L,
1917                                            const ElementCount VF) const;
1918 
1919   /// Returns true if epilogue vectorization is considered profitable, and
1920   /// false otherwise.
1921   /// \p VF is the vectorization factor chosen for the original loop.
1922   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1923 
1924 public:
1925   /// The loop that we evaluate.
1926   Loop *TheLoop;
1927 
1928   /// Predicated scalar evolution analysis.
1929   PredicatedScalarEvolution &PSE;
1930 
1931   /// Loop Info analysis.
1932   LoopInfo *LI;
1933 
1934   /// Vectorization legality.
1935   LoopVectorizationLegality *Legal;
1936 
1937   /// Vector target information.
1938   const TargetTransformInfo &TTI;
1939 
1940   /// Target Library Info.
1941   const TargetLibraryInfo *TLI;
1942 
1943   /// Demanded bits analysis.
1944   DemandedBits *DB;
1945 
1946   /// Assumption cache.
1947   AssumptionCache *AC;
1948 
1949   /// Interface to emit optimization remarks.
1950   OptimizationRemarkEmitter *ORE;
1951 
1952   const Function *TheFunction;
1953 
1954   /// Loop Vectorize Hint.
1955   const LoopVectorizeHints *Hints;
1956 
1957   /// The interleave access information contains groups of interleaved accesses
1958   /// with the same stride and close to each other.
1959   InterleavedAccessInfo &InterleaveInfo;
1960 
1961   /// Values to ignore in the cost model.
1962   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1963 
1964   /// Values to ignore in the cost model when VF > 1.
1965   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1966 
1967   /// All element types found in the loop.
1968   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1969 
1970   /// Profitable vector factors.
1971   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1972 };
1973 } // end namespace llvm
1974 
1975 /// Helper struct to manage generating runtime checks for vectorization.
1976 ///
1977 /// The runtime checks are created up-front in temporary blocks to allow better
1978 /// estimating the cost and un-linked from the existing IR. After deciding to
1979 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1980 /// temporary blocks are completely removed.
1981 class GeneratedRTChecks {
1982   /// Basic block which contains the generated SCEV checks, if any.
1983   BasicBlock *SCEVCheckBlock = nullptr;
1984 
1985   /// The value representing the result of the generated SCEV checks. If it is
1986   /// nullptr, either no SCEV checks have been generated or they have been used.
1987   Value *SCEVCheckCond = nullptr;
1988 
1989   /// Basic block which contains the generated memory runtime checks, if any.
1990   BasicBlock *MemCheckBlock = nullptr;
1991 
1992   /// The value representing the result of the generated memory runtime checks.
1993   /// If it is nullptr, either no memory runtime checks have been generated or
1994   /// they have been used.
1995   Value *MemRuntimeCheckCond = nullptr;
1996 
1997   DominatorTree *DT;
1998   LoopInfo *LI;
1999 
2000   SCEVExpander SCEVExp;
2001   SCEVExpander MemCheckExp;
2002 
2003 public:
2004   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
2005                     const DataLayout &DL)
2006       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
2007         MemCheckExp(SE, DL, "scev.check") {}
2008 
2009   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
2010   /// accurately estimate the cost of the runtime checks. The blocks are
2011   /// un-linked from the IR and is added back during vector code generation. If
2012   /// there is no vector code generation, the check blocks are removed
2013   /// completely.
2014   void Create(Loop *L, const LoopAccessInfo &LAI,
2015               const SCEVUnionPredicate &UnionPred) {
2016 
2017     BasicBlock *LoopHeader = L->getHeader();
2018     BasicBlock *Preheader = L->getLoopPreheader();
2019 
2020     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2021     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2022     // may be used by SCEVExpander. The blocks will be un-linked from their
2023     // predecessors and removed from LI & DT at the end of the function.
2024     if (!UnionPred.isAlwaysTrue()) {
2025       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2026                                   nullptr, "vector.scevcheck");
2027 
2028       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2029           &UnionPred, SCEVCheckBlock->getTerminator());
2030     }
2031 
2032     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2033     if (RtPtrChecking.Need) {
2034       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2035       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2036                                  "vector.memcheck");
2037 
2038       MemRuntimeCheckCond =
2039           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2040                            RtPtrChecking.getChecks(), MemCheckExp);
2041       assert(MemRuntimeCheckCond &&
2042              "no RT checks generated although RtPtrChecking "
2043              "claimed checks are required");
2044     }
2045 
2046     if (!MemCheckBlock && !SCEVCheckBlock)
2047       return;
2048 
2049     // Unhook the temporary block with the checks, update various places
2050     // accordingly.
2051     if (SCEVCheckBlock)
2052       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2053     if (MemCheckBlock)
2054       MemCheckBlock->replaceAllUsesWith(Preheader);
2055 
2056     if (SCEVCheckBlock) {
2057       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2058       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2059       Preheader->getTerminator()->eraseFromParent();
2060     }
2061     if (MemCheckBlock) {
2062       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2063       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2064       Preheader->getTerminator()->eraseFromParent();
2065     }
2066 
2067     DT->changeImmediateDominator(LoopHeader, Preheader);
2068     if (MemCheckBlock) {
2069       DT->eraseNode(MemCheckBlock);
2070       LI->removeBlock(MemCheckBlock);
2071     }
2072     if (SCEVCheckBlock) {
2073       DT->eraseNode(SCEVCheckBlock);
2074       LI->removeBlock(SCEVCheckBlock);
2075     }
2076   }
2077 
2078   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2079   /// unused.
2080   ~GeneratedRTChecks() {
2081     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2082     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2083     if (!SCEVCheckCond)
2084       SCEVCleaner.markResultUsed();
2085 
2086     if (!MemRuntimeCheckCond)
2087       MemCheckCleaner.markResultUsed();
2088 
2089     if (MemRuntimeCheckCond) {
2090       auto &SE = *MemCheckExp.getSE();
2091       // Memory runtime check generation creates compares that use expanded
2092       // values. Remove them before running the SCEVExpanderCleaners.
2093       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2094         if (MemCheckExp.isInsertedInstruction(&I))
2095           continue;
2096         SE.forgetValue(&I);
2097         I.eraseFromParent();
2098       }
2099     }
2100     MemCheckCleaner.cleanup();
2101     SCEVCleaner.cleanup();
2102 
2103     if (SCEVCheckCond)
2104       SCEVCheckBlock->eraseFromParent();
2105     if (MemRuntimeCheckCond)
2106       MemCheckBlock->eraseFromParent();
2107   }
2108 
2109   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2110   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2111   /// depending on the generated condition.
2112   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2113                              BasicBlock *LoopVectorPreHeader,
2114                              BasicBlock *LoopExitBlock) {
2115     if (!SCEVCheckCond)
2116       return nullptr;
2117     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2118       if (C->isZero())
2119         return nullptr;
2120 
2121     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2122 
2123     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2124     // Create new preheader for vector loop.
2125     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2126       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2127 
2128     SCEVCheckBlock->getTerminator()->eraseFromParent();
2129     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2130     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2131                                                 SCEVCheckBlock);
2132 
2133     DT->addNewBlock(SCEVCheckBlock, Pred);
2134     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2135 
2136     ReplaceInstWithInst(
2137         SCEVCheckBlock->getTerminator(),
2138         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2139     // Mark the check as used, to prevent it from being removed during cleanup.
2140     SCEVCheckCond = nullptr;
2141     return SCEVCheckBlock;
2142   }
2143 
2144   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2145   /// the branches to branch to the vector preheader or \p Bypass, depending on
2146   /// the generated condition.
2147   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2148                                    BasicBlock *LoopVectorPreHeader) {
2149     // Check if we generated code that checks in runtime if arrays overlap.
2150     if (!MemRuntimeCheckCond)
2151       return nullptr;
2152 
2153     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2154     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2155                                                 MemCheckBlock);
2156 
2157     DT->addNewBlock(MemCheckBlock, Pred);
2158     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2159     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2160 
2161     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2162       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2163 
2164     ReplaceInstWithInst(
2165         MemCheckBlock->getTerminator(),
2166         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2167     MemCheckBlock->getTerminator()->setDebugLoc(
2168         Pred->getTerminator()->getDebugLoc());
2169 
2170     // Mark the check as used, to prevent it from being removed during cleanup.
2171     MemRuntimeCheckCond = nullptr;
2172     return MemCheckBlock;
2173   }
2174 };
2175 
2176 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2177 // vectorization. The loop needs to be annotated with #pragma omp simd
2178 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2179 // vector length information is not provided, vectorization is not considered
2180 // explicit. Interleave hints are not allowed either. These limitations will be
2181 // relaxed in the future.
2182 // Please, note that we are currently forced to abuse the pragma 'clang
2183 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2184 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2185 // provides *explicit vectorization hints* (LV can bypass legal checks and
2186 // assume that vectorization is legal). However, both hints are implemented
2187 // using the same metadata (llvm.loop.vectorize, processed by
2188 // LoopVectorizeHints). This will be fixed in the future when the native IR
2189 // representation for pragma 'omp simd' is introduced.
2190 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2191                                    OptimizationRemarkEmitter *ORE) {
2192   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2193   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2194 
2195   // Only outer loops with an explicit vectorization hint are supported.
2196   // Unannotated outer loops are ignored.
2197   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2198     return false;
2199 
2200   Function *Fn = OuterLp->getHeader()->getParent();
2201   if (!Hints.allowVectorization(Fn, OuterLp,
2202                                 true /*VectorizeOnlyWhenForced*/)) {
2203     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2204     return false;
2205   }
2206 
2207   if (Hints.getInterleave() > 1) {
2208     // TODO: Interleave support is future work.
2209     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2210                          "outer loops.\n");
2211     Hints.emitRemarkWithHints();
2212     return false;
2213   }
2214 
2215   return true;
2216 }
2217 
2218 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2219                                   OptimizationRemarkEmitter *ORE,
2220                                   SmallVectorImpl<Loop *> &V) {
2221   // Collect inner loops and outer loops without irreducible control flow. For
2222   // now, only collect outer loops that have explicit vectorization hints. If we
2223   // are stress testing the VPlan H-CFG construction, we collect the outermost
2224   // loop of every loop nest.
2225   if (L.isInnermost() || VPlanBuildStressTest ||
2226       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2227     LoopBlocksRPO RPOT(&L);
2228     RPOT.perform(LI);
2229     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2230       V.push_back(&L);
2231       // TODO: Collect inner loops inside marked outer loops in case
2232       // vectorization fails for the outer loop. Do not invoke
2233       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2234       // already known to be reducible. We can use an inherited attribute for
2235       // that.
2236       return;
2237     }
2238   }
2239   for (Loop *InnerL : L)
2240     collectSupportedLoops(*InnerL, LI, ORE, V);
2241 }
2242 
2243 namespace {
2244 
2245 /// The LoopVectorize Pass.
2246 struct LoopVectorize : public FunctionPass {
2247   /// Pass identification, replacement for typeid
2248   static char ID;
2249 
2250   LoopVectorizePass Impl;
2251 
2252   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2253                          bool VectorizeOnlyWhenForced = false)
2254       : FunctionPass(ID),
2255         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2256     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2257   }
2258 
2259   bool runOnFunction(Function &F) override {
2260     if (skipFunction(F))
2261       return false;
2262 
2263     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2264     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2265     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2266     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2267     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2268     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2269     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2270     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2271     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2272     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2273     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2274     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2275     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2276 
2277     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2278         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2279 
2280     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2281                         GetLAA, *ORE, PSI).MadeAnyChange;
2282   }
2283 
2284   void getAnalysisUsage(AnalysisUsage &AU) const override {
2285     AU.addRequired<AssumptionCacheTracker>();
2286     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2287     AU.addRequired<DominatorTreeWrapperPass>();
2288     AU.addRequired<LoopInfoWrapperPass>();
2289     AU.addRequired<ScalarEvolutionWrapperPass>();
2290     AU.addRequired<TargetTransformInfoWrapperPass>();
2291     AU.addRequired<AAResultsWrapperPass>();
2292     AU.addRequired<LoopAccessLegacyAnalysis>();
2293     AU.addRequired<DemandedBitsWrapperPass>();
2294     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2295     AU.addRequired<InjectTLIMappingsLegacy>();
2296 
2297     // We currently do not preserve loopinfo/dominator analyses with outer loop
2298     // vectorization. Until this is addressed, mark these analyses as preserved
2299     // only for non-VPlan-native path.
2300     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2301     if (!EnableVPlanNativePath) {
2302       AU.addPreserved<LoopInfoWrapperPass>();
2303       AU.addPreserved<DominatorTreeWrapperPass>();
2304     }
2305 
2306     AU.addPreserved<BasicAAWrapperPass>();
2307     AU.addPreserved<GlobalsAAWrapperPass>();
2308     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2309   }
2310 };
2311 
2312 } // end anonymous namespace
2313 
2314 //===----------------------------------------------------------------------===//
2315 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2316 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2317 //===----------------------------------------------------------------------===//
2318 
2319 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2320   // We need to place the broadcast of invariant variables outside the loop,
2321   // but only if it's proven safe to do so. Else, broadcast will be inside
2322   // vector loop body.
2323   Instruction *Instr = dyn_cast<Instruction>(V);
2324   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2325                      (!Instr ||
2326                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2327   // Place the code for broadcasting invariant variables in the new preheader.
2328   IRBuilder<>::InsertPointGuard Guard(Builder);
2329   if (SafeToHoist)
2330     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2331 
2332   // Broadcast the scalar into all locations in the vector.
2333   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2334 
2335   return Shuf;
2336 }
2337 
2338 /// This function adds
2339 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2340 /// to each vector element of Val. The sequence starts at StartIndex.
2341 /// \p Opcode is relevant for FP induction variable.
2342 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2343                             Instruction::BinaryOps BinOp, ElementCount VF,
2344                             IRBuilder<> &Builder) {
2345   assert(VF.isVector() && "only vector VFs are supported");
2346 
2347   // Create and check the types.
2348   auto *ValVTy = cast<VectorType>(Val->getType());
2349   ElementCount VLen = ValVTy->getElementCount();
2350 
2351   Type *STy = Val->getType()->getScalarType();
2352   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2353          "Induction Step must be an integer or FP");
2354   assert(Step->getType() == STy && "Step has wrong type");
2355 
2356   SmallVector<Constant *, 8> Indices;
2357 
2358   // Create a vector of consecutive numbers from zero to VF.
2359   VectorType *InitVecValVTy = ValVTy;
2360   Type *InitVecValSTy = STy;
2361   if (STy->isFloatingPointTy()) {
2362     InitVecValSTy =
2363         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2364     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2365   }
2366   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2367 
2368   // Splat the StartIdx
2369   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2370 
2371   if (STy->isIntegerTy()) {
2372     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2373     Step = Builder.CreateVectorSplat(VLen, Step);
2374     assert(Step->getType() == Val->getType() && "Invalid step vec");
2375     // FIXME: The newly created binary instructions should contain nsw/nuw
2376     // flags, which can be found from the original scalar operations.
2377     Step = Builder.CreateMul(InitVec, Step);
2378     return Builder.CreateAdd(Val, Step, "induction");
2379   }
2380 
2381   // Floating point induction.
2382   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2383          "Binary Opcode should be specified for FP induction");
2384   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2385   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2386 
2387   Step = Builder.CreateVectorSplat(VLen, Step);
2388   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2389   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2390 }
2391 
2392 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2393     const InductionDescriptor &II, Value *Step, Value *Start,
2394     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2395   IRBuilder<> &Builder = State.Builder;
2396   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2397          "Expected either an induction phi-node or a truncate of it!");
2398 
2399   // Construct the initial value of the vector IV in the vector loop preheader
2400   auto CurrIP = Builder.saveIP();
2401   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2402   if (isa<TruncInst>(EntryVal)) {
2403     assert(Start->getType()->isIntegerTy() &&
2404            "Truncation requires an integer type");
2405     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2406     Step = Builder.CreateTrunc(Step, TruncType);
2407     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2408   }
2409 
2410   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2411   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2412   Value *SteppedStart = getStepVector(
2413       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2414 
2415   // We create vector phi nodes for both integer and floating-point induction
2416   // variables. Here, we determine the kind of arithmetic we will perform.
2417   Instruction::BinaryOps AddOp;
2418   Instruction::BinaryOps MulOp;
2419   if (Step->getType()->isIntegerTy()) {
2420     AddOp = Instruction::Add;
2421     MulOp = Instruction::Mul;
2422   } else {
2423     AddOp = II.getInductionOpcode();
2424     MulOp = Instruction::FMul;
2425   }
2426 
2427   // Multiply the vectorization factor by the step using integer or
2428   // floating-point arithmetic as appropriate.
2429   Type *StepType = Step->getType();
2430   Value *RuntimeVF;
2431   if (Step->getType()->isFloatingPointTy())
2432     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2433   else
2434     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2435   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2436 
2437   // Create a vector splat to use in the induction update.
2438   //
2439   // FIXME: If the step is non-constant, we create the vector splat with
2440   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2441   //        handle a constant vector splat.
2442   Value *SplatVF = isa<Constant>(Mul)
2443                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2444                        : Builder.CreateVectorSplat(State.VF, Mul);
2445   Builder.restoreIP(CurrIP);
2446 
2447   // We may need to add the step a number of times, depending on the unroll
2448   // factor. The last of those goes into the PHI.
2449   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2450                                     &*LoopVectorBody->getFirstInsertionPt());
2451   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2452   Instruction *LastInduction = VecInd;
2453   for (unsigned Part = 0; Part < UF; ++Part) {
2454     State.set(Def, LastInduction, Part);
2455 
2456     if (isa<TruncInst>(EntryVal))
2457       addMetadata(LastInduction, EntryVal);
2458 
2459     LastInduction = cast<Instruction>(
2460         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2461     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2462   }
2463 
2464   // Move the last step to the end of the latch block. This ensures consistent
2465   // placement of all induction updates.
2466   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2467   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2468   LastInduction->moveBefore(Br);
2469   LastInduction->setName("vec.ind.next");
2470 
2471   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2472   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2473 }
2474 
2475 void InnerLoopVectorizer::widenIntOrFpInduction(
2476     PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State,
2477     Value *CanonicalIV) {
2478   Value *Start = Def->getStartValue()->getLiveInIRValue();
2479   const InductionDescriptor &ID = Def->getInductionDescriptor();
2480   TruncInst *Trunc = Def->getTruncInst();
2481   IRBuilder<> &Builder = State.Builder;
2482   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2483   assert(!State.VF.isZero() && "VF must be non-zero");
2484 
2485   // The value from the original loop to which we are mapping the new induction
2486   // variable.
2487   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2488 
2489   auto &DL = EntryVal->getModule()->getDataLayout();
2490 
2491   // Generate code for the induction step. Note that induction steps are
2492   // required to be loop-invariant
2493   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2494     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2495            "Induction step should be loop invariant");
2496     if (PSE.getSE()->isSCEVable(IV->getType())) {
2497       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2498       return Exp.expandCodeFor(Step, Step->getType(),
2499                                State.CFG.VectorPreHeader->getTerminator());
2500     }
2501     return cast<SCEVUnknown>(Step)->getValue();
2502   };
2503 
2504   // The scalar value to broadcast. This is derived from the canonical
2505   // induction variable. If a truncation type is given, truncate the canonical
2506   // induction variable and step. Otherwise, derive these values from the
2507   // induction descriptor.
2508   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2509     Value *ScalarIV = CanonicalIV;
2510     Type *NeededType = IV->getType();
2511     if (!Def->isCanonical() || ScalarIV->getType() != NeededType) {
2512       ScalarIV =
2513           NeededType->isIntegerTy()
2514               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2515               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2516       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID,
2517                                       State.CFG.PrevBB);
2518       ScalarIV->setName("offset.idx");
2519     }
2520     if (Trunc) {
2521       auto *TruncType = cast<IntegerType>(Trunc->getType());
2522       assert(Step->getType()->isIntegerTy() &&
2523              "Truncation requires an integer step");
2524       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2525       Step = Builder.CreateTrunc(Step, TruncType);
2526     }
2527     return ScalarIV;
2528   };
2529 
2530   // Create the vector values from the scalar IV, in the absence of creating a
2531   // vector IV.
2532   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2533     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2534     for (unsigned Part = 0; Part < UF; ++Part) {
2535       Value *StartIdx;
2536       if (Step->getType()->isFloatingPointTy())
2537         StartIdx =
2538             getRuntimeVFAsFloat(Builder, Step->getType(), State.VF * Part);
2539       else
2540         StartIdx = getRuntimeVF(Builder, Step->getType(), State.VF * Part);
2541 
2542       Value *EntryPart =
2543           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode(),
2544                         State.VF, State.Builder);
2545       State.set(Def, EntryPart, Part);
2546       if (Trunc)
2547         addMetadata(EntryPart, Trunc);
2548     }
2549   };
2550 
2551   // Fast-math-flags propagate from the original induction instruction.
2552   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2553   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2554     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2555 
2556   // Now do the actual transformations, and start with creating the step value.
2557   Value *Step = CreateStepValue(ID.getStep());
2558   if (State.VF.isScalar()) {
2559     Value *ScalarIV = CreateScalarIV(Step);
2560     Type *ScalarTy = IntegerType::get(ScalarIV->getContext(),
2561                                       Step->getType()->getScalarSizeInBits());
2562 
2563     Instruction::BinaryOps IncOp = ID.getInductionOpcode();
2564     if (IncOp == Instruction::BinaryOpsEnd)
2565       IncOp = Instruction::Add;
2566     for (unsigned Part = 0; Part < UF; ++Part) {
2567       Value *StartIdx = ConstantInt::get(ScalarTy, Part);
2568       Instruction::BinaryOps MulOp = Instruction::Mul;
2569       if (Step->getType()->isFloatingPointTy()) {
2570         StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType());
2571         MulOp = Instruction::FMul;
2572       }
2573 
2574       Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2575       Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction");
2576       State.set(Def, EntryPart, Part);
2577       if (Trunc) {
2578         assert(!Step->getType()->isFloatingPointTy() &&
2579                "fp inductions shouldn't be truncated");
2580         addMetadata(EntryPart, Trunc);
2581       }
2582     }
2583     return;
2584   }
2585 
2586   // If only a vector induction is needed, create it and return.
2587   if (!Def->needsScalarIV()) {
2588     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2589     return;
2590   }
2591 
2592   // Try to create a new independent vector induction variable. If we can't
2593   // create the phi node, we will splat the scalar induction variable in each
2594   // loop iteration.
2595   if (Def->needsVectorIV()) {
2596     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2597     Value *ScalarIV = CreateScalarIV(Step);
2598     // Create scalar steps that can be used by instructions we will later
2599     // scalarize. Note that the addition of the scalar steps will not increase
2600     // the number of instructions in the loop in the common case prior to
2601     // InstCombine. We will be trading one vector extract for each scalar step.
2602     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2603     return;
2604   }
2605 
2606   // All IV users are scalar instructions, so only emit a scalar IV, not a
2607   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2608   // predicate used by the masked loads/stores.
2609   Value *ScalarIV = CreateScalarIV(Step);
2610   if (!Cost->isScalarEpilogueAllowed())
2611     CreateSplatIV(ScalarIV, Step);
2612   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2613 }
2614 
2615 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2616                                            Instruction *EntryVal,
2617                                            const InductionDescriptor &ID,
2618                                            VPValue *Def,
2619                                            VPTransformState &State) {
2620   IRBuilder<> &Builder = State.Builder;
2621   // We shouldn't have to build scalar steps if we aren't vectorizing.
2622   assert(State.VF.isVector() && "VF should be greater than one");
2623   // Get the value type and ensure it and the step have the same integer type.
2624   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2625   assert(ScalarIVTy == Step->getType() &&
2626          "Val and Step should have the same type");
2627 
2628   // We build scalar steps for both integer and floating-point induction
2629   // variables. Here, we determine the kind of arithmetic we will perform.
2630   Instruction::BinaryOps AddOp;
2631   Instruction::BinaryOps MulOp;
2632   if (ScalarIVTy->isIntegerTy()) {
2633     AddOp = Instruction::Add;
2634     MulOp = Instruction::Mul;
2635   } else {
2636     AddOp = ID.getInductionOpcode();
2637     MulOp = Instruction::FMul;
2638   }
2639 
2640   // Determine the number of scalars we need to generate for each unroll
2641   // iteration. If EntryVal is uniform, we only need to generate the first
2642   // lane. Otherwise, we generate all VF values.
2643   bool IsUniform =
2644       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), State.VF);
2645   unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
2646   // Compute the scalar steps and save the results in State.
2647   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2648                                      ScalarIVTy->getScalarSizeInBits());
2649   Type *VecIVTy = nullptr;
2650   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2651   if (!IsUniform && State.VF.isScalable()) {
2652     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2653     UnitStepVec =
2654         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2655     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2656     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2657   }
2658 
2659   for (unsigned Part = 0; Part < State.UF; ++Part) {
2660     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2661 
2662     if (!IsUniform && State.VF.isScalable()) {
2663       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2664       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2665       if (ScalarIVTy->isFloatingPointTy())
2666         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2667       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2668       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2669       State.set(Def, Add, Part);
2670       // It's useful to record the lane values too for the known minimum number
2671       // of elements so we do those below. This improves the code quality when
2672       // trying to extract the first element, for example.
2673     }
2674 
2675     if (ScalarIVTy->isFloatingPointTy())
2676       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2677 
2678     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2679       Value *StartIdx = Builder.CreateBinOp(
2680           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2681       // The step returned by `createStepForVF` is a runtime-evaluated value
2682       // when VF is scalable. Otherwise, it should be folded into a Constant.
2683       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2684              "Expected StartIdx to be folded to a constant when VF is not "
2685              "scalable");
2686       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2687       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2688       State.set(Def, Add, VPIteration(Part, Lane));
2689     }
2690   }
2691 }
2692 
2693 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2694                                                     const VPIteration &Instance,
2695                                                     VPTransformState &State) {
2696   Value *ScalarInst = State.get(Def, Instance);
2697   Value *VectorValue = State.get(Def, Instance.Part);
2698   VectorValue = Builder.CreateInsertElement(
2699       VectorValue, ScalarInst,
2700       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2701   State.set(Def, VectorValue, Instance.Part);
2702 }
2703 
2704 // Return whether we allow using masked interleave-groups (for dealing with
2705 // strided loads/stores that reside in predicated blocks, or for dealing
2706 // with gaps).
2707 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2708   // If an override option has been passed in for interleaved accesses, use it.
2709   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2710     return EnableMaskedInterleavedMemAccesses;
2711 
2712   return TTI.enableMaskedInterleavedAccessVectorization();
2713 }
2714 
2715 // Try to vectorize the interleave group that \p Instr belongs to.
2716 //
2717 // E.g. Translate following interleaved load group (factor = 3):
2718 //   for (i = 0; i < N; i+=3) {
2719 //     R = Pic[i];             // Member of index 0
2720 //     G = Pic[i+1];           // Member of index 1
2721 //     B = Pic[i+2];           // Member of index 2
2722 //     ... // do something to R, G, B
2723 //   }
2724 // To:
2725 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2726 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2727 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2728 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2729 //
2730 // Or translate following interleaved store group (factor = 3):
2731 //   for (i = 0; i < N; i+=3) {
2732 //     ... do something to R, G, B
2733 //     Pic[i]   = R;           // Member of index 0
2734 //     Pic[i+1] = G;           // Member of index 1
2735 //     Pic[i+2] = B;           // Member of index 2
2736 //   }
2737 // To:
2738 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2739 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2740 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2741 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2742 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2743 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2744     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2745     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2746     VPValue *BlockInMask) {
2747   Instruction *Instr = Group->getInsertPos();
2748   const DataLayout &DL = Instr->getModule()->getDataLayout();
2749 
2750   // Prepare for the vector type of the interleaved load/store.
2751   Type *ScalarTy = getLoadStoreType(Instr);
2752   unsigned InterleaveFactor = Group->getFactor();
2753   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2754   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2755 
2756   // Prepare for the new pointers.
2757   SmallVector<Value *, 2> AddrParts;
2758   unsigned Index = Group->getIndex(Instr);
2759 
2760   // TODO: extend the masked interleaved-group support to reversed access.
2761   assert((!BlockInMask || !Group->isReverse()) &&
2762          "Reversed masked interleave-group not supported.");
2763 
2764   // If the group is reverse, adjust the index to refer to the last vector lane
2765   // instead of the first. We adjust the index from the first vector lane,
2766   // rather than directly getting the pointer for lane VF - 1, because the
2767   // pointer operand of the interleaved access is supposed to be uniform. For
2768   // uniform instructions, we're only required to generate a value for the
2769   // first vector lane in each unroll iteration.
2770   if (Group->isReverse())
2771     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2772 
2773   for (unsigned Part = 0; Part < UF; Part++) {
2774     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2775     setDebugLocFromInst(AddrPart);
2776 
2777     // Notice current instruction could be any index. Need to adjust the address
2778     // to the member of index 0.
2779     //
2780     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2781     //       b = A[i];       // Member of index 0
2782     // Current pointer is pointed to A[i+1], adjust it to A[i].
2783     //
2784     // E.g.  A[i+1] = a;     // Member of index 1
2785     //       A[i]   = b;     // Member of index 0
2786     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2787     // Current pointer is pointed to A[i+2], adjust it to A[i].
2788 
2789     bool InBounds = false;
2790     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2791       InBounds = gep->isInBounds();
2792     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2793     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2794 
2795     // Cast to the vector pointer type.
2796     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2797     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2798     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2799   }
2800 
2801   setDebugLocFromInst(Instr);
2802   Value *PoisonVec = PoisonValue::get(VecTy);
2803 
2804   Value *MaskForGaps = nullptr;
2805   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2806     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2807     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2808   }
2809 
2810   // Vectorize the interleaved load group.
2811   if (isa<LoadInst>(Instr)) {
2812     // For each unroll part, create a wide load for the group.
2813     SmallVector<Value *, 2> NewLoads;
2814     for (unsigned Part = 0; Part < UF; Part++) {
2815       Instruction *NewLoad;
2816       if (BlockInMask || MaskForGaps) {
2817         assert(useMaskedInterleavedAccesses(*TTI) &&
2818                "masked interleaved groups are not allowed.");
2819         Value *GroupMask = MaskForGaps;
2820         if (BlockInMask) {
2821           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2822           Value *ShuffledMask = Builder.CreateShuffleVector(
2823               BlockInMaskPart,
2824               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2825               "interleaved.mask");
2826           GroupMask = MaskForGaps
2827                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2828                                                 MaskForGaps)
2829                           : ShuffledMask;
2830         }
2831         NewLoad =
2832             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2833                                      GroupMask, PoisonVec, "wide.masked.vec");
2834       }
2835       else
2836         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2837                                             Group->getAlign(), "wide.vec");
2838       Group->addMetadata(NewLoad);
2839       NewLoads.push_back(NewLoad);
2840     }
2841 
2842     // For each member in the group, shuffle out the appropriate data from the
2843     // wide loads.
2844     unsigned J = 0;
2845     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2846       Instruction *Member = Group->getMember(I);
2847 
2848       // Skip the gaps in the group.
2849       if (!Member)
2850         continue;
2851 
2852       auto StrideMask =
2853           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2854       for (unsigned Part = 0; Part < UF; Part++) {
2855         Value *StridedVec = Builder.CreateShuffleVector(
2856             NewLoads[Part], StrideMask, "strided.vec");
2857 
2858         // If this member has different type, cast the result type.
2859         if (Member->getType() != ScalarTy) {
2860           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2861           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2862           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2863         }
2864 
2865         if (Group->isReverse())
2866           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2867 
2868         State.set(VPDefs[J], StridedVec, Part);
2869       }
2870       ++J;
2871     }
2872     return;
2873   }
2874 
2875   // The sub vector type for current instruction.
2876   auto *SubVT = VectorType::get(ScalarTy, VF);
2877 
2878   // Vectorize the interleaved store group.
2879   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2880   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2881          "masked interleaved groups are not allowed.");
2882   assert((!MaskForGaps || !VF.isScalable()) &&
2883          "masking gaps for scalable vectors is not yet supported.");
2884   for (unsigned Part = 0; Part < UF; Part++) {
2885     // Collect the stored vector from each member.
2886     SmallVector<Value *, 4> StoredVecs;
2887     for (unsigned i = 0; i < InterleaveFactor; i++) {
2888       assert((Group->getMember(i) || MaskForGaps) &&
2889              "Fail to get a member from an interleaved store group");
2890       Instruction *Member = Group->getMember(i);
2891 
2892       // Skip the gaps in the group.
2893       if (!Member) {
2894         Value *Undef = PoisonValue::get(SubVT);
2895         StoredVecs.push_back(Undef);
2896         continue;
2897       }
2898 
2899       Value *StoredVec = State.get(StoredValues[i], Part);
2900 
2901       if (Group->isReverse())
2902         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2903 
2904       // If this member has different type, cast it to a unified type.
2905 
2906       if (StoredVec->getType() != SubVT)
2907         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2908 
2909       StoredVecs.push_back(StoredVec);
2910     }
2911 
2912     // Concatenate all vectors into a wide vector.
2913     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2914 
2915     // Interleave the elements in the wide vector.
2916     Value *IVec = Builder.CreateShuffleVector(
2917         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2918         "interleaved.vec");
2919 
2920     Instruction *NewStoreInstr;
2921     if (BlockInMask || MaskForGaps) {
2922       Value *GroupMask = MaskForGaps;
2923       if (BlockInMask) {
2924         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2925         Value *ShuffledMask = Builder.CreateShuffleVector(
2926             BlockInMaskPart,
2927             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2928             "interleaved.mask");
2929         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2930                                                       ShuffledMask, MaskForGaps)
2931                                 : ShuffledMask;
2932       }
2933       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2934                                                 Group->getAlign(), GroupMask);
2935     } else
2936       NewStoreInstr =
2937           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2938 
2939     Group->addMetadata(NewStoreInstr);
2940   }
2941 }
2942 
2943 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2944                                                VPReplicateRecipe *RepRecipe,
2945                                                const VPIteration &Instance,
2946                                                bool IfPredicateInstr,
2947                                                VPTransformState &State) {
2948   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2949 
2950   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2951   // the first lane and part.
2952   if (isa<NoAliasScopeDeclInst>(Instr))
2953     if (!Instance.isFirstIteration())
2954       return;
2955 
2956   setDebugLocFromInst(Instr);
2957 
2958   // Does this instruction return a value ?
2959   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2960 
2961   Instruction *Cloned = Instr->clone();
2962   if (!IsVoidRetTy)
2963     Cloned->setName(Instr->getName() + ".cloned");
2964 
2965   // If the scalarized instruction contributes to the address computation of a
2966   // widen masked load/store which was in a basic block that needed predication
2967   // and is not predicated after vectorization, we can't propagate
2968   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2969   // instruction could feed a poison value to the base address of the widen
2970   // load/store.
2971   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2972     Cloned->dropPoisonGeneratingFlags();
2973 
2974   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2975                                Builder.GetInsertPoint());
2976   // Replace the operands of the cloned instructions with their scalar
2977   // equivalents in the new loop.
2978   for (auto &I : enumerate(RepRecipe->operands())) {
2979     auto InputInstance = Instance;
2980     VPValue *Operand = I.value();
2981     if (State.Plan->isUniformAfterVectorization(Operand))
2982       InputInstance.Lane = VPLane::getFirstLane();
2983     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2984   }
2985   addNewMetadata(Cloned, Instr);
2986 
2987   // Place the cloned scalar in the new loop.
2988   Builder.Insert(Cloned);
2989 
2990   State.set(RepRecipe, Cloned, Instance);
2991 
2992   // If we just cloned a new assumption, add it the assumption cache.
2993   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2994     AC->registerAssumption(II);
2995 
2996   // End if-block.
2997   if (IfPredicateInstr)
2998     PredicatedInstructions.push_back(Cloned);
2999 }
3000 
3001 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
3002   BasicBlock *Header = L->getHeader();
3003   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
3004 
3005   IRBuilder<> B(Header->getTerminator());
3006   Instruction *OldInst =
3007       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
3008   setDebugLocFromInst(OldInst, &B);
3009 
3010   // Connect the header to the exit and header blocks and replace the old
3011   // terminator.
3012   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
3013 
3014   // Now we have two terminators. Remove the old one from the block.
3015   Header->getTerminator()->eraseFromParent();
3016 }
3017 
3018 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3019   if (TripCount)
3020     return TripCount;
3021 
3022   assert(L && "Create Trip Count for null loop.");
3023   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3024   // Find the loop boundaries.
3025   ScalarEvolution *SE = PSE.getSE();
3026   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3027   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3028          "Invalid loop count");
3029 
3030   Type *IdxTy = Legal->getWidestInductionType();
3031   assert(IdxTy && "No type for induction");
3032 
3033   // The exit count might have the type of i64 while the phi is i32. This can
3034   // happen if we have an induction variable that is sign extended before the
3035   // compare. The only way that we get a backedge taken count is that the
3036   // induction variable was signed and as such will not overflow. In such a case
3037   // truncation is legal.
3038   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3039       IdxTy->getPrimitiveSizeInBits())
3040     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3041   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3042 
3043   // Get the total trip count from the count by adding 1.
3044   const SCEV *ExitCount = SE->getAddExpr(
3045       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3046 
3047   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3048 
3049   // Expand the trip count and place the new instructions in the preheader.
3050   // Notice that the pre-header does not change, only the loop body.
3051   SCEVExpander Exp(*SE, DL, "induction");
3052 
3053   // Count holds the overall loop count (N).
3054   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3055                                 L->getLoopPreheader()->getTerminator());
3056 
3057   if (TripCount->getType()->isPointerTy())
3058     TripCount =
3059         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3060                                     L->getLoopPreheader()->getTerminator());
3061 
3062   return TripCount;
3063 }
3064 
3065 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3066   if (VectorTripCount)
3067     return VectorTripCount;
3068 
3069   Value *TC = getOrCreateTripCount(L);
3070   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3071 
3072   Type *Ty = TC->getType();
3073   // This is where we can make the step a runtime constant.
3074   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3075 
3076   // If the tail is to be folded by masking, round the number of iterations N
3077   // up to a multiple of Step instead of rounding down. This is done by first
3078   // adding Step-1 and then rounding down. Note that it's ok if this addition
3079   // overflows: the vector induction variable will eventually wrap to zero given
3080   // that it starts at zero and its Step is a power of two; the loop will then
3081   // exit, with the last early-exit vector comparison also producing all-true.
3082   if (Cost->foldTailByMasking()) {
3083     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3084            "VF*UF must be a power of 2 when folding tail by masking");
3085     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3086     TC = Builder.CreateAdd(
3087         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3088   }
3089 
3090   // Now we need to generate the expression for the part of the loop that the
3091   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3092   // iterations are not required for correctness, or N - Step, otherwise. Step
3093   // is equal to the vectorization factor (number of SIMD elements) times the
3094   // unroll factor (number of SIMD instructions).
3095   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3096 
3097   // There are cases where we *must* run at least one iteration in the remainder
3098   // loop.  See the cost model for when this can happen.  If the step evenly
3099   // divides the trip count, we set the remainder to be equal to the step. If
3100   // the step does not evenly divide the trip count, no adjustment is necessary
3101   // since there will already be scalar iterations. Note that the minimum
3102   // iterations check ensures that N >= Step.
3103   if (Cost->requiresScalarEpilogue(VF)) {
3104     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3105     R = Builder.CreateSelect(IsZero, Step, R);
3106   }
3107 
3108   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3109 
3110   return VectorTripCount;
3111 }
3112 
3113 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3114                                                    const DataLayout &DL) {
3115   // Verify that V is a vector type with same number of elements as DstVTy.
3116   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3117   unsigned VF = DstFVTy->getNumElements();
3118   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3119   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3120   Type *SrcElemTy = SrcVecTy->getElementType();
3121   Type *DstElemTy = DstFVTy->getElementType();
3122   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3123          "Vector elements must have same size");
3124 
3125   // Do a direct cast if element types are castable.
3126   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3127     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3128   }
3129   // V cannot be directly casted to desired vector type.
3130   // May happen when V is a floating point vector but DstVTy is a vector of
3131   // pointers or vice-versa. Handle this using a two-step bitcast using an
3132   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3133   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3134          "Only one type should be a pointer type");
3135   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3136          "Only one type should be a floating point type");
3137   Type *IntTy =
3138       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3139   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3140   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3141   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3142 }
3143 
3144 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3145                                                          BasicBlock *Bypass) {
3146   Value *Count = getOrCreateTripCount(L);
3147   // Reuse existing vector loop preheader for TC checks.
3148   // Note that new preheader block is generated for vector loop.
3149   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3150   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3151 
3152   // Generate code to check if the loop's trip count is less than VF * UF, or
3153   // equal to it in case a scalar epilogue is required; this implies that the
3154   // vector trip count is zero. This check also covers the case where adding one
3155   // to the backedge-taken count overflowed leading to an incorrect trip count
3156   // of zero. In this case we will also jump to the scalar loop.
3157   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3158                                             : ICmpInst::ICMP_ULT;
3159 
3160   // If tail is to be folded, vector loop takes care of all iterations.
3161   Value *CheckMinIters = Builder.getFalse();
3162   if (!Cost->foldTailByMasking()) {
3163     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3164     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3165   }
3166   // Create new preheader for vector loop.
3167   LoopVectorPreHeader =
3168       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3169                  "vector.ph");
3170 
3171   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3172                                DT->getNode(Bypass)->getIDom()) &&
3173          "TC check is expected to dominate Bypass");
3174 
3175   // Update dominator for Bypass & LoopExit (if needed).
3176   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3177   if (!Cost->requiresScalarEpilogue(VF))
3178     // If there is an epilogue which must run, there's no edge from the
3179     // middle block to exit blocks  and thus no need to update the immediate
3180     // dominator of the exit blocks.
3181     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3182 
3183   ReplaceInstWithInst(
3184       TCCheckBlock->getTerminator(),
3185       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3186   LoopBypassBlocks.push_back(TCCheckBlock);
3187 }
3188 
3189 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3190 
3191   BasicBlock *const SCEVCheckBlock =
3192       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3193   if (!SCEVCheckBlock)
3194     return nullptr;
3195 
3196   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3197            (OptForSizeBasedOnProfile &&
3198             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3199          "Cannot SCEV check stride or overflow when optimizing for size");
3200 
3201 
3202   // Update dominator only if this is first RT check.
3203   if (LoopBypassBlocks.empty()) {
3204     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3205     if (!Cost->requiresScalarEpilogue(VF))
3206       // If there is an epilogue which must run, there's no edge from the
3207       // middle block to exit blocks  and thus no need to update the immediate
3208       // dominator of the exit blocks.
3209       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3210   }
3211 
3212   LoopBypassBlocks.push_back(SCEVCheckBlock);
3213   AddedSafetyChecks = true;
3214   return SCEVCheckBlock;
3215 }
3216 
3217 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3218                                                       BasicBlock *Bypass) {
3219   // VPlan-native path does not do any analysis for runtime checks currently.
3220   if (EnableVPlanNativePath)
3221     return nullptr;
3222 
3223   BasicBlock *const MemCheckBlock =
3224       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3225 
3226   // Check if we generated code that checks in runtime if arrays overlap. We put
3227   // the checks into a separate block to make the more common case of few
3228   // elements faster.
3229   if (!MemCheckBlock)
3230     return nullptr;
3231 
3232   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3233     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3234            "Cannot emit memory checks when optimizing for size, unless forced "
3235            "to vectorize.");
3236     ORE->emit([&]() {
3237       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3238                                         L->getStartLoc(), L->getHeader())
3239              << "Code-size may be reduced by not forcing "
3240                 "vectorization, or by source-code modifications "
3241                 "eliminating the need for runtime checks "
3242                 "(e.g., adding 'restrict').";
3243     });
3244   }
3245 
3246   LoopBypassBlocks.push_back(MemCheckBlock);
3247 
3248   AddedSafetyChecks = true;
3249 
3250   // We currently don't use LoopVersioning for the actual loop cloning but we
3251   // still use it to add the noalias metadata.
3252   LVer = std::make_unique<LoopVersioning>(
3253       *Legal->getLAI(),
3254       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3255       DT, PSE.getSE());
3256   LVer->prepareNoAliasMetadata();
3257   return MemCheckBlock;
3258 }
3259 
3260 Value *InnerLoopVectorizer::emitTransformedIndex(
3261     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3262     const InductionDescriptor &ID, BasicBlock *VectorHeader) const {
3263 
3264   SCEVExpander Exp(*SE, DL, "induction");
3265   auto Step = ID.getStep();
3266   auto StartValue = ID.getStartValue();
3267   assert(Index->getType()->getScalarType() == Step->getType() &&
3268          "Index scalar type does not match StepValue type");
3269 
3270   // Note: the IR at this point is broken. We cannot use SE to create any new
3271   // SCEV and then expand it, hoping that SCEV's simplification will give us
3272   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3273   // lead to various SCEV crashes. So all we can do is to use builder and rely
3274   // on InstCombine for future simplifications. Here we handle some trivial
3275   // cases only.
3276   auto CreateAdd = [&B](Value *X, Value *Y) {
3277     assert(X->getType() == Y->getType() && "Types don't match!");
3278     if (auto *CX = dyn_cast<ConstantInt>(X))
3279       if (CX->isZero())
3280         return Y;
3281     if (auto *CY = dyn_cast<ConstantInt>(Y))
3282       if (CY->isZero())
3283         return X;
3284     return B.CreateAdd(X, Y);
3285   };
3286 
3287   // We allow X to be a vector type, in which case Y will potentially be
3288   // splatted into a vector with the same element count.
3289   auto CreateMul = [&B](Value *X, Value *Y) {
3290     assert(X->getType()->getScalarType() == Y->getType() &&
3291            "Types don't match!");
3292     if (auto *CX = dyn_cast<ConstantInt>(X))
3293       if (CX->isOne())
3294         return Y;
3295     if (auto *CY = dyn_cast<ConstantInt>(Y))
3296       if (CY->isOne())
3297         return X;
3298     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3299     if (XVTy && !isa<VectorType>(Y->getType()))
3300       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3301     return B.CreateMul(X, Y);
3302   };
3303 
3304   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3305   // loop, choose the end of the vector loop header (=VectorHeader), because
3306   // the DomTree is not kept up-to-date for additional blocks generated in the
3307   // vector loop. By using the header as insertion point, we guarantee that the
3308   // expanded instructions dominate all their uses.
3309   auto GetInsertPoint = [this, &B, VectorHeader]() {
3310     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3311     if (InsertBB != LoopVectorBody &&
3312         LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB))
3313       return VectorHeader->getTerminator();
3314     return &*B.GetInsertPoint();
3315   };
3316 
3317   switch (ID.getKind()) {
3318   case InductionDescriptor::IK_IntInduction: {
3319     assert(!isa<VectorType>(Index->getType()) &&
3320            "Vector indices not supported for integer inductions yet");
3321     assert(Index->getType() == StartValue->getType() &&
3322            "Index type does not match StartValue type");
3323     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3324       return B.CreateSub(StartValue, Index);
3325     auto *Offset = CreateMul(
3326         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3327     return CreateAdd(StartValue, Offset);
3328   }
3329   case InductionDescriptor::IK_PtrInduction: {
3330     assert(isa<SCEVConstant>(Step) &&
3331            "Expected constant step for pointer induction");
3332     return B.CreateGEP(
3333         ID.getElementType(), StartValue,
3334         CreateMul(Index,
3335                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3336                                     GetInsertPoint())));
3337   }
3338   case InductionDescriptor::IK_FpInduction: {
3339     assert(!isa<VectorType>(Index->getType()) &&
3340            "Vector indices not supported for FP inductions yet");
3341     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3342     auto InductionBinOp = ID.getInductionBinOp();
3343     assert(InductionBinOp &&
3344            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3345             InductionBinOp->getOpcode() == Instruction::FSub) &&
3346            "Original bin op should be defined for FP induction");
3347 
3348     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3349     Value *MulExp = B.CreateFMul(StepValue, Index);
3350     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3351                          "induction");
3352   }
3353   case InductionDescriptor::IK_NoInduction:
3354     return nullptr;
3355   }
3356   llvm_unreachable("invalid enum");
3357 }
3358 
3359 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3360   LoopScalarBody = OrigLoop->getHeader();
3361   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3362   assert(LoopVectorPreHeader && "Invalid loop structure");
3363   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3364   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3365          "multiple exit loop without required epilogue?");
3366 
3367   LoopMiddleBlock =
3368       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3369                  LI, nullptr, Twine(Prefix) + "middle.block");
3370   LoopScalarPreHeader =
3371       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3372                  nullptr, Twine(Prefix) + "scalar.ph");
3373 
3374   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3375 
3376   // Set up the middle block terminator.  Two cases:
3377   // 1) If we know that we must execute the scalar epilogue, emit an
3378   //    unconditional branch.
3379   // 2) Otherwise, we must have a single unique exit block (due to how we
3380   //    implement the multiple exit case).  In this case, set up a conditonal
3381   //    branch from the middle block to the loop scalar preheader, and the
3382   //    exit block.  completeLoopSkeleton will update the condition to use an
3383   //    iteration check, if required to decide whether to execute the remainder.
3384   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3385     BranchInst::Create(LoopScalarPreHeader) :
3386     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3387                        Builder.getTrue());
3388   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3389   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3390 
3391   // We intentionally don't let SplitBlock to update LoopInfo since
3392   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3393   // LoopVectorBody is explicitly added to the correct place few lines later.
3394   LoopVectorBody =
3395       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3396                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3397 
3398   // Update dominator for loop exit.
3399   if (!Cost->requiresScalarEpilogue(VF))
3400     // If there is an epilogue which must run, there's no edge from the
3401     // middle block to exit blocks  and thus no need to update the immediate
3402     // dominator of the exit blocks.
3403     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3404 
3405   // Create and register the new vector loop.
3406   Loop *Lp = LI->AllocateLoop();
3407   Loop *ParentLoop = OrigLoop->getParentLoop();
3408 
3409   // Insert the new loop into the loop nest and register the new basic blocks
3410   // before calling any utilities such as SCEV that require valid LoopInfo.
3411   if (ParentLoop) {
3412     ParentLoop->addChildLoop(Lp);
3413   } else {
3414     LI->addTopLevelLoop(Lp);
3415   }
3416   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3417   return Lp;
3418 }
3419 
3420 void InnerLoopVectorizer::createInductionResumeValues(
3421     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3422   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3423           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3424          "Inconsistent information about additional bypass.");
3425 
3426   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3427   assert(VectorTripCount && L && "Expected valid arguments");
3428   // We are going to resume the execution of the scalar loop.
3429   // Go over all of the induction variables that we found and fix the
3430   // PHIs that are left in the scalar version of the loop.
3431   // The starting values of PHI nodes depend on the counter of the last
3432   // iteration in the vectorized loop.
3433   // If we come from a bypass edge then we need to start from the original
3434   // start value.
3435   Instruction *OldInduction = Legal->getPrimaryInduction();
3436   for (auto &InductionEntry : Legal->getInductionVars()) {
3437     PHINode *OrigPhi = InductionEntry.first;
3438     InductionDescriptor II = InductionEntry.second;
3439 
3440     // Create phi nodes to merge from the  backedge-taken check block.
3441     PHINode *BCResumeVal =
3442         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3443                         LoopScalarPreHeader->getTerminator());
3444     // Copy original phi DL over to the new one.
3445     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3446     Value *&EndValue = IVEndValues[OrigPhi];
3447     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3448     if (OrigPhi == OldInduction) {
3449       // We know what the end value is.
3450       EndValue = VectorTripCount;
3451     } else {
3452       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3453 
3454       // Fast-math-flags propagate from the original induction instruction.
3455       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3456         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3457 
3458       Type *StepType = II.getStep()->getType();
3459       Instruction::CastOps CastOp =
3460           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3461       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3462       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3463       EndValue =
3464           emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3465       EndValue->setName("ind.end");
3466 
3467       // Compute the end value for the additional bypass (if applicable).
3468       if (AdditionalBypass.first) {
3469         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3470         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3471                                          StepType, true);
3472         CRD =
3473             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3474         EndValueFromAdditionalBypass =
3475             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3476         EndValueFromAdditionalBypass->setName("ind.end");
3477       }
3478     }
3479     // The new PHI merges the original incoming value, in case of a bypass,
3480     // or the value at the end of the vectorized loop.
3481     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3482 
3483     // Fix the scalar body counter (PHI node).
3484     // The old induction's phi node in the scalar body needs the truncated
3485     // value.
3486     for (BasicBlock *BB : LoopBypassBlocks)
3487       BCResumeVal->addIncoming(II.getStartValue(), BB);
3488 
3489     if (AdditionalBypass.first)
3490       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3491                                             EndValueFromAdditionalBypass);
3492 
3493     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3494   }
3495 }
3496 
3497 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3498                                                       MDNode *OrigLoopID) {
3499   assert(L && "Expected valid loop.");
3500 
3501   // The trip counts should be cached by now.
3502   Value *Count = getOrCreateTripCount(L);
3503   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3504 
3505   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3506 
3507   // Add a check in the middle block to see if we have completed
3508   // all of the iterations in the first vector loop.  Three cases:
3509   // 1) If we require a scalar epilogue, there is no conditional branch as
3510   //    we unconditionally branch to the scalar preheader.  Do nothing.
3511   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3512   //    Thus if tail is to be folded, we know we don't need to run the
3513   //    remainder and we can use the previous value for the condition (true).
3514   // 3) Otherwise, construct a runtime check.
3515   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3516     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3517                                         Count, VectorTripCount, "cmp.n",
3518                                         LoopMiddleBlock->getTerminator());
3519 
3520     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3521     // of the corresponding compare because they may have ended up with
3522     // different line numbers and we want to avoid awkward line stepping while
3523     // debugging. Eg. if the compare has got a line number inside the loop.
3524     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3525     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3526   }
3527 
3528   // Get ready to start creating new instructions into the vectorized body.
3529   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3530          "Inconsistent vector loop preheader");
3531   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3532 
3533 #ifdef EXPENSIVE_CHECKS
3534   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3535   LI->verify(*DT);
3536 #endif
3537 
3538   return LoopVectorPreHeader;
3539 }
3540 
3541 std::pair<BasicBlock *, Value *>
3542 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3543   /*
3544    In this function we generate a new loop. The new loop will contain
3545    the vectorized instructions while the old loop will continue to run the
3546    scalar remainder.
3547 
3548        [ ] <-- loop iteration number check.
3549     /   |
3550    /    v
3551   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3552   |  /  |
3553   | /   v
3554   ||   [ ]     <-- vector pre header.
3555   |/    |
3556   |     v
3557   |    [  ] \
3558   |    [  ]_|   <-- vector loop.
3559   |     |
3560   |     v
3561   \   -[ ]   <--- middle-block.
3562    \/   |
3563    /\   v
3564    | ->[ ]     <--- new preheader.
3565    |    |
3566  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3567    |   [ ] \
3568    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3569     \   |
3570      \  v
3571       >[ ]     <-- exit block(s).
3572    ...
3573    */
3574 
3575   // Get the metadata of the original loop before it gets modified.
3576   MDNode *OrigLoopID = OrigLoop->getLoopID();
3577 
3578   // Workaround!  Compute the trip count of the original loop and cache it
3579   // before we start modifying the CFG.  This code has a systemic problem
3580   // wherein it tries to run analysis over partially constructed IR; this is
3581   // wrong, and not simply for SCEV.  The trip count of the original loop
3582   // simply happens to be prone to hitting this in practice.  In theory, we
3583   // can hit the same issue for any SCEV, or ValueTracking query done during
3584   // mutation.  See PR49900.
3585   getOrCreateTripCount(OrigLoop);
3586 
3587   // Create an empty vector loop, and prepare basic blocks for the runtime
3588   // checks.
3589   Loop *Lp = createVectorLoopSkeleton("");
3590 
3591   // Now, compare the new count to zero. If it is zero skip the vector loop and
3592   // jump to the scalar loop. This check also covers the case where the
3593   // backedge-taken count is uint##_max: adding one to it will overflow leading
3594   // to an incorrect trip count of zero. In this (rare) case we will also jump
3595   // to the scalar loop.
3596   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3597 
3598   // Generate the code to check any assumptions that we've made for SCEV
3599   // expressions.
3600   emitSCEVChecks(Lp, LoopScalarPreHeader);
3601 
3602   // Generate the code that checks in runtime if arrays overlap. We put the
3603   // checks into a separate block to make the more common case of few elements
3604   // faster.
3605   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3606 
3607   createHeaderBranch(Lp);
3608 
3609   // Emit phis for the new starting index of the scalar loop.
3610   createInductionResumeValues(Lp);
3611 
3612   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3613 }
3614 
3615 // Fix up external users of the induction variable. At this point, we are
3616 // in LCSSA form, with all external PHIs that use the IV having one input value,
3617 // coming from the remainder loop. We need those PHIs to also have a correct
3618 // value for the IV when arriving directly from the middle block.
3619 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3620                                        const InductionDescriptor &II,
3621                                        Value *CountRoundDown, Value *EndValue,
3622                                        BasicBlock *MiddleBlock) {
3623   // There are two kinds of external IV usages - those that use the value
3624   // computed in the last iteration (the PHI) and those that use the penultimate
3625   // value (the value that feeds into the phi from the loop latch).
3626   // We allow both, but they, obviously, have different values.
3627 
3628   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3629 
3630   DenseMap<Value *, Value *> MissingVals;
3631 
3632   // An external user of the last iteration's value should see the value that
3633   // the remainder loop uses to initialize its own IV.
3634   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3635   for (User *U : PostInc->users()) {
3636     Instruction *UI = cast<Instruction>(U);
3637     if (!OrigLoop->contains(UI)) {
3638       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3639       MissingVals[UI] = EndValue;
3640     }
3641   }
3642 
3643   // An external user of the penultimate value need to see EndValue - Step.
3644   // The simplest way to get this is to recompute it from the constituent SCEVs,
3645   // that is Start + (Step * (CRD - 1)).
3646   for (User *U : OrigPhi->users()) {
3647     auto *UI = cast<Instruction>(U);
3648     if (!OrigLoop->contains(UI)) {
3649       const DataLayout &DL =
3650           OrigLoop->getHeader()->getModule()->getDataLayout();
3651       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3652 
3653       IRBuilder<> B(MiddleBlock->getTerminator());
3654 
3655       // Fast-math-flags propagate from the original induction instruction.
3656       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3657         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3658 
3659       Value *CountMinusOne = B.CreateSub(
3660           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3661       Value *CMO =
3662           !II.getStep()->getType()->isIntegerTy()
3663               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3664                              II.getStep()->getType())
3665               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3666       CMO->setName("cast.cmo");
3667       Value *Escape =
3668           emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody);
3669       Escape->setName("ind.escape");
3670       MissingVals[UI] = Escape;
3671     }
3672   }
3673 
3674   for (auto &I : MissingVals) {
3675     PHINode *PHI = cast<PHINode>(I.first);
3676     // One corner case we have to handle is two IVs "chasing" each-other,
3677     // that is %IV2 = phi [...], [ %IV1, %latch ]
3678     // In this case, if IV1 has an external use, we need to avoid adding both
3679     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3680     // don't already have an incoming value for the middle block.
3681     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3682       PHI->addIncoming(I.second, MiddleBlock);
3683   }
3684 }
3685 
3686 namespace {
3687 
3688 struct CSEDenseMapInfo {
3689   static bool canHandle(const Instruction *I) {
3690     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3691            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3692   }
3693 
3694   static inline Instruction *getEmptyKey() {
3695     return DenseMapInfo<Instruction *>::getEmptyKey();
3696   }
3697 
3698   static inline Instruction *getTombstoneKey() {
3699     return DenseMapInfo<Instruction *>::getTombstoneKey();
3700   }
3701 
3702   static unsigned getHashValue(const Instruction *I) {
3703     assert(canHandle(I) && "Unknown instruction!");
3704     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3705                                                            I->value_op_end()));
3706   }
3707 
3708   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3709     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3710         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3711       return LHS == RHS;
3712     return LHS->isIdenticalTo(RHS);
3713   }
3714 };
3715 
3716 } // end anonymous namespace
3717 
3718 ///Perform cse of induction variable instructions.
3719 static void cse(BasicBlock *BB) {
3720   // Perform simple cse.
3721   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3722   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3723     if (!CSEDenseMapInfo::canHandle(&In))
3724       continue;
3725 
3726     // Check if we can replace this instruction with any of the
3727     // visited instructions.
3728     if (Instruction *V = CSEMap.lookup(&In)) {
3729       In.replaceAllUsesWith(V);
3730       In.eraseFromParent();
3731       continue;
3732     }
3733 
3734     CSEMap[&In] = &In;
3735   }
3736 }
3737 
3738 InstructionCost
3739 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3740                                               bool &NeedToScalarize) const {
3741   Function *F = CI->getCalledFunction();
3742   Type *ScalarRetTy = CI->getType();
3743   SmallVector<Type *, 4> Tys, ScalarTys;
3744   for (auto &ArgOp : CI->args())
3745     ScalarTys.push_back(ArgOp->getType());
3746 
3747   // Estimate cost of scalarized vector call. The source operands are assumed
3748   // to be vectors, so we need to extract individual elements from there,
3749   // execute VF scalar calls, and then gather the result into the vector return
3750   // value.
3751   InstructionCost ScalarCallCost =
3752       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3753   if (VF.isScalar())
3754     return ScalarCallCost;
3755 
3756   // Compute corresponding vector type for return value and arguments.
3757   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3758   for (Type *ScalarTy : ScalarTys)
3759     Tys.push_back(ToVectorTy(ScalarTy, VF));
3760 
3761   // Compute costs of unpacking argument values for the scalar calls and
3762   // packing the return values to a vector.
3763   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3764 
3765   InstructionCost Cost =
3766       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3767 
3768   // If we can't emit a vector call for this function, then the currently found
3769   // cost is the cost we need to return.
3770   NeedToScalarize = true;
3771   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3772   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3773 
3774   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3775     return Cost;
3776 
3777   // If the corresponding vector cost is cheaper, return its cost.
3778   InstructionCost VectorCallCost =
3779       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3780   if (VectorCallCost < Cost) {
3781     NeedToScalarize = false;
3782     Cost = VectorCallCost;
3783   }
3784   return Cost;
3785 }
3786 
3787 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3788   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3789     return Elt;
3790   return VectorType::get(Elt, VF);
3791 }
3792 
3793 InstructionCost
3794 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3795                                                    ElementCount VF) const {
3796   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3797   assert(ID && "Expected intrinsic call!");
3798   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3799   FastMathFlags FMF;
3800   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3801     FMF = FPMO->getFastMathFlags();
3802 
3803   SmallVector<const Value *> Arguments(CI->args());
3804   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3805   SmallVector<Type *> ParamTys;
3806   std::transform(FTy->param_begin(), FTy->param_end(),
3807                  std::back_inserter(ParamTys),
3808                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3809 
3810   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3811                                     dyn_cast<IntrinsicInst>(CI));
3812   return TTI.getIntrinsicInstrCost(CostAttrs,
3813                                    TargetTransformInfo::TCK_RecipThroughput);
3814 }
3815 
3816 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3817   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3818   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3819   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3820 }
3821 
3822 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3823   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3824   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3825   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3826 }
3827 
3828 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3829   // For every instruction `I` in MinBWs, truncate the operands, create a
3830   // truncated version of `I` and reextend its result. InstCombine runs
3831   // later and will remove any ext/trunc pairs.
3832   SmallPtrSet<Value *, 4> Erased;
3833   for (const auto &KV : Cost->getMinimalBitwidths()) {
3834     // If the value wasn't vectorized, we must maintain the original scalar
3835     // type. The absence of the value from State indicates that it
3836     // wasn't vectorized.
3837     // FIXME: Should not rely on getVPValue at this point.
3838     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3839     if (!State.hasAnyVectorValue(Def))
3840       continue;
3841     for (unsigned Part = 0; Part < UF; ++Part) {
3842       Value *I = State.get(Def, Part);
3843       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3844         continue;
3845       Type *OriginalTy = I->getType();
3846       Type *ScalarTruncatedTy =
3847           IntegerType::get(OriginalTy->getContext(), KV.second);
3848       auto *TruncatedTy = VectorType::get(
3849           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3850       if (TruncatedTy == OriginalTy)
3851         continue;
3852 
3853       IRBuilder<> B(cast<Instruction>(I));
3854       auto ShrinkOperand = [&](Value *V) -> Value * {
3855         if (auto *ZI = dyn_cast<ZExtInst>(V))
3856           if (ZI->getSrcTy() == TruncatedTy)
3857             return ZI->getOperand(0);
3858         return B.CreateZExtOrTrunc(V, TruncatedTy);
3859       };
3860 
3861       // The actual instruction modification depends on the instruction type,
3862       // unfortunately.
3863       Value *NewI = nullptr;
3864       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3865         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3866                              ShrinkOperand(BO->getOperand(1)));
3867 
3868         // Any wrapping introduced by shrinking this operation shouldn't be
3869         // considered undefined behavior. So, we can't unconditionally copy
3870         // arithmetic wrapping flags to NewI.
3871         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3872       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3873         NewI =
3874             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3875                          ShrinkOperand(CI->getOperand(1)));
3876       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3877         NewI = B.CreateSelect(SI->getCondition(),
3878                               ShrinkOperand(SI->getTrueValue()),
3879                               ShrinkOperand(SI->getFalseValue()));
3880       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3881         switch (CI->getOpcode()) {
3882         default:
3883           llvm_unreachable("Unhandled cast!");
3884         case Instruction::Trunc:
3885           NewI = ShrinkOperand(CI->getOperand(0));
3886           break;
3887         case Instruction::SExt:
3888           NewI = B.CreateSExtOrTrunc(
3889               CI->getOperand(0),
3890               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3891           break;
3892         case Instruction::ZExt:
3893           NewI = B.CreateZExtOrTrunc(
3894               CI->getOperand(0),
3895               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3896           break;
3897         }
3898       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3899         auto Elements0 =
3900             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3901         auto *O0 = B.CreateZExtOrTrunc(
3902             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3903         auto Elements1 =
3904             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3905         auto *O1 = B.CreateZExtOrTrunc(
3906             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3907 
3908         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3909       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3910         // Don't do anything with the operands, just extend the result.
3911         continue;
3912       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3913         auto Elements =
3914             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3915         auto *O0 = B.CreateZExtOrTrunc(
3916             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3917         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3918         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3919       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3920         auto Elements =
3921             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3922         auto *O0 = B.CreateZExtOrTrunc(
3923             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3924         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3925       } else {
3926         // If we don't know what to do, be conservative and don't do anything.
3927         continue;
3928       }
3929 
3930       // Lastly, extend the result.
3931       NewI->takeName(cast<Instruction>(I));
3932       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3933       I->replaceAllUsesWith(Res);
3934       cast<Instruction>(I)->eraseFromParent();
3935       Erased.insert(I);
3936       State.reset(Def, Res, Part);
3937     }
3938   }
3939 
3940   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3941   for (const auto &KV : Cost->getMinimalBitwidths()) {
3942     // If the value wasn't vectorized, we must maintain the original scalar
3943     // type. The absence of the value from State indicates that it
3944     // wasn't vectorized.
3945     // FIXME: Should not rely on getVPValue at this point.
3946     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3947     if (!State.hasAnyVectorValue(Def))
3948       continue;
3949     for (unsigned Part = 0; Part < UF; ++Part) {
3950       Value *I = State.get(Def, Part);
3951       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3952       if (Inst && Inst->use_empty()) {
3953         Value *NewI = Inst->getOperand(0);
3954         Inst->eraseFromParent();
3955         State.reset(Def, NewI, Part);
3956       }
3957     }
3958   }
3959 }
3960 
3961 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3962   // Insert truncates and extends for any truncated instructions as hints to
3963   // InstCombine.
3964   if (VF.isVector())
3965     truncateToMinimalBitwidths(State);
3966 
3967   // Fix widened non-induction PHIs by setting up the PHI operands.
3968   if (OrigPHIsToFix.size()) {
3969     assert(EnableVPlanNativePath &&
3970            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3971     fixNonInductionPHIs(State);
3972   }
3973 
3974   // At this point every instruction in the original loop is widened to a
3975   // vector form. Now we need to fix the recurrences in the loop. These PHI
3976   // nodes are currently empty because we did not want to introduce cycles.
3977   // This is the second stage of vectorizing recurrences.
3978   fixCrossIterationPHIs(State);
3979 
3980   // Forget the original basic block.
3981   PSE.getSE()->forgetLoop(OrigLoop);
3982 
3983   // If we inserted an edge from the middle block to the unique exit block,
3984   // update uses outside the loop (phis) to account for the newly inserted
3985   // edge.
3986   if (!Cost->requiresScalarEpilogue(VF)) {
3987     // Fix-up external users of the induction variables.
3988     for (auto &Entry : Legal->getInductionVars())
3989       fixupIVUsers(Entry.first, Entry.second,
3990                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3991                    IVEndValues[Entry.first], LoopMiddleBlock);
3992 
3993     fixLCSSAPHIs(State);
3994   }
3995 
3996   for (Instruction *PI : PredicatedInstructions)
3997     sinkScalarOperands(&*PI);
3998 
3999   // Remove redundant induction instructions.
4000   cse(LoopVectorBody);
4001 
4002   // Set/update profile weights for the vector and remainder loops as original
4003   // loop iterations are now distributed among them. Note that original loop
4004   // represented by LoopScalarBody becomes remainder loop after vectorization.
4005   //
4006   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4007   // end up getting slightly roughened result but that should be OK since
4008   // profile is not inherently precise anyway. Note also possible bypass of
4009   // vector code caused by legality checks is ignored, assigning all the weight
4010   // to the vector loop, optimistically.
4011   //
4012   // For scalable vectorization we can't know at compile time how many iterations
4013   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4014   // vscale of '1'.
4015   setProfileInfoAfterUnrolling(
4016       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4017       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4018 }
4019 
4020 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4021   // In order to support recurrences we need to be able to vectorize Phi nodes.
4022   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4023   // stage #2: We now need to fix the recurrences by adding incoming edges to
4024   // the currently empty PHI nodes. At this point every instruction in the
4025   // original loop is widened to a vector form so we can use them to construct
4026   // the incoming edges.
4027   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4028   for (VPRecipeBase &R : Header->phis()) {
4029     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4030       fixReduction(ReductionPhi, State);
4031     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4032       fixFirstOrderRecurrence(FOR, State);
4033   }
4034 }
4035 
4036 void InnerLoopVectorizer::fixFirstOrderRecurrence(
4037     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
4038   // This is the second phase of vectorizing first-order recurrences. An
4039   // overview of the transformation is described below. Suppose we have the
4040   // following loop.
4041   //
4042   //   for (int i = 0; i < n; ++i)
4043   //     b[i] = a[i] - a[i - 1];
4044   //
4045   // There is a first-order recurrence on "a". For this loop, the shorthand
4046   // scalar IR looks like:
4047   //
4048   //   scalar.ph:
4049   //     s_init = a[-1]
4050   //     br scalar.body
4051   //
4052   //   scalar.body:
4053   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4054   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4055   //     s2 = a[i]
4056   //     b[i] = s2 - s1
4057   //     br cond, scalar.body, ...
4058   //
4059   // In this example, s1 is a recurrence because it's value depends on the
4060   // previous iteration. In the first phase of vectorization, we created a
4061   // vector phi v1 for s1. We now complete the vectorization and produce the
4062   // shorthand vector IR shown below (for VF = 4, UF = 1).
4063   //
4064   //   vector.ph:
4065   //     v_init = vector(..., ..., ..., a[-1])
4066   //     br vector.body
4067   //
4068   //   vector.body
4069   //     i = phi [0, vector.ph], [i+4, vector.body]
4070   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4071   //     v2 = a[i, i+1, i+2, i+3];
4072   //     v3 = vector(v1(3), v2(0, 1, 2))
4073   //     b[i, i+1, i+2, i+3] = v2 - v3
4074   //     br cond, vector.body, middle.block
4075   //
4076   //   middle.block:
4077   //     x = v2(3)
4078   //     br scalar.ph
4079   //
4080   //   scalar.ph:
4081   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4082   //     br scalar.body
4083   //
4084   // After execution completes the vector loop, we extract the next value of
4085   // the recurrence (x) to use as the initial value in the scalar loop.
4086 
4087   // Extract the last vector element in the middle block. This will be the
4088   // initial value for the recurrence when jumping to the scalar loop.
4089   VPValue *PreviousDef = PhiR->getBackedgeValue();
4090   Value *Incoming = State.get(PreviousDef, UF - 1);
4091   auto *ExtractForScalar = Incoming;
4092   auto *IdxTy = Builder.getInt32Ty();
4093   if (VF.isVector()) {
4094     auto *One = ConstantInt::get(IdxTy, 1);
4095     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4096     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4097     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4098     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4099                                                     "vector.recur.extract");
4100   }
4101   // Extract the second last element in the middle block if the
4102   // Phi is used outside the loop. We need to extract the phi itself
4103   // and not the last element (the phi update in the current iteration). This
4104   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4105   // when the scalar loop is not run at all.
4106   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4107   if (VF.isVector()) {
4108     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4109     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4110     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4111         Incoming, Idx, "vector.recur.extract.for.phi");
4112   } else if (UF > 1)
4113     // When loop is unrolled without vectorizing, initialize
4114     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4115     // of `Incoming`. This is analogous to the vectorized case above: extracting
4116     // the second last element when VF > 1.
4117     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4118 
4119   // Fix the initial value of the original recurrence in the scalar loop.
4120   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4121   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4122   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4123   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4124   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4125     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4126     Start->addIncoming(Incoming, BB);
4127   }
4128 
4129   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4130   Phi->setName("scalar.recur");
4131 
4132   // Finally, fix users of the recurrence outside the loop. The users will need
4133   // either the last value of the scalar recurrence or the last value of the
4134   // vector recurrence we extracted in the middle block. Since the loop is in
4135   // LCSSA form, we just need to find all the phi nodes for the original scalar
4136   // recurrence in the exit block, and then add an edge for the middle block.
4137   // Note that LCSSA does not imply single entry when the original scalar loop
4138   // had multiple exiting edges (as we always run the last iteration in the
4139   // scalar epilogue); in that case, there is no edge from middle to exit and
4140   // and thus no phis which needed updated.
4141   if (!Cost->requiresScalarEpilogue(VF))
4142     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4143       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4144         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4145 }
4146 
4147 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4148                                        VPTransformState &State) {
4149   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4150   // Get it's reduction variable descriptor.
4151   assert(Legal->isReductionVariable(OrigPhi) &&
4152          "Unable to find the reduction variable");
4153   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4154 
4155   RecurKind RK = RdxDesc.getRecurrenceKind();
4156   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4157   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4158   setDebugLocFromInst(ReductionStartValue);
4159 
4160   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4161   // This is the vector-clone of the value that leaves the loop.
4162   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4163 
4164   // Wrap flags are in general invalid after vectorization, clear them.
4165   clearReductionWrapFlags(RdxDesc, State);
4166 
4167   // Before each round, move the insertion point right between
4168   // the PHIs and the values we are going to write.
4169   // This allows us to write both PHINodes and the extractelement
4170   // instructions.
4171   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4172 
4173   setDebugLocFromInst(LoopExitInst);
4174 
4175   Type *PhiTy = OrigPhi->getType();
4176   // If tail is folded by masking, the vector value to leave the loop should be
4177   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4178   // instead of the former. For an inloop reduction the reduction will already
4179   // be predicated, and does not need to be handled here.
4180   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4181     for (unsigned Part = 0; Part < UF; ++Part) {
4182       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4183       Value *Sel = nullptr;
4184       for (User *U : VecLoopExitInst->users()) {
4185         if (isa<SelectInst>(U)) {
4186           assert(!Sel && "Reduction exit feeding two selects");
4187           Sel = U;
4188         } else
4189           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4190       }
4191       assert(Sel && "Reduction exit feeds no select");
4192       State.reset(LoopExitInstDef, Sel, Part);
4193 
4194       // If the target can create a predicated operator for the reduction at no
4195       // extra cost in the loop (for example a predicated vadd), it can be
4196       // cheaper for the select to remain in the loop than be sunk out of it,
4197       // and so use the select value for the phi instead of the old
4198       // LoopExitValue.
4199       if (PreferPredicatedReductionSelect ||
4200           TTI->preferPredicatedReductionSelect(
4201               RdxDesc.getOpcode(), PhiTy,
4202               TargetTransformInfo::ReductionFlags())) {
4203         auto *VecRdxPhi =
4204             cast<PHINode>(State.get(PhiR, Part));
4205         VecRdxPhi->setIncomingValueForBlock(
4206             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4207       }
4208     }
4209   }
4210 
4211   // If the vector reduction can be performed in a smaller type, we truncate
4212   // then extend the loop exit value to enable InstCombine to evaluate the
4213   // entire expression in the smaller type.
4214   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4215     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4216     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4217     Builder.SetInsertPoint(
4218         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4219     VectorParts RdxParts(UF);
4220     for (unsigned Part = 0; Part < UF; ++Part) {
4221       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4222       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4223       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4224                                         : Builder.CreateZExt(Trunc, VecTy);
4225       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4226         if (U != Trunc) {
4227           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4228           RdxParts[Part] = Extnd;
4229         }
4230     }
4231     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4232     for (unsigned Part = 0; Part < UF; ++Part) {
4233       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4234       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4235     }
4236   }
4237 
4238   // Reduce all of the unrolled parts into a single vector.
4239   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4240   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4241 
4242   // The middle block terminator has already been assigned a DebugLoc here (the
4243   // OrigLoop's single latch terminator). We want the whole middle block to
4244   // appear to execute on this line because: (a) it is all compiler generated,
4245   // (b) these instructions are always executed after evaluating the latch
4246   // conditional branch, and (c) other passes may add new predecessors which
4247   // terminate on this line. This is the easiest way to ensure we don't
4248   // accidentally cause an extra step back into the loop while debugging.
4249   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4250   if (PhiR->isOrdered())
4251     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4252   else {
4253     // Floating-point operations should have some FMF to enable the reduction.
4254     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4255     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4256     for (unsigned Part = 1; Part < UF; ++Part) {
4257       Value *RdxPart = State.get(LoopExitInstDef, Part);
4258       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4259         ReducedPartRdx = Builder.CreateBinOp(
4260             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4261       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4262         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4263                                            ReducedPartRdx, RdxPart);
4264       else
4265         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4266     }
4267   }
4268 
4269   // Create the reduction after the loop. Note that inloop reductions create the
4270   // target reduction in the loop using a Reduction recipe.
4271   if (VF.isVector() && !PhiR->isInLoop()) {
4272     ReducedPartRdx =
4273         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4274     // If the reduction can be performed in a smaller type, we need to extend
4275     // the reduction to the wider type before we branch to the original loop.
4276     if (PhiTy != RdxDesc.getRecurrenceType())
4277       ReducedPartRdx = RdxDesc.isSigned()
4278                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4279                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4280   }
4281 
4282   PHINode *ResumePhi =
4283       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4284 
4285   // Create a phi node that merges control-flow from the backedge-taken check
4286   // block and the middle block.
4287   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4288                                         LoopScalarPreHeader->getTerminator());
4289 
4290   // If we are fixing reductions in the epilogue loop then we should already
4291   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4292   // we carry over the incoming values correctly.
4293   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4294     if (Incoming == LoopMiddleBlock)
4295       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4296     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4297       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4298                               Incoming);
4299     else
4300       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4301   }
4302 
4303   // Set the resume value for this reduction
4304   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4305 
4306   // Now, we need to fix the users of the reduction variable
4307   // inside and outside of the scalar remainder loop.
4308 
4309   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4310   // in the exit blocks.  See comment on analogous loop in
4311   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4312   if (!Cost->requiresScalarEpilogue(VF))
4313     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4314       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4315         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4316 
4317   // Fix the scalar loop reduction variable with the incoming reduction sum
4318   // from the vector body and from the backedge value.
4319   int IncomingEdgeBlockIdx =
4320       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4321   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4322   // Pick the other block.
4323   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4324   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4325   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4326 }
4327 
4328 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4329                                                   VPTransformState &State) {
4330   RecurKind RK = RdxDesc.getRecurrenceKind();
4331   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4332     return;
4333 
4334   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4335   assert(LoopExitInstr && "null loop exit instruction");
4336   SmallVector<Instruction *, 8> Worklist;
4337   SmallPtrSet<Instruction *, 8> Visited;
4338   Worklist.push_back(LoopExitInstr);
4339   Visited.insert(LoopExitInstr);
4340 
4341   while (!Worklist.empty()) {
4342     Instruction *Cur = Worklist.pop_back_val();
4343     if (isa<OverflowingBinaryOperator>(Cur))
4344       for (unsigned Part = 0; Part < UF; ++Part) {
4345         // FIXME: Should not rely on getVPValue at this point.
4346         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4347         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4348       }
4349 
4350     for (User *U : Cur->users()) {
4351       Instruction *UI = cast<Instruction>(U);
4352       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4353           Visited.insert(UI).second)
4354         Worklist.push_back(UI);
4355     }
4356   }
4357 }
4358 
4359 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4360   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4361     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4362       // Some phis were already hand updated by the reduction and recurrence
4363       // code above, leave them alone.
4364       continue;
4365 
4366     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4367     // Non-instruction incoming values will have only one value.
4368 
4369     VPLane Lane = VPLane::getFirstLane();
4370     if (isa<Instruction>(IncomingValue) &&
4371         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4372                                            VF))
4373       Lane = VPLane::getLastLaneForVF(VF);
4374 
4375     // Can be a loop invariant incoming value or the last scalar value to be
4376     // extracted from the vectorized loop.
4377     // FIXME: Should not rely on getVPValue at this point.
4378     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4379     Value *lastIncomingValue =
4380         OrigLoop->isLoopInvariant(IncomingValue)
4381             ? IncomingValue
4382             : State.get(State.Plan->getVPValue(IncomingValue, true),
4383                         VPIteration(UF - 1, Lane));
4384     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4385   }
4386 }
4387 
4388 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4389   // The basic block and loop containing the predicated instruction.
4390   auto *PredBB = PredInst->getParent();
4391   auto *VectorLoop = LI->getLoopFor(PredBB);
4392 
4393   // Initialize a worklist with the operands of the predicated instruction.
4394   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4395 
4396   // Holds instructions that we need to analyze again. An instruction may be
4397   // reanalyzed if we don't yet know if we can sink it or not.
4398   SmallVector<Instruction *, 8> InstsToReanalyze;
4399 
4400   // Returns true if a given use occurs in the predicated block. Phi nodes use
4401   // their operands in their corresponding predecessor blocks.
4402   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4403     auto *I = cast<Instruction>(U.getUser());
4404     BasicBlock *BB = I->getParent();
4405     if (auto *Phi = dyn_cast<PHINode>(I))
4406       BB = Phi->getIncomingBlock(
4407           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4408     return BB == PredBB;
4409   };
4410 
4411   // Iteratively sink the scalarized operands of the predicated instruction
4412   // into the block we created for it. When an instruction is sunk, it's
4413   // operands are then added to the worklist. The algorithm ends after one pass
4414   // through the worklist doesn't sink a single instruction.
4415   bool Changed;
4416   do {
4417     // Add the instructions that need to be reanalyzed to the worklist, and
4418     // reset the changed indicator.
4419     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4420     InstsToReanalyze.clear();
4421     Changed = false;
4422 
4423     while (!Worklist.empty()) {
4424       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4425 
4426       // We can't sink an instruction if it is a phi node, is not in the loop,
4427       // or may have side effects.
4428       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4429           I->mayHaveSideEffects())
4430         continue;
4431 
4432       // If the instruction is already in PredBB, check if we can sink its
4433       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4434       // sinking the scalar instruction I, hence it appears in PredBB; but it
4435       // may have failed to sink I's operands (recursively), which we try
4436       // (again) here.
4437       if (I->getParent() == PredBB) {
4438         Worklist.insert(I->op_begin(), I->op_end());
4439         continue;
4440       }
4441 
4442       // It's legal to sink the instruction if all its uses occur in the
4443       // predicated block. Otherwise, there's nothing to do yet, and we may
4444       // need to reanalyze the instruction.
4445       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4446         InstsToReanalyze.push_back(I);
4447         continue;
4448       }
4449 
4450       // Move the instruction to the beginning of the predicated block, and add
4451       // it's operands to the worklist.
4452       I->moveBefore(&*PredBB->getFirstInsertionPt());
4453       Worklist.insert(I->op_begin(), I->op_end());
4454 
4455       // The sinking may have enabled other instructions to be sunk, so we will
4456       // need to iterate.
4457       Changed = true;
4458     }
4459   } while (Changed);
4460 }
4461 
4462 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4463   for (PHINode *OrigPhi : OrigPHIsToFix) {
4464     VPWidenPHIRecipe *VPPhi =
4465         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4466     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4467     // Make sure the builder has a valid insert point.
4468     Builder.SetInsertPoint(NewPhi);
4469     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4470       VPValue *Inc = VPPhi->getIncomingValue(i);
4471       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4472       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4473     }
4474   }
4475 }
4476 
4477 bool InnerLoopVectorizer::useOrderedReductions(
4478     const RecurrenceDescriptor &RdxDesc) {
4479   return Cost->useOrderedReductions(RdxDesc);
4480 }
4481 
4482 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4483                                               VPWidenPHIRecipe *PhiR,
4484                                               VPTransformState &State) {
4485   PHINode *P = cast<PHINode>(PN);
4486   if (EnableVPlanNativePath) {
4487     // Currently we enter here in the VPlan-native path for non-induction
4488     // PHIs where all control flow is uniform. We simply widen these PHIs.
4489     // Create a vector phi with no operands - the vector phi operands will be
4490     // set at the end of vector code generation.
4491     Type *VecTy = (State.VF.isScalar())
4492                       ? PN->getType()
4493                       : VectorType::get(PN->getType(), State.VF);
4494     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4495     State.set(PhiR, VecPhi, 0);
4496     OrigPHIsToFix.push_back(P);
4497 
4498     return;
4499   }
4500 
4501   assert(PN->getParent() == OrigLoop->getHeader() &&
4502          "Non-header phis should have been handled elsewhere");
4503 
4504   // In order to support recurrences we need to be able to vectorize Phi nodes.
4505   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4506   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4507   // this value when we vectorize all of the instructions that use the PHI.
4508 
4509   assert(!Legal->isReductionVariable(P) &&
4510          "reductions should be handled elsewhere");
4511 
4512   setDebugLocFromInst(P);
4513 
4514   // This PHINode must be an induction variable.
4515   // Make sure that we know about it.
4516   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4517 
4518   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4519   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4520 
4521   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4522   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4523 
4524   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4525   // which can be found from the original scalar operations.
4526   switch (II.getKind()) {
4527   case InductionDescriptor::IK_NoInduction:
4528     llvm_unreachable("Unknown induction");
4529   case InductionDescriptor::IK_IntInduction:
4530   case InductionDescriptor::IK_FpInduction:
4531     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4532   case InductionDescriptor::IK_PtrInduction: {
4533     // Handle the pointer induction variable case.
4534     assert(P->getType()->isPointerTy() && "Unexpected type.");
4535 
4536     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4537       // This is the normalized GEP that starts counting at zero.
4538       Value *PtrInd =
4539           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4540       // Determine the number of scalars we need to generate for each unroll
4541       // iteration. If the instruction is uniform, we only need to generate the
4542       // first lane. Otherwise, we generate all VF values.
4543       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4544       assert((IsUniform || !State.VF.isScalable()) &&
4545              "Cannot scalarize a scalable VF");
4546       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4547 
4548       for (unsigned Part = 0; Part < UF; ++Part) {
4549         Value *PartStart =
4550             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4551 
4552         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4553           Value *Idx = Builder.CreateAdd(
4554               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4555           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4556           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(),
4557                                                 DL, II, State.CFG.PrevBB);
4558           SclrGep->setName("next.gep");
4559           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4560         }
4561       }
4562       return;
4563     }
4564     assert(isa<SCEVConstant>(II.getStep()) &&
4565            "Induction step not a SCEV constant!");
4566     Type *PhiType = II.getStep()->getType();
4567 
4568     // Build a pointer phi
4569     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4570     Type *ScStValueType = ScalarStartValue->getType();
4571     PHINode *NewPointerPhi =
4572         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4573     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4574 
4575     // A pointer induction, performed by using a gep
4576     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4577     Instruction *InductionLoc = LoopLatch->getTerminator();
4578     const SCEV *ScalarStep = II.getStep();
4579     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4580     Value *ScalarStepValue =
4581         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4582     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4583     Value *NumUnrolledElems =
4584         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4585     Value *InductionGEP = GetElementPtrInst::Create(
4586         II.getElementType(), NewPointerPhi,
4587         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4588         InductionLoc);
4589     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4590 
4591     // Create UF many actual address geps that use the pointer
4592     // phi as base and a vectorized version of the step value
4593     // (<step*0, ..., step*N>) as offset.
4594     for (unsigned Part = 0; Part < State.UF; ++Part) {
4595       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4596       Value *StartOffsetScalar =
4597           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4598       Value *StartOffset =
4599           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4600       // Create a vector of consecutive numbers from zero to VF.
4601       StartOffset =
4602           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4603 
4604       Value *GEP = Builder.CreateGEP(
4605           II.getElementType(), NewPointerPhi,
4606           Builder.CreateMul(
4607               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4608               "vector.gep"));
4609       State.set(PhiR, GEP, Part);
4610     }
4611   }
4612   }
4613 }
4614 
4615 /// A helper function for checking whether an integer division-related
4616 /// instruction may divide by zero (in which case it must be predicated if
4617 /// executed conditionally in the scalar code).
4618 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4619 /// Non-zero divisors that are non compile-time constants will not be
4620 /// converted into multiplication, so we will still end up scalarizing
4621 /// the division, but can do so w/o predication.
4622 static bool mayDivideByZero(Instruction &I) {
4623   assert((I.getOpcode() == Instruction::UDiv ||
4624           I.getOpcode() == Instruction::SDiv ||
4625           I.getOpcode() == Instruction::URem ||
4626           I.getOpcode() == Instruction::SRem) &&
4627          "Unexpected instruction");
4628   Value *Divisor = I.getOperand(1);
4629   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4630   return !CInt || CInt->isZero();
4631 }
4632 
4633 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4634                                                VPUser &ArgOperands,
4635                                                VPTransformState &State) {
4636   assert(!isa<DbgInfoIntrinsic>(I) &&
4637          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4638   setDebugLocFromInst(&I);
4639 
4640   Module *M = I.getParent()->getParent()->getParent();
4641   auto *CI = cast<CallInst>(&I);
4642 
4643   SmallVector<Type *, 4> Tys;
4644   for (Value *ArgOperand : CI->args())
4645     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4646 
4647   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4648 
4649   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4650   // version of the instruction.
4651   // Is it beneficial to perform intrinsic call compared to lib call?
4652   bool NeedToScalarize = false;
4653   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4654   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4655   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4656   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4657          "Instruction should be scalarized elsewhere.");
4658   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4659          "Either the intrinsic cost or vector call cost must be valid");
4660 
4661   for (unsigned Part = 0; Part < UF; ++Part) {
4662     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4663     SmallVector<Value *, 4> Args;
4664     for (auto &I : enumerate(ArgOperands.operands())) {
4665       // Some intrinsics have a scalar argument - don't replace it with a
4666       // vector.
4667       Value *Arg;
4668       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4669         Arg = State.get(I.value(), Part);
4670       else {
4671         Arg = State.get(I.value(), VPIteration(0, 0));
4672         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4673           TysForDecl.push_back(Arg->getType());
4674       }
4675       Args.push_back(Arg);
4676     }
4677 
4678     Function *VectorF;
4679     if (UseVectorIntrinsic) {
4680       // Use vector version of the intrinsic.
4681       if (VF.isVector())
4682         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4683       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4684       assert(VectorF && "Can't retrieve vector intrinsic.");
4685     } else {
4686       // Use vector version of the function call.
4687       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4688 #ifndef NDEBUG
4689       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4690              "Can't create vector function.");
4691 #endif
4692         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4693     }
4694       SmallVector<OperandBundleDef, 1> OpBundles;
4695       CI->getOperandBundlesAsDefs(OpBundles);
4696       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4697 
4698       if (isa<FPMathOperator>(V))
4699         V->copyFastMathFlags(CI);
4700 
4701       State.set(Def, V, Part);
4702       addMetadata(V, &I);
4703   }
4704 }
4705 
4706 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4707   // We should not collect Scalars more than once per VF. Right now, this
4708   // function is called from collectUniformsAndScalars(), which already does
4709   // this check. Collecting Scalars for VF=1 does not make any sense.
4710   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4711          "This function should not be visited twice for the same VF");
4712 
4713   SmallSetVector<Instruction *, 8> Worklist;
4714 
4715   // These sets are used to seed the analysis with pointers used by memory
4716   // accesses that will remain scalar.
4717   SmallSetVector<Instruction *, 8> ScalarPtrs;
4718   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4719   auto *Latch = TheLoop->getLoopLatch();
4720 
4721   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4722   // The pointer operands of loads and stores will be scalar as long as the
4723   // memory access is not a gather or scatter operation. The value operand of a
4724   // store will remain scalar if the store is scalarized.
4725   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4726     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4727     assert(WideningDecision != CM_Unknown &&
4728            "Widening decision should be ready at this moment");
4729     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4730       if (Ptr == Store->getValueOperand())
4731         return WideningDecision == CM_Scalarize;
4732     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4733            "Ptr is neither a value or pointer operand");
4734     return WideningDecision != CM_GatherScatter;
4735   };
4736 
4737   // A helper that returns true if the given value is a bitcast or
4738   // getelementptr instruction contained in the loop.
4739   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4740     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4741             isa<GetElementPtrInst>(V)) &&
4742            !TheLoop->isLoopInvariant(V);
4743   };
4744 
4745   // A helper that evaluates a memory access's use of a pointer. If the use will
4746   // be a scalar use and the pointer is only used by memory accesses, we place
4747   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4748   // PossibleNonScalarPtrs.
4749   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4750     // We only care about bitcast and getelementptr instructions contained in
4751     // the loop.
4752     if (!isLoopVaryingBitCastOrGEP(Ptr))
4753       return;
4754 
4755     // If the pointer has already been identified as scalar (e.g., if it was
4756     // also identified as uniform), there's nothing to do.
4757     auto *I = cast<Instruction>(Ptr);
4758     if (Worklist.count(I))
4759       return;
4760 
4761     // If the use of the pointer will be a scalar use, and all users of the
4762     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4763     // place the pointer in PossibleNonScalarPtrs.
4764     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4765           return isa<LoadInst>(U) || isa<StoreInst>(U);
4766         }))
4767       ScalarPtrs.insert(I);
4768     else
4769       PossibleNonScalarPtrs.insert(I);
4770   };
4771 
4772   // We seed the scalars analysis with three classes of instructions: (1)
4773   // instructions marked uniform-after-vectorization and (2) bitcast,
4774   // getelementptr and (pointer) phi instructions used by memory accesses
4775   // requiring a scalar use.
4776   //
4777   // (1) Add to the worklist all instructions that have been identified as
4778   // uniform-after-vectorization.
4779   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4780 
4781   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4782   // memory accesses requiring a scalar use. The pointer operands of loads and
4783   // stores will be scalar as long as the memory accesses is not a gather or
4784   // scatter operation. The value operand of a store will remain scalar if the
4785   // store is scalarized.
4786   for (auto *BB : TheLoop->blocks())
4787     for (auto &I : *BB) {
4788       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4789         evaluatePtrUse(Load, Load->getPointerOperand());
4790       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4791         evaluatePtrUse(Store, Store->getPointerOperand());
4792         evaluatePtrUse(Store, Store->getValueOperand());
4793       }
4794     }
4795   for (auto *I : ScalarPtrs)
4796     if (!PossibleNonScalarPtrs.count(I)) {
4797       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4798       Worklist.insert(I);
4799     }
4800 
4801   // Insert the forced scalars.
4802   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4803   // induction variable when the PHI user is scalarized.
4804   auto ForcedScalar = ForcedScalars.find(VF);
4805   if (ForcedScalar != ForcedScalars.end())
4806     for (auto *I : ForcedScalar->second)
4807       Worklist.insert(I);
4808 
4809   // Expand the worklist by looking through any bitcasts and getelementptr
4810   // instructions we've already identified as scalar. This is similar to the
4811   // expansion step in collectLoopUniforms(); however, here we're only
4812   // expanding to include additional bitcasts and getelementptr instructions.
4813   unsigned Idx = 0;
4814   while (Idx != Worklist.size()) {
4815     Instruction *Dst = Worklist[Idx++];
4816     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4817       continue;
4818     auto *Src = cast<Instruction>(Dst->getOperand(0));
4819     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4820           auto *J = cast<Instruction>(U);
4821           return !TheLoop->contains(J) || Worklist.count(J) ||
4822                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4823                   isScalarUse(J, Src));
4824         })) {
4825       Worklist.insert(Src);
4826       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4827     }
4828   }
4829 
4830   // An induction variable will remain scalar if all users of the induction
4831   // variable and induction variable update remain scalar.
4832   for (auto &Induction : Legal->getInductionVars()) {
4833     auto *Ind = Induction.first;
4834     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4835 
4836     // If tail-folding is applied, the primary induction variable will be used
4837     // to feed a vector compare.
4838     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4839       continue;
4840 
4841     // Returns true if \p Indvar is a pointer induction that is used directly by
4842     // load/store instruction \p I.
4843     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4844                                               Instruction *I) {
4845       return Induction.second.getKind() ==
4846                  InductionDescriptor::IK_PtrInduction &&
4847              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4848              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4849     };
4850 
4851     // Determine if all users of the induction variable are scalar after
4852     // vectorization.
4853     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4854       auto *I = cast<Instruction>(U);
4855       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4856              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4857     });
4858     if (!ScalarInd)
4859       continue;
4860 
4861     // Determine if all users of the induction variable update instruction are
4862     // scalar after vectorization.
4863     auto ScalarIndUpdate =
4864         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4865           auto *I = cast<Instruction>(U);
4866           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4867                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4868         });
4869     if (!ScalarIndUpdate)
4870       continue;
4871 
4872     // The induction variable and its update instruction will remain scalar.
4873     Worklist.insert(Ind);
4874     Worklist.insert(IndUpdate);
4875     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4876     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4877                       << "\n");
4878   }
4879 
4880   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4881 }
4882 
4883 bool LoopVectorizationCostModel::isScalarWithPredication(
4884     Instruction *I, ElementCount VF) const {
4885   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4886     return false;
4887   switch(I->getOpcode()) {
4888   default:
4889     break;
4890   case Instruction::Load:
4891   case Instruction::Store: {
4892     if (!Legal->isMaskRequired(I))
4893       return false;
4894     auto *Ptr = getLoadStorePointerOperand(I);
4895     auto *Ty = getLoadStoreType(I);
4896     Type *VTy = Ty;
4897     if (VF.isVector())
4898       VTy = VectorType::get(Ty, VF);
4899     const Align Alignment = getLoadStoreAlignment(I);
4900     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4901                                 TTI.isLegalMaskedGather(VTy, Alignment))
4902                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4903                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4904   }
4905   case Instruction::UDiv:
4906   case Instruction::SDiv:
4907   case Instruction::SRem:
4908   case Instruction::URem:
4909     return mayDivideByZero(*I);
4910   }
4911   return false;
4912 }
4913 
4914 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4915     Instruction *I, ElementCount VF) {
4916   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4917   assert(getWideningDecision(I, VF) == CM_Unknown &&
4918          "Decision should not be set yet.");
4919   auto *Group = getInterleavedAccessGroup(I);
4920   assert(Group && "Must have a group.");
4921 
4922   // If the instruction's allocated size doesn't equal it's type size, it
4923   // requires padding and will be scalarized.
4924   auto &DL = I->getModule()->getDataLayout();
4925   auto *ScalarTy = getLoadStoreType(I);
4926   if (hasIrregularType(ScalarTy, DL))
4927     return false;
4928 
4929   // Check if masking is required.
4930   // A Group may need masking for one of two reasons: it resides in a block that
4931   // needs predication, or it was decided to use masking to deal with gaps
4932   // (either a gap at the end of a load-access that may result in a speculative
4933   // load, or any gaps in a store-access).
4934   bool PredicatedAccessRequiresMasking =
4935       blockNeedsPredicationForAnyReason(I->getParent()) &&
4936       Legal->isMaskRequired(I);
4937   bool LoadAccessWithGapsRequiresEpilogMasking =
4938       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4939       !isScalarEpilogueAllowed();
4940   bool StoreAccessWithGapsRequiresMasking =
4941       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4942   if (!PredicatedAccessRequiresMasking &&
4943       !LoadAccessWithGapsRequiresEpilogMasking &&
4944       !StoreAccessWithGapsRequiresMasking)
4945     return true;
4946 
4947   // If masked interleaving is required, we expect that the user/target had
4948   // enabled it, because otherwise it either wouldn't have been created or
4949   // it should have been invalidated by the CostModel.
4950   assert(useMaskedInterleavedAccesses(TTI) &&
4951          "Masked interleave-groups for predicated accesses are not enabled.");
4952 
4953   if (Group->isReverse())
4954     return false;
4955 
4956   auto *Ty = getLoadStoreType(I);
4957   const Align Alignment = getLoadStoreAlignment(I);
4958   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4959                           : TTI.isLegalMaskedStore(Ty, Alignment);
4960 }
4961 
4962 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4963     Instruction *I, ElementCount VF) {
4964   // Get and ensure we have a valid memory instruction.
4965   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4966 
4967   auto *Ptr = getLoadStorePointerOperand(I);
4968   auto *ScalarTy = getLoadStoreType(I);
4969 
4970   // In order to be widened, the pointer should be consecutive, first of all.
4971   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4972     return false;
4973 
4974   // If the instruction is a store located in a predicated block, it will be
4975   // scalarized.
4976   if (isScalarWithPredication(I, VF))
4977     return false;
4978 
4979   // If the instruction's allocated size doesn't equal it's type size, it
4980   // requires padding and will be scalarized.
4981   auto &DL = I->getModule()->getDataLayout();
4982   if (hasIrregularType(ScalarTy, DL))
4983     return false;
4984 
4985   return true;
4986 }
4987 
4988 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4989   // We should not collect Uniforms more than once per VF. Right now,
4990   // this function is called from collectUniformsAndScalars(), which
4991   // already does this check. Collecting Uniforms for VF=1 does not make any
4992   // sense.
4993 
4994   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4995          "This function should not be visited twice for the same VF");
4996 
4997   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4998   // not analyze again.  Uniforms.count(VF) will return 1.
4999   Uniforms[VF].clear();
5000 
5001   // We now know that the loop is vectorizable!
5002   // Collect instructions inside the loop that will remain uniform after
5003   // vectorization.
5004 
5005   // Global values, params and instructions outside of current loop are out of
5006   // scope.
5007   auto isOutOfScope = [&](Value *V) -> bool {
5008     Instruction *I = dyn_cast<Instruction>(V);
5009     return (!I || !TheLoop->contains(I));
5010   };
5011 
5012   // Worklist containing uniform instructions demanding lane 0.
5013   SetVector<Instruction *> Worklist;
5014   BasicBlock *Latch = TheLoop->getLoopLatch();
5015 
5016   // Add uniform instructions demanding lane 0 to the worklist. Instructions
5017   // that are scalar with predication must not be considered uniform after
5018   // vectorization, because that would create an erroneous replicating region
5019   // where only a single instance out of VF should be formed.
5020   // TODO: optimize such seldom cases if found important, see PR40816.
5021   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5022     if (isOutOfScope(I)) {
5023       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5024                         << *I << "\n");
5025       return;
5026     }
5027     if (isScalarWithPredication(I, VF)) {
5028       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5029                         << *I << "\n");
5030       return;
5031     }
5032     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5033     Worklist.insert(I);
5034   };
5035 
5036   // Start with the conditional branch. If the branch condition is an
5037   // instruction contained in the loop that is only used by the branch, it is
5038   // uniform.
5039   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5040   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5041     addToWorklistIfAllowed(Cmp);
5042 
5043   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5044     InstWidening WideningDecision = getWideningDecision(I, VF);
5045     assert(WideningDecision != CM_Unknown &&
5046            "Widening decision should be ready at this moment");
5047 
5048     // A uniform memory op is itself uniform.  We exclude uniform stores
5049     // here as they demand the last lane, not the first one.
5050     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5051       assert(WideningDecision == CM_Scalarize);
5052       return true;
5053     }
5054 
5055     return (WideningDecision == CM_Widen ||
5056             WideningDecision == CM_Widen_Reverse ||
5057             WideningDecision == CM_Interleave);
5058   };
5059 
5060 
5061   // Returns true if Ptr is the pointer operand of a memory access instruction
5062   // I, and I is known to not require scalarization.
5063   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5064     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5065   };
5066 
5067   // Holds a list of values which are known to have at least one uniform use.
5068   // Note that there may be other uses which aren't uniform.  A "uniform use"
5069   // here is something which only demands lane 0 of the unrolled iterations;
5070   // it does not imply that all lanes produce the same value (e.g. this is not
5071   // the usual meaning of uniform)
5072   SetVector<Value *> HasUniformUse;
5073 
5074   // Scan the loop for instructions which are either a) known to have only
5075   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5076   for (auto *BB : TheLoop->blocks())
5077     for (auto &I : *BB) {
5078       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5079         switch (II->getIntrinsicID()) {
5080         case Intrinsic::sideeffect:
5081         case Intrinsic::experimental_noalias_scope_decl:
5082         case Intrinsic::assume:
5083         case Intrinsic::lifetime_start:
5084         case Intrinsic::lifetime_end:
5085           if (TheLoop->hasLoopInvariantOperands(&I))
5086             addToWorklistIfAllowed(&I);
5087           break;
5088         default:
5089           break;
5090         }
5091       }
5092 
5093       // ExtractValue instructions must be uniform, because the operands are
5094       // known to be loop-invariant.
5095       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5096         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5097                "Expected aggregate value to be loop invariant");
5098         addToWorklistIfAllowed(EVI);
5099         continue;
5100       }
5101 
5102       // If there's no pointer operand, there's nothing to do.
5103       auto *Ptr = getLoadStorePointerOperand(&I);
5104       if (!Ptr)
5105         continue;
5106 
5107       // A uniform memory op is itself uniform.  We exclude uniform stores
5108       // here as they demand the last lane, not the first one.
5109       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5110         addToWorklistIfAllowed(&I);
5111 
5112       if (isUniformDecision(&I, VF)) {
5113         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5114         HasUniformUse.insert(Ptr);
5115       }
5116     }
5117 
5118   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5119   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5120   // disallows uses outside the loop as well.
5121   for (auto *V : HasUniformUse) {
5122     if (isOutOfScope(V))
5123       continue;
5124     auto *I = cast<Instruction>(V);
5125     auto UsersAreMemAccesses =
5126       llvm::all_of(I->users(), [&](User *U) -> bool {
5127         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5128       });
5129     if (UsersAreMemAccesses)
5130       addToWorklistIfAllowed(I);
5131   }
5132 
5133   // Expand Worklist in topological order: whenever a new instruction
5134   // is added , its users should be already inside Worklist.  It ensures
5135   // a uniform instruction will only be used by uniform instructions.
5136   unsigned idx = 0;
5137   while (idx != Worklist.size()) {
5138     Instruction *I = Worklist[idx++];
5139 
5140     for (auto OV : I->operand_values()) {
5141       // isOutOfScope operands cannot be uniform instructions.
5142       if (isOutOfScope(OV))
5143         continue;
5144       // First order recurrence Phi's should typically be considered
5145       // non-uniform.
5146       auto *OP = dyn_cast<PHINode>(OV);
5147       if (OP && Legal->isFirstOrderRecurrence(OP))
5148         continue;
5149       // If all the users of the operand are uniform, then add the
5150       // operand into the uniform worklist.
5151       auto *OI = cast<Instruction>(OV);
5152       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5153             auto *J = cast<Instruction>(U);
5154             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5155           }))
5156         addToWorklistIfAllowed(OI);
5157     }
5158   }
5159 
5160   // For an instruction to be added into Worklist above, all its users inside
5161   // the loop should also be in Worklist. However, this condition cannot be
5162   // true for phi nodes that form a cyclic dependence. We must process phi
5163   // nodes separately. An induction variable will remain uniform if all users
5164   // of the induction variable and induction variable update remain uniform.
5165   // The code below handles both pointer and non-pointer induction variables.
5166   for (auto &Induction : Legal->getInductionVars()) {
5167     auto *Ind = Induction.first;
5168     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5169 
5170     // Determine if all users of the induction variable are uniform after
5171     // vectorization.
5172     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5173       auto *I = cast<Instruction>(U);
5174       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5175              isVectorizedMemAccessUse(I, Ind);
5176     });
5177     if (!UniformInd)
5178       continue;
5179 
5180     // Determine if all users of the induction variable update instruction are
5181     // uniform after vectorization.
5182     auto UniformIndUpdate =
5183         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5184           auto *I = cast<Instruction>(U);
5185           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5186                  isVectorizedMemAccessUse(I, IndUpdate);
5187         });
5188     if (!UniformIndUpdate)
5189       continue;
5190 
5191     // The induction variable and its update instruction will remain uniform.
5192     addToWorklistIfAllowed(Ind);
5193     addToWorklistIfAllowed(IndUpdate);
5194   }
5195 
5196   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5197 }
5198 
5199 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5200   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5201 
5202   if (Legal->getRuntimePointerChecking()->Need) {
5203     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5204         "runtime pointer checks needed. Enable vectorization of this "
5205         "loop with '#pragma clang loop vectorize(enable)' when "
5206         "compiling with -Os/-Oz",
5207         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5208     return true;
5209   }
5210 
5211   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5212     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5213         "runtime SCEV checks needed. Enable vectorization of this "
5214         "loop with '#pragma clang loop vectorize(enable)' when "
5215         "compiling with -Os/-Oz",
5216         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5217     return true;
5218   }
5219 
5220   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5221   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5222     reportVectorizationFailure("Runtime stride check for small trip count",
5223         "runtime stride == 1 checks needed. Enable vectorization of "
5224         "this loop without such check by compiling with -Os/-Oz",
5225         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5226     return true;
5227   }
5228 
5229   return false;
5230 }
5231 
5232 ElementCount
5233 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5234   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5235     return ElementCount::getScalable(0);
5236 
5237   if (Hints->isScalableVectorizationDisabled()) {
5238     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5239                             "ScalableVectorizationDisabled", ORE, TheLoop);
5240     return ElementCount::getScalable(0);
5241   }
5242 
5243   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5244 
5245   auto MaxScalableVF = ElementCount::getScalable(
5246       std::numeric_limits<ElementCount::ScalarTy>::max());
5247 
5248   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5249   // FIXME: While for scalable vectors this is currently sufficient, this should
5250   // be replaced by a more detailed mechanism that filters out specific VFs,
5251   // instead of invalidating vectorization for a whole set of VFs based on the
5252   // MaxVF.
5253 
5254   // Disable scalable vectorization if the loop contains unsupported reductions.
5255   if (!canVectorizeReductions(MaxScalableVF)) {
5256     reportVectorizationInfo(
5257         "Scalable vectorization not supported for the reduction "
5258         "operations found in this loop.",
5259         "ScalableVFUnfeasible", ORE, TheLoop);
5260     return ElementCount::getScalable(0);
5261   }
5262 
5263   // Disable scalable vectorization if the loop contains any instructions
5264   // with element types not supported for scalable vectors.
5265   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5266         return !Ty->isVoidTy() &&
5267                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5268       })) {
5269     reportVectorizationInfo("Scalable vectorization is not supported "
5270                             "for all element types found in this loop.",
5271                             "ScalableVFUnfeasible", ORE, TheLoop);
5272     return ElementCount::getScalable(0);
5273   }
5274 
5275   if (Legal->isSafeForAnyVectorWidth())
5276     return MaxScalableVF;
5277 
5278   // Limit MaxScalableVF by the maximum safe dependence distance.
5279   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5280   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5281     MaxVScale =
5282         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5283   MaxScalableVF = ElementCount::getScalable(
5284       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5285   if (!MaxScalableVF)
5286     reportVectorizationInfo(
5287         "Max legal vector width too small, scalable vectorization "
5288         "unfeasible.",
5289         "ScalableVFUnfeasible", ORE, TheLoop);
5290 
5291   return MaxScalableVF;
5292 }
5293 
5294 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5295     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5296   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5297   unsigned SmallestType, WidestType;
5298   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5299 
5300   // Get the maximum safe dependence distance in bits computed by LAA.
5301   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5302   // the memory accesses that is most restrictive (involved in the smallest
5303   // dependence distance).
5304   unsigned MaxSafeElements =
5305       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5306 
5307   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5308   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5309 
5310   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5311                     << ".\n");
5312   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5313                     << ".\n");
5314 
5315   // First analyze the UserVF, fall back if the UserVF should be ignored.
5316   if (UserVF) {
5317     auto MaxSafeUserVF =
5318         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5319 
5320     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5321       // If `VF=vscale x N` is safe, then so is `VF=N`
5322       if (UserVF.isScalable())
5323         return FixedScalableVFPair(
5324             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5325       else
5326         return UserVF;
5327     }
5328 
5329     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5330 
5331     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5332     // is better to ignore the hint and let the compiler choose a suitable VF.
5333     if (!UserVF.isScalable()) {
5334       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5335                         << " is unsafe, clamping to max safe VF="
5336                         << MaxSafeFixedVF << ".\n");
5337       ORE->emit([&]() {
5338         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5339                                           TheLoop->getStartLoc(),
5340                                           TheLoop->getHeader())
5341                << "User-specified vectorization factor "
5342                << ore::NV("UserVectorizationFactor", UserVF)
5343                << " is unsafe, clamping to maximum safe vectorization factor "
5344                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5345       });
5346       return MaxSafeFixedVF;
5347     }
5348 
5349     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5350       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5351                         << " is ignored because scalable vectors are not "
5352                            "available.\n");
5353       ORE->emit([&]() {
5354         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5355                                           TheLoop->getStartLoc(),
5356                                           TheLoop->getHeader())
5357                << "User-specified vectorization factor "
5358                << ore::NV("UserVectorizationFactor", UserVF)
5359                << " is ignored because the target does not support scalable "
5360                   "vectors. The compiler will pick a more suitable value.";
5361       });
5362     } else {
5363       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5364                         << " is unsafe. Ignoring scalable UserVF.\n");
5365       ORE->emit([&]() {
5366         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5367                                           TheLoop->getStartLoc(),
5368                                           TheLoop->getHeader())
5369                << "User-specified vectorization factor "
5370                << ore::NV("UserVectorizationFactor", UserVF)
5371                << " is unsafe. Ignoring the hint to let the compiler pick a "
5372                   "more suitable value.";
5373       });
5374     }
5375   }
5376 
5377   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5378                     << " / " << WidestType << " bits.\n");
5379 
5380   FixedScalableVFPair Result(ElementCount::getFixed(1),
5381                              ElementCount::getScalable(0));
5382   if (auto MaxVF =
5383           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5384                                   MaxSafeFixedVF, FoldTailByMasking))
5385     Result.FixedVF = MaxVF;
5386 
5387   if (auto MaxVF =
5388           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5389                                   MaxSafeScalableVF, FoldTailByMasking))
5390     if (MaxVF.isScalable()) {
5391       Result.ScalableVF = MaxVF;
5392       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5393                         << "\n");
5394     }
5395 
5396   return Result;
5397 }
5398 
5399 FixedScalableVFPair
5400 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5401   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5402     // TODO: It may by useful to do since it's still likely to be dynamically
5403     // uniform if the target can skip.
5404     reportVectorizationFailure(
5405         "Not inserting runtime ptr check for divergent target",
5406         "runtime pointer checks needed. Not enabled for divergent target",
5407         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5408     return FixedScalableVFPair::getNone();
5409   }
5410 
5411   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5412   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5413   if (TC == 1) {
5414     reportVectorizationFailure("Single iteration (non) loop",
5415         "loop trip count is one, irrelevant for vectorization",
5416         "SingleIterationLoop", ORE, TheLoop);
5417     return FixedScalableVFPair::getNone();
5418   }
5419 
5420   switch (ScalarEpilogueStatus) {
5421   case CM_ScalarEpilogueAllowed:
5422     return computeFeasibleMaxVF(TC, UserVF, false);
5423   case CM_ScalarEpilogueNotAllowedUsePredicate:
5424     LLVM_FALLTHROUGH;
5425   case CM_ScalarEpilogueNotNeededUsePredicate:
5426     LLVM_DEBUG(
5427         dbgs() << "LV: vector predicate hint/switch found.\n"
5428                << "LV: Not allowing scalar epilogue, creating predicated "
5429                << "vector loop.\n");
5430     break;
5431   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5432     // fallthrough as a special case of OptForSize
5433   case CM_ScalarEpilogueNotAllowedOptSize:
5434     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5435       LLVM_DEBUG(
5436           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5437     else
5438       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5439                         << "count.\n");
5440 
5441     // Bail if runtime checks are required, which are not good when optimising
5442     // for size.
5443     if (runtimeChecksRequired())
5444       return FixedScalableVFPair::getNone();
5445 
5446     break;
5447   }
5448 
5449   // The only loops we can vectorize without a scalar epilogue, are loops with
5450   // a bottom-test and a single exiting block. We'd have to handle the fact
5451   // that not every instruction executes on the last iteration.  This will
5452   // require a lane mask which varies through the vector loop body.  (TODO)
5453   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5454     // If there was a tail-folding hint/switch, but we can't fold the tail by
5455     // masking, fallback to a vectorization with a scalar epilogue.
5456     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5457       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5458                            "scalar epilogue instead.\n");
5459       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5460       return computeFeasibleMaxVF(TC, UserVF, false);
5461     }
5462     return FixedScalableVFPair::getNone();
5463   }
5464 
5465   // Now try the tail folding
5466 
5467   // Invalidate interleave groups that require an epilogue if we can't mask
5468   // the interleave-group.
5469   if (!useMaskedInterleavedAccesses(TTI)) {
5470     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5471            "No decisions should have been taken at this point");
5472     // Note: There is no need to invalidate any cost modeling decisions here, as
5473     // non where taken so far.
5474     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5475   }
5476 
5477   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5478   // Avoid tail folding if the trip count is known to be a multiple of any VF
5479   // we chose.
5480   // FIXME: The condition below pessimises the case for fixed-width vectors,
5481   // when scalable VFs are also candidates for vectorization.
5482   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5483     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5484     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5485            "MaxFixedVF must be a power of 2");
5486     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5487                                    : MaxFixedVF.getFixedValue();
5488     ScalarEvolution *SE = PSE.getSE();
5489     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5490     const SCEV *ExitCount = SE->getAddExpr(
5491         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5492     const SCEV *Rem = SE->getURemExpr(
5493         SE->applyLoopGuards(ExitCount, TheLoop),
5494         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5495     if (Rem->isZero()) {
5496       // Accept MaxFixedVF if we do not have a tail.
5497       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5498       return MaxFactors;
5499     }
5500   }
5501 
5502   // For scalable vectors don't use tail folding for low trip counts or
5503   // optimizing for code size. We only permit this if the user has explicitly
5504   // requested it.
5505   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5506       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5507       MaxFactors.ScalableVF.isVector())
5508     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5509 
5510   // If we don't know the precise trip count, or if the trip count that we
5511   // found modulo the vectorization factor is not zero, try to fold the tail
5512   // by masking.
5513   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5514   if (Legal->prepareToFoldTailByMasking()) {
5515     FoldTailByMasking = true;
5516     return MaxFactors;
5517   }
5518 
5519   // If there was a tail-folding hint/switch, but we can't fold the tail by
5520   // masking, fallback to a vectorization with a scalar epilogue.
5521   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5522     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5523                          "scalar epilogue instead.\n");
5524     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5525     return MaxFactors;
5526   }
5527 
5528   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5529     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5530     return FixedScalableVFPair::getNone();
5531   }
5532 
5533   if (TC == 0) {
5534     reportVectorizationFailure(
5535         "Unable to calculate the loop count due to complex control flow",
5536         "unable to calculate the loop count due to complex control flow",
5537         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5538     return FixedScalableVFPair::getNone();
5539   }
5540 
5541   reportVectorizationFailure(
5542       "Cannot optimize for size and vectorize at the same time.",
5543       "cannot optimize for size and vectorize at the same time. "
5544       "Enable vectorization of this loop with '#pragma clang loop "
5545       "vectorize(enable)' when compiling with -Os/-Oz",
5546       "NoTailLoopWithOptForSize", ORE, TheLoop);
5547   return FixedScalableVFPair::getNone();
5548 }
5549 
5550 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5551     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5552     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5553   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5554   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5555       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5556                            : TargetTransformInfo::RGK_FixedWidthVector);
5557 
5558   // Convenience function to return the minimum of two ElementCounts.
5559   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5560     assert((LHS.isScalable() == RHS.isScalable()) &&
5561            "Scalable flags must match");
5562     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5563   };
5564 
5565   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5566   // Note that both WidestRegister and WidestType may not be a powers of 2.
5567   auto MaxVectorElementCount = ElementCount::get(
5568       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5569       ComputeScalableMaxVF);
5570   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5571   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5572                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5573 
5574   if (!MaxVectorElementCount) {
5575     LLVM_DEBUG(dbgs() << "LV: The target has no "
5576                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5577                       << " vector registers.\n");
5578     return ElementCount::getFixed(1);
5579   }
5580 
5581   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5582   if (ConstTripCount &&
5583       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5584       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5585     // If loop trip count (TC) is known at compile time there is no point in
5586     // choosing VF greater than TC (as done in the loop below). Select maximum
5587     // power of two which doesn't exceed TC.
5588     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5589     // when the TC is less than or equal to the known number of lanes.
5590     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5591     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5592                          "exceeding the constant trip count: "
5593                       << ClampedConstTripCount << "\n");
5594     return ElementCount::getFixed(ClampedConstTripCount);
5595   }
5596 
5597   ElementCount MaxVF = MaxVectorElementCount;
5598   if (TTI.shouldMaximizeVectorBandwidth() ||
5599       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5600     auto MaxVectorElementCountMaxBW = ElementCount::get(
5601         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5602         ComputeScalableMaxVF);
5603     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5604 
5605     // Collect all viable vectorization factors larger than the default MaxVF
5606     // (i.e. MaxVectorElementCount).
5607     SmallVector<ElementCount, 8> VFs;
5608     for (ElementCount VS = MaxVectorElementCount * 2;
5609          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5610       VFs.push_back(VS);
5611 
5612     // For each VF calculate its register usage.
5613     auto RUs = calculateRegisterUsage(VFs);
5614 
5615     // Select the largest VF which doesn't require more registers than existing
5616     // ones.
5617     for (int i = RUs.size() - 1; i >= 0; --i) {
5618       bool Selected = true;
5619       for (auto &pair : RUs[i].MaxLocalUsers) {
5620         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5621         if (pair.second > TargetNumRegisters)
5622           Selected = false;
5623       }
5624       if (Selected) {
5625         MaxVF = VFs[i];
5626         break;
5627       }
5628     }
5629     if (ElementCount MinVF =
5630             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5631       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5632         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5633                           << ") with target's minimum: " << MinVF << '\n');
5634         MaxVF = MinVF;
5635       }
5636     }
5637   }
5638   return MaxVF;
5639 }
5640 
5641 bool LoopVectorizationCostModel::isMoreProfitable(
5642     const VectorizationFactor &A, const VectorizationFactor &B) const {
5643   InstructionCost CostA = A.Cost;
5644   InstructionCost CostB = B.Cost;
5645 
5646   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5647 
5648   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5649       MaxTripCount) {
5650     // If we are folding the tail and the trip count is a known (possibly small)
5651     // constant, the trip count will be rounded up to an integer number of
5652     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5653     // which we compare directly. When not folding the tail, the total cost will
5654     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5655     // approximated with the per-lane cost below instead of using the tripcount
5656     // as here.
5657     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5658     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5659     return RTCostA < RTCostB;
5660   }
5661 
5662   // Improve estimate for the vector width if it is scalable.
5663   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5664   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5665   if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
5666     if (A.Width.isScalable())
5667       EstimatedWidthA *= VScale.getValue();
5668     if (B.Width.isScalable())
5669       EstimatedWidthB *= VScale.getValue();
5670   }
5671 
5672   // Assume vscale may be larger than 1 (or the value being tuned for),
5673   // so that scalable vectorization is slightly favorable over fixed-width
5674   // vectorization.
5675   if (A.Width.isScalable() && !B.Width.isScalable())
5676     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5677 
5678   // To avoid the need for FP division:
5679   //      (CostA / A.Width) < (CostB / B.Width)
5680   // <=>  (CostA * B.Width) < (CostB * A.Width)
5681   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5682 }
5683 
5684 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5685     const ElementCountSet &VFCandidates) {
5686   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5687   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5688   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5689   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5690          "Expected Scalar VF to be a candidate");
5691 
5692   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5693   VectorizationFactor ChosenFactor = ScalarCost;
5694 
5695   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5696   if (ForceVectorization && VFCandidates.size() > 1) {
5697     // Ignore scalar width, because the user explicitly wants vectorization.
5698     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5699     // evaluation.
5700     ChosenFactor.Cost = InstructionCost::getMax();
5701   }
5702 
5703   SmallVector<InstructionVFPair> InvalidCosts;
5704   for (const auto &i : VFCandidates) {
5705     // The cost for scalar VF=1 is already calculated, so ignore it.
5706     if (i.isScalar())
5707       continue;
5708 
5709     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5710     VectorizationFactor Candidate(i, C.first);
5711 
5712 #ifndef NDEBUG
5713     unsigned AssumedMinimumVscale = 1;
5714     if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
5715       AssumedMinimumVscale = VScale.getValue();
5716     unsigned Width =
5717         Candidate.Width.isScalable()
5718             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5719             : Candidate.Width.getFixedValue();
5720     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5721                       << " costs: " << (Candidate.Cost / Width));
5722     if (i.isScalable())
5723       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5724                         << AssumedMinimumVscale << ")");
5725     LLVM_DEBUG(dbgs() << ".\n");
5726 #endif
5727 
5728     if (!C.second && !ForceVectorization) {
5729       LLVM_DEBUG(
5730           dbgs() << "LV: Not considering vector loop of width " << i
5731                  << " because it will not generate any vector instructions.\n");
5732       continue;
5733     }
5734 
5735     // If profitable add it to ProfitableVF list.
5736     if (isMoreProfitable(Candidate, ScalarCost))
5737       ProfitableVFs.push_back(Candidate);
5738 
5739     if (isMoreProfitable(Candidate, ChosenFactor))
5740       ChosenFactor = Candidate;
5741   }
5742 
5743   // Emit a report of VFs with invalid costs in the loop.
5744   if (!InvalidCosts.empty()) {
5745     // Group the remarks per instruction, keeping the instruction order from
5746     // InvalidCosts.
5747     std::map<Instruction *, unsigned> Numbering;
5748     unsigned I = 0;
5749     for (auto &Pair : InvalidCosts)
5750       if (!Numbering.count(Pair.first))
5751         Numbering[Pair.first] = I++;
5752 
5753     // Sort the list, first on instruction(number) then on VF.
5754     llvm::sort(InvalidCosts,
5755                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5756                  if (Numbering[A.first] != Numbering[B.first])
5757                    return Numbering[A.first] < Numbering[B.first];
5758                  ElementCountComparator ECC;
5759                  return ECC(A.second, B.second);
5760                });
5761 
5762     // For a list of ordered instruction-vf pairs:
5763     //   [(load, vf1), (load, vf2), (store, vf1)]
5764     // Group the instructions together to emit separate remarks for:
5765     //   load  (vf1, vf2)
5766     //   store (vf1)
5767     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5768     auto Subset = ArrayRef<InstructionVFPair>();
5769     do {
5770       if (Subset.empty())
5771         Subset = Tail.take_front(1);
5772 
5773       Instruction *I = Subset.front().first;
5774 
5775       // If the next instruction is different, or if there are no other pairs,
5776       // emit a remark for the collated subset. e.g.
5777       //   [(load, vf1), (load, vf2))]
5778       // to emit:
5779       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5780       if (Subset == Tail || Tail[Subset.size()].first != I) {
5781         std::string OutString;
5782         raw_string_ostream OS(OutString);
5783         assert(!Subset.empty() && "Unexpected empty range");
5784         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5785         for (auto &Pair : Subset)
5786           OS << (Pair.second == Subset.front().second ? "" : ", ")
5787              << Pair.second;
5788         OS << "):";
5789         if (auto *CI = dyn_cast<CallInst>(I))
5790           OS << " call to " << CI->getCalledFunction()->getName();
5791         else
5792           OS << " " << I->getOpcodeName();
5793         OS.flush();
5794         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5795         Tail = Tail.drop_front(Subset.size());
5796         Subset = {};
5797       } else
5798         // Grow the subset by one element
5799         Subset = Tail.take_front(Subset.size() + 1);
5800     } while (!Tail.empty());
5801   }
5802 
5803   if (!EnableCondStoresVectorization && NumPredStores) {
5804     reportVectorizationFailure("There are conditional stores.",
5805         "store that is conditionally executed prevents vectorization",
5806         "ConditionalStore", ORE, TheLoop);
5807     ChosenFactor = ScalarCost;
5808   }
5809 
5810   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5811                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5812              << "LV: Vectorization seems to be not beneficial, "
5813              << "but was forced by a user.\n");
5814   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5815   return ChosenFactor;
5816 }
5817 
5818 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5819     const Loop &L, ElementCount VF) const {
5820   // Cross iteration phis such as reductions need special handling and are
5821   // currently unsupported.
5822   if (any_of(L.getHeader()->phis(),
5823              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5824     return false;
5825 
5826   // Phis with uses outside of the loop require special handling and are
5827   // currently unsupported.
5828   for (auto &Entry : Legal->getInductionVars()) {
5829     // Look for uses of the value of the induction at the last iteration.
5830     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5831     for (User *U : PostInc->users())
5832       if (!L.contains(cast<Instruction>(U)))
5833         return false;
5834     // Look for uses of penultimate value of the induction.
5835     for (User *U : Entry.first->users())
5836       if (!L.contains(cast<Instruction>(U)))
5837         return false;
5838   }
5839 
5840   // Induction variables that are widened require special handling that is
5841   // currently not supported.
5842   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5843         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5844                  this->isProfitableToScalarize(Entry.first, VF));
5845       }))
5846     return false;
5847 
5848   // Epilogue vectorization code has not been auditted to ensure it handles
5849   // non-latch exits properly.  It may be fine, but it needs auditted and
5850   // tested.
5851   if (L.getExitingBlock() != L.getLoopLatch())
5852     return false;
5853 
5854   return true;
5855 }
5856 
5857 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5858     const ElementCount VF) const {
5859   // FIXME: We need a much better cost-model to take different parameters such
5860   // as register pressure, code size increase and cost of extra branches into
5861   // account. For now we apply a very crude heuristic and only consider loops
5862   // with vectorization factors larger than a certain value.
5863   // We also consider epilogue vectorization unprofitable for targets that don't
5864   // consider interleaving beneficial (eg. MVE).
5865   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5866     return false;
5867   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
5868     return true;
5869   return false;
5870 }
5871 
5872 VectorizationFactor
5873 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5874     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5875   VectorizationFactor Result = VectorizationFactor::Disabled();
5876   if (!EnableEpilogueVectorization) {
5877     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5878     return Result;
5879   }
5880 
5881   if (!isScalarEpilogueAllowed()) {
5882     LLVM_DEBUG(
5883         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5884                   "allowed.\n";);
5885     return Result;
5886   }
5887 
5888   // Not really a cost consideration, but check for unsupported cases here to
5889   // simplify the logic.
5890   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5891     LLVM_DEBUG(
5892         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5893                   "not a supported candidate.\n";);
5894     return Result;
5895   }
5896 
5897   if (EpilogueVectorizationForceVF > 1) {
5898     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5899     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5900     if (LVP.hasPlanWithVF(ForcedEC))
5901       return {ForcedEC, 0};
5902     else {
5903       LLVM_DEBUG(
5904           dbgs()
5905               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5906       return Result;
5907     }
5908   }
5909 
5910   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5911       TheLoop->getHeader()->getParent()->hasMinSize()) {
5912     LLVM_DEBUG(
5913         dbgs()
5914             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5915     return Result;
5916   }
5917 
5918   auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5919   if (MainLoopVF.isScalable())
5920     LLVM_DEBUG(
5921         dbgs() << "LEV: Epilogue vectorization using scalable vectors not "
5922                   "yet supported. Converting to fixed-width (VF="
5923                << FixedMainLoopVF << ") instead\n");
5924 
5925   if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) {
5926     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5927                          "this loop\n");
5928     return Result;
5929   }
5930 
5931   for (auto &NextVF : ProfitableVFs)
5932     if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) &&
5933         (Result.Width.getFixedValue() == 1 ||
5934          isMoreProfitable(NextVF, Result)) &&
5935         LVP.hasPlanWithVF(NextVF.Width))
5936       Result = NextVF;
5937 
5938   if (Result != VectorizationFactor::Disabled())
5939     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5940                       << Result.Width.getFixedValue() << "\n";);
5941   return Result;
5942 }
5943 
5944 std::pair<unsigned, unsigned>
5945 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5946   unsigned MinWidth = -1U;
5947   unsigned MaxWidth = 8;
5948   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5949   // For in-loop reductions, no element types are added to ElementTypesInLoop
5950   // if there are no loads/stores in the loop. In this case, check through the
5951   // reduction variables to determine the maximum width.
5952   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5953     // Reset MaxWidth so that we can find the smallest type used by recurrences
5954     // in the loop.
5955     MaxWidth = -1U;
5956     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5957       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5958       // When finding the min width used by the recurrence we need to account
5959       // for casts on the input operands of the recurrence.
5960       MaxWidth = std::min<unsigned>(
5961           MaxWidth, std::min<unsigned>(
5962                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5963                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5964     }
5965   } else {
5966     for (Type *T : ElementTypesInLoop) {
5967       MinWidth = std::min<unsigned>(
5968           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5969       MaxWidth = std::max<unsigned>(
5970           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5971     }
5972   }
5973   return {MinWidth, MaxWidth};
5974 }
5975 
5976 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5977   ElementTypesInLoop.clear();
5978   // For each block.
5979   for (BasicBlock *BB : TheLoop->blocks()) {
5980     // For each instruction in the loop.
5981     for (Instruction &I : BB->instructionsWithoutDebug()) {
5982       Type *T = I.getType();
5983 
5984       // Skip ignored values.
5985       if (ValuesToIgnore.count(&I))
5986         continue;
5987 
5988       // Only examine Loads, Stores and PHINodes.
5989       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5990         continue;
5991 
5992       // Examine PHI nodes that are reduction variables. Update the type to
5993       // account for the recurrence type.
5994       if (auto *PN = dyn_cast<PHINode>(&I)) {
5995         if (!Legal->isReductionVariable(PN))
5996           continue;
5997         const RecurrenceDescriptor &RdxDesc =
5998             Legal->getReductionVars().find(PN)->second;
5999         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6000             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6001                                       RdxDesc.getRecurrenceType(),
6002                                       TargetTransformInfo::ReductionFlags()))
6003           continue;
6004         T = RdxDesc.getRecurrenceType();
6005       }
6006 
6007       // Examine the stored values.
6008       if (auto *ST = dyn_cast<StoreInst>(&I))
6009         T = ST->getValueOperand()->getType();
6010 
6011       assert(T->isSized() &&
6012              "Expected the load/store/recurrence type to be sized");
6013 
6014       ElementTypesInLoop.insert(T);
6015     }
6016   }
6017 }
6018 
6019 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6020                                                            unsigned LoopCost) {
6021   // -- The interleave heuristics --
6022   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6023   // There are many micro-architectural considerations that we can't predict
6024   // at this level. For example, frontend pressure (on decode or fetch) due to
6025   // code size, or the number and capabilities of the execution ports.
6026   //
6027   // We use the following heuristics to select the interleave count:
6028   // 1. If the code has reductions, then we interleave to break the cross
6029   // iteration dependency.
6030   // 2. If the loop is really small, then we interleave to reduce the loop
6031   // overhead.
6032   // 3. We don't interleave if we think that we will spill registers to memory
6033   // due to the increased register pressure.
6034 
6035   if (!isScalarEpilogueAllowed())
6036     return 1;
6037 
6038   // We used the distance for the interleave count.
6039   if (Legal->getMaxSafeDepDistBytes() != -1U)
6040     return 1;
6041 
6042   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6043   const bool HasReductions = !Legal->getReductionVars().empty();
6044   // Do not interleave loops with a relatively small known or estimated trip
6045   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6046   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6047   // because with the above conditions interleaving can expose ILP and break
6048   // cross iteration dependences for reductions.
6049   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6050       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6051     return 1;
6052 
6053   RegisterUsage R = calculateRegisterUsage({VF})[0];
6054   // We divide by these constants so assume that we have at least one
6055   // instruction that uses at least one register.
6056   for (auto& pair : R.MaxLocalUsers) {
6057     pair.second = std::max(pair.second, 1U);
6058   }
6059 
6060   // We calculate the interleave count using the following formula.
6061   // Subtract the number of loop invariants from the number of available
6062   // registers. These registers are used by all of the interleaved instances.
6063   // Next, divide the remaining registers by the number of registers that is
6064   // required by the loop, in order to estimate how many parallel instances
6065   // fit without causing spills. All of this is rounded down if necessary to be
6066   // a power of two. We want power of two interleave count to simplify any
6067   // addressing operations or alignment considerations.
6068   // We also want power of two interleave counts to ensure that the induction
6069   // variable of the vector loop wraps to zero, when tail is folded by masking;
6070   // this currently happens when OptForSize, in which case IC is set to 1 above.
6071   unsigned IC = UINT_MAX;
6072 
6073   for (auto& pair : R.MaxLocalUsers) {
6074     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6075     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6076                       << " registers of "
6077                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6078     if (VF.isScalar()) {
6079       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6080         TargetNumRegisters = ForceTargetNumScalarRegs;
6081     } else {
6082       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6083         TargetNumRegisters = ForceTargetNumVectorRegs;
6084     }
6085     unsigned MaxLocalUsers = pair.second;
6086     unsigned LoopInvariantRegs = 0;
6087     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6088       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6089 
6090     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6091     // Don't count the induction variable as interleaved.
6092     if (EnableIndVarRegisterHeur) {
6093       TmpIC =
6094           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6095                         std::max(1U, (MaxLocalUsers - 1)));
6096     }
6097 
6098     IC = std::min(IC, TmpIC);
6099   }
6100 
6101   // Clamp the interleave ranges to reasonable counts.
6102   unsigned MaxInterleaveCount =
6103       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6104 
6105   // Check if the user has overridden the max.
6106   if (VF.isScalar()) {
6107     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6108       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6109   } else {
6110     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6111       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6112   }
6113 
6114   // If trip count is known or estimated compile time constant, limit the
6115   // interleave count to be less than the trip count divided by VF, provided it
6116   // is at least 1.
6117   //
6118   // For scalable vectors we can't know if interleaving is beneficial. It may
6119   // not be beneficial for small loops if none of the lanes in the second vector
6120   // iterations is enabled. However, for larger loops, there is likely to be a
6121   // similar benefit as for fixed-width vectors. For now, we choose to leave
6122   // the InterleaveCount as if vscale is '1', although if some information about
6123   // the vector is known (e.g. min vector size), we can make a better decision.
6124   if (BestKnownTC) {
6125     MaxInterleaveCount =
6126         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6127     // Make sure MaxInterleaveCount is greater than 0.
6128     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6129   }
6130 
6131   assert(MaxInterleaveCount > 0 &&
6132          "Maximum interleave count must be greater than 0");
6133 
6134   // Clamp the calculated IC to be between the 1 and the max interleave count
6135   // that the target and trip count allows.
6136   if (IC > MaxInterleaveCount)
6137     IC = MaxInterleaveCount;
6138   else
6139     // Make sure IC is greater than 0.
6140     IC = std::max(1u, IC);
6141 
6142   assert(IC > 0 && "Interleave count must be greater than 0.");
6143 
6144   // If we did not calculate the cost for VF (because the user selected the VF)
6145   // then we calculate the cost of VF here.
6146   if (LoopCost == 0) {
6147     InstructionCost C = expectedCost(VF).first;
6148     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6149     LoopCost = *C.getValue();
6150   }
6151 
6152   assert(LoopCost && "Non-zero loop cost expected");
6153 
6154   // Interleave if we vectorized this loop and there is a reduction that could
6155   // benefit from interleaving.
6156   if (VF.isVector() && HasReductions) {
6157     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6158     return IC;
6159   }
6160 
6161   // Note that if we've already vectorized the loop we will have done the
6162   // runtime check and so interleaving won't require further checks.
6163   bool InterleavingRequiresRuntimePointerCheck =
6164       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6165 
6166   // We want to interleave small loops in order to reduce the loop overhead and
6167   // potentially expose ILP opportunities.
6168   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6169                     << "LV: IC is " << IC << '\n'
6170                     << "LV: VF is " << VF << '\n');
6171   const bool AggressivelyInterleaveReductions =
6172       TTI.enableAggressiveInterleaving(HasReductions);
6173   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6174     // We assume that the cost overhead is 1 and we use the cost model
6175     // to estimate the cost of the loop and interleave until the cost of the
6176     // loop overhead is about 5% of the cost of the loop.
6177     unsigned SmallIC =
6178         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6179 
6180     // Interleave until store/load ports (estimated by max interleave count) are
6181     // saturated.
6182     unsigned NumStores = Legal->getNumStores();
6183     unsigned NumLoads = Legal->getNumLoads();
6184     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6185     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6186 
6187     // There is little point in interleaving for reductions containing selects
6188     // and compares when VF=1 since it may just create more overhead than it's
6189     // worth for loops with small trip counts. This is because we still have to
6190     // do the final reduction after the loop.
6191     bool HasSelectCmpReductions =
6192         HasReductions &&
6193         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6194           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6195           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6196               RdxDesc.getRecurrenceKind());
6197         });
6198     if (HasSelectCmpReductions) {
6199       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6200       return 1;
6201     }
6202 
6203     // If we have a scalar reduction (vector reductions are already dealt with
6204     // by this point), we can increase the critical path length if the loop
6205     // we're interleaving is inside another loop. For tree-wise reductions
6206     // set the limit to 2, and for ordered reductions it's best to disable
6207     // interleaving entirely.
6208     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6209       bool HasOrderedReductions =
6210           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6211             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6212             return RdxDesc.isOrdered();
6213           });
6214       if (HasOrderedReductions) {
6215         LLVM_DEBUG(
6216             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6217         return 1;
6218       }
6219 
6220       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6221       SmallIC = std::min(SmallIC, F);
6222       StoresIC = std::min(StoresIC, F);
6223       LoadsIC = std::min(LoadsIC, F);
6224     }
6225 
6226     if (EnableLoadStoreRuntimeInterleave &&
6227         std::max(StoresIC, LoadsIC) > SmallIC) {
6228       LLVM_DEBUG(
6229           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6230       return std::max(StoresIC, LoadsIC);
6231     }
6232 
6233     // If there are scalar reductions and TTI has enabled aggressive
6234     // interleaving for reductions, we will interleave to expose ILP.
6235     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6236         AggressivelyInterleaveReductions) {
6237       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6238       // Interleave no less than SmallIC but not as aggressive as the normal IC
6239       // to satisfy the rare situation when resources are too limited.
6240       return std::max(IC / 2, SmallIC);
6241     } else {
6242       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6243       return SmallIC;
6244     }
6245   }
6246 
6247   // Interleave if this is a large loop (small loops are already dealt with by
6248   // this point) that could benefit from interleaving.
6249   if (AggressivelyInterleaveReductions) {
6250     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6251     return IC;
6252   }
6253 
6254   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6255   return 1;
6256 }
6257 
6258 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6259 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6260   // This function calculates the register usage by measuring the highest number
6261   // of values that are alive at a single location. Obviously, this is a very
6262   // rough estimation. We scan the loop in a topological order in order and
6263   // assign a number to each instruction. We use RPO to ensure that defs are
6264   // met before their users. We assume that each instruction that has in-loop
6265   // users starts an interval. We record every time that an in-loop value is
6266   // used, so we have a list of the first and last occurrences of each
6267   // instruction. Next, we transpose this data structure into a multi map that
6268   // holds the list of intervals that *end* at a specific location. This multi
6269   // map allows us to perform a linear search. We scan the instructions linearly
6270   // and record each time that a new interval starts, by placing it in a set.
6271   // If we find this value in the multi-map then we remove it from the set.
6272   // The max register usage is the maximum size of the set.
6273   // We also search for instructions that are defined outside the loop, but are
6274   // used inside the loop. We need this number separately from the max-interval
6275   // usage number because when we unroll, loop-invariant values do not take
6276   // more register.
6277   LoopBlocksDFS DFS(TheLoop);
6278   DFS.perform(LI);
6279 
6280   RegisterUsage RU;
6281 
6282   // Each 'key' in the map opens a new interval. The values
6283   // of the map are the index of the 'last seen' usage of the
6284   // instruction that is the key.
6285   using IntervalMap = DenseMap<Instruction *, unsigned>;
6286 
6287   // Maps instruction to its index.
6288   SmallVector<Instruction *, 64> IdxToInstr;
6289   // Marks the end of each interval.
6290   IntervalMap EndPoint;
6291   // Saves the list of instruction indices that are used in the loop.
6292   SmallPtrSet<Instruction *, 8> Ends;
6293   // Saves the list of values that are used in the loop but are
6294   // defined outside the loop, such as arguments and constants.
6295   SmallPtrSet<Value *, 8> LoopInvariants;
6296 
6297   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6298     for (Instruction &I : BB->instructionsWithoutDebug()) {
6299       IdxToInstr.push_back(&I);
6300 
6301       // Save the end location of each USE.
6302       for (Value *U : I.operands()) {
6303         auto *Instr = dyn_cast<Instruction>(U);
6304 
6305         // Ignore non-instruction values such as arguments, constants, etc.
6306         if (!Instr)
6307           continue;
6308 
6309         // If this instruction is outside the loop then record it and continue.
6310         if (!TheLoop->contains(Instr)) {
6311           LoopInvariants.insert(Instr);
6312           continue;
6313         }
6314 
6315         // Overwrite previous end points.
6316         EndPoint[Instr] = IdxToInstr.size();
6317         Ends.insert(Instr);
6318       }
6319     }
6320   }
6321 
6322   // Saves the list of intervals that end with the index in 'key'.
6323   using InstrList = SmallVector<Instruction *, 2>;
6324   DenseMap<unsigned, InstrList> TransposeEnds;
6325 
6326   // Transpose the EndPoints to a list of values that end at each index.
6327   for (auto &Interval : EndPoint)
6328     TransposeEnds[Interval.second].push_back(Interval.first);
6329 
6330   SmallPtrSet<Instruction *, 8> OpenIntervals;
6331   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6332   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6333 
6334   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6335 
6336   // A lambda that gets the register usage for the given type and VF.
6337   const auto &TTICapture = TTI;
6338   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6339     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6340       return 0;
6341     InstructionCost::CostType RegUsage =
6342         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6343     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6344            "Nonsensical values for register usage.");
6345     return RegUsage;
6346   };
6347 
6348   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6349     Instruction *I = IdxToInstr[i];
6350 
6351     // Remove all of the instructions that end at this location.
6352     InstrList &List = TransposeEnds[i];
6353     for (Instruction *ToRemove : List)
6354       OpenIntervals.erase(ToRemove);
6355 
6356     // Ignore instructions that are never used within the loop.
6357     if (!Ends.count(I))
6358       continue;
6359 
6360     // Skip ignored values.
6361     if (ValuesToIgnore.count(I))
6362       continue;
6363 
6364     // For each VF find the maximum usage of registers.
6365     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6366       // Count the number of live intervals.
6367       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6368 
6369       if (VFs[j].isScalar()) {
6370         for (auto Inst : OpenIntervals) {
6371           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6372           if (RegUsage.find(ClassID) == RegUsage.end())
6373             RegUsage[ClassID] = 1;
6374           else
6375             RegUsage[ClassID] += 1;
6376         }
6377       } else {
6378         collectUniformsAndScalars(VFs[j]);
6379         for (auto Inst : OpenIntervals) {
6380           // Skip ignored values for VF > 1.
6381           if (VecValuesToIgnore.count(Inst))
6382             continue;
6383           if (isScalarAfterVectorization(Inst, VFs[j])) {
6384             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6385             if (RegUsage.find(ClassID) == RegUsage.end())
6386               RegUsage[ClassID] = 1;
6387             else
6388               RegUsage[ClassID] += 1;
6389           } else {
6390             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6391             if (RegUsage.find(ClassID) == RegUsage.end())
6392               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6393             else
6394               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6395           }
6396         }
6397       }
6398 
6399       for (auto& pair : RegUsage) {
6400         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6401           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6402         else
6403           MaxUsages[j][pair.first] = pair.second;
6404       }
6405     }
6406 
6407     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6408                       << OpenIntervals.size() << '\n');
6409 
6410     // Add the current instruction to the list of open intervals.
6411     OpenIntervals.insert(I);
6412   }
6413 
6414   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6415     SmallMapVector<unsigned, unsigned, 4> Invariant;
6416 
6417     for (auto Inst : LoopInvariants) {
6418       unsigned Usage =
6419           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6420       unsigned ClassID =
6421           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6422       if (Invariant.find(ClassID) == Invariant.end())
6423         Invariant[ClassID] = Usage;
6424       else
6425         Invariant[ClassID] += Usage;
6426     }
6427 
6428     LLVM_DEBUG({
6429       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6430       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6431              << " item\n";
6432       for (const auto &pair : MaxUsages[i]) {
6433         dbgs() << "LV(REG): RegisterClass: "
6434                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6435                << " registers\n";
6436       }
6437       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6438              << " item\n";
6439       for (const auto &pair : Invariant) {
6440         dbgs() << "LV(REG): RegisterClass: "
6441                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6442                << " registers\n";
6443       }
6444     });
6445 
6446     RU.LoopInvariantRegs = Invariant;
6447     RU.MaxLocalUsers = MaxUsages[i];
6448     RUs[i] = RU;
6449   }
6450 
6451   return RUs;
6452 }
6453 
6454 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6455                                                            ElementCount VF) {
6456   // TODO: Cost model for emulated masked load/store is completely
6457   // broken. This hack guides the cost model to use an artificially
6458   // high enough value to practically disable vectorization with such
6459   // operations, except where previously deployed legality hack allowed
6460   // using very low cost values. This is to avoid regressions coming simply
6461   // from moving "masked load/store" check from legality to cost model.
6462   // Masked Load/Gather emulation was previously never allowed.
6463   // Limited number of Masked Store/Scatter emulation was allowed.
6464   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6465   return isa<LoadInst>(I) ||
6466          (isa<StoreInst>(I) &&
6467           NumPredStores > NumberOfStoresToPredicate);
6468 }
6469 
6470 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6471   // If we aren't vectorizing the loop, or if we've already collected the
6472   // instructions to scalarize, there's nothing to do. Collection may already
6473   // have occurred if we have a user-selected VF and are now computing the
6474   // expected cost for interleaving.
6475   if (VF.isScalar() || VF.isZero() ||
6476       InstsToScalarize.find(VF) != InstsToScalarize.end())
6477     return;
6478 
6479   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6480   // not profitable to scalarize any instructions, the presence of VF in the
6481   // map will indicate that we've analyzed it already.
6482   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6483 
6484   // Find all the instructions that are scalar with predication in the loop and
6485   // determine if it would be better to not if-convert the blocks they are in.
6486   // If so, we also record the instructions to scalarize.
6487   for (BasicBlock *BB : TheLoop->blocks()) {
6488     if (!blockNeedsPredicationForAnyReason(BB))
6489       continue;
6490     for (Instruction &I : *BB)
6491       if (isScalarWithPredication(&I, VF)) {
6492         ScalarCostsTy ScalarCosts;
6493         // Do not apply discount if scalable, because that would lead to
6494         // invalid scalarization costs.
6495         // Do not apply discount logic if hacked cost is needed
6496         // for emulated masked memrefs.
6497         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6498             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6499           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6500         // Remember that BB will remain after vectorization.
6501         PredicatedBBsAfterVectorization.insert(BB);
6502       }
6503   }
6504 }
6505 
6506 int LoopVectorizationCostModel::computePredInstDiscount(
6507     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6508   assert(!isUniformAfterVectorization(PredInst, VF) &&
6509          "Instruction marked uniform-after-vectorization will be predicated");
6510 
6511   // Initialize the discount to zero, meaning that the scalar version and the
6512   // vector version cost the same.
6513   InstructionCost Discount = 0;
6514 
6515   // Holds instructions to analyze. The instructions we visit are mapped in
6516   // ScalarCosts. Those instructions are the ones that would be scalarized if
6517   // we find that the scalar version costs less.
6518   SmallVector<Instruction *, 8> Worklist;
6519 
6520   // Returns true if the given instruction can be scalarized.
6521   auto canBeScalarized = [&](Instruction *I) -> bool {
6522     // We only attempt to scalarize instructions forming a single-use chain
6523     // from the original predicated block that would otherwise be vectorized.
6524     // Although not strictly necessary, we give up on instructions we know will
6525     // already be scalar to avoid traversing chains that are unlikely to be
6526     // beneficial.
6527     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6528         isScalarAfterVectorization(I, VF))
6529       return false;
6530 
6531     // If the instruction is scalar with predication, it will be analyzed
6532     // separately. We ignore it within the context of PredInst.
6533     if (isScalarWithPredication(I, VF))
6534       return false;
6535 
6536     // If any of the instruction's operands are uniform after vectorization,
6537     // the instruction cannot be scalarized. This prevents, for example, a
6538     // masked load from being scalarized.
6539     //
6540     // We assume we will only emit a value for lane zero of an instruction
6541     // marked uniform after vectorization, rather than VF identical values.
6542     // Thus, if we scalarize an instruction that uses a uniform, we would
6543     // create uses of values corresponding to the lanes we aren't emitting code
6544     // for. This behavior can be changed by allowing getScalarValue to clone
6545     // the lane zero values for uniforms rather than asserting.
6546     for (Use &U : I->operands())
6547       if (auto *J = dyn_cast<Instruction>(U.get()))
6548         if (isUniformAfterVectorization(J, VF))
6549           return false;
6550 
6551     // Otherwise, we can scalarize the instruction.
6552     return true;
6553   };
6554 
6555   // Compute the expected cost discount from scalarizing the entire expression
6556   // feeding the predicated instruction. We currently only consider expressions
6557   // that are single-use instruction chains.
6558   Worklist.push_back(PredInst);
6559   while (!Worklist.empty()) {
6560     Instruction *I = Worklist.pop_back_val();
6561 
6562     // If we've already analyzed the instruction, there's nothing to do.
6563     if (ScalarCosts.find(I) != ScalarCosts.end())
6564       continue;
6565 
6566     // Compute the cost of the vector instruction. Note that this cost already
6567     // includes the scalarization overhead of the predicated instruction.
6568     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6569 
6570     // Compute the cost of the scalarized instruction. This cost is the cost of
6571     // the instruction as if it wasn't if-converted and instead remained in the
6572     // predicated block. We will scale this cost by block probability after
6573     // computing the scalarization overhead.
6574     InstructionCost ScalarCost =
6575         VF.getFixedValue() *
6576         getInstructionCost(I, ElementCount::getFixed(1)).first;
6577 
6578     // Compute the scalarization overhead of needed insertelement instructions
6579     // and phi nodes.
6580     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6581       ScalarCost += TTI.getScalarizationOverhead(
6582           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6583           APInt::getAllOnes(VF.getFixedValue()), true, false);
6584       ScalarCost +=
6585           VF.getFixedValue() *
6586           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6587     }
6588 
6589     // Compute the scalarization overhead of needed extractelement
6590     // instructions. For each of the instruction's operands, if the operand can
6591     // be scalarized, add it to the worklist; otherwise, account for the
6592     // overhead.
6593     for (Use &U : I->operands())
6594       if (auto *J = dyn_cast<Instruction>(U.get())) {
6595         assert(VectorType::isValidElementType(J->getType()) &&
6596                "Instruction has non-scalar type");
6597         if (canBeScalarized(J))
6598           Worklist.push_back(J);
6599         else if (needsExtract(J, VF)) {
6600           ScalarCost += TTI.getScalarizationOverhead(
6601               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6602               APInt::getAllOnes(VF.getFixedValue()), false, true);
6603         }
6604       }
6605 
6606     // Scale the total scalar cost by block probability.
6607     ScalarCost /= getReciprocalPredBlockProb();
6608 
6609     // Compute the discount. A non-negative discount means the vector version
6610     // of the instruction costs more, and scalarizing would be beneficial.
6611     Discount += VectorCost - ScalarCost;
6612     ScalarCosts[I] = ScalarCost;
6613   }
6614 
6615   return *Discount.getValue();
6616 }
6617 
6618 LoopVectorizationCostModel::VectorizationCostTy
6619 LoopVectorizationCostModel::expectedCost(
6620     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6621   VectorizationCostTy Cost;
6622 
6623   // For each block.
6624   for (BasicBlock *BB : TheLoop->blocks()) {
6625     VectorizationCostTy BlockCost;
6626 
6627     // For each instruction in the old loop.
6628     for (Instruction &I : BB->instructionsWithoutDebug()) {
6629       // Skip ignored values.
6630       if (ValuesToIgnore.count(&I) ||
6631           (VF.isVector() && VecValuesToIgnore.count(&I)))
6632         continue;
6633 
6634       VectorizationCostTy C = getInstructionCost(&I, VF);
6635 
6636       // Check if we should override the cost.
6637       if (C.first.isValid() &&
6638           ForceTargetInstructionCost.getNumOccurrences() > 0)
6639         C.first = InstructionCost(ForceTargetInstructionCost);
6640 
6641       // Keep a list of instructions with invalid costs.
6642       if (Invalid && !C.first.isValid())
6643         Invalid->emplace_back(&I, VF);
6644 
6645       BlockCost.first += C.first;
6646       BlockCost.second |= C.second;
6647       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6648                         << " for VF " << VF << " For instruction: " << I
6649                         << '\n');
6650     }
6651 
6652     // If we are vectorizing a predicated block, it will have been
6653     // if-converted. This means that the block's instructions (aside from
6654     // stores and instructions that may divide by zero) will now be
6655     // unconditionally executed. For the scalar case, we may not always execute
6656     // the predicated block, if it is an if-else block. Thus, scale the block's
6657     // cost by the probability of executing it. blockNeedsPredication from
6658     // Legal is used so as to not include all blocks in tail folded loops.
6659     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6660       BlockCost.first /= getReciprocalPredBlockProb();
6661 
6662     Cost.first += BlockCost.first;
6663     Cost.second |= BlockCost.second;
6664   }
6665 
6666   return Cost;
6667 }
6668 
6669 /// Gets Address Access SCEV after verifying that the access pattern
6670 /// is loop invariant except the induction variable dependence.
6671 ///
6672 /// This SCEV can be sent to the Target in order to estimate the address
6673 /// calculation cost.
6674 static const SCEV *getAddressAccessSCEV(
6675               Value *Ptr,
6676               LoopVectorizationLegality *Legal,
6677               PredicatedScalarEvolution &PSE,
6678               const Loop *TheLoop) {
6679 
6680   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6681   if (!Gep)
6682     return nullptr;
6683 
6684   // We are looking for a gep with all loop invariant indices except for one
6685   // which should be an induction variable.
6686   auto SE = PSE.getSE();
6687   unsigned NumOperands = Gep->getNumOperands();
6688   for (unsigned i = 1; i < NumOperands; ++i) {
6689     Value *Opd = Gep->getOperand(i);
6690     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6691         !Legal->isInductionVariable(Opd))
6692       return nullptr;
6693   }
6694 
6695   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6696   return PSE.getSCEV(Ptr);
6697 }
6698 
6699 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6700   return Legal->hasStride(I->getOperand(0)) ||
6701          Legal->hasStride(I->getOperand(1));
6702 }
6703 
6704 InstructionCost
6705 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6706                                                         ElementCount VF) {
6707   assert(VF.isVector() &&
6708          "Scalarization cost of instruction implies vectorization.");
6709   if (VF.isScalable())
6710     return InstructionCost::getInvalid();
6711 
6712   Type *ValTy = getLoadStoreType(I);
6713   auto SE = PSE.getSE();
6714 
6715   unsigned AS = getLoadStoreAddressSpace(I);
6716   Value *Ptr = getLoadStorePointerOperand(I);
6717   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6718   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6719   //       that it is being called from this specific place.
6720 
6721   // Figure out whether the access is strided and get the stride value
6722   // if it's known in compile time
6723   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6724 
6725   // Get the cost of the scalar memory instruction and address computation.
6726   InstructionCost Cost =
6727       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6728 
6729   // Don't pass *I here, since it is scalar but will actually be part of a
6730   // vectorized loop where the user of it is a vectorized instruction.
6731   const Align Alignment = getLoadStoreAlignment(I);
6732   Cost += VF.getKnownMinValue() *
6733           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6734                               AS, TTI::TCK_RecipThroughput);
6735 
6736   // Get the overhead of the extractelement and insertelement instructions
6737   // we might create due to scalarization.
6738   Cost += getScalarizationOverhead(I, VF);
6739 
6740   // If we have a predicated load/store, it will need extra i1 extracts and
6741   // conditional branches, but may not be executed for each vector lane. Scale
6742   // the cost by the probability of executing the predicated block.
6743   if (isPredicatedInst(I, VF)) {
6744     Cost /= getReciprocalPredBlockProb();
6745 
6746     // Add the cost of an i1 extract and a branch
6747     auto *Vec_i1Ty =
6748         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6749     Cost += TTI.getScalarizationOverhead(
6750         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6751         /*Insert=*/false, /*Extract=*/true);
6752     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6753 
6754     if (useEmulatedMaskMemRefHack(I, VF))
6755       // Artificially setting to a high enough value to practically disable
6756       // vectorization with such operations.
6757       Cost = 3000000;
6758   }
6759 
6760   return Cost;
6761 }
6762 
6763 InstructionCost
6764 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6765                                                     ElementCount VF) {
6766   Type *ValTy = getLoadStoreType(I);
6767   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6768   Value *Ptr = getLoadStorePointerOperand(I);
6769   unsigned AS = getLoadStoreAddressSpace(I);
6770   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6771   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6772 
6773   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6774          "Stride should be 1 or -1 for consecutive memory access");
6775   const Align Alignment = getLoadStoreAlignment(I);
6776   InstructionCost Cost = 0;
6777   if (Legal->isMaskRequired(I))
6778     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6779                                       CostKind);
6780   else
6781     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6782                                 CostKind, I);
6783 
6784   bool Reverse = ConsecutiveStride < 0;
6785   if (Reverse)
6786     Cost +=
6787         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6788   return Cost;
6789 }
6790 
6791 InstructionCost
6792 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6793                                                 ElementCount VF) {
6794   assert(Legal->isUniformMemOp(*I));
6795 
6796   Type *ValTy = getLoadStoreType(I);
6797   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6798   const Align Alignment = getLoadStoreAlignment(I);
6799   unsigned AS = getLoadStoreAddressSpace(I);
6800   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6801   if (isa<LoadInst>(I)) {
6802     return TTI.getAddressComputationCost(ValTy) +
6803            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6804                                CostKind) +
6805            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6806   }
6807   StoreInst *SI = cast<StoreInst>(I);
6808 
6809   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6810   return TTI.getAddressComputationCost(ValTy) +
6811          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6812                              CostKind) +
6813          (isLoopInvariantStoreValue
6814               ? 0
6815               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6816                                        VF.getKnownMinValue() - 1));
6817 }
6818 
6819 InstructionCost
6820 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6821                                                  ElementCount VF) {
6822   Type *ValTy = getLoadStoreType(I);
6823   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6824   const Align Alignment = getLoadStoreAlignment(I);
6825   const Value *Ptr = getLoadStorePointerOperand(I);
6826 
6827   return TTI.getAddressComputationCost(VectorTy) +
6828          TTI.getGatherScatterOpCost(
6829              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6830              TargetTransformInfo::TCK_RecipThroughput, I);
6831 }
6832 
6833 InstructionCost
6834 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6835                                                    ElementCount VF) {
6836   // TODO: Once we have support for interleaving with scalable vectors
6837   // we can calculate the cost properly here.
6838   if (VF.isScalable())
6839     return InstructionCost::getInvalid();
6840 
6841   Type *ValTy = getLoadStoreType(I);
6842   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6843   unsigned AS = getLoadStoreAddressSpace(I);
6844 
6845   auto Group = getInterleavedAccessGroup(I);
6846   assert(Group && "Fail to get an interleaved access group.");
6847 
6848   unsigned InterleaveFactor = Group->getFactor();
6849   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6850 
6851   // Holds the indices of existing members in the interleaved group.
6852   SmallVector<unsigned, 4> Indices;
6853   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6854     if (Group->getMember(IF))
6855       Indices.push_back(IF);
6856 
6857   // Calculate the cost of the whole interleaved group.
6858   bool UseMaskForGaps =
6859       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6860       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6861   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6862       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6863       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6864 
6865   if (Group->isReverse()) {
6866     // TODO: Add support for reversed masked interleaved access.
6867     assert(!Legal->isMaskRequired(I) &&
6868            "Reverse masked interleaved access not supported.");
6869     Cost +=
6870         Group->getNumMembers() *
6871         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6872   }
6873   return Cost;
6874 }
6875 
6876 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6877     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6878   using namespace llvm::PatternMatch;
6879   // Early exit for no inloop reductions
6880   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6881     return None;
6882   auto *VectorTy = cast<VectorType>(Ty);
6883 
6884   // We are looking for a pattern of, and finding the minimal acceptable cost:
6885   //  reduce(mul(ext(A), ext(B))) or
6886   //  reduce(mul(A, B)) or
6887   //  reduce(ext(A)) or
6888   //  reduce(A).
6889   // The basic idea is that we walk down the tree to do that, finding the root
6890   // reduction instruction in InLoopReductionImmediateChains. From there we find
6891   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6892   // of the components. If the reduction cost is lower then we return it for the
6893   // reduction instruction and 0 for the other instructions in the pattern. If
6894   // it is not we return an invalid cost specifying the orignal cost method
6895   // should be used.
6896   Instruction *RetI = I;
6897   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6898     if (!RetI->hasOneUser())
6899       return None;
6900     RetI = RetI->user_back();
6901   }
6902   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6903       RetI->user_back()->getOpcode() == Instruction::Add) {
6904     if (!RetI->hasOneUser())
6905       return None;
6906     RetI = RetI->user_back();
6907   }
6908 
6909   // Test if the found instruction is a reduction, and if not return an invalid
6910   // cost specifying the parent to use the original cost modelling.
6911   if (!InLoopReductionImmediateChains.count(RetI))
6912     return None;
6913 
6914   // Find the reduction this chain is a part of and calculate the basic cost of
6915   // the reduction on its own.
6916   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6917   Instruction *ReductionPhi = LastChain;
6918   while (!isa<PHINode>(ReductionPhi))
6919     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6920 
6921   const RecurrenceDescriptor &RdxDesc =
6922       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6923 
6924   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6925       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6926 
6927   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6928   // normal fmul instruction to the cost of the fadd reduction.
6929   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6930     BaseCost +=
6931         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6932 
6933   // If we're using ordered reductions then we can just return the base cost
6934   // here, since getArithmeticReductionCost calculates the full ordered
6935   // reduction cost when FP reassociation is not allowed.
6936   if (useOrderedReductions(RdxDesc))
6937     return BaseCost;
6938 
6939   // Get the operand that was not the reduction chain and match it to one of the
6940   // patterns, returning the better cost if it is found.
6941   Instruction *RedOp = RetI->getOperand(1) == LastChain
6942                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6943                            : dyn_cast<Instruction>(RetI->getOperand(1));
6944 
6945   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6946 
6947   Instruction *Op0, *Op1;
6948   if (RedOp &&
6949       match(RedOp,
6950             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6951       match(Op0, m_ZExtOrSExt(m_Value())) &&
6952       Op0->getOpcode() == Op1->getOpcode() &&
6953       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6954       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6955       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6956 
6957     // Matched reduce(ext(mul(ext(A), ext(B)))
6958     // Note that the extend opcodes need to all match, or if A==B they will have
6959     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6960     // which is equally fine.
6961     bool IsUnsigned = isa<ZExtInst>(Op0);
6962     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6963     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6964 
6965     InstructionCost ExtCost =
6966         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6967                              TTI::CastContextHint::None, CostKind, Op0);
6968     InstructionCost MulCost =
6969         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6970     InstructionCost Ext2Cost =
6971         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6972                              TTI::CastContextHint::None, CostKind, RedOp);
6973 
6974     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6975         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6976         CostKind);
6977 
6978     if (RedCost.isValid() &&
6979         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6980       return I == RetI ? RedCost : 0;
6981   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6982              !TheLoop->isLoopInvariant(RedOp)) {
6983     // Matched reduce(ext(A))
6984     bool IsUnsigned = isa<ZExtInst>(RedOp);
6985     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6986     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6987         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6988         CostKind);
6989 
6990     InstructionCost ExtCost =
6991         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6992                              TTI::CastContextHint::None, CostKind, RedOp);
6993     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6994       return I == RetI ? RedCost : 0;
6995   } else if (RedOp &&
6996              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6997     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6998         Op0->getOpcode() == Op1->getOpcode() &&
6999         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7000       bool IsUnsigned = isa<ZExtInst>(Op0);
7001       Type *Op0Ty = Op0->getOperand(0)->getType();
7002       Type *Op1Ty = Op1->getOperand(0)->getType();
7003       Type *LargestOpTy =
7004           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
7005                                                                     : Op0Ty;
7006       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
7007 
7008       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
7009       // different sizes. We take the largest type as the ext to reduce, and add
7010       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
7011       InstructionCost ExtCost0 = TTI.getCastInstrCost(
7012           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
7013           TTI::CastContextHint::None, CostKind, Op0);
7014       InstructionCost ExtCost1 = TTI.getCastInstrCost(
7015           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
7016           TTI::CastContextHint::None, CostKind, Op1);
7017       InstructionCost MulCost =
7018           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7019 
7020       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7021           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7022           CostKind);
7023       InstructionCost ExtraExtCost = 0;
7024       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
7025         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
7026         ExtraExtCost = TTI.getCastInstrCost(
7027             ExtraExtOp->getOpcode(), ExtType,
7028             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
7029             TTI::CastContextHint::None, CostKind, ExtraExtOp);
7030       }
7031 
7032       if (RedCost.isValid() &&
7033           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
7034         return I == RetI ? RedCost : 0;
7035     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7036       // Matched reduce(mul())
7037       InstructionCost MulCost =
7038           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7039 
7040       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7041           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7042           CostKind);
7043 
7044       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7045         return I == RetI ? RedCost : 0;
7046     }
7047   }
7048 
7049   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7050 }
7051 
7052 InstructionCost
7053 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7054                                                      ElementCount VF) {
7055   // Calculate scalar cost only. Vectorization cost should be ready at this
7056   // moment.
7057   if (VF.isScalar()) {
7058     Type *ValTy = getLoadStoreType(I);
7059     const Align Alignment = getLoadStoreAlignment(I);
7060     unsigned AS = getLoadStoreAddressSpace(I);
7061 
7062     return TTI.getAddressComputationCost(ValTy) +
7063            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7064                                TTI::TCK_RecipThroughput, I);
7065   }
7066   return getWideningCost(I, VF);
7067 }
7068 
7069 LoopVectorizationCostModel::VectorizationCostTy
7070 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7071                                                ElementCount VF) {
7072   // If we know that this instruction will remain uniform, check the cost of
7073   // the scalar version.
7074   if (isUniformAfterVectorization(I, VF))
7075     VF = ElementCount::getFixed(1);
7076 
7077   if (VF.isVector() && isProfitableToScalarize(I, VF))
7078     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7079 
7080   // Forced scalars do not have any scalarization overhead.
7081   auto ForcedScalar = ForcedScalars.find(VF);
7082   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7083     auto InstSet = ForcedScalar->second;
7084     if (InstSet.count(I))
7085       return VectorizationCostTy(
7086           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7087            VF.getKnownMinValue()),
7088           false);
7089   }
7090 
7091   Type *VectorTy;
7092   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7093 
7094   bool TypeNotScalarized = false;
7095   if (VF.isVector() && VectorTy->isVectorTy()) {
7096     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7097     if (NumParts)
7098       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7099     else
7100       C = InstructionCost::getInvalid();
7101   }
7102   return VectorizationCostTy(C, TypeNotScalarized);
7103 }
7104 
7105 InstructionCost
7106 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7107                                                      ElementCount VF) const {
7108 
7109   // There is no mechanism yet to create a scalable scalarization loop,
7110   // so this is currently Invalid.
7111   if (VF.isScalable())
7112     return InstructionCost::getInvalid();
7113 
7114   if (VF.isScalar())
7115     return 0;
7116 
7117   InstructionCost Cost = 0;
7118   Type *RetTy = ToVectorTy(I->getType(), VF);
7119   if (!RetTy->isVoidTy() &&
7120       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7121     Cost += TTI.getScalarizationOverhead(
7122         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7123         false);
7124 
7125   // Some targets keep addresses scalar.
7126   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7127     return Cost;
7128 
7129   // Some targets support efficient element stores.
7130   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7131     return Cost;
7132 
7133   // Collect operands to consider.
7134   CallInst *CI = dyn_cast<CallInst>(I);
7135   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7136 
7137   // Skip operands that do not require extraction/scalarization and do not incur
7138   // any overhead.
7139   SmallVector<Type *> Tys;
7140   for (auto *V : filterExtractingOperands(Ops, VF))
7141     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7142   return Cost + TTI.getOperandsScalarizationOverhead(
7143                     filterExtractingOperands(Ops, VF), Tys);
7144 }
7145 
7146 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7147   if (VF.isScalar())
7148     return;
7149   NumPredStores = 0;
7150   for (BasicBlock *BB : TheLoop->blocks()) {
7151     // For each instruction in the old loop.
7152     for (Instruction &I : *BB) {
7153       Value *Ptr =  getLoadStorePointerOperand(&I);
7154       if (!Ptr)
7155         continue;
7156 
7157       // TODO: We should generate better code and update the cost model for
7158       // predicated uniform stores. Today they are treated as any other
7159       // predicated store (see added test cases in
7160       // invariant-store-vectorization.ll).
7161       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
7162         NumPredStores++;
7163 
7164       if (Legal->isUniformMemOp(I)) {
7165         // TODO: Avoid replicating loads and stores instead of
7166         // relying on instcombine to remove them.
7167         // Load: Scalar load + broadcast
7168         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7169         InstructionCost Cost;
7170         if (isa<StoreInst>(&I) && VF.isScalable() &&
7171             isLegalGatherOrScatter(&I, VF)) {
7172           Cost = getGatherScatterCost(&I, VF);
7173           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7174         } else {
7175           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7176                  "Cannot yet scalarize uniform stores");
7177           Cost = getUniformMemOpCost(&I, VF);
7178           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7179         }
7180         continue;
7181       }
7182 
7183       // We assume that widening is the best solution when possible.
7184       if (memoryInstructionCanBeWidened(&I, VF)) {
7185         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7186         int ConsecutiveStride = Legal->isConsecutivePtr(
7187             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7188         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7189                "Expected consecutive stride.");
7190         InstWidening Decision =
7191             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7192         setWideningDecision(&I, VF, Decision, Cost);
7193         continue;
7194       }
7195 
7196       // Choose between Interleaving, Gather/Scatter or Scalarization.
7197       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7198       unsigned NumAccesses = 1;
7199       if (isAccessInterleaved(&I)) {
7200         auto Group = getInterleavedAccessGroup(&I);
7201         assert(Group && "Fail to get an interleaved access group.");
7202 
7203         // Make one decision for the whole group.
7204         if (getWideningDecision(&I, VF) != CM_Unknown)
7205           continue;
7206 
7207         NumAccesses = Group->getNumMembers();
7208         if (interleavedAccessCanBeWidened(&I, VF))
7209           InterleaveCost = getInterleaveGroupCost(&I, VF);
7210       }
7211 
7212       InstructionCost GatherScatterCost =
7213           isLegalGatherOrScatter(&I, VF)
7214               ? getGatherScatterCost(&I, VF) * NumAccesses
7215               : InstructionCost::getInvalid();
7216 
7217       InstructionCost ScalarizationCost =
7218           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7219 
7220       // Choose better solution for the current VF,
7221       // write down this decision and use it during vectorization.
7222       InstructionCost Cost;
7223       InstWidening Decision;
7224       if (InterleaveCost <= GatherScatterCost &&
7225           InterleaveCost < ScalarizationCost) {
7226         Decision = CM_Interleave;
7227         Cost = InterleaveCost;
7228       } else if (GatherScatterCost < ScalarizationCost) {
7229         Decision = CM_GatherScatter;
7230         Cost = GatherScatterCost;
7231       } else {
7232         Decision = CM_Scalarize;
7233         Cost = ScalarizationCost;
7234       }
7235       // If the instructions belongs to an interleave group, the whole group
7236       // receives the same decision. The whole group receives the cost, but
7237       // the cost will actually be assigned to one instruction.
7238       if (auto Group = getInterleavedAccessGroup(&I))
7239         setWideningDecision(Group, VF, Decision, Cost);
7240       else
7241         setWideningDecision(&I, VF, Decision, Cost);
7242     }
7243   }
7244 
7245   // Make sure that any load of address and any other address computation
7246   // remains scalar unless there is gather/scatter support. This avoids
7247   // inevitable extracts into address registers, and also has the benefit of
7248   // activating LSR more, since that pass can't optimize vectorized
7249   // addresses.
7250   if (TTI.prefersVectorizedAddressing())
7251     return;
7252 
7253   // Start with all scalar pointer uses.
7254   SmallPtrSet<Instruction *, 8> AddrDefs;
7255   for (BasicBlock *BB : TheLoop->blocks())
7256     for (Instruction &I : *BB) {
7257       Instruction *PtrDef =
7258         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7259       if (PtrDef && TheLoop->contains(PtrDef) &&
7260           getWideningDecision(&I, VF) != CM_GatherScatter)
7261         AddrDefs.insert(PtrDef);
7262     }
7263 
7264   // Add all instructions used to generate the addresses.
7265   SmallVector<Instruction *, 4> Worklist;
7266   append_range(Worklist, AddrDefs);
7267   while (!Worklist.empty()) {
7268     Instruction *I = Worklist.pop_back_val();
7269     for (auto &Op : I->operands())
7270       if (auto *InstOp = dyn_cast<Instruction>(Op))
7271         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7272             AddrDefs.insert(InstOp).second)
7273           Worklist.push_back(InstOp);
7274   }
7275 
7276   for (auto *I : AddrDefs) {
7277     if (isa<LoadInst>(I)) {
7278       // Setting the desired widening decision should ideally be handled in
7279       // by cost functions, but since this involves the task of finding out
7280       // if the loaded register is involved in an address computation, it is
7281       // instead changed here when we know this is the case.
7282       InstWidening Decision = getWideningDecision(I, VF);
7283       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7284         // Scalarize a widened load of address.
7285         setWideningDecision(
7286             I, VF, CM_Scalarize,
7287             (VF.getKnownMinValue() *
7288              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7289       else if (auto Group = getInterleavedAccessGroup(I)) {
7290         // Scalarize an interleave group of address loads.
7291         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7292           if (Instruction *Member = Group->getMember(I))
7293             setWideningDecision(
7294                 Member, VF, CM_Scalarize,
7295                 (VF.getKnownMinValue() *
7296                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7297         }
7298       }
7299     } else
7300       // Make sure I gets scalarized and a cost estimate without
7301       // scalarization overhead.
7302       ForcedScalars[VF].insert(I);
7303   }
7304 }
7305 
7306 InstructionCost
7307 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7308                                                Type *&VectorTy) {
7309   Type *RetTy = I->getType();
7310   if (canTruncateToMinimalBitwidth(I, VF))
7311     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7312   auto SE = PSE.getSE();
7313   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7314 
7315   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7316                                                 ElementCount VF) -> bool {
7317     if (VF.isScalar())
7318       return true;
7319 
7320     auto Scalarized = InstsToScalarize.find(VF);
7321     assert(Scalarized != InstsToScalarize.end() &&
7322            "VF not yet analyzed for scalarization profitability");
7323     return !Scalarized->second.count(I) &&
7324            llvm::all_of(I->users(), [&](User *U) {
7325              auto *UI = cast<Instruction>(U);
7326              return !Scalarized->second.count(UI);
7327            });
7328   };
7329   (void) hasSingleCopyAfterVectorization;
7330 
7331   if (isScalarAfterVectorization(I, VF)) {
7332     // With the exception of GEPs and PHIs, after scalarization there should
7333     // only be one copy of the instruction generated in the loop. This is
7334     // because the VF is either 1, or any instructions that need scalarizing
7335     // have already been dealt with by the the time we get here. As a result,
7336     // it means we don't have to multiply the instruction cost by VF.
7337     assert(I->getOpcode() == Instruction::GetElementPtr ||
7338            I->getOpcode() == Instruction::PHI ||
7339            (I->getOpcode() == Instruction::BitCast &&
7340             I->getType()->isPointerTy()) ||
7341            hasSingleCopyAfterVectorization(I, VF));
7342     VectorTy = RetTy;
7343   } else
7344     VectorTy = ToVectorTy(RetTy, VF);
7345 
7346   // TODO: We need to estimate the cost of intrinsic calls.
7347   switch (I->getOpcode()) {
7348   case Instruction::GetElementPtr:
7349     // We mark this instruction as zero-cost because the cost of GEPs in
7350     // vectorized code depends on whether the corresponding memory instruction
7351     // is scalarized or not. Therefore, we handle GEPs with the memory
7352     // instruction cost.
7353     return 0;
7354   case Instruction::Br: {
7355     // In cases of scalarized and predicated instructions, there will be VF
7356     // predicated blocks in the vectorized loop. Each branch around these
7357     // blocks requires also an extract of its vector compare i1 element.
7358     bool ScalarPredicatedBB = false;
7359     BranchInst *BI = cast<BranchInst>(I);
7360     if (VF.isVector() && BI->isConditional() &&
7361         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7362          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7363       ScalarPredicatedBB = true;
7364 
7365     if (ScalarPredicatedBB) {
7366       // Not possible to scalarize scalable vector with predicated instructions.
7367       if (VF.isScalable())
7368         return InstructionCost::getInvalid();
7369       // Return cost for branches around scalarized and predicated blocks.
7370       auto *Vec_i1Ty =
7371           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7372       return (
7373           TTI.getScalarizationOverhead(
7374               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7375           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7376     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7377       // The back-edge branch will remain, as will all scalar branches.
7378       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7379     else
7380       // This branch will be eliminated by if-conversion.
7381       return 0;
7382     // Note: We currently assume zero cost for an unconditional branch inside
7383     // a predicated block since it will become a fall-through, although we
7384     // may decide in the future to call TTI for all branches.
7385   }
7386   case Instruction::PHI: {
7387     auto *Phi = cast<PHINode>(I);
7388 
7389     // First-order recurrences are replaced by vector shuffles inside the loop.
7390     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7391     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7392       return TTI.getShuffleCost(
7393           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7394           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7395 
7396     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7397     // converted into select instructions. We require N - 1 selects per phi
7398     // node, where N is the number of incoming values.
7399     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7400       return (Phi->getNumIncomingValues() - 1) *
7401              TTI.getCmpSelInstrCost(
7402                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7403                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7404                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7405 
7406     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7407   }
7408   case Instruction::UDiv:
7409   case Instruction::SDiv:
7410   case Instruction::URem:
7411   case Instruction::SRem:
7412     // If we have a predicated instruction, it may not be executed for each
7413     // vector lane. Get the scalarization cost and scale this amount by the
7414     // probability of executing the predicated block. If the instruction is not
7415     // predicated, we fall through to the next case.
7416     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7417       InstructionCost Cost = 0;
7418 
7419       // These instructions have a non-void type, so account for the phi nodes
7420       // that we will create. This cost is likely to be zero. The phi node
7421       // cost, if any, should be scaled by the block probability because it
7422       // models a copy at the end of each predicated block.
7423       Cost += VF.getKnownMinValue() *
7424               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7425 
7426       // The cost of the non-predicated instruction.
7427       Cost += VF.getKnownMinValue() *
7428               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7429 
7430       // The cost of insertelement and extractelement instructions needed for
7431       // scalarization.
7432       Cost += getScalarizationOverhead(I, VF);
7433 
7434       // Scale the cost by the probability of executing the predicated blocks.
7435       // This assumes the predicated block for each vector lane is equally
7436       // likely.
7437       return Cost / getReciprocalPredBlockProb();
7438     }
7439     LLVM_FALLTHROUGH;
7440   case Instruction::Add:
7441   case Instruction::FAdd:
7442   case Instruction::Sub:
7443   case Instruction::FSub:
7444   case Instruction::Mul:
7445   case Instruction::FMul:
7446   case Instruction::FDiv:
7447   case Instruction::FRem:
7448   case Instruction::Shl:
7449   case Instruction::LShr:
7450   case Instruction::AShr:
7451   case Instruction::And:
7452   case Instruction::Or:
7453   case Instruction::Xor: {
7454     // Since we will replace the stride by 1 the multiplication should go away.
7455     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7456       return 0;
7457 
7458     // Detect reduction patterns
7459     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7460       return *RedCost;
7461 
7462     // Certain instructions can be cheaper to vectorize if they have a constant
7463     // second vector operand. One example of this are shifts on x86.
7464     Value *Op2 = I->getOperand(1);
7465     TargetTransformInfo::OperandValueProperties Op2VP;
7466     TargetTransformInfo::OperandValueKind Op2VK =
7467         TTI.getOperandInfo(Op2, Op2VP);
7468     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7469       Op2VK = TargetTransformInfo::OK_UniformValue;
7470 
7471     SmallVector<const Value *, 4> Operands(I->operand_values());
7472     return TTI.getArithmeticInstrCost(
7473         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7474         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7475   }
7476   case Instruction::FNeg: {
7477     return TTI.getArithmeticInstrCost(
7478         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7479         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7480         TargetTransformInfo::OP_None, I->getOperand(0), I);
7481   }
7482   case Instruction::Select: {
7483     SelectInst *SI = cast<SelectInst>(I);
7484     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7485     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7486 
7487     const Value *Op0, *Op1;
7488     using namespace llvm::PatternMatch;
7489     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7490                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7491       // select x, y, false --> x & y
7492       // select x, true, y --> x | y
7493       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7494       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7495       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7496       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7497       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7498               Op1->getType()->getScalarSizeInBits() == 1);
7499 
7500       SmallVector<const Value *, 2> Operands{Op0, Op1};
7501       return TTI.getArithmeticInstrCost(
7502           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7503           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7504     }
7505 
7506     Type *CondTy = SI->getCondition()->getType();
7507     if (!ScalarCond)
7508       CondTy = VectorType::get(CondTy, VF);
7509 
7510     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7511     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7512       Pred = Cmp->getPredicate();
7513     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7514                                   CostKind, I);
7515   }
7516   case Instruction::ICmp:
7517   case Instruction::FCmp: {
7518     Type *ValTy = I->getOperand(0)->getType();
7519     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7520     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7521       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7522     VectorTy = ToVectorTy(ValTy, VF);
7523     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7524                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7525                                   I);
7526   }
7527   case Instruction::Store:
7528   case Instruction::Load: {
7529     ElementCount Width = VF;
7530     if (Width.isVector()) {
7531       InstWidening Decision = getWideningDecision(I, Width);
7532       assert(Decision != CM_Unknown &&
7533              "CM decision should be taken at this point");
7534       if (Decision == CM_Scalarize)
7535         Width = ElementCount::getFixed(1);
7536     }
7537     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7538     return getMemoryInstructionCost(I, VF);
7539   }
7540   case Instruction::BitCast:
7541     if (I->getType()->isPointerTy())
7542       return 0;
7543     LLVM_FALLTHROUGH;
7544   case Instruction::ZExt:
7545   case Instruction::SExt:
7546   case Instruction::FPToUI:
7547   case Instruction::FPToSI:
7548   case Instruction::FPExt:
7549   case Instruction::PtrToInt:
7550   case Instruction::IntToPtr:
7551   case Instruction::SIToFP:
7552   case Instruction::UIToFP:
7553   case Instruction::Trunc:
7554   case Instruction::FPTrunc: {
7555     // Computes the CastContextHint from a Load/Store instruction.
7556     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7557       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7558              "Expected a load or a store!");
7559 
7560       if (VF.isScalar() || !TheLoop->contains(I))
7561         return TTI::CastContextHint::Normal;
7562 
7563       switch (getWideningDecision(I, VF)) {
7564       case LoopVectorizationCostModel::CM_GatherScatter:
7565         return TTI::CastContextHint::GatherScatter;
7566       case LoopVectorizationCostModel::CM_Interleave:
7567         return TTI::CastContextHint::Interleave;
7568       case LoopVectorizationCostModel::CM_Scalarize:
7569       case LoopVectorizationCostModel::CM_Widen:
7570         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7571                                         : TTI::CastContextHint::Normal;
7572       case LoopVectorizationCostModel::CM_Widen_Reverse:
7573         return TTI::CastContextHint::Reversed;
7574       case LoopVectorizationCostModel::CM_Unknown:
7575         llvm_unreachable("Instr did not go through cost modelling?");
7576       }
7577 
7578       llvm_unreachable("Unhandled case!");
7579     };
7580 
7581     unsigned Opcode = I->getOpcode();
7582     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7583     // For Trunc, the context is the only user, which must be a StoreInst.
7584     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7585       if (I->hasOneUse())
7586         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7587           CCH = ComputeCCH(Store);
7588     }
7589     // For Z/Sext, the context is the operand, which must be a LoadInst.
7590     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7591              Opcode == Instruction::FPExt) {
7592       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7593         CCH = ComputeCCH(Load);
7594     }
7595 
7596     // We optimize the truncation of induction variables having constant
7597     // integer steps. The cost of these truncations is the same as the scalar
7598     // operation.
7599     if (isOptimizableIVTruncate(I, VF)) {
7600       auto *Trunc = cast<TruncInst>(I);
7601       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7602                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7603     }
7604 
7605     // Detect reduction patterns
7606     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7607       return *RedCost;
7608 
7609     Type *SrcScalarTy = I->getOperand(0)->getType();
7610     Type *SrcVecTy =
7611         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7612     if (canTruncateToMinimalBitwidth(I, VF)) {
7613       // This cast is going to be shrunk. This may remove the cast or it might
7614       // turn it into slightly different cast. For example, if MinBW == 16,
7615       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7616       //
7617       // Calculate the modified src and dest types.
7618       Type *MinVecTy = VectorTy;
7619       if (Opcode == Instruction::Trunc) {
7620         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7621         VectorTy =
7622             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7623       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7624         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7625         VectorTy =
7626             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7627       }
7628     }
7629 
7630     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7631   }
7632   case Instruction::Call: {
7633     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7634       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7635         return *RedCost;
7636     bool NeedToScalarize;
7637     CallInst *CI = cast<CallInst>(I);
7638     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7639     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7640       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7641       return std::min(CallCost, IntrinsicCost);
7642     }
7643     return CallCost;
7644   }
7645   case Instruction::ExtractValue:
7646     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7647   case Instruction::Alloca:
7648     // We cannot easily widen alloca to a scalable alloca, as
7649     // the result would need to be a vector of pointers.
7650     if (VF.isScalable())
7651       return InstructionCost::getInvalid();
7652     LLVM_FALLTHROUGH;
7653   default:
7654     // This opcode is unknown. Assume that it is the same as 'mul'.
7655     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7656   } // end of switch.
7657 }
7658 
7659 char LoopVectorize::ID = 0;
7660 
7661 static const char lv_name[] = "Loop Vectorization";
7662 
7663 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7664 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7665 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7666 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7667 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7668 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7669 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7670 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7671 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7672 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7673 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7674 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7675 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7676 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7677 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7678 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7679 
7680 namespace llvm {
7681 
7682 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7683 
7684 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7685                               bool VectorizeOnlyWhenForced) {
7686   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7687 }
7688 
7689 } // end namespace llvm
7690 
7691 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7692   // Check if the pointer operand of a load or store instruction is
7693   // consecutive.
7694   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7695     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7696   return false;
7697 }
7698 
7699 void LoopVectorizationCostModel::collectValuesToIgnore() {
7700   // Ignore ephemeral values.
7701   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7702 
7703   // Ignore type-promoting instructions we identified during reduction
7704   // detection.
7705   for (auto &Reduction : Legal->getReductionVars()) {
7706     const RecurrenceDescriptor &RedDes = Reduction.second;
7707     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7708     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7709   }
7710   // Ignore type-casting instructions we identified during induction
7711   // detection.
7712   for (auto &Induction : Legal->getInductionVars()) {
7713     const InductionDescriptor &IndDes = Induction.second;
7714     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7715     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7716   }
7717 }
7718 
7719 void LoopVectorizationCostModel::collectInLoopReductions() {
7720   for (auto &Reduction : Legal->getReductionVars()) {
7721     PHINode *Phi = Reduction.first;
7722     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7723 
7724     // We don't collect reductions that are type promoted (yet).
7725     if (RdxDesc.getRecurrenceType() != Phi->getType())
7726       continue;
7727 
7728     // If the target would prefer this reduction to happen "in-loop", then we
7729     // want to record it as such.
7730     unsigned Opcode = RdxDesc.getOpcode();
7731     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7732         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7733                                    TargetTransformInfo::ReductionFlags()))
7734       continue;
7735 
7736     // Check that we can correctly put the reductions into the loop, by
7737     // finding the chain of operations that leads from the phi to the loop
7738     // exit value.
7739     SmallVector<Instruction *, 4> ReductionOperations =
7740         RdxDesc.getReductionOpChain(Phi, TheLoop);
7741     bool InLoop = !ReductionOperations.empty();
7742     if (InLoop) {
7743       InLoopReductionChains[Phi] = ReductionOperations;
7744       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7745       Instruction *LastChain = Phi;
7746       for (auto *I : ReductionOperations) {
7747         InLoopReductionImmediateChains[I] = LastChain;
7748         LastChain = I;
7749       }
7750     }
7751     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7752                       << " reduction for phi: " << *Phi << "\n");
7753   }
7754 }
7755 
7756 // TODO: we could return a pair of values that specify the max VF and
7757 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7758 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7759 // doesn't have a cost model that can choose which plan to execute if
7760 // more than one is generated.
7761 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7762                                  LoopVectorizationCostModel &CM) {
7763   unsigned WidestType;
7764   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7765   return WidestVectorRegBits / WidestType;
7766 }
7767 
7768 VectorizationFactor
7769 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7770   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7771   ElementCount VF = UserVF;
7772   // Outer loop handling: They may require CFG and instruction level
7773   // transformations before even evaluating whether vectorization is profitable.
7774   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7775   // the vectorization pipeline.
7776   if (!OrigLoop->isInnermost()) {
7777     // If the user doesn't provide a vectorization factor, determine a
7778     // reasonable one.
7779     if (UserVF.isZero()) {
7780       VF = ElementCount::getFixed(determineVPlanVF(
7781           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7782               .getFixedSize(),
7783           CM));
7784       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7785 
7786       // Make sure we have a VF > 1 for stress testing.
7787       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7788         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7789                           << "overriding computed VF.\n");
7790         VF = ElementCount::getFixed(4);
7791       }
7792     }
7793     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7794     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7795            "VF needs to be a power of two");
7796     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7797                       << "VF " << VF << " to build VPlans.\n");
7798     buildVPlans(VF, VF);
7799 
7800     // For VPlan build stress testing, we bail out after VPlan construction.
7801     if (VPlanBuildStressTest)
7802       return VectorizationFactor::Disabled();
7803 
7804     return {VF, 0 /*Cost*/};
7805   }
7806 
7807   LLVM_DEBUG(
7808       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7809                 "VPlan-native path.\n");
7810   return VectorizationFactor::Disabled();
7811 }
7812 
7813 Optional<VectorizationFactor>
7814 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7815   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7816   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7817   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7818     return None;
7819 
7820   // Invalidate interleave groups if all blocks of loop will be predicated.
7821   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7822       !useMaskedInterleavedAccesses(*TTI)) {
7823     LLVM_DEBUG(
7824         dbgs()
7825         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7826            "which requires masked-interleaved support.\n");
7827     if (CM.InterleaveInfo.invalidateGroups())
7828       // Invalidating interleave groups also requires invalidating all decisions
7829       // based on them, which includes widening decisions and uniform and scalar
7830       // values.
7831       CM.invalidateCostModelingDecisions();
7832   }
7833 
7834   ElementCount MaxUserVF =
7835       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7836   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7837   if (!UserVF.isZero() && UserVFIsLegal) {
7838     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7839            "VF needs to be a power of two");
7840     // Collect the instructions (and their associated costs) that will be more
7841     // profitable to scalarize.
7842     if (CM.selectUserVectorizationFactor(UserVF)) {
7843       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7844       CM.collectInLoopReductions();
7845       buildVPlansWithVPRecipes(UserVF, UserVF);
7846       LLVM_DEBUG(printPlans(dbgs()));
7847       return {{UserVF, 0}};
7848     } else
7849       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7850                               "InvalidCost", ORE, OrigLoop);
7851   }
7852 
7853   // Populate the set of Vectorization Factor Candidates.
7854   ElementCountSet VFCandidates;
7855   for (auto VF = ElementCount::getFixed(1);
7856        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7857     VFCandidates.insert(VF);
7858   for (auto VF = ElementCount::getScalable(1);
7859        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7860     VFCandidates.insert(VF);
7861 
7862   for (const auto &VF : VFCandidates) {
7863     // Collect Uniform and Scalar instructions after vectorization with VF.
7864     CM.collectUniformsAndScalars(VF);
7865 
7866     // Collect the instructions (and their associated costs) that will be more
7867     // profitable to scalarize.
7868     if (VF.isVector())
7869       CM.collectInstsToScalarize(VF);
7870   }
7871 
7872   CM.collectInLoopReductions();
7873   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7874   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7875 
7876   LLVM_DEBUG(printPlans(dbgs()));
7877   if (!MaxFactors.hasVector())
7878     return VectorizationFactor::Disabled();
7879 
7880   // Select the optimal vectorization factor.
7881   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7882 
7883   // Check if it is profitable to vectorize with runtime checks.
7884   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7885   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7886     bool PragmaThresholdReached =
7887         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7888     bool ThresholdReached =
7889         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7890     if ((ThresholdReached && !Hints.allowReordering()) ||
7891         PragmaThresholdReached) {
7892       ORE->emit([&]() {
7893         return OptimizationRemarkAnalysisAliasing(
7894                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7895                    OrigLoop->getHeader())
7896                << "loop not vectorized: cannot prove it is safe to reorder "
7897                   "memory operations";
7898       });
7899       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7900       Hints.emitRemarkWithHints();
7901       return VectorizationFactor::Disabled();
7902     }
7903   }
7904   return SelectedVF;
7905 }
7906 
7907 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7908   assert(count_if(VPlans,
7909                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7910              1 &&
7911          "Best VF has not a single VPlan.");
7912 
7913   for (const VPlanPtr &Plan : VPlans) {
7914     if (Plan->hasVF(VF))
7915       return *Plan.get();
7916   }
7917   llvm_unreachable("No plan found!");
7918 }
7919 
7920 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7921   SmallVector<Metadata *, 4> MDs;
7922   // Reserve first location for self reference to the LoopID metadata node.
7923   MDs.push_back(nullptr);
7924   bool IsUnrollMetadata = false;
7925   MDNode *LoopID = L->getLoopID();
7926   if (LoopID) {
7927     // First find existing loop unrolling disable metadata.
7928     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7929       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7930       if (MD) {
7931         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7932         IsUnrollMetadata =
7933             S && S->getString().startswith("llvm.loop.unroll.disable");
7934       }
7935       MDs.push_back(LoopID->getOperand(i));
7936     }
7937   }
7938 
7939   if (!IsUnrollMetadata) {
7940     // Add runtime unroll disable metadata.
7941     LLVMContext &Context = L->getHeader()->getContext();
7942     SmallVector<Metadata *, 1> DisableOperands;
7943     DisableOperands.push_back(
7944         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7945     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7946     MDs.push_back(DisableNode);
7947     MDNode *NewLoopID = MDNode::get(Context, MDs);
7948     // Set operand 0 to refer to the loop id itself.
7949     NewLoopID->replaceOperandWith(0, NewLoopID);
7950     L->setLoopID(NewLoopID);
7951   }
7952 }
7953 
7954 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7955                                            VPlan &BestVPlan,
7956                                            InnerLoopVectorizer &ILV,
7957                                            DominatorTree *DT) {
7958   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7959                     << '\n');
7960 
7961   // Perform the actual loop transformation.
7962 
7963   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7964   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7965   Value *CanonicalIVStartValue;
7966   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7967       ILV.createVectorizedLoopSkeleton();
7968   ILV.collectPoisonGeneratingRecipes(State);
7969 
7970   ILV.printDebugTracesAtStart();
7971 
7972   //===------------------------------------------------===//
7973   //
7974   // Notice: any optimization or new instruction that go
7975   // into the code below should also be implemented in
7976   // the cost-model.
7977   //
7978   //===------------------------------------------------===//
7979 
7980   // 2. Copy and widen instructions from the old loop into the new loop.
7981   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7982                              ILV.getOrCreateVectorTripCount(nullptr),
7983                              CanonicalIVStartValue, State);
7984   BestVPlan.execute(&State);
7985 
7986   // Keep all loop hints from the original loop on the vector loop (we'll
7987   // replace the vectorizer-specific hints below).
7988   MDNode *OrigLoopID = OrigLoop->getLoopID();
7989 
7990   Optional<MDNode *> VectorizedLoopID =
7991       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7992                                       LLVMLoopVectorizeFollowupVectorized});
7993 
7994   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7995   if (VectorizedLoopID.hasValue())
7996     L->setLoopID(VectorizedLoopID.getValue());
7997   else {
7998     // Keep all loop hints from the original loop on the vector loop (we'll
7999     // replace the vectorizer-specific hints below).
8000     if (MDNode *LID = OrigLoop->getLoopID())
8001       L->setLoopID(LID);
8002 
8003     LoopVectorizeHints Hints(L, true, *ORE);
8004     Hints.setAlreadyVectorized();
8005   }
8006   // Disable runtime unrolling when vectorizing the epilogue loop.
8007   if (CanonicalIVStartValue)
8008     AddRuntimeUnrollDisableMetaData(L);
8009 
8010   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8011   //    predication, updating analyses.
8012   ILV.fixVectorizedLoop(State);
8013 
8014   ILV.printDebugTracesAtEnd();
8015 }
8016 
8017 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8018 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8019   for (const auto &Plan : VPlans)
8020     if (PrintVPlansInDotFormat)
8021       Plan->printDOT(O);
8022     else
8023       Plan->print(O);
8024 }
8025 #endif
8026 
8027 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8028     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8029 
8030   // We create new control-flow for the vectorized loop, so the original exit
8031   // conditions will be dead after vectorization if it's only used by the
8032   // terminator
8033   SmallVector<BasicBlock*> ExitingBlocks;
8034   OrigLoop->getExitingBlocks(ExitingBlocks);
8035   for (auto *BB : ExitingBlocks) {
8036     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8037     if (!Cmp || !Cmp->hasOneUse())
8038       continue;
8039 
8040     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8041     if (!DeadInstructions.insert(Cmp).second)
8042       continue;
8043 
8044     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8045     // TODO: can recurse through operands in general
8046     for (Value *Op : Cmp->operands()) {
8047       if (isa<TruncInst>(Op) && Op->hasOneUse())
8048           DeadInstructions.insert(cast<Instruction>(Op));
8049     }
8050   }
8051 
8052   // We create new "steps" for induction variable updates to which the original
8053   // induction variables map. An original update instruction will be dead if
8054   // all its users except the induction variable are dead.
8055   auto *Latch = OrigLoop->getLoopLatch();
8056   for (auto &Induction : Legal->getInductionVars()) {
8057     PHINode *Ind = Induction.first;
8058     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8059 
8060     // If the tail is to be folded by masking, the primary induction variable,
8061     // if exists, isn't dead: it will be used for masking. Don't kill it.
8062     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8063       continue;
8064 
8065     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8066           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8067         }))
8068       DeadInstructions.insert(IndUpdate);
8069   }
8070 }
8071 
8072 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8073 
8074 //===--------------------------------------------------------------------===//
8075 // EpilogueVectorizerMainLoop
8076 //===--------------------------------------------------------------------===//
8077 
8078 /// This function is partially responsible for generating the control flow
8079 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8080 std::pair<BasicBlock *, Value *>
8081 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8082   MDNode *OrigLoopID = OrigLoop->getLoopID();
8083   Loop *Lp = createVectorLoopSkeleton("");
8084 
8085   // Generate the code to check the minimum iteration count of the vector
8086   // epilogue (see below).
8087   EPI.EpilogueIterationCountCheck =
8088       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8089   EPI.EpilogueIterationCountCheck->setName("iter.check");
8090 
8091   // Generate the code to check any assumptions that we've made for SCEV
8092   // expressions.
8093   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8094 
8095   // Generate the code that checks at runtime if arrays overlap. We put the
8096   // checks into a separate block to make the more common case of few elements
8097   // faster.
8098   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8099 
8100   // Generate the iteration count check for the main loop, *after* the check
8101   // for the epilogue loop, so that the path-length is shorter for the case
8102   // that goes directly through the vector epilogue. The longer-path length for
8103   // the main loop is compensated for, by the gain from vectorizing the larger
8104   // trip count. Note: the branch will get updated later on when we vectorize
8105   // the epilogue.
8106   EPI.MainLoopIterationCountCheck =
8107       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8108 
8109   // Generate the induction variable.
8110   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8111   EPI.VectorTripCount = CountRoundDown;
8112   createHeaderBranch(Lp);
8113 
8114   // Skip induction resume value creation here because they will be created in
8115   // the second pass. If we created them here, they wouldn't be used anyway,
8116   // because the vplan in the second pass still contains the inductions from the
8117   // original loop.
8118 
8119   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8120 }
8121 
8122 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8123   LLVM_DEBUG({
8124     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8125            << "Main Loop VF:" << EPI.MainLoopVF
8126            << ", Main Loop UF:" << EPI.MainLoopUF
8127            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8128            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8129   });
8130 }
8131 
8132 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8133   DEBUG_WITH_TYPE(VerboseDebug, {
8134     dbgs() << "intermediate fn:\n"
8135            << *OrigLoop->getHeader()->getParent() << "\n";
8136   });
8137 }
8138 
8139 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8140     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8141   assert(L && "Expected valid Loop.");
8142   assert(Bypass && "Expected valid bypass basic block.");
8143   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8144   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8145   Value *Count = getOrCreateTripCount(L);
8146   // Reuse existing vector loop preheader for TC checks.
8147   // Note that new preheader block is generated for vector loop.
8148   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8149   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8150 
8151   // Generate code to check if the loop's trip count is less than VF * UF of the
8152   // main vector loop.
8153   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8154       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8155 
8156   Value *CheckMinIters = Builder.CreateICmp(
8157       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8158       "min.iters.check");
8159 
8160   if (!ForEpilogue)
8161     TCCheckBlock->setName("vector.main.loop.iter.check");
8162 
8163   // Create new preheader for vector loop.
8164   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8165                                    DT, LI, nullptr, "vector.ph");
8166 
8167   if (ForEpilogue) {
8168     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8169                                  DT->getNode(Bypass)->getIDom()) &&
8170            "TC check is expected to dominate Bypass");
8171 
8172     // Update dominator for Bypass & LoopExit.
8173     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8174     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8175       // For loops with multiple exits, there's no edge from the middle block
8176       // to exit blocks (as the epilogue must run) and thus no need to update
8177       // the immediate dominator of the exit blocks.
8178       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8179 
8180     LoopBypassBlocks.push_back(TCCheckBlock);
8181 
8182     // Save the trip count so we don't have to regenerate it in the
8183     // vec.epilog.iter.check. This is safe to do because the trip count
8184     // generated here dominates the vector epilog iter check.
8185     EPI.TripCount = Count;
8186   }
8187 
8188   ReplaceInstWithInst(
8189       TCCheckBlock->getTerminator(),
8190       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8191 
8192   return TCCheckBlock;
8193 }
8194 
8195 //===--------------------------------------------------------------------===//
8196 // EpilogueVectorizerEpilogueLoop
8197 //===--------------------------------------------------------------------===//
8198 
8199 /// This function is partially responsible for generating the control flow
8200 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8201 std::pair<BasicBlock *, Value *>
8202 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8203   MDNode *OrigLoopID = OrigLoop->getLoopID();
8204   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8205 
8206   // Now, compare the remaining count and if there aren't enough iterations to
8207   // execute the vectorized epilogue skip to the scalar part.
8208   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8209   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8210   LoopVectorPreHeader =
8211       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8212                  LI, nullptr, "vec.epilog.ph");
8213   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8214                                           VecEpilogueIterationCountCheck);
8215 
8216   // Adjust the control flow taking the state info from the main loop
8217   // vectorization into account.
8218   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8219          "expected this to be saved from the previous pass.");
8220   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8221       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8222 
8223   DT->changeImmediateDominator(LoopVectorPreHeader,
8224                                EPI.MainLoopIterationCountCheck);
8225 
8226   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8227       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8228 
8229   if (EPI.SCEVSafetyCheck)
8230     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8231         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8232   if (EPI.MemSafetyCheck)
8233     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8234         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8235 
8236   DT->changeImmediateDominator(
8237       VecEpilogueIterationCountCheck,
8238       VecEpilogueIterationCountCheck->getSinglePredecessor());
8239 
8240   DT->changeImmediateDominator(LoopScalarPreHeader,
8241                                EPI.EpilogueIterationCountCheck);
8242   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8243     // If there is an epilogue which must run, there's no edge from the
8244     // middle block to exit blocks  and thus no need to update the immediate
8245     // dominator of the exit blocks.
8246     DT->changeImmediateDominator(LoopExitBlock,
8247                                  EPI.EpilogueIterationCountCheck);
8248 
8249   // Keep track of bypass blocks, as they feed start values to the induction
8250   // phis in the scalar loop preheader.
8251   if (EPI.SCEVSafetyCheck)
8252     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8253   if (EPI.MemSafetyCheck)
8254     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8255   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8256 
8257   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8258   // merge control-flow from the latch block and the middle block. Update the
8259   // incoming values here and move the Phi into the preheader.
8260   SmallVector<PHINode *, 4> PhisInBlock;
8261   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8262     PhisInBlock.push_back(&Phi);
8263 
8264   for (PHINode *Phi : PhisInBlock) {
8265     Phi->replaceIncomingBlockWith(
8266         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8267         VecEpilogueIterationCountCheck);
8268     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8269     if (EPI.SCEVSafetyCheck)
8270       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8271     if (EPI.MemSafetyCheck)
8272       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8273     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8274   }
8275 
8276   // Generate a resume induction for the vector epilogue and put it in the
8277   // vector epilogue preheader
8278   Type *IdxTy = Legal->getWidestInductionType();
8279   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8280                                          LoopVectorPreHeader->getFirstNonPHI());
8281   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8282   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8283                            EPI.MainLoopIterationCountCheck);
8284 
8285   // Generate the induction variable.
8286   createHeaderBranch(Lp);
8287 
8288   // Generate induction resume values. These variables save the new starting
8289   // indexes for the scalar loop. They are used to test if there are any tail
8290   // iterations left once the vector loop has completed.
8291   // Note that when the vectorized epilogue is skipped due to iteration count
8292   // check, then the resume value for the induction variable comes from
8293   // the trip count of the main vector loop, hence passing the AdditionalBypass
8294   // argument.
8295   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8296                                    EPI.VectorTripCount} /* AdditionalBypass */);
8297 
8298   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8299 }
8300 
8301 BasicBlock *
8302 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8303     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8304 
8305   assert(EPI.TripCount &&
8306          "Expected trip count to have been safed in the first pass.");
8307   assert(
8308       (!isa<Instruction>(EPI.TripCount) ||
8309        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8310       "saved trip count does not dominate insertion point.");
8311   Value *TC = EPI.TripCount;
8312   IRBuilder<> Builder(Insert->getTerminator());
8313   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8314 
8315   // Generate code to check if the loop's trip count is less than VF * UF of the
8316   // vector epilogue loop.
8317   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8318       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8319 
8320   Value *CheckMinIters =
8321       Builder.CreateICmp(P, Count,
8322                          createStepForVF(Builder, Count->getType(),
8323                                          EPI.EpilogueVF, EPI.EpilogueUF),
8324                          "min.epilog.iters.check");
8325 
8326   ReplaceInstWithInst(
8327       Insert->getTerminator(),
8328       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8329 
8330   LoopBypassBlocks.push_back(Insert);
8331   return Insert;
8332 }
8333 
8334 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8335   LLVM_DEBUG({
8336     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8337            << "Epilogue Loop VF:" << EPI.EpilogueVF
8338            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8339   });
8340 }
8341 
8342 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8343   DEBUG_WITH_TYPE(VerboseDebug, {
8344     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8345   });
8346 }
8347 
8348 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8349     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8350   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8351   bool PredicateAtRangeStart = Predicate(Range.Start);
8352 
8353   for (ElementCount TmpVF = Range.Start * 2;
8354        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8355     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8356       Range.End = TmpVF;
8357       break;
8358     }
8359 
8360   return PredicateAtRangeStart;
8361 }
8362 
8363 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8364 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8365 /// of VF's starting at a given VF and extending it as much as possible. Each
8366 /// vectorization decision can potentially shorten this sub-range during
8367 /// buildVPlan().
8368 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8369                                            ElementCount MaxVF) {
8370   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8371   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8372     VFRange SubRange = {VF, MaxVFPlusOne};
8373     VPlans.push_back(buildVPlan(SubRange));
8374     VF = SubRange.End;
8375   }
8376 }
8377 
8378 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8379                                          VPlanPtr &Plan) {
8380   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8381 
8382   // Look for cached value.
8383   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8384   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8385   if (ECEntryIt != EdgeMaskCache.end())
8386     return ECEntryIt->second;
8387 
8388   VPValue *SrcMask = createBlockInMask(Src, Plan);
8389 
8390   // The terminator has to be a branch inst!
8391   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8392   assert(BI && "Unexpected terminator found");
8393 
8394   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8395     return EdgeMaskCache[Edge] = SrcMask;
8396 
8397   // If source is an exiting block, we know the exit edge is dynamically dead
8398   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8399   // adding uses of an otherwise potentially dead instruction.
8400   if (OrigLoop->isLoopExiting(Src))
8401     return EdgeMaskCache[Edge] = SrcMask;
8402 
8403   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8404   assert(EdgeMask && "No Edge Mask found for condition");
8405 
8406   if (BI->getSuccessor(0) != Dst)
8407     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8408 
8409   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8410     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8411     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8412     // The select version does not introduce new UB if SrcMask is false and
8413     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8414     VPValue *False = Plan->getOrAddVPValue(
8415         ConstantInt::getFalse(BI->getCondition()->getType()));
8416     EdgeMask =
8417         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8418   }
8419 
8420   return EdgeMaskCache[Edge] = EdgeMask;
8421 }
8422 
8423 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8424   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8425 
8426   // Look for cached value.
8427   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8428   if (BCEntryIt != BlockMaskCache.end())
8429     return BCEntryIt->second;
8430 
8431   // All-one mask is modelled as no-mask following the convention for masked
8432   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8433   VPValue *BlockMask = nullptr;
8434 
8435   if (OrigLoop->getHeader() == BB) {
8436     if (!CM.blockNeedsPredicationForAnyReason(BB))
8437       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8438 
8439     // Introduce the early-exit compare IV <= BTC to form header block mask.
8440     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8441     // constructing the desired canonical IV in the header block as its first
8442     // non-phi instructions.
8443     assert(CM.foldTailByMasking() && "must fold the tail");
8444     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8445     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8446     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8447     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8448 
8449     VPBuilder::InsertPointGuard Guard(Builder);
8450     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8451     if (CM.TTI.emitGetActiveLaneMask()) {
8452       VPValue *TC = Plan->getOrCreateTripCount();
8453       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8454     } else {
8455       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8456       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8457     }
8458     return BlockMaskCache[BB] = BlockMask;
8459   }
8460 
8461   // This is the block mask. We OR all incoming edges.
8462   for (auto *Predecessor : predecessors(BB)) {
8463     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8464     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8465       return BlockMaskCache[BB] = EdgeMask;
8466 
8467     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8468       BlockMask = EdgeMask;
8469       continue;
8470     }
8471 
8472     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8473   }
8474 
8475   return BlockMaskCache[BB] = BlockMask;
8476 }
8477 
8478 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8479                                                 ArrayRef<VPValue *> Operands,
8480                                                 VFRange &Range,
8481                                                 VPlanPtr &Plan) {
8482   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8483          "Must be called with either a load or store");
8484 
8485   auto willWiden = [&](ElementCount VF) -> bool {
8486     if (VF.isScalar())
8487       return false;
8488     LoopVectorizationCostModel::InstWidening Decision =
8489         CM.getWideningDecision(I, VF);
8490     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8491            "CM decision should be taken at this point.");
8492     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8493       return true;
8494     if (CM.isScalarAfterVectorization(I, VF) ||
8495         CM.isProfitableToScalarize(I, VF))
8496       return false;
8497     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8498   };
8499 
8500   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8501     return nullptr;
8502 
8503   VPValue *Mask = nullptr;
8504   if (Legal->isMaskRequired(I))
8505     Mask = createBlockInMask(I->getParent(), Plan);
8506 
8507   // Determine if the pointer operand of the access is either consecutive or
8508   // reverse consecutive.
8509   LoopVectorizationCostModel::InstWidening Decision =
8510       CM.getWideningDecision(I, Range.Start);
8511   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8512   bool Consecutive =
8513       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8514 
8515   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8516     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8517                                               Consecutive, Reverse);
8518 
8519   StoreInst *Store = cast<StoreInst>(I);
8520   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8521                                             Mask, Consecutive, Reverse);
8522 }
8523 
8524 static VPWidenIntOrFpInductionRecipe *
8525 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8526                            VPValue *Start, const InductionDescriptor &IndDesc,
8527                            LoopVectorizationCostModel &CM, Loop &OrigLoop,
8528                            VFRange &Range) {
8529   // Returns true if an instruction \p I should be scalarized instead of
8530   // vectorized for the chosen vectorization factor.
8531   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8532     return CM.isScalarAfterVectorization(I, VF) ||
8533            CM.isProfitableToScalarize(I, VF);
8534   };
8535 
8536   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8537       [&](ElementCount VF) {
8538         // Returns true if we should generate a scalar version of \p IV.
8539         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8540           return true;
8541         auto isScalarInst = [&](User *U) -> bool {
8542           auto *I = cast<Instruction>(U);
8543           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8544         };
8545         return any_of(PhiOrTrunc->users(), isScalarInst);
8546       },
8547       Range);
8548   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8549       [&](ElementCount VF) {
8550         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8551       },
8552       Range);
8553   assert(IndDesc.getStartValue() ==
8554          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8555   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8556     return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI,
8557                                              NeedsScalarIV, !NeedsScalarIVOnly);
8558   }
8559   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8560   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8561                                            !NeedsScalarIVOnly);
8562 }
8563 
8564 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8565     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8566 
8567   // Check if this is an integer or fp induction. If so, build the recipe that
8568   // produces its scalar and vector values.
8569   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8570     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop,
8571                                       Range);
8572 
8573   return nullptr;
8574 }
8575 
8576 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8577     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8578     VPlan &Plan) const {
8579   // Optimize the special case where the source is a constant integer
8580   // induction variable. Notice that we can only optimize the 'trunc' case
8581   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8582   // (c) other casts depend on pointer size.
8583 
8584   // Determine whether \p K is a truncation based on an induction variable that
8585   // can be optimized.
8586   auto isOptimizableIVTruncate =
8587       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8588     return [=](ElementCount VF) -> bool {
8589       return CM.isOptimizableIVTruncate(K, VF);
8590     };
8591   };
8592 
8593   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8594           isOptimizableIVTruncate(I), Range)) {
8595 
8596     auto *Phi = cast<PHINode>(I->getOperand(0));
8597     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8598     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8599     return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range);
8600   }
8601   return nullptr;
8602 }
8603 
8604 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8605                                                 ArrayRef<VPValue *> Operands,
8606                                                 VPlanPtr &Plan) {
8607   // If all incoming values are equal, the incoming VPValue can be used directly
8608   // instead of creating a new VPBlendRecipe.
8609   VPValue *FirstIncoming = Operands[0];
8610   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8611         return FirstIncoming == Inc;
8612       })) {
8613     return Operands[0];
8614   }
8615 
8616   // We know that all PHIs in non-header blocks are converted into selects, so
8617   // we don't have to worry about the insertion order and we can just use the
8618   // builder. At this point we generate the predication tree. There may be
8619   // duplications since this is a simple recursive scan, but future
8620   // optimizations will clean it up.
8621   SmallVector<VPValue *, 2> OperandsWithMask;
8622   unsigned NumIncoming = Phi->getNumIncomingValues();
8623 
8624   for (unsigned In = 0; In < NumIncoming; In++) {
8625     VPValue *EdgeMask =
8626       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8627     assert((EdgeMask || NumIncoming == 1) &&
8628            "Multiple predecessors with one having a full mask");
8629     OperandsWithMask.push_back(Operands[In]);
8630     if (EdgeMask)
8631       OperandsWithMask.push_back(EdgeMask);
8632   }
8633   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8634 }
8635 
8636 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8637                                                    ArrayRef<VPValue *> Operands,
8638                                                    VFRange &Range) const {
8639 
8640   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8641       [this, CI](ElementCount VF) {
8642         return CM.isScalarWithPredication(CI, VF);
8643       },
8644       Range);
8645 
8646   if (IsPredicated)
8647     return nullptr;
8648 
8649   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8650   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8651              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8652              ID == Intrinsic::pseudoprobe ||
8653              ID == Intrinsic::experimental_noalias_scope_decl))
8654     return nullptr;
8655 
8656   auto willWiden = [&](ElementCount VF) -> bool {
8657     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8658     // The following case may be scalarized depending on the VF.
8659     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8660     // version of the instruction.
8661     // Is it beneficial to perform intrinsic call compared to lib call?
8662     bool NeedToScalarize = false;
8663     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8664     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8665     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8666     return UseVectorIntrinsic || !NeedToScalarize;
8667   };
8668 
8669   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8670     return nullptr;
8671 
8672   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8673   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8674 }
8675 
8676 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8677   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8678          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8679   // Instruction should be widened, unless it is scalar after vectorization,
8680   // scalarization is profitable or it is predicated.
8681   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8682     return CM.isScalarAfterVectorization(I, VF) ||
8683            CM.isProfitableToScalarize(I, VF) ||
8684            CM.isScalarWithPredication(I, VF);
8685   };
8686   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8687                                                              Range);
8688 }
8689 
8690 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8691                                            ArrayRef<VPValue *> Operands) const {
8692   auto IsVectorizableOpcode = [](unsigned Opcode) {
8693     switch (Opcode) {
8694     case Instruction::Add:
8695     case Instruction::And:
8696     case Instruction::AShr:
8697     case Instruction::BitCast:
8698     case Instruction::FAdd:
8699     case Instruction::FCmp:
8700     case Instruction::FDiv:
8701     case Instruction::FMul:
8702     case Instruction::FNeg:
8703     case Instruction::FPExt:
8704     case Instruction::FPToSI:
8705     case Instruction::FPToUI:
8706     case Instruction::FPTrunc:
8707     case Instruction::FRem:
8708     case Instruction::FSub:
8709     case Instruction::ICmp:
8710     case Instruction::IntToPtr:
8711     case Instruction::LShr:
8712     case Instruction::Mul:
8713     case Instruction::Or:
8714     case Instruction::PtrToInt:
8715     case Instruction::SDiv:
8716     case Instruction::Select:
8717     case Instruction::SExt:
8718     case Instruction::Shl:
8719     case Instruction::SIToFP:
8720     case Instruction::SRem:
8721     case Instruction::Sub:
8722     case Instruction::Trunc:
8723     case Instruction::UDiv:
8724     case Instruction::UIToFP:
8725     case Instruction::URem:
8726     case Instruction::Xor:
8727     case Instruction::ZExt:
8728       return true;
8729     }
8730     return false;
8731   };
8732 
8733   if (!IsVectorizableOpcode(I->getOpcode()))
8734     return nullptr;
8735 
8736   // Success: widen this instruction.
8737   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8738 }
8739 
8740 void VPRecipeBuilder::fixHeaderPhis() {
8741   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8742   for (VPHeaderPHIRecipe *R : PhisToFix) {
8743     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8744     VPRecipeBase *IncR =
8745         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8746     R->addOperand(IncR->getVPSingleValue());
8747   }
8748 }
8749 
8750 VPBasicBlock *VPRecipeBuilder::handleReplication(
8751     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8752     VPlanPtr &Plan) {
8753   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8754       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8755       Range);
8756 
8757   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8758       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8759       Range);
8760 
8761   // Even if the instruction is not marked as uniform, there are certain
8762   // intrinsic calls that can be effectively treated as such, so we check for
8763   // them here. Conservatively, we only do this for scalable vectors, since
8764   // for fixed-width VFs we can always fall back on full scalarization.
8765   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8766     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8767     case Intrinsic::assume:
8768     case Intrinsic::lifetime_start:
8769     case Intrinsic::lifetime_end:
8770       // For scalable vectors if one of the operands is variant then we still
8771       // want to mark as uniform, which will generate one instruction for just
8772       // the first lane of the vector. We can't scalarize the call in the same
8773       // way as for fixed-width vectors because we don't know how many lanes
8774       // there are.
8775       //
8776       // The reasons for doing it this way for scalable vectors are:
8777       //   1. For the assume intrinsic generating the instruction for the first
8778       //      lane is still be better than not generating any at all. For
8779       //      example, the input may be a splat across all lanes.
8780       //   2. For the lifetime start/end intrinsics the pointer operand only
8781       //      does anything useful when the input comes from a stack object,
8782       //      which suggests it should always be uniform. For non-stack objects
8783       //      the effect is to poison the object, which still allows us to
8784       //      remove the call.
8785       IsUniform = true;
8786       break;
8787     default:
8788       break;
8789     }
8790   }
8791 
8792   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8793                                        IsUniform, IsPredicated);
8794   setRecipe(I, Recipe);
8795   Plan->addVPValue(I, Recipe);
8796 
8797   // Find if I uses a predicated instruction. If so, it will use its scalar
8798   // value. Avoid hoisting the insert-element which packs the scalar value into
8799   // a vector value, as that happens iff all users use the vector value.
8800   for (VPValue *Op : Recipe->operands()) {
8801     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8802     if (!PredR)
8803       continue;
8804     auto *RepR =
8805         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8806     assert(RepR->isPredicated() &&
8807            "expected Replicate recipe to be predicated");
8808     RepR->setAlsoPack(false);
8809   }
8810 
8811   // Finalize the recipe for Instr, first if it is not predicated.
8812   if (!IsPredicated) {
8813     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8814     VPBB->appendRecipe(Recipe);
8815     return VPBB;
8816   }
8817   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8818 
8819   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8820   assert(SingleSucc && "VPBB must have a single successor when handling "
8821                        "predicated replication.");
8822   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8823   // Record predicated instructions for above packing optimizations.
8824   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8825   VPBlockUtils::insertBlockAfter(Region, VPBB);
8826   auto *RegSucc = new VPBasicBlock();
8827   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8828   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8829   return RegSucc;
8830 }
8831 
8832 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8833                                                       VPRecipeBase *PredRecipe,
8834                                                       VPlanPtr &Plan) {
8835   // Instructions marked for predication are replicated and placed under an
8836   // if-then construct to prevent side-effects.
8837 
8838   // Generate recipes to compute the block mask for this region.
8839   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8840 
8841   // Build the triangular if-then region.
8842   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8843   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8844   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8845   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8846   auto *PHIRecipe = Instr->getType()->isVoidTy()
8847                         ? nullptr
8848                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8849   if (PHIRecipe) {
8850     Plan->removeVPValueFor(Instr);
8851     Plan->addVPValue(Instr, PHIRecipe);
8852   }
8853   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8854   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8855   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8856 
8857   // Note: first set Entry as region entry and then connect successors starting
8858   // from it in order, to propagate the "parent" of each VPBasicBlock.
8859   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8860   VPBlockUtils::connectBlocks(Pred, Exit);
8861 
8862   return Region;
8863 }
8864 
8865 VPRecipeOrVPValueTy
8866 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8867                                         ArrayRef<VPValue *> Operands,
8868                                         VFRange &Range, VPlanPtr &Plan) {
8869   // First, check for specific widening recipes that deal with calls, memory
8870   // operations, inductions and Phi nodes.
8871   if (auto *CI = dyn_cast<CallInst>(Instr))
8872     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8873 
8874   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8875     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8876 
8877   VPRecipeBase *Recipe;
8878   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8879     if (Phi->getParent() != OrigLoop->getHeader())
8880       return tryToBlend(Phi, Operands, Plan);
8881     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8882       return toVPRecipeResult(Recipe);
8883 
8884     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8885     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8886       VPValue *StartV = Operands[0];
8887       if (Legal->isReductionVariable(Phi)) {
8888         const RecurrenceDescriptor &RdxDesc =
8889             Legal->getReductionVars().find(Phi)->second;
8890         assert(RdxDesc.getRecurrenceStartValue() ==
8891                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8892         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8893                                              CM.isInLoopReduction(Phi),
8894                                              CM.useOrderedReductions(RdxDesc));
8895       } else {
8896         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8897       }
8898 
8899       // Record the incoming value from the backedge, so we can add the incoming
8900       // value from the backedge after all recipes have been created.
8901       recordRecipeOf(cast<Instruction>(
8902           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8903       PhisToFix.push_back(PhiRecipe);
8904     } else {
8905       // TODO: record backedge value for remaining pointer induction phis.
8906       assert(Phi->getType()->isPointerTy() &&
8907              "only pointer phis should be handled here");
8908       assert(Legal->getInductionVars().count(Phi) &&
8909              "Not an induction variable");
8910       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8911       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8912       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8913     }
8914 
8915     return toVPRecipeResult(PhiRecipe);
8916   }
8917 
8918   if (isa<TruncInst>(Instr) &&
8919       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8920                                                Range, *Plan)))
8921     return toVPRecipeResult(Recipe);
8922 
8923   if (!shouldWiden(Instr, Range))
8924     return nullptr;
8925 
8926   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8927     return toVPRecipeResult(new VPWidenGEPRecipe(
8928         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8929 
8930   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8931     bool InvariantCond =
8932         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8933     return toVPRecipeResult(new VPWidenSelectRecipe(
8934         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8935   }
8936 
8937   return toVPRecipeResult(tryToWiden(Instr, Operands));
8938 }
8939 
8940 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8941                                                         ElementCount MaxVF) {
8942   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8943 
8944   // Collect instructions from the original loop that will become trivially dead
8945   // in the vectorized loop. We don't need to vectorize these instructions. For
8946   // example, original induction update instructions can become dead because we
8947   // separately emit induction "steps" when generating code for the new loop.
8948   // Similarly, we create a new latch condition when setting up the structure
8949   // of the new loop, so the old one can become dead.
8950   SmallPtrSet<Instruction *, 4> DeadInstructions;
8951   collectTriviallyDeadInstructions(DeadInstructions);
8952 
8953   // Add assume instructions we need to drop to DeadInstructions, to prevent
8954   // them from being added to the VPlan.
8955   // TODO: We only need to drop assumes in blocks that get flattend. If the
8956   // control flow is preserved, we should keep them.
8957   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8958   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8959 
8960   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8961   // Dead instructions do not need sinking. Remove them from SinkAfter.
8962   for (Instruction *I : DeadInstructions)
8963     SinkAfter.erase(I);
8964 
8965   // Cannot sink instructions after dead instructions (there won't be any
8966   // recipes for them). Instead, find the first non-dead previous instruction.
8967   for (auto &P : Legal->getSinkAfter()) {
8968     Instruction *SinkTarget = P.second;
8969     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8970     (void)FirstInst;
8971     while (DeadInstructions.contains(SinkTarget)) {
8972       assert(
8973           SinkTarget != FirstInst &&
8974           "Must find a live instruction (at least the one feeding the "
8975           "first-order recurrence PHI) before reaching beginning of the block");
8976       SinkTarget = SinkTarget->getPrevNode();
8977       assert(SinkTarget != P.first &&
8978              "sink source equals target, no sinking required");
8979     }
8980     P.second = SinkTarget;
8981   }
8982 
8983   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8984   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8985     VFRange SubRange = {VF, MaxVFPlusOne};
8986     VPlans.push_back(
8987         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8988     VF = SubRange.End;
8989   }
8990 }
8991 
8992 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8993 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8994 // BranchOnCount VPInstruction to the latch.
8995 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8996                                   bool HasNUW, bool IsVPlanNative) {
8997   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8998   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8999 
9000   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
9001   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
9002   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
9003   if (IsVPlanNative)
9004     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
9005   Header->insert(CanonicalIVPHI, Header->begin());
9006 
9007   auto *CanonicalIVIncrement =
9008       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
9009                                : VPInstruction::CanonicalIVIncrement,
9010                         {CanonicalIVPHI}, DL);
9011   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
9012 
9013   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
9014   if (IsVPlanNative) {
9015     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
9016     EB->setCondBit(nullptr);
9017   }
9018   EB->appendRecipe(CanonicalIVIncrement);
9019 
9020   auto *BranchOnCount =
9021       new VPInstruction(VPInstruction::BranchOnCount,
9022                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
9023   EB->appendRecipe(BranchOnCount);
9024 }
9025 
9026 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9027     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9028     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9029 
9030   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9031 
9032   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9033 
9034   // ---------------------------------------------------------------------------
9035   // Pre-construction: record ingredients whose recipes we'll need to further
9036   // process after constructing the initial VPlan.
9037   // ---------------------------------------------------------------------------
9038 
9039   // Mark instructions we'll need to sink later and their targets as
9040   // ingredients whose recipe we'll need to record.
9041   for (auto &Entry : SinkAfter) {
9042     RecipeBuilder.recordRecipeOf(Entry.first);
9043     RecipeBuilder.recordRecipeOf(Entry.second);
9044   }
9045   for (auto &Reduction : CM.getInLoopReductionChains()) {
9046     PHINode *Phi = Reduction.first;
9047     RecurKind Kind =
9048         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
9049     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9050 
9051     RecipeBuilder.recordRecipeOf(Phi);
9052     for (auto &R : ReductionOperations) {
9053       RecipeBuilder.recordRecipeOf(R);
9054       // For min/max reducitons, where we have a pair of icmp/select, we also
9055       // need to record the ICmp recipe, so it can be removed later.
9056       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9057              "Only min/max recurrences allowed for inloop reductions");
9058       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9059         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9060     }
9061   }
9062 
9063   // For each interleave group which is relevant for this (possibly trimmed)
9064   // Range, add it to the set of groups to be later applied to the VPlan and add
9065   // placeholders for its members' Recipes which we'll be replacing with a
9066   // single VPInterleaveRecipe.
9067   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9068     auto applyIG = [IG, this](ElementCount VF) -> bool {
9069       return (VF.isVector() && // Query is illegal for VF == 1
9070               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9071                   LoopVectorizationCostModel::CM_Interleave);
9072     };
9073     if (!getDecisionAndClampRange(applyIG, Range))
9074       continue;
9075     InterleaveGroups.insert(IG);
9076     for (unsigned i = 0; i < IG->getFactor(); i++)
9077       if (Instruction *Member = IG->getMember(i))
9078         RecipeBuilder.recordRecipeOf(Member);
9079   };
9080 
9081   // ---------------------------------------------------------------------------
9082   // Build initial VPlan: Scan the body of the loop in a topological order to
9083   // visit each basic block after having visited its predecessor basic blocks.
9084   // ---------------------------------------------------------------------------
9085 
9086   // Create initial VPlan skeleton, with separate header and latch blocks.
9087   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9088   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9089   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9090   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9091   auto Plan = std::make_unique<VPlan>(TopRegion);
9092 
9093   Instruction *DLInst =
9094       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9095   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9096                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9097                         !CM.foldTailByMasking(), false);
9098 
9099   // Scan the body of the loop in a topological order to visit each basic block
9100   // after having visited its predecessor basic blocks.
9101   LoopBlocksDFS DFS(OrigLoop);
9102   DFS.perform(LI);
9103 
9104   VPBasicBlock *VPBB = HeaderVPBB;
9105   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9106   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9107     // Relevant instructions from basic block BB will be grouped into VPRecipe
9108     // ingredients and fill a new VPBasicBlock.
9109     unsigned VPBBsForBB = 0;
9110     VPBB->setName(BB->getName());
9111     Builder.setInsertPoint(VPBB);
9112 
9113     // Introduce each ingredient into VPlan.
9114     // TODO: Model and preserve debug instrinsics in VPlan.
9115     for (Instruction &I : BB->instructionsWithoutDebug()) {
9116       Instruction *Instr = &I;
9117 
9118       // First filter out irrelevant instructions, to ensure no recipes are
9119       // built for them.
9120       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9121         continue;
9122 
9123       SmallVector<VPValue *, 4> Operands;
9124       auto *Phi = dyn_cast<PHINode>(Instr);
9125       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9126         Operands.push_back(Plan->getOrAddVPValue(
9127             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9128       } else {
9129         auto OpRange = Plan->mapToVPValues(Instr->operands());
9130         Operands = {OpRange.begin(), OpRange.end()};
9131       }
9132       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9133               Instr, Operands, Range, Plan)) {
9134         // If Instr can be simplified to an existing VPValue, use it.
9135         if (RecipeOrValue.is<VPValue *>()) {
9136           auto *VPV = RecipeOrValue.get<VPValue *>();
9137           Plan->addVPValue(Instr, VPV);
9138           // If the re-used value is a recipe, register the recipe for the
9139           // instruction, in case the recipe for Instr needs to be recorded.
9140           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9141             RecipeBuilder.setRecipe(Instr, R);
9142           continue;
9143         }
9144         // Otherwise, add the new recipe.
9145         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9146         for (auto *Def : Recipe->definedValues()) {
9147           auto *UV = Def->getUnderlyingValue();
9148           Plan->addVPValue(UV, Def);
9149         }
9150 
9151         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9152             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9153           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9154           // of the header block. That can happen for truncates of induction
9155           // variables. Those recipes are moved to the phi section of the header
9156           // block after applying SinkAfter, which relies on the original
9157           // position of the trunc.
9158           assert(isa<TruncInst>(Instr));
9159           InductionsToMove.push_back(
9160               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9161         }
9162         RecipeBuilder.setRecipe(Instr, Recipe);
9163         VPBB->appendRecipe(Recipe);
9164         continue;
9165       }
9166 
9167       // Otherwise, if all widening options failed, Instruction is to be
9168       // replicated. This may create a successor for VPBB.
9169       VPBasicBlock *NextVPBB =
9170           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9171       if (NextVPBB != VPBB) {
9172         VPBB = NextVPBB;
9173         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9174                                     : "");
9175       }
9176     }
9177 
9178     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9179     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9180   }
9181 
9182   // Fold the last, empty block into its predecessor.
9183   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9184   assert(VPBB && "expected to fold last (empty) block");
9185   // After here, VPBB should not be used.
9186   VPBB = nullptr;
9187 
9188   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9189          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9190          "entry block must be set to a VPRegionBlock having a non-empty entry "
9191          "VPBasicBlock");
9192   RecipeBuilder.fixHeaderPhis();
9193 
9194   // ---------------------------------------------------------------------------
9195   // Transform initial VPlan: Apply previously taken decisions, in order, to
9196   // bring the VPlan to its final state.
9197   // ---------------------------------------------------------------------------
9198 
9199   // Apply Sink-After legal constraints.
9200   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9201     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9202     if (Region && Region->isReplicator()) {
9203       assert(Region->getNumSuccessors() == 1 &&
9204              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9205       assert(R->getParent()->size() == 1 &&
9206              "A recipe in an original replicator region must be the only "
9207              "recipe in its block");
9208       return Region;
9209     }
9210     return nullptr;
9211   };
9212   for (auto &Entry : SinkAfter) {
9213     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9214     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9215 
9216     auto *TargetRegion = GetReplicateRegion(Target);
9217     auto *SinkRegion = GetReplicateRegion(Sink);
9218     if (!SinkRegion) {
9219       // If the sink source is not a replicate region, sink the recipe directly.
9220       if (TargetRegion) {
9221         // The target is in a replication region, make sure to move Sink to
9222         // the block after it, not into the replication region itself.
9223         VPBasicBlock *NextBlock =
9224             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9225         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9226       } else
9227         Sink->moveAfter(Target);
9228       continue;
9229     }
9230 
9231     // The sink source is in a replicate region. Unhook the region from the CFG.
9232     auto *SinkPred = SinkRegion->getSinglePredecessor();
9233     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9234     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9235     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9236     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9237 
9238     if (TargetRegion) {
9239       // The target recipe is also in a replicate region, move the sink region
9240       // after the target region.
9241       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9242       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9243       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9244       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9245     } else {
9246       // The sink source is in a replicate region, we need to move the whole
9247       // replicate region, which should only contain a single recipe in the
9248       // main block.
9249       auto *SplitBlock =
9250           Target->getParent()->splitAt(std::next(Target->getIterator()));
9251 
9252       auto *SplitPred = SplitBlock->getSinglePredecessor();
9253 
9254       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9255       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9256       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9257     }
9258   }
9259 
9260   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9261   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9262 
9263   // Now that sink-after is done, move induction recipes for optimized truncates
9264   // to the phi section of the header block.
9265   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9266     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9267 
9268   // Adjust the recipes for any inloop reductions.
9269   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9270                              RecipeBuilder, Range.Start);
9271 
9272   // Introduce a recipe to combine the incoming and previous values of a
9273   // first-order recurrence.
9274   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9275     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9276     if (!RecurPhi)
9277       continue;
9278 
9279     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9280     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9281     auto *Region = GetReplicateRegion(PrevRecipe);
9282     if (Region)
9283       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9284     if (Region || PrevRecipe->isPhi())
9285       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9286     else
9287       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9288 
9289     auto *RecurSplice = cast<VPInstruction>(
9290         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9291                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9292 
9293     RecurPhi->replaceAllUsesWith(RecurSplice);
9294     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9295     // all users.
9296     RecurSplice->setOperand(0, RecurPhi);
9297   }
9298 
9299   // Interleave memory: for each Interleave Group we marked earlier as relevant
9300   // for this VPlan, replace the Recipes widening its memory instructions with a
9301   // single VPInterleaveRecipe at its insertion point.
9302   for (auto IG : InterleaveGroups) {
9303     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9304         RecipeBuilder.getRecipe(IG->getInsertPos()));
9305     SmallVector<VPValue *, 4> StoredValues;
9306     for (unsigned i = 0; i < IG->getFactor(); ++i)
9307       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9308         auto *StoreR =
9309             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9310         StoredValues.push_back(StoreR->getStoredValue());
9311       }
9312 
9313     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9314                                         Recipe->getMask());
9315     VPIG->insertBefore(Recipe);
9316     unsigned J = 0;
9317     for (unsigned i = 0; i < IG->getFactor(); ++i)
9318       if (Instruction *Member = IG->getMember(i)) {
9319         if (!Member->getType()->isVoidTy()) {
9320           VPValue *OriginalV = Plan->getVPValue(Member);
9321           Plan->removeVPValueFor(Member);
9322           Plan->addVPValue(Member, VPIG->getVPValue(J));
9323           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9324           J++;
9325         }
9326         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9327       }
9328   }
9329 
9330   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9331   // in ways that accessing values using original IR values is incorrect.
9332   Plan->disableValue2VPValue();
9333 
9334   VPlanTransforms::sinkScalarOperands(*Plan);
9335   VPlanTransforms::mergeReplicateRegions(*Plan);
9336 
9337   std::string PlanName;
9338   raw_string_ostream RSO(PlanName);
9339   ElementCount VF = Range.Start;
9340   Plan->addVF(VF);
9341   RSO << "Initial VPlan for VF={" << VF;
9342   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9343     Plan->addVF(VF);
9344     RSO << "," << VF;
9345   }
9346   RSO << "},UF>=1";
9347   RSO.flush();
9348   Plan->setName(PlanName);
9349 
9350   // Fold Exit block into its predecessor if possible.
9351   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9352   // VPBasicBlock as exit.
9353   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9354 
9355   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9356   return Plan;
9357 }
9358 
9359 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9360   // Outer loop handling: They may require CFG and instruction level
9361   // transformations before even evaluating whether vectorization is profitable.
9362   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9363   // the vectorization pipeline.
9364   assert(!OrigLoop->isInnermost());
9365   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9366 
9367   // Create new empty VPlan
9368   auto Plan = std::make_unique<VPlan>();
9369 
9370   // Build hierarchical CFG
9371   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9372   HCFGBuilder.buildHierarchicalCFG();
9373 
9374   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9375        VF *= 2)
9376     Plan->addVF(VF);
9377 
9378   if (EnableVPlanPredication) {
9379     VPlanPredicator VPP(*Plan);
9380     VPP.predicate();
9381 
9382     // Avoid running transformation to recipes until masked code generation in
9383     // VPlan-native path is in place.
9384     return Plan;
9385   }
9386 
9387   SmallPtrSet<Instruction *, 1> DeadInstructions;
9388   VPlanTransforms::VPInstructionsToVPRecipes(
9389       OrigLoop, Plan,
9390       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9391       DeadInstructions, *PSE.getSE());
9392 
9393   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9394                         true, true);
9395   return Plan;
9396 }
9397 
9398 // Adjust the recipes for reductions. For in-loop reductions the chain of
9399 // instructions leading from the loop exit instr to the phi need to be converted
9400 // to reductions, with one operand being vector and the other being the scalar
9401 // reduction chain. For other reductions, a select is introduced between the phi
9402 // and live-out recipes when folding the tail.
9403 void LoopVectorizationPlanner::adjustRecipesForReductions(
9404     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9405     ElementCount MinVF) {
9406   for (auto &Reduction : CM.getInLoopReductionChains()) {
9407     PHINode *Phi = Reduction.first;
9408     const RecurrenceDescriptor &RdxDesc =
9409         Legal->getReductionVars().find(Phi)->second;
9410     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9411 
9412     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9413       continue;
9414 
9415     // ReductionOperations are orders top-down from the phi's use to the
9416     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9417     // which of the two operands will remain scalar and which will be reduced.
9418     // For minmax the chain will be the select instructions.
9419     Instruction *Chain = Phi;
9420     for (Instruction *R : ReductionOperations) {
9421       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9422       RecurKind Kind = RdxDesc.getRecurrenceKind();
9423 
9424       VPValue *ChainOp = Plan->getVPValue(Chain);
9425       unsigned FirstOpId;
9426       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9427              "Only min/max recurrences allowed for inloop reductions");
9428       // Recognize a call to the llvm.fmuladd intrinsic.
9429       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9430       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9431              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9432       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9433         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9434                "Expected to replace a VPWidenSelectSC");
9435         FirstOpId = 1;
9436       } else {
9437         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9438                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9439                "Expected to replace a VPWidenSC");
9440         FirstOpId = 0;
9441       }
9442       unsigned VecOpId =
9443           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9444       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9445 
9446       auto *CondOp = CM.foldTailByMasking()
9447                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9448                          : nullptr;
9449 
9450       if (IsFMulAdd) {
9451         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9452         // need to create an fmul recipe to use as the vector operand for the
9453         // fadd reduction.
9454         VPInstruction *FMulRecipe = new VPInstruction(
9455             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9456         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9457         WidenRecipe->getParent()->insert(FMulRecipe,
9458                                          WidenRecipe->getIterator());
9459         VecOp = FMulRecipe;
9460       }
9461       VPReductionRecipe *RedRecipe =
9462           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9463       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9464       Plan->removeVPValueFor(R);
9465       Plan->addVPValue(R, RedRecipe);
9466       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9467       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9468       WidenRecipe->eraseFromParent();
9469 
9470       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9471         VPRecipeBase *CompareRecipe =
9472             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9473         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9474                "Expected to replace a VPWidenSC");
9475         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9476                "Expected no remaining users");
9477         CompareRecipe->eraseFromParent();
9478       }
9479       Chain = R;
9480     }
9481   }
9482 
9483   // If tail is folded by masking, introduce selects between the phi
9484   // and the live-out instruction of each reduction, at the beginning of the
9485   // dedicated latch block.
9486   if (CM.foldTailByMasking()) {
9487     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9488     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9489       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9490       if (!PhiR || PhiR->isInLoop())
9491         continue;
9492       VPValue *Cond =
9493           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9494       VPValue *Red = PhiR->getBackedgeValue();
9495       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9496              "reduction recipe must be defined before latch");
9497       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9498     }
9499   }
9500 }
9501 
9502 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9503 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9504                                VPSlotTracker &SlotTracker) const {
9505   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9506   IG->getInsertPos()->printAsOperand(O, false);
9507   O << ", ";
9508   getAddr()->printAsOperand(O, SlotTracker);
9509   VPValue *Mask = getMask();
9510   if (Mask) {
9511     O << ", ";
9512     Mask->printAsOperand(O, SlotTracker);
9513   }
9514 
9515   unsigned OpIdx = 0;
9516   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9517     if (!IG->getMember(i))
9518       continue;
9519     if (getNumStoreOperands() > 0) {
9520       O << "\n" << Indent << "  store ";
9521       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9522       O << " to index " << i;
9523     } else {
9524       O << "\n" << Indent << "  ";
9525       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9526       O << " = load from index " << i;
9527     }
9528     ++OpIdx;
9529   }
9530 }
9531 #endif
9532 
9533 void VPWidenCallRecipe::execute(VPTransformState &State) {
9534   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9535                                   *this, State);
9536 }
9537 
9538 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9539   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9540   State.ILV->setDebugLocFromInst(&I);
9541 
9542   // The condition can be loop invariant  but still defined inside the
9543   // loop. This means that we can't just use the original 'cond' value.
9544   // We have to take the 'vectorized' value and pick the first lane.
9545   // Instcombine will make this a no-op.
9546   auto *InvarCond =
9547       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9548 
9549   for (unsigned Part = 0; Part < State.UF; ++Part) {
9550     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9551     Value *Op0 = State.get(getOperand(1), Part);
9552     Value *Op1 = State.get(getOperand(2), Part);
9553     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9554     State.set(this, Sel, Part);
9555     State.ILV->addMetadata(Sel, &I);
9556   }
9557 }
9558 
9559 void VPWidenRecipe::execute(VPTransformState &State) {
9560   auto &I = *cast<Instruction>(getUnderlyingValue());
9561   auto &Builder = State.Builder;
9562   switch (I.getOpcode()) {
9563   case Instruction::Call:
9564   case Instruction::Br:
9565   case Instruction::PHI:
9566   case Instruction::GetElementPtr:
9567   case Instruction::Select:
9568     llvm_unreachable("This instruction is handled by a different recipe.");
9569   case Instruction::UDiv:
9570   case Instruction::SDiv:
9571   case Instruction::SRem:
9572   case Instruction::URem:
9573   case Instruction::Add:
9574   case Instruction::FAdd:
9575   case Instruction::Sub:
9576   case Instruction::FSub:
9577   case Instruction::FNeg:
9578   case Instruction::Mul:
9579   case Instruction::FMul:
9580   case Instruction::FDiv:
9581   case Instruction::FRem:
9582   case Instruction::Shl:
9583   case Instruction::LShr:
9584   case Instruction::AShr:
9585   case Instruction::And:
9586   case Instruction::Or:
9587   case Instruction::Xor: {
9588     // Just widen unops and binops.
9589     State.ILV->setDebugLocFromInst(&I);
9590 
9591     for (unsigned Part = 0; Part < State.UF; ++Part) {
9592       SmallVector<Value *, 2> Ops;
9593       for (VPValue *VPOp : operands())
9594         Ops.push_back(State.get(VPOp, Part));
9595 
9596       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9597 
9598       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9599         VecOp->copyIRFlags(&I);
9600 
9601         // If the instruction is vectorized and was in a basic block that needed
9602         // predication, we can't propagate poison-generating flags (nuw/nsw,
9603         // exact, etc.). The control flow has been linearized and the
9604         // instruction is no longer guarded by the predicate, which could make
9605         // the flag properties to no longer hold.
9606         if (State.MayGeneratePoisonRecipes.contains(this))
9607           VecOp->dropPoisonGeneratingFlags();
9608       }
9609 
9610       // Use this vector value for all users of the original instruction.
9611       State.set(this, V, Part);
9612       State.ILV->addMetadata(V, &I);
9613     }
9614 
9615     break;
9616   }
9617   case Instruction::ICmp:
9618   case Instruction::FCmp: {
9619     // Widen compares. Generate vector compares.
9620     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9621     auto *Cmp = cast<CmpInst>(&I);
9622     State.ILV->setDebugLocFromInst(Cmp);
9623     for (unsigned Part = 0; Part < State.UF; ++Part) {
9624       Value *A = State.get(getOperand(0), Part);
9625       Value *B = State.get(getOperand(1), Part);
9626       Value *C = nullptr;
9627       if (FCmp) {
9628         // Propagate fast math flags.
9629         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9630         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9631         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9632       } else {
9633         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9634       }
9635       State.set(this, C, Part);
9636       State.ILV->addMetadata(C, &I);
9637     }
9638 
9639     break;
9640   }
9641 
9642   case Instruction::ZExt:
9643   case Instruction::SExt:
9644   case Instruction::FPToUI:
9645   case Instruction::FPToSI:
9646   case Instruction::FPExt:
9647   case Instruction::PtrToInt:
9648   case Instruction::IntToPtr:
9649   case Instruction::SIToFP:
9650   case Instruction::UIToFP:
9651   case Instruction::Trunc:
9652   case Instruction::FPTrunc:
9653   case Instruction::BitCast: {
9654     auto *CI = cast<CastInst>(&I);
9655     State.ILV->setDebugLocFromInst(CI);
9656 
9657     /// Vectorize casts.
9658     Type *DestTy = (State.VF.isScalar())
9659                        ? CI->getType()
9660                        : VectorType::get(CI->getType(), State.VF);
9661 
9662     for (unsigned Part = 0; Part < State.UF; ++Part) {
9663       Value *A = State.get(getOperand(0), Part);
9664       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9665       State.set(this, Cast, Part);
9666       State.ILV->addMetadata(Cast, &I);
9667     }
9668     break;
9669   }
9670   default:
9671     // This instruction is not vectorized by simple widening.
9672     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9673     llvm_unreachable("Unhandled instruction!");
9674   } // end of switch.
9675 }
9676 
9677 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9678   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9679   // Construct a vector GEP by widening the operands of the scalar GEP as
9680   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9681   // results in a vector of pointers when at least one operand of the GEP
9682   // is vector-typed. Thus, to keep the representation compact, we only use
9683   // vector-typed operands for loop-varying values.
9684 
9685   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9686     // If we are vectorizing, but the GEP has only loop-invariant operands,
9687     // the GEP we build (by only using vector-typed operands for
9688     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9689     // produce a vector of pointers, we need to either arbitrarily pick an
9690     // operand to broadcast, or broadcast a clone of the original GEP.
9691     // Here, we broadcast a clone of the original.
9692     //
9693     // TODO: If at some point we decide to scalarize instructions having
9694     //       loop-invariant operands, this special case will no longer be
9695     //       required. We would add the scalarization decision to
9696     //       collectLoopScalars() and teach getVectorValue() to broadcast
9697     //       the lane-zero scalar value.
9698     auto *Clone = State.Builder.Insert(GEP->clone());
9699     for (unsigned Part = 0; Part < State.UF; ++Part) {
9700       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9701       State.set(this, EntryPart, Part);
9702       State.ILV->addMetadata(EntryPart, GEP);
9703     }
9704   } else {
9705     // If the GEP has at least one loop-varying operand, we are sure to
9706     // produce a vector of pointers. But if we are only unrolling, we want
9707     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9708     // produce with the code below will be scalar (if VF == 1) or vector
9709     // (otherwise). Note that for the unroll-only case, we still maintain
9710     // values in the vector mapping with initVector, as we do for other
9711     // instructions.
9712     for (unsigned Part = 0; Part < State.UF; ++Part) {
9713       // The pointer operand of the new GEP. If it's loop-invariant, we
9714       // won't broadcast it.
9715       auto *Ptr = IsPtrLoopInvariant
9716                       ? State.get(getOperand(0), VPIteration(0, 0))
9717                       : State.get(getOperand(0), Part);
9718 
9719       // Collect all the indices for the new GEP. If any index is
9720       // loop-invariant, we won't broadcast it.
9721       SmallVector<Value *, 4> Indices;
9722       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9723         VPValue *Operand = getOperand(I);
9724         if (IsIndexLoopInvariant[I - 1])
9725           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9726         else
9727           Indices.push_back(State.get(Operand, Part));
9728       }
9729 
9730       // If the GEP instruction is vectorized and was in a basic block that
9731       // needed predication, we can't propagate the poison-generating 'inbounds'
9732       // flag. The control flow has been linearized and the GEP is no longer
9733       // guarded by the predicate, which could make the 'inbounds' properties to
9734       // no longer hold.
9735       bool IsInBounds =
9736           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9737 
9738       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9739       // but it should be a vector, otherwise.
9740       auto *NewGEP = IsInBounds
9741                          ? State.Builder.CreateInBoundsGEP(
9742                                GEP->getSourceElementType(), Ptr, Indices)
9743                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9744                                                    Ptr, Indices);
9745       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9746              "NewGEP is not a pointer vector");
9747       State.set(this, NewGEP, Part);
9748       State.ILV->addMetadata(NewGEP, GEP);
9749     }
9750   }
9751 }
9752 
9753 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9754   assert(!State.Instance && "Int or FP induction being replicated.");
9755   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9756   State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV);
9757 }
9758 
9759 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9760   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9761                                  State);
9762 }
9763 
9764 void VPBlendRecipe::execute(VPTransformState &State) {
9765   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9766   // We know that all PHIs in non-header blocks are converted into
9767   // selects, so we don't have to worry about the insertion order and we
9768   // can just use the builder.
9769   // At this point we generate the predication tree. There may be
9770   // duplications since this is a simple recursive scan, but future
9771   // optimizations will clean it up.
9772 
9773   unsigned NumIncoming = getNumIncomingValues();
9774 
9775   // Generate a sequence of selects of the form:
9776   // SELECT(Mask3, In3,
9777   //        SELECT(Mask2, In2,
9778   //               SELECT(Mask1, In1,
9779   //                      In0)))
9780   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9781   // are essentially undef are taken from In0.
9782   InnerLoopVectorizer::VectorParts Entry(State.UF);
9783   for (unsigned In = 0; In < NumIncoming; ++In) {
9784     for (unsigned Part = 0; Part < State.UF; ++Part) {
9785       // We might have single edge PHIs (blocks) - use an identity
9786       // 'select' for the first PHI operand.
9787       Value *In0 = State.get(getIncomingValue(In), Part);
9788       if (In == 0)
9789         Entry[Part] = In0; // Initialize with the first incoming value.
9790       else {
9791         // Select between the current value and the previous incoming edge
9792         // based on the incoming mask.
9793         Value *Cond = State.get(getMask(In), Part);
9794         Entry[Part] =
9795             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9796       }
9797     }
9798   }
9799   for (unsigned Part = 0; Part < State.UF; ++Part)
9800     State.set(this, Entry[Part], Part);
9801 }
9802 
9803 void VPInterleaveRecipe::execute(VPTransformState &State) {
9804   assert(!State.Instance && "Interleave group being replicated.");
9805   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9806                                       getStoredValues(), getMask());
9807 }
9808 
9809 void VPReductionRecipe::execute(VPTransformState &State) {
9810   assert(!State.Instance && "Reduction being replicated.");
9811   Value *PrevInChain = State.get(getChainOp(), 0);
9812   RecurKind Kind = RdxDesc->getRecurrenceKind();
9813   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9814   // Propagate the fast-math flags carried by the underlying instruction.
9815   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9816   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9817   for (unsigned Part = 0; Part < State.UF; ++Part) {
9818     Value *NewVecOp = State.get(getVecOp(), Part);
9819     if (VPValue *Cond = getCondOp()) {
9820       Value *NewCond = State.get(Cond, Part);
9821       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9822       Value *Iden = RdxDesc->getRecurrenceIdentity(
9823           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9824       Value *IdenVec =
9825           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9826       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9827       NewVecOp = Select;
9828     }
9829     Value *NewRed;
9830     Value *NextInChain;
9831     if (IsOrdered) {
9832       if (State.VF.isVector())
9833         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9834                                         PrevInChain);
9835       else
9836         NewRed = State.Builder.CreateBinOp(
9837             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9838             NewVecOp);
9839       PrevInChain = NewRed;
9840     } else {
9841       PrevInChain = State.get(getChainOp(), Part);
9842       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9843     }
9844     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9845       NextInChain =
9846           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9847                          NewRed, PrevInChain);
9848     } else if (IsOrdered)
9849       NextInChain = NewRed;
9850     else
9851       NextInChain = State.Builder.CreateBinOp(
9852           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9853           PrevInChain);
9854     State.set(this, NextInChain, Part);
9855   }
9856 }
9857 
9858 void VPReplicateRecipe::execute(VPTransformState &State) {
9859   if (State.Instance) { // Generate a single instance.
9860     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9861     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9862                                     IsPredicated, State);
9863     // Insert scalar instance packing it into a vector.
9864     if (AlsoPack && State.VF.isVector()) {
9865       // If we're constructing lane 0, initialize to start from poison.
9866       if (State.Instance->Lane.isFirstLane()) {
9867         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9868         Value *Poison = PoisonValue::get(
9869             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9870         State.set(this, Poison, State.Instance->Part);
9871       }
9872       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9873     }
9874     return;
9875   }
9876 
9877   // Generate scalar instances for all VF lanes of all UF parts, unless the
9878   // instruction is uniform inwhich case generate only the first lane for each
9879   // of the UF parts.
9880   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9881   assert((!State.VF.isScalable() || IsUniform) &&
9882          "Can't scalarize a scalable vector");
9883   for (unsigned Part = 0; Part < State.UF; ++Part)
9884     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9885       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9886                                       VPIteration(Part, Lane), IsPredicated,
9887                                       State);
9888 }
9889 
9890 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9891   assert(State.Instance && "Branch on Mask works only on single instance.");
9892 
9893   unsigned Part = State.Instance->Part;
9894   unsigned Lane = State.Instance->Lane.getKnownLane();
9895 
9896   Value *ConditionBit = nullptr;
9897   VPValue *BlockInMask = getMask();
9898   if (BlockInMask) {
9899     ConditionBit = State.get(BlockInMask, Part);
9900     if (ConditionBit->getType()->isVectorTy())
9901       ConditionBit = State.Builder.CreateExtractElement(
9902           ConditionBit, State.Builder.getInt32(Lane));
9903   } else // Block in mask is all-one.
9904     ConditionBit = State.Builder.getTrue();
9905 
9906   // Replace the temporary unreachable terminator with a new conditional branch,
9907   // whose two destinations will be set later when they are created.
9908   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9909   assert(isa<UnreachableInst>(CurrentTerminator) &&
9910          "Expected to replace unreachable terminator with conditional branch.");
9911   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9912   CondBr->setSuccessor(0, nullptr);
9913   ReplaceInstWithInst(CurrentTerminator, CondBr);
9914 }
9915 
9916 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9917   assert(State.Instance && "Predicated instruction PHI works per instance.");
9918   Instruction *ScalarPredInst =
9919       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9920   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9921   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9922   assert(PredicatingBB && "Predicated block has no single predecessor.");
9923   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9924          "operand must be VPReplicateRecipe");
9925 
9926   // By current pack/unpack logic we need to generate only a single phi node: if
9927   // a vector value for the predicated instruction exists at this point it means
9928   // the instruction has vector users only, and a phi for the vector value is
9929   // needed. In this case the recipe of the predicated instruction is marked to
9930   // also do that packing, thereby "hoisting" the insert-element sequence.
9931   // Otherwise, a phi node for the scalar value is needed.
9932   unsigned Part = State.Instance->Part;
9933   if (State.hasVectorValue(getOperand(0), Part)) {
9934     Value *VectorValue = State.get(getOperand(0), Part);
9935     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9936     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9937     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9938     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9939     if (State.hasVectorValue(this, Part))
9940       State.reset(this, VPhi, Part);
9941     else
9942       State.set(this, VPhi, Part);
9943     // NOTE: Currently we need to update the value of the operand, so the next
9944     // predicated iteration inserts its generated value in the correct vector.
9945     State.reset(getOperand(0), VPhi, Part);
9946   } else {
9947     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9948     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9949     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9950                      PredicatingBB);
9951     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9952     if (State.hasScalarValue(this, *State.Instance))
9953       State.reset(this, Phi, *State.Instance);
9954     else
9955       State.set(this, Phi, *State.Instance);
9956     // NOTE: Currently we need to update the value of the operand, so the next
9957     // predicated iteration inserts its generated value in the correct vector.
9958     State.reset(getOperand(0), Phi, *State.Instance);
9959   }
9960 }
9961 
9962 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9963   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9964 
9965   // Attempt to issue a wide load.
9966   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9967   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9968 
9969   assert((LI || SI) && "Invalid Load/Store instruction");
9970   assert((!SI || StoredValue) && "No stored value provided for widened store");
9971   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9972 
9973   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9974 
9975   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9976   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9977   bool CreateGatherScatter = !Consecutive;
9978 
9979   auto &Builder = State.Builder;
9980   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9981   bool isMaskRequired = getMask();
9982   if (isMaskRequired)
9983     for (unsigned Part = 0; Part < State.UF; ++Part)
9984       BlockInMaskParts[Part] = State.get(getMask(), Part);
9985 
9986   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9987     // Calculate the pointer for the specific unroll-part.
9988     GetElementPtrInst *PartPtr = nullptr;
9989 
9990     bool InBounds = false;
9991     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9992       InBounds = gep->isInBounds();
9993     if (Reverse) {
9994       // If the address is consecutive but reversed, then the
9995       // wide store needs to start at the last vector element.
9996       // RunTimeVF =  VScale * VF.getKnownMinValue()
9997       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9998       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9999       // NumElt = -Part * RunTimeVF
10000       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
10001       // LastLane = 1 - RunTimeVF
10002       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
10003       PartPtr =
10004           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
10005       PartPtr->setIsInBounds(InBounds);
10006       PartPtr = cast<GetElementPtrInst>(
10007           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
10008       PartPtr->setIsInBounds(InBounds);
10009       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
10010         BlockInMaskParts[Part] =
10011             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
10012     } else {
10013       Value *Increment =
10014           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
10015       PartPtr = cast<GetElementPtrInst>(
10016           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
10017       PartPtr->setIsInBounds(InBounds);
10018     }
10019 
10020     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
10021     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
10022   };
10023 
10024   // Handle Stores:
10025   if (SI) {
10026     State.ILV->setDebugLocFromInst(SI);
10027 
10028     for (unsigned Part = 0; Part < State.UF; ++Part) {
10029       Instruction *NewSI = nullptr;
10030       Value *StoredVal = State.get(StoredValue, Part);
10031       if (CreateGatherScatter) {
10032         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10033         Value *VectorGep = State.get(getAddr(), Part);
10034         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
10035                                             MaskPart);
10036       } else {
10037         if (Reverse) {
10038           // If we store to reverse consecutive memory locations, then we need
10039           // to reverse the order of elements in the stored value.
10040           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10041           // We don't want to update the value in the map as it might be used in
10042           // another expression. So don't call resetVectorValue(StoredVal).
10043         }
10044         auto *VecPtr =
10045             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10046         if (isMaskRequired)
10047           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10048                                             BlockInMaskParts[Part]);
10049         else
10050           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10051       }
10052       State.ILV->addMetadata(NewSI, SI);
10053     }
10054     return;
10055   }
10056 
10057   // Handle loads.
10058   assert(LI && "Must have a load instruction");
10059   State.ILV->setDebugLocFromInst(LI);
10060   for (unsigned Part = 0; Part < State.UF; ++Part) {
10061     Value *NewLI;
10062     if (CreateGatherScatter) {
10063       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10064       Value *VectorGep = State.get(getAddr(), Part);
10065       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10066                                          nullptr, "wide.masked.gather");
10067       State.ILV->addMetadata(NewLI, LI);
10068     } else {
10069       auto *VecPtr =
10070           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10071       if (isMaskRequired)
10072         NewLI = Builder.CreateMaskedLoad(
10073             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10074             PoisonValue::get(DataTy), "wide.masked.load");
10075       else
10076         NewLI =
10077             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10078 
10079       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10080       State.ILV->addMetadata(NewLI, LI);
10081       if (Reverse)
10082         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10083     }
10084 
10085     State.set(this, NewLI, Part);
10086   }
10087 }
10088 
10089 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10090 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10091 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10092 // for predication.
10093 static ScalarEpilogueLowering getScalarEpilogueLowering(
10094     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10095     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10096     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10097     LoopVectorizationLegality &LVL) {
10098   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10099   // don't look at hints or options, and don't request a scalar epilogue.
10100   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10101   // LoopAccessInfo (due to code dependency and not being able to reliably get
10102   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10103   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10104   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10105   // back to the old way and vectorize with versioning when forced. See D81345.)
10106   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10107                                                       PGSOQueryType::IRPass) &&
10108                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10109     return CM_ScalarEpilogueNotAllowedOptSize;
10110 
10111   // 2) If set, obey the directives
10112   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10113     switch (PreferPredicateOverEpilogue) {
10114     case PreferPredicateTy::ScalarEpilogue:
10115       return CM_ScalarEpilogueAllowed;
10116     case PreferPredicateTy::PredicateElseScalarEpilogue:
10117       return CM_ScalarEpilogueNotNeededUsePredicate;
10118     case PreferPredicateTy::PredicateOrDontVectorize:
10119       return CM_ScalarEpilogueNotAllowedUsePredicate;
10120     };
10121   }
10122 
10123   // 3) If set, obey the hints
10124   switch (Hints.getPredicate()) {
10125   case LoopVectorizeHints::FK_Enabled:
10126     return CM_ScalarEpilogueNotNeededUsePredicate;
10127   case LoopVectorizeHints::FK_Disabled:
10128     return CM_ScalarEpilogueAllowed;
10129   };
10130 
10131   // 4) if the TTI hook indicates this is profitable, request predication.
10132   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10133                                        LVL.getLAI()))
10134     return CM_ScalarEpilogueNotNeededUsePredicate;
10135 
10136   return CM_ScalarEpilogueAllowed;
10137 }
10138 
10139 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10140   // If Values have been set for this Def return the one relevant for \p Part.
10141   if (hasVectorValue(Def, Part))
10142     return Data.PerPartOutput[Def][Part];
10143 
10144   if (!hasScalarValue(Def, {Part, 0})) {
10145     Value *IRV = Def->getLiveInIRValue();
10146     Value *B = ILV->getBroadcastInstrs(IRV);
10147     set(Def, B, Part);
10148     return B;
10149   }
10150 
10151   Value *ScalarValue = get(Def, {Part, 0});
10152   // If we aren't vectorizing, we can just copy the scalar map values over
10153   // to the vector map.
10154   if (VF.isScalar()) {
10155     set(Def, ScalarValue, Part);
10156     return ScalarValue;
10157   }
10158 
10159   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10160   bool IsUniform = RepR && RepR->isUniform();
10161 
10162   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10163   // Check if there is a scalar value for the selected lane.
10164   if (!hasScalarValue(Def, {Part, LastLane})) {
10165     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10166     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10167            "unexpected recipe found to be invariant");
10168     IsUniform = true;
10169     LastLane = 0;
10170   }
10171 
10172   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10173   // Set the insert point after the last scalarized instruction or after the
10174   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10175   // will directly follow the scalar definitions.
10176   auto OldIP = Builder.saveIP();
10177   auto NewIP =
10178       isa<PHINode>(LastInst)
10179           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10180           : std::next(BasicBlock::iterator(LastInst));
10181   Builder.SetInsertPoint(&*NewIP);
10182 
10183   // However, if we are vectorizing, we need to construct the vector values.
10184   // If the value is known to be uniform after vectorization, we can just
10185   // broadcast the scalar value corresponding to lane zero for each unroll
10186   // iteration. Otherwise, we construct the vector values using
10187   // insertelement instructions. Since the resulting vectors are stored in
10188   // State, we will only generate the insertelements once.
10189   Value *VectorValue = nullptr;
10190   if (IsUniform) {
10191     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10192     set(Def, VectorValue, Part);
10193   } else {
10194     // Initialize packing with insertelements to start from undef.
10195     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10196     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10197     set(Def, Undef, Part);
10198     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10199       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10200     VectorValue = get(Def, Part);
10201   }
10202   Builder.restoreIP(OldIP);
10203   return VectorValue;
10204 }
10205 
10206 // Process the loop in the VPlan-native vectorization path. This path builds
10207 // VPlan upfront in the vectorization pipeline, which allows to apply
10208 // VPlan-to-VPlan transformations from the very beginning without modifying the
10209 // input LLVM IR.
10210 static bool processLoopInVPlanNativePath(
10211     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10212     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10213     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10214     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10215     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10216     LoopVectorizationRequirements &Requirements) {
10217 
10218   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10219     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10220     return false;
10221   }
10222   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10223   Function *F = L->getHeader()->getParent();
10224   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10225 
10226   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10227       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10228 
10229   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10230                                 &Hints, IAI);
10231   // Use the planner for outer loop vectorization.
10232   // TODO: CM is not used at this point inside the planner. Turn CM into an
10233   // optional argument if we don't need it in the future.
10234   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10235                                Requirements, ORE);
10236 
10237   // Get user vectorization factor.
10238   ElementCount UserVF = Hints.getWidth();
10239 
10240   CM.collectElementTypesForWidening();
10241 
10242   // Plan how to best vectorize, return the best VF and its cost.
10243   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10244 
10245   // If we are stress testing VPlan builds, do not attempt to generate vector
10246   // code. Masked vector code generation support will follow soon.
10247   // Also, do not attempt to vectorize if no vector code will be produced.
10248   if (VPlanBuildStressTest || EnableVPlanPredication ||
10249       VectorizationFactor::Disabled() == VF)
10250     return false;
10251 
10252   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10253 
10254   {
10255     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10256                              F->getParent()->getDataLayout());
10257     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10258                            &CM, BFI, PSI, Checks);
10259     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10260                       << L->getHeader()->getParent()->getName() << "\"\n");
10261     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10262   }
10263 
10264   // Mark the loop as already vectorized to avoid vectorizing again.
10265   Hints.setAlreadyVectorized();
10266   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10267   return true;
10268 }
10269 
10270 // Emit a remark if there are stores to floats that required a floating point
10271 // extension. If the vectorized loop was generated with floating point there
10272 // will be a performance penalty from the conversion overhead and the change in
10273 // the vector width.
10274 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10275   SmallVector<Instruction *, 4> Worklist;
10276   for (BasicBlock *BB : L->getBlocks()) {
10277     for (Instruction &Inst : *BB) {
10278       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10279         if (S->getValueOperand()->getType()->isFloatTy())
10280           Worklist.push_back(S);
10281       }
10282     }
10283   }
10284 
10285   // Traverse the floating point stores upwards searching, for floating point
10286   // conversions.
10287   SmallPtrSet<const Instruction *, 4> Visited;
10288   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10289   while (!Worklist.empty()) {
10290     auto *I = Worklist.pop_back_val();
10291     if (!L->contains(I))
10292       continue;
10293     if (!Visited.insert(I).second)
10294       continue;
10295 
10296     // Emit a remark if the floating point store required a floating
10297     // point conversion.
10298     // TODO: More work could be done to identify the root cause such as a
10299     // constant or a function return type and point the user to it.
10300     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10301       ORE->emit([&]() {
10302         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10303                                           I->getDebugLoc(), L->getHeader())
10304                << "floating point conversion changes vector width. "
10305                << "Mixed floating point precision requires an up/down "
10306                << "cast that will negatively impact performance.";
10307       });
10308 
10309     for (Use &Op : I->operands())
10310       if (auto *OpI = dyn_cast<Instruction>(Op))
10311         Worklist.push_back(OpI);
10312   }
10313 }
10314 
10315 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10316     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10317                                !EnableLoopInterleaving),
10318       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10319                               !EnableLoopVectorization) {}
10320 
10321 bool LoopVectorizePass::processLoop(Loop *L) {
10322   assert((EnableVPlanNativePath || L->isInnermost()) &&
10323          "VPlan-native path is not enabled. Only process inner loops.");
10324 
10325 #ifndef NDEBUG
10326   const std::string DebugLocStr = getDebugLocString(L);
10327 #endif /* NDEBUG */
10328 
10329   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10330                     << L->getHeader()->getParent()->getName() << "\" from "
10331                     << DebugLocStr << "\n");
10332 
10333   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10334 
10335   LLVM_DEBUG(
10336       dbgs() << "LV: Loop hints:"
10337              << " force="
10338              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10339                      ? "disabled"
10340                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10341                             ? "enabled"
10342                             : "?"))
10343              << " width=" << Hints.getWidth()
10344              << " interleave=" << Hints.getInterleave() << "\n");
10345 
10346   // Function containing loop
10347   Function *F = L->getHeader()->getParent();
10348 
10349   // Looking at the diagnostic output is the only way to determine if a loop
10350   // was vectorized (other than looking at the IR or machine code), so it
10351   // is important to generate an optimization remark for each loop. Most of
10352   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10353   // generated as OptimizationRemark and OptimizationRemarkMissed are
10354   // less verbose reporting vectorized loops and unvectorized loops that may
10355   // benefit from vectorization, respectively.
10356 
10357   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10358     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10359     return false;
10360   }
10361 
10362   PredicatedScalarEvolution PSE(*SE, *L);
10363 
10364   // Check if it is legal to vectorize the loop.
10365   LoopVectorizationRequirements Requirements;
10366   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10367                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10368   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10369     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10370     Hints.emitRemarkWithHints();
10371     return false;
10372   }
10373 
10374   // Check the function attributes and profiles to find out if this function
10375   // should be optimized for size.
10376   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10377       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10378 
10379   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10380   // here. They may require CFG and instruction level transformations before
10381   // even evaluating whether vectorization is profitable. Since we cannot modify
10382   // the incoming IR, we need to build VPlan upfront in the vectorization
10383   // pipeline.
10384   if (!L->isInnermost())
10385     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10386                                         ORE, BFI, PSI, Hints, Requirements);
10387 
10388   assert(L->isInnermost() && "Inner loop expected.");
10389 
10390   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10391   // count by optimizing for size, to minimize overheads.
10392   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10393   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10394     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10395                       << "This loop is worth vectorizing only if no scalar "
10396                       << "iteration overheads are incurred.");
10397     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10398       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10399     else {
10400       LLVM_DEBUG(dbgs() << "\n");
10401       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10402     }
10403   }
10404 
10405   // Check the function attributes to see if implicit floats are allowed.
10406   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10407   // an integer loop and the vector instructions selected are purely integer
10408   // vector instructions?
10409   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10410     reportVectorizationFailure(
10411         "Can't vectorize when the NoImplicitFloat attribute is used",
10412         "loop not vectorized due to NoImplicitFloat attribute",
10413         "NoImplicitFloat", ORE, L);
10414     Hints.emitRemarkWithHints();
10415     return false;
10416   }
10417 
10418   // Check if the target supports potentially unsafe FP vectorization.
10419   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10420   // for the target we're vectorizing for, to make sure none of the
10421   // additional fp-math flags can help.
10422   if (Hints.isPotentiallyUnsafe() &&
10423       TTI->isFPVectorizationPotentiallyUnsafe()) {
10424     reportVectorizationFailure(
10425         "Potentially unsafe FP op prevents vectorization",
10426         "loop not vectorized due to unsafe FP support.",
10427         "UnsafeFP", ORE, L);
10428     Hints.emitRemarkWithHints();
10429     return false;
10430   }
10431 
10432   bool AllowOrderedReductions;
10433   // If the flag is set, use that instead and override the TTI behaviour.
10434   if (ForceOrderedReductions.getNumOccurrences() > 0)
10435     AllowOrderedReductions = ForceOrderedReductions;
10436   else
10437     AllowOrderedReductions = TTI->enableOrderedReductions();
10438   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10439     ORE->emit([&]() {
10440       auto *ExactFPMathInst = Requirements.getExactFPInst();
10441       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10442                                                  ExactFPMathInst->getDebugLoc(),
10443                                                  ExactFPMathInst->getParent())
10444              << "loop not vectorized: cannot prove it is safe to reorder "
10445                 "floating-point operations";
10446     });
10447     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10448                          "reorder floating-point operations\n");
10449     Hints.emitRemarkWithHints();
10450     return false;
10451   }
10452 
10453   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10454   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10455 
10456   // If an override option has been passed in for interleaved accesses, use it.
10457   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10458     UseInterleaved = EnableInterleavedMemAccesses;
10459 
10460   // Analyze interleaved memory accesses.
10461   if (UseInterleaved) {
10462     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10463   }
10464 
10465   // Use the cost model.
10466   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10467                                 F, &Hints, IAI);
10468   CM.collectValuesToIgnore();
10469   CM.collectElementTypesForWidening();
10470 
10471   // Use the planner for vectorization.
10472   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10473                                Requirements, ORE);
10474 
10475   // Get user vectorization factor and interleave count.
10476   ElementCount UserVF = Hints.getWidth();
10477   unsigned UserIC = Hints.getInterleave();
10478 
10479   // Plan how to best vectorize, return the best VF and its cost.
10480   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10481 
10482   VectorizationFactor VF = VectorizationFactor::Disabled();
10483   unsigned IC = 1;
10484 
10485   if (MaybeVF) {
10486     VF = *MaybeVF;
10487     // Select the interleave count.
10488     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10489   }
10490 
10491   // Identify the diagnostic messages that should be produced.
10492   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10493   bool VectorizeLoop = true, InterleaveLoop = true;
10494   if (VF.Width.isScalar()) {
10495     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10496     VecDiagMsg = std::make_pair(
10497         "VectorizationNotBeneficial",
10498         "the cost-model indicates that vectorization is not beneficial");
10499     VectorizeLoop = false;
10500   }
10501 
10502   if (!MaybeVF && UserIC > 1) {
10503     // Tell the user interleaving was avoided up-front, despite being explicitly
10504     // requested.
10505     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10506                          "interleaving should be avoided up front\n");
10507     IntDiagMsg = std::make_pair(
10508         "InterleavingAvoided",
10509         "Ignoring UserIC, because interleaving was avoided up front");
10510     InterleaveLoop = false;
10511   } else if (IC == 1 && UserIC <= 1) {
10512     // Tell the user interleaving is not beneficial.
10513     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10514     IntDiagMsg = std::make_pair(
10515         "InterleavingNotBeneficial",
10516         "the cost-model indicates that interleaving is not beneficial");
10517     InterleaveLoop = false;
10518     if (UserIC == 1) {
10519       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10520       IntDiagMsg.second +=
10521           " and is explicitly disabled or interleave count is set to 1";
10522     }
10523   } else if (IC > 1 && UserIC == 1) {
10524     // Tell the user interleaving is beneficial, but it explicitly disabled.
10525     LLVM_DEBUG(
10526         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10527     IntDiagMsg = std::make_pair(
10528         "InterleavingBeneficialButDisabled",
10529         "the cost-model indicates that interleaving is beneficial "
10530         "but is explicitly disabled or interleave count is set to 1");
10531     InterleaveLoop = false;
10532   }
10533 
10534   // Override IC if user provided an interleave count.
10535   IC = UserIC > 0 ? UserIC : IC;
10536 
10537   // Emit diagnostic messages, if any.
10538   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10539   if (!VectorizeLoop && !InterleaveLoop) {
10540     // Do not vectorize or interleaving the loop.
10541     ORE->emit([&]() {
10542       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10543                                       L->getStartLoc(), L->getHeader())
10544              << VecDiagMsg.second;
10545     });
10546     ORE->emit([&]() {
10547       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10548                                       L->getStartLoc(), L->getHeader())
10549              << IntDiagMsg.second;
10550     });
10551     return false;
10552   } else if (!VectorizeLoop && InterleaveLoop) {
10553     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10554     ORE->emit([&]() {
10555       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10556                                         L->getStartLoc(), L->getHeader())
10557              << VecDiagMsg.second;
10558     });
10559   } else if (VectorizeLoop && !InterleaveLoop) {
10560     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10561                       << ") in " << DebugLocStr << '\n');
10562     ORE->emit([&]() {
10563       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10564                                         L->getStartLoc(), L->getHeader())
10565              << IntDiagMsg.second;
10566     });
10567   } else if (VectorizeLoop && InterleaveLoop) {
10568     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10569                       << ") in " << DebugLocStr << '\n');
10570     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10571   }
10572 
10573   bool DisableRuntimeUnroll = false;
10574   MDNode *OrigLoopID = L->getLoopID();
10575   {
10576     // Optimistically generate runtime checks. Drop them if they turn out to not
10577     // be profitable. Limit the scope of Checks, so the cleanup happens
10578     // immediately after vector codegeneration is done.
10579     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10580                              F->getParent()->getDataLayout());
10581     if (!VF.Width.isScalar() || IC > 1)
10582       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10583 
10584     using namespace ore;
10585     if (!VectorizeLoop) {
10586       assert(IC > 1 && "interleave count should not be 1 or 0");
10587       // If we decided that it is not legal to vectorize the loop, then
10588       // interleave it.
10589       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10590                                  &CM, BFI, PSI, Checks);
10591 
10592       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10593       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10594 
10595       ORE->emit([&]() {
10596         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10597                                   L->getHeader())
10598                << "interleaved loop (interleaved count: "
10599                << NV("InterleaveCount", IC) << ")";
10600       });
10601     } else {
10602       // If we decided that it is *legal* to vectorize the loop, then do it.
10603 
10604       // Consider vectorizing the epilogue too if it's profitable.
10605       VectorizationFactor EpilogueVF =
10606           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10607       if (EpilogueVF.Width.isVector()) {
10608 
10609         // The first pass vectorizes the main loop and creates a scalar epilogue
10610         // to be vectorized by executing the plan (potentially with a different
10611         // factor) again shortly afterwards.
10612         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10613         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10614                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10615 
10616         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10617         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10618                         DT);
10619         ++LoopsVectorized;
10620 
10621         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10622         formLCSSARecursively(*L, *DT, LI, SE);
10623 
10624         // Second pass vectorizes the epilogue and adjusts the control flow
10625         // edges from the first pass.
10626         EPI.MainLoopVF = EPI.EpilogueVF;
10627         EPI.MainLoopUF = EPI.EpilogueUF;
10628         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10629                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10630                                                  Checks);
10631 
10632         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10633 
10634         // Ensure that the start values for any VPReductionPHIRecipes are
10635         // updated before vectorising the epilogue loop.
10636         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10637         for (VPRecipeBase &R : Header->phis()) {
10638           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10639             if (auto *Resume = MainILV.getReductionResumeValue(
10640                     ReductionPhi->getRecurrenceDescriptor())) {
10641               VPValue *StartVal = new VPValue(Resume);
10642               BestEpiPlan.addExternalDef(StartVal);
10643               ReductionPhi->setOperand(0, StartVal);
10644             }
10645           }
10646         }
10647 
10648         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10649                         DT);
10650         ++LoopsEpilogueVectorized;
10651 
10652         if (!MainILV.areSafetyChecksAdded())
10653           DisableRuntimeUnroll = true;
10654       } else {
10655         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10656                                &LVL, &CM, BFI, PSI, Checks);
10657 
10658         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10659         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10660         ++LoopsVectorized;
10661 
10662         // Add metadata to disable runtime unrolling a scalar loop when there
10663         // are no runtime checks about strides and memory. A scalar loop that is
10664         // rarely used is not worth unrolling.
10665         if (!LB.areSafetyChecksAdded())
10666           DisableRuntimeUnroll = true;
10667       }
10668       // Report the vectorization decision.
10669       ORE->emit([&]() {
10670         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10671                                   L->getHeader())
10672                << "vectorized loop (vectorization width: "
10673                << NV("VectorizationFactor", VF.Width)
10674                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10675       });
10676     }
10677 
10678     if (ORE->allowExtraAnalysis(LV_NAME))
10679       checkMixedPrecision(L, ORE);
10680   }
10681 
10682   Optional<MDNode *> RemainderLoopID =
10683       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10684                                       LLVMLoopVectorizeFollowupEpilogue});
10685   if (RemainderLoopID.hasValue()) {
10686     L->setLoopID(RemainderLoopID.getValue());
10687   } else {
10688     if (DisableRuntimeUnroll)
10689       AddRuntimeUnrollDisableMetaData(L);
10690 
10691     // Mark the loop as already vectorized to avoid vectorizing again.
10692     Hints.setAlreadyVectorized();
10693   }
10694 
10695   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10696   return true;
10697 }
10698 
10699 LoopVectorizeResult LoopVectorizePass::runImpl(
10700     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10701     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10702     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10703     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10704     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10705   SE = &SE_;
10706   LI = &LI_;
10707   TTI = &TTI_;
10708   DT = &DT_;
10709   BFI = &BFI_;
10710   TLI = TLI_;
10711   AA = &AA_;
10712   AC = &AC_;
10713   GetLAA = &GetLAA_;
10714   DB = &DB_;
10715   ORE = &ORE_;
10716   PSI = PSI_;
10717 
10718   // Don't attempt if
10719   // 1. the target claims to have no vector registers, and
10720   // 2. interleaving won't help ILP.
10721   //
10722   // The second condition is necessary because, even if the target has no
10723   // vector registers, loop vectorization may still enable scalar
10724   // interleaving.
10725   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10726       TTI->getMaxInterleaveFactor(1) < 2)
10727     return LoopVectorizeResult(false, false);
10728 
10729   bool Changed = false, CFGChanged = false;
10730 
10731   // The vectorizer requires loops to be in simplified form.
10732   // Since simplification may add new inner loops, it has to run before the
10733   // legality and profitability checks. This means running the loop vectorizer
10734   // will simplify all loops, regardless of whether anything end up being
10735   // vectorized.
10736   for (auto &L : *LI)
10737     Changed |= CFGChanged |=
10738         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10739 
10740   // Build up a worklist of inner-loops to vectorize. This is necessary as
10741   // the act of vectorizing or partially unrolling a loop creates new loops
10742   // and can invalidate iterators across the loops.
10743   SmallVector<Loop *, 8> Worklist;
10744 
10745   for (Loop *L : *LI)
10746     collectSupportedLoops(*L, LI, ORE, Worklist);
10747 
10748   LoopsAnalyzed += Worklist.size();
10749 
10750   // Now walk the identified inner loops.
10751   while (!Worklist.empty()) {
10752     Loop *L = Worklist.pop_back_val();
10753 
10754     // For the inner loops we actually process, form LCSSA to simplify the
10755     // transform.
10756     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10757 
10758     Changed |= CFGChanged |= processLoop(L);
10759   }
10760 
10761   // Process each loop nest in the function.
10762   return LoopVectorizeResult(Changed, CFGChanged);
10763 }
10764 
10765 PreservedAnalyses LoopVectorizePass::run(Function &F,
10766                                          FunctionAnalysisManager &AM) {
10767     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10768     auto &LI = AM.getResult<LoopAnalysis>(F);
10769     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10770     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10771     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10772     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10773     auto &AA = AM.getResult<AAManager>(F);
10774     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10775     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10776     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10777 
10778     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10779     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10780         [&](Loop &L) -> const LoopAccessInfo & {
10781       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10782                                         TLI, TTI, nullptr, nullptr, nullptr};
10783       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10784     };
10785     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10786     ProfileSummaryInfo *PSI =
10787         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10788     LoopVectorizeResult Result =
10789         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10790     if (!Result.MadeAnyChange)
10791       return PreservedAnalyses::all();
10792     PreservedAnalyses PA;
10793 
10794     // We currently do not preserve loopinfo/dominator analyses with outer loop
10795     // vectorization. Until this is addressed, mark these analyses as preserved
10796     // only for non-VPlan-native path.
10797     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10798     if (!EnableVPlanNativePath) {
10799       PA.preserve<LoopAnalysis>();
10800       PA.preserve<DominatorTreeAnalysis>();
10801     }
10802 
10803     if (Result.MadeCFGChange) {
10804       // Making CFG changes likely means a loop got vectorized. Indicate that
10805       // extra simplification passes should be run.
10806       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10807       // be run if runtime checks have been added.
10808       AM.getResult<ShouldRunExtraVectorPasses>(F);
10809       PA.preserve<ShouldRunExtraVectorPasses>();
10810     } else {
10811       PA.preserveSet<CFGAnalyses>();
10812     }
10813     return PA;
10814 }
10815 
10816 void LoopVectorizePass::printPipeline(
10817     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10818   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10819       OS, MapClassName2PassName);
10820 
10821   OS << "<";
10822   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10823   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10824   OS << ">";
10825 }
10826