1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/SizeOpts.h" 141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 142 #include <algorithm> 143 #include <cassert> 144 #include <cstdint> 145 #include <cstdlib> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 /// @{ 160 /// Metadata attribute names 161 static const char *const LLVMLoopVectorizeFollowupAll = 162 "llvm.loop.vectorize.followup_all"; 163 static const char *const LLVMLoopVectorizeFollowupVectorized = 164 "llvm.loop.vectorize.followup_vectorized"; 165 static const char *const LLVMLoopVectorizeFollowupEpilogue = 166 "llvm.loop.vectorize.followup_epilogue"; 167 /// @} 168 169 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 171 172 /// Loops with a known constant trip count below this number are vectorized only 173 /// if no scalar iteration overheads are incurred. 174 static cl::opt<unsigned> TinyTripCountVectorThreshold( 175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 176 cl::desc("Loops with a constant trip count that is smaller than this " 177 "value are vectorized only if no scalar iteration overheads " 178 "are incurred.")); 179 180 // Indicates that an epilogue is undesired, predication is preferred. 181 // This means that the vectorizer will try to fold the loop-tail (epilogue) 182 // into the loop and predicate the loop body accordingly. 183 static cl::opt<bool> PreferPredicateOverEpilog( 184 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 185 cl::desc("Indicate that an epilogue is undesired, predication should be " 186 "used instead.")); 187 188 static cl::opt<bool> MaximizeBandwidth( 189 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 190 cl::desc("Maximize bandwidth when selecting vectorization factor which " 191 "will be determined by the smallest type in loop.")); 192 193 static cl::opt<bool> EnableInterleavedMemAccesses( 194 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 195 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 196 197 /// An interleave-group may need masking if it resides in a block that needs 198 /// predication, or in order to mask away gaps. 199 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 200 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 201 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 202 203 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 204 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 205 cl::desc("We don't interleave loops with a estimated constant trip count " 206 "below this number")); 207 208 static cl::opt<unsigned> ForceTargetNumScalarRegs( 209 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 210 cl::desc("A flag that overrides the target's number of scalar registers.")); 211 212 static cl::opt<unsigned> ForceTargetNumVectorRegs( 213 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 214 cl::desc("A flag that overrides the target's number of vector registers.")); 215 216 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 217 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 218 cl::desc("A flag that overrides the target's max interleave factor for " 219 "scalar loops.")); 220 221 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 222 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 223 cl::desc("A flag that overrides the target's max interleave factor for " 224 "vectorized loops.")); 225 226 static cl::opt<unsigned> ForceTargetInstructionCost( 227 "force-target-instruction-cost", cl::init(0), cl::Hidden, 228 cl::desc("A flag that overrides the target's expected cost for " 229 "an instruction to a single constant value. Mostly " 230 "useful for getting consistent testing.")); 231 232 static cl::opt<unsigned> SmallLoopCost( 233 "small-loop-cost", cl::init(20), cl::Hidden, 234 cl::desc( 235 "The cost of a loop that is considered 'small' by the interleaver.")); 236 237 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 238 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 239 cl::desc("Enable the use of the block frequency analysis to access PGO " 240 "heuristics minimizing code growth in cold regions and being more " 241 "aggressive in hot regions.")); 242 243 // Runtime interleave loops for load/store throughput. 244 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 245 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 246 cl::desc( 247 "Enable runtime interleaving until load/store ports are saturated")); 248 249 /// The number of stores in a loop that are allowed to need predication. 250 static cl::opt<unsigned> NumberOfStoresToPredicate( 251 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 252 cl::desc("Max number of stores to be predicated behind an if.")); 253 254 static cl::opt<bool> EnableIndVarRegisterHeur( 255 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 256 cl::desc("Count the induction variable only once when interleaving")); 257 258 static cl::opt<bool> EnableCondStoresVectorization( 259 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 260 cl::desc("Enable if predication of stores during vectorization.")); 261 262 static cl::opt<unsigned> MaxNestedScalarReductionIC( 263 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 264 cl::desc("The maximum interleave count to use when interleaving a scalar " 265 "reduction in a nested loop.")); 266 267 cl::opt<bool> EnableVPlanNativePath( 268 "enable-vplan-native-path", cl::init(false), cl::Hidden, 269 cl::desc("Enable VPlan-native vectorization path with " 270 "support for outer loop vectorization.")); 271 272 // FIXME: Remove this switch once we have divergence analysis. Currently we 273 // assume divergent non-backedge branches when this switch is true. 274 cl::opt<bool> EnableVPlanPredication( 275 "enable-vplan-predication", cl::init(false), cl::Hidden, 276 cl::desc("Enable VPlan-native vectorization path predicator with " 277 "support for outer loop vectorization.")); 278 279 // This flag enables the stress testing of the VPlan H-CFG construction in the 280 // VPlan-native vectorization path. It must be used in conjuction with 281 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 282 // verification of the H-CFGs built. 283 static cl::opt<bool> VPlanBuildStressTest( 284 "vplan-build-stress-test", cl::init(false), cl::Hidden, 285 cl::desc( 286 "Build VPlan for every supported loop nest in the function and bail " 287 "out right after the build (stress test the VPlan H-CFG construction " 288 "in the VPlan-native vectorization path).")); 289 290 cl::opt<bool> llvm::EnableLoopInterleaving( 291 "interleave-loops", cl::init(true), cl::Hidden, 292 cl::desc("Enable loop interleaving in Loop vectorization passes")); 293 cl::opt<bool> llvm::EnableLoopVectorization( 294 "vectorize-loops", cl::init(true), cl::Hidden, 295 cl::desc("Run the Loop vectorization passes")); 296 297 /// A helper function for converting Scalar types to vector types. 298 /// If the incoming type is void, we return void. If the VF is 1, we return 299 /// the scalar type. 300 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 301 if (Scalar->isVoidTy() || VF == 1) 302 return Scalar; 303 return VectorType::get(Scalar, VF); 304 } 305 306 /// A helper function that returns the type of loaded or stored value. 307 static Type *getMemInstValueType(Value *I) { 308 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 309 "Expected Load or Store instruction"); 310 if (auto *LI = dyn_cast<LoadInst>(I)) 311 return LI->getType(); 312 return cast<StoreInst>(I)->getValueOperand()->getType(); 313 } 314 315 /// A helper function that returns true if the given type is irregular. The 316 /// type is irregular if its allocated size doesn't equal the store size of an 317 /// element of the corresponding vector type at the given vectorization factor. 318 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 319 // Determine if an array of VF elements of type Ty is "bitcast compatible" 320 // with a <VF x Ty> vector. 321 if (VF > 1) { 322 auto *VectorTy = VectorType::get(Ty, VF); 323 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 324 } 325 326 // If the vectorization factor is one, we just check if an array of type Ty 327 // requires padding between elements. 328 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 329 } 330 331 /// A helper function that returns the reciprocal of the block probability of 332 /// predicated blocks. If we return X, we are assuming the predicated block 333 /// will execute once for every X iterations of the loop header. 334 /// 335 /// TODO: We should use actual block probability here, if available. Currently, 336 /// we always assume predicated blocks have a 50% chance of executing. 337 static unsigned getReciprocalPredBlockProb() { return 2; } 338 339 /// A helper function that adds a 'fast' flag to floating-point operations. 340 static Value *addFastMathFlag(Value *V) { 341 if (isa<FPMathOperator>(V)) 342 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 343 return V; 344 } 345 346 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 347 if (isa<FPMathOperator>(V)) 348 cast<Instruction>(V)->setFastMathFlags(FMF); 349 return V; 350 } 351 352 /// A helper function that returns an integer or floating-point constant with 353 /// value C. 354 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 355 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 356 : ConstantFP::get(Ty, C); 357 } 358 359 /// Returns "best known" trip count for the specified loop \p L as defined by 360 /// the following procedure: 361 /// 1) Returns exact trip count if it is known. 362 /// 2) Returns expected trip count according to profile data if any. 363 /// 3) Returns upper bound estimate if it is known. 364 /// 4) Returns None if all of the above failed. 365 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 366 // Check if exact trip count is known. 367 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 368 return ExpectedTC; 369 370 // Check if there is an expected trip count available from profile data. 371 if (LoopVectorizeWithBlockFrequency) 372 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 373 return EstimatedTC; 374 375 // Check if upper bound estimate is known. 376 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 377 return ExpectedTC; 378 379 return None; 380 } 381 382 namespace llvm { 383 384 /// InnerLoopVectorizer vectorizes loops which contain only one basic 385 /// block to a specified vectorization factor (VF). 386 /// This class performs the widening of scalars into vectors, or multiple 387 /// scalars. This class also implements the following features: 388 /// * It inserts an epilogue loop for handling loops that don't have iteration 389 /// counts that are known to be a multiple of the vectorization factor. 390 /// * It handles the code generation for reduction variables. 391 /// * Scalarization (implementation using scalars) of un-vectorizable 392 /// instructions. 393 /// InnerLoopVectorizer does not perform any vectorization-legality 394 /// checks, and relies on the caller to check for the different legality 395 /// aspects. The InnerLoopVectorizer relies on the 396 /// LoopVectorizationLegality class to provide information about the induction 397 /// and reduction variables that were found to a given vectorization factor. 398 class InnerLoopVectorizer { 399 public: 400 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 401 LoopInfo *LI, DominatorTree *DT, 402 const TargetLibraryInfo *TLI, 403 const TargetTransformInfo *TTI, AssumptionCache *AC, 404 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 405 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 406 LoopVectorizationCostModel *CM) 407 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 408 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 409 Builder(PSE.getSE()->getContext()), 410 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 411 virtual ~InnerLoopVectorizer() = default; 412 413 /// Create a new empty loop. Unlink the old loop and connect the new one. 414 /// Return the pre-header block of the new loop. 415 BasicBlock *createVectorizedLoopSkeleton(); 416 417 /// Widen a single instruction within the innermost loop. 418 void widenInstruction(Instruction &I); 419 420 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 421 void fixVectorizedLoop(); 422 423 // Return true if any runtime check is added. 424 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 425 426 /// A type for vectorized values in the new loop. Each value from the 427 /// original loop, when vectorized, is represented by UF vector values in the 428 /// new unrolled loop, where UF is the unroll factor. 429 using VectorParts = SmallVector<Value *, 2>; 430 431 /// Vectorize a single GetElementPtrInst based on information gathered and 432 /// decisions taken during planning. 433 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF, 434 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant); 435 436 /// Vectorize a single PHINode in a block. This method handles the induction 437 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 438 /// arbitrary length vectors. 439 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 440 441 /// A helper function to scalarize a single Instruction in the innermost loop. 442 /// Generates a sequence of scalar instances for each lane between \p MinLane 443 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 444 /// inclusive.. 445 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 446 bool IfPredicateInstr); 447 448 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 449 /// is provided, the integer induction variable will first be truncated to 450 /// the corresponding type. 451 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 452 453 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 454 /// vector or scalar value on-demand if one is not yet available. When 455 /// vectorizing a loop, we visit the definition of an instruction before its 456 /// uses. When visiting the definition, we either vectorize or scalarize the 457 /// instruction, creating an entry for it in the corresponding map. (In some 458 /// cases, such as induction variables, we will create both vector and scalar 459 /// entries.) Then, as we encounter uses of the definition, we derive values 460 /// for each scalar or vector use unless such a value is already available. 461 /// For example, if we scalarize a definition and one of its uses is vector, 462 /// we build the required vector on-demand with an insertelement sequence 463 /// when visiting the use. Otherwise, if the use is scalar, we can use the 464 /// existing scalar definition. 465 /// 466 /// Return a value in the new loop corresponding to \p V from the original 467 /// loop at unroll index \p Part. If the value has already been vectorized, 468 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 469 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 470 /// a new vector value on-demand by inserting the scalar values into a vector 471 /// with an insertelement sequence. If the value has been neither vectorized 472 /// nor scalarized, it must be loop invariant, so we simply broadcast the 473 /// value into a vector. 474 Value *getOrCreateVectorValue(Value *V, unsigned Part); 475 476 /// Return a value in the new loop corresponding to \p V from the original 477 /// loop at unroll and vector indices \p Instance. If the value has been 478 /// vectorized but not scalarized, the necessary extractelement instruction 479 /// will be generated. 480 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 481 482 /// Construct the vector value of a scalarized value \p V one lane at a time. 483 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 484 485 /// Try to vectorize the interleaved access group that \p Instr belongs to, 486 /// optionally masking the vector operations if \p BlockInMask is non-null. 487 void vectorizeInterleaveGroup(Instruction *Instr, 488 VectorParts *BlockInMask = nullptr); 489 490 /// Vectorize Load and Store instructions, optionally masking the vector 491 /// operations if \p BlockInMask is non-null. 492 void vectorizeMemoryInstruction(Instruction *Instr, 493 VectorParts *BlockInMask = nullptr); 494 495 /// Set the debug location in the builder using the debug location in 496 /// the instruction. 497 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 498 499 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 500 void fixNonInductionPHIs(void); 501 502 protected: 503 friend class LoopVectorizationPlanner; 504 505 /// A small list of PHINodes. 506 using PhiVector = SmallVector<PHINode *, 4>; 507 508 /// A type for scalarized values in the new loop. Each value from the 509 /// original loop, when scalarized, is represented by UF x VF scalar values 510 /// in the new unrolled loop, where UF is the unroll factor and VF is the 511 /// vectorization factor. 512 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 513 514 /// Set up the values of the IVs correctly when exiting the vector loop. 515 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 516 Value *CountRoundDown, Value *EndValue, 517 BasicBlock *MiddleBlock); 518 519 /// Create a new induction variable inside L. 520 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 521 Value *Step, Instruction *DL); 522 523 /// Handle all cross-iteration phis in the header. 524 void fixCrossIterationPHIs(); 525 526 /// Fix a first-order recurrence. This is the second phase of vectorizing 527 /// this phi node. 528 void fixFirstOrderRecurrence(PHINode *Phi); 529 530 /// Fix a reduction cross-iteration phi. This is the second phase of 531 /// vectorizing this phi node. 532 void fixReduction(PHINode *Phi); 533 534 /// The Loop exit block may have single value PHI nodes with some 535 /// incoming value. While vectorizing we only handled real values 536 /// that were defined inside the loop and we should have one value for 537 /// each predecessor of its parent basic block. See PR14725. 538 void fixLCSSAPHIs(); 539 540 /// Iteratively sink the scalarized operands of a predicated instruction into 541 /// the block that was created for it. 542 void sinkScalarOperands(Instruction *PredInst); 543 544 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 545 /// represented as. 546 void truncateToMinimalBitwidths(); 547 548 /// Insert the new loop to the loop hierarchy and pass manager 549 /// and update the analysis passes. 550 void updateAnalysis(); 551 552 /// Create a broadcast instruction. This method generates a broadcast 553 /// instruction (shuffle) for loop invariant values and for the induction 554 /// value. If this is the induction variable then we extend it to N, N+1, ... 555 /// this is needed because each iteration in the loop corresponds to a SIMD 556 /// element. 557 virtual Value *getBroadcastInstrs(Value *V); 558 559 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 560 /// to each vector element of Val. The sequence starts at StartIndex. 561 /// \p Opcode is relevant for FP induction variable. 562 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 563 Instruction::BinaryOps Opcode = 564 Instruction::BinaryOpsEnd); 565 566 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 567 /// variable on which to base the steps, \p Step is the size of the step, and 568 /// \p EntryVal is the value from the original loop that maps to the steps. 569 /// Note that \p EntryVal doesn't have to be an induction variable - it 570 /// can also be a truncate instruction. 571 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 572 const InductionDescriptor &ID); 573 574 /// Create a vector induction phi node based on an existing scalar one. \p 575 /// EntryVal is the value from the original loop that maps to the vector phi 576 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 577 /// truncate instruction, instead of widening the original IV, we widen a 578 /// version of the IV truncated to \p EntryVal's type. 579 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 580 Value *Step, Instruction *EntryVal); 581 582 /// Returns true if an instruction \p I should be scalarized instead of 583 /// vectorized for the chosen vectorization factor. 584 bool shouldScalarizeInstruction(Instruction *I) const; 585 586 /// Returns true if we should generate a scalar version of \p IV. 587 bool needsScalarInduction(Instruction *IV) const; 588 589 /// If there is a cast involved in the induction variable \p ID, which should 590 /// be ignored in the vectorized loop body, this function records the 591 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 592 /// cast. We had already proved that the casted Phi is equal to the uncasted 593 /// Phi in the vectorized loop (under a runtime guard), and therefore 594 /// there is no need to vectorize the cast - the same value can be used in the 595 /// vector loop for both the Phi and the cast. 596 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 597 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 598 /// 599 /// \p EntryVal is the value from the original loop that maps to the vector 600 /// phi node and is used to distinguish what is the IV currently being 601 /// processed - original one (if \p EntryVal is a phi corresponding to the 602 /// original IV) or the "newly-created" one based on the proof mentioned above 603 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 604 /// latter case \p EntryVal is a TruncInst and we must not record anything for 605 /// that IV, but it's error-prone to expect callers of this routine to care 606 /// about that, hence this explicit parameter. 607 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 608 const Instruction *EntryVal, 609 Value *VectorLoopValue, 610 unsigned Part, 611 unsigned Lane = UINT_MAX); 612 613 /// Generate a shuffle sequence that will reverse the vector Vec. 614 virtual Value *reverseVector(Value *Vec); 615 616 /// Returns (and creates if needed) the original loop trip count. 617 Value *getOrCreateTripCount(Loop *NewLoop); 618 619 /// Returns (and creates if needed) the trip count of the widened loop. 620 Value *getOrCreateVectorTripCount(Loop *NewLoop); 621 622 /// Returns a bitcasted value to the requested vector type. 623 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 624 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 625 const DataLayout &DL); 626 627 /// Emit a bypass check to see if the vector trip count is zero, including if 628 /// it overflows. 629 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 630 631 /// Emit a bypass check to see if all of the SCEV assumptions we've 632 /// had to make are correct. 633 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 634 635 /// Emit bypass checks to check any memory assumptions we may have made. 636 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 637 638 /// Compute the transformed value of Index at offset StartValue using step 639 /// StepValue. 640 /// For integer induction, returns StartValue + Index * StepValue. 641 /// For pointer induction, returns StartValue[Index * StepValue]. 642 /// FIXME: The newly created binary instructions should contain nsw/nuw 643 /// flags, which can be found from the original scalar operations. 644 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 645 const DataLayout &DL, 646 const InductionDescriptor &ID) const; 647 648 /// Add additional metadata to \p To that was not present on \p Orig. 649 /// 650 /// Currently this is used to add the noalias annotations based on the 651 /// inserted memchecks. Use this for instructions that are *cloned* into the 652 /// vector loop. 653 void addNewMetadata(Instruction *To, const Instruction *Orig); 654 655 /// Add metadata from one instruction to another. 656 /// 657 /// This includes both the original MDs from \p From and additional ones (\see 658 /// addNewMetadata). Use this for *newly created* instructions in the vector 659 /// loop. 660 void addMetadata(Instruction *To, Instruction *From); 661 662 /// Similar to the previous function but it adds the metadata to a 663 /// vector of instructions. 664 void addMetadata(ArrayRef<Value *> To, Instruction *From); 665 666 /// The original loop. 667 Loop *OrigLoop; 668 669 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 670 /// dynamic knowledge to simplify SCEV expressions and converts them to a 671 /// more usable form. 672 PredicatedScalarEvolution &PSE; 673 674 /// Loop Info. 675 LoopInfo *LI; 676 677 /// Dominator Tree. 678 DominatorTree *DT; 679 680 /// Alias Analysis. 681 AliasAnalysis *AA; 682 683 /// Target Library Info. 684 const TargetLibraryInfo *TLI; 685 686 /// Target Transform Info. 687 const TargetTransformInfo *TTI; 688 689 /// Assumption Cache. 690 AssumptionCache *AC; 691 692 /// Interface to emit optimization remarks. 693 OptimizationRemarkEmitter *ORE; 694 695 /// LoopVersioning. It's only set up (non-null) if memchecks were 696 /// used. 697 /// 698 /// This is currently only used to add no-alias metadata based on the 699 /// memchecks. The actually versioning is performed manually. 700 std::unique_ptr<LoopVersioning> LVer; 701 702 /// The vectorization SIMD factor to use. Each vector will have this many 703 /// vector elements. 704 unsigned VF; 705 706 /// The vectorization unroll factor to use. Each scalar is vectorized to this 707 /// many different vector instructions. 708 unsigned UF; 709 710 /// The builder that we use 711 IRBuilder<> Builder; 712 713 // --- Vectorization state --- 714 715 /// The vector-loop preheader. 716 BasicBlock *LoopVectorPreHeader; 717 718 /// The scalar-loop preheader. 719 BasicBlock *LoopScalarPreHeader; 720 721 /// Middle Block between the vector and the scalar. 722 BasicBlock *LoopMiddleBlock; 723 724 /// The ExitBlock of the scalar loop. 725 BasicBlock *LoopExitBlock; 726 727 /// The vector loop body. 728 BasicBlock *LoopVectorBody; 729 730 /// The scalar loop body. 731 BasicBlock *LoopScalarBody; 732 733 /// A list of all bypass blocks. The first block is the entry of the loop. 734 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 735 736 /// The new Induction variable which was added to the new block. 737 PHINode *Induction = nullptr; 738 739 /// The induction variable of the old basic block. 740 PHINode *OldInduction = nullptr; 741 742 /// Maps values from the original loop to their corresponding values in the 743 /// vectorized loop. A key value can map to either vector values, scalar 744 /// values or both kinds of values, depending on whether the key was 745 /// vectorized and scalarized. 746 VectorizerValueMap VectorLoopValueMap; 747 748 /// Store instructions that were predicated. 749 SmallVector<Instruction *, 4> PredicatedInstructions; 750 751 /// Trip count of the original loop. 752 Value *TripCount = nullptr; 753 754 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 755 Value *VectorTripCount = nullptr; 756 757 /// The legality analysis. 758 LoopVectorizationLegality *Legal; 759 760 /// The profitablity analysis. 761 LoopVectorizationCostModel *Cost; 762 763 // Record whether runtime checks are added. 764 bool AddedSafetyChecks = false; 765 766 // Holds the end values for each induction variable. We save the end values 767 // so we can later fix-up the external users of the induction variables. 768 DenseMap<PHINode *, Value *> IVEndValues; 769 770 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 771 // fixed up at the end of vector code generation. 772 SmallVector<PHINode *, 8> OrigPHIsToFix; 773 }; 774 775 class InnerLoopUnroller : public InnerLoopVectorizer { 776 public: 777 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 778 LoopInfo *LI, DominatorTree *DT, 779 const TargetLibraryInfo *TLI, 780 const TargetTransformInfo *TTI, AssumptionCache *AC, 781 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 782 LoopVectorizationLegality *LVL, 783 LoopVectorizationCostModel *CM) 784 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 785 UnrollFactor, LVL, CM) {} 786 787 private: 788 Value *getBroadcastInstrs(Value *V) override; 789 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 790 Instruction::BinaryOps Opcode = 791 Instruction::BinaryOpsEnd) override; 792 Value *reverseVector(Value *Vec) override; 793 }; 794 795 } // end namespace llvm 796 797 /// Look for a meaningful debug location on the instruction or it's 798 /// operands. 799 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 800 if (!I) 801 return I; 802 803 DebugLoc Empty; 804 if (I->getDebugLoc() != Empty) 805 return I; 806 807 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 808 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 809 if (OpInst->getDebugLoc() != Empty) 810 return OpInst; 811 } 812 813 return I; 814 } 815 816 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 817 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 818 const DILocation *DIL = Inst->getDebugLoc(); 819 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 820 !isa<DbgInfoIntrinsic>(Inst)) { 821 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 822 if (NewDIL) 823 B.SetCurrentDebugLocation(NewDIL.getValue()); 824 else 825 LLVM_DEBUG(dbgs() 826 << "Failed to create new discriminator: " 827 << DIL->getFilename() << " Line: " << DIL->getLine()); 828 } 829 else 830 B.SetCurrentDebugLocation(DIL); 831 } else 832 B.SetCurrentDebugLocation(DebugLoc()); 833 } 834 835 /// Write a record \p DebugMsg about vectorization failure to the debug 836 /// output stream. If \p I is passed, it is an instruction that prevents 837 /// vectorization. 838 #ifndef NDEBUG 839 static void debugVectorizationFailure(const StringRef DebugMsg, 840 Instruction *I) { 841 dbgs() << "LV: Not vectorizing: " << DebugMsg; 842 if (I != nullptr) 843 dbgs() << " " << *I; 844 else 845 dbgs() << '.'; 846 dbgs() << '\n'; 847 } 848 #endif 849 850 /// Create an analysis remark that explains why vectorization failed 851 /// 852 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 853 /// RemarkName is the identifier for the remark. If \p I is passed it is an 854 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 855 /// the location of the remark. \return the remark object that can be 856 /// streamed to. 857 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 858 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 859 Value *CodeRegion = TheLoop->getHeader(); 860 DebugLoc DL = TheLoop->getStartLoc(); 861 862 if (I) { 863 CodeRegion = I->getParent(); 864 // If there is no debug location attached to the instruction, revert back to 865 // using the loop's. 866 if (I->getDebugLoc()) 867 DL = I->getDebugLoc(); 868 } 869 870 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 871 R << "loop not vectorized: "; 872 return R; 873 } 874 875 namespace llvm { 876 877 void reportVectorizationFailure(const StringRef DebugMsg, 878 const StringRef OREMsg, const StringRef ORETag, 879 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 880 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 881 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 882 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 883 ORETag, TheLoop, I) << OREMsg); 884 } 885 886 } // end namespace llvm 887 888 #ifndef NDEBUG 889 /// \return string containing a file name and a line # for the given loop. 890 static std::string getDebugLocString(const Loop *L) { 891 std::string Result; 892 if (L) { 893 raw_string_ostream OS(Result); 894 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 895 LoopDbgLoc.print(OS); 896 else 897 // Just print the module name. 898 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 899 OS.flush(); 900 } 901 return Result; 902 } 903 #endif 904 905 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 906 const Instruction *Orig) { 907 // If the loop was versioned with memchecks, add the corresponding no-alias 908 // metadata. 909 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 910 LVer->annotateInstWithNoAlias(To, Orig); 911 } 912 913 void InnerLoopVectorizer::addMetadata(Instruction *To, 914 Instruction *From) { 915 propagateMetadata(To, From); 916 addNewMetadata(To, From); 917 } 918 919 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 920 Instruction *From) { 921 for (Value *V : To) { 922 if (Instruction *I = dyn_cast<Instruction>(V)) 923 addMetadata(I, From); 924 } 925 } 926 927 namespace llvm { 928 929 // Loop vectorization cost-model hints how the scalar epilogue loop should be 930 // lowered. 931 enum ScalarEpilogueLowering { 932 933 // The default: allowing scalar epilogues. 934 CM_ScalarEpilogueAllowed, 935 936 // Vectorization with OptForSize: don't allow epilogues. 937 CM_ScalarEpilogueNotAllowedOptSize, 938 939 // A special case of vectorisation with OptForSize: loops with a very small 940 // trip count are considered for vectorization under OptForSize, thereby 941 // making sure the cost of their loop body is dominant, free of runtime 942 // guards and scalar iteration overheads. 943 CM_ScalarEpilogueNotAllowedLowTripLoop, 944 945 // Loop hint predicate indicating an epilogue is undesired. 946 CM_ScalarEpilogueNotNeededUsePredicate 947 }; 948 949 /// LoopVectorizationCostModel - estimates the expected speedups due to 950 /// vectorization. 951 /// In many cases vectorization is not profitable. This can happen because of 952 /// a number of reasons. In this class we mainly attempt to predict the 953 /// expected speedup/slowdowns due to the supported instruction set. We use the 954 /// TargetTransformInfo to query the different backends for the cost of 955 /// different operations. 956 class LoopVectorizationCostModel { 957 public: 958 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 959 PredicatedScalarEvolution &PSE, LoopInfo *LI, 960 LoopVectorizationLegality *Legal, 961 const TargetTransformInfo &TTI, 962 const TargetLibraryInfo *TLI, DemandedBits *DB, 963 AssumptionCache *AC, 964 OptimizationRemarkEmitter *ORE, const Function *F, 965 const LoopVectorizeHints *Hints, 966 InterleavedAccessInfo &IAI) 967 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 968 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 969 Hints(Hints), InterleaveInfo(IAI) {} 970 971 /// \return An upper bound for the vectorization factor, or None if 972 /// vectorization and interleaving should be avoided up front. 973 Optional<unsigned> computeMaxVF(); 974 975 /// \return True if runtime checks are required for vectorization, and false 976 /// otherwise. 977 bool runtimeChecksRequired(); 978 979 /// \return The most profitable vectorization factor and the cost of that VF. 980 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 981 /// then this vectorization factor will be selected if vectorization is 982 /// possible. 983 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 984 985 /// Setup cost-based decisions for user vectorization factor. 986 void selectUserVectorizationFactor(unsigned UserVF) { 987 collectUniformsAndScalars(UserVF); 988 collectInstsToScalarize(UserVF); 989 } 990 991 /// \return The size (in bits) of the smallest and widest types in the code 992 /// that needs to be vectorized. We ignore values that remain scalar such as 993 /// 64 bit loop indices. 994 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 995 996 /// \return The desired interleave count. 997 /// If interleave count has been specified by metadata it will be returned. 998 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 999 /// are the selected vectorization factor and the cost of the selected VF. 1000 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1001 1002 /// Memory access instruction may be vectorized in more than one way. 1003 /// Form of instruction after vectorization depends on cost. 1004 /// This function takes cost-based decisions for Load/Store instructions 1005 /// and collects them in a map. This decisions map is used for building 1006 /// the lists of loop-uniform and loop-scalar instructions. 1007 /// The calculated cost is saved with widening decision in order to 1008 /// avoid redundant calculations. 1009 void setCostBasedWideningDecision(unsigned VF); 1010 1011 /// A struct that represents some properties of the register usage 1012 /// of a loop. 1013 struct RegisterUsage { 1014 /// Holds the number of loop invariant values that are used in the loop. 1015 /// The key is ClassID of target-provided register class. 1016 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1017 /// Holds the maximum number of concurrent live intervals in the loop. 1018 /// The key is ClassID of target-provided register class. 1019 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1020 }; 1021 1022 /// \return Returns information about the register usages of the loop for the 1023 /// given vectorization factors. 1024 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1025 1026 /// Collect values we want to ignore in the cost model. 1027 void collectValuesToIgnore(); 1028 1029 /// \returns The smallest bitwidth each instruction can be represented with. 1030 /// The vector equivalents of these instructions should be truncated to this 1031 /// type. 1032 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1033 return MinBWs; 1034 } 1035 1036 /// \returns True if it is more profitable to scalarize instruction \p I for 1037 /// vectorization factor \p VF. 1038 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1039 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1040 1041 // Cost model is not run in the VPlan-native path - return conservative 1042 // result until this changes. 1043 if (EnableVPlanNativePath) 1044 return false; 1045 1046 auto Scalars = InstsToScalarize.find(VF); 1047 assert(Scalars != InstsToScalarize.end() && 1048 "VF not yet analyzed for scalarization profitability"); 1049 return Scalars->second.find(I) != Scalars->second.end(); 1050 } 1051 1052 /// Returns true if \p I is known to be uniform after vectorization. 1053 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1054 if (VF == 1) 1055 return true; 1056 1057 // Cost model is not run in the VPlan-native path - return conservative 1058 // result until this changes. 1059 if (EnableVPlanNativePath) 1060 return false; 1061 1062 auto UniformsPerVF = Uniforms.find(VF); 1063 assert(UniformsPerVF != Uniforms.end() && 1064 "VF not yet analyzed for uniformity"); 1065 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1066 } 1067 1068 /// Returns true if \p I is known to be scalar after vectorization. 1069 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1070 if (VF == 1) 1071 return true; 1072 1073 // Cost model is not run in the VPlan-native path - return conservative 1074 // result until this changes. 1075 if (EnableVPlanNativePath) 1076 return false; 1077 1078 auto ScalarsPerVF = Scalars.find(VF); 1079 assert(ScalarsPerVF != Scalars.end() && 1080 "Scalar values are not calculated for VF"); 1081 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1082 } 1083 1084 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1085 /// for vectorization factor \p VF. 1086 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1087 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1088 !isProfitableToScalarize(I, VF) && 1089 !isScalarAfterVectorization(I, VF); 1090 } 1091 1092 /// Decision that was taken during cost calculation for memory instruction. 1093 enum InstWidening { 1094 CM_Unknown, 1095 CM_Widen, // For consecutive accesses with stride +1. 1096 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1097 CM_Interleave, 1098 CM_GatherScatter, 1099 CM_Scalarize 1100 }; 1101 1102 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1103 /// instruction \p I and vector width \p VF. 1104 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1105 unsigned Cost) { 1106 assert(VF >= 2 && "Expected VF >=2"); 1107 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1108 } 1109 1110 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1111 /// interleaving group \p Grp and vector width \p VF. 1112 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1113 InstWidening W, unsigned Cost) { 1114 assert(VF >= 2 && "Expected VF >=2"); 1115 /// Broadcast this decicion to all instructions inside the group. 1116 /// But the cost will be assigned to one instruction only. 1117 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1118 if (auto *I = Grp->getMember(i)) { 1119 if (Grp->getInsertPos() == I) 1120 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1121 else 1122 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1123 } 1124 } 1125 } 1126 1127 /// Return the cost model decision for the given instruction \p I and vector 1128 /// width \p VF. Return CM_Unknown if this instruction did not pass 1129 /// through the cost modeling. 1130 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1131 assert(VF >= 2 && "Expected VF >=2"); 1132 1133 // Cost model is not run in the VPlan-native path - return conservative 1134 // result until this changes. 1135 if (EnableVPlanNativePath) 1136 return CM_GatherScatter; 1137 1138 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1139 auto Itr = WideningDecisions.find(InstOnVF); 1140 if (Itr == WideningDecisions.end()) 1141 return CM_Unknown; 1142 return Itr->second.first; 1143 } 1144 1145 /// Return the vectorization cost for the given instruction \p I and vector 1146 /// width \p VF. 1147 unsigned getWideningCost(Instruction *I, unsigned VF) { 1148 assert(VF >= 2 && "Expected VF >=2"); 1149 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1150 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1151 "The cost is not calculated"); 1152 return WideningDecisions[InstOnVF].second; 1153 } 1154 1155 /// Return True if instruction \p I is an optimizable truncate whose operand 1156 /// is an induction variable. Such a truncate will be removed by adding a new 1157 /// induction variable with the destination type. 1158 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1159 // If the instruction is not a truncate, return false. 1160 auto *Trunc = dyn_cast<TruncInst>(I); 1161 if (!Trunc) 1162 return false; 1163 1164 // Get the source and destination types of the truncate. 1165 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1166 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1167 1168 // If the truncate is free for the given types, return false. Replacing a 1169 // free truncate with an induction variable would add an induction variable 1170 // update instruction to each iteration of the loop. We exclude from this 1171 // check the primary induction variable since it will need an update 1172 // instruction regardless. 1173 Value *Op = Trunc->getOperand(0); 1174 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1175 return false; 1176 1177 // If the truncated value is not an induction variable, return false. 1178 return Legal->isInductionPhi(Op); 1179 } 1180 1181 /// Collects the instructions to scalarize for each predicated instruction in 1182 /// the loop. 1183 void collectInstsToScalarize(unsigned VF); 1184 1185 /// Collect Uniform and Scalar values for the given \p VF. 1186 /// The sets depend on CM decision for Load/Store instructions 1187 /// that may be vectorized as interleave, gather-scatter or scalarized. 1188 void collectUniformsAndScalars(unsigned VF) { 1189 // Do the analysis once. 1190 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1191 return; 1192 setCostBasedWideningDecision(VF); 1193 collectLoopUniforms(VF); 1194 collectLoopScalars(VF); 1195 } 1196 1197 /// Returns true if the target machine supports masked store operation 1198 /// for the given \p DataType and kind of access to \p Ptr. 1199 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1200 return Legal->isConsecutivePtr(Ptr) && 1201 TTI.isLegalMaskedStore(DataType, Alignment); 1202 } 1203 1204 /// Returns true if the target machine supports masked load operation 1205 /// for the given \p DataType and kind of access to \p Ptr. 1206 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1207 return Legal->isConsecutivePtr(Ptr) && 1208 TTI.isLegalMaskedLoad(DataType, Alignment); 1209 } 1210 1211 /// Returns true if the target machine supports masked scatter operation 1212 /// for the given \p DataType. 1213 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) { 1214 return TTI.isLegalMaskedScatter(DataType, Alignment); 1215 } 1216 1217 /// Returns true if the target machine supports masked gather operation 1218 /// for the given \p DataType. 1219 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) { 1220 return TTI.isLegalMaskedGather(DataType, Alignment); 1221 } 1222 1223 /// Returns true if the target machine can represent \p V as a masked gather 1224 /// or scatter operation. 1225 bool isLegalGatherOrScatter(Value *V) { 1226 bool LI = isa<LoadInst>(V); 1227 bool SI = isa<StoreInst>(V); 1228 if (!LI && !SI) 1229 return false; 1230 auto *Ty = getMemInstValueType(V); 1231 MaybeAlign Align = getLoadStoreAlignment(V); 1232 return (LI && isLegalMaskedGather(Ty, Align)) || 1233 (SI && isLegalMaskedScatter(Ty, Align)); 1234 } 1235 1236 /// Returns true if \p I is an instruction that will be scalarized with 1237 /// predication. Such instructions include conditional stores and 1238 /// instructions that may divide by zero. 1239 /// If a non-zero VF has been calculated, we check if I will be scalarized 1240 /// predication for that VF. 1241 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1242 1243 // Returns true if \p I is an instruction that will be predicated either 1244 // through scalar predication or masked load/store or masked gather/scatter. 1245 // Superset of instructions that return true for isScalarWithPredication. 1246 bool isPredicatedInst(Instruction *I) { 1247 if (!blockNeedsPredication(I->getParent())) 1248 return false; 1249 // Loads and stores that need some form of masked operation are predicated 1250 // instructions. 1251 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1252 return Legal->isMaskRequired(I); 1253 return isScalarWithPredication(I); 1254 } 1255 1256 /// Returns true if \p I is a memory instruction with consecutive memory 1257 /// access that can be widened. 1258 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1259 1260 /// Returns true if \p I is a memory instruction in an interleaved-group 1261 /// of memory accesses that can be vectorized with wide vector loads/stores 1262 /// and shuffles. 1263 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1264 1265 /// Check if \p Instr belongs to any interleaved access group. 1266 bool isAccessInterleaved(Instruction *Instr) { 1267 return InterleaveInfo.isInterleaved(Instr); 1268 } 1269 1270 /// Get the interleaved access group that \p Instr belongs to. 1271 const InterleaveGroup<Instruction> * 1272 getInterleavedAccessGroup(Instruction *Instr) { 1273 return InterleaveInfo.getInterleaveGroup(Instr); 1274 } 1275 1276 /// Returns true if an interleaved group requires a scalar iteration 1277 /// to handle accesses with gaps, and there is nothing preventing us from 1278 /// creating a scalar epilogue. 1279 bool requiresScalarEpilogue() const { 1280 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1281 } 1282 1283 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1284 /// loop hint annotation. 1285 bool isScalarEpilogueAllowed() const { 1286 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1287 } 1288 1289 /// Returns true if all loop blocks should be masked to fold tail loop. 1290 bool foldTailByMasking() const { return FoldTailByMasking; } 1291 1292 bool blockNeedsPredication(BasicBlock *BB) { 1293 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1294 } 1295 1296 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1297 /// with factor VF. Return the cost of the instruction, including 1298 /// scalarization overhead if it's needed. 1299 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1300 1301 /// Estimate cost of a call instruction CI if it were vectorized with factor 1302 /// VF. Return the cost of the instruction, including scalarization overhead 1303 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1304 /// scalarized - 1305 /// i.e. either vector version isn't available, or is too expensive. 1306 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1307 1308 private: 1309 unsigned NumPredStores = 0; 1310 1311 /// \return An upper bound for the vectorization factor, larger than zero. 1312 /// One is returned if vectorization should best be avoided due to cost. 1313 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1314 1315 /// The vectorization cost is a combination of the cost itself and a boolean 1316 /// indicating whether any of the contributing operations will actually 1317 /// operate on 1318 /// vector values after type legalization in the backend. If this latter value 1319 /// is 1320 /// false, then all operations will be scalarized (i.e. no vectorization has 1321 /// actually taken place). 1322 using VectorizationCostTy = std::pair<unsigned, bool>; 1323 1324 /// Returns the expected execution cost. The unit of the cost does 1325 /// not matter because we use the 'cost' units to compare different 1326 /// vector widths. The cost that is returned is *not* normalized by 1327 /// the factor width. 1328 VectorizationCostTy expectedCost(unsigned VF); 1329 1330 /// Returns the execution time cost of an instruction for a given vector 1331 /// width. Vector width of one means scalar. 1332 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1333 1334 /// The cost-computation logic from getInstructionCost which provides 1335 /// the vector type as an output parameter. 1336 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1337 1338 /// Calculate vectorization cost of memory instruction \p I. 1339 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1340 1341 /// The cost computation for scalarized memory instruction. 1342 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1343 1344 /// The cost computation for interleaving group of memory instructions. 1345 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1346 1347 /// The cost computation for Gather/Scatter instruction. 1348 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1349 1350 /// The cost computation for widening instruction \p I with consecutive 1351 /// memory access. 1352 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1353 1354 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1355 /// Load: scalar load + broadcast. 1356 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1357 /// element) 1358 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1359 1360 /// Estimate the overhead of scalarizing an instruction. This is a 1361 /// convenience wrapper for the type-based getScalarizationOverhead API. 1362 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1363 1364 /// Returns whether the instruction is a load or store and will be a emitted 1365 /// as a vector operation. 1366 bool isConsecutiveLoadOrStore(Instruction *I); 1367 1368 /// Returns true if an artificially high cost for emulated masked memrefs 1369 /// should be used. 1370 bool useEmulatedMaskMemRefHack(Instruction *I); 1371 1372 /// Map of scalar integer values to the smallest bitwidth they can be legally 1373 /// represented as. The vector equivalents of these values should be truncated 1374 /// to this type. 1375 MapVector<Instruction *, uint64_t> MinBWs; 1376 1377 /// A type representing the costs for instructions if they were to be 1378 /// scalarized rather than vectorized. The entries are Instruction-Cost 1379 /// pairs. 1380 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1381 1382 /// A set containing all BasicBlocks that are known to present after 1383 /// vectorization as a predicated block. 1384 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1385 1386 /// Records whether it is allowed to have the original scalar loop execute at 1387 /// least once. This may be needed as a fallback loop in case runtime 1388 /// aliasing/dependence checks fail, or to handle the tail/remainder 1389 /// iterations when the trip count is unknown or doesn't divide by the VF, 1390 /// or as a peel-loop to handle gaps in interleave-groups. 1391 /// Under optsize and when the trip count is very small we don't allow any 1392 /// iterations to execute in the scalar loop. 1393 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1394 1395 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1396 bool FoldTailByMasking = false; 1397 1398 /// A map holding scalar costs for different vectorization factors. The 1399 /// presence of a cost for an instruction in the mapping indicates that the 1400 /// instruction will be scalarized when vectorizing with the associated 1401 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1402 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1403 1404 /// Holds the instructions known to be uniform after vectorization. 1405 /// The data is collected per VF. 1406 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1407 1408 /// Holds the instructions known to be scalar after vectorization. 1409 /// The data is collected per VF. 1410 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1411 1412 /// Holds the instructions (address computations) that are forced to be 1413 /// scalarized. 1414 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1415 1416 /// Returns the expected difference in cost from scalarizing the expression 1417 /// feeding a predicated instruction \p PredInst. The instructions to 1418 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1419 /// non-negative return value implies the expression will be scalarized. 1420 /// Currently, only single-use chains are considered for scalarization. 1421 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1422 unsigned VF); 1423 1424 /// Collect the instructions that are uniform after vectorization. An 1425 /// instruction is uniform if we represent it with a single scalar value in 1426 /// the vectorized loop corresponding to each vector iteration. Examples of 1427 /// uniform instructions include pointer operands of consecutive or 1428 /// interleaved memory accesses. Note that although uniformity implies an 1429 /// instruction will be scalar, the reverse is not true. In general, a 1430 /// scalarized instruction will be represented by VF scalar values in the 1431 /// vectorized loop, each corresponding to an iteration of the original 1432 /// scalar loop. 1433 void collectLoopUniforms(unsigned VF); 1434 1435 /// Collect the instructions that are scalar after vectorization. An 1436 /// instruction is scalar if it is known to be uniform or will be scalarized 1437 /// during vectorization. Non-uniform scalarized instructions will be 1438 /// represented by VF values in the vectorized loop, each corresponding to an 1439 /// iteration of the original scalar loop. 1440 void collectLoopScalars(unsigned VF); 1441 1442 /// Keeps cost model vectorization decision and cost for instructions. 1443 /// Right now it is used for memory instructions only. 1444 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1445 std::pair<InstWidening, unsigned>>; 1446 1447 DecisionList WideningDecisions; 1448 1449 /// Returns true if \p V is expected to be vectorized and it needs to be 1450 /// extracted. 1451 bool needsExtract(Value *V, unsigned VF) const { 1452 Instruction *I = dyn_cast<Instruction>(V); 1453 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1454 return false; 1455 1456 // Assume we can vectorize V (and hence we need extraction) if the 1457 // scalars are not computed yet. This can happen, because it is called 1458 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1459 // the scalars are collected. That should be a safe assumption in most 1460 // cases, because we check if the operands have vectorizable types 1461 // beforehand in LoopVectorizationLegality. 1462 return Scalars.find(VF) == Scalars.end() || 1463 !isScalarAfterVectorization(I, VF); 1464 }; 1465 1466 /// Returns a range containing only operands needing to be extracted. 1467 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1468 unsigned VF) { 1469 return SmallVector<Value *, 4>(make_filter_range( 1470 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1471 } 1472 1473 public: 1474 /// The loop that we evaluate. 1475 Loop *TheLoop; 1476 1477 /// Predicated scalar evolution analysis. 1478 PredicatedScalarEvolution &PSE; 1479 1480 /// Loop Info analysis. 1481 LoopInfo *LI; 1482 1483 /// Vectorization legality. 1484 LoopVectorizationLegality *Legal; 1485 1486 /// Vector target information. 1487 const TargetTransformInfo &TTI; 1488 1489 /// Target Library Info. 1490 const TargetLibraryInfo *TLI; 1491 1492 /// Demanded bits analysis. 1493 DemandedBits *DB; 1494 1495 /// Assumption cache. 1496 AssumptionCache *AC; 1497 1498 /// Interface to emit optimization remarks. 1499 OptimizationRemarkEmitter *ORE; 1500 1501 const Function *TheFunction; 1502 1503 /// Loop Vectorize Hint. 1504 const LoopVectorizeHints *Hints; 1505 1506 /// The interleave access information contains groups of interleaved accesses 1507 /// with the same stride and close to each other. 1508 InterleavedAccessInfo &InterleaveInfo; 1509 1510 /// Values to ignore in the cost model. 1511 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1512 1513 /// Values to ignore in the cost model when VF > 1. 1514 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1515 }; 1516 1517 } // end namespace llvm 1518 1519 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1520 // vectorization. The loop needs to be annotated with #pragma omp simd 1521 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1522 // vector length information is not provided, vectorization is not considered 1523 // explicit. Interleave hints are not allowed either. These limitations will be 1524 // relaxed in the future. 1525 // Please, note that we are currently forced to abuse the pragma 'clang 1526 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1527 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1528 // provides *explicit vectorization hints* (LV can bypass legal checks and 1529 // assume that vectorization is legal). However, both hints are implemented 1530 // using the same metadata (llvm.loop.vectorize, processed by 1531 // LoopVectorizeHints). This will be fixed in the future when the native IR 1532 // representation for pragma 'omp simd' is introduced. 1533 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1534 OptimizationRemarkEmitter *ORE) { 1535 assert(!OuterLp->empty() && "This is not an outer loop"); 1536 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1537 1538 // Only outer loops with an explicit vectorization hint are supported. 1539 // Unannotated outer loops are ignored. 1540 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1541 return false; 1542 1543 Function *Fn = OuterLp->getHeader()->getParent(); 1544 if (!Hints.allowVectorization(Fn, OuterLp, 1545 true /*VectorizeOnlyWhenForced*/)) { 1546 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1547 return false; 1548 } 1549 1550 if (Hints.getInterleave() > 1) { 1551 // TODO: Interleave support is future work. 1552 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1553 "outer loops.\n"); 1554 Hints.emitRemarkWithHints(); 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1562 OptimizationRemarkEmitter *ORE, 1563 SmallVectorImpl<Loop *> &V) { 1564 // Collect inner loops and outer loops without irreducible control flow. For 1565 // now, only collect outer loops that have explicit vectorization hints. If we 1566 // are stress testing the VPlan H-CFG construction, we collect the outermost 1567 // loop of every loop nest. 1568 if (L.empty() || VPlanBuildStressTest || 1569 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1570 LoopBlocksRPO RPOT(&L); 1571 RPOT.perform(LI); 1572 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1573 V.push_back(&L); 1574 // TODO: Collect inner loops inside marked outer loops in case 1575 // vectorization fails for the outer loop. Do not invoke 1576 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1577 // already known to be reducible. We can use an inherited attribute for 1578 // that. 1579 return; 1580 } 1581 } 1582 for (Loop *InnerL : L) 1583 collectSupportedLoops(*InnerL, LI, ORE, V); 1584 } 1585 1586 namespace { 1587 1588 /// The LoopVectorize Pass. 1589 struct LoopVectorize : public FunctionPass { 1590 /// Pass identification, replacement for typeid 1591 static char ID; 1592 1593 LoopVectorizePass Impl; 1594 1595 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1596 bool VectorizeOnlyWhenForced = false) 1597 : FunctionPass(ID) { 1598 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1599 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1600 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1601 } 1602 1603 bool runOnFunction(Function &F) override { 1604 if (skipFunction(F)) 1605 return false; 1606 1607 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1608 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1609 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1610 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1611 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1612 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1613 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1614 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1615 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1616 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1617 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1618 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1619 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1620 1621 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1622 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1623 1624 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1625 GetLAA, *ORE, PSI); 1626 } 1627 1628 void getAnalysisUsage(AnalysisUsage &AU) const override { 1629 AU.addRequired<AssumptionCacheTracker>(); 1630 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1631 AU.addRequired<DominatorTreeWrapperPass>(); 1632 AU.addRequired<LoopInfoWrapperPass>(); 1633 AU.addRequired<ScalarEvolutionWrapperPass>(); 1634 AU.addRequired<TargetTransformInfoWrapperPass>(); 1635 AU.addRequired<AAResultsWrapperPass>(); 1636 AU.addRequired<LoopAccessLegacyAnalysis>(); 1637 AU.addRequired<DemandedBitsWrapperPass>(); 1638 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1639 1640 // We currently do not preserve loopinfo/dominator analyses with outer loop 1641 // vectorization. Until this is addressed, mark these analyses as preserved 1642 // only for non-VPlan-native path. 1643 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1644 if (!EnableVPlanNativePath) { 1645 AU.addPreserved<LoopInfoWrapperPass>(); 1646 AU.addPreserved<DominatorTreeWrapperPass>(); 1647 } 1648 1649 AU.addPreserved<BasicAAWrapperPass>(); 1650 AU.addPreserved<GlobalsAAWrapperPass>(); 1651 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1652 } 1653 }; 1654 1655 } // end anonymous namespace 1656 1657 //===----------------------------------------------------------------------===// 1658 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1659 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1660 //===----------------------------------------------------------------------===// 1661 1662 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1663 // We need to place the broadcast of invariant variables outside the loop, 1664 // but only if it's proven safe to do so. Else, broadcast will be inside 1665 // vector loop body. 1666 Instruction *Instr = dyn_cast<Instruction>(V); 1667 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1668 (!Instr || 1669 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1670 // Place the code for broadcasting invariant variables in the new preheader. 1671 IRBuilder<>::InsertPointGuard Guard(Builder); 1672 if (SafeToHoist) 1673 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1674 1675 // Broadcast the scalar into all locations in the vector. 1676 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1677 1678 return Shuf; 1679 } 1680 1681 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1682 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1683 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1684 "Expected either an induction phi-node or a truncate of it!"); 1685 Value *Start = II.getStartValue(); 1686 1687 // Construct the initial value of the vector IV in the vector loop preheader 1688 auto CurrIP = Builder.saveIP(); 1689 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1690 if (isa<TruncInst>(EntryVal)) { 1691 assert(Start->getType()->isIntegerTy() && 1692 "Truncation requires an integer type"); 1693 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1694 Step = Builder.CreateTrunc(Step, TruncType); 1695 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1696 } 1697 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1698 Value *SteppedStart = 1699 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1700 1701 // We create vector phi nodes for both integer and floating-point induction 1702 // variables. Here, we determine the kind of arithmetic we will perform. 1703 Instruction::BinaryOps AddOp; 1704 Instruction::BinaryOps MulOp; 1705 if (Step->getType()->isIntegerTy()) { 1706 AddOp = Instruction::Add; 1707 MulOp = Instruction::Mul; 1708 } else { 1709 AddOp = II.getInductionOpcode(); 1710 MulOp = Instruction::FMul; 1711 } 1712 1713 // Multiply the vectorization factor by the step using integer or 1714 // floating-point arithmetic as appropriate. 1715 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1716 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1717 1718 // Create a vector splat to use in the induction update. 1719 // 1720 // FIXME: If the step is non-constant, we create the vector splat with 1721 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1722 // handle a constant vector splat. 1723 Value *SplatVF = isa<Constant>(Mul) 1724 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1725 : Builder.CreateVectorSplat(VF, Mul); 1726 Builder.restoreIP(CurrIP); 1727 1728 // We may need to add the step a number of times, depending on the unroll 1729 // factor. The last of those goes into the PHI. 1730 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1731 &*LoopVectorBody->getFirstInsertionPt()); 1732 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1733 Instruction *LastInduction = VecInd; 1734 for (unsigned Part = 0; Part < UF; ++Part) { 1735 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1736 1737 if (isa<TruncInst>(EntryVal)) 1738 addMetadata(LastInduction, EntryVal); 1739 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1740 1741 LastInduction = cast<Instruction>(addFastMathFlag( 1742 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1743 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1744 } 1745 1746 // Move the last step to the end of the latch block. This ensures consistent 1747 // placement of all induction updates. 1748 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1749 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1750 auto *ICmp = cast<Instruction>(Br->getCondition()); 1751 LastInduction->moveBefore(ICmp); 1752 LastInduction->setName("vec.ind.next"); 1753 1754 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1755 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1756 } 1757 1758 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1759 return Cost->isScalarAfterVectorization(I, VF) || 1760 Cost->isProfitableToScalarize(I, VF); 1761 } 1762 1763 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1764 if (shouldScalarizeInstruction(IV)) 1765 return true; 1766 auto isScalarInst = [&](User *U) -> bool { 1767 auto *I = cast<Instruction>(U); 1768 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1769 }; 1770 return llvm::any_of(IV->users(), isScalarInst); 1771 } 1772 1773 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1774 const InductionDescriptor &ID, const Instruction *EntryVal, 1775 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1776 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1777 "Expected either an induction phi-node or a truncate of it!"); 1778 1779 // This induction variable is not the phi from the original loop but the 1780 // newly-created IV based on the proof that casted Phi is equal to the 1781 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1782 // re-uses the same InductionDescriptor that original IV uses but we don't 1783 // have to do any recording in this case - that is done when original IV is 1784 // processed. 1785 if (isa<TruncInst>(EntryVal)) 1786 return; 1787 1788 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1789 if (Casts.empty()) 1790 return; 1791 // Only the first Cast instruction in the Casts vector is of interest. 1792 // The rest of the Casts (if exist) have no uses outside the 1793 // induction update chain itself. 1794 Instruction *CastInst = *Casts.begin(); 1795 if (Lane < UINT_MAX) 1796 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1797 else 1798 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1799 } 1800 1801 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1802 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1803 "Primary induction variable must have an integer type"); 1804 1805 auto II = Legal->getInductionVars()->find(IV); 1806 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1807 1808 auto ID = II->second; 1809 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1810 1811 // The scalar value to broadcast. This will be derived from the canonical 1812 // induction variable. 1813 Value *ScalarIV = nullptr; 1814 1815 // The value from the original loop to which we are mapping the new induction 1816 // variable. 1817 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1818 1819 // True if we have vectorized the induction variable. 1820 auto VectorizedIV = false; 1821 1822 // Determine if we want a scalar version of the induction variable. This is 1823 // true if the induction variable itself is not widened, or if it has at 1824 // least one user in the loop that is not widened. 1825 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1826 1827 // Generate code for the induction step. Note that induction steps are 1828 // required to be loop-invariant 1829 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1830 "Induction step should be loop invariant"); 1831 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1832 Value *Step = nullptr; 1833 if (PSE.getSE()->isSCEVable(IV->getType())) { 1834 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1835 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1836 LoopVectorPreHeader->getTerminator()); 1837 } else { 1838 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1839 } 1840 1841 // Try to create a new independent vector induction variable. If we can't 1842 // create the phi node, we will splat the scalar induction variable in each 1843 // loop iteration. 1844 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1845 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1846 VectorizedIV = true; 1847 } 1848 1849 // If we haven't yet vectorized the induction variable, or if we will create 1850 // a scalar one, we need to define the scalar induction variable and step 1851 // values. If we were given a truncation type, truncate the canonical 1852 // induction variable and step. Otherwise, derive these values from the 1853 // induction descriptor. 1854 if (!VectorizedIV || NeedsScalarIV) { 1855 ScalarIV = Induction; 1856 if (IV != OldInduction) { 1857 ScalarIV = IV->getType()->isIntegerTy() 1858 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1859 : Builder.CreateCast(Instruction::SIToFP, Induction, 1860 IV->getType()); 1861 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1862 ScalarIV->setName("offset.idx"); 1863 } 1864 if (Trunc) { 1865 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1866 assert(Step->getType()->isIntegerTy() && 1867 "Truncation requires an integer step"); 1868 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1869 Step = Builder.CreateTrunc(Step, TruncType); 1870 } 1871 } 1872 1873 // If we haven't yet vectorized the induction variable, splat the scalar 1874 // induction variable, and build the necessary step vectors. 1875 // TODO: Don't do it unless the vectorized IV is really required. 1876 if (!VectorizedIV) { 1877 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1878 for (unsigned Part = 0; Part < UF; ++Part) { 1879 Value *EntryPart = 1880 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1881 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1882 if (Trunc) 1883 addMetadata(EntryPart, Trunc); 1884 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1885 } 1886 } 1887 1888 // If an induction variable is only used for counting loop iterations or 1889 // calculating addresses, it doesn't need to be widened. Create scalar steps 1890 // that can be used by instructions we will later scalarize. Note that the 1891 // addition of the scalar steps will not increase the number of instructions 1892 // in the loop in the common case prior to InstCombine. We will be trading 1893 // one vector extract for each scalar step. 1894 if (NeedsScalarIV) 1895 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1896 } 1897 1898 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1899 Instruction::BinaryOps BinOp) { 1900 // Create and check the types. 1901 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1902 int VLen = Val->getType()->getVectorNumElements(); 1903 1904 Type *STy = Val->getType()->getScalarType(); 1905 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1906 "Induction Step must be an integer or FP"); 1907 assert(Step->getType() == STy && "Step has wrong type"); 1908 1909 SmallVector<Constant *, 8> Indices; 1910 1911 if (STy->isIntegerTy()) { 1912 // Create a vector of consecutive numbers from zero to VF. 1913 for (int i = 0; i < VLen; ++i) 1914 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1915 1916 // Add the consecutive indices to the vector value. 1917 Constant *Cv = ConstantVector::get(Indices); 1918 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1919 Step = Builder.CreateVectorSplat(VLen, Step); 1920 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1921 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1922 // which can be found from the original scalar operations. 1923 Step = Builder.CreateMul(Cv, Step); 1924 return Builder.CreateAdd(Val, Step, "induction"); 1925 } 1926 1927 // Floating point induction. 1928 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1929 "Binary Opcode should be specified for FP induction"); 1930 // Create a vector of consecutive numbers from zero to VF. 1931 for (int i = 0; i < VLen; ++i) 1932 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1933 1934 // Add the consecutive indices to the vector value. 1935 Constant *Cv = ConstantVector::get(Indices); 1936 1937 Step = Builder.CreateVectorSplat(VLen, Step); 1938 1939 // Floating point operations had to be 'fast' to enable the induction. 1940 FastMathFlags Flags; 1941 Flags.setFast(); 1942 1943 Value *MulOp = Builder.CreateFMul(Cv, Step); 1944 if (isa<Instruction>(MulOp)) 1945 // Have to check, MulOp may be a constant 1946 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1947 1948 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1949 if (isa<Instruction>(BOp)) 1950 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1951 return BOp; 1952 } 1953 1954 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1955 Instruction *EntryVal, 1956 const InductionDescriptor &ID) { 1957 // We shouldn't have to build scalar steps if we aren't vectorizing. 1958 assert(VF > 1 && "VF should be greater than one"); 1959 1960 // Get the value type and ensure it and the step have the same integer type. 1961 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1962 assert(ScalarIVTy == Step->getType() && 1963 "Val and Step should have the same type"); 1964 1965 // We build scalar steps for both integer and floating-point induction 1966 // variables. Here, we determine the kind of arithmetic we will perform. 1967 Instruction::BinaryOps AddOp; 1968 Instruction::BinaryOps MulOp; 1969 if (ScalarIVTy->isIntegerTy()) { 1970 AddOp = Instruction::Add; 1971 MulOp = Instruction::Mul; 1972 } else { 1973 AddOp = ID.getInductionOpcode(); 1974 MulOp = Instruction::FMul; 1975 } 1976 1977 // Determine the number of scalars we need to generate for each unroll 1978 // iteration. If EntryVal is uniform, we only need to generate the first 1979 // lane. Otherwise, we generate all VF values. 1980 unsigned Lanes = 1981 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1982 : VF; 1983 // Compute the scalar steps and save the results in VectorLoopValueMap. 1984 for (unsigned Part = 0; Part < UF; ++Part) { 1985 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1986 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1987 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1988 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1989 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1990 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1991 } 1992 } 1993 } 1994 1995 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1996 assert(V != Induction && "The new induction variable should not be used."); 1997 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1998 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1999 2000 // If we have a stride that is replaced by one, do it here. Defer this for 2001 // the VPlan-native path until we start running Legal checks in that path. 2002 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2003 V = ConstantInt::get(V->getType(), 1); 2004 2005 // If we have a vector mapped to this value, return it. 2006 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2007 return VectorLoopValueMap.getVectorValue(V, Part); 2008 2009 // If the value has not been vectorized, check if it has been scalarized 2010 // instead. If it has been scalarized, and we actually need the value in 2011 // vector form, we will construct the vector values on demand. 2012 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2013 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2014 2015 // If we've scalarized a value, that value should be an instruction. 2016 auto *I = cast<Instruction>(V); 2017 2018 // If we aren't vectorizing, we can just copy the scalar map values over to 2019 // the vector map. 2020 if (VF == 1) { 2021 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2022 return ScalarValue; 2023 } 2024 2025 // Get the last scalar instruction we generated for V and Part. If the value 2026 // is known to be uniform after vectorization, this corresponds to lane zero 2027 // of the Part unroll iteration. Otherwise, the last instruction is the one 2028 // we created for the last vector lane of the Part unroll iteration. 2029 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2030 auto *LastInst = cast<Instruction>( 2031 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2032 2033 // Set the insert point after the last scalarized instruction. This ensures 2034 // the insertelement sequence will directly follow the scalar definitions. 2035 auto OldIP = Builder.saveIP(); 2036 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2037 Builder.SetInsertPoint(&*NewIP); 2038 2039 // However, if we are vectorizing, we need to construct the vector values. 2040 // If the value is known to be uniform after vectorization, we can just 2041 // broadcast the scalar value corresponding to lane zero for each unroll 2042 // iteration. Otherwise, we construct the vector values using insertelement 2043 // instructions. Since the resulting vectors are stored in 2044 // VectorLoopValueMap, we will only generate the insertelements once. 2045 Value *VectorValue = nullptr; 2046 if (Cost->isUniformAfterVectorization(I, VF)) { 2047 VectorValue = getBroadcastInstrs(ScalarValue); 2048 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2049 } else { 2050 // Initialize packing with insertelements to start from undef. 2051 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2052 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2053 for (unsigned Lane = 0; Lane < VF; ++Lane) 2054 packScalarIntoVectorValue(V, {Part, Lane}); 2055 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2056 } 2057 Builder.restoreIP(OldIP); 2058 return VectorValue; 2059 } 2060 2061 // If this scalar is unknown, assume that it is a constant or that it is 2062 // loop invariant. Broadcast V and save the value for future uses. 2063 Value *B = getBroadcastInstrs(V); 2064 VectorLoopValueMap.setVectorValue(V, Part, B); 2065 return B; 2066 } 2067 2068 Value * 2069 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2070 const VPIteration &Instance) { 2071 // If the value is not an instruction contained in the loop, it should 2072 // already be scalar. 2073 if (OrigLoop->isLoopInvariant(V)) 2074 return V; 2075 2076 assert(Instance.Lane > 0 2077 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2078 : true && "Uniform values only have lane zero"); 2079 2080 // If the value from the original loop has not been vectorized, it is 2081 // represented by UF x VF scalar values in the new loop. Return the requested 2082 // scalar value. 2083 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2084 return VectorLoopValueMap.getScalarValue(V, Instance); 2085 2086 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2087 // for the given unroll part. If this entry is not a vector type (i.e., the 2088 // vectorization factor is one), there is no need to generate an 2089 // extractelement instruction. 2090 auto *U = getOrCreateVectorValue(V, Instance.Part); 2091 if (!U->getType()->isVectorTy()) { 2092 assert(VF == 1 && "Value not scalarized has non-vector type"); 2093 return U; 2094 } 2095 2096 // Otherwise, the value from the original loop has been vectorized and is 2097 // represented by UF vector values. Extract and return the requested scalar 2098 // value from the appropriate vector lane. 2099 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2100 } 2101 2102 void InnerLoopVectorizer::packScalarIntoVectorValue( 2103 Value *V, const VPIteration &Instance) { 2104 assert(V != Induction && "The new induction variable should not be used."); 2105 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2106 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2107 2108 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2109 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2110 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2111 Builder.getInt32(Instance.Lane)); 2112 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2113 } 2114 2115 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2116 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2117 SmallVector<Constant *, 8> ShuffleMask; 2118 for (unsigned i = 0; i < VF; ++i) 2119 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2120 2121 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2122 ConstantVector::get(ShuffleMask), 2123 "reverse"); 2124 } 2125 2126 // Return whether we allow using masked interleave-groups (for dealing with 2127 // strided loads/stores that reside in predicated blocks, or for dealing 2128 // with gaps). 2129 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2130 // If an override option has been passed in for interleaved accesses, use it. 2131 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2132 return EnableMaskedInterleavedMemAccesses; 2133 2134 return TTI.enableMaskedInterleavedAccessVectorization(); 2135 } 2136 2137 // Try to vectorize the interleave group that \p Instr belongs to. 2138 // 2139 // E.g. Translate following interleaved load group (factor = 3): 2140 // for (i = 0; i < N; i+=3) { 2141 // R = Pic[i]; // Member of index 0 2142 // G = Pic[i+1]; // Member of index 1 2143 // B = Pic[i+2]; // Member of index 2 2144 // ... // do something to R, G, B 2145 // } 2146 // To: 2147 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2148 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2149 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2150 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2151 // 2152 // Or translate following interleaved store group (factor = 3): 2153 // for (i = 0; i < N; i+=3) { 2154 // ... do something to R, G, B 2155 // Pic[i] = R; // Member of index 0 2156 // Pic[i+1] = G; // Member of index 1 2157 // Pic[i+2] = B; // Member of index 2 2158 // } 2159 // To: 2160 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2161 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2162 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2163 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2164 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2165 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2166 VectorParts *BlockInMask) { 2167 const InterleaveGroup<Instruction> *Group = 2168 Cost->getInterleavedAccessGroup(Instr); 2169 assert(Group && "Fail to get an interleaved access group."); 2170 2171 // Skip if current instruction is not the insert position. 2172 if (Instr != Group->getInsertPos()) 2173 return; 2174 2175 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2176 Value *Ptr = getLoadStorePointerOperand(Instr); 2177 2178 // Prepare for the vector type of the interleaved load/store. 2179 Type *ScalarTy = getMemInstValueType(Instr); 2180 unsigned InterleaveFactor = Group->getFactor(); 2181 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2182 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2183 2184 // Prepare for the new pointers. 2185 setDebugLocFromInst(Builder, Ptr); 2186 SmallVector<Value *, 2> NewPtrs; 2187 unsigned Index = Group->getIndex(Instr); 2188 2189 VectorParts Mask; 2190 bool IsMaskForCondRequired = BlockInMask; 2191 if (IsMaskForCondRequired) { 2192 Mask = *BlockInMask; 2193 // TODO: extend the masked interleaved-group support to reversed access. 2194 assert(!Group->isReverse() && "Reversed masked interleave-group " 2195 "not supported."); 2196 } 2197 2198 // If the group is reverse, adjust the index to refer to the last vector lane 2199 // instead of the first. We adjust the index from the first vector lane, 2200 // rather than directly getting the pointer for lane VF - 1, because the 2201 // pointer operand of the interleaved access is supposed to be uniform. For 2202 // uniform instructions, we're only required to generate a value for the 2203 // first vector lane in each unroll iteration. 2204 if (Group->isReverse()) 2205 Index += (VF - 1) * Group->getFactor(); 2206 2207 bool InBounds = false; 2208 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2209 InBounds = gep->isInBounds(); 2210 2211 for (unsigned Part = 0; Part < UF; Part++) { 2212 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2213 2214 // Notice current instruction could be any index. Need to adjust the address 2215 // to the member of index 0. 2216 // 2217 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2218 // b = A[i]; // Member of index 0 2219 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2220 // 2221 // E.g. A[i+1] = a; // Member of index 1 2222 // A[i] = b; // Member of index 0 2223 // A[i+2] = c; // Member of index 2 (Current instruction) 2224 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2225 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2226 if (InBounds) 2227 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2228 2229 // Cast to the vector pointer type. 2230 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2231 } 2232 2233 setDebugLocFromInst(Builder, Instr); 2234 Value *UndefVec = UndefValue::get(VecTy); 2235 2236 Value *MaskForGaps = nullptr; 2237 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2238 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2239 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2240 } 2241 2242 // Vectorize the interleaved load group. 2243 if (isa<LoadInst>(Instr)) { 2244 // For each unroll part, create a wide load for the group. 2245 SmallVector<Value *, 2> NewLoads; 2246 for (unsigned Part = 0; Part < UF; Part++) { 2247 Instruction *NewLoad; 2248 if (IsMaskForCondRequired || MaskForGaps) { 2249 assert(useMaskedInterleavedAccesses(*TTI) && 2250 "masked interleaved groups are not allowed."); 2251 Value *GroupMask = MaskForGaps; 2252 if (IsMaskForCondRequired) { 2253 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2254 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2255 Value *ShuffledMask = Builder.CreateShuffleVector( 2256 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2257 GroupMask = MaskForGaps 2258 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2259 MaskForGaps) 2260 : ShuffledMask; 2261 } 2262 NewLoad = 2263 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2264 GroupMask, UndefVec, "wide.masked.vec"); 2265 } 2266 else 2267 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2268 Group->getAlignment(), "wide.vec"); 2269 Group->addMetadata(NewLoad); 2270 NewLoads.push_back(NewLoad); 2271 } 2272 2273 // For each member in the group, shuffle out the appropriate data from the 2274 // wide loads. 2275 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2276 Instruction *Member = Group->getMember(I); 2277 2278 // Skip the gaps in the group. 2279 if (!Member) 2280 continue; 2281 2282 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2283 for (unsigned Part = 0; Part < UF; Part++) { 2284 Value *StridedVec = Builder.CreateShuffleVector( 2285 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2286 2287 // If this member has different type, cast the result type. 2288 if (Member->getType() != ScalarTy) { 2289 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2290 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2291 } 2292 2293 if (Group->isReverse()) 2294 StridedVec = reverseVector(StridedVec); 2295 2296 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2297 } 2298 } 2299 return; 2300 } 2301 2302 // The sub vector type for current instruction. 2303 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2304 2305 // Vectorize the interleaved store group. 2306 for (unsigned Part = 0; Part < UF; Part++) { 2307 // Collect the stored vector from each member. 2308 SmallVector<Value *, 4> StoredVecs; 2309 for (unsigned i = 0; i < InterleaveFactor; i++) { 2310 // Interleaved store group doesn't allow a gap, so each index has a member 2311 Instruction *Member = Group->getMember(i); 2312 assert(Member && "Fail to get a member from an interleaved store group"); 2313 2314 Value *StoredVec = getOrCreateVectorValue( 2315 cast<StoreInst>(Member)->getValueOperand(), Part); 2316 if (Group->isReverse()) 2317 StoredVec = reverseVector(StoredVec); 2318 2319 // If this member has different type, cast it to a unified type. 2320 2321 if (StoredVec->getType() != SubVT) 2322 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2323 2324 StoredVecs.push_back(StoredVec); 2325 } 2326 2327 // Concatenate all vectors into a wide vector. 2328 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2329 2330 // Interleave the elements in the wide vector. 2331 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2332 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2333 "interleaved.vec"); 2334 2335 Instruction *NewStoreInstr; 2336 if (IsMaskForCondRequired) { 2337 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2338 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2339 Value *ShuffledMask = Builder.CreateShuffleVector( 2340 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2341 NewStoreInstr = Builder.CreateMaskedStore( 2342 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2343 } 2344 else 2345 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2346 Group->getAlignment()); 2347 2348 Group->addMetadata(NewStoreInstr); 2349 } 2350 } 2351 2352 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2353 VectorParts *BlockInMask) { 2354 // Attempt to issue a wide load. 2355 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2356 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2357 2358 assert((LI || SI) && "Invalid Load/Store instruction"); 2359 2360 LoopVectorizationCostModel::InstWidening Decision = 2361 Cost->getWideningDecision(Instr, VF); 2362 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2363 "CM decision should be taken at this point"); 2364 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2365 return vectorizeInterleaveGroup(Instr); 2366 2367 Type *ScalarDataTy = getMemInstValueType(Instr); 2368 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2369 Value *Ptr = getLoadStorePointerOperand(Instr); 2370 // An alignment of 0 means target abi alignment. We need to use the scalar's 2371 // target abi alignment in such a case. 2372 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2373 const Align Alignment = 2374 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy); 2375 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2376 2377 // Determine if the pointer operand of the access is either consecutive or 2378 // reverse consecutive. 2379 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2380 bool ConsecutiveStride = 2381 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2382 bool CreateGatherScatter = 2383 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2384 2385 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2386 // gather/scatter. Otherwise Decision should have been to Scalarize. 2387 assert((ConsecutiveStride || CreateGatherScatter) && 2388 "The instruction should be scalarized"); 2389 2390 // Handle consecutive loads/stores. 2391 if (ConsecutiveStride) 2392 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2393 2394 VectorParts Mask; 2395 bool isMaskRequired = BlockInMask; 2396 if (isMaskRequired) 2397 Mask = *BlockInMask; 2398 2399 bool InBounds = false; 2400 if (auto *gep = dyn_cast<GetElementPtrInst>( 2401 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2402 InBounds = gep->isInBounds(); 2403 2404 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2405 // Calculate the pointer for the specific unroll-part. 2406 GetElementPtrInst *PartPtr = nullptr; 2407 2408 if (Reverse) { 2409 // If the address is consecutive but reversed, then the 2410 // wide store needs to start at the last vector element. 2411 PartPtr = cast<GetElementPtrInst>( 2412 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2413 PartPtr->setIsInBounds(InBounds); 2414 PartPtr = cast<GetElementPtrInst>( 2415 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2416 PartPtr->setIsInBounds(InBounds); 2417 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2418 Mask[Part] = reverseVector(Mask[Part]); 2419 } else { 2420 PartPtr = cast<GetElementPtrInst>( 2421 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2422 PartPtr->setIsInBounds(InBounds); 2423 } 2424 2425 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2426 }; 2427 2428 // Handle Stores: 2429 if (SI) { 2430 setDebugLocFromInst(Builder, SI); 2431 2432 for (unsigned Part = 0; Part < UF; ++Part) { 2433 Instruction *NewSI = nullptr; 2434 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2435 if (CreateGatherScatter) { 2436 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2437 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2438 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, 2439 Alignment.value(), MaskPart); 2440 } else { 2441 if (Reverse) { 2442 // If we store to reverse consecutive memory locations, then we need 2443 // to reverse the order of elements in the stored value. 2444 StoredVal = reverseVector(StoredVal); 2445 // We don't want to update the value in the map as it might be used in 2446 // another expression. So don't call resetVectorValue(StoredVal). 2447 } 2448 auto *VecPtr = CreateVecPtr(Part, Ptr); 2449 if (isMaskRequired) 2450 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, 2451 Alignment.value(), Mask[Part]); 2452 else 2453 NewSI = 2454 Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment.value()); 2455 } 2456 addMetadata(NewSI, SI); 2457 } 2458 return; 2459 } 2460 2461 // Handle loads. 2462 assert(LI && "Must have a load instruction"); 2463 setDebugLocFromInst(Builder, LI); 2464 for (unsigned Part = 0; Part < UF; ++Part) { 2465 Value *NewLI; 2466 if (CreateGatherScatter) { 2467 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2468 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2469 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment.value(), MaskPart, 2470 nullptr, "wide.masked.gather"); 2471 addMetadata(NewLI, LI); 2472 } else { 2473 auto *VecPtr = CreateVecPtr(Part, Ptr); 2474 if (isMaskRequired) 2475 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment.value(), Mask[Part], 2476 UndefValue::get(DataTy), 2477 "wide.masked.load"); 2478 else 2479 NewLI = Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment.value(), 2480 "wide.load"); 2481 2482 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2483 addMetadata(NewLI, LI); 2484 if (Reverse) 2485 NewLI = reverseVector(NewLI); 2486 } 2487 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2488 } 2489 } 2490 2491 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2492 const VPIteration &Instance, 2493 bool IfPredicateInstr) { 2494 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2495 2496 setDebugLocFromInst(Builder, Instr); 2497 2498 // Does this instruction return a value ? 2499 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2500 2501 Instruction *Cloned = Instr->clone(); 2502 if (!IsVoidRetTy) 2503 Cloned->setName(Instr->getName() + ".cloned"); 2504 2505 // Replace the operands of the cloned instructions with their scalar 2506 // equivalents in the new loop. 2507 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2508 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2509 Cloned->setOperand(op, NewOp); 2510 } 2511 addNewMetadata(Cloned, Instr); 2512 2513 // Place the cloned scalar in the new loop. 2514 Builder.Insert(Cloned); 2515 2516 // Add the cloned scalar to the scalar map entry. 2517 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2518 2519 // If we just cloned a new assumption, add it the assumption cache. 2520 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2521 if (II->getIntrinsicID() == Intrinsic::assume) 2522 AC->registerAssumption(II); 2523 2524 // End if-block. 2525 if (IfPredicateInstr) 2526 PredicatedInstructions.push_back(Cloned); 2527 } 2528 2529 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2530 Value *End, Value *Step, 2531 Instruction *DL) { 2532 BasicBlock *Header = L->getHeader(); 2533 BasicBlock *Latch = L->getLoopLatch(); 2534 // As we're just creating this loop, it's possible no latch exists 2535 // yet. If so, use the header as this will be a single block loop. 2536 if (!Latch) 2537 Latch = Header; 2538 2539 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2540 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2541 setDebugLocFromInst(Builder, OldInst); 2542 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2543 2544 Builder.SetInsertPoint(Latch->getTerminator()); 2545 setDebugLocFromInst(Builder, OldInst); 2546 2547 // Create i+1 and fill the PHINode. 2548 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2549 Induction->addIncoming(Start, L->getLoopPreheader()); 2550 Induction->addIncoming(Next, Latch); 2551 // Create the compare. 2552 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2553 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2554 2555 // Now we have two terminators. Remove the old one from the block. 2556 Latch->getTerminator()->eraseFromParent(); 2557 2558 return Induction; 2559 } 2560 2561 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2562 if (TripCount) 2563 return TripCount; 2564 2565 assert(L && "Create Trip Count for null loop."); 2566 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2567 // Find the loop boundaries. 2568 ScalarEvolution *SE = PSE.getSE(); 2569 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2570 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2571 "Invalid loop count"); 2572 2573 Type *IdxTy = Legal->getWidestInductionType(); 2574 assert(IdxTy && "No type for induction"); 2575 2576 // The exit count might have the type of i64 while the phi is i32. This can 2577 // happen if we have an induction variable that is sign extended before the 2578 // compare. The only way that we get a backedge taken count is that the 2579 // induction variable was signed and as such will not overflow. In such a case 2580 // truncation is legal. 2581 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2582 IdxTy->getPrimitiveSizeInBits()) 2583 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2584 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2585 2586 // Get the total trip count from the count by adding 1. 2587 const SCEV *ExitCount = SE->getAddExpr( 2588 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2589 2590 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2591 2592 // Expand the trip count and place the new instructions in the preheader. 2593 // Notice that the pre-header does not change, only the loop body. 2594 SCEVExpander Exp(*SE, DL, "induction"); 2595 2596 // Count holds the overall loop count (N). 2597 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2598 L->getLoopPreheader()->getTerminator()); 2599 2600 if (TripCount->getType()->isPointerTy()) 2601 TripCount = 2602 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2603 L->getLoopPreheader()->getTerminator()); 2604 2605 return TripCount; 2606 } 2607 2608 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2609 if (VectorTripCount) 2610 return VectorTripCount; 2611 2612 Value *TC = getOrCreateTripCount(L); 2613 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2614 2615 Type *Ty = TC->getType(); 2616 Constant *Step = ConstantInt::get(Ty, VF * UF); 2617 2618 // If the tail is to be folded by masking, round the number of iterations N 2619 // up to a multiple of Step instead of rounding down. This is done by first 2620 // adding Step-1 and then rounding down. Note that it's ok if this addition 2621 // overflows: the vector induction variable will eventually wrap to zero given 2622 // that it starts at zero and its Step is a power of two; the loop will then 2623 // exit, with the last early-exit vector comparison also producing all-true. 2624 if (Cost->foldTailByMasking()) { 2625 assert(isPowerOf2_32(VF * UF) && 2626 "VF*UF must be a power of 2 when folding tail by masking"); 2627 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2628 } 2629 2630 // Now we need to generate the expression for the part of the loop that the 2631 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2632 // iterations are not required for correctness, or N - Step, otherwise. Step 2633 // is equal to the vectorization factor (number of SIMD elements) times the 2634 // unroll factor (number of SIMD instructions). 2635 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2636 2637 // If there is a non-reversed interleaved group that may speculatively access 2638 // memory out-of-bounds, we need to ensure that there will be at least one 2639 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2640 // the trip count, we set the remainder to be equal to the step. If the step 2641 // does not evenly divide the trip count, no adjustment is necessary since 2642 // there will already be scalar iterations. Note that the minimum iterations 2643 // check ensures that N >= Step. 2644 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2645 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2646 R = Builder.CreateSelect(IsZero, Step, R); 2647 } 2648 2649 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2650 2651 return VectorTripCount; 2652 } 2653 2654 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2655 const DataLayout &DL) { 2656 // Verify that V is a vector type with same number of elements as DstVTy. 2657 unsigned VF = DstVTy->getNumElements(); 2658 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2659 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2660 Type *SrcElemTy = SrcVecTy->getElementType(); 2661 Type *DstElemTy = DstVTy->getElementType(); 2662 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2663 "Vector elements must have same size"); 2664 2665 // Do a direct cast if element types are castable. 2666 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2667 return Builder.CreateBitOrPointerCast(V, DstVTy); 2668 } 2669 // V cannot be directly casted to desired vector type. 2670 // May happen when V is a floating point vector but DstVTy is a vector of 2671 // pointers or vice-versa. Handle this using a two-step bitcast using an 2672 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2673 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2674 "Only one type should be a pointer type"); 2675 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2676 "Only one type should be a floating point type"); 2677 Type *IntTy = 2678 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2679 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2680 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2681 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2682 } 2683 2684 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2685 BasicBlock *Bypass) { 2686 Value *Count = getOrCreateTripCount(L); 2687 BasicBlock *BB = L->getLoopPreheader(); 2688 IRBuilder<> Builder(BB->getTerminator()); 2689 2690 // Generate code to check if the loop's trip count is less than VF * UF, or 2691 // equal to it in case a scalar epilogue is required; this implies that the 2692 // vector trip count is zero. This check also covers the case where adding one 2693 // to the backedge-taken count overflowed leading to an incorrect trip count 2694 // of zero. In this case we will also jump to the scalar loop. 2695 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2696 : ICmpInst::ICMP_ULT; 2697 2698 // If tail is to be folded, vector loop takes care of all iterations. 2699 Value *CheckMinIters = Builder.getFalse(); 2700 if (!Cost->foldTailByMasking()) 2701 CheckMinIters = Builder.CreateICmp( 2702 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2703 "min.iters.check"); 2704 2705 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2706 // Update dominator tree immediately if the generated block is a 2707 // LoopBypassBlock because SCEV expansions to generate loop bypass 2708 // checks may query it before the current function is finished. 2709 DT->addNewBlock(NewBB, BB); 2710 if (L->getParentLoop()) 2711 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2712 ReplaceInstWithInst(BB->getTerminator(), 2713 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2714 LoopBypassBlocks.push_back(BB); 2715 } 2716 2717 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2718 BasicBlock *BB = L->getLoopPreheader(); 2719 2720 // Generate the code to check that the SCEV assumptions that we made. 2721 // We want the new basic block to start at the first instruction in a 2722 // sequence of instructions that form a check. 2723 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2724 "scev.check"); 2725 Value *SCEVCheck = 2726 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2727 2728 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2729 if (C->isZero()) 2730 return; 2731 2732 assert(!BB->getParent()->hasOptSize() && 2733 "Cannot SCEV check stride or overflow when optimizing for size"); 2734 2735 // Create a new block containing the stride check. 2736 BB->setName("vector.scevcheck"); 2737 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2738 // Update dominator tree immediately if the generated block is a 2739 // LoopBypassBlock because SCEV expansions to generate loop bypass 2740 // checks may query it before the current function is finished. 2741 DT->addNewBlock(NewBB, BB); 2742 if (L->getParentLoop()) 2743 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2744 ReplaceInstWithInst(BB->getTerminator(), 2745 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2746 LoopBypassBlocks.push_back(BB); 2747 AddedSafetyChecks = true; 2748 } 2749 2750 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2751 // VPlan-native path does not do any analysis for runtime checks currently. 2752 if (EnableVPlanNativePath) 2753 return; 2754 2755 BasicBlock *BB = L->getLoopPreheader(); 2756 2757 // Generate the code that checks in runtime if arrays overlap. We put the 2758 // checks into a separate block to make the more common case of few elements 2759 // faster. 2760 Instruction *FirstCheckInst; 2761 Instruction *MemRuntimeCheck; 2762 std::tie(FirstCheckInst, MemRuntimeCheck) = 2763 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2764 if (!MemRuntimeCheck) 2765 return; 2766 2767 if (BB->getParent()->hasOptSize()) { 2768 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2769 "Cannot emit memory checks when optimizing for size, unless forced " 2770 "to vectorize."); 2771 ORE->emit([&]() { 2772 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2773 L->getStartLoc(), L->getHeader()) 2774 << "Code-size may be reduced by not forcing " 2775 "vectorization, or by source-code modifications " 2776 "eliminating the need for runtime checks " 2777 "(e.g., adding 'restrict')."; 2778 }); 2779 } 2780 2781 // Create a new block containing the memory check. 2782 BB->setName("vector.memcheck"); 2783 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2784 // Update dominator tree immediately if the generated block is a 2785 // LoopBypassBlock because SCEV expansions to generate loop bypass 2786 // checks may query it before the current function is finished. 2787 DT->addNewBlock(NewBB, BB); 2788 if (L->getParentLoop()) 2789 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2790 ReplaceInstWithInst(BB->getTerminator(), 2791 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2792 LoopBypassBlocks.push_back(BB); 2793 AddedSafetyChecks = true; 2794 2795 // We currently don't use LoopVersioning for the actual loop cloning but we 2796 // still use it to add the noalias metadata. 2797 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2798 PSE.getSE()); 2799 LVer->prepareNoAliasMetadata(); 2800 } 2801 2802 Value *InnerLoopVectorizer::emitTransformedIndex( 2803 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2804 const InductionDescriptor &ID) const { 2805 2806 SCEVExpander Exp(*SE, DL, "induction"); 2807 auto Step = ID.getStep(); 2808 auto StartValue = ID.getStartValue(); 2809 assert(Index->getType() == Step->getType() && 2810 "Index type does not match StepValue type"); 2811 2812 // Note: the IR at this point is broken. We cannot use SE to create any new 2813 // SCEV and then expand it, hoping that SCEV's simplification will give us 2814 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2815 // lead to various SCEV crashes. So all we can do is to use builder and rely 2816 // on InstCombine for future simplifications. Here we handle some trivial 2817 // cases only. 2818 auto CreateAdd = [&B](Value *X, Value *Y) { 2819 assert(X->getType() == Y->getType() && "Types don't match!"); 2820 if (auto *CX = dyn_cast<ConstantInt>(X)) 2821 if (CX->isZero()) 2822 return Y; 2823 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2824 if (CY->isZero()) 2825 return X; 2826 return B.CreateAdd(X, Y); 2827 }; 2828 2829 auto CreateMul = [&B](Value *X, Value *Y) { 2830 assert(X->getType() == Y->getType() && "Types don't match!"); 2831 if (auto *CX = dyn_cast<ConstantInt>(X)) 2832 if (CX->isOne()) 2833 return Y; 2834 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2835 if (CY->isOne()) 2836 return X; 2837 return B.CreateMul(X, Y); 2838 }; 2839 2840 switch (ID.getKind()) { 2841 case InductionDescriptor::IK_IntInduction: { 2842 assert(Index->getType() == StartValue->getType() && 2843 "Index type does not match StartValue type"); 2844 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2845 return B.CreateSub(StartValue, Index); 2846 auto *Offset = CreateMul( 2847 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2848 return CreateAdd(StartValue, Offset); 2849 } 2850 case InductionDescriptor::IK_PtrInduction: { 2851 assert(isa<SCEVConstant>(Step) && 2852 "Expected constant step for pointer induction"); 2853 return B.CreateGEP( 2854 StartValue->getType()->getPointerElementType(), StartValue, 2855 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2856 &*B.GetInsertPoint()))); 2857 } 2858 case InductionDescriptor::IK_FpInduction: { 2859 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2860 auto InductionBinOp = ID.getInductionBinOp(); 2861 assert(InductionBinOp && 2862 (InductionBinOp->getOpcode() == Instruction::FAdd || 2863 InductionBinOp->getOpcode() == Instruction::FSub) && 2864 "Original bin op should be defined for FP induction"); 2865 2866 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2867 2868 // Floating point operations had to be 'fast' to enable the induction. 2869 FastMathFlags Flags; 2870 Flags.setFast(); 2871 2872 Value *MulExp = B.CreateFMul(StepValue, Index); 2873 if (isa<Instruction>(MulExp)) 2874 // We have to check, the MulExp may be a constant. 2875 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2876 2877 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2878 "induction"); 2879 if (isa<Instruction>(BOp)) 2880 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2881 2882 return BOp; 2883 } 2884 case InductionDescriptor::IK_NoInduction: 2885 return nullptr; 2886 } 2887 llvm_unreachable("invalid enum"); 2888 } 2889 2890 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2891 /* 2892 In this function we generate a new loop. The new loop will contain 2893 the vectorized instructions while the old loop will continue to run the 2894 scalar remainder. 2895 2896 [ ] <-- loop iteration number check. 2897 / | 2898 / v 2899 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2900 | / | 2901 | / v 2902 || [ ] <-- vector pre header. 2903 |/ | 2904 | v 2905 | [ ] \ 2906 | [ ]_| <-- vector loop. 2907 | | 2908 | v 2909 | -[ ] <--- middle-block. 2910 | / | 2911 | / v 2912 -|- >[ ] <--- new preheader. 2913 | | 2914 | v 2915 | [ ] \ 2916 | [ ]_| <-- old scalar loop to handle remainder. 2917 \ | 2918 \ v 2919 >[ ] <-- exit block. 2920 ... 2921 */ 2922 2923 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2924 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2925 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2926 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2927 assert(VectorPH && "Invalid loop structure"); 2928 assert(ExitBlock && "Must have an exit block"); 2929 2930 // Some loops have a single integer induction variable, while other loops 2931 // don't. One example is c++ iterators that often have multiple pointer 2932 // induction variables. In the code below we also support a case where we 2933 // don't have a single induction variable. 2934 // 2935 // We try to obtain an induction variable from the original loop as hard 2936 // as possible. However if we don't find one that: 2937 // - is an integer 2938 // - counts from zero, stepping by one 2939 // - is the size of the widest induction variable type 2940 // then we create a new one. 2941 OldInduction = Legal->getPrimaryInduction(); 2942 Type *IdxTy = Legal->getWidestInductionType(); 2943 2944 // Split the single block loop into the two loop structure described above. 2945 BasicBlock *VecBody = 2946 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2947 BasicBlock *MiddleBlock = 2948 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2949 BasicBlock *ScalarPH = 2950 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2951 2952 // Create and register the new vector loop. 2953 Loop *Lp = LI->AllocateLoop(); 2954 Loop *ParentLoop = OrigLoop->getParentLoop(); 2955 2956 // Insert the new loop into the loop nest and register the new basic blocks 2957 // before calling any utilities such as SCEV that require valid LoopInfo. 2958 if (ParentLoop) { 2959 ParentLoop->addChildLoop(Lp); 2960 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2961 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2962 } else { 2963 LI->addTopLevelLoop(Lp); 2964 } 2965 Lp->addBasicBlockToLoop(VecBody, *LI); 2966 2967 // Find the loop boundaries. 2968 Value *Count = getOrCreateTripCount(Lp); 2969 2970 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2971 2972 // Now, compare the new count to zero. If it is zero skip the vector loop and 2973 // jump to the scalar loop. This check also covers the case where the 2974 // backedge-taken count is uint##_max: adding one to it will overflow leading 2975 // to an incorrect trip count of zero. In this (rare) case we will also jump 2976 // to the scalar loop. 2977 emitMinimumIterationCountCheck(Lp, ScalarPH); 2978 2979 // Generate the code to check any assumptions that we've made for SCEV 2980 // expressions. 2981 emitSCEVChecks(Lp, ScalarPH); 2982 2983 // Generate the code that checks in runtime if arrays overlap. We put the 2984 // checks into a separate block to make the more common case of few elements 2985 // faster. 2986 emitMemRuntimeChecks(Lp, ScalarPH); 2987 2988 // Generate the induction variable. 2989 // The loop step is equal to the vectorization factor (num of SIMD elements) 2990 // times the unroll factor (num of SIMD instructions). 2991 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2992 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2993 Induction = 2994 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2995 getDebugLocFromInstOrOperands(OldInduction)); 2996 2997 // We are going to resume the execution of the scalar loop. 2998 // Go over all of the induction variables that we found and fix the 2999 // PHIs that are left in the scalar version of the loop. 3000 // The starting values of PHI nodes depend on the counter of the last 3001 // iteration in the vectorized loop. 3002 // If we come from a bypass edge then we need to start from the original 3003 // start value. 3004 3005 // This variable saves the new starting index for the scalar loop. It is used 3006 // to test if there are any tail iterations left once the vector loop has 3007 // completed. 3008 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3009 for (auto &InductionEntry : *List) { 3010 PHINode *OrigPhi = InductionEntry.first; 3011 InductionDescriptor II = InductionEntry.second; 3012 3013 // Create phi nodes to merge from the backedge-taken check block. 3014 PHINode *BCResumeVal = PHINode::Create( 3015 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3016 // Copy original phi DL over to the new one. 3017 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3018 Value *&EndValue = IVEndValues[OrigPhi]; 3019 if (OrigPhi == OldInduction) { 3020 // We know what the end value is. 3021 EndValue = CountRoundDown; 3022 } else { 3023 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3024 Type *StepType = II.getStep()->getType(); 3025 Instruction::CastOps CastOp = 3026 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3027 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3028 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3029 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3030 EndValue->setName("ind.end"); 3031 } 3032 3033 // The new PHI merges the original incoming value, in case of a bypass, 3034 // or the value at the end of the vectorized loop. 3035 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3036 3037 // Fix the scalar body counter (PHI node). 3038 // The old induction's phi node in the scalar body needs the truncated 3039 // value. 3040 for (BasicBlock *BB : LoopBypassBlocks) 3041 BCResumeVal->addIncoming(II.getStartValue(), BB); 3042 OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal); 3043 } 3044 3045 // We need the OrigLoop (scalar loop part) latch terminator to help 3046 // produce correct debug info for the middle block BB instructions. 3047 // The legality check stage guarantees that the loop will have a single 3048 // latch. 3049 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3050 "Scalar loop latch terminator isn't a branch"); 3051 BranchInst *ScalarLatchBr = 3052 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3053 3054 // Add a check in the middle block to see if we have completed 3055 // all of the iterations in the first vector loop. 3056 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3057 // If tail is to be folded, we know we don't need to run the remainder. 3058 Value *CmpN = Builder.getTrue(); 3059 if (!Cost->foldTailByMasking()) { 3060 CmpN = 3061 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3062 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3063 3064 // Here we use the same DebugLoc as the scalar loop latch branch instead 3065 // of the corresponding compare because they may have ended up with 3066 // different line numbers and we want to avoid awkward line stepping while 3067 // debugging. Eg. if the compare has got a line number inside the loop. 3068 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3069 } 3070 3071 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 3072 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3073 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 3074 3075 // Get ready to start creating new instructions into the vectorized body. 3076 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3077 3078 // Save the state. 3079 LoopVectorPreHeader = Lp->getLoopPreheader(); 3080 LoopScalarPreHeader = ScalarPH; 3081 LoopMiddleBlock = MiddleBlock; 3082 LoopExitBlock = ExitBlock; 3083 LoopVectorBody = VecBody; 3084 LoopScalarBody = OldBasicBlock; 3085 3086 Optional<MDNode *> VectorizedLoopID = 3087 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3088 LLVMLoopVectorizeFollowupVectorized}); 3089 if (VectorizedLoopID.hasValue()) { 3090 Lp->setLoopID(VectorizedLoopID.getValue()); 3091 3092 // Do not setAlreadyVectorized if loop attributes have been defined 3093 // explicitly. 3094 return LoopVectorPreHeader; 3095 } 3096 3097 // Keep all loop hints from the original loop on the vector loop (we'll 3098 // replace the vectorizer-specific hints below). 3099 if (MDNode *LID = OrigLoop->getLoopID()) 3100 Lp->setLoopID(LID); 3101 3102 LoopVectorizeHints Hints(Lp, true, *ORE); 3103 Hints.setAlreadyVectorized(); 3104 3105 return LoopVectorPreHeader; 3106 } 3107 3108 // Fix up external users of the induction variable. At this point, we are 3109 // in LCSSA form, with all external PHIs that use the IV having one input value, 3110 // coming from the remainder loop. We need those PHIs to also have a correct 3111 // value for the IV when arriving directly from the middle block. 3112 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3113 const InductionDescriptor &II, 3114 Value *CountRoundDown, Value *EndValue, 3115 BasicBlock *MiddleBlock) { 3116 // There are two kinds of external IV usages - those that use the value 3117 // computed in the last iteration (the PHI) and those that use the penultimate 3118 // value (the value that feeds into the phi from the loop latch). 3119 // We allow both, but they, obviously, have different values. 3120 3121 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3122 3123 DenseMap<Value *, Value *> MissingVals; 3124 3125 // An external user of the last iteration's value should see the value that 3126 // the remainder loop uses to initialize its own IV. 3127 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3128 for (User *U : PostInc->users()) { 3129 Instruction *UI = cast<Instruction>(U); 3130 if (!OrigLoop->contains(UI)) { 3131 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3132 MissingVals[UI] = EndValue; 3133 } 3134 } 3135 3136 // An external user of the penultimate value need to see EndValue - Step. 3137 // The simplest way to get this is to recompute it from the constituent SCEVs, 3138 // that is Start + (Step * (CRD - 1)). 3139 for (User *U : OrigPhi->users()) { 3140 auto *UI = cast<Instruction>(U); 3141 if (!OrigLoop->contains(UI)) { 3142 const DataLayout &DL = 3143 OrigLoop->getHeader()->getModule()->getDataLayout(); 3144 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3145 3146 IRBuilder<> B(MiddleBlock->getTerminator()); 3147 Value *CountMinusOne = B.CreateSub( 3148 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3149 Value *CMO = 3150 !II.getStep()->getType()->isIntegerTy() 3151 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3152 II.getStep()->getType()) 3153 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3154 CMO->setName("cast.cmo"); 3155 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3156 Escape->setName("ind.escape"); 3157 MissingVals[UI] = Escape; 3158 } 3159 } 3160 3161 for (auto &I : MissingVals) { 3162 PHINode *PHI = cast<PHINode>(I.first); 3163 // One corner case we have to handle is two IVs "chasing" each-other, 3164 // that is %IV2 = phi [...], [ %IV1, %latch ] 3165 // In this case, if IV1 has an external use, we need to avoid adding both 3166 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3167 // don't already have an incoming value for the middle block. 3168 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3169 PHI->addIncoming(I.second, MiddleBlock); 3170 } 3171 } 3172 3173 namespace { 3174 3175 struct CSEDenseMapInfo { 3176 static bool canHandle(const Instruction *I) { 3177 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3178 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3179 } 3180 3181 static inline Instruction *getEmptyKey() { 3182 return DenseMapInfo<Instruction *>::getEmptyKey(); 3183 } 3184 3185 static inline Instruction *getTombstoneKey() { 3186 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3187 } 3188 3189 static unsigned getHashValue(const Instruction *I) { 3190 assert(canHandle(I) && "Unknown instruction!"); 3191 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3192 I->value_op_end())); 3193 } 3194 3195 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3196 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3197 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3198 return LHS == RHS; 3199 return LHS->isIdenticalTo(RHS); 3200 } 3201 }; 3202 3203 } // end anonymous namespace 3204 3205 ///Perform cse of induction variable instructions. 3206 static void cse(BasicBlock *BB) { 3207 // Perform simple cse. 3208 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3209 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3210 Instruction *In = &*I++; 3211 3212 if (!CSEDenseMapInfo::canHandle(In)) 3213 continue; 3214 3215 // Check if we can replace this instruction with any of the 3216 // visited instructions. 3217 if (Instruction *V = CSEMap.lookup(In)) { 3218 In->replaceAllUsesWith(V); 3219 In->eraseFromParent(); 3220 continue; 3221 } 3222 3223 CSEMap[In] = In; 3224 } 3225 } 3226 3227 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3228 unsigned VF, 3229 bool &NeedToScalarize) { 3230 Function *F = CI->getCalledFunction(); 3231 StringRef FnName = CI->getCalledFunction()->getName(); 3232 Type *ScalarRetTy = CI->getType(); 3233 SmallVector<Type *, 4> Tys, ScalarTys; 3234 for (auto &ArgOp : CI->arg_operands()) 3235 ScalarTys.push_back(ArgOp->getType()); 3236 3237 // Estimate cost of scalarized vector call. The source operands are assumed 3238 // to be vectors, so we need to extract individual elements from there, 3239 // execute VF scalar calls, and then gather the result into the vector return 3240 // value. 3241 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3242 if (VF == 1) 3243 return ScalarCallCost; 3244 3245 // Compute corresponding vector type for return value and arguments. 3246 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3247 for (Type *ScalarTy : ScalarTys) 3248 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3249 3250 // Compute costs of unpacking argument values for the scalar calls and 3251 // packing the return values to a vector. 3252 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3253 3254 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3255 3256 // If we can't emit a vector call for this function, then the currently found 3257 // cost is the cost we need to return. 3258 NeedToScalarize = true; 3259 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3260 return Cost; 3261 3262 // If the corresponding vector cost is cheaper, return its cost. 3263 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3264 if (VectorCallCost < Cost) { 3265 NeedToScalarize = false; 3266 return VectorCallCost; 3267 } 3268 return Cost; 3269 } 3270 3271 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3272 unsigned VF) { 3273 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3274 assert(ID && "Expected intrinsic call!"); 3275 3276 FastMathFlags FMF; 3277 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3278 FMF = FPMO->getFastMathFlags(); 3279 3280 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3281 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3282 } 3283 3284 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3285 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3286 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3287 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3288 } 3289 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3290 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3291 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3292 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3293 } 3294 3295 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3296 // For every instruction `I` in MinBWs, truncate the operands, create a 3297 // truncated version of `I` and reextend its result. InstCombine runs 3298 // later and will remove any ext/trunc pairs. 3299 SmallPtrSet<Value *, 4> Erased; 3300 for (const auto &KV : Cost->getMinimalBitwidths()) { 3301 // If the value wasn't vectorized, we must maintain the original scalar 3302 // type. The absence of the value from VectorLoopValueMap indicates that it 3303 // wasn't vectorized. 3304 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3305 continue; 3306 for (unsigned Part = 0; Part < UF; ++Part) { 3307 Value *I = getOrCreateVectorValue(KV.first, Part); 3308 if (Erased.find(I) != Erased.end() || I->use_empty() || 3309 !isa<Instruction>(I)) 3310 continue; 3311 Type *OriginalTy = I->getType(); 3312 Type *ScalarTruncatedTy = 3313 IntegerType::get(OriginalTy->getContext(), KV.second); 3314 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3315 OriginalTy->getVectorNumElements()); 3316 if (TruncatedTy == OriginalTy) 3317 continue; 3318 3319 IRBuilder<> B(cast<Instruction>(I)); 3320 auto ShrinkOperand = [&](Value *V) -> Value * { 3321 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3322 if (ZI->getSrcTy() == TruncatedTy) 3323 return ZI->getOperand(0); 3324 return B.CreateZExtOrTrunc(V, TruncatedTy); 3325 }; 3326 3327 // The actual instruction modification depends on the instruction type, 3328 // unfortunately. 3329 Value *NewI = nullptr; 3330 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3331 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3332 ShrinkOperand(BO->getOperand(1))); 3333 3334 // Any wrapping introduced by shrinking this operation shouldn't be 3335 // considered undefined behavior. So, we can't unconditionally copy 3336 // arithmetic wrapping flags to NewI. 3337 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3338 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3339 NewI = 3340 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3341 ShrinkOperand(CI->getOperand(1))); 3342 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3343 NewI = B.CreateSelect(SI->getCondition(), 3344 ShrinkOperand(SI->getTrueValue()), 3345 ShrinkOperand(SI->getFalseValue())); 3346 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3347 switch (CI->getOpcode()) { 3348 default: 3349 llvm_unreachable("Unhandled cast!"); 3350 case Instruction::Trunc: 3351 NewI = ShrinkOperand(CI->getOperand(0)); 3352 break; 3353 case Instruction::SExt: 3354 NewI = B.CreateSExtOrTrunc( 3355 CI->getOperand(0), 3356 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3357 break; 3358 case Instruction::ZExt: 3359 NewI = B.CreateZExtOrTrunc( 3360 CI->getOperand(0), 3361 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3362 break; 3363 } 3364 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3365 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3366 auto *O0 = B.CreateZExtOrTrunc( 3367 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3368 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3369 auto *O1 = B.CreateZExtOrTrunc( 3370 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3371 3372 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3373 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3374 // Don't do anything with the operands, just extend the result. 3375 continue; 3376 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3377 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3378 auto *O0 = B.CreateZExtOrTrunc( 3379 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3380 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3381 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3382 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3383 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3384 auto *O0 = B.CreateZExtOrTrunc( 3385 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3386 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3387 } else { 3388 // If we don't know what to do, be conservative and don't do anything. 3389 continue; 3390 } 3391 3392 // Lastly, extend the result. 3393 NewI->takeName(cast<Instruction>(I)); 3394 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3395 I->replaceAllUsesWith(Res); 3396 cast<Instruction>(I)->eraseFromParent(); 3397 Erased.insert(I); 3398 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3399 } 3400 } 3401 3402 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3403 for (const auto &KV : Cost->getMinimalBitwidths()) { 3404 // If the value wasn't vectorized, we must maintain the original scalar 3405 // type. The absence of the value from VectorLoopValueMap indicates that it 3406 // wasn't vectorized. 3407 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3408 continue; 3409 for (unsigned Part = 0; Part < UF; ++Part) { 3410 Value *I = getOrCreateVectorValue(KV.first, Part); 3411 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3412 if (Inst && Inst->use_empty()) { 3413 Value *NewI = Inst->getOperand(0); 3414 Inst->eraseFromParent(); 3415 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3416 } 3417 } 3418 } 3419 } 3420 3421 void InnerLoopVectorizer::fixVectorizedLoop() { 3422 // Insert truncates and extends for any truncated instructions as hints to 3423 // InstCombine. 3424 if (VF > 1) 3425 truncateToMinimalBitwidths(); 3426 3427 // Fix widened non-induction PHIs by setting up the PHI operands. 3428 if (OrigPHIsToFix.size()) { 3429 assert(EnableVPlanNativePath && 3430 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3431 fixNonInductionPHIs(); 3432 } 3433 3434 // At this point every instruction in the original loop is widened to a 3435 // vector form. Now we need to fix the recurrences in the loop. These PHI 3436 // nodes are currently empty because we did not want to introduce cycles. 3437 // This is the second stage of vectorizing recurrences. 3438 fixCrossIterationPHIs(); 3439 3440 // Update the dominator tree. 3441 // 3442 // FIXME: After creating the structure of the new loop, the dominator tree is 3443 // no longer up-to-date, and it remains that way until we update it 3444 // here. An out-of-date dominator tree is problematic for SCEV, 3445 // because SCEVExpander uses it to guide code generation. The 3446 // vectorizer use SCEVExpanders in several places. Instead, we should 3447 // keep the dominator tree up-to-date as we go. 3448 updateAnalysis(); 3449 3450 // Fix-up external users of the induction variables. 3451 for (auto &Entry : *Legal->getInductionVars()) 3452 fixupIVUsers(Entry.first, Entry.second, 3453 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3454 IVEndValues[Entry.first], LoopMiddleBlock); 3455 3456 fixLCSSAPHIs(); 3457 for (Instruction *PI : PredicatedInstructions) 3458 sinkScalarOperands(&*PI); 3459 3460 // Remove redundant induction instructions. 3461 cse(LoopVectorBody); 3462 } 3463 3464 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3465 // In order to support recurrences we need to be able to vectorize Phi nodes. 3466 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3467 // stage #2: We now need to fix the recurrences by adding incoming edges to 3468 // the currently empty PHI nodes. At this point every instruction in the 3469 // original loop is widened to a vector form so we can use them to construct 3470 // the incoming edges. 3471 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3472 // Handle first-order recurrences and reductions that need to be fixed. 3473 if (Legal->isFirstOrderRecurrence(&Phi)) 3474 fixFirstOrderRecurrence(&Phi); 3475 else if (Legal->isReductionVariable(&Phi)) 3476 fixReduction(&Phi); 3477 } 3478 } 3479 3480 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3481 // This is the second phase of vectorizing first-order recurrences. An 3482 // overview of the transformation is described below. Suppose we have the 3483 // following loop. 3484 // 3485 // for (int i = 0; i < n; ++i) 3486 // b[i] = a[i] - a[i - 1]; 3487 // 3488 // There is a first-order recurrence on "a". For this loop, the shorthand 3489 // scalar IR looks like: 3490 // 3491 // scalar.ph: 3492 // s_init = a[-1] 3493 // br scalar.body 3494 // 3495 // scalar.body: 3496 // i = phi [0, scalar.ph], [i+1, scalar.body] 3497 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3498 // s2 = a[i] 3499 // b[i] = s2 - s1 3500 // br cond, scalar.body, ... 3501 // 3502 // In this example, s1 is a recurrence because it's value depends on the 3503 // previous iteration. In the first phase of vectorization, we created a 3504 // temporary value for s1. We now complete the vectorization and produce the 3505 // shorthand vector IR shown below (for VF = 4, UF = 1). 3506 // 3507 // vector.ph: 3508 // v_init = vector(..., ..., ..., a[-1]) 3509 // br vector.body 3510 // 3511 // vector.body 3512 // i = phi [0, vector.ph], [i+4, vector.body] 3513 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3514 // v2 = a[i, i+1, i+2, i+3]; 3515 // v3 = vector(v1(3), v2(0, 1, 2)) 3516 // b[i, i+1, i+2, i+3] = v2 - v3 3517 // br cond, vector.body, middle.block 3518 // 3519 // middle.block: 3520 // x = v2(3) 3521 // br scalar.ph 3522 // 3523 // scalar.ph: 3524 // s_init = phi [x, middle.block], [a[-1], otherwise] 3525 // br scalar.body 3526 // 3527 // After execution completes the vector loop, we extract the next value of 3528 // the recurrence (x) to use as the initial value in the scalar loop. 3529 3530 // Get the original loop preheader and single loop latch. 3531 auto *Preheader = OrigLoop->getLoopPreheader(); 3532 auto *Latch = OrigLoop->getLoopLatch(); 3533 3534 // Get the initial and previous values of the scalar recurrence. 3535 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3536 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3537 3538 // Create a vector from the initial value. 3539 auto *VectorInit = ScalarInit; 3540 if (VF > 1) { 3541 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3542 VectorInit = Builder.CreateInsertElement( 3543 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3544 Builder.getInt32(VF - 1), "vector.recur.init"); 3545 } 3546 3547 // We constructed a temporary phi node in the first phase of vectorization. 3548 // This phi node will eventually be deleted. 3549 Builder.SetInsertPoint( 3550 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3551 3552 // Create a phi node for the new recurrence. The current value will either be 3553 // the initial value inserted into a vector or loop-varying vector value. 3554 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3555 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3556 3557 // Get the vectorized previous value of the last part UF - 1. It appears last 3558 // among all unrolled iterations, due to the order of their construction. 3559 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3560 3561 // Find and set the insertion point after the previous value if it is an 3562 // instruction. 3563 BasicBlock::iterator InsertPt; 3564 // Note that the previous value may have been constant-folded so it is not 3565 // guaranteed to be an instruction in the vector loop. 3566 // FIXME: Loop invariant values do not form recurrences. We should deal with 3567 // them earlier. 3568 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3569 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3570 else { 3571 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3572 if (isa<PHINode>(PreviousLastPart)) 3573 // If the previous value is a phi node, we should insert after all the phi 3574 // nodes in the block containing the PHI to avoid breaking basic block 3575 // verification. Note that the basic block may be different to 3576 // LoopVectorBody, in case we predicate the loop. 3577 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3578 else 3579 InsertPt = ++PreviousInst->getIterator(); 3580 } 3581 Builder.SetInsertPoint(&*InsertPt); 3582 3583 // We will construct a vector for the recurrence by combining the values for 3584 // the current and previous iterations. This is the required shuffle mask. 3585 SmallVector<Constant *, 8> ShuffleMask(VF); 3586 ShuffleMask[0] = Builder.getInt32(VF - 1); 3587 for (unsigned I = 1; I < VF; ++I) 3588 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3589 3590 // The vector from which to take the initial value for the current iteration 3591 // (actual or unrolled). Initially, this is the vector phi node. 3592 Value *Incoming = VecPhi; 3593 3594 // Shuffle the current and previous vector and update the vector parts. 3595 for (unsigned Part = 0; Part < UF; ++Part) { 3596 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3597 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3598 auto *Shuffle = 3599 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3600 ConstantVector::get(ShuffleMask)) 3601 : Incoming; 3602 PhiPart->replaceAllUsesWith(Shuffle); 3603 cast<Instruction>(PhiPart)->eraseFromParent(); 3604 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3605 Incoming = PreviousPart; 3606 } 3607 3608 // Fix the latch value of the new recurrence in the vector loop. 3609 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3610 3611 // Extract the last vector element in the middle block. This will be the 3612 // initial value for the recurrence when jumping to the scalar loop. 3613 auto *ExtractForScalar = Incoming; 3614 if (VF > 1) { 3615 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3616 ExtractForScalar = Builder.CreateExtractElement( 3617 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3618 } 3619 // Extract the second last element in the middle block if the 3620 // Phi is used outside the loop. We need to extract the phi itself 3621 // and not the last element (the phi update in the current iteration). This 3622 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3623 // when the scalar loop is not run at all. 3624 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3625 if (VF > 1) 3626 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3627 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3628 // When loop is unrolled without vectorizing, initialize 3629 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3630 // `Incoming`. This is analogous to the vectorized case above: extracting the 3631 // second last element when VF > 1. 3632 else if (UF > 1) 3633 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3634 3635 // Fix the initial value of the original recurrence in the scalar loop. 3636 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3637 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3638 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3639 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3640 Start->addIncoming(Incoming, BB); 3641 } 3642 3643 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3644 Phi->setName("scalar.recur"); 3645 3646 // Finally, fix users of the recurrence outside the loop. The users will need 3647 // either the last value of the scalar recurrence or the last value of the 3648 // vector recurrence we extracted in the middle block. Since the loop is in 3649 // LCSSA form, we just need to find all the phi nodes for the original scalar 3650 // recurrence in the exit block, and then add an edge for the middle block. 3651 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3652 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3653 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3654 } 3655 } 3656 } 3657 3658 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3659 Constant *Zero = Builder.getInt32(0); 3660 3661 // Get it's reduction variable descriptor. 3662 assert(Legal->isReductionVariable(Phi) && 3663 "Unable to find the reduction variable"); 3664 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3665 3666 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3667 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3668 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3669 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3670 RdxDesc.getMinMaxRecurrenceKind(); 3671 setDebugLocFromInst(Builder, ReductionStartValue); 3672 3673 // We need to generate a reduction vector from the incoming scalar. 3674 // To do so, we need to generate the 'identity' vector and override 3675 // one of the elements with the incoming scalar reduction. We need 3676 // to do it in the vector-loop preheader. 3677 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3678 3679 // This is the vector-clone of the value that leaves the loop. 3680 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3681 3682 // Find the reduction identity variable. Zero for addition, or, xor, 3683 // one for multiplication, -1 for And. 3684 Value *Identity; 3685 Value *VectorStart; 3686 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3687 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3688 // MinMax reduction have the start value as their identify. 3689 if (VF == 1) { 3690 VectorStart = Identity = ReductionStartValue; 3691 } else { 3692 VectorStart = Identity = 3693 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3694 } 3695 } else { 3696 // Handle other reduction kinds: 3697 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3698 RK, VecTy->getScalarType()); 3699 if (VF == 1) { 3700 Identity = Iden; 3701 // This vector is the Identity vector where the first element is the 3702 // incoming scalar reduction. 3703 VectorStart = ReductionStartValue; 3704 } else { 3705 Identity = ConstantVector::getSplat(VF, Iden); 3706 3707 // This vector is the Identity vector where the first element is the 3708 // incoming scalar reduction. 3709 VectorStart = 3710 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3711 } 3712 } 3713 3714 // Fix the vector-loop phi. 3715 3716 // Reductions do not have to start at zero. They can start with 3717 // any loop invariant values. 3718 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3719 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3720 for (unsigned Part = 0; Part < UF; ++Part) { 3721 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3722 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3723 // Make sure to add the reduction stat value only to the 3724 // first unroll part. 3725 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3726 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3727 cast<PHINode>(VecRdxPhi) 3728 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3729 } 3730 3731 // Before each round, move the insertion point right between 3732 // the PHIs and the values we are going to write. 3733 // This allows us to write both PHINodes and the extractelement 3734 // instructions. 3735 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3736 3737 setDebugLocFromInst(Builder, LoopExitInst); 3738 3739 // If tail is folded by masking, the vector value to leave the loop should be 3740 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3741 // instead of the former. 3742 if (Cost->foldTailByMasking()) { 3743 for (unsigned Part = 0; Part < UF; ++Part) { 3744 Value *VecLoopExitInst = 3745 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3746 Value *Sel = nullptr; 3747 for (User *U : VecLoopExitInst->users()) { 3748 if (isa<SelectInst>(U)) { 3749 assert(!Sel && "Reduction exit feeding two selects"); 3750 Sel = U; 3751 } else 3752 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3753 } 3754 assert(Sel && "Reduction exit feeds no select"); 3755 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3756 } 3757 } 3758 3759 // If the vector reduction can be performed in a smaller type, we truncate 3760 // then extend the loop exit value to enable InstCombine to evaluate the 3761 // entire expression in the smaller type. 3762 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3763 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3764 Builder.SetInsertPoint( 3765 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3766 VectorParts RdxParts(UF); 3767 for (unsigned Part = 0; Part < UF; ++Part) { 3768 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3769 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3770 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3771 : Builder.CreateZExt(Trunc, VecTy); 3772 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3773 UI != RdxParts[Part]->user_end();) 3774 if (*UI != Trunc) { 3775 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3776 RdxParts[Part] = Extnd; 3777 } else { 3778 ++UI; 3779 } 3780 } 3781 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3782 for (unsigned Part = 0; Part < UF; ++Part) { 3783 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3784 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3785 } 3786 } 3787 3788 // Reduce all of the unrolled parts into a single vector. 3789 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3790 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3791 3792 // The middle block terminator has already been assigned a DebugLoc here (the 3793 // OrigLoop's single latch terminator). We want the whole middle block to 3794 // appear to execute on this line because: (a) it is all compiler generated, 3795 // (b) these instructions are always executed after evaluating the latch 3796 // conditional branch, and (c) other passes may add new predecessors which 3797 // terminate on this line. This is the easiest way to ensure we don't 3798 // accidentally cause an extra step back into the loop while debugging. 3799 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3800 for (unsigned Part = 1; Part < UF; ++Part) { 3801 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3802 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3803 // Floating point operations had to be 'fast' to enable the reduction. 3804 ReducedPartRdx = addFastMathFlag( 3805 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3806 ReducedPartRdx, "bin.rdx"), 3807 RdxDesc.getFastMathFlags()); 3808 else 3809 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3810 RdxPart); 3811 } 3812 3813 if (VF > 1) { 3814 bool NoNaN = Legal->hasFunNoNaNAttr(); 3815 ReducedPartRdx = 3816 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3817 // If the reduction can be performed in a smaller type, we need to extend 3818 // the reduction to the wider type before we branch to the original loop. 3819 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3820 ReducedPartRdx = 3821 RdxDesc.isSigned() 3822 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3823 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3824 } 3825 3826 // Create a phi node that merges control-flow from the backedge-taken check 3827 // block and the middle block. 3828 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3829 LoopScalarPreHeader->getTerminator()); 3830 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3831 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3832 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3833 3834 // Now, we need to fix the users of the reduction variable 3835 // inside and outside of the scalar remainder loop. 3836 // We know that the loop is in LCSSA form. We need to update the 3837 // PHI nodes in the exit blocks. 3838 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3839 // All PHINodes need to have a single entry edge, or two if 3840 // we already fixed them. 3841 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3842 3843 // We found a reduction value exit-PHI. Update it with the 3844 // incoming bypass edge. 3845 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3846 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3847 } // end of the LCSSA phi scan. 3848 3849 // Fix the scalar loop reduction variable with the incoming reduction sum 3850 // from the vector body and from the backedge value. 3851 int IncomingEdgeBlockIdx = 3852 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3853 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3854 // Pick the other block. 3855 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3856 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3857 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3858 } 3859 3860 void InnerLoopVectorizer::fixLCSSAPHIs() { 3861 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3862 if (LCSSAPhi.getNumIncomingValues() == 1) { 3863 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3864 // Non-instruction incoming values will have only one value. 3865 unsigned LastLane = 0; 3866 if (isa<Instruction>(IncomingValue)) 3867 LastLane = Cost->isUniformAfterVectorization( 3868 cast<Instruction>(IncomingValue), VF) 3869 ? 0 3870 : VF - 1; 3871 // Can be a loop invariant incoming value or the last scalar value to be 3872 // extracted from the vectorized loop. 3873 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3874 Value *lastIncomingValue = 3875 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3876 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3877 } 3878 } 3879 } 3880 3881 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3882 // The basic block and loop containing the predicated instruction. 3883 auto *PredBB = PredInst->getParent(); 3884 auto *VectorLoop = LI->getLoopFor(PredBB); 3885 3886 // Initialize a worklist with the operands of the predicated instruction. 3887 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3888 3889 // Holds instructions that we need to analyze again. An instruction may be 3890 // reanalyzed if we don't yet know if we can sink it or not. 3891 SmallVector<Instruction *, 8> InstsToReanalyze; 3892 3893 // Returns true if a given use occurs in the predicated block. Phi nodes use 3894 // their operands in their corresponding predecessor blocks. 3895 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3896 auto *I = cast<Instruction>(U.getUser()); 3897 BasicBlock *BB = I->getParent(); 3898 if (auto *Phi = dyn_cast<PHINode>(I)) 3899 BB = Phi->getIncomingBlock( 3900 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3901 return BB == PredBB; 3902 }; 3903 3904 // Iteratively sink the scalarized operands of the predicated instruction 3905 // into the block we created for it. When an instruction is sunk, it's 3906 // operands are then added to the worklist. The algorithm ends after one pass 3907 // through the worklist doesn't sink a single instruction. 3908 bool Changed; 3909 do { 3910 // Add the instructions that need to be reanalyzed to the worklist, and 3911 // reset the changed indicator. 3912 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3913 InstsToReanalyze.clear(); 3914 Changed = false; 3915 3916 while (!Worklist.empty()) { 3917 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3918 3919 // We can't sink an instruction if it is a phi node, is already in the 3920 // predicated block, is not in the loop, or may have side effects. 3921 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3922 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3923 continue; 3924 3925 // It's legal to sink the instruction if all its uses occur in the 3926 // predicated block. Otherwise, there's nothing to do yet, and we may 3927 // need to reanalyze the instruction. 3928 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3929 InstsToReanalyze.push_back(I); 3930 continue; 3931 } 3932 3933 // Move the instruction to the beginning of the predicated block, and add 3934 // it's operands to the worklist. 3935 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3936 Worklist.insert(I->op_begin(), I->op_end()); 3937 3938 // The sinking may have enabled other instructions to be sunk, so we will 3939 // need to iterate. 3940 Changed = true; 3941 } 3942 } while (Changed); 3943 } 3944 3945 void InnerLoopVectorizer::fixNonInductionPHIs() { 3946 for (PHINode *OrigPhi : OrigPHIsToFix) { 3947 PHINode *NewPhi = 3948 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3949 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3950 3951 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3952 predecessors(OrigPhi->getParent())); 3953 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3954 predecessors(NewPhi->getParent())); 3955 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3956 "Scalar and Vector BB should have the same number of predecessors"); 3957 3958 // The insertion point in Builder may be invalidated by the time we get 3959 // here. Force the Builder insertion point to something valid so that we do 3960 // not run into issues during insertion point restore in 3961 // getOrCreateVectorValue calls below. 3962 Builder.SetInsertPoint(NewPhi); 3963 3964 // The predecessor order is preserved and we can rely on mapping between 3965 // scalar and vector block predecessors. 3966 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3967 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3968 3969 // When looking up the new scalar/vector values to fix up, use incoming 3970 // values from original phi. 3971 Value *ScIncV = 3972 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3973 3974 // Scalar incoming value may need a broadcast 3975 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3976 NewPhi->addIncoming(NewIncV, NewPredBB); 3977 } 3978 } 3979 } 3980 3981 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF, 3982 unsigned VF, bool IsPtrLoopInvariant, 3983 SmallBitVector &IsIndexLoopInvariant) { 3984 // Construct a vector GEP by widening the operands of the scalar GEP as 3985 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3986 // results in a vector of pointers when at least one operand of the GEP 3987 // is vector-typed. Thus, to keep the representation compact, we only use 3988 // vector-typed operands for loop-varying values. 3989 3990 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 3991 // If we are vectorizing, but the GEP has only loop-invariant operands, 3992 // the GEP we build (by only using vector-typed operands for 3993 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3994 // produce a vector of pointers, we need to either arbitrarily pick an 3995 // operand to broadcast, or broadcast a clone of the original GEP. 3996 // Here, we broadcast a clone of the original. 3997 // 3998 // TODO: If at some point we decide to scalarize instructions having 3999 // loop-invariant operands, this special case will no longer be 4000 // required. We would add the scalarization decision to 4001 // collectLoopScalars() and teach getVectorValue() to broadcast 4002 // the lane-zero scalar value. 4003 auto *Clone = Builder.Insert(GEP->clone()); 4004 for (unsigned Part = 0; Part < UF; ++Part) { 4005 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4006 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4007 addMetadata(EntryPart, GEP); 4008 } 4009 } else { 4010 // If the GEP has at least one loop-varying operand, we are sure to 4011 // produce a vector of pointers. But if we are only unrolling, we want 4012 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4013 // produce with the code below will be scalar (if VF == 1) or vector 4014 // (otherwise). Note that for the unroll-only case, we still maintain 4015 // values in the vector mapping with initVector, as we do for other 4016 // instructions. 4017 for (unsigned Part = 0; Part < UF; ++Part) { 4018 // The pointer operand of the new GEP. If it's loop-invariant, we 4019 // won't broadcast it. 4020 auto *Ptr = IsPtrLoopInvariant 4021 ? GEP->getPointerOperand() 4022 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4023 4024 // Collect all the indices for the new GEP. If any index is 4025 // loop-invariant, we won't broadcast it. 4026 SmallVector<Value *, 4> Indices; 4027 for (auto Index : enumerate(GEP->indices())) { 4028 Value *User = Index.value().get(); 4029 if (IsIndexLoopInvariant[Index.index()]) 4030 Indices.push_back(User); 4031 else 4032 Indices.push_back(getOrCreateVectorValue(User, Part)); 4033 } 4034 4035 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4036 // but it should be a vector, otherwise. 4037 auto *NewGEP = 4038 GEP->isInBounds() 4039 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4040 Indices) 4041 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4042 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4043 "NewGEP is not a pointer vector"); 4044 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4045 addMetadata(NewGEP, GEP); 4046 } 4047 } 4048 } 4049 4050 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4051 unsigned VF) { 4052 PHINode *P = cast<PHINode>(PN); 4053 if (EnableVPlanNativePath) { 4054 // Currently we enter here in the VPlan-native path for non-induction 4055 // PHIs where all control flow is uniform. We simply widen these PHIs. 4056 // Create a vector phi with no operands - the vector phi operands will be 4057 // set at the end of vector code generation. 4058 Type *VecTy = 4059 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4060 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4061 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4062 OrigPHIsToFix.push_back(P); 4063 4064 return; 4065 } 4066 4067 assert(PN->getParent() == OrigLoop->getHeader() && 4068 "Non-header phis should have been handled elsewhere"); 4069 4070 // In order to support recurrences we need to be able to vectorize Phi nodes. 4071 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4072 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4073 // this value when we vectorize all of the instructions that use the PHI. 4074 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4075 for (unsigned Part = 0; Part < UF; ++Part) { 4076 // This is phase one of vectorizing PHIs. 4077 Type *VecTy = 4078 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4079 Value *EntryPart = PHINode::Create( 4080 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4081 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4082 } 4083 return; 4084 } 4085 4086 setDebugLocFromInst(Builder, P); 4087 4088 // This PHINode must be an induction variable. 4089 // Make sure that we know about it. 4090 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4091 4092 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4093 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4094 4095 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4096 // which can be found from the original scalar operations. 4097 switch (II.getKind()) { 4098 case InductionDescriptor::IK_NoInduction: 4099 llvm_unreachable("Unknown induction"); 4100 case InductionDescriptor::IK_IntInduction: 4101 case InductionDescriptor::IK_FpInduction: 4102 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4103 case InductionDescriptor::IK_PtrInduction: { 4104 // Handle the pointer induction variable case. 4105 assert(P->getType()->isPointerTy() && "Unexpected type."); 4106 // This is the normalized GEP that starts counting at zero. 4107 Value *PtrInd = Induction; 4108 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4109 // Determine the number of scalars we need to generate for each unroll 4110 // iteration. If the instruction is uniform, we only need to generate the 4111 // first lane. Otherwise, we generate all VF values. 4112 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4113 // These are the scalar results. Notice that we don't generate vector GEPs 4114 // because scalar GEPs result in better code. 4115 for (unsigned Part = 0; Part < UF; ++Part) { 4116 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4117 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4118 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4119 Value *SclrGep = 4120 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4121 SclrGep->setName("next.gep"); 4122 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4123 } 4124 } 4125 return; 4126 } 4127 } 4128 } 4129 4130 /// A helper function for checking whether an integer division-related 4131 /// instruction may divide by zero (in which case it must be predicated if 4132 /// executed conditionally in the scalar code). 4133 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4134 /// Non-zero divisors that are non compile-time constants will not be 4135 /// converted into multiplication, so we will still end up scalarizing 4136 /// the division, but can do so w/o predication. 4137 static bool mayDivideByZero(Instruction &I) { 4138 assert((I.getOpcode() == Instruction::UDiv || 4139 I.getOpcode() == Instruction::SDiv || 4140 I.getOpcode() == Instruction::URem || 4141 I.getOpcode() == Instruction::SRem) && 4142 "Unexpected instruction"); 4143 Value *Divisor = I.getOperand(1); 4144 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4145 return !CInt || CInt->isZero(); 4146 } 4147 4148 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4149 switch (I.getOpcode()) { 4150 case Instruction::Br: 4151 case Instruction::PHI: 4152 case Instruction::GetElementPtr: 4153 llvm_unreachable("This instruction is handled by a different recipe."); 4154 case Instruction::UDiv: 4155 case Instruction::SDiv: 4156 case Instruction::SRem: 4157 case Instruction::URem: 4158 case Instruction::Add: 4159 case Instruction::FAdd: 4160 case Instruction::Sub: 4161 case Instruction::FSub: 4162 case Instruction::FNeg: 4163 case Instruction::Mul: 4164 case Instruction::FMul: 4165 case Instruction::FDiv: 4166 case Instruction::FRem: 4167 case Instruction::Shl: 4168 case Instruction::LShr: 4169 case Instruction::AShr: 4170 case Instruction::And: 4171 case Instruction::Or: 4172 case Instruction::Xor: { 4173 // Just widen unops and binops. 4174 setDebugLocFromInst(Builder, &I); 4175 4176 for (unsigned Part = 0; Part < UF; ++Part) { 4177 SmallVector<Value *, 2> Ops; 4178 for (Value *Op : I.operands()) 4179 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4180 4181 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4182 4183 if (auto *VecOp = dyn_cast<Instruction>(V)) 4184 VecOp->copyIRFlags(&I); 4185 4186 // Use this vector value for all users of the original instruction. 4187 VectorLoopValueMap.setVectorValue(&I, Part, V); 4188 addMetadata(V, &I); 4189 } 4190 4191 break; 4192 } 4193 case Instruction::Select: { 4194 // Widen selects. 4195 // If the selector is loop invariant we can create a select 4196 // instruction with a scalar condition. Otherwise, use vector-select. 4197 auto *SE = PSE.getSE(); 4198 bool InvariantCond = 4199 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4200 setDebugLocFromInst(Builder, &I); 4201 4202 // The condition can be loop invariant but still defined inside the 4203 // loop. This means that we can't just use the original 'cond' value. 4204 // We have to take the 'vectorized' value and pick the first lane. 4205 // Instcombine will make this a no-op. 4206 4207 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4208 4209 for (unsigned Part = 0; Part < UF; ++Part) { 4210 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4211 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4212 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4213 Value *Sel = 4214 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4215 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4216 addMetadata(Sel, &I); 4217 } 4218 4219 break; 4220 } 4221 4222 case Instruction::ICmp: 4223 case Instruction::FCmp: { 4224 // Widen compares. Generate vector compares. 4225 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4226 auto *Cmp = cast<CmpInst>(&I); 4227 setDebugLocFromInst(Builder, Cmp); 4228 for (unsigned Part = 0; Part < UF; ++Part) { 4229 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4230 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4231 Value *C = nullptr; 4232 if (FCmp) { 4233 // Propagate fast math flags. 4234 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4235 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4236 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4237 } else { 4238 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4239 } 4240 VectorLoopValueMap.setVectorValue(&I, Part, C); 4241 addMetadata(C, &I); 4242 } 4243 4244 break; 4245 } 4246 4247 case Instruction::ZExt: 4248 case Instruction::SExt: 4249 case Instruction::FPToUI: 4250 case Instruction::FPToSI: 4251 case Instruction::FPExt: 4252 case Instruction::PtrToInt: 4253 case Instruction::IntToPtr: 4254 case Instruction::SIToFP: 4255 case Instruction::UIToFP: 4256 case Instruction::Trunc: 4257 case Instruction::FPTrunc: 4258 case Instruction::BitCast: { 4259 auto *CI = cast<CastInst>(&I); 4260 setDebugLocFromInst(Builder, CI); 4261 4262 /// Vectorize casts. 4263 Type *DestTy = 4264 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4265 4266 for (unsigned Part = 0; Part < UF; ++Part) { 4267 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4268 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4269 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4270 addMetadata(Cast, &I); 4271 } 4272 break; 4273 } 4274 4275 case Instruction::Call: { 4276 // Ignore dbg intrinsics. 4277 if (isa<DbgInfoIntrinsic>(I)) 4278 break; 4279 setDebugLocFromInst(Builder, &I); 4280 4281 Module *M = I.getParent()->getParent()->getParent(); 4282 auto *CI = cast<CallInst>(&I); 4283 4284 StringRef FnName = CI->getCalledFunction()->getName(); 4285 Function *F = CI->getCalledFunction(); 4286 Type *RetTy = ToVectorTy(CI->getType(), VF); 4287 SmallVector<Type *, 4> Tys; 4288 for (Value *ArgOperand : CI->arg_operands()) 4289 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4290 4291 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4292 4293 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4294 // version of the instruction. 4295 // Is it beneficial to perform intrinsic call compared to lib call? 4296 bool NeedToScalarize; 4297 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4298 bool UseVectorIntrinsic = 4299 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4300 assert((UseVectorIntrinsic || !NeedToScalarize) && 4301 "Instruction should be scalarized elsewhere."); 4302 4303 for (unsigned Part = 0; Part < UF; ++Part) { 4304 SmallVector<Value *, 4> Args; 4305 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4306 Value *Arg = CI->getArgOperand(i); 4307 // Some intrinsics have a scalar argument - don't replace it with a 4308 // vector. 4309 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4310 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4311 Args.push_back(Arg); 4312 } 4313 4314 Function *VectorF; 4315 if (UseVectorIntrinsic) { 4316 // Use vector version of the intrinsic. 4317 Type *TysForDecl[] = {CI->getType()}; 4318 if (VF > 1) 4319 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4320 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4321 } else { 4322 // Use vector version of the library call. 4323 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4324 assert(!VFnName.empty() && "Vector function name is empty."); 4325 VectorF = M->getFunction(VFnName); 4326 if (!VectorF) { 4327 // Generate a declaration 4328 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4329 VectorF = 4330 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4331 VectorF->copyAttributesFrom(F); 4332 } 4333 } 4334 assert(VectorF && "Can't create vector function."); 4335 4336 SmallVector<OperandBundleDef, 1> OpBundles; 4337 CI->getOperandBundlesAsDefs(OpBundles); 4338 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4339 4340 if (isa<FPMathOperator>(V)) 4341 V->copyFastMathFlags(CI); 4342 4343 VectorLoopValueMap.setVectorValue(&I, Part, V); 4344 addMetadata(V, &I); 4345 } 4346 4347 break; 4348 } 4349 4350 default: 4351 // This instruction is not vectorized by simple widening. 4352 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4353 llvm_unreachable("Unhandled instruction!"); 4354 } // end of switch. 4355 } 4356 4357 void InnerLoopVectorizer::updateAnalysis() { 4358 // Forget the original basic block. 4359 PSE.getSE()->forgetLoop(OrigLoop); 4360 4361 // DT is not kept up-to-date for outer loop vectorization 4362 if (EnableVPlanNativePath) 4363 return; 4364 4365 // Update the dominator tree information. 4366 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4367 "Entry does not dominate exit."); 4368 4369 DT->addNewBlock(LoopMiddleBlock, 4370 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4371 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4372 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4373 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4374 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4375 } 4376 4377 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4378 // We should not collect Scalars more than once per VF. Right now, this 4379 // function is called from collectUniformsAndScalars(), which already does 4380 // this check. Collecting Scalars for VF=1 does not make any sense. 4381 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4382 "This function should not be visited twice for the same VF"); 4383 4384 SmallSetVector<Instruction *, 8> Worklist; 4385 4386 // These sets are used to seed the analysis with pointers used by memory 4387 // accesses that will remain scalar. 4388 SmallSetVector<Instruction *, 8> ScalarPtrs; 4389 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4390 4391 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4392 // The pointer operands of loads and stores will be scalar as long as the 4393 // memory access is not a gather or scatter operation. The value operand of a 4394 // store will remain scalar if the store is scalarized. 4395 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4396 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4397 assert(WideningDecision != CM_Unknown && 4398 "Widening decision should be ready at this moment"); 4399 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4400 if (Ptr == Store->getValueOperand()) 4401 return WideningDecision == CM_Scalarize; 4402 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4403 "Ptr is neither a value or pointer operand"); 4404 return WideningDecision != CM_GatherScatter; 4405 }; 4406 4407 // A helper that returns true if the given value is a bitcast or 4408 // getelementptr instruction contained in the loop. 4409 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4410 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4411 isa<GetElementPtrInst>(V)) && 4412 !TheLoop->isLoopInvariant(V); 4413 }; 4414 4415 // A helper that evaluates a memory access's use of a pointer. If the use 4416 // will be a scalar use, and the pointer is only used by memory accesses, we 4417 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4418 // PossibleNonScalarPtrs. 4419 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4420 // We only care about bitcast and getelementptr instructions contained in 4421 // the loop. 4422 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4423 return; 4424 4425 // If the pointer has already been identified as scalar (e.g., if it was 4426 // also identified as uniform), there's nothing to do. 4427 auto *I = cast<Instruction>(Ptr); 4428 if (Worklist.count(I)) 4429 return; 4430 4431 // If the use of the pointer will be a scalar use, and all users of the 4432 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4433 // place the pointer in PossibleNonScalarPtrs. 4434 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4435 return isa<LoadInst>(U) || isa<StoreInst>(U); 4436 })) 4437 ScalarPtrs.insert(I); 4438 else 4439 PossibleNonScalarPtrs.insert(I); 4440 }; 4441 4442 // We seed the scalars analysis with three classes of instructions: (1) 4443 // instructions marked uniform-after-vectorization, (2) bitcast and 4444 // getelementptr instructions used by memory accesses requiring a scalar use, 4445 // and (3) pointer induction variables and their update instructions (we 4446 // currently only scalarize these). 4447 // 4448 // (1) Add to the worklist all instructions that have been identified as 4449 // uniform-after-vectorization. 4450 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4451 4452 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4453 // memory accesses requiring a scalar use. The pointer operands of loads and 4454 // stores will be scalar as long as the memory accesses is not a gather or 4455 // scatter operation. The value operand of a store will remain scalar if the 4456 // store is scalarized. 4457 for (auto *BB : TheLoop->blocks()) 4458 for (auto &I : *BB) { 4459 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4460 evaluatePtrUse(Load, Load->getPointerOperand()); 4461 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4462 evaluatePtrUse(Store, Store->getPointerOperand()); 4463 evaluatePtrUse(Store, Store->getValueOperand()); 4464 } 4465 } 4466 for (auto *I : ScalarPtrs) 4467 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4468 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4469 Worklist.insert(I); 4470 } 4471 4472 // (3) Add to the worklist all pointer induction variables and their update 4473 // instructions. 4474 // 4475 // TODO: Once we are able to vectorize pointer induction variables we should 4476 // no longer insert them into the worklist here. 4477 auto *Latch = TheLoop->getLoopLatch(); 4478 for (auto &Induction : *Legal->getInductionVars()) { 4479 auto *Ind = Induction.first; 4480 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4481 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4482 continue; 4483 Worklist.insert(Ind); 4484 Worklist.insert(IndUpdate); 4485 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4486 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4487 << "\n"); 4488 } 4489 4490 // Insert the forced scalars. 4491 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4492 // induction variable when the PHI user is scalarized. 4493 auto ForcedScalar = ForcedScalars.find(VF); 4494 if (ForcedScalar != ForcedScalars.end()) 4495 for (auto *I : ForcedScalar->second) 4496 Worklist.insert(I); 4497 4498 // Expand the worklist by looking through any bitcasts and getelementptr 4499 // instructions we've already identified as scalar. This is similar to the 4500 // expansion step in collectLoopUniforms(); however, here we're only 4501 // expanding to include additional bitcasts and getelementptr instructions. 4502 unsigned Idx = 0; 4503 while (Idx != Worklist.size()) { 4504 Instruction *Dst = Worklist[Idx++]; 4505 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4506 continue; 4507 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4508 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4509 auto *J = cast<Instruction>(U); 4510 return !TheLoop->contains(J) || Worklist.count(J) || 4511 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4512 isScalarUse(J, Src)); 4513 })) { 4514 Worklist.insert(Src); 4515 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4516 } 4517 } 4518 4519 // An induction variable will remain scalar if all users of the induction 4520 // variable and induction variable update remain scalar. 4521 for (auto &Induction : *Legal->getInductionVars()) { 4522 auto *Ind = Induction.first; 4523 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4524 4525 // We already considered pointer induction variables, so there's no reason 4526 // to look at their users again. 4527 // 4528 // TODO: Once we are able to vectorize pointer induction variables we 4529 // should no longer skip over them here. 4530 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4531 continue; 4532 4533 // Determine if all users of the induction variable are scalar after 4534 // vectorization. 4535 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4536 auto *I = cast<Instruction>(U); 4537 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4538 }); 4539 if (!ScalarInd) 4540 continue; 4541 4542 // Determine if all users of the induction variable update instruction are 4543 // scalar after vectorization. 4544 auto ScalarIndUpdate = 4545 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4546 auto *I = cast<Instruction>(U); 4547 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4548 }); 4549 if (!ScalarIndUpdate) 4550 continue; 4551 4552 // The induction variable and its update instruction will remain scalar. 4553 Worklist.insert(Ind); 4554 Worklist.insert(IndUpdate); 4555 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4556 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4557 << "\n"); 4558 } 4559 4560 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4561 } 4562 4563 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4564 if (!blockNeedsPredication(I->getParent())) 4565 return false; 4566 switch(I->getOpcode()) { 4567 default: 4568 break; 4569 case Instruction::Load: 4570 case Instruction::Store: { 4571 if (!Legal->isMaskRequired(I)) 4572 return false; 4573 auto *Ptr = getLoadStorePointerOperand(I); 4574 auto *Ty = getMemInstValueType(I); 4575 // We have already decided how to vectorize this instruction, get that 4576 // result. 4577 if (VF > 1) { 4578 InstWidening WideningDecision = getWideningDecision(I, VF); 4579 assert(WideningDecision != CM_Unknown && 4580 "Widening decision should be ready at this moment"); 4581 return WideningDecision == CM_Scalarize; 4582 } 4583 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4584 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4585 isLegalMaskedGather(Ty, Alignment)) 4586 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4587 isLegalMaskedScatter(Ty, Alignment)); 4588 } 4589 case Instruction::UDiv: 4590 case Instruction::SDiv: 4591 case Instruction::SRem: 4592 case Instruction::URem: 4593 return mayDivideByZero(*I); 4594 } 4595 return false; 4596 } 4597 4598 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4599 unsigned VF) { 4600 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4601 assert(getWideningDecision(I, VF) == CM_Unknown && 4602 "Decision should not be set yet."); 4603 auto *Group = getInterleavedAccessGroup(I); 4604 assert(Group && "Must have a group."); 4605 4606 // If the instruction's allocated size doesn't equal it's type size, it 4607 // requires padding and will be scalarized. 4608 auto &DL = I->getModule()->getDataLayout(); 4609 auto *ScalarTy = getMemInstValueType(I); 4610 if (hasIrregularType(ScalarTy, DL, VF)) 4611 return false; 4612 4613 // Check if masking is required. 4614 // A Group may need masking for one of two reasons: it resides in a block that 4615 // needs predication, or it was decided to use masking to deal with gaps. 4616 bool PredicatedAccessRequiresMasking = 4617 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4618 bool AccessWithGapsRequiresMasking = 4619 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4620 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4621 return true; 4622 4623 // If masked interleaving is required, we expect that the user/target had 4624 // enabled it, because otherwise it either wouldn't have been created or 4625 // it should have been invalidated by the CostModel. 4626 assert(useMaskedInterleavedAccesses(TTI) && 4627 "Masked interleave-groups for predicated accesses are not enabled."); 4628 4629 auto *Ty = getMemInstValueType(I); 4630 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4631 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4632 : TTI.isLegalMaskedStore(Ty, Alignment); 4633 } 4634 4635 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4636 unsigned VF) { 4637 // Get and ensure we have a valid memory instruction. 4638 LoadInst *LI = dyn_cast<LoadInst>(I); 4639 StoreInst *SI = dyn_cast<StoreInst>(I); 4640 assert((LI || SI) && "Invalid memory instruction"); 4641 4642 auto *Ptr = getLoadStorePointerOperand(I); 4643 4644 // In order to be widened, the pointer should be consecutive, first of all. 4645 if (!Legal->isConsecutivePtr(Ptr)) 4646 return false; 4647 4648 // If the instruction is a store located in a predicated block, it will be 4649 // scalarized. 4650 if (isScalarWithPredication(I)) 4651 return false; 4652 4653 // If the instruction's allocated size doesn't equal it's type size, it 4654 // requires padding and will be scalarized. 4655 auto &DL = I->getModule()->getDataLayout(); 4656 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4657 if (hasIrregularType(ScalarTy, DL, VF)) 4658 return false; 4659 4660 return true; 4661 } 4662 4663 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4664 // We should not collect Uniforms more than once per VF. Right now, 4665 // this function is called from collectUniformsAndScalars(), which 4666 // already does this check. Collecting Uniforms for VF=1 does not make any 4667 // sense. 4668 4669 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4670 "This function should not be visited twice for the same VF"); 4671 4672 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4673 // not analyze again. Uniforms.count(VF) will return 1. 4674 Uniforms[VF].clear(); 4675 4676 // We now know that the loop is vectorizable! 4677 // Collect instructions inside the loop that will remain uniform after 4678 // vectorization. 4679 4680 // Global values, params and instructions outside of current loop are out of 4681 // scope. 4682 auto isOutOfScope = [&](Value *V) -> bool { 4683 Instruction *I = dyn_cast<Instruction>(V); 4684 return (!I || !TheLoop->contains(I)); 4685 }; 4686 4687 SetVector<Instruction *> Worklist; 4688 BasicBlock *Latch = TheLoop->getLoopLatch(); 4689 4690 // Instructions that are scalar with predication must not be considered 4691 // uniform after vectorization, because that would create an erroneous 4692 // replicating region where only a single instance out of VF should be formed. 4693 // TODO: optimize such seldom cases if found important, see PR40816. 4694 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4695 if (isScalarWithPredication(I, VF)) { 4696 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4697 << *I << "\n"); 4698 return; 4699 } 4700 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4701 Worklist.insert(I); 4702 }; 4703 4704 // Start with the conditional branch. If the branch condition is an 4705 // instruction contained in the loop that is only used by the branch, it is 4706 // uniform. 4707 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4708 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4709 addToWorklistIfAllowed(Cmp); 4710 4711 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4712 // are pointers that are treated like consecutive pointers during 4713 // vectorization. The pointer operands of interleaved accesses are an 4714 // example. 4715 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4716 4717 // Holds pointer operands of instructions that are possibly non-uniform. 4718 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4719 4720 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4721 InstWidening WideningDecision = getWideningDecision(I, VF); 4722 assert(WideningDecision != CM_Unknown && 4723 "Widening decision should be ready at this moment"); 4724 4725 return (WideningDecision == CM_Widen || 4726 WideningDecision == CM_Widen_Reverse || 4727 WideningDecision == CM_Interleave); 4728 }; 4729 // Iterate over the instructions in the loop, and collect all 4730 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4731 // that a consecutive-like pointer operand will be scalarized, we collect it 4732 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4733 // getelementptr instruction can be used by both vectorized and scalarized 4734 // memory instructions. For example, if a loop loads and stores from the same 4735 // location, but the store is conditional, the store will be scalarized, and 4736 // the getelementptr won't remain uniform. 4737 for (auto *BB : TheLoop->blocks()) 4738 for (auto &I : *BB) { 4739 // If there's no pointer operand, there's nothing to do. 4740 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4741 if (!Ptr) 4742 continue; 4743 4744 // True if all users of Ptr are memory accesses that have Ptr as their 4745 // pointer operand. 4746 auto UsersAreMemAccesses = 4747 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4748 return getLoadStorePointerOperand(U) == Ptr; 4749 }); 4750 4751 // Ensure the memory instruction will not be scalarized or used by 4752 // gather/scatter, making its pointer operand non-uniform. If the pointer 4753 // operand is used by any instruction other than a memory access, we 4754 // conservatively assume the pointer operand may be non-uniform. 4755 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4756 PossibleNonUniformPtrs.insert(Ptr); 4757 4758 // If the memory instruction will be vectorized and its pointer operand 4759 // is consecutive-like, or interleaving - the pointer operand should 4760 // remain uniform. 4761 else 4762 ConsecutiveLikePtrs.insert(Ptr); 4763 } 4764 4765 // Add to the Worklist all consecutive and consecutive-like pointers that 4766 // aren't also identified as possibly non-uniform. 4767 for (auto *V : ConsecutiveLikePtrs) 4768 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) 4769 addToWorklistIfAllowed(V); 4770 4771 // Expand Worklist in topological order: whenever a new instruction 4772 // is added , its users should be already inside Worklist. It ensures 4773 // a uniform instruction will only be used by uniform instructions. 4774 unsigned idx = 0; 4775 while (idx != Worklist.size()) { 4776 Instruction *I = Worklist[idx++]; 4777 4778 for (auto OV : I->operand_values()) { 4779 // isOutOfScope operands cannot be uniform instructions. 4780 if (isOutOfScope(OV)) 4781 continue; 4782 // First order recurrence Phi's should typically be considered 4783 // non-uniform. 4784 auto *OP = dyn_cast<PHINode>(OV); 4785 if (OP && Legal->isFirstOrderRecurrence(OP)) 4786 continue; 4787 // If all the users of the operand are uniform, then add the 4788 // operand into the uniform worklist. 4789 auto *OI = cast<Instruction>(OV); 4790 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4791 auto *J = cast<Instruction>(U); 4792 return Worklist.count(J) || 4793 (OI == getLoadStorePointerOperand(J) && 4794 isUniformDecision(J, VF)); 4795 })) 4796 addToWorklistIfAllowed(OI); 4797 } 4798 } 4799 4800 // Returns true if Ptr is the pointer operand of a memory access instruction 4801 // I, and I is known to not require scalarization. 4802 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4803 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4804 }; 4805 4806 // For an instruction to be added into Worklist above, all its users inside 4807 // the loop should also be in Worklist. However, this condition cannot be 4808 // true for phi nodes that form a cyclic dependence. We must process phi 4809 // nodes separately. An induction variable will remain uniform if all users 4810 // of the induction variable and induction variable update remain uniform. 4811 // The code below handles both pointer and non-pointer induction variables. 4812 for (auto &Induction : *Legal->getInductionVars()) { 4813 auto *Ind = Induction.first; 4814 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4815 4816 // Determine if all users of the induction variable are uniform after 4817 // vectorization. 4818 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4819 auto *I = cast<Instruction>(U); 4820 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4821 isVectorizedMemAccessUse(I, Ind); 4822 }); 4823 if (!UniformInd) 4824 continue; 4825 4826 // Determine if all users of the induction variable update instruction are 4827 // uniform after vectorization. 4828 auto UniformIndUpdate = 4829 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4830 auto *I = cast<Instruction>(U); 4831 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4832 isVectorizedMemAccessUse(I, IndUpdate); 4833 }); 4834 if (!UniformIndUpdate) 4835 continue; 4836 4837 // The induction variable and its update instruction will remain uniform. 4838 addToWorklistIfAllowed(Ind); 4839 addToWorklistIfAllowed(IndUpdate); 4840 } 4841 4842 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4843 } 4844 4845 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4846 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4847 4848 if (Legal->getRuntimePointerChecking()->Need) { 4849 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4850 "runtime pointer checks needed. Enable vectorization of this " 4851 "loop with '#pragma clang loop vectorize(enable)' when " 4852 "compiling with -Os/-Oz", 4853 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4854 return true; 4855 } 4856 4857 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4858 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4859 "runtime SCEV checks needed. Enable vectorization of this " 4860 "loop with '#pragma clang loop vectorize(enable)' when " 4861 "compiling with -Os/-Oz", 4862 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4863 return true; 4864 } 4865 4866 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4867 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4868 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4869 "runtime stride == 1 checks needed. Enable vectorization of " 4870 "this loop with '#pragma clang loop vectorize(enable)' when " 4871 "compiling with -Os/-Oz", 4872 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4873 return true; 4874 } 4875 4876 return false; 4877 } 4878 4879 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4880 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4881 // TODO: It may by useful to do since it's still likely to be dynamically 4882 // uniform if the target can skip. 4883 reportVectorizationFailure( 4884 "Not inserting runtime ptr check for divergent target", 4885 "runtime pointer checks needed. Not enabled for divergent target", 4886 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4887 return None; 4888 } 4889 4890 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4891 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4892 if (TC == 1) { 4893 reportVectorizationFailure("Single iteration (non) loop", 4894 "loop trip count is one, irrelevant for vectorization", 4895 "SingleIterationLoop", ORE, TheLoop); 4896 return None; 4897 } 4898 4899 switch (ScalarEpilogueStatus) { 4900 case CM_ScalarEpilogueAllowed: 4901 return computeFeasibleMaxVF(TC); 4902 case CM_ScalarEpilogueNotNeededUsePredicate: 4903 LLVM_DEBUG( 4904 dbgs() << "LV: vector predicate hint/switch found.\n" 4905 << "LV: Not allowing scalar epilogue, creating predicated " 4906 << "vector loop.\n"); 4907 break; 4908 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4909 // fallthrough as a special case of OptForSize 4910 case CM_ScalarEpilogueNotAllowedOptSize: 4911 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4912 LLVM_DEBUG( 4913 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4914 else 4915 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4916 << "count.\n"); 4917 4918 // Bail if runtime checks are required, which are not good when optimising 4919 // for size. 4920 if (runtimeChecksRequired()) 4921 return None; 4922 break; 4923 } 4924 4925 // Now try the tail folding 4926 4927 // Invalidate interleave groups that require an epilogue if we can't mask 4928 // the interleave-group. 4929 if (!useMaskedInterleavedAccesses(TTI)) 4930 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4931 4932 unsigned MaxVF = computeFeasibleMaxVF(TC); 4933 if (TC > 0 && TC % MaxVF == 0) { 4934 // Accept MaxVF if we do not have a tail. 4935 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4936 return MaxVF; 4937 } 4938 4939 // If we don't know the precise trip count, or if the trip count that we 4940 // found modulo the vectorization factor is not zero, try to fold the tail 4941 // by masking. 4942 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4943 if (Legal->prepareToFoldTailByMasking()) { 4944 FoldTailByMasking = true; 4945 return MaxVF; 4946 } 4947 4948 if (TC == 0) { 4949 reportVectorizationFailure( 4950 "Unable to calculate the loop count due to complex control flow", 4951 "unable to calculate the loop count due to complex control flow", 4952 "UnknownLoopCountComplexCFG", ORE, TheLoop); 4953 return None; 4954 } 4955 4956 reportVectorizationFailure( 4957 "Cannot optimize for size and vectorize at the same time.", 4958 "cannot optimize for size and vectorize at the same time. " 4959 "Enable vectorization of this loop with '#pragma clang loop " 4960 "vectorize(enable)' when compiling with -Os/-Oz", 4961 "NoTailLoopWithOptForSize", ORE, TheLoop); 4962 return None; 4963 } 4964 4965 unsigned 4966 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 4967 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4968 unsigned SmallestType, WidestType; 4969 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4970 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4971 4972 // Get the maximum safe dependence distance in bits computed by LAA. 4973 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4974 // the memory accesses that is most restrictive (involved in the smallest 4975 // dependence distance). 4976 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4977 4978 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4979 4980 unsigned MaxVectorSize = WidestRegister / WidestType; 4981 4982 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4983 << " / " << WidestType << " bits.\n"); 4984 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4985 << WidestRegister << " bits.\n"); 4986 4987 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4988 " into one vector!"); 4989 if (MaxVectorSize == 0) { 4990 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4991 MaxVectorSize = 1; 4992 return MaxVectorSize; 4993 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4994 isPowerOf2_32(ConstTripCount)) { 4995 // We need to clamp the VF to be the ConstTripCount. There is no point in 4996 // choosing a higher viable VF as done in the loop below. 4997 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4998 << ConstTripCount << "\n"); 4999 MaxVectorSize = ConstTripCount; 5000 return MaxVectorSize; 5001 } 5002 5003 unsigned MaxVF = MaxVectorSize; 5004 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5005 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5006 // Collect all viable vectorization factors larger than the default MaxVF 5007 // (i.e. MaxVectorSize). 5008 SmallVector<unsigned, 8> VFs; 5009 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5010 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5011 VFs.push_back(VS); 5012 5013 // For each VF calculate its register usage. 5014 auto RUs = calculateRegisterUsage(VFs); 5015 5016 // Select the largest VF which doesn't require more registers than existing 5017 // ones. 5018 for (int i = RUs.size() - 1; i >= 0; --i) { 5019 bool Selected = true; 5020 for (auto& pair : RUs[i].MaxLocalUsers) { 5021 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5022 if (pair.second > TargetNumRegisters) 5023 Selected = false; 5024 } 5025 if (Selected) { 5026 MaxVF = VFs[i]; 5027 break; 5028 } 5029 } 5030 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5031 if (MaxVF < MinVF) { 5032 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5033 << ") with target's minimum: " << MinVF << '\n'); 5034 MaxVF = MinVF; 5035 } 5036 } 5037 } 5038 return MaxVF; 5039 } 5040 5041 VectorizationFactor 5042 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5043 float Cost = expectedCost(1).first; 5044 const float ScalarCost = Cost; 5045 unsigned Width = 1; 5046 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5047 5048 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5049 if (ForceVectorization && MaxVF > 1) { 5050 // Ignore scalar width, because the user explicitly wants vectorization. 5051 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5052 // evaluation. 5053 Cost = std::numeric_limits<float>::max(); 5054 } 5055 5056 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5057 // Notice that the vector loop needs to be executed less times, so 5058 // we need to divide the cost of the vector loops by the width of 5059 // the vector elements. 5060 VectorizationCostTy C = expectedCost(i); 5061 float VectorCost = C.first / (float)i; 5062 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5063 << " costs: " << (int)VectorCost << ".\n"); 5064 if (!C.second && !ForceVectorization) { 5065 LLVM_DEBUG( 5066 dbgs() << "LV: Not considering vector loop of width " << i 5067 << " because it will not generate any vector instructions.\n"); 5068 continue; 5069 } 5070 if (VectorCost < Cost) { 5071 Cost = VectorCost; 5072 Width = i; 5073 } 5074 } 5075 5076 if (!EnableCondStoresVectorization && NumPredStores) { 5077 reportVectorizationFailure("There are conditional stores.", 5078 "store that is conditionally executed prevents vectorization", 5079 "ConditionalStore", ORE, TheLoop); 5080 Width = 1; 5081 Cost = ScalarCost; 5082 } 5083 5084 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5085 << "LV: Vectorization seems to be not beneficial, " 5086 << "but was forced by a user.\n"); 5087 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5088 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5089 return Factor; 5090 } 5091 5092 std::pair<unsigned, unsigned> 5093 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5094 unsigned MinWidth = -1U; 5095 unsigned MaxWidth = 8; 5096 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5097 5098 // For each block. 5099 for (BasicBlock *BB : TheLoop->blocks()) { 5100 // For each instruction in the loop. 5101 for (Instruction &I : BB->instructionsWithoutDebug()) { 5102 Type *T = I.getType(); 5103 5104 // Skip ignored values. 5105 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5106 continue; 5107 5108 // Only examine Loads, Stores and PHINodes. 5109 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5110 continue; 5111 5112 // Examine PHI nodes that are reduction variables. Update the type to 5113 // account for the recurrence type. 5114 if (auto *PN = dyn_cast<PHINode>(&I)) { 5115 if (!Legal->isReductionVariable(PN)) 5116 continue; 5117 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5118 T = RdxDesc.getRecurrenceType(); 5119 } 5120 5121 // Examine the stored values. 5122 if (auto *ST = dyn_cast<StoreInst>(&I)) 5123 T = ST->getValueOperand()->getType(); 5124 5125 // Ignore loaded pointer types and stored pointer types that are not 5126 // vectorizable. 5127 // 5128 // FIXME: The check here attempts to predict whether a load or store will 5129 // be vectorized. We only know this for certain after a VF has 5130 // been selected. Here, we assume that if an access can be 5131 // vectorized, it will be. We should also look at extending this 5132 // optimization to non-pointer types. 5133 // 5134 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5135 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5136 continue; 5137 5138 MinWidth = std::min(MinWidth, 5139 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5140 MaxWidth = std::max(MaxWidth, 5141 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5142 } 5143 } 5144 5145 return {MinWidth, MaxWidth}; 5146 } 5147 5148 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5149 unsigned LoopCost) { 5150 // -- The interleave heuristics -- 5151 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5152 // There are many micro-architectural considerations that we can't predict 5153 // at this level. For example, frontend pressure (on decode or fetch) due to 5154 // code size, or the number and capabilities of the execution ports. 5155 // 5156 // We use the following heuristics to select the interleave count: 5157 // 1. If the code has reductions, then we interleave to break the cross 5158 // iteration dependency. 5159 // 2. If the loop is really small, then we interleave to reduce the loop 5160 // overhead. 5161 // 3. We don't interleave if we think that we will spill registers to memory 5162 // due to the increased register pressure. 5163 5164 if (!isScalarEpilogueAllowed()) 5165 return 1; 5166 5167 // We used the distance for the interleave count. 5168 if (Legal->getMaxSafeDepDistBytes() != -1U) 5169 return 1; 5170 5171 // Do not interleave loops with a relatively small known or estimated trip 5172 // count. 5173 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5174 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5175 return 1; 5176 5177 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5178 // We divide by these constants so assume that we have at least one 5179 // instruction that uses at least one register. 5180 for (auto& pair : R.MaxLocalUsers) { 5181 pair.second = std::max(pair.second, 1U); 5182 } 5183 5184 // We calculate the interleave count using the following formula. 5185 // Subtract the number of loop invariants from the number of available 5186 // registers. These registers are used by all of the interleaved instances. 5187 // Next, divide the remaining registers by the number of registers that is 5188 // required by the loop, in order to estimate how many parallel instances 5189 // fit without causing spills. All of this is rounded down if necessary to be 5190 // a power of two. We want power of two interleave count to simplify any 5191 // addressing operations or alignment considerations. 5192 // We also want power of two interleave counts to ensure that the induction 5193 // variable of the vector loop wraps to zero, when tail is folded by masking; 5194 // this currently happens when OptForSize, in which case IC is set to 1 above. 5195 unsigned IC = UINT_MAX; 5196 5197 for (auto& pair : R.MaxLocalUsers) { 5198 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5199 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5200 << " registers of " 5201 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5202 if (VF == 1) { 5203 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5204 TargetNumRegisters = ForceTargetNumScalarRegs; 5205 } else { 5206 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5207 TargetNumRegisters = ForceTargetNumVectorRegs; 5208 } 5209 unsigned MaxLocalUsers = pair.second; 5210 unsigned LoopInvariantRegs = 0; 5211 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5212 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5213 5214 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5215 // Don't count the induction variable as interleaved. 5216 if (EnableIndVarRegisterHeur) { 5217 TmpIC = 5218 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5219 std::max(1U, (MaxLocalUsers - 1))); 5220 } 5221 5222 IC = std::min(IC, TmpIC); 5223 } 5224 5225 // Clamp the interleave ranges to reasonable counts. 5226 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5227 5228 // Check if the user has overridden the max. 5229 if (VF == 1) { 5230 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5231 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5232 } else { 5233 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5234 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5235 } 5236 5237 // If trip count is known or estimated compile time constant, limit the 5238 // interleave count to be less than the trip count divided by VF. 5239 if (BestKnownTC) { 5240 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5241 } 5242 5243 // If we did not calculate the cost for VF (because the user selected the VF) 5244 // then we calculate the cost of VF here. 5245 if (LoopCost == 0) 5246 LoopCost = expectedCost(VF).first; 5247 5248 assert(LoopCost && "Non-zero loop cost expected"); 5249 5250 // Clamp the calculated IC to be between the 1 and the max interleave count 5251 // that the target and trip count allows. 5252 if (IC > MaxInterleaveCount) 5253 IC = MaxInterleaveCount; 5254 else if (IC < 1) 5255 IC = 1; 5256 5257 // Interleave if we vectorized this loop and there is a reduction that could 5258 // benefit from interleaving. 5259 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5260 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5261 return IC; 5262 } 5263 5264 // Note that if we've already vectorized the loop we will have done the 5265 // runtime check and so interleaving won't require further checks. 5266 bool InterleavingRequiresRuntimePointerCheck = 5267 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5268 5269 // We want to interleave small loops in order to reduce the loop overhead and 5270 // potentially expose ILP opportunities. 5271 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5272 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5273 // We assume that the cost overhead is 1 and we use the cost model 5274 // to estimate the cost of the loop and interleave until the cost of the 5275 // loop overhead is about 5% of the cost of the loop. 5276 unsigned SmallIC = 5277 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5278 5279 // Interleave until store/load ports (estimated by max interleave count) are 5280 // saturated. 5281 unsigned NumStores = Legal->getNumStores(); 5282 unsigned NumLoads = Legal->getNumLoads(); 5283 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5284 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5285 5286 // If we have a scalar reduction (vector reductions are already dealt with 5287 // by this point), we can increase the critical path length if the loop 5288 // we're interleaving is inside another loop. Limit, by default to 2, so the 5289 // critical path only gets increased by one reduction operation. 5290 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5291 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5292 SmallIC = std::min(SmallIC, F); 5293 StoresIC = std::min(StoresIC, F); 5294 LoadsIC = std::min(LoadsIC, F); 5295 } 5296 5297 if (EnableLoadStoreRuntimeInterleave && 5298 std::max(StoresIC, LoadsIC) > SmallIC) { 5299 LLVM_DEBUG( 5300 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5301 return std::max(StoresIC, LoadsIC); 5302 } 5303 5304 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5305 return SmallIC; 5306 } 5307 5308 // Interleave if this is a large loop (small loops are already dealt with by 5309 // this point) that could benefit from interleaving. 5310 bool HasReductions = !Legal->getReductionVars()->empty(); 5311 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5312 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5313 return IC; 5314 } 5315 5316 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5317 return 1; 5318 } 5319 5320 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5321 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5322 // This function calculates the register usage by measuring the highest number 5323 // of values that are alive at a single location. Obviously, this is a very 5324 // rough estimation. We scan the loop in a topological order in order and 5325 // assign a number to each instruction. We use RPO to ensure that defs are 5326 // met before their users. We assume that each instruction that has in-loop 5327 // users starts an interval. We record every time that an in-loop value is 5328 // used, so we have a list of the first and last occurrences of each 5329 // instruction. Next, we transpose this data structure into a multi map that 5330 // holds the list of intervals that *end* at a specific location. This multi 5331 // map allows us to perform a linear search. We scan the instructions linearly 5332 // and record each time that a new interval starts, by placing it in a set. 5333 // If we find this value in the multi-map then we remove it from the set. 5334 // The max register usage is the maximum size of the set. 5335 // We also search for instructions that are defined outside the loop, but are 5336 // used inside the loop. We need this number separately from the max-interval 5337 // usage number because when we unroll, loop-invariant values do not take 5338 // more register. 5339 LoopBlocksDFS DFS(TheLoop); 5340 DFS.perform(LI); 5341 5342 RegisterUsage RU; 5343 5344 // Each 'key' in the map opens a new interval. The values 5345 // of the map are the index of the 'last seen' usage of the 5346 // instruction that is the key. 5347 using IntervalMap = DenseMap<Instruction *, unsigned>; 5348 5349 // Maps instruction to its index. 5350 SmallVector<Instruction *, 64> IdxToInstr; 5351 // Marks the end of each interval. 5352 IntervalMap EndPoint; 5353 // Saves the list of instruction indices that are used in the loop. 5354 SmallPtrSet<Instruction *, 8> Ends; 5355 // Saves the list of values that are used in the loop but are 5356 // defined outside the loop, such as arguments and constants. 5357 SmallPtrSet<Value *, 8> LoopInvariants; 5358 5359 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5360 for (Instruction &I : BB->instructionsWithoutDebug()) { 5361 IdxToInstr.push_back(&I); 5362 5363 // Save the end location of each USE. 5364 for (Value *U : I.operands()) { 5365 auto *Instr = dyn_cast<Instruction>(U); 5366 5367 // Ignore non-instruction values such as arguments, constants, etc. 5368 if (!Instr) 5369 continue; 5370 5371 // If this instruction is outside the loop then record it and continue. 5372 if (!TheLoop->contains(Instr)) { 5373 LoopInvariants.insert(Instr); 5374 continue; 5375 } 5376 5377 // Overwrite previous end points. 5378 EndPoint[Instr] = IdxToInstr.size(); 5379 Ends.insert(Instr); 5380 } 5381 } 5382 } 5383 5384 // Saves the list of intervals that end with the index in 'key'. 5385 using InstrList = SmallVector<Instruction *, 2>; 5386 DenseMap<unsigned, InstrList> TransposeEnds; 5387 5388 // Transpose the EndPoints to a list of values that end at each index. 5389 for (auto &Interval : EndPoint) 5390 TransposeEnds[Interval.second].push_back(Interval.first); 5391 5392 SmallPtrSet<Instruction *, 8> OpenIntervals; 5393 5394 // Get the size of the widest register. 5395 unsigned MaxSafeDepDist = -1U; 5396 if (Legal->getMaxSafeDepDistBytes() != -1U) 5397 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5398 unsigned WidestRegister = 5399 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5400 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5401 5402 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5403 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5404 5405 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5406 5407 // A lambda that gets the register usage for the given type and VF. 5408 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5409 if (Ty->isTokenTy()) 5410 return 0U; 5411 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5412 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5413 }; 5414 5415 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5416 Instruction *I = IdxToInstr[i]; 5417 5418 // Remove all of the instructions that end at this location. 5419 InstrList &List = TransposeEnds[i]; 5420 for (Instruction *ToRemove : List) 5421 OpenIntervals.erase(ToRemove); 5422 5423 // Ignore instructions that are never used within the loop. 5424 if (Ends.find(I) == Ends.end()) 5425 continue; 5426 5427 // Skip ignored values. 5428 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5429 continue; 5430 5431 // For each VF find the maximum usage of registers. 5432 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5433 // Count the number of live intervals. 5434 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5435 5436 if (VFs[j] == 1) { 5437 for (auto Inst : OpenIntervals) { 5438 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5439 if (RegUsage.find(ClassID) == RegUsage.end()) 5440 RegUsage[ClassID] = 1; 5441 else 5442 RegUsage[ClassID] += 1; 5443 } 5444 } else { 5445 collectUniformsAndScalars(VFs[j]); 5446 for (auto Inst : OpenIntervals) { 5447 // Skip ignored values for VF > 1. 5448 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5449 continue; 5450 if (isScalarAfterVectorization(Inst, VFs[j])) { 5451 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5452 if (RegUsage.find(ClassID) == RegUsage.end()) 5453 RegUsage[ClassID] = 1; 5454 else 5455 RegUsage[ClassID] += 1; 5456 } else { 5457 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5458 if (RegUsage.find(ClassID) == RegUsage.end()) 5459 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5460 else 5461 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5462 } 5463 } 5464 } 5465 5466 for (auto& pair : RegUsage) { 5467 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5468 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5469 else 5470 MaxUsages[j][pair.first] = pair.second; 5471 } 5472 } 5473 5474 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5475 << OpenIntervals.size() << '\n'); 5476 5477 // Add the current instruction to the list of open intervals. 5478 OpenIntervals.insert(I); 5479 } 5480 5481 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5482 SmallMapVector<unsigned, unsigned, 4> Invariant; 5483 5484 for (auto Inst : LoopInvariants) { 5485 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5486 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5487 if (Invariant.find(ClassID) == Invariant.end()) 5488 Invariant[ClassID] = Usage; 5489 else 5490 Invariant[ClassID] += Usage; 5491 } 5492 5493 LLVM_DEBUG({ 5494 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5495 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5496 << " item\n"; 5497 for (const auto &pair : MaxUsages[i]) { 5498 dbgs() << "LV(REG): RegisterClass: " 5499 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5500 << " registers\n"; 5501 } 5502 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5503 << " item\n"; 5504 for (const auto &pair : Invariant) { 5505 dbgs() << "LV(REG): RegisterClass: " 5506 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5507 << " registers\n"; 5508 } 5509 }); 5510 5511 RU.LoopInvariantRegs = Invariant; 5512 RU.MaxLocalUsers = MaxUsages[i]; 5513 RUs[i] = RU; 5514 } 5515 5516 return RUs; 5517 } 5518 5519 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5520 // TODO: Cost model for emulated masked load/store is completely 5521 // broken. This hack guides the cost model to use an artificially 5522 // high enough value to practically disable vectorization with such 5523 // operations, except where previously deployed legality hack allowed 5524 // using very low cost values. This is to avoid regressions coming simply 5525 // from moving "masked load/store" check from legality to cost model. 5526 // Masked Load/Gather emulation was previously never allowed. 5527 // Limited number of Masked Store/Scatter emulation was allowed. 5528 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5529 return isa<LoadInst>(I) || 5530 (isa<StoreInst>(I) && 5531 NumPredStores > NumberOfStoresToPredicate); 5532 } 5533 5534 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5535 // If we aren't vectorizing the loop, or if we've already collected the 5536 // instructions to scalarize, there's nothing to do. Collection may already 5537 // have occurred if we have a user-selected VF and are now computing the 5538 // expected cost for interleaving. 5539 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5540 return; 5541 5542 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5543 // not profitable to scalarize any instructions, the presence of VF in the 5544 // map will indicate that we've analyzed it already. 5545 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5546 5547 // Find all the instructions that are scalar with predication in the loop and 5548 // determine if it would be better to not if-convert the blocks they are in. 5549 // If so, we also record the instructions to scalarize. 5550 for (BasicBlock *BB : TheLoop->blocks()) { 5551 if (!blockNeedsPredication(BB)) 5552 continue; 5553 for (Instruction &I : *BB) 5554 if (isScalarWithPredication(&I)) { 5555 ScalarCostsTy ScalarCosts; 5556 // Do not apply discount logic if hacked cost is needed 5557 // for emulated masked memrefs. 5558 if (!useEmulatedMaskMemRefHack(&I) && 5559 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5560 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5561 // Remember that BB will remain after vectorization. 5562 PredicatedBBsAfterVectorization.insert(BB); 5563 } 5564 } 5565 } 5566 5567 int LoopVectorizationCostModel::computePredInstDiscount( 5568 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5569 unsigned VF) { 5570 assert(!isUniformAfterVectorization(PredInst, VF) && 5571 "Instruction marked uniform-after-vectorization will be predicated"); 5572 5573 // Initialize the discount to zero, meaning that the scalar version and the 5574 // vector version cost the same. 5575 int Discount = 0; 5576 5577 // Holds instructions to analyze. The instructions we visit are mapped in 5578 // ScalarCosts. Those instructions are the ones that would be scalarized if 5579 // we find that the scalar version costs less. 5580 SmallVector<Instruction *, 8> Worklist; 5581 5582 // Returns true if the given instruction can be scalarized. 5583 auto canBeScalarized = [&](Instruction *I) -> bool { 5584 // We only attempt to scalarize instructions forming a single-use chain 5585 // from the original predicated block that would otherwise be vectorized. 5586 // Although not strictly necessary, we give up on instructions we know will 5587 // already be scalar to avoid traversing chains that are unlikely to be 5588 // beneficial. 5589 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5590 isScalarAfterVectorization(I, VF)) 5591 return false; 5592 5593 // If the instruction is scalar with predication, it will be analyzed 5594 // separately. We ignore it within the context of PredInst. 5595 if (isScalarWithPredication(I)) 5596 return false; 5597 5598 // If any of the instruction's operands are uniform after vectorization, 5599 // the instruction cannot be scalarized. This prevents, for example, a 5600 // masked load from being scalarized. 5601 // 5602 // We assume we will only emit a value for lane zero of an instruction 5603 // marked uniform after vectorization, rather than VF identical values. 5604 // Thus, if we scalarize an instruction that uses a uniform, we would 5605 // create uses of values corresponding to the lanes we aren't emitting code 5606 // for. This behavior can be changed by allowing getScalarValue to clone 5607 // the lane zero values for uniforms rather than asserting. 5608 for (Use &U : I->operands()) 5609 if (auto *J = dyn_cast<Instruction>(U.get())) 5610 if (isUniformAfterVectorization(J, VF)) 5611 return false; 5612 5613 // Otherwise, we can scalarize the instruction. 5614 return true; 5615 }; 5616 5617 // Compute the expected cost discount from scalarizing the entire expression 5618 // feeding the predicated instruction. We currently only consider expressions 5619 // that are single-use instruction chains. 5620 Worklist.push_back(PredInst); 5621 while (!Worklist.empty()) { 5622 Instruction *I = Worklist.pop_back_val(); 5623 5624 // If we've already analyzed the instruction, there's nothing to do. 5625 if (ScalarCosts.find(I) != ScalarCosts.end()) 5626 continue; 5627 5628 // Compute the cost of the vector instruction. Note that this cost already 5629 // includes the scalarization overhead of the predicated instruction. 5630 unsigned VectorCost = getInstructionCost(I, VF).first; 5631 5632 // Compute the cost of the scalarized instruction. This cost is the cost of 5633 // the instruction as if it wasn't if-converted and instead remained in the 5634 // predicated block. We will scale this cost by block probability after 5635 // computing the scalarization overhead. 5636 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5637 5638 // Compute the scalarization overhead of needed insertelement instructions 5639 // and phi nodes. 5640 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5641 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5642 true, false); 5643 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5644 } 5645 5646 // Compute the scalarization overhead of needed extractelement 5647 // instructions. For each of the instruction's operands, if the operand can 5648 // be scalarized, add it to the worklist; otherwise, account for the 5649 // overhead. 5650 for (Use &U : I->operands()) 5651 if (auto *J = dyn_cast<Instruction>(U.get())) { 5652 assert(VectorType::isValidElementType(J->getType()) && 5653 "Instruction has non-scalar type"); 5654 if (canBeScalarized(J)) 5655 Worklist.push_back(J); 5656 else if (needsExtract(J, VF)) 5657 ScalarCost += TTI.getScalarizationOverhead( 5658 ToVectorTy(J->getType(),VF), false, true); 5659 } 5660 5661 // Scale the total scalar cost by block probability. 5662 ScalarCost /= getReciprocalPredBlockProb(); 5663 5664 // Compute the discount. A non-negative discount means the vector version 5665 // of the instruction costs more, and scalarizing would be beneficial. 5666 Discount += VectorCost - ScalarCost; 5667 ScalarCosts[I] = ScalarCost; 5668 } 5669 5670 return Discount; 5671 } 5672 5673 LoopVectorizationCostModel::VectorizationCostTy 5674 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5675 VectorizationCostTy Cost; 5676 5677 // For each block. 5678 for (BasicBlock *BB : TheLoop->blocks()) { 5679 VectorizationCostTy BlockCost; 5680 5681 // For each instruction in the old loop. 5682 for (Instruction &I : BB->instructionsWithoutDebug()) { 5683 // Skip ignored values. 5684 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5685 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5686 continue; 5687 5688 VectorizationCostTy C = getInstructionCost(&I, VF); 5689 5690 // Check if we should override the cost. 5691 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5692 C.first = ForceTargetInstructionCost; 5693 5694 BlockCost.first += C.first; 5695 BlockCost.second |= C.second; 5696 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5697 << " for VF " << VF << " For instruction: " << I 5698 << '\n'); 5699 } 5700 5701 // If we are vectorizing a predicated block, it will have been 5702 // if-converted. This means that the block's instructions (aside from 5703 // stores and instructions that may divide by zero) will now be 5704 // unconditionally executed. For the scalar case, we may not always execute 5705 // the predicated block. Thus, scale the block's cost by the probability of 5706 // executing it. 5707 if (VF == 1 && blockNeedsPredication(BB)) 5708 BlockCost.first /= getReciprocalPredBlockProb(); 5709 5710 Cost.first += BlockCost.first; 5711 Cost.second |= BlockCost.second; 5712 } 5713 5714 return Cost; 5715 } 5716 5717 /// Gets Address Access SCEV after verifying that the access pattern 5718 /// is loop invariant except the induction variable dependence. 5719 /// 5720 /// This SCEV can be sent to the Target in order to estimate the address 5721 /// calculation cost. 5722 static const SCEV *getAddressAccessSCEV( 5723 Value *Ptr, 5724 LoopVectorizationLegality *Legal, 5725 PredicatedScalarEvolution &PSE, 5726 const Loop *TheLoop) { 5727 5728 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5729 if (!Gep) 5730 return nullptr; 5731 5732 // We are looking for a gep with all loop invariant indices except for one 5733 // which should be an induction variable. 5734 auto SE = PSE.getSE(); 5735 unsigned NumOperands = Gep->getNumOperands(); 5736 for (unsigned i = 1; i < NumOperands; ++i) { 5737 Value *Opd = Gep->getOperand(i); 5738 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5739 !Legal->isInductionVariable(Opd)) 5740 return nullptr; 5741 } 5742 5743 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5744 return PSE.getSCEV(Ptr); 5745 } 5746 5747 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5748 return Legal->hasStride(I->getOperand(0)) || 5749 Legal->hasStride(I->getOperand(1)); 5750 } 5751 5752 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5753 unsigned VF) { 5754 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5755 Type *ValTy = getMemInstValueType(I); 5756 auto SE = PSE.getSE(); 5757 5758 unsigned AS = getLoadStoreAddressSpace(I); 5759 Value *Ptr = getLoadStorePointerOperand(I); 5760 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5761 5762 // Figure out whether the access is strided and get the stride value 5763 // if it's known in compile time 5764 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5765 5766 // Get the cost of the scalar memory instruction and address computation. 5767 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5768 5769 // Don't pass *I here, since it is scalar but will actually be part of a 5770 // vectorized loop where the user of it is a vectorized instruction. 5771 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5772 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5773 Alignment, AS); 5774 5775 // Get the overhead of the extractelement and insertelement instructions 5776 // we might create due to scalarization. 5777 Cost += getScalarizationOverhead(I, VF); 5778 5779 // If we have a predicated store, it may not be executed for each vector 5780 // lane. Scale the cost by the probability of executing the predicated 5781 // block. 5782 if (isPredicatedInst(I)) { 5783 Cost /= getReciprocalPredBlockProb(); 5784 5785 if (useEmulatedMaskMemRefHack(I)) 5786 // Artificially setting to a high enough value to practically disable 5787 // vectorization with such operations. 5788 Cost = 3000000; 5789 } 5790 5791 return Cost; 5792 } 5793 5794 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5795 unsigned VF) { 5796 Type *ValTy = getMemInstValueType(I); 5797 Type *VectorTy = ToVectorTy(ValTy, VF); 5798 Value *Ptr = getLoadStorePointerOperand(I); 5799 unsigned AS = getLoadStoreAddressSpace(I); 5800 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5801 5802 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5803 "Stride should be 1 or -1 for consecutive memory access"); 5804 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5805 unsigned Cost = 0; 5806 if (Legal->isMaskRequired(I)) 5807 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5808 Alignment ? Alignment->value() : 0, AS); 5809 else 5810 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5811 5812 bool Reverse = ConsecutiveStride < 0; 5813 if (Reverse) 5814 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5815 return Cost; 5816 } 5817 5818 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5819 unsigned VF) { 5820 Type *ValTy = getMemInstValueType(I); 5821 Type *VectorTy = ToVectorTy(ValTy, VF); 5822 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5823 unsigned AS = getLoadStoreAddressSpace(I); 5824 if (isa<LoadInst>(I)) { 5825 return TTI.getAddressComputationCost(ValTy) + 5826 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5827 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5828 } 5829 StoreInst *SI = cast<StoreInst>(I); 5830 5831 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5832 return TTI.getAddressComputationCost(ValTy) + 5833 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5834 (isLoopInvariantStoreValue 5835 ? 0 5836 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5837 VF - 1)); 5838 } 5839 5840 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5841 unsigned VF) { 5842 Type *ValTy = getMemInstValueType(I); 5843 Type *VectorTy = ToVectorTy(ValTy, VF); 5844 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5845 Value *Ptr = getLoadStorePointerOperand(I); 5846 5847 return TTI.getAddressComputationCost(VectorTy) + 5848 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5849 Legal->isMaskRequired(I), 5850 Alignment ? Alignment->value() : 0); 5851 } 5852 5853 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5854 unsigned VF) { 5855 Type *ValTy = getMemInstValueType(I); 5856 Type *VectorTy = ToVectorTy(ValTy, VF); 5857 unsigned AS = getLoadStoreAddressSpace(I); 5858 5859 auto Group = getInterleavedAccessGroup(I); 5860 assert(Group && "Fail to get an interleaved access group."); 5861 5862 unsigned InterleaveFactor = Group->getFactor(); 5863 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5864 5865 // Holds the indices of existing members in an interleaved load group. 5866 // An interleaved store group doesn't need this as it doesn't allow gaps. 5867 SmallVector<unsigned, 4> Indices; 5868 if (isa<LoadInst>(I)) { 5869 for (unsigned i = 0; i < InterleaveFactor; i++) 5870 if (Group->getMember(i)) 5871 Indices.push_back(i); 5872 } 5873 5874 // Calculate the cost of the whole interleaved group. 5875 bool UseMaskForGaps = 5876 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5877 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5878 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5879 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5880 5881 if (Group->isReverse()) { 5882 // TODO: Add support for reversed masked interleaved access. 5883 assert(!Legal->isMaskRequired(I) && 5884 "Reverse masked interleaved access not supported."); 5885 Cost += Group->getNumMembers() * 5886 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5887 } 5888 return Cost; 5889 } 5890 5891 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5892 unsigned VF) { 5893 // Calculate scalar cost only. Vectorization cost should be ready at this 5894 // moment. 5895 if (VF == 1) { 5896 Type *ValTy = getMemInstValueType(I); 5897 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5898 unsigned AS = getLoadStoreAddressSpace(I); 5899 5900 return TTI.getAddressComputationCost(ValTy) + 5901 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5902 } 5903 return getWideningCost(I, VF); 5904 } 5905 5906 LoopVectorizationCostModel::VectorizationCostTy 5907 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5908 // If we know that this instruction will remain uniform, check the cost of 5909 // the scalar version. 5910 if (isUniformAfterVectorization(I, VF)) 5911 VF = 1; 5912 5913 if (VF > 1 && isProfitableToScalarize(I, VF)) 5914 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5915 5916 // Forced scalars do not have any scalarization overhead. 5917 auto ForcedScalar = ForcedScalars.find(VF); 5918 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5919 auto InstSet = ForcedScalar->second; 5920 if (InstSet.find(I) != InstSet.end()) 5921 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5922 } 5923 5924 Type *VectorTy; 5925 unsigned C = getInstructionCost(I, VF, VectorTy); 5926 5927 bool TypeNotScalarized = 5928 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5929 return VectorizationCostTy(C, TypeNotScalarized); 5930 } 5931 5932 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5933 unsigned VF) { 5934 5935 if (VF == 1) 5936 return 0; 5937 5938 unsigned Cost = 0; 5939 Type *RetTy = ToVectorTy(I->getType(), VF); 5940 if (!RetTy->isVoidTy() && 5941 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5942 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5943 5944 // Some targets keep addresses scalar. 5945 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5946 return Cost; 5947 5948 // Some targets support efficient element stores. 5949 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5950 return Cost; 5951 5952 // Collect operands to consider. 5953 CallInst *CI = dyn_cast<CallInst>(I); 5954 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 5955 5956 // Skip operands that do not require extraction/scalarization and do not incur 5957 // any overhead. 5958 return Cost + TTI.getOperandsScalarizationOverhead( 5959 filterExtractingOperands(Ops, VF), VF); 5960 } 5961 5962 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5963 if (VF == 1) 5964 return; 5965 NumPredStores = 0; 5966 for (BasicBlock *BB : TheLoop->blocks()) { 5967 // For each instruction in the old loop. 5968 for (Instruction &I : *BB) { 5969 Value *Ptr = getLoadStorePointerOperand(&I); 5970 if (!Ptr) 5971 continue; 5972 5973 // TODO: We should generate better code and update the cost model for 5974 // predicated uniform stores. Today they are treated as any other 5975 // predicated store (see added test cases in 5976 // invariant-store-vectorization.ll). 5977 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5978 NumPredStores++; 5979 5980 if (Legal->isUniform(Ptr) && 5981 // Conditional loads and stores should be scalarized and predicated. 5982 // isScalarWithPredication cannot be used here since masked 5983 // gather/scatters are not considered scalar with predication. 5984 !Legal->blockNeedsPredication(I.getParent())) { 5985 // TODO: Avoid replicating loads and stores instead of 5986 // relying on instcombine to remove them. 5987 // Load: Scalar load + broadcast 5988 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5989 unsigned Cost = getUniformMemOpCost(&I, VF); 5990 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5991 continue; 5992 } 5993 5994 // We assume that widening is the best solution when possible. 5995 if (memoryInstructionCanBeWidened(&I, VF)) { 5996 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5997 int ConsecutiveStride = 5998 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5999 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6000 "Expected consecutive stride."); 6001 InstWidening Decision = 6002 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6003 setWideningDecision(&I, VF, Decision, Cost); 6004 continue; 6005 } 6006 6007 // Choose between Interleaving, Gather/Scatter or Scalarization. 6008 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6009 unsigned NumAccesses = 1; 6010 if (isAccessInterleaved(&I)) { 6011 auto Group = getInterleavedAccessGroup(&I); 6012 assert(Group && "Fail to get an interleaved access group."); 6013 6014 // Make one decision for the whole group. 6015 if (getWideningDecision(&I, VF) != CM_Unknown) 6016 continue; 6017 6018 NumAccesses = Group->getNumMembers(); 6019 if (interleavedAccessCanBeWidened(&I, VF)) 6020 InterleaveCost = getInterleaveGroupCost(&I, VF); 6021 } 6022 6023 unsigned GatherScatterCost = 6024 isLegalGatherOrScatter(&I) 6025 ? getGatherScatterCost(&I, VF) * NumAccesses 6026 : std::numeric_limits<unsigned>::max(); 6027 6028 unsigned ScalarizationCost = 6029 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6030 6031 // Choose better solution for the current VF, 6032 // write down this decision and use it during vectorization. 6033 unsigned Cost; 6034 InstWidening Decision; 6035 if (InterleaveCost <= GatherScatterCost && 6036 InterleaveCost < ScalarizationCost) { 6037 Decision = CM_Interleave; 6038 Cost = InterleaveCost; 6039 } else if (GatherScatterCost < ScalarizationCost) { 6040 Decision = CM_GatherScatter; 6041 Cost = GatherScatterCost; 6042 } else { 6043 Decision = CM_Scalarize; 6044 Cost = ScalarizationCost; 6045 } 6046 // If the instructions belongs to an interleave group, the whole group 6047 // receives the same decision. The whole group receives the cost, but 6048 // the cost will actually be assigned to one instruction. 6049 if (auto Group = getInterleavedAccessGroup(&I)) 6050 setWideningDecision(Group, VF, Decision, Cost); 6051 else 6052 setWideningDecision(&I, VF, Decision, Cost); 6053 } 6054 } 6055 6056 // Make sure that any load of address and any other address computation 6057 // remains scalar unless there is gather/scatter support. This avoids 6058 // inevitable extracts into address registers, and also has the benefit of 6059 // activating LSR more, since that pass can't optimize vectorized 6060 // addresses. 6061 if (TTI.prefersVectorizedAddressing()) 6062 return; 6063 6064 // Start with all scalar pointer uses. 6065 SmallPtrSet<Instruction *, 8> AddrDefs; 6066 for (BasicBlock *BB : TheLoop->blocks()) 6067 for (Instruction &I : *BB) { 6068 Instruction *PtrDef = 6069 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6070 if (PtrDef && TheLoop->contains(PtrDef) && 6071 getWideningDecision(&I, VF) != CM_GatherScatter) 6072 AddrDefs.insert(PtrDef); 6073 } 6074 6075 // Add all instructions used to generate the addresses. 6076 SmallVector<Instruction *, 4> Worklist; 6077 for (auto *I : AddrDefs) 6078 Worklist.push_back(I); 6079 while (!Worklist.empty()) { 6080 Instruction *I = Worklist.pop_back_val(); 6081 for (auto &Op : I->operands()) 6082 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6083 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6084 AddrDefs.insert(InstOp).second) 6085 Worklist.push_back(InstOp); 6086 } 6087 6088 for (auto *I : AddrDefs) { 6089 if (isa<LoadInst>(I)) { 6090 // Setting the desired widening decision should ideally be handled in 6091 // by cost functions, but since this involves the task of finding out 6092 // if the loaded register is involved in an address computation, it is 6093 // instead changed here when we know this is the case. 6094 InstWidening Decision = getWideningDecision(I, VF); 6095 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6096 // Scalarize a widened load of address. 6097 setWideningDecision(I, VF, CM_Scalarize, 6098 (VF * getMemoryInstructionCost(I, 1))); 6099 else if (auto Group = getInterleavedAccessGroup(I)) { 6100 // Scalarize an interleave group of address loads. 6101 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6102 if (Instruction *Member = Group->getMember(I)) 6103 setWideningDecision(Member, VF, CM_Scalarize, 6104 (VF * getMemoryInstructionCost(Member, 1))); 6105 } 6106 } 6107 } else 6108 // Make sure I gets scalarized and a cost estimate without 6109 // scalarization overhead. 6110 ForcedScalars[VF].insert(I); 6111 } 6112 } 6113 6114 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6115 unsigned VF, 6116 Type *&VectorTy) { 6117 Type *RetTy = I->getType(); 6118 if (canTruncateToMinimalBitwidth(I, VF)) 6119 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6120 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6121 auto SE = PSE.getSE(); 6122 6123 // TODO: We need to estimate the cost of intrinsic calls. 6124 switch (I->getOpcode()) { 6125 case Instruction::GetElementPtr: 6126 // We mark this instruction as zero-cost because the cost of GEPs in 6127 // vectorized code depends on whether the corresponding memory instruction 6128 // is scalarized or not. Therefore, we handle GEPs with the memory 6129 // instruction cost. 6130 return 0; 6131 case Instruction::Br: { 6132 // In cases of scalarized and predicated instructions, there will be VF 6133 // predicated blocks in the vectorized loop. Each branch around these 6134 // blocks requires also an extract of its vector compare i1 element. 6135 bool ScalarPredicatedBB = false; 6136 BranchInst *BI = cast<BranchInst>(I); 6137 if (VF > 1 && BI->isConditional() && 6138 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6139 PredicatedBBsAfterVectorization.end() || 6140 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6141 PredicatedBBsAfterVectorization.end())) 6142 ScalarPredicatedBB = true; 6143 6144 if (ScalarPredicatedBB) { 6145 // Return cost for branches around scalarized and predicated blocks. 6146 Type *Vec_i1Ty = 6147 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6148 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6149 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6150 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6151 // The back-edge branch will remain, as will all scalar branches. 6152 return TTI.getCFInstrCost(Instruction::Br); 6153 else 6154 // This branch will be eliminated by if-conversion. 6155 return 0; 6156 // Note: We currently assume zero cost for an unconditional branch inside 6157 // a predicated block since it will become a fall-through, although we 6158 // may decide in the future to call TTI for all branches. 6159 } 6160 case Instruction::PHI: { 6161 auto *Phi = cast<PHINode>(I); 6162 6163 // First-order recurrences are replaced by vector shuffles inside the loop. 6164 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6165 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6166 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6167 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 6168 6169 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6170 // converted into select instructions. We require N - 1 selects per phi 6171 // node, where N is the number of incoming values. 6172 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6173 return (Phi->getNumIncomingValues() - 1) * 6174 TTI.getCmpSelInstrCost( 6175 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6176 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6177 6178 return TTI.getCFInstrCost(Instruction::PHI); 6179 } 6180 case Instruction::UDiv: 6181 case Instruction::SDiv: 6182 case Instruction::URem: 6183 case Instruction::SRem: 6184 // If we have a predicated instruction, it may not be executed for each 6185 // vector lane. Get the scalarization cost and scale this amount by the 6186 // probability of executing the predicated block. If the instruction is not 6187 // predicated, we fall through to the next case. 6188 if (VF > 1 && isScalarWithPredication(I)) { 6189 unsigned Cost = 0; 6190 6191 // These instructions have a non-void type, so account for the phi nodes 6192 // that we will create. This cost is likely to be zero. The phi node 6193 // cost, if any, should be scaled by the block probability because it 6194 // models a copy at the end of each predicated block. 6195 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6196 6197 // The cost of the non-predicated instruction. 6198 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6199 6200 // The cost of insertelement and extractelement instructions needed for 6201 // scalarization. 6202 Cost += getScalarizationOverhead(I, VF); 6203 6204 // Scale the cost by the probability of executing the predicated blocks. 6205 // This assumes the predicated block for each vector lane is equally 6206 // likely. 6207 return Cost / getReciprocalPredBlockProb(); 6208 } 6209 LLVM_FALLTHROUGH; 6210 case Instruction::Add: 6211 case Instruction::FAdd: 6212 case Instruction::Sub: 6213 case Instruction::FSub: 6214 case Instruction::Mul: 6215 case Instruction::FMul: 6216 case Instruction::FDiv: 6217 case Instruction::FRem: 6218 case Instruction::Shl: 6219 case Instruction::LShr: 6220 case Instruction::AShr: 6221 case Instruction::And: 6222 case Instruction::Or: 6223 case Instruction::Xor: { 6224 // Since we will replace the stride by 1 the multiplication should go away. 6225 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6226 return 0; 6227 // Certain instructions can be cheaper to vectorize if they have a constant 6228 // second vector operand. One example of this are shifts on x86. 6229 Value *Op2 = I->getOperand(1); 6230 TargetTransformInfo::OperandValueProperties Op2VP; 6231 TargetTransformInfo::OperandValueKind Op2VK = 6232 TTI.getOperandInfo(Op2, Op2VP); 6233 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6234 Op2VK = TargetTransformInfo::OK_UniformValue; 6235 6236 SmallVector<const Value *, 4> Operands(I->operand_values()); 6237 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6238 return N * TTI.getArithmeticInstrCost( 6239 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6240 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6241 } 6242 case Instruction::FNeg: { 6243 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6244 return N * TTI.getArithmeticInstrCost( 6245 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6246 TargetTransformInfo::OK_AnyValue, 6247 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6248 I->getOperand(0), I); 6249 } 6250 case Instruction::Select: { 6251 SelectInst *SI = cast<SelectInst>(I); 6252 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6253 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6254 Type *CondTy = SI->getCondition()->getType(); 6255 if (!ScalarCond) 6256 CondTy = VectorType::get(CondTy, VF); 6257 6258 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6259 } 6260 case Instruction::ICmp: 6261 case Instruction::FCmp: { 6262 Type *ValTy = I->getOperand(0)->getType(); 6263 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6264 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6265 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6266 VectorTy = ToVectorTy(ValTy, VF); 6267 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6268 } 6269 case Instruction::Store: 6270 case Instruction::Load: { 6271 unsigned Width = VF; 6272 if (Width > 1) { 6273 InstWidening Decision = getWideningDecision(I, Width); 6274 assert(Decision != CM_Unknown && 6275 "CM decision should be taken at this point"); 6276 if (Decision == CM_Scalarize) 6277 Width = 1; 6278 } 6279 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6280 return getMemoryInstructionCost(I, VF); 6281 } 6282 case Instruction::ZExt: 6283 case Instruction::SExt: 6284 case Instruction::FPToUI: 6285 case Instruction::FPToSI: 6286 case Instruction::FPExt: 6287 case Instruction::PtrToInt: 6288 case Instruction::IntToPtr: 6289 case Instruction::SIToFP: 6290 case Instruction::UIToFP: 6291 case Instruction::Trunc: 6292 case Instruction::FPTrunc: 6293 case Instruction::BitCast: { 6294 // We optimize the truncation of induction variables having constant 6295 // integer steps. The cost of these truncations is the same as the scalar 6296 // operation. 6297 if (isOptimizableIVTruncate(I, VF)) { 6298 auto *Trunc = cast<TruncInst>(I); 6299 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6300 Trunc->getSrcTy(), Trunc); 6301 } 6302 6303 Type *SrcScalarTy = I->getOperand(0)->getType(); 6304 Type *SrcVecTy = 6305 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6306 if (canTruncateToMinimalBitwidth(I, VF)) { 6307 // This cast is going to be shrunk. This may remove the cast or it might 6308 // turn it into slightly different cast. For example, if MinBW == 16, 6309 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6310 // 6311 // Calculate the modified src and dest types. 6312 Type *MinVecTy = VectorTy; 6313 if (I->getOpcode() == Instruction::Trunc) { 6314 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6315 VectorTy = 6316 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6317 } else if (I->getOpcode() == Instruction::ZExt || 6318 I->getOpcode() == Instruction::SExt) { 6319 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6320 VectorTy = 6321 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6322 } 6323 } 6324 6325 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6326 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6327 } 6328 case Instruction::Call: { 6329 bool NeedToScalarize; 6330 CallInst *CI = cast<CallInst>(I); 6331 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6332 if (getVectorIntrinsicIDForCall(CI, TLI)) 6333 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6334 return CallCost; 6335 } 6336 default: 6337 // The cost of executing VF copies of the scalar instruction. This opcode 6338 // is unknown. Assume that it is the same as 'mul'. 6339 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6340 getScalarizationOverhead(I, VF); 6341 } // end of switch. 6342 } 6343 6344 char LoopVectorize::ID = 0; 6345 6346 static const char lv_name[] = "Loop Vectorization"; 6347 6348 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6349 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6350 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6351 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6352 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6353 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6354 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6355 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6356 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6357 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6358 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6359 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6360 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6361 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6362 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6363 6364 namespace llvm { 6365 6366 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6367 6368 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6369 bool VectorizeOnlyWhenForced) { 6370 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6371 } 6372 6373 } // end namespace llvm 6374 6375 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6376 // Check if the pointer operand of a load or store instruction is 6377 // consecutive. 6378 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6379 return Legal->isConsecutivePtr(Ptr); 6380 return false; 6381 } 6382 6383 void LoopVectorizationCostModel::collectValuesToIgnore() { 6384 // Ignore ephemeral values. 6385 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6386 6387 // Ignore type-promoting instructions we identified during reduction 6388 // detection. 6389 for (auto &Reduction : *Legal->getReductionVars()) { 6390 RecurrenceDescriptor &RedDes = Reduction.second; 6391 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6392 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6393 } 6394 // Ignore type-casting instructions we identified during induction 6395 // detection. 6396 for (auto &Induction : *Legal->getInductionVars()) { 6397 InductionDescriptor &IndDes = Induction.second; 6398 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6399 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6400 } 6401 } 6402 6403 // TODO: we could return a pair of values that specify the max VF and 6404 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6405 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6406 // doesn't have a cost model that can choose which plan to execute if 6407 // more than one is generated. 6408 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6409 LoopVectorizationCostModel &CM) { 6410 unsigned WidestType; 6411 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6412 return WidestVectorRegBits / WidestType; 6413 } 6414 6415 VectorizationFactor 6416 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6417 unsigned VF = UserVF; 6418 // Outer loop handling: They may require CFG and instruction level 6419 // transformations before even evaluating whether vectorization is profitable. 6420 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6421 // the vectorization pipeline. 6422 if (!OrigLoop->empty()) { 6423 // If the user doesn't provide a vectorization factor, determine a 6424 // reasonable one. 6425 if (!UserVF) { 6426 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6427 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6428 6429 // Make sure we have a VF > 1 for stress testing. 6430 if (VPlanBuildStressTest && VF < 2) { 6431 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6432 << "overriding computed VF.\n"); 6433 VF = 4; 6434 } 6435 } 6436 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6437 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6438 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6439 << " to build VPlans.\n"); 6440 buildVPlans(VF, VF); 6441 6442 // For VPlan build stress testing, we bail out after VPlan construction. 6443 if (VPlanBuildStressTest) 6444 return VectorizationFactor::Disabled(); 6445 6446 return {VF, 0}; 6447 } 6448 6449 LLVM_DEBUG( 6450 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6451 "VPlan-native path.\n"); 6452 return VectorizationFactor::Disabled(); 6453 } 6454 6455 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6456 assert(OrigLoop->empty() && "Inner loop expected."); 6457 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6458 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6459 return None; 6460 6461 // Invalidate interleave groups if all blocks of loop will be predicated. 6462 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6463 !useMaskedInterleavedAccesses(*TTI)) { 6464 LLVM_DEBUG( 6465 dbgs() 6466 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6467 "which requires masked-interleaved support.\n"); 6468 CM.InterleaveInfo.reset(); 6469 } 6470 6471 if (UserVF) { 6472 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6473 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6474 // Collect the instructions (and their associated costs) that will be more 6475 // profitable to scalarize. 6476 CM.selectUserVectorizationFactor(UserVF); 6477 buildVPlansWithVPRecipes(UserVF, UserVF); 6478 LLVM_DEBUG(printPlans(dbgs())); 6479 return {{UserVF, 0}}; 6480 } 6481 6482 unsigned MaxVF = MaybeMaxVF.getValue(); 6483 assert(MaxVF != 0 && "MaxVF is zero."); 6484 6485 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6486 // Collect Uniform and Scalar instructions after vectorization with VF. 6487 CM.collectUniformsAndScalars(VF); 6488 6489 // Collect the instructions (and their associated costs) that will be more 6490 // profitable to scalarize. 6491 if (VF > 1) 6492 CM.collectInstsToScalarize(VF); 6493 } 6494 6495 buildVPlansWithVPRecipes(1, MaxVF); 6496 LLVM_DEBUG(printPlans(dbgs())); 6497 if (MaxVF == 1) 6498 return VectorizationFactor::Disabled(); 6499 6500 // Select the optimal vectorization factor. 6501 return CM.selectVectorizationFactor(MaxVF); 6502 } 6503 6504 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6505 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6506 << '\n'); 6507 BestVF = VF; 6508 BestUF = UF; 6509 6510 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6511 return !Plan->hasVF(VF); 6512 }); 6513 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6514 } 6515 6516 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6517 DominatorTree *DT) { 6518 // Perform the actual loop transformation. 6519 6520 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6521 VPCallbackILV CallbackILV(ILV); 6522 6523 VPTransformState State{BestVF, BestUF, LI, 6524 DT, ILV.Builder, ILV.VectorLoopValueMap, 6525 &ILV, CallbackILV}; 6526 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6527 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6528 6529 //===------------------------------------------------===// 6530 // 6531 // Notice: any optimization or new instruction that go 6532 // into the code below should also be implemented in 6533 // the cost-model. 6534 // 6535 //===------------------------------------------------===// 6536 6537 // 2. Copy and widen instructions from the old loop into the new loop. 6538 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6539 VPlans.front()->execute(&State); 6540 6541 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6542 // predication, updating analyses. 6543 ILV.fixVectorizedLoop(); 6544 } 6545 6546 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6547 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6548 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6549 6550 // We create new control-flow for the vectorized loop, so the original 6551 // condition will be dead after vectorization if it's only used by the 6552 // branch. 6553 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6554 if (Cmp && Cmp->hasOneUse()) 6555 DeadInstructions.insert(Cmp); 6556 6557 // We create new "steps" for induction variable updates to which the original 6558 // induction variables map. An original update instruction will be dead if 6559 // all its users except the induction variable are dead. 6560 for (auto &Induction : *Legal->getInductionVars()) { 6561 PHINode *Ind = Induction.first; 6562 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6563 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6564 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6565 DeadInstructions.end(); 6566 })) 6567 DeadInstructions.insert(IndUpdate); 6568 6569 // We record as "Dead" also the type-casting instructions we had identified 6570 // during induction analysis. We don't need any handling for them in the 6571 // vectorized loop because we have proven that, under a proper runtime 6572 // test guarding the vectorized loop, the value of the phi, and the casted 6573 // value of the phi, are the same. The last instruction in this casting chain 6574 // will get its scalar/vector/widened def from the scalar/vector/widened def 6575 // of the respective phi node. Any other casts in the induction def-use chain 6576 // have no other uses outside the phi update chain, and will be ignored. 6577 InductionDescriptor &IndDes = Induction.second; 6578 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6579 DeadInstructions.insert(Casts.begin(), Casts.end()); 6580 } 6581 } 6582 6583 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6584 6585 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6586 6587 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6588 Instruction::BinaryOps BinOp) { 6589 // When unrolling and the VF is 1, we only need to add a simple scalar. 6590 Type *Ty = Val->getType(); 6591 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6592 6593 if (Ty->isFloatingPointTy()) { 6594 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6595 6596 // Floating point operations had to be 'fast' to enable the unrolling. 6597 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6598 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6599 } 6600 Constant *C = ConstantInt::get(Ty, StartIdx); 6601 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6602 } 6603 6604 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6605 SmallVector<Metadata *, 4> MDs; 6606 // Reserve first location for self reference to the LoopID metadata node. 6607 MDs.push_back(nullptr); 6608 bool IsUnrollMetadata = false; 6609 MDNode *LoopID = L->getLoopID(); 6610 if (LoopID) { 6611 // First find existing loop unrolling disable metadata. 6612 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6613 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6614 if (MD) { 6615 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6616 IsUnrollMetadata = 6617 S && S->getString().startswith("llvm.loop.unroll.disable"); 6618 } 6619 MDs.push_back(LoopID->getOperand(i)); 6620 } 6621 } 6622 6623 if (!IsUnrollMetadata) { 6624 // Add runtime unroll disable metadata. 6625 LLVMContext &Context = L->getHeader()->getContext(); 6626 SmallVector<Metadata *, 1> DisableOperands; 6627 DisableOperands.push_back( 6628 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6629 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6630 MDs.push_back(DisableNode); 6631 MDNode *NewLoopID = MDNode::get(Context, MDs); 6632 // Set operand 0 to refer to the loop id itself. 6633 NewLoopID->replaceOperandWith(0, NewLoopID); 6634 L->setLoopID(NewLoopID); 6635 } 6636 } 6637 6638 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6639 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6640 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6641 bool PredicateAtRangeStart = Predicate(Range.Start); 6642 6643 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6644 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6645 Range.End = TmpVF; 6646 break; 6647 } 6648 6649 return PredicateAtRangeStart; 6650 } 6651 6652 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6653 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6654 /// of VF's starting at a given VF and extending it as much as possible. Each 6655 /// vectorization decision can potentially shorten this sub-range during 6656 /// buildVPlan(). 6657 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6658 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6659 VFRange SubRange = {VF, MaxVF + 1}; 6660 VPlans.push_back(buildVPlan(SubRange)); 6661 VF = SubRange.End; 6662 } 6663 } 6664 6665 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6666 VPlanPtr &Plan) { 6667 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6668 6669 // Look for cached value. 6670 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6671 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6672 if (ECEntryIt != EdgeMaskCache.end()) 6673 return ECEntryIt->second; 6674 6675 VPValue *SrcMask = createBlockInMask(Src, Plan); 6676 6677 // The terminator has to be a branch inst! 6678 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6679 assert(BI && "Unexpected terminator found"); 6680 6681 if (!BI->isConditional()) 6682 return EdgeMaskCache[Edge] = SrcMask; 6683 6684 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6685 assert(EdgeMask && "No Edge Mask found for condition"); 6686 6687 if (BI->getSuccessor(0) != Dst) 6688 EdgeMask = Builder.createNot(EdgeMask); 6689 6690 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6691 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6692 6693 return EdgeMaskCache[Edge] = EdgeMask; 6694 } 6695 6696 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6697 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6698 6699 // Look for cached value. 6700 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6701 if (BCEntryIt != BlockMaskCache.end()) 6702 return BCEntryIt->second; 6703 6704 // All-one mask is modelled as no-mask following the convention for masked 6705 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6706 VPValue *BlockMask = nullptr; 6707 6708 if (OrigLoop->getHeader() == BB) { 6709 if (!CM.blockNeedsPredication(BB)) 6710 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6711 6712 // Introduce the early-exit compare IV <= BTC to form header block mask. 6713 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6714 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6715 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6716 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6717 return BlockMaskCache[BB] = BlockMask; 6718 } 6719 6720 // This is the block mask. We OR all incoming edges. 6721 for (auto *Predecessor : predecessors(BB)) { 6722 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6723 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6724 return BlockMaskCache[BB] = EdgeMask; 6725 6726 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6727 BlockMask = EdgeMask; 6728 continue; 6729 } 6730 6731 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6732 } 6733 6734 return BlockMaskCache[BB] = BlockMask; 6735 } 6736 6737 VPWidenMemoryInstructionRecipe * 6738 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6739 VPlanPtr &Plan) { 6740 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6741 return nullptr; 6742 6743 auto willWiden = [&](unsigned VF) -> bool { 6744 if (VF == 1) 6745 return false; 6746 LoopVectorizationCostModel::InstWidening Decision = 6747 CM.getWideningDecision(I, VF); 6748 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6749 "CM decision should be taken at this point."); 6750 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6751 return true; 6752 if (CM.isScalarAfterVectorization(I, VF) || 6753 CM.isProfitableToScalarize(I, VF)) 6754 return false; 6755 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6756 }; 6757 6758 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6759 return nullptr; 6760 6761 VPValue *Mask = nullptr; 6762 if (Legal->isMaskRequired(I)) 6763 Mask = createBlockInMask(I->getParent(), Plan); 6764 6765 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6766 } 6767 6768 VPWidenIntOrFpInductionRecipe * 6769 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6770 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6771 // Check if this is an integer or fp induction. If so, build the recipe that 6772 // produces its scalar and vector values. 6773 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6774 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6775 II.getKind() == InductionDescriptor::IK_FpInduction) 6776 return new VPWidenIntOrFpInductionRecipe(Phi); 6777 6778 return nullptr; 6779 } 6780 6781 // Optimize the special case where the source is a constant integer 6782 // induction variable. Notice that we can only optimize the 'trunc' case 6783 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6784 // (c) other casts depend on pointer size. 6785 6786 // Determine whether \p K is a truncation based on an induction variable that 6787 // can be optimized. 6788 auto isOptimizableIVTruncate = 6789 [&](Instruction *K) -> std::function<bool(unsigned)> { 6790 return 6791 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6792 }; 6793 6794 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6795 isOptimizableIVTruncate(I), Range)) 6796 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6797 cast<TruncInst>(I)); 6798 return nullptr; 6799 } 6800 6801 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6802 PHINode *Phi = dyn_cast<PHINode>(I); 6803 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6804 return nullptr; 6805 6806 // We know that all PHIs in non-header blocks are converted into selects, so 6807 // we don't have to worry about the insertion order and we can just use the 6808 // builder. At this point we generate the predication tree. There may be 6809 // duplications since this is a simple recursive scan, but future 6810 // optimizations will clean it up. 6811 6812 SmallVector<VPValue *, 2> Masks; 6813 unsigned NumIncoming = Phi->getNumIncomingValues(); 6814 for (unsigned In = 0; In < NumIncoming; In++) { 6815 VPValue *EdgeMask = 6816 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6817 assert((EdgeMask || NumIncoming == 1) && 6818 "Multiple predecessors with one having a full mask"); 6819 if (EdgeMask) 6820 Masks.push_back(EdgeMask); 6821 } 6822 return new VPBlendRecipe(Phi, Masks); 6823 } 6824 6825 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6826 VFRange &Range) { 6827 6828 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6829 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6830 6831 if (IsPredicated) 6832 return false; 6833 6834 auto IsVectorizableOpcode = [](unsigned Opcode) { 6835 switch (Opcode) { 6836 case Instruction::Add: 6837 case Instruction::And: 6838 case Instruction::AShr: 6839 case Instruction::BitCast: 6840 case Instruction::Br: 6841 case Instruction::Call: 6842 case Instruction::FAdd: 6843 case Instruction::FCmp: 6844 case Instruction::FDiv: 6845 case Instruction::FMul: 6846 case Instruction::FNeg: 6847 case Instruction::FPExt: 6848 case Instruction::FPToSI: 6849 case Instruction::FPToUI: 6850 case Instruction::FPTrunc: 6851 case Instruction::FRem: 6852 case Instruction::FSub: 6853 case Instruction::ICmp: 6854 case Instruction::IntToPtr: 6855 case Instruction::Load: 6856 case Instruction::LShr: 6857 case Instruction::Mul: 6858 case Instruction::Or: 6859 case Instruction::PHI: 6860 case Instruction::PtrToInt: 6861 case Instruction::SDiv: 6862 case Instruction::Select: 6863 case Instruction::SExt: 6864 case Instruction::Shl: 6865 case Instruction::SIToFP: 6866 case Instruction::SRem: 6867 case Instruction::Store: 6868 case Instruction::Sub: 6869 case Instruction::Trunc: 6870 case Instruction::UDiv: 6871 case Instruction::UIToFP: 6872 case Instruction::URem: 6873 case Instruction::Xor: 6874 case Instruction::ZExt: 6875 return true; 6876 } 6877 return false; 6878 }; 6879 6880 if (!IsVectorizableOpcode(I->getOpcode())) 6881 return false; 6882 6883 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6884 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6885 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6886 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6887 return false; 6888 } 6889 6890 auto willWiden = [&](unsigned VF) -> bool { 6891 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6892 CM.isProfitableToScalarize(I, VF))) 6893 return false; 6894 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6895 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6896 // The following case may be scalarized depending on the VF. 6897 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6898 // version of the instruction. 6899 // Is it beneficial to perform intrinsic call compared to lib call? 6900 bool NeedToScalarize; 6901 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6902 bool UseVectorIntrinsic = 6903 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6904 return UseVectorIntrinsic || !NeedToScalarize; 6905 } 6906 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6907 assert(CM.getWideningDecision(I, VF) == 6908 LoopVectorizationCostModel::CM_Scalarize && 6909 "Memory widening decisions should have been taken care by now"); 6910 return false; 6911 } 6912 return true; 6913 }; 6914 6915 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6916 return false; 6917 // If this ingredient's recipe is to be recorded, keep its recipe a singleton 6918 // to avoid having to split recipes later. 6919 bool IsSingleton = Ingredient2Recipe.count(I); 6920 6921 // Success: widen this instruction. 6922 6923 // Use the default widening recipe. We optimize the common case where 6924 // consecutive instructions can be represented by a single recipe. 6925 if (!IsSingleton && !VPBB->empty() && LastExtensibleRecipe == &VPBB->back() && 6926 LastExtensibleRecipe->appendInstruction(I)) 6927 return true; 6928 6929 VPWidenRecipe *WidenRecipe = new VPWidenRecipe(I); 6930 if (!IsSingleton) 6931 LastExtensibleRecipe = WidenRecipe; 6932 setRecipe(I, WidenRecipe); 6933 VPBB->appendRecipe(WidenRecipe); 6934 return true; 6935 } 6936 6937 VPBasicBlock *VPRecipeBuilder::handleReplication( 6938 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6939 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6940 VPlanPtr &Plan) { 6941 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6942 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6943 Range); 6944 6945 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6946 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6947 6948 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6949 setRecipe(I, Recipe); 6950 6951 // Find if I uses a predicated instruction. If so, it will use its scalar 6952 // value. Avoid hoisting the insert-element which packs the scalar value into 6953 // a vector value, as that happens iff all users use the vector value. 6954 for (auto &Op : I->operands()) 6955 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6956 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6957 PredInst2Recipe[PredInst]->setAlsoPack(false); 6958 6959 // Finalize the recipe for Instr, first if it is not predicated. 6960 if (!IsPredicated) { 6961 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6962 VPBB->appendRecipe(Recipe); 6963 return VPBB; 6964 } 6965 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6966 assert(VPBB->getSuccessors().empty() && 6967 "VPBB has successors when handling predicated replication."); 6968 // Record predicated instructions for above packing optimizations. 6969 PredInst2Recipe[I] = Recipe; 6970 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6971 VPBlockUtils::insertBlockAfter(Region, VPBB); 6972 auto *RegSucc = new VPBasicBlock(); 6973 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6974 return RegSucc; 6975 } 6976 6977 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6978 VPRecipeBase *PredRecipe, 6979 VPlanPtr &Plan) { 6980 // Instructions marked for predication are replicated and placed under an 6981 // if-then construct to prevent side-effects. 6982 6983 // Generate recipes to compute the block mask for this region. 6984 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6985 6986 // Build the triangular if-then region. 6987 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6988 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6989 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6990 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6991 auto *PHIRecipe = 6992 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6993 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6994 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6995 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6996 6997 // Note: first set Entry as region entry and then connect successors starting 6998 // from it in order, to propagate the "parent" of each VPBasicBlock. 6999 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7000 VPBlockUtils::connectBlocks(Pred, Exit); 7001 7002 return Region; 7003 } 7004 7005 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 7006 VPlanPtr &Plan, VPBasicBlock *VPBB) { 7007 VPRecipeBase *Recipe = nullptr; 7008 7009 // First, check for specific widening recipes that deal with memory 7010 // operations, inductions and Phi nodes. 7011 if ((Recipe = tryToWidenMemory(Instr, Range, Plan)) || 7012 (Recipe = tryToOptimizeInduction(Instr, Range)) || 7013 (Recipe = tryToBlend(Instr, Plan)) || 7014 (isa<PHINode>(Instr) && 7015 (Recipe = new VPWidenPHIRecipe(cast<PHINode>(Instr))))) { 7016 setRecipe(Instr, Recipe); 7017 VPBB->appendRecipe(Recipe); 7018 return true; 7019 } 7020 7021 // Handle GEP widening. 7022 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 7023 auto Scalarize = [&](unsigned VF) { 7024 return CM.isScalarWithPredication(Instr, VF) || 7025 CM.isScalarAfterVectorization(Instr, VF) || 7026 CM.isProfitableToScalarize(Instr, VF); 7027 }; 7028 if (LoopVectorizationPlanner::getDecisionAndClampRange(Scalarize, Range)) 7029 return false; 7030 VPWidenGEPRecipe *Recipe = new VPWidenGEPRecipe(GEP, OrigLoop); 7031 setRecipe(Instr, Recipe); 7032 VPBB->appendRecipe(Recipe); 7033 return true; 7034 } 7035 7036 // Check if Instr is to be widened by a general VPWidenRecipe, after 7037 // having first checked for specific widening recipes. 7038 if (tryToWiden(Instr, VPBB, Range)) 7039 return true; 7040 7041 return false; 7042 } 7043 7044 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7045 unsigned MaxVF) { 7046 assert(OrigLoop->empty() && "Inner loop expected."); 7047 7048 // Collect conditions feeding internal conditional branches; they need to be 7049 // represented in VPlan for it to model masking. 7050 SmallPtrSet<Value *, 1> NeedDef; 7051 7052 auto *Latch = OrigLoop->getLoopLatch(); 7053 for (BasicBlock *BB : OrigLoop->blocks()) { 7054 if (BB == Latch) 7055 continue; 7056 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7057 if (Branch && Branch->isConditional()) 7058 NeedDef.insert(Branch->getCondition()); 7059 } 7060 7061 // If the tail is to be folded by masking, the primary induction variable 7062 // needs to be represented in VPlan for it to model early-exit masking. 7063 // Also, both the Phi and the live-out instruction of each reduction are 7064 // required in order to introduce a select between them in VPlan. 7065 if (CM.foldTailByMasking()) { 7066 NeedDef.insert(Legal->getPrimaryInduction()); 7067 for (auto &Reduction : *Legal->getReductionVars()) { 7068 NeedDef.insert(Reduction.first); 7069 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7070 } 7071 } 7072 7073 // Collect instructions from the original loop that will become trivially dead 7074 // in the vectorized loop. We don't need to vectorize these instructions. For 7075 // example, original induction update instructions can become dead because we 7076 // separately emit induction "steps" when generating code for the new loop. 7077 // Similarly, we create a new latch condition when setting up the structure 7078 // of the new loop, so the old one can become dead. 7079 SmallPtrSet<Instruction *, 4> DeadInstructions; 7080 collectTriviallyDeadInstructions(DeadInstructions); 7081 7082 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7083 VFRange SubRange = {VF, MaxVF + 1}; 7084 VPlans.push_back( 7085 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 7086 VF = SubRange.End; 7087 } 7088 } 7089 7090 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7091 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7092 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7093 7094 // Hold a mapping from predicated instructions to their recipes, in order to 7095 // fix their AlsoPack behavior if a user is determined to replicate and use a 7096 // scalar instead of vector value. 7097 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7098 7099 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7100 7101 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7102 7103 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 7104 7105 // --------------------------------------------------------------------------- 7106 // Pre-construction: record ingredients whose recipes we'll need to further 7107 // process after constructing the initial VPlan. 7108 // --------------------------------------------------------------------------- 7109 7110 // Mark instructions we'll need to sink later and their targets as 7111 // ingredients whose recipe we'll need to record. 7112 for (auto &Entry : SinkAfter) { 7113 RecipeBuilder.recordRecipeOf(Entry.first); 7114 RecipeBuilder.recordRecipeOf(Entry.second); 7115 } 7116 7117 // For each interleave group which is relevant for this (possibly trimmed) 7118 // Range, add it to the set of groups to be later applied to the VPlan and add 7119 // placeholders for its members' Recipes which we'll be replacing with a 7120 // single VPInterleaveRecipe. 7121 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7122 auto applyIG = [IG, this](unsigned VF) -> bool { 7123 return (VF >= 2 && // Query is illegal for VF == 1 7124 CM.getWideningDecision(IG->getInsertPos(), VF) == 7125 LoopVectorizationCostModel::CM_Interleave); 7126 }; 7127 if (!getDecisionAndClampRange(applyIG, Range)) 7128 continue; 7129 InterleaveGroups.insert(IG); 7130 for (unsigned i = 0; i < IG->getFactor(); i++) 7131 if (Instruction *Member = IG->getMember(i)) 7132 RecipeBuilder.recordRecipeOf(Member); 7133 }; 7134 7135 // --------------------------------------------------------------------------- 7136 // Build initial VPlan: Scan the body of the loop in a topological order to 7137 // visit each basic block after having visited its predecessor basic blocks. 7138 // --------------------------------------------------------------------------- 7139 7140 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7141 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7142 auto Plan = std::make_unique<VPlan>(VPBB); 7143 7144 // Represent values that will have defs inside VPlan. 7145 for (Value *V : NeedDef) 7146 Plan->addVPValue(V); 7147 7148 // Scan the body of the loop in a topological order to visit each basic block 7149 // after having visited its predecessor basic blocks. 7150 LoopBlocksDFS DFS(OrigLoop); 7151 DFS.perform(LI); 7152 7153 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7154 // Relevant instructions from basic block BB will be grouped into VPRecipe 7155 // ingredients and fill a new VPBasicBlock. 7156 unsigned VPBBsForBB = 0; 7157 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7158 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7159 VPBB = FirstVPBBForBB; 7160 Builder.setInsertPoint(VPBB); 7161 7162 // Introduce each ingredient into VPlan. 7163 for (Instruction &I : BB->instructionsWithoutDebug()) { 7164 Instruction *Instr = &I; 7165 7166 // First filter out irrelevant instructions, to ensure no recipes are 7167 // built for them. 7168 if (isa<BranchInst>(Instr) || 7169 DeadInstructions.find(Instr) != DeadInstructions.end()) 7170 continue; 7171 7172 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7173 continue; 7174 7175 // Otherwise, if all widening options failed, Instruction is to be 7176 // replicated. This may create a successor for VPBB. 7177 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7178 Instr, Range, VPBB, PredInst2Recipe, Plan); 7179 if (NextVPBB != VPBB) { 7180 VPBB = NextVPBB; 7181 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7182 : ""); 7183 } 7184 } 7185 } 7186 7187 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7188 // may also be empty, such as the last one VPBB, reflecting original 7189 // basic-blocks with no recipes. 7190 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7191 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7192 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7193 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7194 delete PreEntry; 7195 7196 // --------------------------------------------------------------------------- 7197 // Transform initial VPlan: Apply previously taken decisions, in order, to 7198 // bring the VPlan to its final state. 7199 // --------------------------------------------------------------------------- 7200 7201 // Apply Sink-After legal constraints. 7202 for (auto &Entry : SinkAfter) { 7203 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7204 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7205 Sink->moveAfter(Target); 7206 } 7207 7208 // Interleave memory: for each Interleave Group we marked earlier as relevant 7209 // for this VPlan, replace the Recipes widening its memory instructions with a 7210 // single VPInterleaveRecipe at its insertion point. 7211 for (auto IG : InterleaveGroups) { 7212 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7213 RecipeBuilder.getRecipe(IG->getInsertPos())); 7214 (new VPInterleaveRecipe(IG, Recipe->getMask()))->insertBefore(Recipe); 7215 7216 for (unsigned i = 0; i < IG->getFactor(); ++i) 7217 if (Instruction *Member = IG->getMember(i)) { 7218 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7219 } 7220 } 7221 7222 // Finally, if tail is folded by masking, introduce selects between the phi 7223 // and the live-out instruction of each reduction, at the end of the latch. 7224 if (CM.foldTailByMasking()) { 7225 Builder.setInsertPoint(VPBB); 7226 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7227 for (auto &Reduction : *Legal->getReductionVars()) { 7228 VPValue *Phi = Plan->getVPValue(Reduction.first); 7229 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7230 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7231 } 7232 } 7233 7234 std::string PlanName; 7235 raw_string_ostream RSO(PlanName); 7236 unsigned VF = Range.Start; 7237 Plan->addVF(VF); 7238 RSO << "Initial VPlan for VF={" << VF; 7239 for (VF *= 2; VF < Range.End; VF *= 2) { 7240 Plan->addVF(VF); 7241 RSO << "," << VF; 7242 } 7243 RSO << "},UF>=1"; 7244 RSO.flush(); 7245 Plan->setName(PlanName); 7246 7247 return Plan; 7248 } 7249 7250 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7251 // Outer loop handling: They may require CFG and instruction level 7252 // transformations before even evaluating whether vectorization is profitable. 7253 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7254 // the vectorization pipeline. 7255 assert(!OrigLoop->empty()); 7256 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7257 7258 // Create new empty VPlan 7259 auto Plan = std::make_unique<VPlan>(); 7260 7261 // Build hierarchical CFG 7262 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7263 HCFGBuilder.buildHierarchicalCFG(); 7264 7265 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7266 Plan->addVF(VF); 7267 7268 if (EnableVPlanPredication) { 7269 VPlanPredicator VPP(*Plan); 7270 VPP.predicate(); 7271 7272 // Avoid running transformation to recipes until masked code generation in 7273 // VPlan-native path is in place. 7274 return Plan; 7275 } 7276 7277 SmallPtrSet<Instruction *, 1> DeadInstructions; 7278 VPlanTransforms::VPInstructionsToVPRecipes( 7279 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7280 return Plan; 7281 } 7282 7283 Value* LoopVectorizationPlanner::VPCallbackILV:: 7284 getOrCreateVectorValues(Value *V, unsigned Part) { 7285 return ILV.getOrCreateVectorValue(V, Part); 7286 } 7287 7288 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7289 O << " +\n" 7290 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7291 IG->getInsertPos()->printAsOperand(O, false); 7292 if (User) { 7293 O << ", "; 7294 User->getOperand(0)->printAsOperand(O); 7295 } 7296 O << "\\l\""; 7297 for (unsigned i = 0; i < IG->getFactor(); ++i) 7298 if (Instruction *I = IG->getMember(i)) 7299 O << " +\n" 7300 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7301 } 7302 7303 void VPWidenRecipe::execute(VPTransformState &State) { 7304 for (auto &Instr : make_range(Begin, End)) 7305 State.ILV->widenInstruction(Instr); 7306 } 7307 7308 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7309 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant, 7310 IsIndexLoopInvariant); 7311 } 7312 7313 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7314 assert(!State.Instance && "Int or FP induction being replicated."); 7315 State.ILV->widenIntOrFpInduction(IV, Trunc); 7316 } 7317 7318 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7319 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7320 } 7321 7322 void VPBlendRecipe::execute(VPTransformState &State) { 7323 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7324 // We know that all PHIs in non-header blocks are converted into 7325 // selects, so we don't have to worry about the insertion order and we 7326 // can just use the builder. 7327 // At this point we generate the predication tree. There may be 7328 // duplications since this is a simple recursive scan, but future 7329 // optimizations will clean it up. 7330 7331 unsigned NumIncoming = Phi->getNumIncomingValues(); 7332 7333 assert((User || NumIncoming == 1) && 7334 "Multiple predecessors with predecessors having a full mask"); 7335 // Generate a sequence of selects of the form: 7336 // SELECT(Mask3, In3, 7337 // SELECT(Mask2, In2, 7338 // ( ...))) 7339 InnerLoopVectorizer::VectorParts Entry(State.UF); 7340 for (unsigned In = 0; In < NumIncoming; ++In) { 7341 for (unsigned Part = 0; Part < State.UF; ++Part) { 7342 // We might have single edge PHIs (blocks) - use an identity 7343 // 'select' for the first PHI operand. 7344 Value *In0 = 7345 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7346 if (In == 0) 7347 Entry[Part] = In0; // Initialize with the first incoming value. 7348 else { 7349 // Select between the current value and the previous incoming edge 7350 // based on the incoming mask. 7351 Value *Cond = State.get(User->getOperand(In), Part); 7352 Entry[Part] = 7353 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7354 } 7355 } 7356 } 7357 for (unsigned Part = 0; Part < State.UF; ++Part) 7358 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7359 } 7360 7361 void VPInterleaveRecipe::execute(VPTransformState &State) { 7362 assert(!State.Instance && "Interleave group being replicated."); 7363 if (!User) 7364 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7365 7366 // Last (and currently only) operand is a mask. 7367 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7368 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7369 for (unsigned Part = 0; Part < State.UF; ++Part) 7370 MaskValues[Part] = State.get(Mask, Part); 7371 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7372 } 7373 7374 void VPReplicateRecipe::execute(VPTransformState &State) { 7375 if (State.Instance) { // Generate a single instance. 7376 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7377 // Insert scalar instance packing it into a vector. 7378 if (AlsoPack && State.VF > 1) { 7379 // If we're constructing lane 0, initialize to start from undef. 7380 if (State.Instance->Lane == 0) { 7381 Value *Undef = 7382 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7383 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7384 } 7385 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7386 } 7387 return; 7388 } 7389 7390 // Generate scalar instances for all VF lanes of all UF parts, unless the 7391 // instruction is uniform inwhich case generate only the first lane for each 7392 // of the UF parts. 7393 unsigned EndLane = IsUniform ? 1 : State.VF; 7394 for (unsigned Part = 0; Part < State.UF; ++Part) 7395 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7396 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7397 } 7398 7399 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7400 assert(State.Instance && "Branch on Mask works only on single instance."); 7401 7402 unsigned Part = State.Instance->Part; 7403 unsigned Lane = State.Instance->Lane; 7404 7405 Value *ConditionBit = nullptr; 7406 if (!User) // Block in mask is all-one. 7407 ConditionBit = State.Builder.getTrue(); 7408 else { 7409 VPValue *BlockInMask = User->getOperand(0); 7410 ConditionBit = State.get(BlockInMask, Part); 7411 if (ConditionBit->getType()->isVectorTy()) 7412 ConditionBit = State.Builder.CreateExtractElement( 7413 ConditionBit, State.Builder.getInt32(Lane)); 7414 } 7415 7416 // Replace the temporary unreachable terminator with a new conditional branch, 7417 // whose two destinations will be set later when they are created. 7418 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7419 assert(isa<UnreachableInst>(CurrentTerminator) && 7420 "Expected to replace unreachable terminator with conditional branch."); 7421 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7422 CondBr->setSuccessor(0, nullptr); 7423 ReplaceInstWithInst(CurrentTerminator, CondBr); 7424 } 7425 7426 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7427 assert(State.Instance && "Predicated instruction PHI works per instance."); 7428 Instruction *ScalarPredInst = cast<Instruction>( 7429 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7430 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7431 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7432 assert(PredicatingBB && "Predicated block has no single predecessor."); 7433 7434 // By current pack/unpack logic we need to generate only a single phi node: if 7435 // a vector value for the predicated instruction exists at this point it means 7436 // the instruction has vector users only, and a phi for the vector value is 7437 // needed. In this case the recipe of the predicated instruction is marked to 7438 // also do that packing, thereby "hoisting" the insert-element sequence. 7439 // Otherwise, a phi node for the scalar value is needed. 7440 unsigned Part = State.Instance->Part; 7441 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7442 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7443 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7444 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7445 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7446 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7447 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7448 } else { 7449 Type *PredInstType = PredInst->getType(); 7450 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7451 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7452 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7453 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7454 } 7455 } 7456 7457 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7458 VPValue *Mask = getMask(); 7459 if (!Mask) 7460 return State.ILV->vectorizeMemoryInstruction(&Instr); 7461 7462 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7463 for (unsigned Part = 0; Part < State.UF; ++Part) 7464 MaskValues[Part] = State.get(Mask, Part); 7465 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7466 } 7467 7468 static ScalarEpilogueLowering 7469 getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, 7470 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 7471 TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7472 AssumptionCache *AC, LoopInfo *LI, 7473 ScalarEvolution *SE, DominatorTree *DT, 7474 const LoopAccessInfo *LAI) { 7475 ScalarEpilogueLowering SEL = CM_ScalarEpilogueAllowed; 7476 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7477 !PreferPredicateOverEpilog; 7478 7479 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7480 (F->hasOptSize() || 7481 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7482 PGSOQueryType::IRPass))) 7483 SEL = CM_ScalarEpilogueNotAllowedOptSize; 7484 else if (PreferPredicateOverEpilog || 7485 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7486 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, LAI) && 7487 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled && 7488 !PredicateOptDisabled)) 7489 SEL = CM_ScalarEpilogueNotNeededUsePredicate; 7490 7491 return SEL; 7492 } 7493 7494 // Process the loop in the VPlan-native vectorization path. This path builds 7495 // VPlan upfront in the vectorization pipeline, which allows to apply 7496 // VPlan-to-VPlan transformations from the very beginning without modifying the 7497 // input LLVM IR. 7498 static bool processLoopInVPlanNativePath( 7499 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7500 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7501 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7502 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7503 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7504 7505 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7506 Function *F = L->getHeader()->getParent(); 7507 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7508 7509 ScalarEpilogueLowering SEL = 7510 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, 7511 PSE.getSE(), DT, LVL->getLAI()); 7512 7513 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7514 &Hints, IAI); 7515 // Use the planner for outer loop vectorization. 7516 // TODO: CM is not used at this point inside the planner. Turn CM into an 7517 // optional argument if we don't need it in the future. 7518 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI); 7519 7520 // Get user vectorization factor. 7521 const unsigned UserVF = Hints.getWidth(); 7522 7523 // Plan how to best vectorize, return the best VF and its cost. 7524 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7525 7526 // If we are stress testing VPlan builds, do not attempt to generate vector 7527 // code. Masked vector code generation support will follow soon. 7528 // Also, do not attempt to vectorize if no vector code will be produced. 7529 if (VPlanBuildStressTest || EnableVPlanPredication || 7530 VectorizationFactor::Disabled() == VF) 7531 return false; 7532 7533 LVP.setBestPlan(VF.Width, 1); 7534 7535 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7536 &CM); 7537 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7538 << L->getHeader()->getParent()->getName() << "\"\n"); 7539 LVP.executePlan(LB, DT); 7540 7541 // Mark the loop as already vectorized to avoid vectorizing again. 7542 Hints.setAlreadyVectorized(); 7543 7544 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7545 return true; 7546 } 7547 7548 bool LoopVectorizePass::processLoop(Loop *L) { 7549 assert((EnableVPlanNativePath || L->empty()) && 7550 "VPlan-native path is not enabled. Only process inner loops."); 7551 7552 #ifndef NDEBUG 7553 const std::string DebugLocStr = getDebugLocString(L); 7554 #endif /* NDEBUG */ 7555 7556 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7557 << L->getHeader()->getParent()->getName() << "\" from " 7558 << DebugLocStr << "\n"); 7559 7560 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7561 7562 LLVM_DEBUG( 7563 dbgs() << "LV: Loop hints:" 7564 << " force=" 7565 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7566 ? "disabled" 7567 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7568 ? "enabled" 7569 : "?")) 7570 << " width=" << Hints.getWidth() 7571 << " unroll=" << Hints.getInterleave() << "\n"); 7572 7573 // Function containing loop 7574 Function *F = L->getHeader()->getParent(); 7575 7576 // Looking at the diagnostic output is the only way to determine if a loop 7577 // was vectorized (other than looking at the IR or machine code), so it 7578 // is important to generate an optimization remark for each loop. Most of 7579 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7580 // generated as OptimizationRemark and OptimizationRemarkMissed are 7581 // less verbose reporting vectorized loops and unvectorized loops that may 7582 // benefit from vectorization, respectively. 7583 7584 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7585 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7586 return false; 7587 } 7588 7589 PredicatedScalarEvolution PSE(*SE, *L); 7590 7591 // Check if it is legal to vectorize the loop. 7592 LoopVectorizationRequirements Requirements(*ORE); 7593 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7594 &Requirements, &Hints, DB, AC); 7595 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7596 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7597 Hints.emitRemarkWithHints(); 7598 return false; 7599 } 7600 7601 // Check the function attributes and profiles to find out if this function 7602 // should be optimized for size. 7603 ScalarEpilogueLowering SEL = 7604 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, 7605 PSE.getSE(), DT, LVL.getLAI()); 7606 7607 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7608 // here. They may require CFG and instruction level transformations before 7609 // even evaluating whether vectorization is profitable. Since we cannot modify 7610 // the incoming IR, we need to build VPlan upfront in the vectorization 7611 // pipeline. 7612 if (!L->empty()) 7613 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7614 ORE, BFI, PSI, Hints); 7615 7616 assert(L->empty() && "Inner loop expected."); 7617 7618 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7619 // count by optimizing for size, to minimize overheads. 7620 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7621 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7622 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7623 << "This loop is worth vectorizing only if no scalar " 7624 << "iteration overheads are incurred."); 7625 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7626 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7627 else { 7628 LLVM_DEBUG(dbgs() << "\n"); 7629 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7630 } 7631 } 7632 7633 // Check the function attributes to see if implicit floats are allowed. 7634 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7635 // an integer loop and the vector instructions selected are purely integer 7636 // vector instructions? 7637 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7638 reportVectorizationFailure( 7639 "Can't vectorize when the NoImplicitFloat attribute is used", 7640 "loop not vectorized due to NoImplicitFloat attribute", 7641 "NoImplicitFloat", ORE, L); 7642 Hints.emitRemarkWithHints(); 7643 return false; 7644 } 7645 7646 // Check if the target supports potentially unsafe FP vectorization. 7647 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7648 // for the target we're vectorizing for, to make sure none of the 7649 // additional fp-math flags can help. 7650 if (Hints.isPotentiallyUnsafe() && 7651 TTI->isFPVectorizationPotentiallyUnsafe()) { 7652 reportVectorizationFailure( 7653 "Potentially unsafe FP op prevents vectorization", 7654 "loop not vectorized due to unsafe FP support.", 7655 "UnsafeFP", ORE, L); 7656 Hints.emitRemarkWithHints(); 7657 return false; 7658 } 7659 7660 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7661 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7662 7663 // If an override option has been passed in for interleaved accesses, use it. 7664 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7665 UseInterleaved = EnableInterleavedMemAccesses; 7666 7667 // Analyze interleaved memory accesses. 7668 if (UseInterleaved) { 7669 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7670 } 7671 7672 // Use the cost model. 7673 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7674 F, &Hints, IAI); 7675 CM.collectValuesToIgnore(); 7676 7677 // Use the planner for vectorization. 7678 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI); 7679 7680 // Get user vectorization factor. 7681 unsigned UserVF = Hints.getWidth(); 7682 7683 // Plan how to best vectorize, return the best VF and its cost. 7684 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7685 7686 VectorizationFactor VF = VectorizationFactor::Disabled(); 7687 unsigned IC = 1; 7688 unsigned UserIC = Hints.getInterleave(); 7689 7690 if (MaybeVF) { 7691 VF = *MaybeVF; 7692 // Select the interleave count. 7693 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7694 } 7695 7696 // Identify the diagnostic messages that should be produced. 7697 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7698 bool VectorizeLoop = true, InterleaveLoop = true; 7699 if (Requirements.doesNotMeet(F, L, Hints)) { 7700 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7701 "requirements.\n"); 7702 Hints.emitRemarkWithHints(); 7703 return false; 7704 } 7705 7706 if (VF.Width == 1) { 7707 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7708 VecDiagMsg = std::make_pair( 7709 "VectorizationNotBeneficial", 7710 "the cost-model indicates that vectorization is not beneficial"); 7711 VectorizeLoop = false; 7712 } 7713 7714 if (!MaybeVF && UserIC > 1) { 7715 // Tell the user interleaving was avoided up-front, despite being explicitly 7716 // requested. 7717 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7718 "interleaving should be avoided up front\n"); 7719 IntDiagMsg = std::make_pair( 7720 "InterleavingAvoided", 7721 "Ignoring UserIC, because interleaving was avoided up front"); 7722 InterleaveLoop = false; 7723 } else if (IC == 1 && UserIC <= 1) { 7724 // Tell the user interleaving is not beneficial. 7725 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7726 IntDiagMsg = std::make_pair( 7727 "InterleavingNotBeneficial", 7728 "the cost-model indicates that interleaving is not beneficial"); 7729 InterleaveLoop = false; 7730 if (UserIC == 1) { 7731 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7732 IntDiagMsg.second += 7733 " and is explicitly disabled or interleave count is set to 1"; 7734 } 7735 } else if (IC > 1 && UserIC == 1) { 7736 // Tell the user interleaving is beneficial, but it explicitly disabled. 7737 LLVM_DEBUG( 7738 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7739 IntDiagMsg = std::make_pair( 7740 "InterleavingBeneficialButDisabled", 7741 "the cost-model indicates that interleaving is beneficial " 7742 "but is explicitly disabled or interleave count is set to 1"); 7743 InterleaveLoop = false; 7744 } 7745 7746 // Override IC if user provided an interleave count. 7747 IC = UserIC > 0 ? UserIC : IC; 7748 7749 // Emit diagnostic messages, if any. 7750 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7751 if (!VectorizeLoop && !InterleaveLoop) { 7752 // Do not vectorize or interleaving the loop. 7753 ORE->emit([&]() { 7754 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7755 L->getStartLoc(), L->getHeader()) 7756 << VecDiagMsg.second; 7757 }); 7758 ORE->emit([&]() { 7759 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7760 L->getStartLoc(), L->getHeader()) 7761 << IntDiagMsg.second; 7762 }); 7763 return false; 7764 } else if (!VectorizeLoop && InterleaveLoop) { 7765 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7766 ORE->emit([&]() { 7767 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7768 L->getStartLoc(), L->getHeader()) 7769 << VecDiagMsg.second; 7770 }); 7771 } else if (VectorizeLoop && !InterleaveLoop) { 7772 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7773 << ") in " << DebugLocStr << '\n'); 7774 ORE->emit([&]() { 7775 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7776 L->getStartLoc(), L->getHeader()) 7777 << IntDiagMsg.second; 7778 }); 7779 } else if (VectorizeLoop && InterleaveLoop) { 7780 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7781 << ") in " << DebugLocStr << '\n'); 7782 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7783 } 7784 7785 LVP.setBestPlan(VF.Width, IC); 7786 7787 using namespace ore; 7788 bool DisableRuntimeUnroll = false; 7789 MDNode *OrigLoopID = L->getLoopID(); 7790 7791 if (!VectorizeLoop) { 7792 assert(IC > 1 && "interleave count should not be 1 or 0"); 7793 // If we decided that it is not legal to vectorize the loop, then 7794 // interleave it. 7795 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7796 &CM); 7797 LVP.executePlan(Unroller, DT); 7798 7799 ORE->emit([&]() { 7800 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7801 L->getHeader()) 7802 << "interleaved loop (interleaved count: " 7803 << NV("InterleaveCount", IC) << ")"; 7804 }); 7805 } else { 7806 // If we decided that it is *legal* to vectorize the loop, then do it. 7807 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7808 &LVL, &CM); 7809 LVP.executePlan(LB, DT); 7810 ++LoopsVectorized; 7811 7812 // Add metadata to disable runtime unrolling a scalar loop when there are 7813 // no runtime checks about strides and memory. A scalar loop that is 7814 // rarely used is not worth unrolling. 7815 if (!LB.areSafetyChecksAdded()) 7816 DisableRuntimeUnroll = true; 7817 7818 // Report the vectorization decision. 7819 ORE->emit([&]() { 7820 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7821 L->getHeader()) 7822 << "vectorized loop (vectorization width: " 7823 << NV("VectorizationFactor", VF.Width) 7824 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7825 }); 7826 } 7827 7828 Optional<MDNode *> RemainderLoopID = 7829 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7830 LLVMLoopVectorizeFollowupEpilogue}); 7831 if (RemainderLoopID.hasValue()) { 7832 L->setLoopID(RemainderLoopID.getValue()); 7833 } else { 7834 if (DisableRuntimeUnroll) 7835 AddRuntimeUnrollDisableMetaData(L); 7836 7837 // Mark the loop as already vectorized to avoid vectorizing again. 7838 Hints.setAlreadyVectorized(); 7839 } 7840 7841 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7842 return true; 7843 } 7844 7845 bool LoopVectorizePass::runImpl( 7846 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7847 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7848 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7849 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7850 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7851 SE = &SE_; 7852 LI = &LI_; 7853 TTI = &TTI_; 7854 DT = &DT_; 7855 BFI = &BFI_; 7856 TLI = TLI_; 7857 AA = &AA_; 7858 AC = &AC_; 7859 GetLAA = &GetLAA_; 7860 DB = &DB_; 7861 ORE = &ORE_; 7862 PSI = PSI_; 7863 7864 // Don't attempt if 7865 // 1. the target claims to have no vector registers, and 7866 // 2. interleaving won't help ILP. 7867 // 7868 // The second condition is necessary because, even if the target has no 7869 // vector registers, loop vectorization may still enable scalar 7870 // interleaving. 7871 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 7872 TTI->getMaxInterleaveFactor(1) < 2) 7873 return false; 7874 7875 bool Changed = false; 7876 7877 // The vectorizer requires loops to be in simplified form. 7878 // Since simplification may add new inner loops, it has to run before the 7879 // legality and profitability checks. This means running the loop vectorizer 7880 // will simplify all loops, regardless of whether anything end up being 7881 // vectorized. 7882 for (auto &L : *LI) 7883 Changed |= 7884 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7885 7886 // Build up a worklist of inner-loops to vectorize. This is necessary as 7887 // the act of vectorizing or partially unrolling a loop creates new loops 7888 // and can invalidate iterators across the loops. 7889 SmallVector<Loop *, 8> Worklist; 7890 7891 for (Loop *L : *LI) 7892 collectSupportedLoops(*L, LI, ORE, Worklist); 7893 7894 LoopsAnalyzed += Worklist.size(); 7895 7896 // Now walk the identified inner loops. 7897 while (!Worklist.empty()) { 7898 Loop *L = Worklist.pop_back_val(); 7899 7900 // For the inner loops we actually process, form LCSSA to simplify the 7901 // transform. 7902 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7903 7904 Changed |= processLoop(L); 7905 } 7906 7907 // Process each loop nest in the function. 7908 return Changed; 7909 } 7910 7911 PreservedAnalyses LoopVectorizePass::run(Function &F, 7912 FunctionAnalysisManager &AM) { 7913 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7914 auto &LI = AM.getResult<LoopAnalysis>(F); 7915 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7916 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7917 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7918 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7919 auto &AA = AM.getResult<AAManager>(F); 7920 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7921 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7922 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7923 MemorySSA *MSSA = EnableMSSALoopDependency 7924 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7925 : nullptr; 7926 7927 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7928 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7929 [&](Loop &L) -> const LoopAccessInfo & { 7930 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7931 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7932 }; 7933 const ModuleAnalysisManager &MAM = 7934 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7935 ProfileSummaryInfo *PSI = 7936 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7937 bool Changed = 7938 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7939 if (!Changed) 7940 return PreservedAnalyses::all(); 7941 PreservedAnalyses PA; 7942 7943 // We currently do not preserve loopinfo/dominator analyses with outer loop 7944 // vectorization. Until this is addressed, mark these analyses as preserved 7945 // only for non-VPlan-native path. 7946 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7947 if (!EnableVPlanNativePath) { 7948 PA.preserve<LoopAnalysis>(); 7949 PA.preserve<DominatorTreeAnalysis>(); 7950 } 7951 PA.preserve<BasicAA>(); 7952 PA.preserve<GlobalsAA>(); 7953 return PA; 7954 } 7955