1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/LoopUtils.h" 95 #include "llvm/Transforms/Utils/LoopVersioning.h" 96 #include "llvm/Transforms/Vectorize.h" 97 #include <algorithm> 98 #include <map> 99 #include <tuple> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define LV_NAME "loop-vectorize" 105 #define DEBUG_TYPE LV_NAME 106 107 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 109 110 static cl::opt<bool> 111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 112 cl::desc("Enable if-conversion during vectorization.")); 113 114 /// We don't vectorize loops with a known constant trip count below this number. 115 static cl::opt<unsigned> TinyTripCountVectorThreshold( 116 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 static cl::opt<bool> MaximizeBandwidth( 122 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 123 cl::desc("Maximize bandwidth when selecting vectorization factor which " 124 "will be determined by the smallest type in loop.")); 125 126 static cl::opt<bool> EnableInterleavedMemAccesses( 127 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 128 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 129 130 /// Maximum factor for an interleaved memory access. 131 static cl::opt<unsigned> MaxInterleaveGroupFactor( 132 "max-interleave-group-factor", cl::Hidden, 133 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 134 cl::init(8)); 135 136 /// We don't interleave loops with a known constant trip count below this 137 /// number. 138 static const unsigned TinyTripCountInterleaveThreshold = 128; 139 140 static cl::opt<unsigned> ForceTargetNumScalarRegs( 141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 142 cl::desc("A flag that overrides the target's number of scalar registers.")); 143 144 static cl::opt<unsigned> ForceTargetNumVectorRegs( 145 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of vector registers.")); 147 148 /// Maximum vectorization interleave count. 149 static const unsigned MaxInterleaveFactor = 16; 150 151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's max interleave factor for " 154 "scalar loops.")); 155 156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's max interleave factor for " 159 "vectorized loops.")); 160 161 static cl::opt<unsigned> ForceTargetInstructionCost( 162 "force-target-instruction-cost", cl::init(0), cl::Hidden, 163 cl::desc("A flag that overrides the target's expected cost for " 164 "an instruction to a single constant value. Mostly " 165 "useful for getting consistent testing.")); 166 167 static cl::opt<unsigned> SmallLoopCost( 168 "small-loop-cost", cl::init(20), cl::Hidden, 169 cl::desc( 170 "The cost of a loop that is considered 'small' by the interleaver.")); 171 172 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 173 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 174 cl::desc("Enable the use of the block frequency analysis to access PGO " 175 "heuristics minimizing code growth in cold regions and being more " 176 "aggressive in hot regions.")); 177 178 // Runtime interleave loops for load/store throughput. 179 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 180 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 181 cl::desc( 182 "Enable runtime interleaving until load/store ports are saturated")); 183 184 /// The number of stores in a loop that are allowed to need predication. 185 static cl::opt<unsigned> NumberOfStoresToPredicate( 186 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 187 cl::desc("Max number of stores to be predicated behind an if.")); 188 189 static cl::opt<bool> EnableIndVarRegisterHeur( 190 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 191 cl::desc("Count the induction variable only once when interleaving")); 192 193 static cl::opt<bool> EnableCondStoresVectorization( 194 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 195 cl::desc("Enable if predication of stores during vectorization.")); 196 197 static cl::opt<unsigned> MaxNestedScalarReductionIC( 198 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 199 cl::desc("The maximum interleave count to use when interleaving a scalar " 200 "reduction in a nested loop.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 208 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 209 cl::desc("The maximum number of SCEV checks allowed.")); 210 211 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 212 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed with a " 214 "vectorize(enable) pragma")); 215 216 /// Create an analysis remark that explains why vectorization failed 217 /// 218 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 219 /// RemarkName is the identifier for the remark. If \p I is passed it is an 220 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 221 /// the location of the remark. \return the remark object that can be 222 /// streamed to. 223 static OptimizationRemarkAnalysis 224 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 225 Instruction *I = nullptr) { 226 Value *CodeRegion = TheLoop->getHeader(); 227 DebugLoc DL = TheLoop->getStartLoc(); 228 229 if (I) { 230 CodeRegion = I->getParent(); 231 // If there is no debug location attached to the instruction, revert back to 232 // using the loop's. 233 if (I->getDebugLoc()) 234 DL = I->getDebugLoc(); 235 } 236 237 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 238 R << "loop not vectorized: "; 239 return R; 240 } 241 242 namespace { 243 244 // Forward declarations. 245 class LoopVectorizeHints; 246 class LoopVectorizationLegality; 247 class LoopVectorizationCostModel; 248 class LoopVectorizationRequirements; 249 250 /// Returns true if the given loop body has a cycle, excluding the loop 251 /// itself. 252 static bool hasCyclesInLoopBody(const Loop &L) { 253 if (!L.empty()) 254 return true; 255 256 for (const auto &SCC : 257 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 258 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 259 if (SCC.size() > 1) { 260 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 261 DEBUG(L.dump()); 262 return true; 263 } 264 } 265 return false; 266 } 267 268 /// \brief This modifies LoopAccessReport to initialize message with 269 /// loop-vectorizer-specific part. 270 class VectorizationReport : public LoopAccessReport { 271 public: 272 VectorizationReport(Instruction *I = nullptr) 273 : LoopAccessReport("loop not vectorized: ", I) {} 274 275 /// \brief This allows promotion of the loop-access analysis report into the 276 /// loop-vectorizer report. It modifies the message to add the 277 /// loop-vectorizer-specific part of the message. 278 explicit VectorizationReport(const LoopAccessReport &R) 279 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 280 R.getInstr()) {} 281 }; 282 283 /// A helper function for converting Scalar types to vector types. 284 /// If the incoming type is void, we return void. If the VF is 1, we return 285 /// the scalar type. 286 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 287 if (Scalar->isVoidTy() || VF == 1) 288 return Scalar; 289 return VectorType::get(Scalar, VF); 290 } 291 292 /// A helper function that returns GEP instruction and knows to skip a 293 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 294 /// pointee types of the 'bitcast' have the same size. 295 /// For example: 296 /// bitcast double** %var to i64* - can be skipped 297 /// bitcast double** %var to i8* - can not 298 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 299 300 if (isa<GetElementPtrInst>(Ptr)) 301 return cast<GetElementPtrInst>(Ptr); 302 303 if (isa<BitCastInst>(Ptr) && 304 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 305 Type *BitcastTy = Ptr->getType(); 306 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 307 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 308 return nullptr; 309 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 310 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 311 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 312 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 313 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 314 } 315 return nullptr; 316 } 317 318 /// A helper function that returns the pointer operand of a load or store 319 /// instruction. 320 static Value *getPointerOperand(Value *I) { 321 if (auto *LI = dyn_cast<LoadInst>(I)) 322 return LI->getPointerOperand(); 323 if (auto *SI = dyn_cast<StoreInst>(I)) 324 return SI->getPointerOperand(); 325 return nullptr; 326 } 327 328 /// A helper function that returns true if the given type is irregular. The 329 /// type is irregular if its allocated size doesn't equal the store size of an 330 /// element of the corresponding vector type at the given vectorization factor. 331 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 332 333 // Determine if an array of VF elements of type Ty is "bitcast compatible" 334 // with a <VF x Ty> vector. 335 if (VF > 1) { 336 auto *VectorTy = VectorType::get(Ty, VF); 337 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 338 } 339 340 // If the vectorization factor is one, we just check if an array of type Ty 341 // requires padding between elements. 342 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 343 } 344 345 /// A helper function that returns the reciprocal of the block probability of 346 /// predicated blocks. If we return X, we are assuming the predicated block 347 /// will execute once for for every X iterations of the loop header. 348 /// 349 /// TODO: We should use actual block probability here, if available. Currently, 350 /// we always assume predicated blocks have a 50% chance of executing. 351 static unsigned getReciprocalPredBlockProb() { return 2; } 352 353 /// InnerLoopVectorizer vectorizes loops which contain only one basic 354 /// block to a specified vectorization factor (VF). 355 /// This class performs the widening of scalars into vectors, or multiple 356 /// scalars. This class also implements the following features: 357 /// * It inserts an epilogue loop for handling loops that don't have iteration 358 /// counts that are known to be a multiple of the vectorization factor. 359 /// * It handles the code generation for reduction variables. 360 /// * Scalarization (implementation using scalars) of un-vectorizable 361 /// instructions. 362 /// InnerLoopVectorizer does not perform any vectorization-legality 363 /// checks, and relies on the caller to check for the different legality 364 /// aspects. The InnerLoopVectorizer relies on the 365 /// LoopVectorizationLegality class to provide information about the induction 366 /// and reduction variables that were found to a given vectorization factor. 367 class InnerLoopVectorizer { 368 public: 369 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 370 LoopInfo *LI, DominatorTree *DT, 371 const TargetLibraryInfo *TLI, 372 const TargetTransformInfo *TTI, AssumptionCache *AC, 373 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 374 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 375 LoopVectorizationCostModel *CM) 376 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 377 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 378 Builder(PSE.getSE()->getContext()), Induction(nullptr), 379 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 380 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 381 AddedSafetyChecks(false) {} 382 383 // Perform the actual loop widening (vectorization). 384 void vectorize() { 385 // Create a new empty loop. Unlink the old loop and connect the new one. 386 createEmptyLoop(); 387 // Widen each instruction in the old loop to a new one in the new loop. 388 vectorizeLoop(); 389 } 390 391 // Return true if any runtime check is added. 392 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 393 394 virtual ~InnerLoopVectorizer() {} 395 396 protected: 397 /// A small list of PHINodes. 398 typedef SmallVector<PHINode *, 4> PhiVector; 399 400 /// A type for vectorized values in the new loop. Each value from the 401 /// original loop, when vectorized, is represented by UF vector values in the 402 /// new unrolled loop, where UF is the unroll factor. 403 typedef SmallVector<Value *, 2> VectorParts; 404 405 /// A type for scalarized values in the new loop. Each value from the 406 /// original loop, when scalarized, is represented by UF x VF scalar values 407 /// in the new unrolled loop, where UF is the unroll factor and VF is the 408 /// vectorization factor. 409 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 410 411 // When we if-convert we need to create edge masks. We have to cache values 412 // so that we don't end up with exponential recursion/IR. 413 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 414 EdgeMaskCache; 415 416 /// Create an empty loop, based on the loop ranges of the old loop. 417 void createEmptyLoop(); 418 419 /// Set up the values of the IVs correctly when exiting the vector loop. 420 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 421 Value *CountRoundDown, Value *EndValue, 422 BasicBlock *MiddleBlock); 423 424 /// Create a new induction variable inside L. 425 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 426 Value *Step, Instruction *DL); 427 /// Copy and widen the instructions from the old loop. 428 virtual void vectorizeLoop(); 429 430 /// Fix a first-order recurrence. This is the second phase of vectorizing 431 /// this phi node. 432 void fixFirstOrderRecurrence(PHINode *Phi); 433 434 /// \brief The Loop exit block may have single value PHI nodes where the 435 /// incoming value is 'Undef'. While vectorizing we only handled real values 436 /// that were defined inside the loop. Here we fix the 'undef case'. 437 /// See PR14725. 438 void fixLCSSAPHIs(); 439 440 /// Predicate conditional instructions that require predication on their 441 /// respective conditions. 442 void predicateInstructions(); 443 444 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 445 /// represented as. 446 void truncateToMinimalBitwidths(); 447 448 /// A helper function that computes the predicate of the block BB, assuming 449 /// that the header block of the loop is set to True. It returns the *entry* 450 /// mask for the block BB. 451 VectorParts createBlockInMask(BasicBlock *BB); 452 /// A helper function that computes the predicate of the edge between SRC 453 /// and DST. 454 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 455 456 /// A helper function to vectorize a single BB within the innermost loop. 457 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 458 459 /// Vectorize a single PHINode in a block. This method handles the induction 460 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 461 /// arbitrary length vectors. 462 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF, 463 PhiVector *PV); 464 465 /// Insert the new loop to the loop hierarchy and pass manager 466 /// and update the analysis passes. 467 void updateAnalysis(); 468 469 /// This instruction is un-vectorizable. Implement it as a sequence 470 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 471 /// scalarized instruction behind an if block predicated on the control 472 /// dependence of the instruction. 473 virtual void scalarizeInstruction(Instruction *Instr, 474 bool IfPredicateInstr = false); 475 476 /// Vectorize Load and Store instructions, 477 virtual void vectorizeMemoryInstruction(Instruction *Instr); 478 479 /// Create a broadcast instruction. This method generates a broadcast 480 /// instruction (shuffle) for loop invariant values and for the induction 481 /// value. If this is the induction variable then we extend it to N, N+1, ... 482 /// this is needed because each iteration in the loop corresponds to a SIMD 483 /// element. 484 virtual Value *getBroadcastInstrs(Value *V); 485 486 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 487 /// to each vector element of Val. The sequence starts at StartIndex. 488 /// \p Opcode is relevant for FP induction variable. 489 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 490 Instruction::BinaryOps Opcode = 491 Instruction::BinaryOpsEnd); 492 493 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 494 /// variable on which to base the steps, \p Step is the size of the step, and 495 /// \p EntryVal is the value from the original loop that maps to the steps. 496 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 497 /// can be a truncate instruction). 498 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 499 500 /// Create a vector induction phi node based on an existing scalar one. This 501 /// currently only works for integer induction variables with a constant 502 /// step. \p EntryVal is the value from the original loop that maps to the 503 /// vector phi node. If \p EntryVal is a truncate instruction, instead of 504 /// widening the original IV, we widen a version of the IV truncated to \p 505 /// EntryVal's type. 506 void createVectorIntInductionPHI(const InductionDescriptor &II, 507 Instruction *EntryVal); 508 509 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 510 /// induction variable will first be truncated to the corresponding type. 511 void widenIntInduction(PHINode *IV, TruncInst *Trunc = nullptr); 512 513 /// Returns true if we should generate a scalar version of \p IV. 514 bool needsScalarInduction(Instruction *IV) const; 515 516 /// Return a constant reference to the VectorParts corresponding to \p V from 517 /// the original loop. If the value has already been vectorized, the 518 /// corresponding vector entry in VectorLoopValueMap is returned. If, 519 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 520 /// new vector values on-demand by inserting the scalar values into vectors 521 /// with an insertelement sequence. If the value has been neither vectorized 522 /// nor scalarized, it must be loop invariant, so we simply broadcast the 523 /// value into vectors. 524 const VectorParts &getVectorValue(Value *V); 525 526 /// Return a value in the new loop corresponding to \p V from the original 527 /// loop at unroll index \p Part and vector index \p Lane. If the value has 528 /// been vectorized but not scalarized, the necessary extractelement 529 /// instruction will be generated. 530 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 531 532 /// Try to vectorize the interleaved access group that \p Instr belongs to. 533 void vectorizeInterleaveGroup(Instruction *Instr); 534 535 /// Generate a shuffle sequence that will reverse the vector Vec. 536 virtual Value *reverseVector(Value *Vec); 537 538 /// Returns (and creates if needed) the original loop trip count. 539 Value *getOrCreateTripCount(Loop *NewLoop); 540 541 /// Returns (and creates if needed) the trip count of the widened loop. 542 Value *getOrCreateVectorTripCount(Loop *NewLoop); 543 544 /// Emit a bypass check to see if the trip count would overflow, or we 545 /// wouldn't have enough iterations to execute one vector loop. 546 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 547 /// Emit a bypass check to see if the vector trip count is nonzero. 548 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 549 /// Emit a bypass check to see if all of the SCEV assumptions we've 550 /// had to make are correct. 551 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 552 /// Emit bypass checks to check any memory assumptions we may have made. 553 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 554 555 /// Add additional metadata to \p To that was not present on \p Orig. 556 /// 557 /// Currently this is used to add the noalias annotations based on the 558 /// inserted memchecks. Use this for instructions that are *cloned* into the 559 /// vector loop. 560 void addNewMetadata(Instruction *To, const Instruction *Orig); 561 562 /// Add metadata from one instruction to another. 563 /// 564 /// This includes both the original MDs from \p From and additional ones (\see 565 /// addNewMetadata). Use this for *newly created* instructions in the vector 566 /// loop. 567 void addMetadata(Instruction *To, Instruction *From); 568 569 /// \brief Similar to the previous function but it adds the metadata to a 570 /// vector of instructions. 571 void addMetadata(ArrayRef<Value *> To, Instruction *From); 572 573 /// This is a helper class for maintaining vectorization state. It's used for 574 /// mapping values from the original loop to their corresponding values in 575 /// the new loop. Two mappings are maintained: one for vectorized values and 576 /// one for scalarized values. Vectorized values are represented with UF 577 /// vector values in the new loop, and scalarized values are represented with 578 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 579 /// vectorization factors, respectively. 580 /// 581 /// Entries can be added to either map with initVector and initScalar, which 582 /// initialize and return a constant reference to the new entry. If a 583 /// non-constant reference to a vector entry is required, getVector can be 584 /// used to retrieve a mutable entry. We currently directly modify the mapped 585 /// values during "fix-up" operations that occur once the first phase of 586 /// widening is complete. These operations include type truncation and the 587 /// second phase of recurrence widening. 588 /// 589 /// Otherwise, entries from either map should be accessed using the 590 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 591 /// getVectorValue and getScalarValue coordinate to generate a vector or 592 /// scalar value on-demand if one is not yet available. When vectorizing a 593 /// loop, we visit the definition of an instruction before its uses. When 594 /// visiting the definition, we either vectorize or scalarize the 595 /// instruction, creating an entry for it in the corresponding map. (In some 596 /// cases, such as induction variables, we will create both vector and scalar 597 /// entries.) Then, as we encounter uses of the definition, we derive values 598 /// for each scalar or vector use unless such a value is already available. 599 /// For example, if we scalarize a definition and one of its uses is vector, 600 /// we build the required vector on-demand with an insertelement sequence 601 /// when visiting the use. Otherwise, if the use is scalar, we can use the 602 /// existing scalar definition. 603 struct ValueMap { 604 605 /// Construct an empty map with the given unroll and vectorization factors. 606 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 607 : UF(UnrollFactor), VF(VecWidth) { 608 // The unroll and vectorization factors are only used in asserts builds 609 // to verify map entries are sized appropriately. 610 (void)UF; 611 (void)VF; 612 } 613 614 /// \return True if the map has a vector entry for \p Key. 615 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 616 617 /// \return True if the map has a scalar entry for \p Key. 618 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 619 620 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 621 /// constant reference to the new vector map entry. The given key should 622 /// not already be in the map, and the given VectorParts should be 623 /// correctly sized for the current unroll factor. 624 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 625 assert(!hasVector(Key) && "Vector entry already initialized"); 626 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 627 VectorMapStorage[Key] = Entry; 628 return VectorMapStorage[Key]; 629 } 630 631 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 632 /// constant reference to the new scalar map entry. The given key should 633 /// not already be in the map, and the given ScalarParts should be 634 /// correctly sized for the current unroll and vectorization factors. 635 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 636 assert(!hasScalar(Key) && "Scalar entry already initialized"); 637 assert(Entry.size() == UF && 638 all_of(make_range(Entry.begin(), Entry.end()), 639 [&](const SmallVectorImpl<Value *> &Values) -> bool { 640 return Values.size() == VF; 641 }) && 642 "ScalarParts has wrong dimensions"); 643 ScalarMapStorage[Key] = Entry; 644 return ScalarMapStorage[Key]; 645 } 646 647 /// \return A reference to the vector map entry corresponding to \p Key. 648 /// The key should already be in the map. This function should only be used 649 /// when it's necessary to update values that have already been vectorized. 650 /// This is the case for "fix-up" operations including type truncation and 651 /// the second phase of recurrence vectorization. If a non-const reference 652 /// isn't required, getVectorValue should be used instead. 653 VectorParts &getVector(Value *Key) { 654 assert(hasVector(Key) && "Vector entry not initialized"); 655 return VectorMapStorage.find(Key)->second; 656 } 657 658 /// Retrieve an entry from the vector or scalar maps. The preferred way to 659 /// access an existing mapped entry is with getVectorValue or 660 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 661 /// moved inside ValueMap, we have to declare them as friends. 662 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 663 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 664 unsigned Lane); 665 666 private: 667 /// The unroll factor. Each entry in the vector map contains UF vector 668 /// values. 669 unsigned UF; 670 671 /// The vectorization factor. Each entry in the scalar map contains UF x VF 672 /// scalar values. 673 unsigned VF; 674 675 /// The vector and scalar map storage. We use std::map and not DenseMap 676 /// because insertions to DenseMap invalidate its iterators. 677 std::map<Value *, VectorParts> VectorMapStorage; 678 std::map<Value *, ScalarParts> ScalarMapStorage; 679 }; 680 681 /// The original loop. 682 Loop *OrigLoop; 683 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 684 /// dynamic knowledge to simplify SCEV expressions and converts them to a 685 /// more usable form. 686 PredicatedScalarEvolution &PSE; 687 /// Loop Info. 688 LoopInfo *LI; 689 /// Dominator Tree. 690 DominatorTree *DT; 691 /// Alias Analysis. 692 AliasAnalysis *AA; 693 /// Target Library Info. 694 const TargetLibraryInfo *TLI; 695 /// Target Transform Info. 696 const TargetTransformInfo *TTI; 697 /// Assumption Cache. 698 AssumptionCache *AC; 699 /// Interface to emit optimization remarks. 700 OptimizationRemarkEmitter *ORE; 701 702 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 703 /// used. 704 /// 705 /// This is currently only used to add no-alias metadata based on the 706 /// memchecks. The actually versioning is performed manually. 707 std::unique_ptr<LoopVersioning> LVer; 708 709 /// The vectorization SIMD factor to use. Each vector will have this many 710 /// vector elements. 711 unsigned VF; 712 713 protected: 714 /// The vectorization unroll factor to use. Each scalar is vectorized to this 715 /// many different vector instructions. 716 unsigned UF; 717 718 /// The builder that we use 719 IRBuilder<> Builder; 720 721 // --- Vectorization state --- 722 723 /// The vector-loop preheader. 724 BasicBlock *LoopVectorPreHeader; 725 /// The scalar-loop preheader. 726 BasicBlock *LoopScalarPreHeader; 727 /// Middle Block between the vector and the scalar. 728 BasicBlock *LoopMiddleBlock; 729 /// The ExitBlock of the scalar loop. 730 BasicBlock *LoopExitBlock; 731 /// The vector loop body. 732 BasicBlock *LoopVectorBody; 733 /// The scalar loop body. 734 BasicBlock *LoopScalarBody; 735 /// A list of all bypass blocks. The first block is the entry of the loop. 736 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 737 738 /// The new Induction variable which was added to the new block. 739 PHINode *Induction; 740 /// The induction variable of the old basic block. 741 PHINode *OldInduction; 742 743 /// Maps values from the original loop to their corresponding values in the 744 /// vectorized loop. A key value can map to either vector values, scalar 745 /// values or both kinds of values, depending on whether the key was 746 /// vectorized and scalarized. 747 ValueMap VectorLoopValueMap; 748 749 /// Store instructions that should be predicated, as a pair 750 /// <StoreInst, Predicate> 751 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 752 EdgeMaskCache MaskCache; 753 /// Trip count of the original loop. 754 Value *TripCount; 755 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 756 Value *VectorTripCount; 757 758 /// The legality analysis. 759 LoopVectorizationLegality *Legal; 760 761 /// The profitablity analysis. 762 LoopVectorizationCostModel *Cost; 763 764 // Record whether runtime checks are added. 765 bool AddedSafetyChecks; 766 }; 767 768 class InnerLoopUnroller : public InnerLoopVectorizer { 769 public: 770 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 771 LoopInfo *LI, DominatorTree *DT, 772 const TargetLibraryInfo *TLI, 773 const TargetTransformInfo *TTI, AssumptionCache *AC, 774 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 775 LoopVectorizationLegality *LVL, 776 LoopVectorizationCostModel *CM) 777 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 778 UnrollFactor, LVL, CM) {} 779 780 private: 781 void scalarizeInstruction(Instruction *Instr, 782 bool IfPredicateInstr = false) override; 783 void vectorizeMemoryInstruction(Instruction *Instr) override; 784 Value *getBroadcastInstrs(Value *V) override; 785 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 786 Instruction::BinaryOps Opcode = 787 Instruction::BinaryOpsEnd) override; 788 Value *reverseVector(Value *Vec) override; 789 }; 790 791 /// \brief Look for a meaningful debug location on the instruction or it's 792 /// operands. 793 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 794 if (!I) 795 return I; 796 797 DebugLoc Empty; 798 if (I->getDebugLoc() != Empty) 799 return I; 800 801 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 802 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 803 if (OpInst->getDebugLoc() != Empty) 804 return OpInst; 805 } 806 807 return I; 808 } 809 810 /// \brief Set the debug location in the builder using the debug location in the 811 /// instruction. 812 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 813 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 814 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 815 else 816 B.SetCurrentDebugLocation(DebugLoc()); 817 } 818 819 #ifndef NDEBUG 820 /// \return string containing a file name and a line # for the given loop. 821 static std::string getDebugLocString(const Loop *L) { 822 std::string Result; 823 if (L) { 824 raw_string_ostream OS(Result); 825 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 826 LoopDbgLoc.print(OS); 827 else 828 // Just print the module name. 829 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 830 OS.flush(); 831 } 832 return Result; 833 } 834 #endif 835 836 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 837 const Instruction *Orig) { 838 // If the loop was versioned with memchecks, add the corresponding no-alias 839 // metadata. 840 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 841 LVer->annotateInstWithNoAlias(To, Orig); 842 } 843 844 void InnerLoopVectorizer::addMetadata(Instruction *To, 845 Instruction *From) { 846 propagateMetadata(To, From); 847 addNewMetadata(To, From); 848 } 849 850 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 851 Instruction *From) { 852 for (Value *V : To) { 853 if (Instruction *I = dyn_cast<Instruction>(V)) 854 addMetadata(I, From); 855 } 856 } 857 858 /// \brief The group of interleaved loads/stores sharing the same stride and 859 /// close to each other. 860 /// 861 /// Each member in this group has an index starting from 0, and the largest 862 /// index should be less than interleaved factor, which is equal to the absolute 863 /// value of the access's stride. 864 /// 865 /// E.g. An interleaved load group of factor 4: 866 /// for (unsigned i = 0; i < 1024; i+=4) { 867 /// a = A[i]; // Member of index 0 868 /// b = A[i+1]; // Member of index 1 869 /// d = A[i+3]; // Member of index 3 870 /// ... 871 /// } 872 /// 873 /// An interleaved store group of factor 4: 874 /// for (unsigned i = 0; i < 1024; i+=4) { 875 /// ... 876 /// A[i] = a; // Member of index 0 877 /// A[i+1] = b; // Member of index 1 878 /// A[i+2] = c; // Member of index 2 879 /// A[i+3] = d; // Member of index 3 880 /// } 881 /// 882 /// Note: the interleaved load group could have gaps (missing members), but 883 /// the interleaved store group doesn't allow gaps. 884 class InterleaveGroup { 885 public: 886 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 887 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 888 assert(Align && "The alignment should be non-zero"); 889 890 Factor = std::abs(Stride); 891 assert(Factor > 1 && "Invalid interleave factor"); 892 893 Reverse = Stride < 0; 894 Members[0] = Instr; 895 } 896 897 bool isReverse() const { return Reverse; } 898 unsigned getFactor() const { return Factor; } 899 unsigned getAlignment() const { return Align; } 900 unsigned getNumMembers() const { return Members.size(); } 901 902 /// \brief Try to insert a new member \p Instr with index \p Index and 903 /// alignment \p NewAlign. The index is related to the leader and it could be 904 /// negative if it is the new leader. 905 /// 906 /// \returns false if the instruction doesn't belong to the group. 907 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 908 assert(NewAlign && "The new member's alignment should be non-zero"); 909 910 int Key = Index + SmallestKey; 911 912 // Skip if there is already a member with the same index. 913 if (Members.count(Key)) 914 return false; 915 916 if (Key > LargestKey) { 917 // The largest index is always less than the interleave factor. 918 if (Index >= static_cast<int>(Factor)) 919 return false; 920 921 LargestKey = Key; 922 } else if (Key < SmallestKey) { 923 // The largest index is always less than the interleave factor. 924 if (LargestKey - Key >= static_cast<int>(Factor)) 925 return false; 926 927 SmallestKey = Key; 928 } 929 930 // It's always safe to select the minimum alignment. 931 Align = std::min(Align, NewAlign); 932 Members[Key] = Instr; 933 return true; 934 } 935 936 /// \brief Get the member with the given index \p Index 937 /// 938 /// \returns nullptr if contains no such member. 939 Instruction *getMember(unsigned Index) const { 940 int Key = SmallestKey + Index; 941 if (!Members.count(Key)) 942 return nullptr; 943 944 return Members.find(Key)->second; 945 } 946 947 /// \brief Get the index for the given member. Unlike the key in the member 948 /// map, the index starts from 0. 949 unsigned getIndex(Instruction *Instr) const { 950 for (auto I : Members) 951 if (I.second == Instr) 952 return I.first - SmallestKey; 953 954 llvm_unreachable("InterleaveGroup contains no such member"); 955 } 956 957 Instruction *getInsertPos() const { return InsertPos; } 958 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 959 960 private: 961 unsigned Factor; // Interleave Factor. 962 bool Reverse; 963 unsigned Align; 964 DenseMap<int, Instruction *> Members; 965 int SmallestKey; 966 int LargestKey; 967 968 // To avoid breaking dependences, vectorized instructions of an interleave 969 // group should be inserted at either the first load or the last store in 970 // program order. 971 // 972 // E.g. %even = load i32 // Insert Position 973 // %add = add i32 %even // Use of %even 974 // %odd = load i32 975 // 976 // store i32 %even 977 // %odd = add i32 // Def of %odd 978 // store i32 %odd // Insert Position 979 Instruction *InsertPos; 980 }; 981 982 /// \brief Drive the analysis of interleaved memory accesses in the loop. 983 /// 984 /// Use this class to analyze interleaved accesses only when we can vectorize 985 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 986 /// on interleaved accesses is unsafe. 987 /// 988 /// The analysis collects interleave groups and records the relationships 989 /// between the member and the group in a map. 990 class InterleavedAccessInfo { 991 public: 992 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 993 DominatorTree *DT, LoopInfo *LI) 994 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 995 RequiresScalarEpilogue(false) {} 996 997 ~InterleavedAccessInfo() { 998 SmallSet<InterleaveGroup *, 4> DelSet; 999 // Avoid releasing a pointer twice. 1000 for (auto &I : InterleaveGroupMap) 1001 DelSet.insert(I.second); 1002 for (auto *Ptr : DelSet) 1003 delete Ptr; 1004 } 1005 1006 /// \brief Analyze the interleaved accesses and collect them in interleave 1007 /// groups. Substitute symbolic strides using \p Strides. 1008 void analyzeInterleaving(const ValueToValueMap &Strides); 1009 1010 /// \brief Check if \p Instr belongs to any interleave group. 1011 bool isInterleaved(Instruction *Instr) const { 1012 return InterleaveGroupMap.count(Instr); 1013 } 1014 1015 /// \brief Return the maximum interleave factor of all interleaved groups. 1016 unsigned getMaxInterleaveFactor() const { 1017 unsigned MaxFactor = 1; 1018 for (auto &Entry : InterleaveGroupMap) 1019 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1020 return MaxFactor; 1021 } 1022 1023 /// \brief Get the interleave group that \p Instr belongs to. 1024 /// 1025 /// \returns nullptr if doesn't have such group. 1026 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1027 if (InterleaveGroupMap.count(Instr)) 1028 return InterleaveGroupMap.find(Instr)->second; 1029 return nullptr; 1030 } 1031 1032 /// \brief Returns true if an interleaved group that may access memory 1033 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1034 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1035 1036 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1037 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1038 1039 private: 1040 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1041 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1042 /// The interleaved access analysis can also add new predicates (for example 1043 /// by versioning strides of pointers). 1044 PredicatedScalarEvolution &PSE; 1045 Loop *TheLoop; 1046 DominatorTree *DT; 1047 LoopInfo *LI; 1048 const LoopAccessInfo *LAI; 1049 1050 /// True if the loop may contain non-reversed interleaved groups with 1051 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1052 /// out-of-bounds by executing at least one scalar epilogue iteration. 1053 bool RequiresScalarEpilogue; 1054 1055 /// Holds the relationships between the members and the interleave group. 1056 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1057 1058 /// Holds dependences among the memory accesses in the loop. It maps a source 1059 /// access to a set of dependent sink accesses. 1060 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1061 1062 /// \brief The descriptor for a strided memory access. 1063 struct StrideDescriptor { 1064 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1065 unsigned Align) 1066 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1067 1068 StrideDescriptor() = default; 1069 1070 // The access's stride. It is negative for a reverse access. 1071 int64_t Stride = 0; 1072 const SCEV *Scev = nullptr; // The scalar expression of this access 1073 uint64_t Size = 0; // The size of the memory object. 1074 unsigned Align = 0; // The alignment of this access. 1075 }; 1076 1077 /// \brief A type for holding instructions and their stride descriptors. 1078 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1079 1080 /// \brief Create a new interleave group with the given instruction \p Instr, 1081 /// stride \p Stride and alignment \p Align. 1082 /// 1083 /// \returns the newly created interleave group. 1084 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1085 unsigned Align) { 1086 assert(!InterleaveGroupMap.count(Instr) && 1087 "Already in an interleaved access group"); 1088 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1089 return InterleaveGroupMap[Instr]; 1090 } 1091 1092 /// \brief Release the group and remove all the relationships. 1093 void releaseGroup(InterleaveGroup *Group) { 1094 for (unsigned i = 0; i < Group->getFactor(); i++) 1095 if (Instruction *Member = Group->getMember(i)) 1096 InterleaveGroupMap.erase(Member); 1097 1098 delete Group; 1099 } 1100 1101 /// \brief Collect all the accesses with a constant stride in program order. 1102 void collectConstStrideAccesses( 1103 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1104 const ValueToValueMap &Strides); 1105 1106 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1107 static bool isStrided(int Stride) { 1108 unsigned Factor = std::abs(Stride); 1109 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1110 } 1111 1112 /// \brief Returns true if \p BB is a predicated block. 1113 bool isPredicated(BasicBlock *BB) const { 1114 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1115 } 1116 1117 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1118 bool areDependencesValid() const { 1119 return LAI && LAI->getDepChecker().getDependences(); 1120 } 1121 1122 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1123 /// necessary, when constructing interleaved groups. 1124 /// 1125 /// \p A must precede \p B in program order. We return false if reordering is 1126 /// not necessary or is prevented because \p A and \p B may be dependent. 1127 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1128 StrideEntry *B) const { 1129 1130 // Code motion for interleaved accesses can potentially hoist strided loads 1131 // and sink strided stores. The code below checks the legality of the 1132 // following two conditions: 1133 // 1134 // 1. Potentially moving a strided load (B) before any store (A) that 1135 // precedes B, or 1136 // 1137 // 2. Potentially moving a strided store (A) after any load or store (B) 1138 // that A precedes. 1139 // 1140 // It's legal to reorder A and B if we know there isn't a dependence from A 1141 // to B. Note that this determination is conservative since some 1142 // dependences could potentially be reordered safely. 1143 1144 // A is potentially the source of a dependence. 1145 auto *Src = A->first; 1146 auto SrcDes = A->second; 1147 1148 // B is potentially the sink of a dependence. 1149 auto *Sink = B->first; 1150 auto SinkDes = B->second; 1151 1152 // Code motion for interleaved accesses can't violate WAR dependences. 1153 // Thus, reordering is legal if the source isn't a write. 1154 if (!Src->mayWriteToMemory()) 1155 return true; 1156 1157 // At least one of the accesses must be strided. 1158 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1159 return true; 1160 1161 // If dependence information is not available from LoopAccessInfo, 1162 // conservatively assume the instructions can't be reordered. 1163 if (!areDependencesValid()) 1164 return false; 1165 1166 // If we know there is a dependence from source to sink, assume the 1167 // instructions can't be reordered. Otherwise, reordering is legal. 1168 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1169 } 1170 1171 /// \brief Collect the dependences from LoopAccessInfo. 1172 /// 1173 /// We process the dependences once during the interleaved access analysis to 1174 /// enable constant-time dependence queries. 1175 void collectDependences() { 1176 if (!areDependencesValid()) 1177 return; 1178 auto *Deps = LAI->getDepChecker().getDependences(); 1179 for (auto Dep : *Deps) 1180 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1181 } 1182 }; 1183 1184 /// Utility class for getting and setting loop vectorizer hints in the form 1185 /// of loop metadata. 1186 /// This class keeps a number of loop annotations locally (as member variables) 1187 /// and can, upon request, write them back as metadata on the loop. It will 1188 /// initially scan the loop for existing metadata, and will update the local 1189 /// values based on information in the loop. 1190 /// We cannot write all values to metadata, as the mere presence of some info, 1191 /// for example 'force', means a decision has been made. So, we need to be 1192 /// careful NOT to add them if the user hasn't specifically asked so. 1193 class LoopVectorizeHints { 1194 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1195 1196 /// Hint - associates name and validation with the hint value. 1197 struct Hint { 1198 const char *Name; 1199 unsigned Value; // This may have to change for non-numeric values. 1200 HintKind Kind; 1201 1202 Hint(const char *Name, unsigned Value, HintKind Kind) 1203 : Name(Name), Value(Value), Kind(Kind) {} 1204 1205 bool validate(unsigned Val) { 1206 switch (Kind) { 1207 case HK_WIDTH: 1208 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1209 case HK_UNROLL: 1210 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1211 case HK_FORCE: 1212 return (Val <= 1); 1213 } 1214 return false; 1215 } 1216 }; 1217 1218 /// Vectorization width. 1219 Hint Width; 1220 /// Vectorization interleave factor. 1221 Hint Interleave; 1222 /// Vectorization forced 1223 Hint Force; 1224 1225 /// Return the loop metadata prefix. 1226 static StringRef Prefix() { return "llvm.loop."; } 1227 1228 /// True if there is any unsafe math in the loop. 1229 bool PotentiallyUnsafe; 1230 1231 public: 1232 enum ForceKind { 1233 FK_Undefined = -1, ///< Not selected. 1234 FK_Disabled = 0, ///< Forcing disabled. 1235 FK_Enabled = 1, ///< Forcing enabled. 1236 }; 1237 1238 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1239 OptimizationRemarkEmitter &ORE) 1240 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1241 HK_WIDTH), 1242 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1243 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1244 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1245 // Populate values with existing loop metadata. 1246 getHintsFromMetadata(); 1247 1248 // force-vector-interleave overrides DisableInterleaving. 1249 if (VectorizerParams::isInterleaveForced()) 1250 Interleave.Value = VectorizerParams::VectorizationInterleave; 1251 1252 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1253 << "LV: Interleaving disabled by the pass manager\n"); 1254 } 1255 1256 /// Mark the loop L as already vectorized by setting the width to 1. 1257 void setAlreadyVectorized() { 1258 Width.Value = Interleave.Value = 1; 1259 Hint Hints[] = {Width, Interleave}; 1260 writeHintsToMetadata(Hints); 1261 } 1262 1263 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1264 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1265 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1266 emitRemarkWithHints(); 1267 return false; 1268 } 1269 1270 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1271 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1272 emitRemarkWithHints(); 1273 return false; 1274 } 1275 1276 if (getWidth() == 1 && getInterleave() == 1) { 1277 // FIXME: Add a separate metadata to indicate when the loop has already 1278 // been vectorized instead of setting width and count to 1. 1279 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1280 // FIXME: Add interleave.disable metadata. This will allow 1281 // vectorize.disable to be used without disabling the pass and errors 1282 // to differentiate between disabled vectorization and a width of 1. 1283 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1284 "AllDisabled", L->getStartLoc(), 1285 L->getHeader()) 1286 << "loop not vectorized: vectorization and interleaving are " 1287 "explicitly disabled, or vectorize width and interleave " 1288 "count are both set to 1"); 1289 return false; 1290 } 1291 1292 return true; 1293 } 1294 1295 /// Dumps all the hint information. 1296 void emitRemarkWithHints() const { 1297 using namespace ore; 1298 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1299 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1300 TheLoop->getStartLoc(), 1301 TheLoop->getHeader()) 1302 << "loop not vectorized: vectorization is explicitly disabled"); 1303 else { 1304 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1305 TheLoop->getStartLoc(), TheLoop->getHeader()); 1306 R << "loop not vectorized: use -Rpass-analysis=loop-vectorize for more " 1307 "info"; 1308 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1309 R << " (Force=" << NV("Force", true); 1310 if (Width.Value != 0) 1311 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1312 if (Interleave.Value != 0) 1313 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1314 R << ")"; 1315 } 1316 ORE.emit(R); 1317 } 1318 } 1319 1320 unsigned getWidth() const { return Width.Value; } 1321 unsigned getInterleave() const { return Interleave.Value; } 1322 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1323 1324 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1325 /// pass name to force the frontend to print the diagnostic. 1326 const char *vectorizeAnalysisPassName() const { 1327 if (getWidth() == 1) 1328 return LV_NAME; 1329 if (getForce() == LoopVectorizeHints::FK_Disabled) 1330 return LV_NAME; 1331 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1332 return LV_NAME; 1333 return OptimizationRemarkAnalysis::AlwaysPrint; 1334 } 1335 1336 bool allowReordering() const { 1337 // When enabling loop hints are provided we allow the vectorizer to change 1338 // the order of operations that is given by the scalar loop. This is not 1339 // enabled by default because can be unsafe or inefficient. For example, 1340 // reordering floating-point operations will change the way round-off 1341 // error accumulates in the loop. 1342 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1343 } 1344 1345 bool isPotentiallyUnsafe() const { 1346 // Avoid FP vectorization if the target is unsure about proper support. 1347 // This may be related to the SIMD unit in the target not handling 1348 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1349 // Otherwise, a sequence of vectorized loops, even without reduction, 1350 // could lead to different end results on the destination vectors. 1351 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1352 } 1353 1354 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1355 1356 private: 1357 /// Find hints specified in the loop metadata and update local values. 1358 void getHintsFromMetadata() { 1359 MDNode *LoopID = TheLoop->getLoopID(); 1360 if (!LoopID) 1361 return; 1362 1363 // First operand should refer to the loop id itself. 1364 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1365 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1366 1367 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1368 const MDString *S = nullptr; 1369 SmallVector<Metadata *, 4> Args; 1370 1371 // The expected hint is either a MDString or a MDNode with the first 1372 // operand a MDString. 1373 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1374 if (!MD || MD->getNumOperands() == 0) 1375 continue; 1376 S = dyn_cast<MDString>(MD->getOperand(0)); 1377 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1378 Args.push_back(MD->getOperand(i)); 1379 } else { 1380 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1381 assert(Args.size() == 0 && "too many arguments for MDString"); 1382 } 1383 1384 if (!S) 1385 continue; 1386 1387 // Check if the hint starts with the loop metadata prefix. 1388 StringRef Name = S->getString(); 1389 if (Args.size() == 1) 1390 setHint(Name, Args[0]); 1391 } 1392 } 1393 1394 /// Checks string hint with one operand and set value if valid. 1395 void setHint(StringRef Name, Metadata *Arg) { 1396 if (!Name.startswith(Prefix())) 1397 return; 1398 Name = Name.substr(Prefix().size(), StringRef::npos); 1399 1400 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1401 if (!C) 1402 return; 1403 unsigned Val = C->getZExtValue(); 1404 1405 Hint *Hints[] = {&Width, &Interleave, &Force}; 1406 for (auto H : Hints) { 1407 if (Name == H->Name) { 1408 if (H->validate(Val)) 1409 H->Value = Val; 1410 else 1411 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1412 break; 1413 } 1414 } 1415 } 1416 1417 /// Create a new hint from name / value pair. 1418 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1419 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1420 Metadata *MDs[] = {MDString::get(Context, Name), 1421 ConstantAsMetadata::get( 1422 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1423 return MDNode::get(Context, MDs); 1424 } 1425 1426 /// Matches metadata with hint name. 1427 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1428 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1429 if (!Name) 1430 return false; 1431 1432 for (auto H : HintTypes) 1433 if (Name->getString().endswith(H.Name)) 1434 return true; 1435 return false; 1436 } 1437 1438 /// Sets current hints into loop metadata, keeping other values intact. 1439 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1440 if (HintTypes.size() == 0) 1441 return; 1442 1443 // Reserve the first element to LoopID (see below). 1444 SmallVector<Metadata *, 4> MDs(1); 1445 // If the loop already has metadata, then ignore the existing operands. 1446 MDNode *LoopID = TheLoop->getLoopID(); 1447 if (LoopID) { 1448 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1449 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1450 // If node in update list, ignore old value. 1451 if (!matchesHintMetadataName(Node, HintTypes)) 1452 MDs.push_back(Node); 1453 } 1454 } 1455 1456 // Now, add the missing hints. 1457 for (auto H : HintTypes) 1458 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1459 1460 // Replace current metadata node with new one. 1461 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1462 MDNode *NewLoopID = MDNode::get(Context, MDs); 1463 // Set operand 0 to refer to the loop id itself. 1464 NewLoopID->replaceOperandWith(0, NewLoopID); 1465 1466 TheLoop->setLoopID(NewLoopID); 1467 } 1468 1469 /// The loop these hints belong to. 1470 const Loop *TheLoop; 1471 1472 /// Interface to emit optimization remarks. 1473 OptimizationRemarkEmitter &ORE; 1474 }; 1475 1476 static void emitAnalysisDiag(const Loop *TheLoop, 1477 const LoopVectorizeHints &Hints, 1478 OptimizationRemarkEmitter &ORE, 1479 const LoopAccessReport &Message) { 1480 const char *Name = Hints.vectorizeAnalysisPassName(); 1481 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1482 } 1483 1484 static void emitMissedWarning(Function *F, Loop *L, 1485 const LoopVectorizeHints &LH, 1486 OptimizationRemarkEmitter *ORE) { 1487 LH.emitRemarkWithHints(); 1488 1489 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1490 if (LH.getWidth() != 1) 1491 emitLoopVectorizeWarning( 1492 F->getContext(), *F, L->getStartLoc(), 1493 "failed explicitly specified loop vectorization"); 1494 else if (LH.getInterleave() != 1) 1495 emitLoopInterleaveWarning( 1496 F->getContext(), *F, L->getStartLoc(), 1497 "failed explicitly specified loop interleaving"); 1498 } 1499 } 1500 1501 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1502 /// to what vectorization factor. 1503 /// This class does not look at the profitability of vectorization, only the 1504 /// legality. This class has two main kinds of checks: 1505 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1506 /// will change the order of memory accesses in a way that will change the 1507 /// correctness of the program. 1508 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1509 /// checks for a number of different conditions, such as the availability of a 1510 /// single induction variable, that all types are supported and vectorize-able, 1511 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1512 /// This class is also used by InnerLoopVectorizer for identifying 1513 /// induction variable and the different reduction variables. 1514 class LoopVectorizationLegality { 1515 public: 1516 LoopVectorizationLegality( 1517 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1518 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1519 const TargetTransformInfo *TTI, 1520 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1521 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1522 LoopVectorizeHints *H) 1523 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1524 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1525 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1526 Requirements(R), Hints(H) {} 1527 1528 /// ReductionList contains the reduction descriptors for all 1529 /// of the reductions that were found in the loop. 1530 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1531 1532 /// InductionList saves induction variables and maps them to the 1533 /// induction descriptor. 1534 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1535 1536 /// RecurrenceSet contains the phi nodes that are recurrences other than 1537 /// inductions and reductions. 1538 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1539 1540 /// Returns true if it is legal to vectorize this loop. 1541 /// This does not mean that it is profitable to vectorize this 1542 /// loop, only that it is legal to do so. 1543 bool canVectorize(); 1544 1545 /// Returns the Induction variable. 1546 PHINode *getInduction() { return Induction; } 1547 1548 /// Returns the reduction variables found in the loop. 1549 ReductionList *getReductionVars() { return &Reductions; } 1550 1551 /// Returns the induction variables found in the loop. 1552 InductionList *getInductionVars() { return &Inductions; } 1553 1554 /// Return the first-order recurrences found in the loop. 1555 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1556 1557 /// Returns the widest induction type. 1558 Type *getWidestInductionType() { return WidestIndTy; } 1559 1560 /// Returns True if V is an induction variable in this loop. 1561 bool isInductionVariable(const Value *V); 1562 1563 /// Returns True if PN is a reduction variable in this loop. 1564 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1565 1566 /// Returns True if Phi is a first-order recurrence in this loop. 1567 bool isFirstOrderRecurrence(const PHINode *Phi); 1568 1569 /// Return true if the block BB needs to be predicated in order for the loop 1570 /// to be vectorized. 1571 bool blockNeedsPredication(BasicBlock *BB); 1572 1573 /// Check if this pointer is consecutive when vectorizing. This happens 1574 /// when the last index of the GEP is the induction variable, or that the 1575 /// pointer itself is an induction variable. 1576 /// This check allows us to vectorize A[idx] into a wide load/store. 1577 /// Returns: 1578 /// 0 - Stride is unknown or non-consecutive. 1579 /// 1 - Address is consecutive. 1580 /// -1 - Address is consecutive, and decreasing. 1581 int isConsecutivePtr(Value *Ptr); 1582 1583 /// Returns true if the value V is uniform within the loop. 1584 bool isUniform(Value *V); 1585 1586 /// Returns true if \p I is known to be uniform after vectorization. 1587 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1588 1589 /// Returns true if \p I is known to be scalar after vectorization. 1590 bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); } 1591 1592 /// Returns the information that we collected about runtime memory check. 1593 const RuntimePointerChecking *getRuntimePointerChecking() const { 1594 return LAI->getRuntimePointerChecking(); 1595 } 1596 1597 const LoopAccessInfo *getLAI() const { return LAI; } 1598 1599 /// \brief Check if \p Instr belongs to any interleaved access group. 1600 bool isAccessInterleaved(Instruction *Instr) { 1601 return InterleaveInfo.isInterleaved(Instr); 1602 } 1603 1604 /// \brief Return the maximum interleave factor of all interleaved groups. 1605 unsigned getMaxInterleaveFactor() const { 1606 return InterleaveInfo.getMaxInterleaveFactor(); 1607 } 1608 1609 /// \brief Get the interleaved access group that \p Instr belongs to. 1610 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1611 return InterleaveInfo.getInterleaveGroup(Instr); 1612 } 1613 1614 /// \brief Returns true if an interleaved group requires a scalar iteration 1615 /// to handle accesses with gaps. 1616 bool requiresScalarEpilogue() const { 1617 return InterleaveInfo.requiresScalarEpilogue(); 1618 } 1619 1620 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1621 1622 bool hasStride(Value *V) { return LAI->hasStride(V); } 1623 1624 /// Returns true if the target machine supports masked store operation 1625 /// for the given \p DataType and kind of access to \p Ptr. 1626 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1627 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1628 } 1629 /// Returns true if the target machine supports masked load operation 1630 /// for the given \p DataType and kind of access to \p Ptr. 1631 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1632 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1633 } 1634 /// Returns true if the target machine supports masked scatter operation 1635 /// for the given \p DataType. 1636 bool isLegalMaskedScatter(Type *DataType) { 1637 return TTI->isLegalMaskedScatter(DataType); 1638 } 1639 /// Returns true if the target machine supports masked gather operation 1640 /// for the given \p DataType. 1641 bool isLegalMaskedGather(Type *DataType) { 1642 return TTI->isLegalMaskedGather(DataType); 1643 } 1644 /// Returns true if the target machine can represent \p V as a masked gather 1645 /// or scatter operation. 1646 bool isLegalGatherOrScatter(Value *V) { 1647 auto *LI = dyn_cast<LoadInst>(V); 1648 auto *SI = dyn_cast<StoreInst>(V); 1649 if (!LI && !SI) 1650 return false; 1651 auto *Ptr = getPointerOperand(V); 1652 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1653 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1654 } 1655 1656 /// Returns true if vector representation of the instruction \p I 1657 /// requires mask. 1658 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1659 unsigned getNumStores() const { return LAI->getNumStores(); } 1660 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1661 unsigned getNumPredStores() const { return NumPredStores; } 1662 1663 /// Returns true if \p I is an instruction that will be scalarized with 1664 /// predication. Such instructions include conditional stores and 1665 /// instructions that may divide by zero. 1666 bool isScalarWithPredication(Instruction *I); 1667 1668 /// Returns true if \p I is a memory instruction that has a consecutive or 1669 /// consecutive-like pointer operand. Consecutive-like pointers are pointers 1670 /// that are treated like consecutive pointers during vectorization. The 1671 /// pointer operands of interleaved accesses are an example. 1672 bool hasConsecutiveLikePtrOperand(Instruction *I); 1673 1674 /// Returns true if \p I is a memory instruction that must be scalarized 1675 /// during vectorization. 1676 bool memoryInstructionMustBeScalarized(Instruction *I, unsigned VF = 1); 1677 1678 private: 1679 /// Check if a single basic block loop is vectorizable. 1680 /// At this point we know that this is a loop with a constant trip count 1681 /// and we only need to check individual instructions. 1682 bool canVectorizeInstrs(); 1683 1684 /// When we vectorize loops we may change the order in which 1685 /// we read and write from memory. This method checks if it is 1686 /// legal to vectorize the code, considering only memory constrains. 1687 /// Returns true if the loop is vectorizable 1688 bool canVectorizeMemory(); 1689 1690 /// Return true if we can vectorize this loop using the IF-conversion 1691 /// transformation. 1692 bool canVectorizeWithIfConvert(); 1693 1694 /// Collect the instructions that are uniform after vectorization. An 1695 /// instruction is uniform if we represent it with a single scalar value in 1696 /// the vectorized loop corresponding to each vector iteration. Examples of 1697 /// uniform instructions include pointer operands of consecutive or 1698 /// interleaved memory accesses. Note that although uniformity implies an 1699 /// instruction will be scalar, the reverse is not true. In general, a 1700 /// scalarized instruction will be represented by VF scalar values in the 1701 /// vectorized loop, each corresponding to an iteration of the original 1702 /// scalar loop. 1703 void collectLoopUniforms(); 1704 1705 /// Collect the instructions that are scalar after vectorization. An 1706 /// instruction is scalar if it is known to be uniform or will be scalarized 1707 /// during vectorization. Non-uniform scalarized instructions will be 1708 /// represented by VF values in the vectorized loop, each corresponding to an 1709 /// iteration of the original scalar loop. 1710 void collectLoopScalars(); 1711 1712 /// Return true if all of the instructions in the block can be speculatively 1713 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1714 /// and we know that we can read from them without segfault. 1715 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1716 1717 /// Updates the vectorization state by adding \p Phi to the inductions list. 1718 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1719 /// better choice for the main induction than the existing one. 1720 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1721 SmallPtrSetImpl<Value *> &AllowedExit); 1722 1723 /// Report an analysis message to assist the user in diagnosing loops that are 1724 /// not vectorized. These are handled as LoopAccessReport rather than 1725 /// VectorizationReport because the << operator of VectorizationReport returns 1726 /// LoopAccessReport. 1727 void emitAnalysis(const LoopAccessReport &Message) const { 1728 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1729 } 1730 1731 /// Create an analysis remark that explains why vectorization failed 1732 /// 1733 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1734 /// an instruction that prevents vectorization. Otherwise the loop is used 1735 /// for the location of the remark. \return the remark object that can be 1736 /// streamed to. 1737 OptimizationRemarkAnalysis 1738 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1739 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1740 RemarkName, TheLoop, I); 1741 } 1742 1743 /// \brief If an access has a symbolic strides, this maps the pointer value to 1744 /// the stride symbol. 1745 const ValueToValueMap *getSymbolicStrides() { 1746 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1747 // it's collected. This happens from canVectorizeWithIfConvert, when the 1748 // pointer is checked to reference consecutive elements suitable for a 1749 // masked access. 1750 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1751 } 1752 1753 unsigned NumPredStores; 1754 1755 /// The loop that we evaluate. 1756 Loop *TheLoop; 1757 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1758 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1759 /// of existing SCEV assumptions. The analysis will also add a minimal set 1760 /// of new predicates if this is required to enable vectorization and 1761 /// unrolling. 1762 PredicatedScalarEvolution &PSE; 1763 /// Target Library Info. 1764 TargetLibraryInfo *TLI; 1765 /// Target Transform Info 1766 const TargetTransformInfo *TTI; 1767 /// Dominator Tree. 1768 DominatorTree *DT; 1769 // LoopAccess analysis. 1770 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1771 // And the loop-accesses info corresponding to this loop. This pointer is 1772 // null until canVectorizeMemory sets it up. 1773 const LoopAccessInfo *LAI; 1774 /// Interface to emit optimization remarks. 1775 OptimizationRemarkEmitter *ORE; 1776 1777 /// The interleave access information contains groups of interleaved accesses 1778 /// with the same stride and close to each other. 1779 InterleavedAccessInfo InterleaveInfo; 1780 1781 // --- vectorization state --- // 1782 1783 /// Holds the integer induction variable. This is the counter of the 1784 /// loop. 1785 PHINode *Induction; 1786 /// Holds the reduction variables. 1787 ReductionList Reductions; 1788 /// Holds all of the induction variables that we found in the loop. 1789 /// Notice that inductions don't need to start at zero and that induction 1790 /// variables can be pointers. 1791 InductionList Inductions; 1792 /// Holds the phi nodes that are first-order recurrences. 1793 RecurrenceSet FirstOrderRecurrences; 1794 /// Holds the widest induction type encountered. 1795 Type *WidestIndTy; 1796 1797 /// Allowed outside users. This holds the induction and reduction 1798 /// vars which can be accessed from outside the loop. 1799 SmallPtrSet<Value *, 4> AllowedExit; 1800 1801 /// Holds the instructions known to be uniform after vectorization. 1802 SmallPtrSet<Instruction *, 4> Uniforms; 1803 1804 /// Holds the instructions known to be scalar after vectorization. 1805 SmallPtrSet<Instruction *, 4> Scalars; 1806 1807 /// Can we assume the absence of NaNs. 1808 bool HasFunNoNaNAttr; 1809 1810 /// Vectorization requirements that will go through late-evaluation. 1811 LoopVectorizationRequirements *Requirements; 1812 1813 /// Used to emit an analysis of any legality issues. 1814 LoopVectorizeHints *Hints; 1815 1816 /// While vectorizing these instructions we have to generate a 1817 /// call to the appropriate masked intrinsic 1818 SmallPtrSet<const Instruction *, 8> MaskedOp; 1819 }; 1820 1821 /// LoopVectorizationCostModel - estimates the expected speedups due to 1822 /// vectorization. 1823 /// In many cases vectorization is not profitable. This can happen because of 1824 /// a number of reasons. In this class we mainly attempt to predict the 1825 /// expected speedup/slowdowns due to the supported instruction set. We use the 1826 /// TargetTransformInfo to query the different backends for the cost of 1827 /// different operations. 1828 class LoopVectorizationCostModel { 1829 public: 1830 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1831 LoopInfo *LI, LoopVectorizationLegality *Legal, 1832 const TargetTransformInfo &TTI, 1833 const TargetLibraryInfo *TLI, DemandedBits *DB, 1834 AssumptionCache *AC, 1835 OptimizationRemarkEmitter *ORE, const Function *F, 1836 const LoopVectorizeHints *Hints) 1837 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1838 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1839 1840 /// Information about vectorization costs 1841 struct VectorizationFactor { 1842 unsigned Width; // Vector width with best cost 1843 unsigned Cost; // Cost of the loop with that width 1844 }; 1845 /// \return The most profitable vectorization factor and the cost of that VF. 1846 /// This method checks every power of two up to VF. If UserVF is not ZERO 1847 /// then this vectorization factor will be selected if vectorization is 1848 /// possible. 1849 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1850 1851 /// \return The size (in bits) of the smallest and widest types in the code 1852 /// that needs to be vectorized. We ignore values that remain scalar such as 1853 /// 64 bit loop indices. 1854 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1855 1856 /// \return The desired interleave count. 1857 /// If interleave count has been specified by metadata it will be returned. 1858 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1859 /// are the selected vectorization factor and the cost of the selected VF. 1860 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1861 unsigned LoopCost); 1862 1863 /// \return The most profitable unroll factor. 1864 /// This method finds the best unroll-factor based on register pressure and 1865 /// other parameters. VF and LoopCost are the selected vectorization factor 1866 /// and the cost of the selected VF. 1867 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1868 unsigned LoopCost); 1869 1870 /// \brief A struct that represents some properties of the register usage 1871 /// of a loop. 1872 struct RegisterUsage { 1873 /// Holds the number of loop invariant values that are used in the loop. 1874 unsigned LoopInvariantRegs; 1875 /// Holds the maximum number of concurrent live intervals in the loop. 1876 unsigned MaxLocalUsers; 1877 /// Holds the number of instructions in the loop. 1878 unsigned NumInstructions; 1879 }; 1880 1881 /// \return Returns information about the register usages of the loop for the 1882 /// given vectorization factors. 1883 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1884 1885 /// Collect values we want to ignore in the cost model. 1886 void collectValuesToIgnore(); 1887 1888 /// \returns The smallest bitwidth each instruction can be represented with. 1889 /// The vector equivalents of these instructions should be truncated to this 1890 /// type. 1891 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1892 return MinBWs; 1893 } 1894 1895 private: 1896 /// The vectorization cost is a combination of the cost itself and a boolean 1897 /// indicating whether any of the contributing operations will actually 1898 /// operate on 1899 /// vector values after type legalization in the backend. If this latter value 1900 /// is 1901 /// false, then all operations will be scalarized (i.e. no vectorization has 1902 /// actually taken place). 1903 typedef std::pair<unsigned, bool> VectorizationCostTy; 1904 1905 /// Returns the expected execution cost. The unit of the cost does 1906 /// not matter because we use the 'cost' units to compare different 1907 /// vector widths. The cost that is returned is *not* normalized by 1908 /// the factor width. 1909 VectorizationCostTy expectedCost(unsigned VF); 1910 1911 /// Returns the execution time cost of an instruction for a given vector 1912 /// width. Vector width of one means scalar. 1913 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1914 1915 /// The cost-computation logic from getInstructionCost which provides 1916 /// the vector type as an output parameter. 1917 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1918 1919 /// Returns whether the instruction is a load or store and will be a emitted 1920 /// as a vector operation. 1921 bool isConsecutiveLoadOrStore(Instruction *I); 1922 1923 /// Create an analysis remark that explains why vectorization failed 1924 /// 1925 /// \p RemarkName is the identifier for the remark. \return the remark object 1926 /// that can be streamed to. 1927 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1928 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1929 RemarkName, TheLoop); 1930 } 1931 1932 /// Map of scalar integer values to the smallest bitwidth they can be legally 1933 /// represented as. The vector equivalents of these values should be truncated 1934 /// to this type. 1935 MapVector<Instruction *, uint64_t> MinBWs; 1936 1937 public: 1938 /// The loop that we evaluate. 1939 Loop *TheLoop; 1940 /// Predicated scalar evolution analysis. 1941 PredicatedScalarEvolution &PSE; 1942 /// Loop Info analysis. 1943 LoopInfo *LI; 1944 /// Vectorization legality. 1945 LoopVectorizationLegality *Legal; 1946 /// Vector target information. 1947 const TargetTransformInfo &TTI; 1948 /// Target Library Info. 1949 const TargetLibraryInfo *TLI; 1950 /// Demanded bits analysis. 1951 DemandedBits *DB; 1952 /// Assumption cache. 1953 AssumptionCache *AC; 1954 /// Interface to emit optimization remarks. 1955 OptimizationRemarkEmitter *ORE; 1956 1957 const Function *TheFunction; 1958 /// Loop Vectorize Hint. 1959 const LoopVectorizeHints *Hints; 1960 /// Values to ignore in the cost model. 1961 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1962 /// Values to ignore in the cost model when VF > 1. 1963 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1964 }; 1965 1966 /// \brief This holds vectorization requirements that must be verified late in 1967 /// the process. The requirements are set by legalize and costmodel. Once 1968 /// vectorization has been determined to be possible and profitable the 1969 /// requirements can be verified by looking for metadata or compiler options. 1970 /// For example, some loops require FP commutativity which is only allowed if 1971 /// vectorization is explicitly specified or if the fast-math compiler option 1972 /// has been provided. 1973 /// Late evaluation of these requirements allows helpful diagnostics to be 1974 /// composed that tells the user what need to be done to vectorize the loop. For 1975 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1976 /// evaluation should be used only when diagnostics can generated that can be 1977 /// followed by a non-expert user. 1978 class LoopVectorizationRequirements { 1979 public: 1980 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 1981 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 1982 1983 void addUnsafeAlgebraInst(Instruction *I) { 1984 // First unsafe algebra instruction. 1985 if (!UnsafeAlgebraInst) 1986 UnsafeAlgebraInst = I; 1987 } 1988 1989 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1990 1991 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1992 const char *PassName = Hints.vectorizeAnalysisPassName(); 1993 bool Failed = false; 1994 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1995 ORE.emit( 1996 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 1997 UnsafeAlgebraInst->getDebugLoc(), 1998 UnsafeAlgebraInst->getParent()) 1999 << "loop not vectorized: cannot prove it is safe to reorder " 2000 "floating-point operations"); 2001 Failed = true; 2002 } 2003 2004 // Test if runtime memcheck thresholds are exceeded. 2005 bool PragmaThresholdReached = 2006 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2007 bool ThresholdReached = 2008 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2009 if ((ThresholdReached && !Hints.allowReordering()) || 2010 PragmaThresholdReached) { 2011 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2012 L->getStartLoc(), 2013 L->getHeader()) 2014 << "loop not vectorized: cannot prove it is safe to reorder " 2015 "memory operations"); 2016 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2017 Failed = true; 2018 } 2019 2020 return Failed; 2021 } 2022 2023 private: 2024 unsigned NumRuntimePointerChecks; 2025 Instruction *UnsafeAlgebraInst; 2026 2027 /// Interface to emit optimization remarks. 2028 OptimizationRemarkEmitter &ORE; 2029 }; 2030 2031 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2032 if (L.empty()) { 2033 if (!hasCyclesInLoopBody(L)) 2034 V.push_back(&L); 2035 return; 2036 } 2037 for (Loop *InnerL : L) 2038 addAcyclicInnerLoop(*InnerL, V); 2039 } 2040 2041 /// The LoopVectorize Pass. 2042 struct LoopVectorize : public FunctionPass { 2043 /// Pass identification, replacement for typeid 2044 static char ID; 2045 2046 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2047 : FunctionPass(ID) { 2048 Impl.DisableUnrolling = NoUnrolling; 2049 Impl.AlwaysVectorize = AlwaysVectorize; 2050 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2051 } 2052 2053 LoopVectorizePass Impl; 2054 2055 bool runOnFunction(Function &F) override { 2056 if (skipFunction(F)) 2057 return false; 2058 2059 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2060 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2061 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2062 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2063 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2064 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2065 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2066 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2067 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2068 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2069 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2070 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2071 2072 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2073 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2074 2075 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2076 GetLAA, *ORE); 2077 } 2078 2079 void getAnalysisUsage(AnalysisUsage &AU) const override { 2080 AU.addRequired<AssumptionCacheTracker>(); 2081 AU.addRequiredID(LoopSimplifyID); 2082 AU.addRequiredID(LCSSAID); 2083 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2084 AU.addRequired<DominatorTreeWrapperPass>(); 2085 AU.addRequired<LoopInfoWrapperPass>(); 2086 AU.addRequired<ScalarEvolutionWrapperPass>(); 2087 AU.addRequired<TargetTransformInfoWrapperPass>(); 2088 AU.addRequired<AAResultsWrapperPass>(); 2089 AU.addRequired<LoopAccessLegacyAnalysis>(); 2090 AU.addRequired<DemandedBitsWrapperPass>(); 2091 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2092 AU.addPreserved<LoopInfoWrapperPass>(); 2093 AU.addPreserved<DominatorTreeWrapperPass>(); 2094 AU.addPreserved<BasicAAWrapperPass>(); 2095 AU.addPreserved<GlobalsAAWrapperPass>(); 2096 } 2097 }; 2098 2099 } // end anonymous namespace 2100 2101 //===----------------------------------------------------------------------===// 2102 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2103 // LoopVectorizationCostModel. 2104 //===----------------------------------------------------------------------===// 2105 2106 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2107 // We need to place the broadcast of invariant variables outside the loop. 2108 Instruction *Instr = dyn_cast<Instruction>(V); 2109 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2110 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2111 2112 // Place the code for broadcasting invariant variables in the new preheader. 2113 IRBuilder<>::InsertPointGuard Guard(Builder); 2114 if (Invariant) 2115 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2116 2117 // Broadcast the scalar into all locations in the vector. 2118 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2119 2120 return Shuf; 2121 } 2122 2123 void InnerLoopVectorizer::createVectorIntInductionPHI( 2124 const InductionDescriptor &II, Instruction *EntryVal) { 2125 Value *Start = II.getStartValue(); 2126 ConstantInt *Step = II.getConstIntStepValue(); 2127 assert(Step && "Can not widen an IV with a non-constant step"); 2128 2129 // Construct the initial value of the vector IV in the vector loop preheader 2130 auto CurrIP = Builder.saveIP(); 2131 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2132 if (isa<TruncInst>(EntryVal)) { 2133 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2134 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2135 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2136 } 2137 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2138 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2139 Builder.restoreIP(CurrIP); 2140 2141 Value *SplatVF = 2142 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2143 VF * Step->getSExtValue())); 2144 // We may need to add the step a number of times, depending on the unroll 2145 // factor. The last of those goes into the PHI. 2146 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2147 &*LoopVectorBody->getFirstInsertionPt()); 2148 Instruction *LastInduction = VecInd; 2149 VectorParts Entry(UF); 2150 for (unsigned Part = 0; Part < UF; ++Part) { 2151 Entry[Part] = LastInduction; 2152 LastInduction = cast<Instruction>( 2153 Builder.CreateAdd(LastInduction, SplatVF, "step.add")); 2154 } 2155 VectorLoopValueMap.initVector(EntryVal, Entry); 2156 if (isa<TruncInst>(EntryVal)) 2157 addMetadata(Entry, EntryVal); 2158 2159 // Move the last step to the end of the latch block. This ensures consistent 2160 // placement of all induction updates. 2161 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2162 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2163 auto *ICmp = cast<Instruction>(Br->getCondition()); 2164 LastInduction->moveBefore(ICmp); 2165 LastInduction->setName("vec.ind.next"); 2166 2167 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2168 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2169 } 2170 2171 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2172 if (Legal->isScalarAfterVectorization(IV)) 2173 return true; 2174 auto isScalarInst = [&](User *U) -> bool { 2175 auto *I = cast<Instruction>(U); 2176 return (OrigLoop->contains(I) && Legal->isScalarAfterVectorization(I)); 2177 }; 2178 return any_of(IV->users(), isScalarInst); 2179 } 2180 2181 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) { 2182 2183 auto II = Legal->getInductionVars()->find(IV); 2184 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2185 2186 auto ID = II->second; 2187 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2188 2189 // The scalar value to broadcast. This will be derived from the canonical 2190 // induction variable. 2191 Value *ScalarIV = nullptr; 2192 2193 // The step of the induction. 2194 Value *Step = nullptr; 2195 2196 // The value from the original loop to which we are mapping the new induction 2197 // variable. 2198 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2199 2200 // True if we have vectorized the induction variable. 2201 auto VectorizedIV = false; 2202 2203 // Determine if we want a scalar version of the induction variable. This is 2204 // true if the induction variable itself is not widened, or if it has at 2205 // least one user in the loop that is not widened. 2206 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2207 2208 // If the induction variable has a constant integer step value, go ahead and 2209 // get it now. 2210 if (ID.getConstIntStepValue()) 2211 Step = ID.getConstIntStepValue(); 2212 2213 // Try to create a new independent vector induction variable. If we can't 2214 // create the phi node, we will splat the scalar induction variable in each 2215 // loop iteration. 2216 if (VF > 1 && IV->getType() == Induction->getType() && Step && 2217 !Legal->isScalarAfterVectorization(EntryVal)) { 2218 createVectorIntInductionPHI(ID, EntryVal); 2219 VectorizedIV = true; 2220 } 2221 2222 // If we haven't yet vectorized the induction variable, or if we will create 2223 // a scalar one, we need to define the scalar induction variable and step 2224 // values. If we were given a truncation type, truncate the canonical 2225 // induction variable and constant step. Otherwise, derive these values from 2226 // the induction descriptor. 2227 if (!VectorizedIV || NeedsScalarIV) { 2228 if (Trunc) { 2229 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2230 assert(Step && "Truncation requires constant integer step"); 2231 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 2232 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2233 Step = ConstantInt::getSigned(TruncType, StepInt); 2234 } else { 2235 ScalarIV = Induction; 2236 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2237 if (IV != OldInduction) { 2238 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2239 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2240 ScalarIV->setName("offset.idx"); 2241 } 2242 if (!Step) { 2243 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2244 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2245 &*Builder.GetInsertPoint()); 2246 } 2247 } 2248 } 2249 2250 // If we haven't yet vectorized the induction variable, splat the scalar 2251 // induction variable, and build the necessary step vectors. 2252 if (!VectorizedIV) { 2253 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2254 VectorParts Entry(UF); 2255 for (unsigned Part = 0; Part < UF; ++Part) 2256 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2257 VectorLoopValueMap.initVector(EntryVal, Entry); 2258 if (Trunc) 2259 addMetadata(Entry, Trunc); 2260 } 2261 2262 // If an induction variable is only used for counting loop iterations or 2263 // calculating addresses, it doesn't need to be widened. Create scalar steps 2264 // that can be used by instructions we will later scalarize. Note that the 2265 // addition of the scalar steps will not increase the number of instructions 2266 // in the loop in the common case prior to InstCombine. We will be trading 2267 // one vector extract for each scalar step. 2268 if (NeedsScalarIV) 2269 buildScalarSteps(ScalarIV, Step, EntryVal); 2270 } 2271 2272 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2273 Instruction::BinaryOps BinOp) { 2274 // Create and check the types. 2275 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2276 int VLen = Val->getType()->getVectorNumElements(); 2277 2278 Type *STy = Val->getType()->getScalarType(); 2279 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2280 "Induction Step must be an integer or FP"); 2281 assert(Step->getType() == STy && "Step has wrong type"); 2282 2283 SmallVector<Constant *, 8> Indices; 2284 2285 if (STy->isIntegerTy()) { 2286 // Create a vector of consecutive numbers from zero to VF. 2287 for (int i = 0; i < VLen; ++i) 2288 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2289 2290 // Add the consecutive indices to the vector value. 2291 Constant *Cv = ConstantVector::get(Indices); 2292 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2293 Step = Builder.CreateVectorSplat(VLen, Step); 2294 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2295 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2296 // which can be found from the original scalar operations. 2297 Step = Builder.CreateMul(Cv, Step); 2298 return Builder.CreateAdd(Val, Step, "induction"); 2299 } 2300 2301 // Floating point induction. 2302 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2303 "Binary Opcode should be specified for FP induction"); 2304 // Create a vector of consecutive numbers from zero to VF. 2305 for (int i = 0; i < VLen; ++i) 2306 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2307 2308 // Add the consecutive indices to the vector value. 2309 Constant *Cv = ConstantVector::get(Indices); 2310 2311 Step = Builder.CreateVectorSplat(VLen, Step); 2312 2313 // Floating point operations had to be 'fast' to enable the induction. 2314 FastMathFlags Flags; 2315 Flags.setUnsafeAlgebra(); 2316 2317 Value *MulOp = Builder.CreateFMul(Cv, Step); 2318 if (isa<Instruction>(MulOp)) 2319 // Have to check, MulOp may be a constant 2320 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2321 2322 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2323 if (isa<Instruction>(BOp)) 2324 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2325 return BOp; 2326 } 2327 2328 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2329 Value *EntryVal) { 2330 2331 // We shouldn't have to build scalar steps if we aren't vectorizing. 2332 assert(VF > 1 && "VF should be greater than one"); 2333 2334 // Get the value type and ensure it and the step have the same integer type. 2335 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2336 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2337 "Val and Step should have the same integer type"); 2338 2339 // Determine the number of scalars we need to generate for each unroll 2340 // iteration. If EntryVal is uniform, we only need to generate the first 2341 // lane. Otherwise, we generate all VF values. 2342 unsigned Lanes = 2343 Legal->isUniformAfterVectorization(cast<Instruction>(EntryVal)) ? 1 : VF; 2344 2345 // Compute the scalar steps and save the results in VectorLoopValueMap. 2346 ScalarParts Entry(UF); 2347 for (unsigned Part = 0; Part < UF; ++Part) { 2348 Entry[Part].resize(VF); 2349 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2350 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane); 2351 auto *Mul = Builder.CreateMul(StartIdx, Step); 2352 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2353 Entry[Part][Lane] = Add; 2354 } 2355 } 2356 VectorLoopValueMap.initScalar(EntryVal, Entry); 2357 } 2358 2359 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2360 2361 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2362 ValueToValueMap(); 2363 2364 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2365 if (Stride == 1 || Stride == -1) 2366 return Stride; 2367 return 0; 2368 } 2369 2370 bool LoopVectorizationLegality::isUniform(Value *V) { 2371 return LAI->isUniform(V); 2372 } 2373 2374 const InnerLoopVectorizer::VectorParts & 2375 InnerLoopVectorizer::getVectorValue(Value *V) { 2376 assert(V != Induction && "The new induction variable should not be used."); 2377 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2378 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2379 2380 // If we have a stride that is replaced by one, do it here. 2381 if (Legal->hasStride(V)) 2382 V = ConstantInt::get(V->getType(), 1); 2383 2384 // If we have this scalar in the map, return it. 2385 if (VectorLoopValueMap.hasVector(V)) 2386 return VectorLoopValueMap.VectorMapStorage[V]; 2387 2388 // If the value has not been vectorized, check if it has been scalarized 2389 // instead. If it has been scalarized, and we actually need the value in 2390 // vector form, we will construct the vector values on demand. 2391 if (VectorLoopValueMap.hasScalar(V)) { 2392 2393 // Initialize a new vector map entry. 2394 VectorParts Entry(UF); 2395 2396 // If we've scalarized a value, that value should be an instruction. 2397 auto *I = cast<Instruction>(V); 2398 2399 // If we aren't vectorizing, we can just copy the scalar map values over to 2400 // the vector map. 2401 if (VF == 1) { 2402 for (unsigned Part = 0; Part < UF; ++Part) 2403 Entry[Part] = getScalarValue(V, Part, 0); 2404 return VectorLoopValueMap.initVector(V, Entry); 2405 } 2406 2407 // Get the last scalar instruction we generated for V. If the value is 2408 // known to be uniform after vectorization, this corresponds to lane zero 2409 // of the last unroll iteration. Otherwise, the last instruction is the one 2410 // we created for the last vector lane of the last unroll iteration. 2411 unsigned LastLane = Legal->isUniformAfterVectorization(I) ? 0 : VF - 1; 2412 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2413 2414 // Set the insert point after the last scalarized instruction. This ensures 2415 // the insertelement sequence will directly follow the scalar definitions. 2416 auto OldIP = Builder.saveIP(); 2417 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2418 Builder.SetInsertPoint(&*NewIP); 2419 2420 // However, if we are vectorizing, we need to construct the vector values. 2421 // If the value is known to be uniform after vectorization, we can just 2422 // broadcast the scalar value corresponding to lane zero for each unroll 2423 // iteration. Otherwise, we construct the vector values using insertelement 2424 // instructions. Since the resulting vectors are stored in 2425 // VectorLoopValueMap, we will only generate the insertelements once. 2426 for (unsigned Part = 0; Part < UF; ++Part) { 2427 Value *VectorValue = nullptr; 2428 if (Legal->isUniformAfterVectorization(I)) { 2429 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2430 } else { 2431 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2432 for (unsigned Lane = 0; Lane < VF; ++Lane) 2433 VectorValue = Builder.CreateInsertElement( 2434 VectorValue, getScalarValue(V, Part, Lane), 2435 Builder.getInt32(Lane)); 2436 } 2437 Entry[Part] = VectorValue; 2438 } 2439 Builder.restoreIP(OldIP); 2440 return VectorLoopValueMap.initVector(V, Entry); 2441 } 2442 2443 // If this scalar is unknown, assume that it is a constant or that it is 2444 // loop invariant. Broadcast V and save the value for future uses. 2445 Value *B = getBroadcastInstrs(V); 2446 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2447 } 2448 2449 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2450 unsigned Lane) { 2451 2452 // If the value is not an instruction contained in the loop, it should 2453 // already be scalar. 2454 if (OrigLoop->isLoopInvariant(V)) 2455 return V; 2456 2457 assert(Lane > 0 ? !Legal->isUniformAfterVectorization(cast<Instruction>(V)) 2458 : true && "Uniform values only have lane zero"); 2459 2460 // If the value from the original loop has not been vectorized, it is 2461 // represented by UF x VF scalar values in the new loop. Return the requested 2462 // scalar value. 2463 if (VectorLoopValueMap.hasScalar(V)) 2464 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2465 2466 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2467 // for the given unroll part. If this entry is not a vector type (i.e., the 2468 // vectorization factor is one), there is no need to generate an 2469 // extractelement instruction. 2470 auto *U = getVectorValue(V)[Part]; 2471 if (!U->getType()->isVectorTy()) { 2472 assert(VF == 1 && "Value not scalarized has non-vector type"); 2473 return U; 2474 } 2475 2476 // Otherwise, the value from the original loop has been vectorized and is 2477 // represented by UF vector values. Extract and return the requested scalar 2478 // value from the appropriate vector lane. 2479 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2480 } 2481 2482 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2483 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2484 SmallVector<Constant *, 8> ShuffleMask; 2485 for (unsigned i = 0; i < VF; ++i) 2486 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2487 2488 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2489 ConstantVector::get(ShuffleMask), 2490 "reverse"); 2491 } 2492 2493 // Get a mask to interleave \p NumVec vectors into a wide vector. 2494 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2495 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2496 // <0, 4, 1, 5, 2, 6, 3, 7> 2497 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2498 unsigned NumVec) { 2499 SmallVector<Constant *, 16> Mask; 2500 for (unsigned i = 0; i < VF; i++) 2501 for (unsigned j = 0; j < NumVec; j++) 2502 Mask.push_back(Builder.getInt32(j * VF + i)); 2503 2504 return ConstantVector::get(Mask); 2505 } 2506 2507 // Get the strided mask starting from index \p Start. 2508 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2509 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2510 unsigned Stride, unsigned VF) { 2511 SmallVector<Constant *, 16> Mask; 2512 for (unsigned i = 0; i < VF; i++) 2513 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2514 2515 return ConstantVector::get(Mask); 2516 } 2517 2518 // Get a mask of two parts: The first part consists of sequential integers 2519 // starting from 0, The second part consists of UNDEFs. 2520 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2521 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2522 unsigned NumUndef) { 2523 SmallVector<Constant *, 16> Mask; 2524 for (unsigned i = 0; i < NumInt; i++) 2525 Mask.push_back(Builder.getInt32(i)); 2526 2527 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2528 for (unsigned i = 0; i < NumUndef; i++) 2529 Mask.push_back(Undef); 2530 2531 return ConstantVector::get(Mask); 2532 } 2533 2534 // Concatenate two vectors with the same element type. The 2nd vector should 2535 // not have more elements than the 1st vector. If the 2nd vector has less 2536 // elements, extend it with UNDEFs. 2537 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2538 Value *V2) { 2539 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2540 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2541 assert(VecTy1 && VecTy2 && 2542 VecTy1->getScalarType() == VecTy2->getScalarType() && 2543 "Expect two vectors with the same element type"); 2544 2545 unsigned NumElts1 = VecTy1->getNumElements(); 2546 unsigned NumElts2 = VecTy2->getNumElements(); 2547 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2548 2549 if (NumElts1 > NumElts2) { 2550 // Extend with UNDEFs. 2551 Constant *ExtMask = 2552 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2553 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2554 } 2555 2556 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2557 return Builder.CreateShuffleVector(V1, V2, Mask); 2558 } 2559 2560 // Concatenate vectors in the given list. All vectors have the same type. 2561 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2562 ArrayRef<Value *> InputList) { 2563 unsigned NumVec = InputList.size(); 2564 assert(NumVec > 1 && "Should be at least two vectors"); 2565 2566 SmallVector<Value *, 8> ResList; 2567 ResList.append(InputList.begin(), InputList.end()); 2568 do { 2569 SmallVector<Value *, 8> TmpList; 2570 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2571 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2572 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2573 "Only the last vector may have a different type"); 2574 2575 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2576 } 2577 2578 // Push the last vector if the total number of vectors is odd. 2579 if (NumVec % 2 != 0) 2580 TmpList.push_back(ResList[NumVec - 1]); 2581 2582 ResList = TmpList; 2583 NumVec = ResList.size(); 2584 } while (NumVec > 1); 2585 2586 return ResList[0]; 2587 } 2588 2589 // Try to vectorize the interleave group that \p Instr belongs to. 2590 // 2591 // E.g. Translate following interleaved load group (factor = 3): 2592 // for (i = 0; i < N; i+=3) { 2593 // R = Pic[i]; // Member of index 0 2594 // G = Pic[i+1]; // Member of index 1 2595 // B = Pic[i+2]; // Member of index 2 2596 // ... // do something to R, G, B 2597 // } 2598 // To: 2599 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2600 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2601 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2602 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2603 // 2604 // Or translate following interleaved store group (factor = 3): 2605 // for (i = 0; i < N; i+=3) { 2606 // ... do something to R, G, B 2607 // Pic[i] = R; // Member of index 0 2608 // Pic[i+1] = G; // Member of index 1 2609 // Pic[i+2] = B; // Member of index 2 2610 // } 2611 // To: 2612 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2613 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2614 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2615 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2616 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2617 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2618 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2619 assert(Group && "Fail to get an interleaved access group."); 2620 2621 // Skip if current instruction is not the insert position. 2622 if (Instr != Group->getInsertPos()) 2623 return; 2624 2625 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2626 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2627 Value *Ptr = getPointerOperand(Instr); 2628 2629 // Prepare for the vector type of the interleaved load/store. 2630 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2631 unsigned InterleaveFactor = Group->getFactor(); 2632 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2633 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2634 2635 // Prepare for the new pointers. 2636 setDebugLocFromInst(Builder, Ptr); 2637 SmallVector<Value *, 2> NewPtrs; 2638 unsigned Index = Group->getIndex(Instr); 2639 2640 // If the group is reverse, adjust the index to refer to the last vector lane 2641 // instead of the first. We adjust the index from the first vector lane, 2642 // rather than directly getting the pointer for lane VF - 1, because the 2643 // pointer operand of the interleaved access is supposed to be uniform. For 2644 // uniform instructions, we're only required to generate a value for the 2645 // first vector lane in each unroll iteration. 2646 if (Group->isReverse()) 2647 Index += (VF - 1) * Group->getFactor(); 2648 2649 for (unsigned Part = 0; Part < UF; Part++) { 2650 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2651 2652 // Notice current instruction could be any index. Need to adjust the address 2653 // to the member of index 0. 2654 // 2655 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2656 // b = A[i]; // Member of index 0 2657 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2658 // 2659 // E.g. A[i+1] = a; // Member of index 1 2660 // A[i] = b; // Member of index 0 2661 // A[i+2] = c; // Member of index 2 (Current instruction) 2662 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2663 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2664 2665 // Cast to the vector pointer type. 2666 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2667 } 2668 2669 setDebugLocFromInst(Builder, Instr); 2670 Value *UndefVec = UndefValue::get(VecTy); 2671 2672 // Vectorize the interleaved load group. 2673 if (LI) { 2674 2675 // For each unroll part, create a wide load for the group. 2676 SmallVector<Value *, 2> NewLoads; 2677 for (unsigned Part = 0; Part < UF; Part++) { 2678 auto *NewLoad = Builder.CreateAlignedLoad( 2679 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2680 addMetadata(NewLoad, Instr); 2681 NewLoads.push_back(NewLoad); 2682 } 2683 2684 // For each member in the group, shuffle out the appropriate data from the 2685 // wide loads. 2686 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2687 Instruction *Member = Group->getMember(I); 2688 2689 // Skip the gaps in the group. 2690 if (!Member) 2691 continue; 2692 2693 VectorParts Entry(UF); 2694 Constant *StrideMask = getStridedMask(Builder, I, InterleaveFactor, VF); 2695 for (unsigned Part = 0; Part < UF; Part++) { 2696 Value *StridedVec = Builder.CreateShuffleVector( 2697 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2698 2699 // If this member has different type, cast the result type. 2700 if (Member->getType() != ScalarTy) { 2701 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2702 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2703 } 2704 2705 Entry[Part] = 2706 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2707 } 2708 VectorLoopValueMap.initVector(Member, Entry); 2709 } 2710 return; 2711 } 2712 2713 // The sub vector type for current instruction. 2714 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2715 2716 // Vectorize the interleaved store group. 2717 for (unsigned Part = 0; Part < UF; Part++) { 2718 // Collect the stored vector from each member. 2719 SmallVector<Value *, 4> StoredVecs; 2720 for (unsigned i = 0; i < InterleaveFactor; i++) { 2721 // Interleaved store group doesn't allow a gap, so each index has a member 2722 Instruction *Member = Group->getMember(i); 2723 assert(Member && "Fail to get a member from an interleaved store group"); 2724 2725 Value *StoredVec = 2726 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2727 if (Group->isReverse()) 2728 StoredVec = reverseVector(StoredVec); 2729 2730 // If this member has different type, cast it to an unified type. 2731 if (StoredVec->getType() != SubVT) 2732 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2733 2734 StoredVecs.push_back(StoredVec); 2735 } 2736 2737 // Concatenate all vectors into a wide vector. 2738 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2739 2740 // Interleave the elements in the wide vector. 2741 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2742 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2743 "interleaved.vec"); 2744 2745 Instruction *NewStoreInstr = 2746 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2747 addMetadata(NewStoreInstr, Instr); 2748 } 2749 } 2750 2751 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2752 // Attempt to issue a wide load. 2753 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2754 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2755 2756 assert((LI || SI) && "Invalid Load/Store instruction"); 2757 2758 // Try to vectorize the interleave group if this access is interleaved. 2759 if (Legal->isAccessInterleaved(Instr)) 2760 return vectorizeInterleaveGroup(Instr); 2761 2762 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2763 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2764 Value *Ptr = getPointerOperand(Instr); 2765 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2766 // An alignment of 0 means target abi alignment. We need to use the scalar's 2767 // target abi alignment in such a case. 2768 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2769 if (!Alignment) 2770 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2771 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2772 2773 // Scalarize the memory instruction if necessary. 2774 if (Legal->memoryInstructionMustBeScalarized(Instr, VF)) 2775 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2776 2777 // Determine if the pointer operand of the access is either consecutive or 2778 // reverse consecutive. 2779 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2780 bool Reverse = ConsecutiveStride < 0; 2781 2782 // Determine if either a gather or scatter operation is legal. 2783 bool CreateGatherScatter = 2784 !ConsecutiveStride && Legal->isLegalGatherOrScatter(Instr); 2785 2786 VectorParts VectorGep; 2787 2788 // Handle consecutive loads/stores. 2789 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2790 if (ConsecutiveStride) { 2791 if (Gep) { 2792 unsigned NumOperands = Gep->getNumOperands(); 2793 #ifndef NDEBUG 2794 // The original GEP that identified as a consecutive memory access 2795 // should have only one loop-variant operand. 2796 unsigned NumOfLoopVariantOps = 0; 2797 for (unsigned i = 0; i < NumOperands; ++i) 2798 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 2799 OrigLoop)) 2800 NumOfLoopVariantOps++; 2801 assert(NumOfLoopVariantOps == 1 && 2802 "Consecutive GEP should have only one loop-variant operand"); 2803 #endif 2804 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2805 Gep2->setName("gep.indvar"); 2806 2807 // A new GEP is created for a 0-lane value of the first unroll iteration. 2808 // The GEPs for the rest of the unroll iterations are computed below as an 2809 // offset from this GEP. 2810 for (unsigned i = 0; i < NumOperands; ++i) 2811 // We can apply getScalarValue() for all GEP indices. It returns an 2812 // original value for loop-invariant operand and 0-lane for consecutive 2813 // operand. 2814 Gep2->setOperand(i, getScalarValue(Gep->getOperand(i), 2815 0, /* First unroll iteration */ 2816 0 /* 0-lane of the vector */ )); 2817 setDebugLocFromInst(Builder, Gep); 2818 Ptr = Builder.Insert(Gep2); 2819 2820 } else { // No GEP 2821 setDebugLocFromInst(Builder, Ptr); 2822 Ptr = getScalarValue(Ptr, 0, 0); 2823 } 2824 } else { 2825 // At this point we should vector version of GEP for Gather or Scatter 2826 assert(CreateGatherScatter && "The instruction should be scalarized"); 2827 if (Gep) { 2828 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2829 // and each index that's defined inside the loop, even if it is 2830 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2831 // scalar. 2832 SmallVector<VectorParts, 4> OpsV; 2833 for (Value *Op : Gep->operands()) { 2834 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2835 if (SrcInst && OrigLoop->contains(SrcInst)) 2836 OpsV.push_back(getVectorValue(Op)); 2837 else 2838 OpsV.push_back(VectorParts(UF, Op)); 2839 } 2840 for (unsigned Part = 0; Part < UF; ++Part) { 2841 SmallVector<Value *, 4> Ops; 2842 Value *GEPBasePtr = OpsV[0][Part]; 2843 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2844 Ops.push_back(OpsV[i][Part]); 2845 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2846 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2847 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2848 2849 NewGep = 2850 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2851 VectorGep.push_back(NewGep); 2852 } 2853 } else 2854 VectorGep = getVectorValue(Ptr); 2855 } 2856 2857 VectorParts Mask = createBlockInMask(Instr->getParent()); 2858 // Handle Stores: 2859 if (SI) { 2860 assert(!Legal->isUniform(SI->getPointerOperand()) && 2861 "We do not allow storing to uniform addresses"); 2862 setDebugLocFromInst(Builder, SI); 2863 // We don't want to update the value in the map as it might be used in 2864 // another expression. So don't use a reference type for "StoredVal". 2865 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2866 2867 for (unsigned Part = 0; Part < UF; ++Part) { 2868 Instruction *NewSI = nullptr; 2869 if (CreateGatherScatter) { 2870 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2871 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2872 Alignment, MaskPart); 2873 } else { 2874 // Calculate the pointer for the specific unroll-part. 2875 Value *PartPtr = 2876 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2877 2878 if (Reverse) { 2879 // If we store to reverse consecutive memory locations, then we need 2880 // to reverse the order of elements in the stored value. 2881 StoredVal[Part] = reverseVector(StoredVal[Part]); 2882 // If the address is consecutive but reversed, then the 2883 // wide store needs to start at the last vector element. 2884 PartPtr = 2885 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2886 PartPtr = 2887 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2888 Mask[Part] = reverseVector(Mask[Part]); 2889 } 2890 2891 Value *VecPtr = 2892 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2893 2894 if (Legal->isMaskRequired(SI)) 2895 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2896 Mask[Part]); 2897 else 2898 NewSI = 2899 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2900 } 2901 addMetadata(NewSI, SI); 2902 } 2903 return; 2904 } 2905 2906 // Handle loads. 2907 assert(LI && "Must have a load instruction"); 2908 setDebugLocFromInst(Builder, LI); 2909 VectorParts Entry(UF); 2910 for (unsigned Part = 0; Part < UF; ++Part) { 2911 Instruction *NewLI; 2912 if (CreateGatherScatter) { 2913 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2914 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2915 0, "wide.masked.gather"); 2916 Entry[Part] = NewLI; 2917 } else { 2918 // Calculate the pointer for the specific unroll-part. 2919 Value *PartPtr = 2920 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2921 2922 if (Reverse) { 2923 // If the address is consecutive but reversed, then the 2924 // wide load needs to start at the last vector element. 2925 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2926 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2927 Mask[Part] = reverseVector(Mask[Part]); 2928 } 2929 2930 Value *VecPtr = 2931 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2932 if (Legal->isMaskRequired(LI)) 2933 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2934 UndefValue::get(DataTy), 2935 "wide.masked.load"); 2936 else 2937 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2938 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2939 } 2940 addMetadata(NewLI, LI); 2941 } 2942 VectorLoopValueMap.initVector(Instr, Entry); 2943 } 2944 2945 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2946 bool IfPredicateInstr) { 2947 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2948 DEBUG(dbgs() << "LV: Scalarizing" 2949 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 2950 << '\n'); 2951 // Holds vector parameters or scalars, in case of uniform vals. 2952 SmallVector<VectorParts, 4> Params; 2953 2954 setDebugLocFromInst(Builder, Instr); 2955 2956 // Does this instruction return a value ? 2957 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2958 2959 // Initialize a new scalar map entry. 2960 ScalarParts Entry(UF); 2961 2962 VectorParts Cond; 2963 if (IfPredicateInstr) 2964 Cond = createBlockInMask(Instr->getParent()); 2965 2966 // Determine the number of scalars we need to generate for each unroll 2967 // iteration. If the instruction is uniform, we only need to generate the 2968 // first lane. Otherwise, we generate all VF values. 2969 unsigned Lanes = Legal->isUniformAfterVectorization(Instr) ? 1 : VF; 2970 2971 // For each vector unroll 'part': 2972 for (unsigned Part = 0; Part < UF; ++Part) { 2973 Entry[Part].resize(VF); 2974 // For each scalar that we create: 2975 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2976 2977 // Start if-block. 2978 Value *Cmp = nullptr; 2979 if (IfPredicateInstr) { 2980 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Lane)); 2981 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2982 ConstantInt::get(Cmp->getType(), 1)); 2983 } 2984 2985 Instruction *Cloned = Instr->clone(); 2986 if (!IsVoidRetTy) 2987 Cloned->setName(Instr->getName() + ".cloned"); 2988 2989 // Replace the operands of the cloned instructions with their scalar 2990 // equivalents in the new loop. 2991 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2992 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 2993 Cloned->setOperand(op, NewOp); 2994 } 2995 addNewMetadata(Cloned, Instr); 2996 2997 // Place the cloned scalar in the new loop. 2998 Builder.Insert(Cloned); 2999 3000 // Add the cloned scalar to the scalar map entry. 3001 Entry[Part][Lane] = Cloned; 3002 3003 // If we just cloned a new assumption, add it the assumption cache. 3004 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3005 if (II->getIntrinsicID() == Intrinsic::assume) 3006 AC->registerAssumption(II); 3007 3008 // End if-block. 3009 if (IfPredicateInstr) 3010 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3011 } 3012 } 3013 VectorLoopValueMap.initScalar(Instr, Entry); 3014 } 3015 3016 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3017 Value *End, Value *Step, 3018 Instruction *DL) { 3019 BasicBlock *Header = L->getHeader(); 3020 BasicBlock *Latch = L->getLoopLatch(); 3021 // As we're just creating this loop, it's possible no latch exists 3022 // yet. If so, use the header as this will be a single block loop. 3023 if (!Latch) 3024 Latch = Header; 3025 3026 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3027 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 3028 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3029 3030 Builder.SetInsertPoint(Latch->getTerminator()); 3031 3032 // Create i+1 and fill the PHINode. 3033 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3034 Induction->addIncoming(Start, L->getLoopPreheader()); 3035 Induction->addIncoming(Next, Latch); 3036 // Create the compare. 3037 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3038 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3039 3040 // Now we have two terminators. Remove the old one from the block. 3041 Latch->getTerminator()->eraseFromParent(); 3042 3043 return Induction; 3044 } 3045 3046 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3047 if (TripCount) 3048 return TripCount; 3049 3050 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3051 // Find the loop boundaries. 3052 ScalarEvolution *SE = PSE.getSE(); 3053 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3054 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3055 "Invalid loop count"); 3056 3057 Type *IdxTy = Legal->getWidestInductionType(); 3058 3059 // The exit count might have the type of i64 while the phi is i32. This can 3060 // happen if we have an induction variable that is sign extended before the 3061 // compare. The only way that we get a backedge taken count is that the 3062 // induction variable was signed and as such will not overflow. In such a case 3063 // truncation is legal. 3064 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3065 IdxTy->getPrimitiveSizeInBits()) 3066 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3067 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3068 3069 // Get the total trip count from the count by adding 1. 3070 const SCEV *ExitCount = SE->getAddExpr( 3071 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3072 3073 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3074 3075 // Expand the trip count and place the new instructions in the preheader. 3076 // Notice that the pre-header does not change, only the loop body. 3077 SCEVExpander Exp(*SE, DL, "induction"); 3078 3079 // Count holds the overall loop count (N). 3080 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3081 L->getLoopPreheader()->getTerminator()); 3082 3083 if (TripCount->getType()->isPointerTy()) 3084 TripCount = 3085 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3086 L->getLoopPreheader()->getTerminator()); 3087 3088 return TripCount; 3089 } 3090 3091 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3092 if (VectorTripCount) 3093 return VectorTripCount; 3094 3095 Value *TC = getOrCreateTripCount(L); 3096 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3097 3098 // Now we need to generate the expression for the part of the loop that the 3099 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3100 // iterations are not required for correctness, or N - Step, otherwise. Step 3101 // is equal to the vectorization factor (number of SIMD elements) times the 3102 // unroll factor (number of SIMD instructions). 3103 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3104 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3105 3106 // If there is a non-reversed interleaved group that may speculatively access 3107 // memory out-of-bounds, we need to ensure that there will be at least one 3108 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3109 // the trip count, we set the remainder to be equal to the step. If the step 3110 // does not evenly divide the trip count, no adjustment is necessary since 3111 // there will already be scalar iterations. Note that the minimum iterations 3112 // check ensures that N >= Step. 3113 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3114 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3115 R = Builder.CreateSelect(IsZero, Step, R); 3116 } 3117 3118 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3119 3120 return VectorTripCount; 3121 } 3122 3123 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3124 BasicBlock *Bypass) { 3125 Value *Count = getOrCreateTripCount(L); 3126 BasicBlock *BB = L->getLoopPreheader(); 3127 IRBuilder<> Builder(BB->getTerminator()); 3128 3129 // Generate code to check that the loop's trip count that we computed by 3130 // adding one to the backedge-taken count will not overflow. 3131 Value *CheckMinIters = Builder.CreateICmpULT( 3132 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3133 3134 BasicBlock *NewBB = 3135 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3136 // Update dominator tree immediately if the generated block is a 3137 // LoopBypassBlock because SCEV expansions to generate loop bypass 3138 // checks may query it before the current function is finished. 3139 DT->addNewBlock(NewBB, BB); 3140 if (L->getParentLoop()) 3141 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3142 ReplaceInstWithInst(BB->getTerminator(), 3143 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3144 LoopBypassBlocks.push_back(BB); 3145 } 3146 3147 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3148 BasicBlock *Bypass) { 3149 Value *TC = getOrCreateVectorTripCount(L); 3150 BasicBlock *BB = L->getLoopPreheader(); 3151 IRBuilder<> Builder(BB->getTerminator()); 3152 3153 // Now, compare the new count to zero. If it is zero skip the vector loop and 3154 // jump to the scalar loop. 3155 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3156 "cmp.zero"); 3157 3158 // Generate code to check that the loop's trip count that we computed by 3159 // adding one to the backedge-taken count will not overflow. 3160 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3161 // Update dominator tree immediately if the generated block is a 3162 // LoopBypassBlock because SCEV expansions to generate loop bypass 3163 // checks may query it before the current function is finished. 3164 DT->addNewBlock(NewBB, BB); 3165 if (L->getParentLoop()) 3166 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3167 ReplaceInstWithInst(BB->getTerminator(), 3168 BranchInst::Create(Bypass, NewBB, Cmp)); 3169 LoopBypassBlocks.push_back(BB); 3170 } 3171 3172 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3173 BasicBlock *BB = L->getLoopPreheader(); 3174 3175 // Generate the code to check that the SCEV assumptions that we made. 3176 // We want the new basic block to start at the first instruction in a 3177 // sequence of instructions that form a check. 3178 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3179 "scev.check"); 3180 Value *SCEVCheck = 3181 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3182 3183 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3184 if (C->isZero()) 3185 return; 3186 3187 // Create a new block containing the stride check. 3188 BB->setName("vector.scevcheck"); 3189 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3190 // Update dominator tree immediately if the generated block is a 3191 // LoopBypassBlock because SCEV expansions to generate loop bypass 3192 // checks may query it before the current function is finished. 3193 DT->addNewBlock(NewBB, BB); 3194 if (L->getParentLoop()) 3195 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3196 ReplaceInstWithInst(BB->getTerminator(), 3197 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3198 LoopBypassBlocks.push_back(BB); 3199 AddedSafetyChecks = true; 3200 } 3201 3202 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3203 BasicBlock *BB = L->getLoopPreheader(); 3204 3205 // Generate the code that checks in runtime if arrays overlap. We put the 3206 // checks into a separate block to make the more common case of few elements 3207 // faster. 3208 Instruction *FirstCheckInst; 3209 Instruction *MemRuntimeCheck; 3210 std::tie(FirstCheckInst, MemRuntimeCheck) = 3211 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3212 if (!MemRuntimeCheck) 3213 return; 3214 3215 // Create a new block containing the memory check. 3216 BB->setName("vector.memcheck"); 3217 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3218 // Update dominator tree immediately if the generated block is a 3219 // LoopBypassBlock because SCEV expansions to generate loop bypass 3220 // checks may query it before the current function is finished. 3221 DT->addNewBlock(NewBB, BB); 3222 if (L->getParentLoop()) 3223 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3224 ReplaceInstWithInst(BB->getTerminator(), 3225 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3226 LoopBypassBlocks.push_back(BB); 3227 AddedSafetyChecks = true; 3228 3229 // We currently don't use LoopVersioning for the actual loop cloning but we 3230 // still use it to add the noalias metadata. 3231 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3232 PSE.getSE()); 3233 LVer->prepareNoAliasMetadata(); 3234 } 3235 3236 void InnerLoopVectorizer::createEmptyLoop() { 3237 /* 3238 In this function we generate a new loop. The new loop will contain 3239 the vectorized instructions while the old loop will continue to run the 3240 scalar remainder. 3241 3242 [ ] <-- loop iteration number check. 3243 / | 3244 / v 3245 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3246 | / | 3247 | / v 3248 || [ ] <-- vector pre header. 3249 |/ | 3250 | v 3251 | [ ] \ 3252 | [ ]_| <-- vector loop. 3253 | | 3254 | v 3255 | -[ ] <--- middle-block. 3256 | / | 3257 | / v 3258 -|- >[ ] <--- new preheader. 3259 | | 3260 | v 3261 | [ ] \ 3262 | [ ]_| <-- old scalar loop to handle remainder. 3263 \ | 3264 \ v 3265 >[ ] <-- exit block. 3266 ... 3267 */ 3268 3269 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3270 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3271 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3272 assert(VectorPH && "Invalid loop structure"); 3273 assert(ExitBlock && "Must have an exit block"); 3274 3275 // Some loops have a single integer induction variable, while other loops 3276 // don't. One example is c++ iterators that often have multiple pointer 3277 // induction variables. In the code below we also support a case where we 3278 // don't have a single induction variable. 3279 // 3280 // We try to obtain an induction variable from the original loop as hard 3281 // as possible. However if we don't find one that: 3282 // - is an integer 3283 // - counts from zero, stepping by one 3284 // - is the size of the widest induction variable type 3285 // then we create a new one. 3286 OldInduction = Legal->getInduction(); 3287 Type *IdxTy = Legal->getWidestInductionType(); 3288 3289 // Split the single block loop into the two loop structure described above. 3290 BasicBlock *VecBody = 3291 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3292 BasicBlock *MiddleBlock = 3293 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3294 BasicBlock *ScalarPH = 3295 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3296 3297 // Create and register the new vector loop. 3298 Loop *Lp = new Loop(); 3299 Loop *ParentLoop = OrigLoop->getParentLoop(); 3300 3301 // Insert the new loop into the loop nest and register the new basic blocks 3302 // before calling any utilities such as SCEV that require valid LoopInfo. 3303 if (ParentLoop) { 3304 ParentLoop->addChildLoop(Lp); 3305 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3306 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3307 } else { 3308 LI->addTopLevelLoop(Lp); 3309 } 3310 Lp->addBasicBlockToLoop(VecBody, *LI); 3311 3312 // Find the loop boundaries. 3313 Value *Count = getOrCreateTripCount(Lp); 3314 3315 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3316 3317 // We need to test whether the backedge-taken count is uint##_max. Adding one 3318 // to it will cause overflow and an incorrect loop trip count in the vector 3319 // body. In case of overflow we want to directly jump to the scalar remainder 3320 // loop. 3321 emitMinimumIterationCountCheck(Lp, ScalarPH); 3322 // Now, compare the new count to zero. If it is zero skip the vector loop and 3323 // jump to the scalar loop. 3324 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3325 // Generate the code to check any assumptions that we've made for SCEV 3326 // expressions. 3327 emitSCEVChecks(Lp, ScalarPH); 3328 3329 // Generate the code that checks in runtime if arrays overlap. We put the 3330 // checks into a separate block to make the more common case of few elements 3331 // faster. 3332 emitMemRuntimeChecks(Lp, ScalarPH); 3333 3334 // Generate the induction variable. 3335 // The loop step is equal to the vectorization factor (num of SIMD elements) 3336 // times the unroll factor (num of SIMD instructions). 3337 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3338 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3339 Induction = 3340 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3341 getDebugLocFromInstOrOperands(OldInduction)); 3342 3343 // We are going to resume the execution of the scalar loop. 3344 // Go over all of the induction variables that we found and fix the 3345 // PHIs that are left in the scalar version of the loop. 3346 // The starting values of PHI nodes depend on the counter of the last 3347 // iteration in the vectorized loop. 3348 // If we come from a bypass edge then we need to start from the original 3349 // start value. 3350 3351 // This variable saves the new starting index for the scalar loop. It is used 3352 // to test if there are any tail iterations left once the vector loop has 3353 // completed. 3354 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3355 for (auto &InductionEntry : *List) { 3356 PHINode *OrigPhi = InductionEntry.first; 3357 InductionDescriptor II = InductionEntry.second; 3358 3359 // Create phi nodes to merge from the backedge-taken check block. 3360 PHINode *BCResumeVal = PHINode::Create( 3361 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3362 Value *EndValue; 3363 if (OrigPhi == OldInduction) { 3364 // We know what the end value is. 3365 EndValue = CountRoundDown; 3366 } else { 3367 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3368 Type *StepType = II.getStep()->getType(); 3369 Instruction::CastOps CastOp = 3370 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3371 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3372 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3373 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3374 EndValue->setName("ind.end"); 3375 } 3376 3377 // The new PHI merges the original incoming value, in case of a bypass, 3378 // or the value at the end of the vectorized loop. 3379 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3380 3381 // Fix up external users of the induction variable. 3382 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3383 3384 // Fix the scalar body counter (PHI node). 3385 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3386 3387 // The old induction's phi node in the scalar body needs the truncated 3388 // value. 3389 for (BasicBlock *BB : LoopBypassBlocks) 3390 BCResumeVal->addIncoming(II.getStartValue(), BB); 3391 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3392 } 3393 3394 // Add a check in the middle block to see if we have completed 3395 // all of the iterations in the first vector loop. 3396 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3397 Value *CmpN = 3398 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3399 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3400 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3401 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3402 3403 // Get ready to start creating new instructions into the vectorized body. 3404 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3405 3406 // Save the state. 3407 LoopVectorPreHeader = Lp->getLoopPreheader(); 3408 LoopScalarPreHeader = ScalarPH; 3409 LoopMiddleBlock = MiddleBlock; 3410 LoopExitBlock = ExitBlock; 3411 LoopVectorBody = VecBody; 3412 LoopScalarBody = OldBasicBlock; 3413 3414 // Keep all loop hints from the original loop on the vector loop (we'll 3415 // replace the vectorizer-specific hints below). 3416 if (MDNode *LID = OrigLoop->getLoopID()) 3417 Lp->setLoopID(LID); 3418 3419 LoopVectorizeHints Hints(Lp, true, *ORE); 3420 Hints.setAlreadyVectorized(); 3421 } 3422 3423 // Fix up external users of the induction variable. At this point, we are 3424 // in LCSSA form, with all external PHIs that use the IV having one input value, 3425 // coming from the remainder loop. We need those PHIs to also have a correct 3426 // value for the IV when arriving directly from the middle block. 3427 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3428 const InductionDescriptor &II, 3429 Value *CountRoundDown, Value *EndValue, 3430 BasicBlock *MiddleBlock) { 3431 // There are two kinds of external IV usages - those that use the value 3432 // computed in the last iteration (the PHI) and those that use the penultimate 3433 // value (the value that feeds into the phi from the loop latch). 3434 // We allow both, but they, obviously, have different values. 3435 3436 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3437 3438 DenseMap<Value *, Value *> MissingVals; 3439 3440 // An external user of the last iteration's value should see the value that 3441 // the remainder loop uses to initialize its own IV. 3442 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3443 for (User *U : PostInc->users()) { 3444 Instruction *UI = cast<Instruction>(U); 3445 if (!OrigLoop->contains(UI)) { 3446 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3447 MissingVals[UI] = EndValue; 3448 } 3449 } 3450 3451 // An external user of the penultimate value need to see EndValue - Step. 3452 // The simplest way to get this is to recompute it from the constituent SCEVs, 3453 // that is Start + (Step * (CRD - 1)). 3454 for (User *U : OrigPhi->users()) { 3455 auto *UI = cast<Instruction>(U); 3456 if (!OrigLoop->contains(UI)) { 3457 const DataLayout &DL = 3458 OrigLoop->getHeader()->getModule()->getDataLayout(); 3459 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3460 3461 IRBuilder<> B(MiddleBlock->getTerminator()); 3462 Value *CountMinusOne = B.CreateSub( 3463 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3464 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3465 "cast.cmo"); 3466 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3467 Escape->setName("ind.escape"); 3468 MissingVals[UI] = Escape; 3469 } 3470 } 3471 3472 for (auto &I : MissingVals) { 3473 PHINode *PHI = cast<PHINode>(I.first); 3474 // One corner case we have to handle is two IVs "chasing" each-other, 3475 // that is %IV2 = phi [...], [ %IV1, %latch ] 3476 // In this case, if IV1 has an external use, we need to avoid adding both 3477 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3478 // don't already have an incoming value for the middle block. 3479 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3480 PHI->addIncoming(I.second, MiddleBlock); 3481 } 3482 } 3483 3484 namespace { 3485 struct CSEDenseMapInfo { 3486 static bool canHandle(Instruction *I) { 3487 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3488 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3489 } 3490 static inline Instruction *getEmptyKey() { 3491 return DenseMapInfo<Instruction *>::getEmptyKey(); 3492 } 3493 static inline Instruction *getTombstoneKey() { 3494 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3495 } 3496 static unsigned getHashValue(Instruction *I) { 3497 assert(canHandle(I) && "Unknown instruction!"); 3498 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3499 I->value_op_end())); 3500 } 3501 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3502 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3503 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3504 return LHS == RHS; 3505 return LHS->isIdenticalTo(RHS); 3506 } 3507 }; 3508 } 3509 3510 ///\brief Perform cse of induction variable instructions. 3511 static void cse(BasicBlock *BB) { 3512 // Perform simple cse. 3513 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3514 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3515 Instruction *In = &*I++; 3516 3517 if (!CSEDenseMapInfo::canHandle(In)) 3518 continue; 3519 3520 // Check if we can replace this instruction with any of the 3521 // visited instructions. 3522 if (Instruction *V = CSEMap.lookup(In)) { 3523 In->replaceAllUsesWith(V); 3524 In->eraseFromParent(); 3525 continue; 3526 } 3527 3528 CSEMap[In] = In; 3529 } 3530 } 3531 3532 /// \brief Adds a 'fast' flag to floating point operations. 3533 static Value *addFastMathFlag(Value *V) { 3534 if (isa<FPMathOperator>(V)) { 3535 FastMathFlags Flags; 3536 Flags.setUnsafeAlgebra(); 3537 cast<Instruction>(V)->setFastMathFlags(Flags); 3538 } 3539 return V; 3540 } 3541 3542 /// \brief Estimate the overhead of scalarizing a value based on its type. 3543 /// Insert and Extract are set if the result needs to be inserted and/or 3544 /// extracted from vectors. 3545 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3546 const TargetTransformInfo &TTI) { 3547 if (Ty->isVoidTy()) 3548 return 0; 3549 3550 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3551 unsigned Cost = 0; 3552 3553 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3554 if (Extract) 3555 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3556 if (Insert) 3557 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3558 } 3559 3560 return Cost; 3561 } 3562 3563 /// \brief Estimate the overhead of scalarizing an Instruction based on the 3564 /// types of its operands and return value. 3565 static unsigned getScalarizationOverhead(SmallVectorImpl<Type *> &OpTys, 3566 Type *RetTy, 3567 const TargetTransformInfo &TTI) { 3568 unsigned ScalarizationCost = 3569 getScalarizationOverhead(RetTy, true, false, TTI); 3570 3571 for (Type *Ty : OpTys) 3572 ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI); 3573 3574 return ScalarizationCost; 3575 } 3576 3577 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3578 /// convenience wrapper for the type-based getScalarizationOverhead API. 3579 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3580 const TargetTransformInfo &TTI) { 3581 if (VF == 1) 3582 return 0; 3583 3584 Type *RetTy = ToVectorTy(I->getType(), VF); 3585 3586 SmallVector<Type *, 4> OpTys; 3587 unsigned OperandsNum = I->getNumOperands(); 3588 for (unsigned OpInd = 0; OpInd < OperandsNum; ++OpInd) 3589 OpTys.push_back(ToVectorTy(I->getOperand(OpInd)->getType(), VF)); 3590 3591 return getScalarizationOverhead(OpTys, RetTy, TTI); 3592 } 3593 3594 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3595 // Return the cost of the instruction, including scalarization overhead if it's 3596 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3597 // i.e. either vector version isn't available, or is too expensive. 3598 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3599 const TargetTransformInfo &TTI, 3600 const TargetLibraryInfo *TLI, 3601 bool &NeedToScalarize) { 3602 Function *F = CI->getCalledFunction(); 3603 StringRef FnName = CI->getCalledFunction()->getName(); 3604 Type *ScalarRetTy = CI->getType(); 3605 SmallVector<Type *, 4> Tys, ScalarTys; 3606 for (auto &ArgOp : CI->arg_operands()) 3607 ScalarTys.push_back(ArgOp->getType()); 3608 3609 // Estimate cost of scalarized vector call. The source operands are assumed 3610 // to be vectors, so we need to extract individual elements from there, 3611 // execute VF scalar calls, and then gather the result into the vector return 3612 // value. 3613 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3614 if (VF == 1) 3615 return ScalarCallCost; 3616 3617 // Compute corresponding vector type for return value and arguments. 3618 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3619 for (Type *ScalarTy : ScalarTys) 3620 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3621 3622 // Compute costs of unpacking argument values for the scalar calls and 3623 // packing the return values to a vector. 3624 unsigned ScalarizationCost = getScalarizationOverhead(Tys, RetTy, TTI); 3625 3626 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3627 3628 // If we can't emit a vector call for this function, then the currently found 3629 // cost is the cost we need to return. 3630 NeedToScalarize = true; 3631 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3632 return Cost; 3633 3634 // If the corresponding vector cost is cheaper, return its cost. 3635 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3636 if (VectorCallCost < Cost) { 3637 NeedToScalarize = false; 3638 return VectorCallCost; 3639 } 3640 return Cost; 3641 } 3642 3643 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3644 // factor VF. Return the cost of the instruction, including scalarization 3645 // overhead if it's needed. 3646 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3647 const TargetTransformInfo &TTI, 3648 const TargetLibraryInfo *TLI) { 3649 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3650 assert(ID && "Expected intrinsic call!"); 3651 3652 Type *RetTy = ToVectorTy(CI->getType(), VF); 3653 SmallVector<Type *, 4> Tys; 3654 for (Value *ArgOperand : CI->arg_operands()) 3655 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3656 3657 FastMathFlags FMF; 3658 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3659 FMF = FPMO->getFastMathFlags(); 3660 3661 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3662 } 3663 3664 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3665 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3666 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3667 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3668 } 3669 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3670 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3671 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3672 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3673 } 3674 3675 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3676 // For every instruction `I` in MinBWs, truncate the operands, create a 3677 // truncated version of `I` and reextend its result. InstCombine runs 3678 // later and will remove any ext/trunc pairs. 3679 // 3680 SmallPtrSet<Value *, 4> Erased; 3681 for (const auto &KV : Cost->getMinimalBitwidths()) { 3682 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3683 for (Value *&I : Parts) { 3684 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3685 continue; 3686 Type *OriginalTy = I->getType(); 3687 Type *ScalarTruncatedTy = 3688 IntegerType::get(OriginalTy->getContext(), KV.second); 3689 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3690 OriginalTy->getVectorNumElements()); 3691 if (TruncatedTy == OriginalTy) 3692 continue; 3693 3694 IRBuilder<> B(cast<Instruction>(I)); 3695 auto ShrinkOperand = [&](Value *V) -> Value * { 3696 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3697 if (ZI->getSrcTy() == TruncatedTy) 3698 return ZI->getOperand(0); 3699 return B.CreateZExtOrTrunc(V, TruncatedTy); 3700 }; 3701 3702 // The actual instruction modification depends on the instruction type, 3703 // unfortunately. 3704 Value *NewI = nullptr; 3705 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3706 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3707 ShrinkOperand(BO->getOperand(1))); 3708 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3709 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3710 NewI = 3711 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3712 ShrinkOperand(CI->getOperand(1))); 3713 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3714 NewI = B.CreateSelect(SI->getCondition(), 3715 ShrinkOperand(SI->getTrueValue()), 3716 ShrinkOperand(SI->getFalseValue())); 3717 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3718 switch (CI->getOpcode()) { 3719 default: 3720 llvm_unreachable("Unhandled cast!"); 3721 case Instruction::Trunc: 3722 NewI = ShrinkOperand(CI->getOperand(0)); 3723 break; 3724 case Instruction::SExt: 3725 NewI = B.CreateSExtOrTrunc( 3726 CI->getOperand(0), 3727 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3728 break; 3729 case Instruction::ZExt: 3730 NewI = B.CreateZExtOrTrunc( 3731 CI->getOperand(0), 3732 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3733 break; 3734 } 3735 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3736 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3737 auto *O0 = B.CreateZExtOrTrunc( 3738 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3739 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3740 auto *O1 = B.CreateZExtOrTrunc( 3741 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3742 3743 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3744 } else if (isa<LoadInst>(I)) { 3745 // Don't do anything with the operands, just extend the result. 3746 continue; 3747 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3748 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3749 auto *O0 = B.CreateZExtOrTrunc( 3750 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3751 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3752 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3753 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3754 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3755 auto *O0 = B.CreateZExtOrTrunc( 3756 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3757 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3758 } else { 3759 llvm_unreachable("Unhandled instruction type!"); 3760 } 3761 3762 // Lastly, extend the result. 3763 NewI->takeName(cast<Instruction>(I)); 3764 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3765 I->replaceAllUsesWith(Res); 3766 cast<Instruction>(I)->eraseFromParent(); 3767 Erased.insert(I); 3768 I = Res; 3769 } 3770 } 3771 3772 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3773 for (const auto &KV : Cost->getMinimalBitwidths()) { 3774 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3775 for (Value *&I : Parts) { 3776 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3777 if (Inst && Inst->use_empty()) { 3778 Value *NewI = Inst->getOperand(0); 3779 Inst->eraseFromParent(); 3780 I = NewI; 3781 } 3782 } 3783 } 3784 } 3785 3786 void InnerLoopVectorizer::vectorizeLoop() { 3787 //===------------------------------------------------===// 3788 // 3789 // Notice: any optimization or new instruction that go 3790 // into the code below should be also be implemented in 3791 // the cost-model. 3792 // 3793 //===------------------------------------------------===// 3794 Constant *Zero = Builder.getInt32(0); 3795 3796 // In order to support recurrences we need to be able to vectorize Phi nodes. 3797 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3798 // we create a new vector PHI node with no incoming edges. We use this value 3799 // when we vectorize all of the instructions that use the PHI. Next, after 3800 // all of the instructions in the block are complete we add the new incoming 3801 // edges to the PHI. At this point all of the instructions in the basic block 3802 // are vectorized, so we can use them to construct the PHI. 3803 PhiVector PHIsToFix; 3804 3805 // Scan the loop in a topological order to ensure that defs are vectorized 3806 // before users. 3807 LoopBlocksDFS DFS(OrigLoop); 3808 DFS.perform(LI); 3809 3810 // Vectorize all of the blocks in the original loop. 3811 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3812 vectorizeBlockInLoop(BB, &PHIsToFix); 3813 3814 // Insert truncates and extends for any truncated instructions as hints to 3815 // InstCombine. 3816 if (VF > 1) 3817 truncateToMinimalBitwidths(); 3818 3819 // At this point every instruction in the original loop is widened to a 3820 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3821 // nodes are currently empty because we did not want to introduce cycles. 3822 // This is the second stage of vectorizing recurrences. 3823 for (PHINode *Phi : PHIsToFix) { 3824 assert(Phi && "Unable to recover vectorized PHI"); 3825 3826 // Handle first-order recurrences that need to be fixed. 3827 if (Legal->isFirstOrderRecurrence(Phi)) { 3828 fixFirstOrderRecurrence(Phi); 3829 continue; 3830 } 3831 3832 // If the phi node is not a first-order recurrence, it must be a reduction. 3833 // Get it's reduction variable descriptor. 3834 assert(Legal->isReductionVariable(Phi) && 3835 "Unable to find the reduction variable"); 3836 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3837 3838 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3839 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3840 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3841 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3842 RdxDesc.getMinMaxRecurrenceKind(); 3843 setDebugLocFromInst(Builder, ReductionStartValue); 3844 3845 // We need to generate a reduction vector from the incoming scalar. 3846 // To do so, we need to generate the 'identity' vector and override 3847 // one of the elements with the incoming scalar reduction. We need 3848 // to do it in the vector-loop preheader. 3849 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3850 3851 // This is the vector-clone of the value that leaves the loop. 3852 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 3853 Type *VecTy = VectorExit[0]->getType(); 3854 3855 // Find the reduction identity variable. Zero for addition, or, xor, 3856 // one for multiplication, -1 for And. 3857 Value *Identity; 3858 Value *VectorStart; 3859 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3860 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3861 // MinMax reduction have the start value as their identify. 3862 if (VF == 1) { 3863 VectorStart = Identity = ReductionStartValue; 3864 } else { 3865 VectorStart = Identity = 3866 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3867 } 3868 } else { 3869 // Handle other reduction kinds: 3870 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3871 RK, VecTy->getScalarType()); 3872 if (VF == 1) { 3873 Identity = Iden; 3874 // This vector is the Identity vector where the first element is the 3875 // incoming scalar reduction. 3876 VectorStart = ReductionStartValue; 3877 } else { 3878 Identity = ConstantVector::getSplat(VF, Iden); 3879 3880 // This vector is the Identity vector where the first element is the 3881 // incoming scalar reduction. 3882 VectorStart = 3883 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3884 } 3885 } 3886 3887 // Fix the vector-loop phi. 3888 3889 // Reductions do not have to start at zero. They can start with 3890 // any loop invariant values. 3891 const VectorParts &VecRdxPhi = getVectorValue(Phi); 3892 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3893 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3894 const VectorParts &Val = getVectorValue(LoopVal); 3895 for (unsigned part = 0; part < UF; ++part) { 3896 // Make sure to add the reduction stat value only to the 3897 // first unroll part. 3898 Value *StartVal = (part == 0) ? VectorStart : Identity; 3899 cast<PHINode>(VecRdxPhi[part]) 3900 ->addIncoming(StartVal, LoopVectorPreHeader); 3901 cast<PHINode>(VecRdxPhi[part]) 3902 ->addIncoming(Val[part], LoopVectorBody); 3903 } 3904 3905 // Before each round, move the insertion point right between 3906 // the PHIs and the values we are going to write. 3907 // This allows us to write both PHINodes and the extractelement 3908 // instructions. 3909 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3910 3911 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 3912 setDebugLocFromInst(Builder, LoopExitInst); 3913 3914 // If the vector reduction can be performed in a smaller type, we truncate 3915 // then extend the loop exit value to enable InstCombine to evaluate the 3916 // entire expression in the smaller type. 3917 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3918 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3919 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3920 for (unsigned part = 0; part < UF; ++part) { 3921 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3922 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3923 : Builder.CreateZExt(Trunc, VecTy); 3924 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3925 UI != RdxParts[part]->user_end();) 3926 if (*UI != Trunc) { 3927 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3928 RdxParts[part] = Extnd; 3929 } else { 3930 ++UI; 3931 } 3932 } 3933 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3934 for (unsigned part = 0; part < UF; ++part) 3935 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3936 } 3937 3938 // Reduce all of the unrolled parts into a single vector. 3939 Value *ReducedPartRdx = RdxParts[0]; 3940 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3941 setDebugLocFromInst(Builder, ReducedPartRdx); 3942 for (unsigned part = 1; part < UF; ++part) { 3943 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3944 // Floating point operations had to be 'fast' to enable the reduction. 3945 ReducedPartRdx = addFastMathFlag( 3946 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3947 ReducedPartRdx, "bin.rdx")); 3948 else 3949 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3950 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3951 } 3952 3953 if (VF > 1) { 3954 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3955 // and vector ops, reducing the set of values being computed by half each 3956 // round. 3957 assert(isPowerOf2_32(VF) && 3958 "Reduction emission only supported for pow2 vectors!"); 3959 Value *TmpVec = ReducedPartRdx; 3960 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3961 for (unsigned i = VF; i != 1; i >>= 1) { 3962 // Move the upper half of the vector to the lower half. 3963 for (unsigned j = 0; j != i / 2; ++j) 3964 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3965 3966 // Fill the rest of the mask with undef. 3967 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3968 UndefValue::get(Builder.getInt32Ty())); 3969 3970 Value *Shuf = Builder.CreateShuffleVector( 3971 TmpVec, UndefValue::get(TmpVec->getType()), 3972 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3973 3974 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3975 // Floating point operations had to be 'fast' to enable the reduction. 3976 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3977 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3978 else 3979 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3980 TmpVec, Shuf); 3981 } 3982 3983 // The result is in the first element of the vector. 3984 ReducedPartRdx = 3985 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3986 3987 // If the reduction can be performed in a smaller type, we need to extend 3988 // the reduction to the wider type before we branch to the original loop. 3989 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3990 ReducedPartRdx = 3991 RdxDesc.isSigned() 3992 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3993 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3994 } 3995 3996 // Create a phi node that merges control-flow from the backedge-taken check 3997 // block and the middle block. 3998 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3999 LoopScalarPreHeader->getTerminator()); 4000 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4001 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4002 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4003 4004 // Now, we need to fix the users of the reduction variable 4005 // inside and outside of the scalar remainder loop. 4006 // We know that the loop is in LCSSA form. We need to update the 4007 // PHI nodes in the exit blocks. 4008 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4009 LEE = LoopExitBlock->end(); 4010 LEI != LEE; ++LEI) { 4011 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4012 if (!LCSSAPhi) 4013 break; 4014 4015 // All PHINodes need to have a single entry edge, or two if 4016 // we already fixed them. 4017 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4018 4019 // We found our reduction value exit-PHI. Update it with the 4020 // incoming bypass edge. 4021 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 4022 // Add an edge coming from the bypass. 4023 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4024 break; 4025 } 4026 } // end of the LCSSA phi scan. 4027 4028 // Fix the scalar loop reduction variable with the incoming reduction sum 4029 // from the vector body and from the backedge value. 4030 int IncomingEdgeBlockIdx = 4031 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4032 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4033 // Pick the other block. 4034 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4035 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4036 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4037 } // end of for each Phi in PHIsToFix. 4038 4039 fixLCSSAPHIs(); 4040 4041 // Make sure DomTree is updated. 4042 updateAnalysis(); 4043 4044 predicateInstructions(); 4045 4046 // Remove redundant induction instructions. 4047 cse(LoopVectorBody); 4048 } 4049 4050 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4051 4052 // This is the second phase of vectorizing first-order recurrences. An 4053 // overview of the transformation is described below. Suppose we have the 4054 // following loop. 4055 // 4056 // for (int i = 0; i < n; ++i) 4057 // b[i] = a[i] - a[i - 1]; 4058 // 4059 // There is a first-order recurrence on "a". For this loop, the shorthand 4060 // scalar IR looks like: 4061 // 4062 // scalar.ph: 4063 // s_init = a[-1] 4064 // br scalar.body 4065 // 4066 // scalar.body: 4067 // i = phi [0, scalar.ph], [i+1, scalar.body] 4068 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4069 // s2 = a[i] 4070 // b[i] = s2 - s1 4071 // br cond, scalar.body, ... 4072 // 4073 // In this example, s1 is a recurrence because it's value depends on the 4074 // previous iteration. In the first phase of vectorization, we created a 4075 // temporary value for s1. We now complete the vectorization and produce the 4076 // shorthand vector IR shown below (for VF = 4, UF = 1). 4077 // 4078 // vector.ph: 4079 // v_init = vector(..., ..., ..., a[-1]) 4080 // br vector.body 4081 // 4082 // vector.body 4083 // i = phi [0, vector.ph], [i+4, vector.body] 4084 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4085 // v2 = a[i, i+1, i+2, i+3]; 4086 // v3 = vector(v1(3), v2(0, 1, 2)) 4087 // b[i, i+1, i+2, i+3] = v2 - v3 4088 // br cond, vector.body, middle.block 4089 // 4090 // middle.block: 4091 // x = v2(3) 4092 // br scalar.ph 4093 // 4094 // scalar.ph: 4095 // s_init = phi [x, middle.block], [a[-1], otherwise] 4096 // br scalar.body 4097 // 4098 // After execution completes the vector loop, we extract the next value of 4099 // the recurrence (x) to use as the initial value in the scalar loop. 4100 4101 // Get the original loop preheader and single loop latch. 4102 auto *Preheader = OrigLoop->getLoopPreheader(); 4103 auto *Latch = OrigLoop->getLoopLatch(); 4104 4105 // Get the initial and previous values of the scalar recurrence. 4106 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4107 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4108 4109 // Create a vector from the initial value. 4110 auto *VectorInit = ScalarInit; 4111 if (VF > 1) { 4112 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4113 VectorInit = Builder.CreateInsertElement( 4114 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4115 Builder.getInt32(VF - 1), "vector.recur.init"); 4116 } 4117 4118 // We constructed a temporary phi node in the first phase of vectorization. 4119 // This phi node will eventually be deleted. 4120 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4121 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4122 4123 // Create a phi node for the new recurrence. The current value will either be 4124 // the initial value inserted into a vector or loop-varying vector value. 4125 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4126 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4127 4128 // Get the vectorized previous value. We ensured the previous values was an 4129 // instruction when detecting the recurrence. 4130 auto &PreviousParts = getVectorValue(Previous); 4131 4132 // Set the insertion point to be after this instruction. We ensured the 4133 // previous value dominated all uses of the phi when detecting the 4134 // recurrence. 4135 Builder.SetInsertPoint( 4136 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4137 4138 // We will construct a vector for the recurrence by combining the values for 4139 // the current and previous iterations. This is the required shuffle mask. 4140 SmallVector<Constant *, 8> ShuffleMask(VF); 4141 ShuffleMask[0] = Builder.getInt32(VF - 1); 4142 for (unsigned I = 1; I < VF; ++I) 4143 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4144 4145 // The vector from which to take the initial value for the current iteration 4146 // (actual or unrolled). Initially, this is the vector phi node. 4147 Value *Incoming = VecPhi; 4148 4149 // Shuffle the current and previous vector and update the vector parts. 4150 for (unsigned Part = 0; Part < UF; ++Part) { 4151 auto *Shuffle = 4152 VF > 1 4153 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4154 ConstantVector::get(ShuffleMask)) 4155 : Incoming; 4156 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4157 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4158 PhiParts[Part] = Shuffle; 4159 Incoming = PreviousParts[Part]; 4160 } 4161 4162 // Fix the latch value of the new recurrence in the vector loop. 4163 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4164 4165 // Extract the last vector element in the middle block. This will be the 4166 // initial value for the recurrence when jumping to the scalar loop. 4167 auto *Extract = Incoming; 4168 if (VF > 1) { 4169 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4170 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4171 "vector.recur.extract"); 4172 } 4173 4174 // Fix the initial value of the original recurrence in the scalar loop. 4175 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4176 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4177 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4178 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4179 Start->addIncoming(Incoming, BB); 4180 } 4181 4182 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4183 Phi->setName("scalar.recur"); 4184 4185 // Finally, fix users of the recurrence outside the loop. The users will need 4186 // either the last value of the scalar recurrence or the last value of the 4187 // vector recurrence we extracted in the middle block. Since the loop is in 4188 // LCSSA form, we just need to find the phi node for the original scalar 4189 // recurrence in the exit block, and then add an edge for the middle block. 4190 for (auto &I : *LoopExitBlock) { 4191 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4192 if (!LCSSAPhi) 4193 break; 4194 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4195 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4196 break; 4197 } 4198 } 4199 } 4200 4201 void InnerLoopVectorizer::fixLCSSAPHIs() { 4202 for (Instruction &LEI : *LoopExitBlock) { 4203 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4204 if (!LCSSAPhi) 4205 break; 4206 if (LCSSAPhi->getNumIncomingValues() == 1) 4207 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4208 LoopMiddleBlock); 4209 } 4210 } 4211 4212 void InnerLoopVectorizer::predicateInstructions() { 4213 4214 // For each instruction I marked for predication on value C, split I into its 4215 // own basic block to form an if-then construct over C. 4216 // Since I may be fed by extractelement and/or be feeding an insertelement 4217 // generated during scalarization we try to move such instructions into the 4218 // predicated basic block as well. For the insertelement this also means that 4219 // the PHI will be created for the resulting vector rather than for the 4220 // scalar instruction. 4221 // So for some predicated instruction, e.g. the conditional sdiv in: 4222 // 4223 // for.body: 4224 // ... 4225 // %add = add nsw i32 %mul, %0 4226 // %cmp5 = icmp sgt i32 %2, 7 4227 // br i1 %cmp5, label %if.then, label %if.end 4228 // 4229 // if.then: 4230 // %div = sdiv i32 %0, %1 4231 // br label %if.end 4232 // 4233 // if.end: 4234 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4235 // 4236 // the sdiv at this point is scalarized and if-converted using a select. 4237 // The inactive elements in the vector are not used, but the predicated 4238 // instruction is still executed for all vector elements, essentially: 4239 // 4240 // vector.body: 4241 // ... 4242 // %17 = add nsw <2 x i32> %16, %wide.load 4243 // %29 = extractelement <2 x i32> %wide.load, i32 0 4244 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4245 // %31 = sdiv i32 %29, %30 4246 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4247 // %35 = extractelement <2 x i32> %wide.load, i32 1 4248 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4249 // %37 = sdiv i32 %35, %36 4250 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4251 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4252 // 4253 // Predication will now re-introduce the original control flow to avoid false 4254 // side-effects by the sdiv instructions on the inactive elements, yielding 4255 // (after cleanup): 4256 // 4257 // vector.body: 4258 // ... 4259 // %5 = add nsw <2 x i32> %4, %wide.load 4260 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4261 // %9 = extractelement <2 x i1> %8, i32 0 4262 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4263 // 4264 // pred.sdiv.if: 4265 // %10 = extractelement <2 x i32> %wide.load, i32 0 4266 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4267 // %12 = sdiv i32 %10, %11 4268 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4269 // br label %pred.sdiv.continue 4270 // 4271 // pred.sdiv.continue: 4272 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4273 // %15 = extractelement <2 x i1> %8, i32 1 4274 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4275 // 4276 // pred.sdiv.if54: 4277 // %16 = extractelement <2 x i32> %wide.load, i32 1 4278 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4279 // %18 = sdiv i32 %16, %17 4280 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4281 // br label %pred.sdiv.continue55 4282 // 4283 // pred.sdiv.continue55: 4284 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4285 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4286 4287 for (auto KV : PredicatedInstructions) { 4288 BasicBlock::iterator I(KV.first); 4289 BasicBlock *Head = I->getParent(); 4290 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4291 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4292 /*BranchWeights=*/nullptr, DT, LI); 4293 I->moveBefore(T); 4294 // Try to move any extractelement we may have created for the predicated 4295 // instruction into the Then block. 4296 for (Use &Op : I->operands()) { 4297 auto *OpInst = dyn_cast<ExtractElementInst>(&*Op); 4298 if (OpInst && OpInst->hasOneUse()) // TODO: more accurately - hasOneUser() 4299 OpInst->moveBefore(&*I); 4300 } 4301 4302 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4303 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4304 4305 // If the instruction is non-void create a Phi node at reconvergence point. 4306 if (!I->getType()->isVoidTy()) { 4307 Value *IncomingTrue = nullptr; 4308 Value *IncomingFalse = nullptr; 4309 4310 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4311 // If the predicated instruction is feeding an insert-element, move it 4312 // into the Then block; Phi node will be created for the vector. 4313 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4314 IEI->moveBefore(T); 4315 IncomingTrue = IEI; // the new vector with the inserted element. 4316 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4317 } else { 4318 // Phi node will be created for the scalar predicated instruction. 4319 IncomingTrue = &*I; 4320 IncomingFalse = UndefValue::get(I->getType()); 4321 } 4322 4323 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4324 assert(PostDom && "Then block has multiple successors"); 4325 PHINode *Phi = 4326 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4327 IncomingTrue->replaceAllUsesWith(Phi); 4328 Phi->addIncoming(IncomingFalse, Head); 4329 Phi->addIncoming(IncomingTrue, I->getParent()); 4330 } 4331 } 4332 4333 DEBUG(DT->verifyDomTree()); 4334 } 4335 4336 InnerLoopVectorizer::VectorParts 4337 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4338 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4339 4340 // Look for cached value. 4341 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4342 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4343 if (ECEntryIt != MaskCache.end()) 4344 return ECEntryIt->second; 4345 4346 VectorParts SrcMask = createBlockInMask(Src); 4347 4348 // The terminator has to be a branch inst! 4349 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4350 assert(BI && "Unexpected terminator found"); 4351 4352 if (BI->isConditional()) { 4353 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4354 4355 if (BI->getSuccessor(0) != Dst) 4356 for (unsigned part = 0; part < UF; ++part) 4357 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4358 4359 for (unsigned part = 0; part < UF; ++part) 4360 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4361 4362 MaskCache[Edge] = EdgeMask; 4363 return EdgeMask; 4364 } 4365 4366 MaskCache[Edge] = SrcMask; 4367 return SrcMask; 4368 } 4369 4370 InnerLoopVectorizer::VectorParts 4371 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4372 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4373 4374 // Loop incoming mask is all-one. 4375 if (OrigLoop->getHeader() == BB) { 4376 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4377 return getVectorValue(C); 4378 } 4379 4380 // This is the block mask. We OR all incoming edges, and with zero. 4381 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4382 VectorParts BlockMask = getVectorValue(Zero); 4383 4384 // For each pred: 4385 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4386 VectorParts EM = createEdgeMask(*it, BB); 4387 for (unsigned part = 0; part < UF; ++part) 4388 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4389 } 4390 4391 return BlockMask; 4392 } 4393 4394 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4395 unsigned VF, PhiVector *PV) { 4396 PHINode *P = cast<PHINode>(PN); 4397 // Handle recurrences. 4398 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4399 VectorParts Entry(UF); 4400 for (unsigned part = 0; part < UF; ++part) { 4401 // This is phase one of vectorizing PHIs. 4402 Type *VecTy = 4403 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4404 Entry[part] = PHINode::Create( 4405 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4406 } 4407 VectorLoopValueMap.initVector(P, Entry); 4408 PV->push_back(P); 4409 return; 4410 } 4411 4412 setDebugLocFromInst(Builder, P); 4413 // Check for PHI nodes that are lowered to vector selects. 4414 if (P->getParent() != OrigLoop->getHeader()) { 4415 // We know that all PHIs in non-header blocks are converted into 4416 // selects, so we don't have to worry about the insertion order and we 4417 // can just use the builder. 4418 // At this point we generate the predication tree. There may be 4419 // duplications since this is a simple recursive scan, but future 4420 // optimizations will clean it up. 4421 4422 unsigned NumIncoming = P->getNumIncomingValues(); 4423 4424 // Generate a sequence of selects of the form: 4425 // SELECT(Mask3, In3, 4426 // SELECT(Mask2, In2, 4427 // ( ...))) 4428 VectorParts Entry(UF); 4429 for (unsigned In = 0; In < NumIncoming; In++) { 4430 VectorParts Cond = 4431 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4432 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4433 4434 for (unsigned part = 0; part < UF; ++part) { 4435 // We might have single edge PHIs (blocks) - use an identity 4436 // 'select' for the first PHI operand. 4437 if (In == 0) 4438 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4439 else 4440 // Select between the current value and the previous incoming edge 4441 // based on the incoming mask. 4442 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4443 "predphi"); 4444 } 4445 } 4446 VectorLoopValueMap.initVector(P, Entry); 4447 return; 4448 } 4449 4450 // This PHINode must be an induction variable. 4451 // Make sure that we know about it. 4452 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4453 4454 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4455 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4456 4457 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4458 // which can be found from the original scalar operations. 4459 switch (II.getKind()) { 4460 case InductionDescriptor::IK_NoInduction: 4461 llvm_unreachable("Unknown induction"); 4462 case InductionDescriptor::IK_IntInduction: 4463 return widenIntInduction(P); 4464 case InductionDescriptor::IK_PtrInduction: { 4465 // Handle the pointer induction variable case. 4466 assert(P->getType()->isPointerTy() && "Unexpected type."); 4467 // This is the normalized GEP that starts counting at zero. 4468 Value *PtrInd = Induction; 4469 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4470 // Determine the number of scalars we need to generate for each unroll 4471 // iteration. If the instruction is uniform, we only need to generate the 4472 // first lane. Otherwise, we generate all VF values. 4473 unsigned Lanes = Legal->isUniformAfterVectorization(P) ? 1 : VF; 4474 // These are the scalar results. Notice that we don't generate vector GEPs 4475 // because scalar GEPs result in better code. 4476 ScalarParts Entry(UF); 4477 for (unsigned Part = 0; Part < UF; ++Part) { 4478 Entry[Part].resize(VF); 4479 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4480 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4481 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4482 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4483 SclrGep->setName("next.gep"); 4484 Entry[Part][Lane] = SclrGep; 4485 } 4486 } 4487 VectorLoopValueMap.initScalar(P, Entry); 4488 return; 4489 } 4490 case InductionDescriptor::IK_FpInduction: { 4491 assert(P->getType() == II.getStartValue()->getType() && 4492 "Types must match"); 4493 // Handle other induction variables that are now based on the 4494 // canonical one. 4495 assert(P != OldInduction && "Primary induction can be integer only"); 4496 4497 Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType()); 4498 V = II.transform(Builder, V, PSE.getSE(), DL); 4499 V->setName("fp.offset.idx"); 4500 4501 // Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal 4502 4503 Value *Broadcasted = getBroadcastInstrs(V); 4504 // After broadcasting the induction variable we need to make the vector 4505 // consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc. 4506 Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue(); 4507 VectorParts Entry(UF); 4508 for (unsigned part = 0; part < UF; ++part) 4509 Entry[part] = getStepVector(Broadcasted, VF * part, StepVal, 4510 II.getInductionOpcode()); 4511 VectorLoopValueMap.initVector(P, Entry); 4512 return; 4513 } 4514 } 4515 } 4516 4517 /// A helper function for checking whether an integer division-related 4518 /// instruction may divide by zero (in which case it must be predicated if 4519 /// executed conditionally in the scalar code). 4520 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4521 /// Non-zero divisors that are non compile-time constants will not be 4522 /// converted into multiplication, so we will still end up scalarizing 4523 /// the division, but can do so w/o predication. 4524 static bool mayDivideByZero(Instruction &I) { 4525 assert((I.getOpcode() == Instruction::UDiv || 4526 I.getOpcode() == Instruction::SDiv || 4527 I.getOpcode() == Instruction::URem || 4528 I.getOpcode() == Instruction::SRem) && 4529 "Unexpected instruction"); 4530 Value *Divisor = I.getOperand(1); 4531 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4532 return !CInt || CInt->isZero(); 4533 } 4534 4535 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4536 // For each instruction in the old loop. 4537 for (Instruction &I : *BB) { 4538 4539 // Scalarize instructions that should remain scalar after vectorization. 4540 if (!(isa<BranchInst>(&I) || isa<PHINode>(&I) || 4541 isa<DbgInfoIntrinsic>(&I)) && 4542 Legal->isScalarAfterVectorization(&I)) { 4543 scalarizeInstruction(&I); 4544 continue; 4545 } 4546 4547 switch (I.getOpcode()) { 4548 case Instruction::Br: 4549 // Nothing to do for PHIs and BR, since we already took care of the 4550 // loop control flow instructions. 4551 continue; 4552 case Instruction::PHI: { 4553 // Vectorize PHINodes. 4554 widenPHIInstruction(&I, UF, VF, PV); 4555 continue; 4556 } // End of PHI. 4557 4558 case Instruction::UDiv: 4559 case Instruction::SDiv: 4560 case Instruction::SRem: 4561 case Instruction::URem: 4562 // Scalarize with predication if this instruction may divide by zero and 4563 // block execution is conditional, otherwise fallthrough. 4564 if (Legal->isScalarWithPredication(&I)) { 4565 scalarizeInstruction(&I, true); 4566 continue; 4567 } 4568 case Instruction::Add: 4569 case Instruction::FAdd: 4570 case Instruction::Sub: 4571 case Instruction::FSub: 4572 case Instruction::Mul: 4573 case Instruction::FMul: 4574 case Instruction::FDiv: 4575 case Instruction::FRem: 4576 case Instruction::Shl: 4577 case Instruction::LShr: 4578 case Instruction::AShr: 4579 case Instruction::And: 4580 case Instruction::Or: 4581 case Instruction::Xor: { 4582 // Just widen binops. 4583 auto *BinOp = cast<BinaryOperator>(&I); 4584 setDebugLocFromInst(Builder, BinOp); 4585 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4586 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4587 4588 // Use this vector value for all users of the original instruction. 4589 VectorParts Entry(UF); 4590 for (unsigned Part = 0; Part < UF; ++Part) { 4591 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4592 4593 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4594 VecOp->copyIRFlags(BinOp); 4595 4596 Entry[Part] = V; 4597 } 4598 4599 VectorLoopValueMap.initVector(&I, Entry); 4600 addMetadata(Entry, BinOp); 4601 break; 4602 } 4603 case Instruction::Select: { 4604 // Widen selects. 4605 // If the selector is loop invariant we can create a select 4606 // instruction with a scalar condition. Otherwise, use vector-select. 4607 auto *SE = PSE.getSE(); 4608 bool InvariantCond = 4609 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4610 setDebugLocFromInst(Builder, &I); 4611 4612 // The condition can be loop invariant but still defined inside the 4613 // loop. This means that we can't just use the original 'cond' value. 4614 // We have to take the 'vectorized' value and pick the first lane. 4615 // Instcombine will make this a no-op. 4616 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4617 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4618 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4619 4620 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4621 4622 VectorParts Entry(UF); 4623 for (unsigned Part = 0; Part < UF; ++Part) { 4624 Entry[Part] = Builder.CreateSelect( 4625 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4626 } 4627 4628 VectorLoopValueMap.initVector(&I, Entry); 4629 addMetadata(Entry, &I); 4630 break; 4631 } 4632 4633 case Instruction::ICmp: 4634 case Instruction::FCmp: { 4635 // Widen compares. Generate vector compares. 4636 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4637 auto *Cmp = dyn_cast<CmpInst>(&I); 4638 setDebugLocFromInst(Builder, Cmp); 4639 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4640 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4641 VectorParts Entry(UF); 4642 for (unsigned Part = 0; Part < UF; ++Part) { 4643 Value *C = nullptr; 4644 if (FCmp) { 4645 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4646 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4647 } else { 4648 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4649 } 4650 Entry[Part] = C; 4651 } 4652 4653 VectorLoopValueMap.initVector(&I, Entry); 4654 addMetadata(Entry, &I); 4655 break; 4656 } 4657 4658 case Instruction::Store: 4659 case Instruction::Load: 4660 vectorizeMemoryInstruction(&I); 4661 break; 4662 case Instruction::ZExt: 4663 case Instruction::SExt: 4664 case Instruction::FPToUI: 4665 case Instruction::FPToSI: 4666 case Instruction::FPExt: 4667 case Instruction::PtrToInt: 4668 case Instruction::IntToPtr: 4669 case Instruction::SIToFP: 4670 case Instruction::UIToFP: 4671 case Instruction::Trunc: 4672 case Instruction::FPTrunc: 4673 case Instruction::BitCast: { 4674 auto *CI = dyn_cast<CastInst>(&I); 4675 setDebugLocFromInst(Builder, CI); 4676 4677 // Optimize the special case where the source is a constant integer 4678 // induction variable. Notice that we can only optimize the 'trunc' case 4679 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4680 // (c) other casts depend on pointer size. 4681 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4682 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4683 ID.getConstIntStepValue()) { 4684 widenIntInduction(OldInduction, cast<TruncInst>(CI)); 4685 break; 4686 } 4687 4688 /// Vectorize casts. 4689 Type *DestTy = 4690 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4691 4692 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4693 VectorParts Entry(UF); 4694 for (unsigned Part = 0; Part < UF; ++Part) 4695 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4696 VectorLoopValueMap.initVector(&I, Entry); 4697 addMetadata(Entry, &I); 4698 break; 4699 } 4700 4701 case Instruction::Call: { 4702 // Ignore dbg intrinsics. 4703 if (isa<DbgInfoIntrinsic>(I)) 4704 break; 4705 setDebugLocFromInst(Builder, &I); 4706 4707 Module *M = BB->getParent()->getParent(); 4708 auto *CI = cast<CallInst>(&I); 4709 4710 StringRef FnName = CI->getCalledFunction()->getName(); 4711 Function *F = CI->getCalledFunction(); 4712 Type *RetTy = ToVectorTy(CI->getType(), VF); 4713 SmallVector<Type *, 4> Tys; 4714 for (Value *ArgOperand : CI->arg_operands()) 4715 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4716 4717 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4718 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4719 ID == Intrinsic::lifetime_start)) { 4720 scalarizeInstruction(&I); 4721 break; 4722 } 4723 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4724 // version of the instruction. 4725 // Is it beneficial to perform intrinsic call compared to lib call? 4726 bool NeedToScalarize; 4727 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4728 bool UseVectorIntrinsic = 4729 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4730 if (!UseVectorIntrinsic && NeedToScalarize) { 4731 scalarizeInstruction(&I); 4732 break; 4733 } 4734 4735 VectorParts Entry(UF); 4736 for (unsigned Part = 0; Part < UF; ++Part) { 4737 SmallVector<Value *, 4> Args; 4738 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4739 Value *Arg = CI->getArgOperand(i); 4740 // Some intrinsics have a scalar argument - don't replace it with a 4741 // vector. 4742 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4743 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4744 Arg = VectorArg[Part]; 4745 } 4746 Args.push_back(Arg); 4747 } 4748 4749 Function *VectorF; 4750 if (UseVectorIntrinsic) { 4751 // Use vector version of the intrinsic. 4752 Type *TysForDecl[] = {CI->getType()}; 4753 if (VF > 1) 4754 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4755 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4756 } else { 4757 // Use vector version of the library call. 4758 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4759 assert(!VFnName.empty() && "Vector function name is empty."); 4760 VectorF = M->getFunction(VFnName); 4761 if (!VectorF) { 4762 // Generate a declaration 4763 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4764 VectorF = 4765 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4766 VectorF->copyAttributesFrom(F); 4767 } 4768 } 4769 assert(VectorF && "Can't create vector function."); 4770 4771 SmallVector<OperandBundleDef, 1> OpBundles; 4772 CI->getOperandBundlesAsDefs(OpBundles); 4773 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4774 4775 if (isa<FPMathOperator>(V)) 4776 V->copyFastMathFlags(CI); 4777 4778 Entry[Part] = V; 4779 } 4780 4781 VectorLoopValueMap.initVector(&I, Entry); 4782 addMetadata(Entry, &I); 4783 break; 4784 } 4785 4786 default: 4787 // All other instructions are unsupported. Scalarize them. 4788 scalarizeInstruction(&I); 4789 break; 4790 } // end of switch. 4791 } // end of for_each instr. 4792 } 4793 4794 void InnerLoopVectorizer::updateAnalysis() { 4795 // Forget the original basic block. 4796 PSE.getSE()->forgetLoop(OrigLoop); 4797 4798 // Update the dominator tree information. 4799 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4800 "Entry does not dominate exit."); 4801 4802 // We don't predicate stores by this point, so the vector body should be a 4803 // single loop. 4804 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4805 4806 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4807 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4808 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4809 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4810 4811 DEBUG(DT->verifyDomTree()); 4812 } 4813 4814 /// \brief Check whether it is safe to if-convert this phi node. 4815 /// 4816 /// Phi nodes with constant expressions that can trap are not safe to if 4817 /// convert. 4818 static bool canIfConvertPHINodes(BasicBlock *BB) { 4819 for (Instruction &I : *BB) { 4820 auto *Phi = dyn_cast<PHINode>(&I); 4821 if (!Phi) 4822 return true; 4823 for (Value *V : Phi->incoming_values()) 4824 if (auto *C = dyn_cast<Constant>(V)) 4825 if (C->canTrap()) 4826 return false; 4827 } 4828 return true; 4829 } 4830 4831 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4832 if (!EnableIfConversion) { 4833 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4834 << "if-conversion is disabled"); 4835 return false; 4836 } 4837 4838 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4839 4840 // A list of pointers that we can safely read and write to. 4841 SmallPtrSet<Value *, 8> SafePointes; 4842 4843 // Collect safe addresses. 4844 for (BasicBlock *BB : TheLoop->blocks()) { 4845 if (blockNeedsPredication(BB)) 4846 continue; 4847 4848 for (Instruction &I : *BB) 4849 if (auto *Ptr = getPointerOperand(&I)) 4850 SafePointes.insert(Ptr); 4851 } 4852 4853 // Collect the blocks that need predication. 4854 BasicBlock *Header = TheLoop->getHeader(); 4855 for (BasicBlock *BB : TheLoop->blocks()) { 4856 // We don't support switch statements inside loops. 4857 if (!isa<BranchInst>(BB->getTerminator())) { 4858 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4859 << "loop contains a switch statement"); 4860 return false; 4861 } 4862 4863 // We must be able to predicate all blocks that need to be predicated. 4864 if (blockNeedsPredication(BB)) { 4865 if (!blockCanBePredicated(BB, SafePointes)) { 4866 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4867 << "control flow cannot be substituted for a select"); 4868 return false; 4869 } 4870 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4871 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4872 << "control flow cannot be substituted for a select"); 4873 return false; 4874 } 4875 } 4876 4877 // We can if-convert this loop. 4878 return true; 4879 } 4880 4881 bool LoopVectorizationLegality::canVectorize() { 4882 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4883 // be canonicalized. 4884 if (!TheLoop->getLoopPreheader()) { 4885 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4886 << "loop control flow is not understood by vectorizer"); 4887 return false; 4888 } 4889 4890 // FIXME: The code is currently dead, since the loop gets sent to 4891 // LoopVectorizationLegality is already an innermost loop. 4892 // 4893 // We can only vectorize innermost loops. 4894 if (!TheLoop->empty()) { 4895 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4896 << "loop is not the innermost loop"); 4897 return false; 4898 } 4899 4900 // We must have a single backedge. 4901 if (TheLoop->getNumBackEdges() != 1) { 4902 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4903 << "loop control flow is not understood by vectorizer"); 4904 return false; 4905 } 4906 4907 // We must have a single exiting block. 4908 if (!TheLoop->getExitingBlock()) { 4909 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4910 << "loop control flow is not understood by vectorizer"); 4911 return false; 4912 } 4913 4914 // We only handle bottom-tested loops, i.e. loop in which the condition is 4915 // checked at the end of each iteration. With that we can assume that all 4916 // instructions in the loop are executed the same number of times. 4917 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4918 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4919 << "loop control flow is not understood by vectorizer"); 4920 return false; 4921 } 4922 4923 // We need to have a loop header. 4924 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4925 << '\n'); 4926 4927 // Check if we can if-convert non-single-bb loops. 4928 unsigned NumBlocks = TheLoop->getNumBlocks(); 4929 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4930 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4931 return false; 4932 } 4933 4934 // ScalarEvolution needs to be able to find the exit count. 4935 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4936 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4937 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 4938 << "could not determine number of loop iterations"); 4939 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4940 return false; 4941 } 4942 4943 // Check if we can vectorize the instructions and CFG in this loop. 4944 if (!canVectorizeInstrs()) { 4945 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4946 return false; 4947 } 4948 4949 // Go over each instruction and look at memory deps. 4950 if (!canVectorizeMemory()) { 4951 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4952 return false; 4953 } 4954 4955 DEBUG(dbgs() << "LV: We can vectorize this loop" 4956 << (LAI->getRuntimePointerChecking()->Need 4957 ? " (with a runtime bound check)" 4958 : "") 4959 << "!\n"); 4960 4961 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4962 4963 // If an override option has been passed in for interleaved accesses, use it. 4964 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4965 UseInterleaved = EnableInterleavedMemAccesses; 4966 4967 // Analyze interleaved memory accesses. 4968 if (UseInterleaved) 4969 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4970 4971 // Collect all instructions that are known to be uniform after vectorization. 4972 collectLoopUniforms(); 4973 4974 // Collect all instructions that are known to be scalar after vectorization. 4975 collectLoopScalars(); 4976 4977 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4978 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4979 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4980 4981 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4982 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 4983 << "Too many SCEV assumptions need to be made and checked " 4984 << "at runtime"); 4985 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4986 return false; 4987 } 4988 4989 // Okay! We can vectorize. At this point we don't have any other mem analysis 4990 // which may limit our maximum vectorization factor, so just return true with 4991 // no restrictions. 4992 return true; 4993 } 4994 4995 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4996 if (Ty->isPointerTy()) 4997 return DL.getIntPtrType(Ty); 4998 4999 // It is possible that char's or short's overflow when we ask for the loop's 5000 // trip count, work around this by changing the type size. 5001 if (Ty->getScalarSizeInBits() < 32) 5002 return Type::getInt32Ty(Ty->getContext()); 5003 5004 return Ty; 5005 } 5006 5007 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5008 Ty0 = convertPointerToIntegerType(DL, Ty0); 5009 Ty1 = convertPointerToIntegerType(DL, Ty1); 5010 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5011 return Ty0; 5012 return Ty1; 5013 } 5014 5015 /// \brief Check that the instruction has outside loop users and is not an 5016 /// identified reduction variable. 5017 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5018 SmallPtrSetImpl<Value *> &AllowedExit) { 5019 // Reduction and Induction instructions are allowed to have exit users. All 5020 // other instructions must not have external users. 5021 if (!AllowedExit.count(Inst)) 5022 // Check that all of the users of the loop are inside the BB. 5023 for (User *U : Inst->users()) { 5024 Instruction *UI = cast<Instruction>(U); 5025 // This user may be a reduction exit value. 5026 if (!TheLoop->contains(UI)) { 5027 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5028 return true; 5029 } 5030 } 5031 return false; 5032 } 5033 5034 void LoopVectorizationLegality::addInductionPhi( 5035 PHINode *Phi, const InductionDescriptor &ID, 5036 SmallPtrSetImpl<Value *> &AllowedExit) { 5037 Inductions[Phi] = ID; 5038 Type *PhiTy = Phi->getType(); 5039 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5040 5041 // Get the widest type. 5042 if (!PhiTy->isFloatingPointTy()) { 5043 if (!WidestIndTy) 5044 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5045 else 5046 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5047 } 5048 5049 // Int inductions are special because we only allow one IV. 5050 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5051 ID.getConstIntStepValue() && 5052 ID.getConstIntStepValue()->isOne() && 5053 isa<Constant>(ID.getStartValue()) && 5054 cast<Constant>(ID.getStartValue())->isNullValue()) { 5055 5056 // Use the phi node with the widest type as induction. Use the last 5057 // one if there are multiple (no good reason for doing this other 5058 // than it is expedient). We've checked that it begins at zero and 5059 // steps by one, so this is a canonical induction variable. 5060 if (!Induction || PhiTy == WidestIndTy) 5061 Induction = Phi; 5062 } 5063 5064 // Both the PHI node itself, and the "post-increment" value feeding 5065 // back into the PHI node may have external users. 5066 AllowedExit.insert(Phi); 5067 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5068 5069 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5070 return; 5071 } 5072 5073 bool LoopVectorizationLegality::canVectorizeInstrs() { 5074 BasicBlock *Header = TheLoop->getHeader(); 5075 5076 // Look for the attribute signaling the absence of NaNs. 5077 Function &F = *Header->getParent(); 5078 HasFunNoNaNAttr = 5079 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5080 5081 // For each block in the loop. 5082 for (BasicBlock *BB : TheLoop->blocks()) { 5083 // Scan the instructions in the block and look for hazards. 5084 for (Instruction &I : *BB) { 5085 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5086 Type *PhiTy = Phi->getType(); 5087 // Check that this PHI type is allowed. 5088 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5089 !PhiTy->isPointerTy()) { 5090 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5091 << "loop control flow is not understood by vectorizer"); 5092 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5093 return false; 5094 } 5095 5096 // If this PHINode is not in the header block, then we know that we 5097 // can convert it to select during if-conversion. No need to check if 5098 // the PHIs in this block are induction or reduction variables. 5099 if (BB != Header) { 5100 // Check that this instruction has no outside users or is an 5101 // identified reduction value with an outside user. 5102 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5103 continue; 5104 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5105 << "value could not be identified as " 5106 "an induction or reduction variable"); 5107 return false; 5108 } 5109 5110 // We only allow if-converted PHIs with exactly two incoming values. 5111 if (Phi->getNumIncomingValues() != 2) { 5112 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5113 << "control flow not understood by vectorizer"); 5114 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5115 return false; 5116 } 5117 5118 RecurrenceDescriptor RedDes; 5119 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5120 if (RedDes.hasUnsafeAlgebra()) 5121 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5122 AllowedExit.insert(RedDes.getLoopExitInstr()); 5123 Reductions[Phi] = RedDes; 5124 continue; 5125 } 5126 5127 InductionDescriptor ID; 5128 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5129 addInductionPhi(Phi, ID, AllowedExit); 5130 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5131 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5132 continue; 5133 } 5134 5135 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5136 FirstOrderRecurrences.insert(Phi); 5137 continue; 5138 } 5139 5140 // As a last resort, coerce the PHI to a AddRec expression 5141 // and re-try classifying it a an induction PHI. 5142 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5143 addInductionPhi(Phi, ID, AllowedExit); 5144 continue; 5145 } 5146 5147 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5148 << "value that could not be identified as " 5149 "reduction is used outside the loop"); 5150 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5151 return false; 5152 } // end of PHI handling 5153 5154 // We handle calls that: 5155 // * Are debug info intrinsics. 5156 // * Have a mapping to an IR intrinsic. 5157 // * Have a vector version available. 5158 auto *CI = dyn_cast<CallInst>(&I); 5159 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5160 !isa<DbgInfoIntrinsic>(CI) && 5161 !(CI->getCalledFunction() && TLI && 5162 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5163 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5164 << "call instruction cannot be vectorized"); 5165 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5166 return false; 5167 } 5168 5169 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5170 // second argument is the same (i.e. loop invariant) 5171 if (CI && hasVectorInstrinsicScalarOpd( 5172 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5173 auto *SE = PSE.getSE(); 5174 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5175 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5176 << "intrinsic instruction cannot be vectorized"); 5177 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5178 return false; 5179 } 5180 } 5181 5182 // Check that the instruction return type is vectorizable. 5183 // Also, we can't vectorize extractelement instructions. 5184 if ((!VectorType::isValidElementType(I.getType()) && 5185 !I.getType()->isVoidTy()) || 5186 isa<ExtractElementInst>(I)) { 5187 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5188 << "instruction return type cannot be vectorized"); 5189 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5190 return false; 5191 } 5192 5193 // Check that the stored type is vectorizable. 5194 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5195 Type *T = ST->getValueOperand()->getType(); 5196 if (!VectorType::isValidElementType(T)) { 5197 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5198 << "store instruction cannot be vectorized"); 5199 return false; 5200 } 5201 5202 // FP instructions can allow unsafe algebra, thus vectorizable by 5203 // non-IEEE-754 compliant SIMD units. 5204 // This applies to floating-point math operations and calls, not memory 5205 // operations, shuffles, or casts, as they don't change precision or 5206 // semantics. 5207 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5208 !I.hasUnsafeAlgebra()) { 5209 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5210 Hints->setPotentiallyUnsafe(); 5211 } 5212 5213 // Reduction instructions are allowed to have exit users. 5214 // All other instructions must not have external users. 5215 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5216 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5217 << "value cannot be used outside the loop"); 5218 return false; 5219 } 5220 5221 } // next instr. 5222 } 5223 5224 if (!Induction) { 5225 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5226 if (Inductions.empty()) { 5227 ORE->emit(createMissedAnalysis("NoInductionVariable") 5228 << "loop induction variable could not be identified"); 5229 return false; 5230 } 5231 } 5232 5233 // Now we know the widest induction type, check if our found induction 5234 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5235 // will create another. 5236 if (Induction && WidestIndTy != Induction->getType()) 5237 Induction = nullptr; 5238 5239 return true; 5240 } 5241 5242 void LoopVectorizationLegality::collectLoopScalars() { 5243 5244 // If an instruction is uniform after vectorization, it will remain scalar. 5245 Scalars.insert(Uniforms.begin(), Uniforms.end()); 5246 5247 // Collect the getelementptr instructions that will not be vectorized. A 5248 // getelementptr instruction is only vectorized if it is used for a legal 5249 // gather or scatter operation. 5250 for (auto *BB : TheLoop->blocks()) 5251 for (auto &I : *BB) { 5252 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5253 Scalars.insert(GEP); 5254 continue; 5255 } 5256 auto *Ptr = getPointerOperand(&I); 5257 if (!Ptr) 5258 continue; 5259 auto *GEP = getGEPInstruction(Ptr); 5260 if (GEP && isLegalGatherOrScatter(&I)) 5261 Scalars.erase(GEP); 5262 } 5263 5264 // An induction variable will remain scalar if all users of the induction 5265 // variable and induction variable update remain scalar. 5266 auto *Latch = TheLoop->getLoopLatch(); 5267 for (auto &Induction : *getInductionVars()) { 5268 auto *Ind = Induction.first; 5269 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5270 5271 // Determine if all users of the induction variable are scalar after 5272 // vectorization. 5273 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5274 auto *I = cast<Instruction>(U); 5275 return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I); 5276 }); 5277 if (!ScalarInd) 5278 continue; 5279 5280 // Determine if all users of the induction variable update instruction are 5281 // scalar after vectorization. 5282 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5283 auto *I = cast<Instruction>(U); 5284 return I == Ind || !TheLoop->contains(I) || Scalars.count(I); 5285 }); 5286 if (!ScalarIndUpdate) 5287 continue; 5288 5289 // The induction variable and its update instruction will remain scalar. 5290 Scalars.insert(Ind); 5291 Scalars.insert(IndUpdate); 5292 } 5293 } 5294 5295 bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) { 5296 if (isAccessInterleaved(I)) 5297 return true; 5298 if (auto *Ptr = getPointerOperand(I)) 5299 return isConsecutivePtr(Ptr); 5300 return false; 5301 } 5302 5303 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5304 if (!blockNeedsPredication(I->getParent())) 5305 return false; 5306 switch(I->getOpcode()) { 5307 default: 5308 break; 5309 case Instruction::Store: 5310 return !isMaskRequired(I); 5311 case Instruction::UDiv: 5312 case Instruction::SDiv: 5313 case Instruction::SRem: 5314 case Instruction::URem: 5315 return mayDivideByZero(*I); 5316 } 5317 return false; 5318 } 5319 5320 bool LoopVectorizationLegality::memoryInstructionMustBeScalarized( 5321 Instruction *I, unsigned VF) { 5322 5323 // If the memory instruction is in an interleaved group, it will be 5324 // vectorized and its pointer will remain uniform. 5325 if (isAccessInterleaved(I)) 5326 return false; 5327 5328 // Get and ensure we have a valid memory instruction. 5329 LoadInst *LI = dyn_cast<LoadInst>(I); 5330 StoreInst *SI = dyn_cast<StoreInst>(I); 5331 assert((LI || SI) && "Invalid memory instruction"); 5332 5333 // If the pointer operand is uniform (loop invariant), the memory instruction 5334 // will be scalarized. 5335 auto *Ptr = getPointerOperand(I); 5336 if (LI && isUniform(Ptr)) 5337 return true; 5338 5339 // If the pointer operand is non-consecutive and neither a gather nor a 5340 // scatter operation is legal, the memory instruction will be scalarized. 5341 if (!isConsecutivePtr(Ptr) && !isLegalGatherOrScatter(I)) 5342 return true; 5343 5344 // If the instruction is a store located in a predicated block, it will be 5345 // scalarized. 5346 if (isScalarWithPredication(I)) 5347 return true; 5348 5349 // If the instruction's allocated size doesn't equal it's type size, it 5350 // requires padding and will be scalarized. 5351 auto &DL = I->getModule()->getDataLayout(); 5352 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5353 if (hasIrregularType(ScalarTy, DL, VF)) 5354 return true; 5355 5356 // Otherwise, the memory instruction should be vectorized if the rest of the 5357 // loop is. 5358 return false; 5359 } 5360 5361 void LoopVectorizationLegality::collectLoopUniforms() { 5362 // We now know that the loop is vectorizable! 5363 // Collect instructions inside the loop that will remain uniform after 5364 // vectorization. 5365 5366 // Global values, params and instructions outside of current loop are out of 5367 // scope. 5368 auto isOutOfScope = [&](Value *V) -> bool { 5369 Instruction *I = dyn_cast<Instruction>(V); 5370 return (!I || !TheLoop->contains(I)); 5371 }; 5372 5373 SetVector<Instruction *> Worklist; 5374 BasicBlock *Latch = TheLoop->getLoopLatch(); 5375 5376 // Start with the conditional branch. If the branch condition is an 5377 // instruction contained in the loop that is only used by the branch, it is 5378 // uniform. 5379 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5380 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5381 Worklist.insert(Cmp); 5382 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5383 } 5384 5385 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5386 // are pointers that are treated like consecutive pointers during 5387 // vectorization. The pointer operands of interleaved accesses are an 5388 // example. 5389 SmallPtrSet<Instruction *, 8> ConsecutiveLikePtrs; 5390 5391 // Holds pointer operands of instructions that are possibly non-uniform. 5392 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5393 5394 // Iterate over the instructions in the loop, and collect all 5395 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5396 // that a consecutive-like pointer operand will be scalarized, we collect it 5397 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5398 // getelementptr instruction can be used by both vectorized and scalarized 5399 // memory instructions. For example, if a loop loads and stores from the same 5400 // location, but the store is conditional, the store will be scalarized, and 5401 // the getelementptr won't remain uniform. 5402 for (auto *BB : TheLoop->blocks()) 5403 for (auto &I : *BB) { 5404 5405 // If there's no pointer operand, there's nothing to do. 5406 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5407 if (!Ptr) 5408 continue; 5409 5410 // True if all users of Ptr are memory accesses that have Ptr as their 5411 // pointer operand. 5412 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5413 return getPointerOperand(U) == Ptr; 5414 }); 5415 5416 // Ensure the memory instruction will not be scalarized, making its 5417 // pointer operand non-uniform. If the pointer operand is used by some 5418 // instruction other than a memory access, we're not going to check if 5419 // that other instruction may be scalarized here. Thus, conservatively 5420 // assume the pointer operand may be non-uniform. 5421 if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I)) 5422 PossibleNonUniformPtrs.insert(Ptr); 5423 5424 // If the memory instruction will be vectorized and its pointer operand 5425 // is consecutive-like, the pointer operand should remain uniform. 5426 else if (hasConsecutiveLikePtrOperand(&I)) 5427 ConsecutiveLikePtrs.insert(Ptr); 5428 } 5429 5430 // Add to the Worklist all consecutive and consecutive-like pointers that 5431 // aren't also identified as possibly non-uniform. 5432 for (auto *V : ConsecutiveLikePtrs) 5433 if (!PossibleNonUniformPtrs.count(V)) { 5434 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5435 Worklist.insert(V); 5436 } 5437 5438 // Expand Worklist in topological order: whenever a new instruction 5439 // is added , its users should be either already inside Worklist, or 5440 // out of scope. It ensures a uniform instruction will only be used 5441 // by uniform instructions or out of scope instructions. 5442 unsigned idx = 0; 5443 while (idx != Worklist.size()) { 5444 Instruction *I = Worklist[idx++]; 5445 5446 for (auto OV : I->operand_values()) { 5447 if (isOutOfScope(OV)) 5448 continue; 5449 auto *OI = cast<Instruction>(OV); 5450 if (all_of(OI->users(), [&](User *U) -> bool { 5451 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 5452 })) { 5453 Worklist.insert(OI); 5454 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5455 } 5456 } 5457 } 5458 5459 // Returns true if Ptr is the pointer operand of a memory access instruction 5460 // I, and I is known to not require scalarization. 5461 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5462 return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I); 5463 }; 5464 5465 // For an instruction to be added into Worklist above, all its users inside 5466 // the loop should also be in Worklist. However, this condition cannot be 5467 // true for phi nodes that form a cyclic dependence. We must process phi 5468 // nodes separately. An induction variable will remain uniform if all users 5469 // of the induction variable and induction variable update remain uniform. 5470 // The code below handles both pointer and non-pointer induction variables. 5471 for (auto &Induction : Inductions) { 5472 auto *Ind = Induction.first; 5473 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5474 5475 // Determine if all users of the induction variable are uniform after 5476 // vectorization. 5477 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5478 auto *I = cast<Instruction>(U); 5479 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5480 isVectorizedMemAccessUse(I, Ind); 5481 }); 5482 if (!UniformInd) 5483 continue; 5484 5485 // Determine if all users of the induction variable update instruction are 5486 // uniform after vectorization. 5487 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5488 auto *I = cast<Instruction>(U); 5489 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5490 isVectorizedMemAccessUse(I, IndUpdate); 5491 }); 5492 if (!UniformIndUpdate) 5493 continue; 5494 5495 // The induction variable and its update instruction will remain uniform. 5496 Worklist.insert(Ind); 5497 Worklist.insert(IndUpdate); 5498 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5499 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5500 } 5501 5502 Uniforms.insert(Worklist.begin(), Worklist.end()); 5503 } 5504 5505 bool LoopVectorizationLegality::canVectorizeMemory() { 5506 LAI = &(*GetLAA)(*TheLoop); 5507 InterleaveInfo.setLAI(LAI); 5508 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5509 if (LAR) { 5510 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5511 "loop not vectorized: ", *LAR); 5512 ORE->emit(VR); 5513 } 5514 if (!LAI->canVectorizeMemory()) 5515 return false; 5516 5517 if (LAI->hasStoreToLoopInvariantAddress()) { 5518 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5519 << "write to a loop invariant address could not be vectorized"); 5520 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5521 return false; 5522 } 5523 5524 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5525 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5526 5527 return true; 5528 } 5529 5530 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5531 Value *In0 = const_cast<Value *>(V); 5532 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5533 if (!PN) 5534 return false; 5535 5536 return Inductions.count(PN); 5537 } 5538 5539 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5540 return FirstOrderRecurrences.count(Phi); 5541 } 5542 5543 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5544 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5545 } 5546 5547 bool LoopVectorizationLegality::blockCanBePredicated( 5548 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5549 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5550 5551 for (Instruction &I : *BB) { 5552 // Check that we don't have a constant expression that can trap as operand. 5553 for (Value *Operand : I.operands()) { 5554 if (auto *C = dyn_cast<Constant>(Operand)) 5555 if (C->canTrap()) 5556 return false; 5557 } 5558 // We might be able to hoist the load. 5559 if (I.mayReadFromMemory()) { 5560 auto *LI = dyn_cast<LoadInst>(&I); 5561 if (!LI) 5562 return false; 5563 if (!SafePtrs.count(LI->getPointerOperand())) { 5564 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5565 isLegalMaskedGather(LI->getType())) { 5566 MaskedOp.insert(LI); 5567 continue; 5568 } 5569 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5570 if (IsAnnotatedParallel) 5571 continue; 5572 return false; 5573 } 5574 } 5575 5576 if (I.mayWriteToMemory()) { 5577 auto *SI = dyn_cast<StoreInst>(&I); 5578 // We only support predication of stores in basic blocks with one 5579 // predecessor. 5580 if (!SI) 5581 return false; 5582 5583 // Build a masked store if it is legal for the target. 5584 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5585 SI->getPointerOperand()) || 5586 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5587 MaskedOp.insert(SI); 5588 continue; 5589 } 5590 5591 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5592 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5593 5594 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5595 !isSinglePredecessor) 5596 return false; 5597 } 5598 if (I.mayThrow()) 5599 return false; 5600 } 5601 5602 return true; 5603 } 5604 5605 void InterleavedAccessInfo::collectConstStrideAccesses( 5606 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5607 const ValueToValueMap &Strides) { 5608 5609 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5610 5611 // Since it's desired that the load/store instructions be maintained in 5612 // "program order" for the interleaved access analysis, we have to visit the 5613 // blocks in the loop in reverse postorder (i.e., in a topological order). 5614 // Such an ordering will ensure that any load/store that may be executed 5615 // before a second load/store will precede the second load/store in 5616 // AccessStrideInfo. 5617 LoopBlocksDFS DFS(TheLoop); 5618 DFS.perform(LI); 5619 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5620 for (auto &I : *BB) { 5621 auto *LI = dyn_cast<LoadInst>(&I); 5622 auto *SI = dyn_cast<StoreInst>(&I); 5623 if (!LI && !SI) 5624 continue; 5625 5626 Value *Ptr = getPointerOperand(&I); 5627 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5628 5629 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5630 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5631 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5632 5633 // An alignment of 0 means target ABI alignment. 5634 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5635 if (!Align) 5636 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5637 5638 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5639 } 5640 } 5641 5642 // Analyze interleaved accesses and collect them into interleaved load and 5643 // store groups. 5644 // 5645 // When generating code for an interleaved load group, we effectively hoist all 5646 // loads in the group to the location of the first load in program order. When 5647 // generating code for an interleaved store group, we sink all stores to the 5648 // location of the last store. This code motion can change the order of load 5649 // and store instructions and may break dependences. 5650 // 5651 // The code generation strategy mentioned above ensures that we won't violate 5652 // any write-after-read (WAR) dependences. 5653 // 5654 // E.g., for the WAR dependence: a = A[i]; // (1) 5655 // A[i] = b; // (2) 5656 // 5657 // The store group of (2) is always inserted at or below (2), and the load 5658 // group of (1) is always inserted at or above (1). Thus, the instructions will 5659 // never be reordered. All other dependences are checked to ensure the 5660 // correctness of the instruction reordering. 5661 // 5662 // The algorithm visits all memory accesses in the loop in bottom-up program 5663 // order. Program order is established by traversing the blocks in the loop in 5664 // reverse postorder when collecting the accesses. 5665 // 5666 // We visit the memory accesses in bottom-up order because it can simplify the 5667 // construction of store groups in the presence of write-after-write (WAW) 5668 // dependences. 5669 // 5670 // E.g., for the WAW dependence: A[i] = a; // (1) 5671 // A[i] = b; // (2) 5672 // A[i + 1] = c; // (3) 5673 // 5674 // We will first create a store group with (3) and (2). (1) can't be added to 5675 // this group because it and (2) are dependent. However, (1) can be grouped 5676 // with other accesses that may precede it in program order. Note that a 5677 // bottom-up order does not imply that WAW dependences should not be checked. 5678 void InterleavedAccessInfo::analyzeInterleaving( 5679 const ValueToValueMap &Strides) { 5680 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5681 5682 // Holds all accesses with a constant stride. 5683 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5684 collectConstStrideAccesses(AccessStrideInfo, Strides); 5685 5686 if (AccessStrideInfo.empty()) 5687 return; 5688 5689 // Collect the dependences in the loop. 5690 collectDependences(); 5691 5692 // Holds all interleaved store groups temporarily. 5693 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5694 // Holds all interleaved load groups temporarily. 5695 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5696 5697 // Search in bottom-up program order for pairs of accesses (A and B) that can 5698 // form interleaved load or store groups. In the algorithm below, access A 5699 // precedes access B in program order. We initialize a group for B in the 5700 // outer loop of the algorithm, and then in the inner loop, we attempt to 5701 // insert each A into B's group if: 5702 // 5703 // 1. A and B have the same stride, 5704 // 2. A and B have the same memory object size, and 5705 // 3. A belongs in B's group according to its distance from B. 5706 // 5707 // Special care is taken to ensure group formation will not break any 5708 // dependences. 5709 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5710 BI != E; ++BI) { 5711 Instruction *B = BI->first; 5712 StrideDescriptor DesB = BI->second; 5713 5714 // Initialize a group for B if it has an allowable stride. Even if we don't 5715 // create a group for B, we continue with the bottom-up algorithm to ensure 5716 // we don't break any of B's dependences. 5717 InterleaveGroup *Group = nullptr; 5718 if (isStrided(DesB.Stride)) { 5719 Group = getInterleaveGroup(B); 5720 if (!Group) { 5721 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5722 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5723 } 5724 if (B->mayWriteToMemory()) 5725 StoreGroups.insert(Group); 5726 else 5727 LoadGroups.insert(Group); 5728 } 5729 5730 for (auto AI = std::next(BI); AI != E; ++AI) { 5731 Instruction *A = AI->first; 5732 StrideDescriptor DesA = AI->second; 5733 5734 // Our code motion strategy implies that we can't have dependences 5735 // between accesses in an interleaved group and other accesses located 5736 // between the first and last member of the group. Note that this also 5737 // means that a group can't have more than one member at a given offset. 5738 // The accesses in a group can have dependences with other accesses, but 5739 // we must ensure we don't extend the boundaries of the group such that 5740 // we encompass those dependent accesses. 5741 // 5742 // For example, assume we have the sequence of accesses shown below in a 5743 // stride-2 loop: 5744 // 5745 // (1, 2) is a group | A[i] = a; // (1) 5746 // | A[i-1] = b; // (2) | 5747 // A[i-3] = c; // (3) 5748 // A[i] = d; // (4) | (2, 4) is not a group 5749 // 5750 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5751 // but not with (4). If we did, the dependent access (3) would be within 5752 // the boundaries of the (2, 4) group. 5753 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5754 5755 // If a dependence exists and A is already in a group, we know that A 5756 // must be a store since A precedes B and WAR dependences are allowed. 5757 // Thus, A would be sunk below B. We release A's group to prevent this 5758 // illegal code motion. A will then be free to form another group with 5759 // instructions that precede it. 5760 if (isInterleaved(A)) { 5761 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5762 StoreGroups.remove(StoreGroup); 5763 releaseGroup(StoreGroup); 5764 } 5765 5766 // If a dependence exists and A is not already in a group (or it was 5767 // and we just released it), B might be hoisted above A (if B is a 5768 // load) or another store might be sunk below A (if B is a store). In 5769 // either case, we can't add additional instructions to B's group. B 5770 // will only form a group with instructions that it precedes. 5771 break; 5772 } 5773 5774 // At this point, we've checked for illegal code motion. If either A or B 5775 // isn't strided, there's nothing left to do. 5776 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5777 continue; 5778 5779 // Ignore A if it's already in a group or isn't the same kind of memory 5780 // operation as B. 5781 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5782 continue; 5783 5784 // Check rules 1 and 2. Ignore A if its stride or size is different from 5785 // that of B. 5786 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5787 continue; 5788 5789 // Calculate the distance from A to B. 5790 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5791 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5792 if (!DistToB) 5793 continue; 5794 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5795 5796 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5797 // size. 5798 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5799 continue; 5800 5801 // Ignore A if either A or B is in a predicated block. Although we 5802 // currently prevent group formation for predicated accesses, we may be 5803 // able to relax this limitation in the future once we handle more 5804 // complicated blocks. 5805 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5806 continue; 5807 5808 // The index of A is the index of B plus A's distance to B in multiples 5809 // of the size. 5810 int IndexA = 5811 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5812 5813 // Try to insert A into B's group. 5814 if (Group->insertMember(A, IndexA, DesA.Align)) { 5815 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5816 << " into the interleave group with" << *B << '\n'); 5817 InterleaveGroupMap[A] = Group; 5818 5819 // Set the first load in program order as the insert position. 5820 if (A->mayReadFromMemory()) 5821 Group->setInsertPos(A); 5822 } 5823 } // Iteration over A accesses. 5824 } // Iteration over B accesses. 5825 5826 // Remove interleaved store groups with gaps. 5827 for (InterleaveGroup *Group : StoreGroups) 5828 if (Group->getNumMembers() != Group->getFactor()) 5829 releaseGroup(Group); 5830 5831 // If there is a non-reversed interleaved load group with gaps, we will need 5832 // to execute at least one scalar epilogue iteration. This will ensure that 5833 // we don't speculatively access memory out-of-bounds. Note that we only need 5834 // to look for a member at index factor - 1, since every group must have a 5835 // member at index zero. 5836 for (InterleaveGroup *Group : LoadGroups) 5837 if (!Group->getMember(Group->getFactor() - 1)) { 5838 if (Group->isReverse()) { 5839 releaseGroup(Group); 5840 } else { 5841 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5842 RequiresScalarEpilogue = true; 5843 } 5844 } 5845 } 5846 5847 LoopVectorizationCostModel::VectorizationFactor 5848 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5849 // Width 1 means no vectorize 5850 VectorizationFactor Factor = {1U, 0U}; 5851 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5852 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 5853 << "runtime pointer checks needed. Enable vectorization of this " 5854 "loop with '#pragma clang loop vectorize(enable)' when " 5855 "compiling with -Os/-Oz"); 5856 DEBUG(dbgs() 5857 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5858 return Factor; 5859 } 5860 5861 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5862 ORE->emit(createMissedAnalysis("ConditionalStore") 5863 << "store that is conditionally executed prevents vectorization"); 5864 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5865 return Factor; 5866 } 5867 5868 // Find the trip count. 5869 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5870 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5871 5872 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5873 unsigned SmallestType, WidestType; 5874 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5875 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5876 unsigned MaxSafeDepDist = -1U; 5877 5878 // Get the maximum safe dependence distance in bits computed by LAA. If the 5879 // loop contains any interleaved accesses, we divide the dependence distance 5880 // by the maximum interleave factor of all interleaved groups. Note that 5881 // although the division ensures correctness, this is a fairly conservative 5882 // computation because the maximum distance computed by LAA may not involve 5883 // any of the interleaved accesses. 5884 if (Legal->getMaxSafeDepDistBytes() != -1U) 5885 MaxSafeDepDist = 5886 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5887 5888 WidestRegister = 5889 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5890 unsigned MaxVectorSize = WidestRegister / WidestType; 5891 5892 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5893 << WidestType << " bits.\n"); 5894 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5895 << " bits.\n"); 5896 5897 if (MaxVectorSize == 0) { 5898 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5899 MaxVectorSize = 1; 5900 } 5901 5902 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5903 " into one vector!"); 5904 5905 unsigned VF = MaxVectorSize; 5906 if (MaximizeBandwidth && !OptForSize) { 5907 // Collect all viable vectorization factors. 5908 SmallVector<unsigned, 8> VFs; 5909 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5910 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5911 VFs.push_back(VS); 5912 5913 // For each VF calculate its register usage. 5914 auto RUs = calculateRegisterUsage(VFs); 5915 5916 // Select the largest VF which doesn't require more registers than existing 5917 // ones. 5918 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5919 for (int i = RUs.size() - 1; i >= 0; --i) { 5920 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5921 VF = VFs[i]; 5922 break; 5923 } 5924 } 5925 } 5926 5927 // If we optimize the program for size, avoid creating the tail loop. 5928 if (OptForSize) { 5929 // If we are unable to calculate the trip count then don't try to vectorize. 5930 if (TC < 2) { 5931 ORE->emit( 5932 createMissedAnalysis("UnknownLoopCountComplexCFG") 5933 << "unable to calculate the loop count due to complex control flow"); 5934 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5935 return Factor; 5936 } 5937 5938 // Find the maximum SIMD width that can fit within the trip count. 5939 VF = TC % MaxVectorSize; 5940 5941 if (VF == 0) 5942 VF = MaxVectorSize; 5943 else { 5944 // If the trip count that we found modulo the vectorization factor is not 5945 // zero then we require a tail. 5946 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 5947 << "cannot optimize for size and vectorize at the " 5948 "same time. Enable vectorization of this loop " 5949 "with '#pragma clang loop vectorize(enable)' " 5950 "when compiling with -Os/-Oz"); 5951 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5952 return Factor; 5953 } 5954 } 5955 5956 int UserVF = Hints->getWidth(); 5957 if (UserVF != 0) { 5958 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5959 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5960 5961 Factor.Width = UserVF; 5962 return Factor; 5963 } 5964 5965 float Cost = expectedCost(1).first; 5966 #ifndef NDEBUG 5967 const float ScalarCost = Cost; 5968 #endif /* NDEBUG */ 5969 unsigned Width = 1; 5970 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5971 5972 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5973 // Ignore scalar width, because the user explicitly wants vectorization. 5974 if (ForceVectorization && VF > 1) { 5975 Width = 2; 5976 Cost = expectedCost(Width).first / (float)Width; 5977 } 5978 5979 for (unsigned i = 2; i <= VF; i *= 2) { 5980 // Notice that the vector loop needs to be executed less times, so 5981 // we need to divide the cost of the vector loops by the width of 5982 // the vector elements. 5983 VectorizationCostTy C = expectedCost(i); 5984 float VectorCost = C.first / (float)i; 5985 DEBUG(dbgs() << "LV: Vector loop of width " << i 5986 << " costs: " << (int)VectorCost << ".\n"); 5987 if (!C.second && !ForceVectorization) { 5988 DEBUG( 5989 dbgs() << "LV: Not considering vector loop of width " << i 5990 << " because it will not generate any vector instructions.\n"); 5991 continue; 5992 } 5993 if (VectorCost < Cost) { 5994 Cost = VectorCost; 5995 Width = i; 5996 } 5997 } 5998 5999 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6000 << "LV: Vectorization seems to be not beneficial, " 6001 << "but was forced by a user.\n"); 6002 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6003 Factor.Width = Width; 6004 Factor.Cost = Width * Cost; 6005 return Factor; 6006 } 6007 6008 std::pair<unsigned, unsigned> 6009 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6010 unsigned MinWidth = -1U; 6011 unsigned MaxWidth = 8; 6012 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6013 6014 // For each block. 6015 for (BasicBlock *BB : TheLoop->blocks()) { 6016 // For each instruction in the loop. 6017 for (Instruction &I : *BB) { 6018 Type *T = I.getType(); 6019 6020 // Skip ignored values. 6021 if (ValuesToIgnore.count(&I)) 6022 continue; 6023 6024 // Only examine Loads, Stores and PHINodes. 6025 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6026 continue; 6027 6028 // Examine PHI nodes that are reduction variables. Update the type to 6029 // account for the recurrence type. 6030 if (auto *PN = dyn_cast<PHINode>(&I)) { 6031 if (!Legal->isReductionVariable(PN)) 6032 continue; 6033 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6034 T = RdxDesc.getRecurrenceType(); 6035 } 6036 6037 // Examine the stored values. 6038 if (auto *ST = dyn_cast<StoreInst>(&I)) 6039 T = ST->getValueOperand()->getType(); 6040 6041 // Ignore loaded pointer types and stored pointer types that are not 6042 // consecutive. However, we do want to take consecutive stores/loads of 6043 // pointer vectors into account. 6044 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 6045 continue; 6046 6047 MinWidth = std::min(MinWidth, 6048 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6049 MaxWidth = std::max(MaxWidth, 6050 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6051 } 6052 } 6053 6054 return {MinWidth, MaxWidth}; 6055 } 6056 6057 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6058 unsigned VF, 6059 unsigned LoopCost) { 6060 6061 // -- The interleave heuristics -- 6062 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6063 // There are many micro-architectural considerations that we can't predict 6064 // at this level. For example, frontend pressure (on decode or fetch) due to 6065 // code size, or the number and capabilities of the execution ports. 6066 // 6067 // We use the following heuristics to select the interleave count: 6068 // 1. If the code has reductions, then we interleave to break the cross 6069 // iteration dependency. 6070 // 2. If the loop is really small, then we interleave to reduce the loop 6071 // overhead. 6072 // 3. We don't interleave if we think that we will spill registers to memory 6073 // due to the increased register pressure. 6074 6075 // When we optimize for size, we don't interleave. 6076 if (OptForSize) 6077 return 1; 6078 6079 // We used the distance for the interleave count. 6080 if (Legal->getMaxSafeDepDistBytes() != -1U) 6081 return 1; 6082 6083 // Do not interleave loops with a relatively small trip count. 6084 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6085 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6086 return 1; 6087 6088 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6089 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6090 << " registers\n"); 6091 6092 if (VF == 1) { 6093 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6094 TargetNumRegisters = ForceTargetNumScalarRegs; 6095 } else { 6096 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6097 TargetNumRegisters = ForceTargetNumVectorRegs; 6098 } 6099 6100 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6101 // We divide by these constants so assume that we have at least one 6102 // instruction that uses at least one register. 6103 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6104 R.NumInstructions = std::max(R.NumInstructions, 1U); 6105 6106 // We calculate the interleave count using the following formula. 6107 // Subtract the number of loop invariants from the number of available 6108 // registers. These registers are used by all of the interleaved instances. 6109 // Next, divide the remaining registers by the number of registers that is 6110 // required by the loop, in order to estimate how many parallel instances 6111 // fit without causing spills. All of this is rounded down if necessary to be 6112 // a power of two. We want power of two interleave count to simplify any 6113 // addressing operations or alignment considerations. 6114 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6115 R.MaxLocalUsers); 6116 6117 // Don't count the induction variable as interleaved. 6118 if (EnableIndVarRegisterHeur) 6119 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6120 std::max(1U, (R.MaxLocalUsers - 1))); 6121 6122 // Clamp the interleave ranges to reasonable counts. 6123 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6124 6125 // Check if the user has overridden the max. 6126 if (VF == 1) { 6127 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6128 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6129 } else { 6130 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6131 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6132 } 6133 6134 // If we did not calculate the cost for VF (because the user selected the VF) 6135 // then we calculate the cost of VF here. 6136 if (LoopCost == 0) 6137 LoopCost = expectedCost(VF).first; 6138 6139 // Clamp the calculated IC to be between the 1 and the max interleave count 6140 // that the target allows. 6141 if (IC > MaxInterleaveCount) 6142 IC = MaxInterleaveCount; 6143 else if (IC < 1) 6144 IC = 1; 6145 6146 // Interleave if we vectorized this loop and there is a reduction that could 6147 // benefit from interleaving. 6148 if (VF > 1 && Legal->getReductionVars()->size()) { 6149 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6150 return IC; 6151 } 6152 6153 // Note that if we've already vectorized the loop we will have done the 6154 // runtime check and so interleaving won't require further checks. 6155 bool InterleavingRequiresRuntimePointerCheck = 6156 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6157 6158 // We want to interleave small loops in order to reduce the loop overhead and 6159 // potentially expose ILP opportunities. 6160 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6161 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6162 // We assume that the cost overhead is 1 and we use the cost model 6163 // to estimate the cost of the loop and interleave until the cost of the 6164 // loop overhead is about 5% of the cost of the loop. 6165 unsigned SmallIC = 6166 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6167 6168 // Interleave until store/load ports (estimated by max interleave count) are 6169 // saturated. 6170 unsigned NumStores = Legal->getNumStores(); 6171 unsigned NumLoads = Legal->getNumLoads(); 6172 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6173 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6174 6175 // If we have a scalar reduction (vector reductions are already dealt with 6176 // by this point), we can increase the critical path length if the loop 6177 // we're interleaving is inside another loop. Limit, by default to 2, so the 6178 // critical path only gets increased by one reduction operation. 6179 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6180 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6181 SmallIC = std::min(SmallIC, F); 6182 StoresIC = std::min(StoresIC, F); 6183 LoadsIC = std::min(LoadsIC, F); 6184 } 6185 6186 if (EnableLoadStoreRuntimeInterleave && 6187 std::max(StoresIC, LoadsIC) > SmallIC) { 6188 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6189 return std::max(StoresIC, LoadsIC); 6190 } 6191 6192 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6193 return SmallIC; 6194 } 6195 6196 // Interleave if this is a large loop (small loops are already dealt with by 6197 // this point) that could benefit from interleaving. 6198 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6199 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6200 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6201 return IC; 6202 } 6203 6204 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6205 return 1; 6206 } 6207 6208 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6209 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6210 // This function calculates the register usage by measuring the highest number 6211 // of values that are alive at a single location. Obviously, this is a very 6212 // rough estimation. We scan the loop in a topological order in order and 6213 // assign a number to each instruction. We use RPO to ensure that defs are 6214 // met before their users. We assume that each instruction that has in-loop 6215 // users starts an interval. We record every time that an in-loop value is 6216 // used, so we have a list of the first and last occurrences of each 6217 // instruction. Next, we transpose this data structure into a multi map that 6218 // holds the list of intervals that *end* at a specific location. This multi 6219 // map allows us to perform a linear search. We scan the instructions linearly 6220 // and record each time that a new interval starts, by placing it in a set. 6221 // If we find this value in the multi-map then we remove it from the set. 6222 // The max register usage is the maximum size of the set. 6223 // We also search for instructions that are defined outside the loop, but are 6224 // used inside the loop. We need this number separately from the max-interval 6225 // usage number because when we unroll, loop-invariant values do not take 6226 // more register. 6227 LoopBlocksDFS DFS(TheLoop); 6228 DFS.perform(LI); 6229 6230 RegisterUsage RU; 6231 RU.NumInstructions = 0; 6232 6233 // Each 'key' in the map opens a new interval. The values 6234 // of the map are the index of the 'last seen' usage of the 6235 // instruction that is the key. 6236 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6237 // Maps instruction to its index. 6238 DenseMap<unsigned, Instruction *> IdxToInstr; 6239 // Marks the end of each interval. 6240 IntervalMap EndPoint; 6241 // Saves the list of instruction indices that are used in the loop. 6242 SmallSet<Instruction *, 8> Ends; 6243 // Saves the list of values that are used in the loop but are 6244 // defined outside the loop, such as arguments and constants. 6245 SmallPtrSet<Value *, 8> LoopInvariants; 6246 6247 unsigned Index = 0; 6248 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6249 RU.NumInstructions += BB->size(); 6250 for (Instruction &I : *BB) { 6251 IdxToInstr[Index++] = &I; 6252 6253 // Save the end location of each USE. 6254 for (Value *U : I.operands()) { 6255 auto *Instr = dyn_cast<Instruction>(U); 6256 6257 // Ignore non-instruction values such as arguments, constants, etc. 6258 if (!Instr) 6259 continue; 6260 6261 // If this instruction is outside the loop then record it and continue. 6262 if (!TheLoop->contains(Instr)) { 6263 LoopInvariants.insert(Instr); 6264 continue; 6265 } 6266 6267 // Overwrite previous end points. 6268 EndPoint[Instr] = Index; 6269 Ends.insert(Instr); 6270 } 6271 } 6272 } 6273 6274 // Saves the list of intervals that end with the index in 'key'. 6275 typedef SmallVector<Instruction *, 2> InstrList; 6276 DenseMap<unsigned, InstrList> TransposeEnds; 6277 6278 // Transpose the EndPoints to a list of values that end at each index. 6279 for (auto &Interval : EndPoint) 6280 TransposeEnds[Interval.second].push_back(Interval.first); 6281 6282 SmallSet<Instruction *, 8> OpenIntervals; 6283 6284 // Get the size of the widest register. 6285 unsigned MaxSafeDepDist = -1U; 6286 if (Legal->getMaxSafeDepDistBytes() != -1U) 6287 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6288 unsigned WidestRegister = 6289 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6290 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6291 6292 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6293 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6294 6295 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6296 6297 // A lambda that gets the register usage for the given type and VF. 6298 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6299 if (Ty->isTokenTy()) 6300 return 0U; 6301 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6302 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6303 }; 6304 6305 for (unsigned int i = 0; i < Index; ++i) { 6306 Instruction *I = IdxToInstr[i]; 6307 // Ignore instructions that are never used within the loop. 6308 if (!Ends.count(I)) 6309 continue; 6310 6311 // Remove all of the instructions that end at this location. 6312 InstrList &List = TransposeEnds[i]; 6313 for (Instruction *ToRemove : List) 6314 OpenIntervals.erase(ToRemove); 6315 6316 // Skip ignored values. 6317 if (ValuesToIgnore.count(I)) 6318 continue; 6319 6320 // For each VF find the maximum usage of registers. 6321 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6322 if (VFs[j] == 1) { 6323 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6324 continue; 6325 } 6326 6327 // Count the number of live intervals. 6328 unsigned RegUsage = 0; 6329 for (auto Inst : OpenIntervals) { 6330 // Skip ignored values for VF > 1. 6331 if (VecValuesToIgnore.count(Inst)) 6332 continue; 6333 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6334 } 6335 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6336 } 6337 6338 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6339 << OpenIntervals.size() << '\n'); 6340 6341 // Add the current instruction to the list of open intervals. 6342 OpenIntervals.insert(I); 6343 } 6344 6345 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6346 unsigned Invariant = 0; 6347 if (VFs[i] == 1) 6348 Invariant = LoopInvariants.size(); 6349 else { 6350 for (auto Inst : LoopInvariants) 6351 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6352 } 6353 6354 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6355 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6356 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6357 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6358 6359 RU.LoopInvariantRegs = Invariant; 6360 RU.MaxLocalUsers = MaxUsages[i]; 6361 RUs[i] = RU; 6362 } 6363 6364 return RUs; 6365 } 6366 6367 LoopVectorizationCostModel::VectorizationCostTy 6368 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6369 VectorizationCostTy Cost; 6370 6371 // For each block. 6372 for (BasicBlock *BB : TheLoop->blocks()) { 6373 VectorizationCostTy BlockCost; 6374 6375 // For each instruction in the old loop. 6376 for (Instruction &I : *BB) { 6377 // Skip dbg intrinsics. 6378 if (isa<DbgInfoIntrinsic>(I)) 6379 continue; 6380 6381 // Skip ignored values. 6382 if (ValuesToIgnore.count(&I)) 6383 continue; 6384 6385 VectorizationCostTy C = getInstructionCost(&I, VF); 6386 6387 // Check if we should override the cost. 6388 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6389 C.first = ForceTargetInstructionCost; 6390 6391 BlockCost.first += C.first; 6392 BlockCost.second |= C.second; 6393 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6394 << VF << " For instruction: " << I << '\n'); 6395 } 6396 6397 // If we are vectorizing a predicated block, it will have been 6398 // if-converted. This means that the block's instructions (aside from 6399 // stores and instructions that may divide by zero) will now be 6400 // unconditionally executed. For the scalar case, we may not always execute 6401 // the predicated block. Thus, scale the block's cost by the probability of 6402 // executing it. 6403 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6404 BlockCost.first /= getReciprocalPredBlockProb(); 6405 6406 Cost.first += BlockCost.first; 6407 Cost.second |= BlockCost.second; 6408 } 6409 6410 return Cost; 6411 } 6412 6413 /// \brief Check whether the address computation for a non-consecutive memory 6414 /// access looks like an unlikely candidate for being merged into the indexing 6415 /// mode. 6416 /// 6417 /// We look for a GEP which has one index that is an induction variable and all 6418 /// other indices are loop invariant. If the stride of this access is also 6419 /// within a small bound we decide that this address computation can likely be 6420 /// merged into the addressing mode. 6421 /// In all other cases, we identify the address computation as complex. 6422 static bool isLikelyComplexAddressComputation(Value *Ptr, 6423 LoopVectorizationLegality *Legal, 6424 ScalarEvolution *SE, 6425 const Loop *TheLoop) { 6426 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6427 if (!Gep) 6428 return true; 6429 6430 // We are looking for a gep with all loop invariant indices except for one 6431 // which should be an induction variable. 6432 unsigned NumOperands = Gep->getNumOperands(); 6433 for (unsigned i = 1; i < NumOperands; ++i) { 6434 Value *Opd = Gep->getOperand(i); 6435 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6436 !Legal->isInductionVariable(Opd)) 6437 return true; 6438 } 6439 6440 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 6441 // can likely be merged into the address computation. 6442 unsigned MaxMergeDistance = 64; 6443 6444 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 6445 if (!AddRec) 6446 return true; 6447 6448 // Check the step is constant. 6449 const SCEV *Step = AddRec->getStepRecurrence(*SE); 6450 // Calculate the pointer stride and check if it is consecutive. 6451 const auto *C = dyn_cast<SCEVConstant>(Step); 6452 if (!C) 6453 return true; 6454 6455 const APInt &APStepVal = C->getAPInt(); 6456 6457 // Huge step value - give up. 6458 if (APStepVal.getBitWidth() > 64) 6459 return true; 6460 6461 int64_t StepVal = APStepVal.getSExtValue(); 6462 6463 return StepVal > MaxMergeDistance; 6464 } 6465 6466 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6467 return Legal->hasStride(I->getOperand(0)) || 6468 Legal->hasStride(I->getOperand(1)); 6469 } 6470 6471 LoopVectorizationCostModel::VectorizationCostTy 6472 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6473 // If we know that this instruction will remain uniform, check the cost of 6474 // the scalar version. 6475 if (Legal->isUniformAfterVectorization(I)) 6476 VF = 1; 6477 6478 Type *VectorTy; 6479 unsigned C = getInstructionCost(I, VF, VectorTy); 6480 6481 bool TypeNotScalarized = 6482 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6483 return VectorizationCostTy(C, TypeNotScalarized); 6484 } 6485 6486 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6487 unsigned VF, 6488 Type *&VectorTy) { 6489 Type *RetTy = I->getType(); 6490 if (VF > 1 && MinBWs.count(I)) 6491 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6492 VectorTy = ToVectorTy(RetTy, VF); 6493 auto SE = PSE.getSE(); 6494 6495 // TODO: We need to estimate the cost of intrinsic calls. 6496 switch (I->getOpcode()) { 6497 case Instruction::GetElementPtr: 6498 // We mark this instruction as zero-cost because the cost of GEPs in 6499 // vectorized code depends on whether the corresponding memory instruction 6500 // is scalarized or not. Therefore, we handle GEPs with the memory 6501 // instruction cost. 6502 return 0; 6503 case Instruction::Br: { 6504 return TTI.getCFInstrCost(I->getOpcode()); 6505 } 6506 case Instruction::PHI: { 6507 auto *Phi = cast<PHINode>(I); 6508 6509 // First-order recurrences are replaced by vector shuffles inside the loop. 6510 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6511 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6512 VectorTy, VF - 1, VectorTy); 6513 6514 // TODO: IF-converted IFs become selects. 6515 return 0; 6516 } 6517 case Instruction::UDiv: 6518 case Instruction::SDiv: 6519 case Instruction::URem: 6520 case Instruction::SRem: 6521 // If we have a predicated instruction, it may not be executed for each 6522 // vector lane. Get the scalarization cost and scale this amount by the 6523 // probability of executing the predicated block. If the instruction is not 6524 // predicated, we fall through to the next case. 6525 if (VF > 1 && Legal->isScalarWithPredication(I)) { 6526 unsigned Cost = 0; 6527 6528 // These instructions have a non-void type, so account for the phi nodes 6529 // that we will create. This cost is likely to be zero. The phi node 6530 // cost, if any, should be scaled by the block probability because it 6531 // models a copy at the end of each predicated block. 6532 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6533 6534 // The cost of the non-predicated instruction. 6535 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6536 6537 // The cost of insertelement and extractelement instructions needed for 6538 // scalarization. 6539 Cost += getScalarizationOverhead(I, VF, TTI); 6540 6541 // Scale the cost by the probability of executing the predicated blocks. 6542 // This assumes the predicated block for each vector lane is equally 6543 // likely. 6544 return Cost / getReciprocalPredBlockProb(); 6545 } 6546 case Instruction::Add: 6547 case Instruction::FAdd: 6548 case Instruction::Sub: 6549 case Instruction::FSub: 6550 case Instruction::Mul: 6551 case Instruction::FMul: 6552 case Instruction::FDiv: 6553 case Instruction::FRem: 6554 case Instruction::Shl: 6555 case Instruction::LShr: 6556 case Instruction::AShr: 6557 case Instruction::And: 6558 case Instruction::Or: 6559 case Instruction::Xor: { 6560 // Since we will replace the stride by 1 the multiplication should go away. 6561 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6562 return 0; 6563 // Certain instructions can be cheaper to vectorize if they have a constant 6564 // second vector operand. One example of this are shifts on x86. 6565 TargetTransformInfo::OperandValueKind Op1VK = 6566 TargetTransformInfo::OK_AnyValue; 6567 TargetTransformInfo::OperandValueKind Op2VK = 6568 TargetTransformInfo::OK_AnyValue; 6569 TargetTransformInfo::OperandValueProperties Op1VP = 6570 TargetTransformInfo::OP_None; 6571 TargetTransformInfo::OperandValueProperties Op2VP = 6572 TargetTransformInfo::OP_None; 6573 Value *Op2 = I->getOperand(1); 6574 6575 // Check for a splat or for a non uniform vector of constants. 6576 if (isa<ConstantInt>(Op2)) { 6577 ConstantInt *CInt = cast<ConstantInt>(Op2); 6578 if (CInt && CInt->getValue().isPowerOf2()) 6579 Op2VP = TargetTransformInfo::OP_PowerOf2; 6580 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6581 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6582 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6583 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6584 if (SplatValue) { 6585 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6586 if (CInt && CInt->getValue().isPowerOf2()) 6587 Op2VP = TargetTransformInfo::OP_PowerOf2; 6588 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6589 } 6590 } else if (Legal->isUniform(Op2)) { 6591 Op2VK = TargetTransformInfo::OK_UniformValue; 6592 } 6593 6594 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6595 Op1VP, Op2VP); 6596 } 6597 case Instruction::Select: { 6598 SelectInst *SI = cast<SelectInst>(I); 6599 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6600 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6601 Type *CondTy = SI->getCondition()->getType(); 6602 if (!ScalarCond) 6603 CondTy = VectorType::get(CondTy, VF); 6604 6605 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6606 } 6607 case Instruction::ICmp: 6608 case Instruction::FCmp: { 6609 Type *ValTy = I->getOperand(0)->getType(); 6610 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6611 auto It = MinBWs.find(Op0AsInstruction); 6612 if (VF > 1 && It != MinBWs.end()) 6613 ValTy = IntegerType::get(ValTy->getContext(), It->second); 6614 VectorTy = ToVectorTy(ValTy, VF); 6615 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6616 } 6617 case Instruction::Store: 6618 case Instruction::Load: { 6619 StoreInst *SI = dyn_cast<StoreInst>(I); 6620 LoadInst *LI = dyn_cast<LoadInst>(I); 6621 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6622 VectorTy = ToVectorTy(ValTy, VF); 6623 6624 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6625 unsigned AS = 6626 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6627 Value *Ptr = getPointerOperand(I); 6628 // We add the cost of address computation here instead of with the gep 6629 // instruction because only here we know whether the operation is 6630 // scalarized. 6631 if (VF == 1) 6632 return TTI.getAddressComputationCost(VectorTy) + 6633 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6634 6635 if (LI && Legal->isUniform(Ptr)) { 6636 // Scalar load + broadcast 6637 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6638 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6639 Alignment, AS); 6640 return Cost + 6641 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6642 } 6643 6644 // For an interleaved access, calculate the total cost of the whole 6645 // interleave group. 6646 if (Legal->isAccessInterleaved(I)) { 6647 auto Group = Legal->getInterleavedAccessGroup(I); 6648 assert(Group && "Fail to get an interleaved access group."); 6649 6650 // Only calculate the cost once at the insert position. 6651 if (Group->getInsertPos() != I) 6652 return 0; 6653 6654 unsigned InterleaveFactor = Group->getFactor(); 6655 Type *WideVecTy = 6656 VectorType::get(VectorTy->getVectorElementType(), 6657 VectorTy->getVectorNumElements() * InterleaveFactor); 6658 6659 // Holds the indices of existing members in an interleaved load group. 6660 // An interleaved store group doesn't need this as it doesn't allow gaps. 6661 SmallVector<unsigned, 4> Indices; 6662 if (LI) { 6663 for (unsigned i = 0; i < InterleaveFactor; i++) 6664 if (Group->getMember(i)) 6665 Indices.push_back(i); 6666 } 6667 6668 // Calculate the cost of the whole interleaved group. 6669 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6670 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6671 Group->getAlignment(), AS); 6672 6673 if (Group->isReverse()) 6674 Cost += 6675 Group->getNumMembers() * 6676 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6677 6678 // FIXME: The interleaved load group with a huge gap could be even more 6679 // expensive than scalar operations. Then we could ignore such group and 6680 // use scalar operations instead. 6681 return Cost; 6682 } 6683 6684 // Check if the memory instruction will be scalarized. 6685 if (Legal->memoryInstructionMustBeScalarized(I, VF)) { 6686 unsigned Cost = 0; 6687 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6688 6689 // True if the memory instruction's address computation is complex. 6690 bool IsComplexComputation = 6691 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6692 6693 // Get the cost of the scalar memory instruction and address computation. 6694 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6695 Cost += VF * 6696 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6697 Alignment, AS); 6698 6699 // Get the overhead of the extractelement and insertelement instructions 6700 // we might create due to scalarization. 6701 Cost += getScalarizationOverhead(I, VF, TTI); 6702 6703 // If we have a predicated store, it may not be executed for each vector 6704 // lane. Scale the cost by the probability of executing the predicated 6705 // block. 6706 if (Legal->isScalarWithPredication(I)) 6707 Cost /= getReciprocalPredBlockProb(); 6708 6709 return Cost; 6710 } 6711 6712 // Determine if the pointer operand of the access is either consecutive or 6713 // reverse consecutive. 6714 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6715 bool Reverse = ConsecutiveStride < 0; 6716 6717 // Determine if either a gather or scatter operation is legal. 6718 bool UseGatherOrScatter = 6719 !ConsecutiveStride && Legal->isLegalGatherOrScatter(I); 6720 6721 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6722 if (UseGatherOrScatter) { 6723 assert(ConsecutiveStride == 0 && 6724 "Gather/Scatter are not used for consecutive stride"); 6725 return Cost + 6726 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6727 Legal->isMaskRequired(I), Alignment); 6728 } 6729 // Wide load/stores. 6730 if (Legal->isMaskRequired(I)) 6731 Cost += 6732 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6733 else 6734 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6735 6736 if (Reverse) 6737 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6738 return Cost; 6739 } 6740 case Instruction::ZExt: 6741 case Instruction::SExt: 6742 case Instruction::FPToUI: 6743 case Instruction::FPToSI: 6744 case Instruction::FPExt: 6745 case Instruction::PtrToInt: 6746 case Instruction::IntToPtr: 6747 case Instruction::SIToFP: 6748 case Instruction::UIToFP: 6749 case Instruction::Trunc: 6750 case Instruction::FPTrunc: 6751 case Instruction::BitCast: { 6752 // We optimize the truncation of induction variable. 6753 // The cost of these is the same as the scalar operation. 6754 if (I->getOpcode() == Instruction::Trunc && 6755 Legal->isInductionVariable(I->getOperand(0))) 6756 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6757 I->getOperand(0)->getType()); 6758 6759 Type *SrcScalarTy = I->getOperand(0)->getType(); 6760 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6761 if (VF > 1 && MinBWs.count(I)) { 6762 // This cast is going to be shrunk. This may remove the cast or it might 6763 // turn it into slightly different cast. For example, if MinBW == 16, 6764 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6765 // 6766 // Calculate the modified src and dest types. 6767 Type *MinVecTy = VectorTy; 6768 if (I->getOpcode() == Instruction::Trunc) { 6769 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6770 VectorTy = 6771 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6772 } else if (I->getOpcode() == Instruction::ZExt || 6773 I->getOpcode() == Instruction::SExt) { 6774 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6775 VectorTy = 6776 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6777 } 6778 } 6779 6780 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6781 } 6782 case Instruction::Call: { 6783 bool NeedToScalarize; 6784 CallInst *CI = cast<CallInst>(I); 6785 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6786 if (getVectorIntrinsicIDForCall(CI, TLI)) 6787 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6788 return CallCost; 6789 } 6790 default: 6791 // The cost of executing VF copies of the scalar instruction. This opcode 6792 // is unknown. Assume that it is the same as 'mul'. 6793 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6794 getScalarizationOverhead(I, VF, TTI); 6795 } // end of switch. 6796 } 6797 6798 char LoopVectorize::ID = 0; 6799 static const char lv_name[] = "Loop Vectorization"; 6800 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6801 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6802 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6803 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6804 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6805 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6806 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6807 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6808 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6809 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6810 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6811 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6812 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6813 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6814 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6815 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6816 6817 namespace llvm { 6818 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6819 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6820 } 6821 } 6822 6823 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6824 6825 // Check if the pointer operand of a load or store instruction is 6826 // consecutive. 6827 if (auto *Ptr = getPointerOperand(Inst)) 6828 return Legal->isConsecutivePtr(Ptr); 6829 return false; 6830 } 6831 6832 void LoopVectorizationCostModel::collectValuesToIgnore() { 6833 // Ignore ephemeral values. 6834 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6835 6836 // Ignore type-promoting instructions we identified during reduction 6837 // detection. 6838 for (auto &Reduction : *Legal->getReductionVars()) { 6839 RecurrenceDescriptor &RedDes = Reduction.second; 6840 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6841 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6842 } 6843 6844 // Insert values known to be scalar into VecValuesToIgnore. 6845 for (auto *BB : TheLoop->getBlocks()) 6846 for (auto &I : *BB) 6847 if (Legal->isScalarAfterVectorization(&I)) 6848 VecValuesToIgnore.insert(&I); 6849 } 6850 6851 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6852 bool IfPredicateInstr) { 6853 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6854 // Holds vector parameters or scalars, in case of uniform vals. 6855 SmallVector<VectorParts, 4> Params; 6856 6857 setDebugLocFromInst(Builder, Instr); 6858 6859 // Does this instruction return a value ? 6860 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6861 6862 // Initialize a new scalar map entry. 6863 ScalarParts Entry(UF); 6864 6865 VectorParts Cond; 6866 if (IfPredicateInstr) 6867 Cond = createBlockInMask(Instr->getParent()); 6868 6869 // For each vector unroll 'part': 6870 for (unsigned Part = 0; Part < UF; ++Part) { 6871 Entry[Part].resize(1); 6872 // For each scalar that we create: 6873 6874 // Start an "if (pred) a[i] = ..." block. 6875 Value *Cmp = nullptr; 6876 if (IfPredicateInstr) { 6877 if (Cond[Part]->getType()->isVectorTy()) 6878 Cond[Part] = 6879 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6880 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6881 ConstantInt::get(Cond[Part]->getType(), 1)); 6882 } 6883 6884 Instruction *Cloned = Instr->clone(); 6885 if (!IsVoidRetTy) 6886 Cloned->setName(Instr->getName() + ".cloned"); 6887 6888 // Replace the operands of the cloned instructions with their scalar 6889 // equivalents in the new loop. 6890 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6891 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0); 6892 Cloned->setOperand(op, NewOp); 6893 } 6894 6895 // Place the cloned scalar in the new loop. 6896 Builder.Insert(Cloned); 6897 6898 // Add the cloned scalar to the scalar map entry. 6899 Entry[Part][0] = Cloned; 6900 6901 // If we just cloned a new assumption, add it the assumption cache. 6902 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6903 if (II->getIntrinsicID() == Intrinsic::assume) 6904 AC->registerAssumption(II); 6905 6906 // End if-block. 6907 if (IfPredicateInstr) 6908 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 6909 } 6910 VectorLoopValueMap.initScalar(Instr, Entry); 6911 } 6912 6913 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6914 auto *SI = dyn_cast<StoreInst>(Instr); 6915 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 6916 6917 return scalarizeInstruction(Instr, IfPredicateInstr); 6918 } 6919 6920 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6921 6922 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6923 6924 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6925 Instruction::BinaryOps BinOp) { 6926 // When unrolling and the VF is 1, we only need to add a simple scalar. 6927 Type *Ty = Val->getType(); 6928 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6929 6930 if (Ty->isFloatingPointTy()) { 6931 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6932 6933 // Floating point operations had to be 'fast' to enable the unrolling. 6934 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6935 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6936 } 6937 Constant *C = ConstantInt::get(Ty, StartIdx); 6938 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6939 } 6940 6941 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6942 SmallVector<Metadata *, 4> MDs; 6943 // Reserve first location for self reference to the LoopID metadata node. 6944 MDs.push_back(nullptr); 6945 bool IsUnrollMetadata = false; 6946 MDNode *LoopID = L->getLoopID(); 6947 if (LoopID) { 6948 // First find existing loop unrolling disable metadata. 6949 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6950 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6951 if (MD) { 6952 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6953 IsUnrollMetadata = 6954 S && S->getString().startswith("llvm.loop.unroll.disable"); 6955 } 6956 MDs.push_back(LoopID->getOperand(i)); 6957 } 6958 } 6959 6960 if (!IsUnrollMetadata) { 6961 // Add runtime unroll disable metadata. 6962 LLVMContext &Context = L->getHeader()->getContext(); 6963 SmallVector<Metadata *, 1> DisableOperands; 6964 DisableOperands.push_back( 6965 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6966 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6967 MDs.push_back(DisableNode); 6968 MDNode *NewLoopID = MDNode::get(Context, MDs); 6969 // Set operand 0 to refer to the loop id itself. 6970 NewLoopID->replaceOperandWith(0, NewLoopID); 6971 L->setLoopID(NewLoopID); 6972 } 6973 } 6974 6975 bool LoopVectorizePass::processLoop(Loop *L) { 6976 assert(L->empty() && "Only process inner loops."); 6977 6978 #ifndef NDEBUG 6979 const std::string DebugLocStr = getDebugLocString(L); 6980 #endif /* NDEBUG */ 6981 6982 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 6983 << L->getHeader()->getParent()->getName() << "\" from " 6984 << DebugLocStr << "\n"); 6985 6986 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 6987 6988 DEBUG(dbgs() << "LV: Loop hints:" 6989 << " force=" 6990 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 6991 ? "disabled" 6992 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 6993 ? "enabled" 6994 : "?")) 6995 << " width=" << Hints.getWidth() 6996 << " unroll=" << Hints.getInterleave() << "\n"); 6997 6998 // Function containing loop 6999 Function *F = L->getHeader()->getParent(); 7000 7001 // Looking at the diagnostic output is the only way to determine if a loop 7002 // was vectorized (other than looking at the IR or machine code), so it 7003 // is important to generate an optimization remark for each loop. Most of 7004 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7005 // generated as OptimizationRemark and OptimizationRemarkMissed are 7006 // less verbose reporting vectorized loops and unvectorized loops that may 7007 // benefit from vectorization, respectively. 7008 7009 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7010 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7011 return false; 7012 } 7013 7014 // Check the loop for a trip count threshold: 7015 // do not vectorize loops with a tiny trip count. 7016 const unsigned TC = SE->getSmallConstantTripCount(L); 7017 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 7018 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7019 << "This loop is not worth vectorizing."); 7020 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7021 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7022 else { 7023 DEBUG(dbgs() << "\n"); 7024 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7025 "NotBeneficial", L) 7026 << "vectorization is not beneficial " 7027 "and is not explicitly forced"); 7028 return false; 7029 } 7030 } 7031 7032 PredicatedScalarEvolution PSE(*SE, *L); 7033 7034 // Check if it is legal to vectorize the loop. 7035 LoopVectorizationRequirements Requirements(*ORE); 7036 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7037 &Requirements, &Hints); 7038 if (!LVL.canVectorize()) { 7039 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7040 emitMissedWarning(F, L, Hints, ORE); 7041 return false; 7042 } 7043 7044 // Use the cost model. 7045 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7046 &Hints); 7047 CM.collectValuesToIgnore(); 7048 7049 // Check the function attributes to find out if this function should be 7050 // optimized for size. 7051 bool OptForSize = 7052 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7053 7054 // Compute the weighted frequency of this loop being executed and see if it 7055 // is less than 20% of the function entry baseline frequency. Note that we 7056 // always have a canonical loop here because we think we *can* vectorize. 7057 // FIXME: This is hidden behind a flag due to pervasive problems with 7058 // exactly what block frequency models. 7059 if (LoopVectorizeWithBlockFrequency) { 7060 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7061 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7062 LoopEntryFreq < ColdEntryFreq) 7063 OptForSize = true; 7064 } 7065 7066 // Check the function attributes to see if implicit floats are allowed. 7067 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7068 // an integer loop and the vector instructions selected are purely integer 7069 // vector instructions? 7070 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7071 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7072 "attribute is used.\n"); 7073 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7074 "NoImplicitFloat", L) 7075 << "loop not vectorized due to NoImplicitFloat attribute"); 7076 emitMissedWarning(F, L, Hints, ORE); 7077 return false; 7078 } 7079 7080 // Check if the target supports potentially unsafe FP vectorization. 7081 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7082 // for the target we're vectorizing for, to make sure none of the 7083 // additional fp-math flags can help. 7084 if (Hints.isPotentiallyUnsafe() && 7085 TTI->isFPVectorizationPotentiallyUnsafe()) { 7086 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7087 ORE->emit( 7088 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7089 << "loop not vectorized due to unsafe FP support."); 7090 emitMissedWarning(F, L, Hints, ORE); 7091 return false; 7092 } 7093 7094 // Select the optimal vectorization factor. 7095 const LoopVectorizationCostModel::VectorizationFactor VF = 7096 CM.selectVectorizationFactor(OptForSize); 7097 7098 // Select the interleave count. 7099 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7100 7101 // Get user interleave count. 7102 unsigned UserIC = Hints.getInterleave(); 7103 7104 // Identify the diagnostic messages that should be produced. 7105 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7106 bool VectorizeLoop = true, InterleaveLoop = true; 7107 if (Requirements.doesNotMeet(F, L, Hints)) { 7108 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7109 "requirements.\n"); 7110 emitMissedWarning(F, L, Hints, ORE); 7111 return false; 7112 } 7113 7114 if (VF.Width == 1) { 7115 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7116 VecDiagMsg = std::make_pair( 7117 "VectorizationNotBeneficial", 7118 "the cost-model indicates that vectorization is not beneficial"); 7119 VectorizeLoop = false; 7120 } 7121 7122 if (IC == 1 && UserIC <= 1) { 7123 // Tell the user interleaving is not beneficial. 7124 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7125 IntDiagMsg = std::make_pair( 7126 "InterleavingNotBeneficial", 7127 "the cost-model indicates that interleaving is not beneficial"); 7128 InterleaveLoop = false; 7129 if (UserIC == 1) { 7130 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7131 IntDiagMsg.second += 7132 " and is explicitly disabled or interleave count is set to 1"; 7133 } 7134 } else if (IC > 1 && UserIC == 1) { 7135 // Tell the user interleaving is beneficial, but it explicitly disabled. 7136 DEBUG(dbgs() 7137 << "LV: Interleaving is beneficial but is explicitly disabled."); 7138 IntDiagMsg = std::make_pair( 7139 "InterleavingBeneficialButDisabled", 7140 "the cost-model indicates that interleaving is beneficial " 7141 "but is explicitly disabled or interleave count is set to 1"); 7142 InterleaveLoop = false; 7143 } 7144 7145 // Override IC if user provided an interleave count. 7146 IC = UserIC > 0 ? UserIC : IC; 7147 7148 // Emit diagnostic messages, if any. 7149 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7150 if (!VectorizeLoop && !InterleaveLoop) { 7151 // Do not vectorize or interleaving the loop. 7152 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7153 L->getStartLoc(), L->getHeader()) 7154 << VecDiagMsg.second); 7155 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7156 L->getStartLoc(), L->getHeader()) 7157 << IntDiagMsg.second); 7158 return false; 7159 } else if (!VectorizeLoop && InterleaveLoop) { 7160 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7161 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7162 L->getStartLoc(), L->getHeader()) 7163 << VecDiagMsg.second); 7164 } else if (VectorizeLoop && !InterleaveLoop) { 7165 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7166 << DebugLocStr << '\n'); 7167 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7168 L->getStartLoc(), L->getHeader()) 7169 << IntDiagMsg.second); 7170 } else if (VectorizeLoop && InterleaveLoop) { 7171 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7172 << DebugLocStr << '\n'); 7173 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7174 } 7175 7176 using namespace ore; 7177 if (!VectorizeLoop) { 7178 assert(IC > 1 && "interleave count should not be 1 or 0"); 7179 // If we decided that it is not legal to vectorize the loop, then 7180 // interleave it. 7181 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7182 &CM); 7183 Unroller.vectorize(); 7184 7185 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7186 L->getHeader()) 7187 << "interleaved loop (interleaved count: " 7188 << NV("InterleaveCount", IC) << ")"); 7189 } else { 7190 // If we decided that it is *legal* to vectorize the loop, then do it. 7191 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7192 &LVL, &CM); 7193 LB.vectorize(); 7194 ++LoopsVectorized; 7195 7196 // Add metadata to disable runtime unrolling a scalar loop when there are 7197 // no runtime checks about strides and memory. A scalar loop that is 7198 // rarely used is not worth unrolling. 7199 if (!LB.areSafetyChecksAdded()) 7200 AddRuntimeUnrollDisableMetaData(L); 7201 7202 // Report the vectorization decision. 7203 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7204 L->getHeader()) 7205 << "vectorized loop (vectorization width: " 7206 << NV("VectorizationFactor", VF.Width) 7207 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7208 } 7209 7210 // Mark the loop as already vectorized to avoid vectorizing again. 7211 Hints.setAlreadyVectorized(); 7212 7213 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7214 return true; 7215 } 7216 7217 bool LoopVectorizePass::runImpl( 7218 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7219 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7220 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7221 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7222 OptimizationRemarkEmitter &ORE_) { 7223 7224 SE = &SE_; 7225 LI = &LI_; 7226 TTI = &TTI_; 7227 DT = &DT_; 7228 BFI = &BFI_; 7229 TLI = TLI_; 7230 AA = &AA_; 7231 AC = &AC_; 7232 GetLAA = &GetLAA_; 7233 DB = &DB_; 7234 ORE = &ORE_; 7235 7236 // Compute some weights outside of the loop over the loops. Compute this 7237 // using a BranchProbability to re-use its scaling math. 7238 const BranchProbability ColdProb(1, 5); // 20% 7239 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7240 7241 // Don't attempt if 7242 // 1. the target claims to have no vector registers, and 7243 // 2. interleaving won't help ILP. 7244 // 7245 // The second condition is necessary because, even if the target has no 7246 // vector registers, loop vectorization may still enable scalar 7247 // interleaving. 7248 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7249 return false; 7250 7251 // Build up a worklist of inner-loops to vectorize. This is necessary as 7252 // the act of vectorizing or partially unrolling a loop creates new loops 7253 // and can invalidate iterators across the loops. 7254 SmallVector<Loop *, 8> Worklist; 7255 7256 for (Loop *L : *LI) 7257 addAcyclicInnerLoop(*L, Worklist); 7258 7259 LoopsAnalyzed += Worklist.size(); 7260 7261 // Now walk the identified inner loops. 7262 bool Changed = false; 7263 while (!Worklist.empty()) 7264 Changed |= processLoop(Worklist.pop_back_val()); 7265 7266 // Process each loop nest in the function. 7267 return Changed; 7268 7269 } 7270 7271 7272 PreservedAnalyses LoopVectorizePass::run(Function &F, 7273 FunctionAnalysisManager &AM) { 7274 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7275 auto &LI = AM.getResult<LoopAnalysis>(F); 7276 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7277 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7278 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7279 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7280 auto &AA = AM.getResult<AAManager>(F); 7281 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7282 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7283 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7284 7285 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7286 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7287 [&](Loop &L) -> const LoopAccessInfo & { 7288 return LAM.getResult<LoopAccessAnalysis>(L); 7289 }; 7290 bool Changed = 7291 runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA, ORE); 7292 if (!Changed) 7293 return PreservedAnalyses::all(); 7294 PreservedAnalyses PA; 7295 PA.preserve<LoopAnalysis>(); 7296 PA.preserve<DominatorTreeAnalysis>(); 7297 PA.preserve<BasicAA>(); 7298 PA.preserve<GlobalsAA>(); 7299 return PA; 7300 } 7301