1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/PatternMatch.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/InstructionCost.h" 135 #include "llvm/Support/MathExtras.h" 136 #include "llvm/Support/raw_ostream.h" 137 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 138 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <cstdlib> 149 #include <functional> 150 #include <iterator> 151 #include <limits> 152 #include <memory> 153 #include <string> 154 #include <tuple> 155 #include <utility> 156 157 using namespace llvm; 158 159 #define LV_NAME "loop-vectorize" 160 #define DEBUG_TYPE LV_NAME 161 162 #ifndef NDEBUG 163 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 164 #endif 165 166 /// @{ 167 /// Metadata attribute names 168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 169 const char LLVMLoopVectorizeFollowupVectorized[] = 170 "llvm.loop.vectorize.followup_vectorized"; 171 const char LLVMLoopVectorizeFollowupEpilogue[] = 172 "llvm.loop.vectorize.followup_epilogue"; 173 /// @} 174 175 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 178 179 static cl::opt<bool> EnableEpilogueVectorization( 180 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 181 cl::desc("Enable vectorization of epilogue loops.")); 182 183 static cl::opt<unsigned> EpilogueVectorizationForceVF( 184 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 185 cl::desc("When epilogue vectorization is enabled, and a value greater than " 186 "1 is specified, forces the given VF for all applicable epilogue " 187 "loops.")); 188 189 static cl::opt<unsigned> EpilogueVectorizationMinVF( 190 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 191 cl::desc("Only loops with vectorization factor equal to or larger than " 192 "the specified value are considered for epilogue vectorization.")); 193 194 /// Loops with a known constant trip count below this number are vectorized only 195 /// if no scalar iteration overheads are incurred. 196 static cl::opt<unsigned> TinyTripCountVectorThreshold( 197 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 198 cl::desc("Loops with a constant trip count that is smaller than this " 199 "value are vectorized only if no scalar iteration overheads " 200 "are incurred.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 208 // that predication is preferred, and this lists all options. I.e., the 209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 210 // and predicate the instructions accordingly. If tail-folding fails, there are 211 // different fallback strategies depending on these values: 212 namespace PreferPredicateTy { 213 enum Option { 214 ScalarEpilogue = 0, 215 PredicateElseScalarEpilogue, 216 PredicateOrDontVectorize 217 }; 218 } // namespace PreferPredicateTy 219 220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 221 "prefer-predicate-over-epilogue", 222 cl::init(PreferPredicateTy::ScalarEpilogue), 223 cl::Hidden, 224 cl::desc("Tail-folding and predication preferences over creating a scalar " 225 "epilogue loop."), 226 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 227 "scalar-epilogue", 228 "Don't tail-predicate loops, create scalar epilogue"), 229 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 230 "predicate-else-scalar-epilogue", 231 "prefer tail-folding, create scalar epilogue if tail " 232 "folding fails."), 233 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 234 "predicate-dont-vectorize", 235 "prefers tail-folding, don't attempt vectorization if " 236 "tail-folding fails."))); 237 238 static cl::opt<bool> MaximizeBandwidth( 239 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 240 cl::desc("Maximize bandwidth when selecting vectorization factor which " 241 "will be determined by the smallest type in loop.")); 242 243 static cl::opt<bool> EnableInterleavedMemAccesses( 244 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 246 247 /// An interleave-group may need masking if it resides in a block that needs 248 /// predication, or in order to mask away gaps. 249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 250 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 251 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 252 253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 254 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 255 cl::desc("We don't interleave loops with a estimated constant trip count " 256 "below this number")); 257 258 static cl::opt<unsigned> ForceTargetNumScalarRegs( 259 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of scalar registers.")); 261 262 static cl::opt<unsigned> ForceTargetNumVectorRegs( 263 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's number of vector registers.")); 265 266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 267 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 268 cl::desc("A flag that overrides the target's max interleave factor for " 269 "scalar loops.")); 270 271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 272 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 273 cl::desc("A flag that overrides the target's max interleave factor for " 274 "vectorized loops.")); 275 276 static cl::opt<unsigned> ForceTargetInstructionCost( 277 "force-target-instruction-cost", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's expected cost for " 279 "an instruction to a single constant value. Mostly " 280 "useful for getting consistent testing.")); 281 282 static cl::opt<bool> ForceTargetSupportsScalableVectors( 283 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 284 cl::desc( 285 "Pretend that scalable vectors are supported, even if the target does " 286 "not support them. This flag should only be used for testing.")); 287 288 static cl::opt<unsigned> SmallLoopCost( 289 "small-loop-cost", cl::init(20), cl::Hidden, 290 cl::desc( 291 "The cost of a loop that is considered 'small' by the interleaver.")); 292 293 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 294 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 295 cl::desc("Enable the use of the block frequency analysis to access PGO " 296 "heuristics minimizing code growth in cold regions and being more " 297 "aggressive in hot regions.")); 298 299 // Runtime interleave loops for load/store throughput. 300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 301 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 302 cl::desc( 303 "Enable runtime interleaving until load/store ports are saturated")); 304 305 /// Interleave small loops with scalar reductions. 306 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 307 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 308 cl::desc("Enable interleaving for loops with small iteration counts that " 309 "contain scalar reductions to expose ILP.")); 310 311 /// The number of stores in a loop that are allowed to need predication. 312 static cl::opt<unsigned> NumberOfStoresToPredicate( 313 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 314 cl::desc("Max number of stores to be predicated behind an if.")); 315 316 static cl::opt<bool> EnableIndVarRegisterHeur( 317 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 318 cl::desc("Count the induction variable only once when interleaving")); 319 320 static cl::opt<bool> EnableCondStoresVectorization( 321 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 322 cl::desc("Enable if predication of stores during vectorization.")); 323 324 static cl::opt<unsigned> MaxNestedScalarReductionIC( 325 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 326 cl::desc("The maximum interleave count to use when interleaving a scalar " 327 "reduction in a nested loop.")); 328 329 static cl::opt<bool> 330 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 331 cl::Hidden, 332 cl::desc("Prefer in-loop vector reductions, " 333 "overriding the targets preference.")); 334 335 cl::opt<bool> EnableStrictReductions( 336 "enable-strict-reductions", cl::init(false), cl::Hidden, 337 cl::desc("Enable the vectorisation of loops with in-order (strict) " 338 "FP reductions")); 339 340 static cl::opt<bool> PreferPredicatedReductionSelect( 341 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 342 cl::desc( 343 "Prefer predicating a reduction operation over an after loop select.")); 344 345 cl::opt<bool> EnableVPlanNativePath( 346 "enable-vplan-native-path", cl::init(false), cl::Hidden, 347 cl::desc("Enable VPlan-native vectorization path with " 348 "support for outer loop vectorization.")); 349 350 // FIXME: Remove this switch once we have divergence analysis. Currently we 351 // assume divergent non-backedge branches when this switch is true. 352 cl::opt<bool> EnableVPlanPredication( 353 "enable-vplan-predication", cl::init(false), cl::Hidden, 354 cl::desc("Enable VPlan-native vectorization path predicator with " 355 "support for outer loop vectorization.")); 356 357 // This flag enables the stress testing of the VPlan H-CFG construction in the 358 // VPlan-native vectorization path. It must be used in conjuction with 359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 360 // verification of the H-CFGs built. 361 static cl::opt<bool> VPlanBuildStressTest( 362 "vplan-build-stress-test", cl::init(false), cl::Hidden, 363 cl::desc( 364 "Build VPlan for every supported loop nest in the function and bail " 365 "out right after the build (stress test the VPlan H-CFG construction " 366 "in the VPlan-native vectorization path).")); 367 368 cl::opt<bool> llvm::EnableLoopInterleaving( 369 "interleave-loops", cl::init(true), cl::Hidden, 370 cl::desc("Enable loop interleaving in Loop vectorization passes")); 371 cl::opt<bool> llvm::EnableLoopVectorization( 372 "vectorize-loops", cl::init(true), cl::Hidden, 373 cl::desc("Run the Loop vectorization passes")); 374 375 cl::opt<bool> PrintVPlansInDotFormat( 376 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 377 cl::desc("Use dot format instead of plain text when dumping VPlans")); 378 379 /// A helper function that returns true if the given type is irregular. The 380 /// type is irregular if its allocated size doesn't equal the store size of an 381 /// element of the corresponding vector type. 382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 383 // Determine if an array of N elements of type Ty is "bitcast compatible" 384 // with a <N x Ty> vector. 385 // This is only true if there is no padding between the array elements. 386 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 387 } 388 389 /// A helper function that returns the reciprocal of the block probability of 390 /// predicated blocks. If we return X, we are assuming the predicated block 391 /// will execute once for every X iterations of the loop header. 392 /// 393 /// TODO: We should use actual block probability here, if available. Currently, 394 /// we always assume predicated blocks have a 50% chance of executing. 395 static unsigned getReciprocalPredBlockProb() { return 2; } 396 397 /// A helper function that returns an integer or floating-point constant with 398 /// value C. 399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 400 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 401 : ConstantFP::get(Ty, C); 402 } 403 404 /// Returns "best known" trip count for the specified loop \p L as defined by 405 /// the following procedure: 406 /// 1) Returns exact trip count if it is known. 407 /// 2) Returns expected trip count according to profile data if any. 408 /// 3) Returns upper bound estimate if it is known. 409 /// 4) Returns None if all of the above failed. 410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 411 // Check if exact trip count is known. 412 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 413 return ExpectedTC; 414 415 // Check if there is an expected trip count available from profile data. 416 if (LoopVectorizeWithBlockFrequency) 417 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 418 return EstimatedTC; 419 420 // Check if upper bound estimate is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 422 return ExpectedTC; 423 424 return None; 425 } 426 427 // Forward declare GeneratedRTChecks. 428 class GeneratedRTChecks; 429 430 namespace llvm { 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop. 473 /// In the case of epilogue vectorization, this function is overriden to 474 /// handle the more complex control flow around the loops. 475 virtual BasicBlock *createVectorizedLoopSkeleton(); 476 477 /// Widen a single instruction within the innermost loop. 478 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 479 VPTransformState &State); 480 481 /// Widen a single call instruction within the innermost loop. 482 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 483 VPTransformState &State); 484 485 /// Widen a single select instruction within the innermost loop. 486 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 487 bool InvariantCond, VPTransformState &State); 488 489 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 490 void fixVectorizedLoop(VPTransformState &State); 491 492 // Return true if any runtime check is added. 493 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 494 495 /// A type for vectorized values in the new loop. Each value from the 496 /// original loop, when vectorized, is represented by UF vector values in the 497 /// new unrolled loop, where UF is the unroll factor. 498 using VectorParts = SmallVector<Value *, 2>; 499 500 /// Vectorize a single GetElementPtrInst based on information gathered and 501 /// decisions taken during planning. 502 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 503 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 504 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 505 506 /// Vectorize a single PHINode in a block. This method handles the induction 507 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 508 /// arbitrary length vectors. 509 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 510 VPWidenPHIRecipe *PhiR, VPTransformState &State); 511 512 /// A helper function to scalarize a single Instruction in the innermost loop. 513 /// Generates a sequence of scalar instances for each lane between \p MinLane 514 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 515 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 516 /// Instr's operands. 517 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 518 const VPIteration &Instance, bool IfPredicateInstr, 519 VPTransformState &State); 520 521 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 522 /// is provided, the integer induction variable will first be truncated to 523 /// the corresponding type. 524 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 525 VPValue *Def, VPValue *CastDef, 526 VPTransformState &State); 527 528 /// Construct the vector value of a scalarized value \p V one lane at a time. 529 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 530 VPTransformState &State); 531 532 /// Try to vectorize interleaved access group \p Group with the base address 533 /// given in \p Addr, optionally masking the vector operations if \p 534 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 535 /// values in the vectorized loop. 536 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 537 ArrayRef<VPValue *> VPDefs, 538 VPTransformState &State, VPValue *Addr, 539 ArrayRef<VPValue *> StoredValues, 540 VPValue *BlockInMask = nullptr); 541 542 /// Vectorize Load and Store instructions with the base address given in \p 543 /// Addr, optionally masking the vector operations if \p BlockInMask is 544 /// non-null. Use \p State to translate given VPValues to IR values in the 545 /// vectorized loop. 546 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 547 VPValue *Def, VPValue *Addr, 548 VPValue *StoredValue, VPValue *BlockInMask); 549 550 /// Set the debug location in the builder using the debug location in 551 /// the instruction. 552 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 553 554 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 555 void fixNonInductionPHIs(VPTransformState &State); 556 557 /// Returns true if the reordering of FP operations is not allowed, but we are 558 /// able to vectorize with strict in-order reductions for the given RdxDesc. 559 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 protected: 569 friend class LoopVectorizationPlanner; 570 571 /// A small list of PHINodes. 572 using PhiVector = SmallVector<PHINode *, 4>; 573 574 /// A type for scalarized values in the new loop. Each value from the 575 /// original loop, when scalarized, is represented by UF x VF scalar values 576 /// in the new unrolled loop, where UF is the unroll factor and VF is the 577 /// vectorization factor. 578 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 579 580 /// Set up the values of the IVs correctly when exiting the vector loop. 581 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 582 Value *CountRoundDown, Value *EndValue, 583 BasicBlock *MiddleBlock); 584 585 /// Create a new induction variable inside L. 586 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 587 Value *Step, Instruction *DL); 588 589 /// Handle all cross-iteration phis in the header. 590 void fixCrossIterationPHIs(VPTransformState &State); 591 592 /// Fix a first-order recurrence. This is the second phase of vectorizing 593 /// this phi node. 594 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 595 596 /// Fix a reduction cross-iteration phi. This is the second phase of 597 /// vectorizing this phi node. 598 void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State); 599 600 /// Clear NSW/NUW flags from reduction instructions if necessary. 601 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 602 VPTransformState &State); 603 604 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 605 /// means we need to add the appropriate incoming value from the middle 606 /// block as exiting edges from the scalar epilogue loop (if present) are 607 /// already in place, and we exit the vector loop exclusively to the middle 608 /// block. 609 void fixLCSSAPHIs(VPTransformState &State); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(VPTransformState &State); 618 619 /// This function adds 620 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 621 /// to each vector element of Val. The sequence starts at StartIndex. 622 /// \p Opcode is relevant for FP induction variable. 623 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 624 Instruction::BinaryOps Opcode = 625 Instruction::BinaryOpsEnd); 626 627 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 628 /// variable on which to base the steps, \p Step is the size of the step, and 629 /// \p EntryVal is the value from the original loop that maps to the steps. 630 /// Note that \p EntryVal doesn't have to be an induction variable - it 631 /// can also be a truncate instruction. 632 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 633 const InductionDescriptor &ID, VPValue *Def, 634 VPValue *CastDef, VPTransformState &State); 635 636 /// Create a vector induction phi node based on an existing scalar one. \p 637 /// EntryVal is the value from the original loop that maps to the vector phi 638 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 639 /// truncate instruction, instead of widening the original IV, we widen a 640 /// version of the IV truncated to \p EntryVal's type. 641 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 642 Value *Step, Value *Start, 643 Instruction *EntryVal, VPValue *Def, 644 VPValue *CastDef, 645 VPTransformState &State); 646 647 /// Returns true if an instruction \p I should be scalarized instead of 648 /// vectorized for the chosen vectorization factor. 649 bool shouldScalarizeInstruction(Instruction *I) const; 650 651 /// Returns true if we should generate a scalar version of \p IV. 652 bool needsScalarInduction(Instruction *IV) const; 653 654 /// If there is a cast involved in the induction variable \p ID, which should 655 /// be ignored in the vectorized loop body, this function records the 656 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 657 /// cast. We had already proved that the casted Phi is equal to the uncasted 658 /// Phi in the vectorized loop (under a runtime guard), and therefore 659 /// there is no need to vectorize the cast - the same value can be used in the 660 /// vector loop for both the Phi and the cast. 661 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 662 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 663 /// 664 /// \p EntryVal is the value from the original loop that maps to the vector 665 /// phi node and is used to distinguish what is the IV currently being 666 /// processed - original one (if \p EntryVal is a phi corresponding to the 667 /// original IV) or the "newly-created" one based on the proof mentioned above 668 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 669 /// latter case \p EntryVal is a TruncInst and we must not record anything for 670 /// that IV, but it's error-prone to expect callers of this routine to care 671 /// about that, hence this explicit parameter. 672 void recordVectorLoopValueForInductionCast( 673 const InductionDescriptor &ID, const Instruction *EntryVal, 674 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 675 unsigned Part, unsigned Lane = UINT_MAX); 676 677 /// Generate a shuffle sequence that will reverse the vector Vec. 678 virtual Value *reverseVector(Value *Vec); 679 680 /// Returns (and creates if needed) the original loop trip count. 681 Value *getOrCreateTripCount(Loop *NewLoop); 682 683 /// Returns (and creates if needed) the trip count of the widened loop. 684 Value *getOrCreateVectorTripCount(Loop *NewLoop); 685 686 /// Returns a bitcasted value to the requested vector type. 687 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 688 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 689 const DataLayout &DL); 690 691 /// Emit a bypass check to see if the vector trip count is zero, including if 692 /// it overflows. 693 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 694 695 /// Emit a bypass check to see if all of the SCEV assumptions we've 696 /// had to make are correct. Returns the block containing the checks or 697 /// nullptr if no checks have been added. 698 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 699 700 /// Emit bypass checks to check any memory assumptions we may have made. 701 /// Returns the block containing the checks or nullptr if no checks have been 702 /// added. 703 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 /// In cases where the loop skeleton is more complicated (eg. epilogue 724 /// vectorization) and the resume values can come from an additional bypass 725 /// block, the \p AdditionalBypass pair provides information about the bypass 726 /// block and the end value on the edge from bypass to this loop. 727 void createInductionResumeValues( 728 Loop *L, Value *VectorTripCount, 729 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 730 731 /// Complete the loop skeleton by adding debug MDs, creating appropriate 732 /// conditional branches in the middle block, preparing the builder and 733 /// running the verifier. Take in the vector loop \p L as argument, and return 734 /// the preheader of the completed vector loop. 735 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 736 737 /// Add additional metadata to \p To that was not present on \p Orig. 738 /// 739 /// Currently this is used to add the noalias annotations based on the 740 /// inserted memchecks. Use this for instructions that are *cloned* into the 741 /// vector loop. 742 void addNewMetadata(Instruction *To, const Instruction *Orig); 743 744 /// Add metadata from one instruction to another. 745 /// 746 /// This includes both the original MDs from \p From and additional ones (\see 747 /// addNewMetadata). Use this for *newly created* instructions in the vector 748 /// loop. 749 void addMetadata(Instruction *To, Instruction *From); 750 751 /// Similar to the previous function but it adds the metadata to a 752 /// vector of instructions. 753 void addMetadata(ArrayRef<Value *> To, Instruction *From); 754 755 /// Allow subclasses to override and print debug traces before/after vplan 756 /// execution, when trace information is requested. 757 virtual void printDebugTracesAtStart(){}; 758 virtual void printDebugTracesAtEnd(){}; 759 760 /// The original loop. 761 Loop *OrigLoop; 762 763 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 764 /// dynamic knowledge to simplify SCEV expressions and converts them to a 765 /// more usable form. 766 PredicatedScalarEvolution &PSE; 767 768 /// Loop Info. 769 LoopInfo *LI; 770 771 /// Dominator Tree. 772 DominatorTree *DT; 773 774 /// Alias Analysis. 775 AAResults *AA; 776 777 /// Target Library Info. 778 const TargetLibraryInfo *TLI; 779 780 /// Target Transform Info. 781 const TargetTransformInfo *TTI; 782 783 /// Assumption Cache. 784 AssumptionCache *AC; 785 786 /// Interface to emit optimization remarks. 787 OptimizationRemarkEmitter *ORE; 788 789 /// LoopVersioning. It's only set up (non-null) if memchecks were 790 /// used. 791 /// 792 /// This is currently only used to add no-alias metadata based on the 793 /// memchecks. The actually versioning is performed manually. 794 std::unique_ptr<LoopVersioning> LVer; 795 796 /// The vectorization SIMD factor to use. Each vector will have this many 797 /// vector elements. 798 ElementCount VF; 799 800 /// The vectorization unroll factor to use. Each scalar is vectorized to this 801 /// many different vector instructions. 802 unsigned UF; 803 804 /// The builder that we use 805 IRBuilder<> Builder; 806 807 // --- Vectorization state --- 808 809 /// The vector-loop preheader. 810 BasicBlock *LoopVectorPreHeader; 811 812 /// The scalar-loop preheader. 813 BasicBlock *LoopScalarPreHeader; 814 815 /// Middle Block between the vector and the scalar. 816 BasicBlock *LoopMiddleBlock; 817 818 /// The (unique) ExitBlock of the scalar loop. Note that 819 /// there can be multiple exiting edges reaching this block. 820 BasicBlock *LoopExitBlock; 821 822 /// The vector loop body. 823 BasicBlock *LoopVectorBody; 824 825 /// The scalar loop body. 826 BasicBlock *LoopScalarBody; 827 828 /// A list of all bypass blocks. The first block is the entry of the loop. 829 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 830 831 /// The new Induction variable which was added to the new block. 832 PHINode *Induction = nullptr; 833 834 /// The induction variable of the old basic block. 835 PHINode *OldInduction = nullptr; 836 837 /// Store instructions that were predicated. 838 SmallVector<Instruction *, 4> PredicatedInstructions; 839 840 /// Trip count of the original loop. 841 Value *TripCount = nullptr; 842 843 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 844 Value *VectorTripCount = nullptr; 845 846 /// The legality analysis. 847 LoopVectorizationLegality *Legal; 848 849 /// The profitablity analysis. 850 LoopVectorizationCostModel *Cost; 851 852 // Record whether runtime checks are added. 853 bool AddedSafetyChecks = false; 854 855 // Holds the end values for each induction variable. We save the end values 856 // so we can later fix-up the external users of the induction variables. 857 DenseMap<PHINode *, Value *> IVEndValues; 858 859 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 860 // fixed up at the end of vector code generation. 861 SmallVector<PHINode *, 8> OrigPHIsToFix; 862 863 /// BFI and PSI are used to check for profile guided size optimizations. 864 BlockFrequencyInfo *BFI; 865 ProfileSummaryInfo *PSI; 866 867 // Whether this loop should be optimized for size based on profile guided size 868 // optimizatios. 869 bool OptForSizeBasedOnProfile; 870 871 /// Structure to hold information about generated runtime checks, responsible 872 /// for cleaning the checks, if vectorization turns out unprofitable. 873 GeneratedRTChecks &RTChecks; 874 }; 875 876 class InnerLoopUnroller : public InnerLoopVectorizer { 877 public: 878 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 879 LoopInfo *LI, DominatorTree *DT, 880 const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 883 LoopVectorizationLegality *LVL, 884 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 885 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 886 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 888 BFI, PSI, Check) {} 889 890 private: 891 Value *getBroadcastInstrs(Value *V) override; 892 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 893 Instruction::BinaryOps Opcode = 894 Instruction::BinaryOpsEnd) override; 895 Value *reverseVector(Value *Vec) override; 896 }; 897 898 /// Encapsulate information regarding vectorization of a loop and its epilogue. 899 /// This information is meant to be updated and used across two stages of 900 /// epilogue vectorization. 901 struct EpilogueLoopVectorizationInfo { 902 ElementCount MainLoopVF = ElementCount::getFixed(0); 903 unsigned MainLoopUF = 0; 904 ElementCount EpilogueVF = ElementCount::getFixed(0); 905 unsigned EpilogueUF = 0; 906 BasicBlock *MainLoopIterationCountCheck = nullptr; 907 BasicBlock *EpilogueIterationCountCheck = nullptr; 908 BasicBlock *SCEVSafetyCheck = nullptr; 909 BasicBlock *MemSafetyCheck = nullptr; 910 Value *TripCount = nullptr; 911 Value *VectorTripCount = nullptr; 912 913 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 914 unsigned EUF) 915 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 916 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 917 assert(EUF == 1 && 918 "A high UF for the epilogue loop is likely not beneficial."); 919 } 920 }; 921 922 /// An extension of the inner loop vectorizer that creates a skeleton for a 923 /// vectorized loop that has its epilogue (residual) also vectorized. 924 /// The idea is to run the vplan on a given loop twice, firstly to setup the 925 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 926 /// from the first step and vectorize the epilogue. This is achieved by 927 /// deriving two concrete strategy classes from this base class and invoking 928 /// them in succession from the loop vectorizer planner. 929 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 930 public: 931 InnerLoopAndEpilogueVectorizer( 932 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 933 DominatorTree *DT, const TargetLibraryInfo *TLI, 934 const TargetTransformInfo *TTI, AssumptionCache *AC, 935 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 936 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 937 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 938 GeneratedRTChecks &Checks) 939 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 940 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 941 Checks), 942 EPI(EPI) {} 943 944 // Override this function to handle the more complex control flow around the 945 // three loops. 946 BasicBlock *createVectorizedLoopSkeleton() final override { 947 return createEpilogueVectorizedLoopSkeleton(); 948 } 949 950 /// The interface for creating a vectorized skeleton using one of two 951 /// different strategies, each corresponding to one execution of the vplan 952 /// as described above. 953 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 954 955 /// Holds and updates state information required to vectorize the main loop 956 /// and its epilogue in two separate passes. This setup helps us avoid 957 /// regenerating and recomputing runtime safety checks. It also helps us to 958 /// shorten the iteration-count-check path length for the cases where the 959 /// iteration count of the loop is so small that the main vector loop is 960 /// completely skipped. 961 EpilogueLoopVectorizationInfo &EPI; 962 }; 963 964 /// A specialized derived class of inner loop vectorizer that performs 965 /// vectorization of *main* loops in the process of vectorizing loops and their 966 /// epilogues. 967 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 968 public: 969 EpilogueVectorizerMainLoop( 970 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 971 DominatorTree *DT, const TargetLibraryInfo *TLI, 972 const TargetTransformInfo *TTI, AssumptionCache *AC, 973 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 974 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 975 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 976 GeneratedRTChecks &Check) 977 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 978 EPI, LVL, CM, BFI, PSI, Check) {} 979 /// Implements the interface for creating a vectorized skeleton using the 980 /// *main loop* strategy (ie the first pass of vplan execution). 981 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 982 983 protected: 984 /// Emits an iteration count bypass check once for the main loop (when \p 985 /// ForEpilogue is false) and once for the epilogue loop (when \p 986 /// ForEpilogue is true). 987 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 988 bool ForEpilogue); 989 void printDebugTracesAtStart() override; 990 void printDebugTracesAtEnd() override; 991 }; 992 993 // A specialized derived class of inner loop vectorizer that performs 994 // vectorization of *epilogue* loops in the process of vectorizing loops and 995 // their epilogues. 996 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 997 public: 998 EpilogueVectorizerEpilogueLoop( 999 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1000 DominatorTree *DT, const TargetLibraryInfo *TLI, 1001 const TargetTransformInfo *TTI, AssumptionCache *AC, 1002 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1003 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1004 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1005 GeneratedRTChecks &Checks) 1006 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1007 EPI, LVL, CM, BFI, PSI, Checks) {} 1008 /// Implements the interface for creating a vectorized skeleton using the 1009 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1010 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1011 1012 protected: 1013 /// Emits an iteration count bypass check after the main vector loop has 1014 /// finished to see if there are any iterations left to execute by either 1015 /// the vector epilogue or the scalar epilogue. 1016 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1017 BasicBlock *Bypass, 1018 BasicBlock *Insert); 1019 void printDebugTracesAtStart() override; 1020 void printDebugTracesAtEnd() override; 1021 }; 1022 } // end namespace llvm 1023 1024 /// Look for a meaningful debug location on the instruction or it's 1025 /// operands. 1026 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1027 if (!I) 1028 return I; 1029 1030 DebugLoc Empty; 1031 if (I->getDebugLoc() != Empty) 1032 return I; 1033 1034 for (Use &Op : I->operands()) { 1035 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1036 if (OpInst->getDebugLoc() != Empty) 1037 return OpInst; 1038 } 1039 1040 return I; 1041 } 1042 1043 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1044 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1045 const DILocation *DIL = Inst->getDebugLoc(); 1046 1047 // When a FSDiscriminator is enabled, we don't need to add the multiply 1048 // factors to the discriminators. 1049 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1050 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1051 // FIXME: For scalable vectors, assume vscale=1. 1052 auto NewDIL = 1053 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1054 if (NewDIL) 1055 B.SetCurrentDebugLocation(NewDIL.getValue()); 1056 else 1057 LLVM_DEBUG(dbgs() 1058 << "Failed to create new discriminator: " 1059 << DIL->getFilename() << " Line: " << DIL->getLine()); 1060 } else 1061 B.SetCurrentDebugLocation(DIL); 1062 } else 1063 B.SetCurrentDebugLocation(DebugLoc()); 1064 } 1065 1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1067 /// is passed, the message relates to that particular instruction. 1068 #ifndef NDEBUG 1069 static void debugVectorizationMessage(const StringRef Prefix, 1070 const StringRef DebugMsg, 1071 Instruction *I) { 1072 dbgs() << "LV: " << Prefix << DebugMsg; 1073 if (I != nullptr) 1074 dbgs() << " " << *I; 1075 else 1076 dbgs() << '.'; 1077 dbgs() << '\n'; 1078 } 1079 #endif 1080 1081 /// Create an analysis remark that explains why vectorization failed 1082 /// 1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1084 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1085 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1086 /// the location of the remark. \return the remark object that can be 1087 /// streamed to. 1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1089 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1090 Value *CodeRegion = TheLoop->getHeader(); 1091 DebugLoc DL = TheLoop->getStartLoc(); 1092 1093 if (I) { 1094 CodeRegion = I->getParent(); 1095 // If there is no debug location attached to the instruction, revert back to 1096 // using the loop's. 1097 if (I->getDebugLoc()) 1098 DL = I->getDebugLoc(); 1099 } 1100 1101 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1102 } 1103 1104 /// Return a value for Step multiplied by VF. 1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1106 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1107 Constant *StepVal = ConstantInt::get( 1108 Step->getType(), 1109 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1110 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1111 } 1112 1113 namespace llvm { 1114 1115 /// Return the runtime value for VF. 1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1117 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1118 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1119 } 1120 1121 void reportVectorizationFailure(const StringRef DebugMsg, 1122 const StringRef OREMsg, const StringRef ORETag, 1123 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1124 Instruction *I) { 1125 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1126 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1127 ORE->emit( 1128 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1129 << "loop not vectorized: " << OREMsg); 1130 } 1131 1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1133 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1134 Instruction *I) { 1135 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1136 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1137 ORE->emit( 1138 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1139 << Msg); 1140 } 1141 1142 } // end namespace llvm 1143 1144 #ifndef NDEBUG 1145 /// \return string containing a file name and a line # for the given loop. 1146 static std::string getDebugLocString(const Loop *L) { 1147 std::string Result; 1148 if (L) { 1149 raw_string_ostream OS(Result); 1150 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1151 LoopDbgLoc.print(OS); 1152 else 1153 // Just print the module name. 1154 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1155 OS.flush(); 1156 } 1157 return Result; 1158 } 1159 #endif 1160 1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1162 const Instruction *Orig) { 1163 // If the loop was versioned with memchecks, add the corresponding no-alias 1164 // metadata. 1165 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1166 LVer->annotateInstWithNoAlias(To, Orig); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 namespace llvm { 1184 1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1186 // lowered. 1187 enum ScalarEpilogueLowering { 1188 1189 // The default: allowing scalar epilogues. 1190 CM_ScalarEpilogueAllowed, 1191 1192 // Vectorization with OptForSize: don't allow epilogues. 1193 CM_ScalarEpilogueNotAllowedOptSize, 1194 1195 // A special case of vectorisation with OptForSize: loops with a very small 1196 // trip count are considered for vectorization under OptForSize, thereby 1197 // making sure the cost of their loop body is dominant, free of runtime 1198 // guards and scalar iteration overheads. 1199 CM_ScalarEpilogueNotAllowedLowTripLoop, 1200 1201 // Loop hint predicate indicating an epilogue is undesired. 1202 CM_ScalarEpilogueNotNeededUsePredicate, 1203 1204 // Directive indicating we must either tail fold or not vectorize 1205 CM_ScalarEpilogueNotAllowedUsePredicate 1206 }; 1207 1208 /// ElementCountComparator creates a total ordering for ElementCount 1209 /// for the purposes of using it in a set structure. 1210 struct ElementCountComparator { 1211 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1212 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1213 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1214 } 1215 }; 1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1217 1218 /// LoopVectorizationCostModel - estimates the expected speedups due to 1219 /// vectorization. 1220 /// In many cases vectorization is not profitable. This can happen because of 1221 /// a number of reasons. In this class we mainly attempt to predict the 1222 /// expected speedup/slowdowns due to the supported instruction set. We use the 1223 /// TargetTransformInfo to query the different backends for the cost of 1224 /// different operations. 1225 class LoopVectorizationCostModel { 1226 public: 1227 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1228 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1229 LoopVectorizationLegality *Legal, 1230 const TargetTransformInfo &TTI, 1231 const TargetLibraryInfo *TLI, DemandedBits *DB, 1232 AssumptionCache *AC, 1233 OptimizationRemarkEmitter *ORE, const Function *F, 1234 const LoopVectorizeHints *Hints, 1235 InterleavedAccessInfo &IAI) 1236 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1237 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1238 Hints(Hints), InterleaveInfo(IAI) {} 1239 1240 /// \return An upper bound for the vectorization factors (both fixed and 1241 /// scalable). If the factors are 0, vectorization and interleaving should be 1242 /// avoided up front. 1243 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1244 1245 /// \return True if runtime checks are required for vectorization, and false 1246 /// otherwise. 1247 bool runtimeChecksRequired(); 1248 1249 /// \return The most profitable vectorization factor and the cost of that VF. 1250 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1251 /// then this vectorization factor will be selected if vectorization is 1252 /// possible. 1253 VectorizationFactor 1254 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1255 1256 VectorizationFactor 1257 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1258 const LoopVectorizationPlanner &LVP); 1259 1260 /// Setup cost-based decisions for user vectorization factor. 1261 void selectUserVectorizationFactor(ElementCount UserVF) { 1262 collectUniformsAndScalars(UserVF); 1263 collectInstsToScalarize(UserVF); 1264 } 1265 1266 /// \return The size (in bits) of the smallest and widest types in the code 1267 /// that needs to be vectorized. We ignore values that remain scalar such as 1268 /// 64 bit loop indices. 1269 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1270 1271 /// \return The desired interleave count. 1272 /// If interleave count has been specified by metadata it will be returned. 1273 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1274 /// are the selected vectorization factor and the cost of the selected VF. 1275 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1276 1277 /// Memory access instruction may be vectorized in more than one way. 1278 /// Form of instruction after vectorization depends on cost. 1279 /// This function takes cost-based decisions for Load/Store instructions 1280 /// and collects them in a map. This decisions map is used for building 1281 /// the lists of loop-uniform and loop-scalar instructions. 1282 /// The calculated cost is saved with widening decision in order to 1283 /// avoid redundant calculations. 1284 void setCostBasedWideningDecision(ElementCount VF); 1285 1286 /// A struct that represents some properties of the register usage 1287 /// of a loop. 1288 struct RegisterUsage { 1289 /// Holds the number of loop invariant values that are used in the loop. 1290 /// The key is ClassID of target-provided register class. 1291 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1292 /// Holds the maximum number of concurrent live intervals in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1295 }; 1296 1297 /// \return Returns information about the register usages of the loop for the 1298 /// given vectorization factors. 1299 SmallVector<RegisterUsage, 8> 1300 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1301 1302 /// Collect values we want to ignore in the cost model. 1303 void collectValuesToIgnore(); 1304 1305 /// Split reductions into those that happen in the loop, and those that happen 1306 /// outside. In loop reductions are collected into InLoopReductionChains. 1307 void collectInLoopReductions(); 1308 1309 /// Returns true if we should use strict in-order reductions for the given 1310 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1311 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1312 /// of FP operations. 1313 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1314 return EnableStrictReductions && !Hints->allowReordering() && 1315 RdxDesc.isOrdered(); 1316 } 1317 1318 /// \returns The smallest bitwidth each instruction can be represented with. 1319 /// The vector equivalents of these instructions should be truncated to this 1320 /// type. 1321 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1322 return MinBWs; 1323 } 1324 1325 /// \returns True if it is more profitable to scalarize instruction \p I for 1326 /// vectorization factor \p VF. 1327 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1328 assert(VF.isVector() && 1329 "Profitable to scalarize relevant only for VF > 1."); 1330 1331 // Cost model is not run in the VPlan-native path - return conservative 1332 // result until this changes. 1333 if (EnableVPlanNativePath) 1334 return false; 1335 1336 auto Scalars = InstsToScalarize.find(VF); 1337 assert(Scalars != InstsToScalarize.end() && 1338 "VF not yet analyzed for scalarization profitability"); 1339 return Scalars->second.find(I) != Scalars->second.end(); 1340 } 1341 1342 /// Returns true if \p I is known to be uniform after vectorization. 1343 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1344 if (VF.isScalar()) 1345 return true; 1346 1347 // Cost model is not run in the VPlan-native path - return conservative 1348 // result until this changes. 1349 if (EnableVPlanNativePath) 1350 return false; 1351 1352 auto UniformsPerVF = Uniforms.find(VF); 1353 assert(UniformsPerVF != Uniforms.end() && 1354 "VF not yet analyzed for uniformity"); 1355 return UniformsPerVF->second.count(I); 1356 } 1357 1358 /// Returns true if \p I is known to be scalar after vectorization. 1359 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1360 if (VF.isScalar()) 1361 return true; 1362 1363 // Cost model is not run in the VPlan-native path - return conservative 1364 // result until this changes. 1365 if (EnableVPlanNativePath) 1366 return false; 1367 1368 auto ScalarsPerVF = Scalars.find(VF); 1369 assert(ScalarsPerVF != Scalars.end() && 1370 "Scalar values are not calculated for VF"); 1371 return ScalarsPerVF->second.count(I); 1372 } 1373 1374 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1375 /// for vectorization factor \p VF. 1376 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1377 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1378 !isProfitableToScalarize(I, VF) && 1379 !isScalarAfterVectorization(I, VF); 1380 } 1381 1382 /// Decision that was taken during cost calculation for memory instruction. 1383 enum InstWidening { 1384 CM_Unknown, 1385 CM_Widen, // For consecutive accesses with stride +1. 1386 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1387 CM_Interleave, 1388 CM_GatherScatter, 1389 CM_Scalarize 1390 }; 1391 1392 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1393 /// instruction \p I and vector width \p VF. 1394 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1395 InstructionCost Cost) { 1396 assert(VF.isVector() && "Expected VF >=2"); 1397 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1398 } 1399 1400 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1401 /// interleaving group \p Grp and vector width \p VF. 1402 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1403 ElementCount VF, InstWidening W, 1404 InstructionCost Cost) { 1405 assert(VF.isVector() && "Expected VF >=2"); 1406 /// Broadcast this decicion to all instructions inside the group. 1407 /// But the cost will be assigned to one instruction only. 1408 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1409 if (auto *I = Grp->getMember(i)) { 1410 if (Grp->getInsertPos() == I) 1411 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1412 else 1413 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1414 } 1415 } 1416 } 1417 1418 /// Return the cost model decision for the given instruction \p I and vector 1419 /// width \p VF. Return CM_Unknown if this instruction did not pass 1420 /// through the cost modeling. 1421 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1422 assert(VF.isVector() && "Expected VF to be a vector VF"); 1423 // Cost model is not run in the VPlan-native path - return conservative 1424 // result until this changes. 1425 if (EnableVPlanNativePath) 1426 return CM_GatherScatter; 1427 1428 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1429 auto Itr = WideningDecisions.find(InstOnVF); 1430 if (Itr == WideningDecisions.end()) 1431 return CM_Unknown; 1432 return Itr->second.first; 1433 } 1434 1435 /// Return the vectorization cost for the given instruction \p I and vector 1436 /// width \p VF. 1437 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1438 assert(VF.isVector() && "Expected VF >=2"); 1439 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1440 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1441 "The cost is not calculated"); 1442 return WideningDecisions[InstOnVF].second; 1443 } 1444 1445 /// Return True if instruction \p I is an optimizable truncate whose operand 1446 /// is an induction variable. Such a truncate will be removed by adding a new 1447 /// induction variable with the destination type. 1448 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1449 // If the instruction is not a truncate, return false. 1450 auto *Trunc = dyn_cast<TruncInst>(I); 1451 if (!Trunc) 1452 return false; 1453 1454 // Get the source and destination types of the truncate. 1455 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1456 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1457 1458 // If the truncate is free for the given types, return false. Replacing a 1459 // free truncate with an induction variable would add an induction variable 1460 // update instruction to each iteration of the loop. We exclude from this 1461 // check the primary induction variable since it will need an update 1462 // instruction regardless. 1463 Value *Op = Trunc->getOperand(0); 1464 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1465 return false; 1466 1467 // If the truncated value is not an induction variable, return false. 1468 return Legal->isInductionPhi(Op); 1469 } 1470 1471 /// Collects the instructions to scalarize for each predicated instruction in 1472 /// the loop. 1473 void collectInstsToScalarize(ElementCount VF); 1474 1475 /// Collect Uniform and Scalar values for the given \p VF. 1476 /// The sets depend on CM decision for Load/Store instructions 1477 /// that may be vectorized as interleave, gather-scatter or scalarized. 1478 void collectUniformsAndScalars(ElementCount VF) { 1479 // Do the analysis once. 1480 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1481 return; 1482 setCostBasedWideningDecision(VF); 1483 collectLoopUniforms(VF); 1484 collectLoopScalars(VF); 1485 } 1486 1487 /// Returns true if the target machine supports masked store operation 1488 /// for the given \p DataType and kind of access to \p Ptr. 1489 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1490 return Legal->isConsecutivePtr(Ptr) && 1491 TTI.isLegalMaskedStore(DataType, Alignment); 1492 } 1493 1494 /// Returns true if the target machine supports masked load operation 1495 /// for the given \p DataType and kind of access to \p Ptr. 1496 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1497 return Legal->isConsecutivePtr(Ptr) && 1498 TTI.isLegalMaskedLoad(DataType, Alignment); 1499 } 1500 1501 /// Returns true if the target machine can represent \p V as a masked gather 1502 /// or scatter operation. 1503 bool isLegalGatherOrScatter(Value *V) { 1504 bool LI = isa<LoadInst>(V); 1505 bool SI = isa<StoreInst>(V); 1506 if (!LI && !SI) 1507 return false; 1508 auto *Ty = getLoadStoreType(V); 1509 Align Align = getLoadStoreAlignment(V); 1510 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1511 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1512 } 1513 1514 /// Returns true if the target machine supports all of the reduction 1515 /// variables found for the given VF. 1516 bool canVectorizeReductions(ElementCount VF) { 1517 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1518 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1519 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1520 })); 1521 } 1522 1523 /// Returns true if \p I is an instruction that will be scalarized with 1524 /// predication. Such instructions include conditional stores and 1525 /// instructions that may divide by zero. 1526 /// If a non-zero VF has been calculated, we check if I will be scalarized 1527 /// predication for that VF. 1528 bool isScalarWithPredication(Instruction *I) const; 1529 1530 // Returns true if \p I is an instruction that will be predicated either 1531 // through scalar predication or masked load/store or masked gather/scatter. 1532 // Superset of instructions that return true for isScalarWithPredication. 1533 bool isPredicatedInst(Instruction *I) { 1534 if (!blockNeedsPredication(I->getParent())) 1535 return false; 1536 // Loads and stores that need some form of masked operation are predicated 1537 // instructions. 1538 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1539 return Legal->isMaskRequired(I); 1540 return isScalarWithPredication(I); 1541 } 1542 1543 /// Returns true if \p I is a memory instruction with consecutive memory 1544 /// access that can be widened. 1545 bool 1546 memoryInstructionCanBeWidened(Instruction *I, 1547 ElementCount VF = ElementCount::getFixed(1)); 1548 1549 /// Returns true if \p I is a memory instruction in an interleaved-group 1550 /// of memory accesses that can be vectorized with wide vector loads/stores 1551 /// and shuffles. 1552 bool 1553 interleavedAccessCanBeWidened(Instruction *I, 1554 ElementCount VF = ElementCount::getFixed(1)); 1555 1556 /// Check if \p Instr belongs to any interleaved access group. 1557 bool isAccessInterleaved(Instruction *Instr) { 1558 return InterleaveInfo.isInterleaved(Instr); 1559 } 1560 1561 /// Get the interleaved access group that \p Instr belongs to. 1562 const InterleaveGroup<Instruction> * 1563 getInterleavedAccessGroup(Instruction *Instr) { 1564 return InterleaveInfo.getInterleaveGroup(Instr); 1565 } 1566 1567 /// Returns true if we're required to use a scalar epilogue for at least 1568 /// the final iteration of the original loop. 1569 bool requiresScalarEpilogue() const { 1570 if (!isScalarEpilogueAllowed()) 1571 return false; 1572 // If we might exit from anywhere but the latch, must run the exiting 1573 // iteration in scalar form. 1574 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1575 return true; 1576 return InterleaveInfo.requiresScalarEpilogue(); 1577 } 1578 1579 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1580 /// loop hint annotation. 1581 bool isScalarEpilogueAllowed() const { 1582 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1583 } 1584 1585 /// Returns true if all loop blocks should be masked to fold tail loop. 1586 bool foldTailByMasking() const { return FoldTailByMasking; } 1587 1588 bool blockNeedsPredication(BasicBlock *BB) const { 1589 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1590 } 1591 1592 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1593 /// nodes to the chain of instructions representing the reductions. Uses a 1594 /// MapVector to ensure deterministic iteration order. 1595 using ReductionChainMap = 1596 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1597 1598 /// Return the chain of instructions representing an inloop reduction. 1599 const ReductionChainMap &getInLoopReductionChains() const { 1600 return InLoopReductionChains; 1601 } 1602 1603 /// Returns true if the Phi is part of an inloop reduction. 1604 bool isInLoopReduction(PHINode *Phi) const { 1605 return InLoopReductionChains.count(Phi); 1606 } 1607 1608 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1609 /// with factor VF. Return the cost of the instruction, including 1610 /// scalarization overhead if it's needed. 1611 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1612 1613 /// Estimate cost of a call instruction CI if it were vectorized with factor 1614 /// VF. Return the cost of the instruction, including scalarization overhead 1615 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1616 /// scalarized - 1617 /// i.e. either vector version isn't available, or is too expensive. 1618 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1619 bool &NeedToScalarize) const; 1620 1621 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1622 /// that of B. 1623 bool isMoreProfitable(const VectorizationFactor &A, 1624 const VectorizationFactor &B) const; 1625 1626 /// Invalidates decisions already taken by the cost model. 1627 void invalidateCostModelingDecisions() { 1628 WideningDecisions.clear(); 1629 Uniforms.clear(); 1630 Scalars.clear(); 1631 } 1632 1633 private: 1634 unsigned NumPredStores = 0; 1635 1636 /// \return An upper bound for the vectorization factors for both 1637 /// fixed and scalable vectorization, where the minimum-known number of 1638 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1639 /// disabled or unsupported, then the scalable part will be equal to 1640 /// ElementCount::getScalable(0). 1641 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1642 ElementCount UserVF); 1643 1644 /// \return the maximized element count based on the targets vector 1645 /// registers and the loop trip-count, but limited to a maximum safe VF. 1646 /// This is a helper function of computeFeasibleMaxVF. 1647 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1648 /// issue that occurred on one of the buildbots which cannot be reproduced 1649 /// without having access to the properietary compiler (see comments on 1650 /// D98509). The issue is currently under investigation and this workaround 1651 /// will be removed as soon as possible. 1652 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1653 unsigned SmallestType, 1654 unsigned WidestType, 1655 const ElementCount &MaxSafeVF); 1656 1657 /// \return the maximum legal scalable VF, based on the safe max number 1658 /// of elements. 1659 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1660 1661 /// The vectorization cost is a combination of the cost itself and a boolean 1662 /// indicating whether any of the contributing operations will actually 1663 /// operate on 1664 /// vector values after type legalization in the backend. If this latter value 1665 /// is 1666 /// false, then all operations will be scalarized (i.e. no vectorization has 1667 /// actually taken place). 1668 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1669 1670 /// Returns the expected execution cost. The unit of the cost does 1671 /// not matter because we use the 'cost' units to compare different 1672 /// vector widths. The cost that is returned is *not* normalized by 1673 /// the factor width. 1674 VectorizationCostTy expectedCost(ElementCount VF); 1675 1676 /// Returns the execution time cost of an instruction for a given vector 1677 /// width. Vector width of one means scalar. 1678 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1679 1680 /// The cost-computation logic from getInstructionCost which provides 1681 /// the vector type as an output parameter. 1682 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1683 Type *&VectorTy); 1684 1685 /// Return the cost of instructions in an inloop reduction pattern, if I is 1686 /// part of that pattern. 1687 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1688 Type *VectorTy, 1689 TTI::TargetCostKind CostKind); 1690 1691 /// Calculate vectorization cost of memory instruction \p I. 1692 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1693 1694 /// The cost computation for scalarized memory instruction. 1695 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1696 1697 /// The cost computation for interleaving group of memory instructions. 1698 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1699 1700 /// The cost computation for Gather/Scatter instruction. 1701 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1702 1703 /// The cost computation for widening instruction \p I with consecutive 1704 /// memory access. 1705 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1706 1707 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1708 /// Load: scalar load + broadcast. 1709 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1710 /// element) 1711 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1712 1713 /// Estimate the overhead of scalarizing an instruction. This is a 1714 /// convenience wrapper for the type-based getScalarizationOverhead API. 1715 InstructionCost getScalarizationOverhead(Instruction *I, 1716 ElementCount VF) const; 1717 1718 /// Returns whether the instruction is a load or store and will be a emitted 1719 /// as a vector operation. 1720 bool isConsecutiveLoadOrStore(Instruction *I); 1721 1722 /// Returns true if an artificially high cost for emulated masked memrefs 1723 /// should be used. 1724 bool useEmulatedMaskMemRefHack(Instruction *I); 1725 1726 /// Map of scalar integer values to the smallest bitwidth they can be legally 1727 /// represented as. The vector equivalents of these values should be truncated 1728 /// to this type. 1729 MapVector<Instruction *, uint64_t> MinBWs; 1730 1731 /// A type representing the costs for instructions if they were to be 1732 /// scalarized rather than vectorized. The entries are Instruction-Cost 1733 /// pairs. 1734 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1735 1736 /// A set containing all BasicBlocks that are known to present after 1737 /// vectorization as a predicated block. 1738 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1739 1740 /// Records whether it is allowed to have the original scalar loop execute at 1741 /// least once. This may be needed as a fallback loop in case runtime 1742 /// aliasing/dependence checks fail, or to handle the tail/remainder 1743 /// iterations when the trip count is unknown or doesn't divide by the VF, 1744 /// or as a peel-loop to handle gaps in interleave-groups. 1745 /// Under optsize and when the trip count is very small we don't allow any 1746 /// iterations to execute in the scalar loop. 1747 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1748 1749 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1750 bool FoldTailByMasking = false; 1751 1752 /// A map holding scalar costs for different vectorization factors. The 1753 /// presence of a cost for an instruction in the mapping indicates that the 1754 /// instruction will be scalarized when vectorizing with the associated 1755 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1756 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1757 1758 /// Holds the instructions known to be uniform after vectorization. 1759 /// The data is collected per VF. 1760 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1761 1762 /// Holds the instructions known to be scalar after vectorization. 1763 /// The data is collected per VF. 1764 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1765 1766 /// Holds the instructions (address computations) that are forced to be 1767 /// scalarized. 1768 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1769 1770 /// PHINodes of the reductions that should be expanded in-loop along with 1771 /// their associated chains of reduction operations, in program order from top 1772 /// (PHI) to bottom 1773 ReductionChainMap InLoopReductionChains; 1774 1775 /// A Map of inloop reduction operations and their immediate chain operand. 1776 /// FIXME: This can be removed once reductions can be costed correctly in 1777 /// vplan. This was added to allow quick lookup to the inloop operations, 1778 /// without having to loop through InLoopReductionChains. 1779 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1780 1781 /// Returns the expected difference in cost from scalarizing the expression 1782 /// feeding a predicated instruction \p PredInst. The instructions to 1783 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1784 /// non-negative return value implies the expression will be scalarized. 1785 /// Currently, only single-use chains are considered for scalarization. 1786 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1787 ElementCount VF); 1788 1789 /// Collect the instructions that are uniform after vectorization. An 1790 /// instruction is uniform if we represent it with a single scalar value in 1791 /// the vectorized loop corresponding to each vector iteration. Examples of 1792 /// uniform instructions include pointer operands of consecutive or 1793 /// interleaved memory accesses. Note that although uniformity implies an 1794 /// instruction will be scalar, the reverse is not true. In general, a 1795 /// scalarized instruction will be represented by VF scalar values in the 1796 /// vectorized loop, each corresponding to an iteration of the original 1797 /// scalar loop. 1798 void collectLoopUniforms(ElementCount VF); 1799 1800 /// Collect the instructions that are scalar after vectorization. An 1801 /// instruction is scalar if it is known to be uniform or will be scalarized 1802 /// during vectorization. Non-uniform scalarized instructions will be 1803 /// represented by VF values in the vectorized loop, each corresponding to an 1804 /// iteration of the original scalar loop. 1805 void collectLoopScalars(ElementCount VF); 1806 1807 /// Keeps cost model vectorization decision and cost for instructions. 1808 /// Right now it is used for memory instructions only. 1809 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1810 std::pair<InstWidening, InstructionCost>>; 1811 1812 DecisionList WideningDecisions; 1813 1814 /// Returns true if \p V is expected to be vectorized and it needs to be 1815 /// extracted. 1816 bool needsExtract(Value *V, ElementCount VF) const { 1817 Instruction *I = dyn_cast<Instruction>(V); 1818 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1819 TheLoop->isLoopInvariant(I)) 1820 return false; 1821 1822 // Assume we can vectorize V (and hence we need extraction) if the 1823 // scalars are not computed yet. This can happen, because it is called 1824 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1825 // the scalars are collected. That should be a safe assumption in most 1826 // cases, because we check if the operands have vectorizable types 1827 // beforehand in LoopVectorizationLegality. 1828 return Scalars.find(VF) == Scalars.end() || 1829 !isScalarAfterVectorization(I, VF); 1830 }; 1831 1832 /// Returns a range containing only operands needing to be extracted. 1833 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1834 ElementCount VF) const { 1835 return SmallVector<Value *, 4>(make_filter_range( 1836 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1837 } 1838 1839 /// Determines if we have the infrastructure to vectorize loop \p L and its 1840 /// epilogue, assuming the main loop is vectorized by \p VF. 1841 bool isCandidateForEpilogueVectorization(const Loop &L, 1842 const ElementCount VF) const; 1843 1844 /// Returns true if epilogue vectorization is considered profitable, and 1845 /// false otherwise. 1846 /// \p VF is the vectorization factor chosen for the original loop. 1847 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1848 1849 public: 1850 /// The loop that we evaluate. 1851 Loop *TheLoop; 1852 1853 /// Predicated scalar evolution analysis. 1854 PredicatedScalarEvolution &PSE; 1855 1856 /// Loop Info analysis. 1857 LoopInfo *LI; 1858 1859 /// Vectorization legality. 1860 LoopVectorizationLegality *Legal; 1861 1862 /// Vector target information. 1863 const TargetTransformInfo &TTI; 1864 1865 /// Target Library Info. 1866 const TargetLibraryInfo *TLI; 1867 1868 /// Demanded bits analysis. 1869 DemandedBits *DB; 1870 1871 /// Assumption cache. 1872 AssumptionCache *AC; 1873 1874 /// Interface to emit optimization remarks. 1875 OptimizationRemarkEmitter *ORE; 1876 1877 const Function *TheFunction; 1878 1879 /// Loop Vectorize Hint. 1880 const LoopVectorizeHints *Hints; 1881 1882 /// The interleave access information contains groups of interleaved accesses 1883 /// with the same stride and close to each other. 1884 InterleavedAccessInfo &InterleaveInfo; 1885 1886 /// Values to ignore in the cost model. 1887 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1888 1889 /// Values to ignore in the cost model when VF > 1. 1890 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1891 1892 /// Profitable vector factors. 1893 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1894 }; 1895 } // end namespace llvm 1896 1897 /// Helper struct to manage generating runtime checks for vectorization. 1898 /// 1899 /// The runtime checks are created up-front in temporary blocks to allow better 1900 /// estimating the cost and un-linked from the existing IR. After deciding to 1901 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1902 /// temporary blocks are completely removed. 1903 class GeneratedRTChecks { 1904 /// Basic block which contains the generated SCEV checks, if any. 1905 BasicBlock *SCEVCheckBlock = nullptr; 1906 1907 /// The value representing the result of the generated SCEV checks. If it is 1908 /// nullptr, either no SCEV checks have been generated or they have been used. 1909 Value *SCEVCheckCond = nullptr; 1910 1911 /// Basic block which contains the generated memory runtime checks, if any. 1912 BasicBlock *MemCheckBlock = nullptr; 1913 1914 /// The value representing the result of the generated memory runtime checks. 1915 /// If it is nullptr, either no memory runtime checks have been generated or 1916 /// they have been used. 1917 Instruction *MemRuntimeCheckCond = nullptr; 1918 1919 DominatorTree *DT; 1920 LoopInfo *LI; 1921 1922 SCEVExpander SCEVExp; 1923 SCEVExpander MemCheckExp; 1924 1925 public: 1926 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1927 const DataLayout &DL) 1928 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1929 MemCheckExp(SE, DL, "scev.check") {} 1930 1931 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1932 /// accurately estimate the cost of the runtime checks. The blocks are 1933 /// un-linked from the IR and is added back during vector code generation. If 1934 /// there is no vector code generation, the check blocks are removed 1935 /// completely. 1936 void Create(Loop *L, const LoopAccessInfo &LAI, 1937 const SCEVUnionPredicate &UnionPred) { 1938 1939 BasicBlock *LoopHeader = L->getHeader(); 1940 BasicBlock *Preheader = L->getLoopPreheader(); 1941 1942 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1943 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1944 // may be used by SCEVExpander. The blocks will be un-linked from their 1945 // predecessors and removed from LI & DT at the end of the function. 1946 if (!UnionPred.isAlwaysTrue()) { 1947 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1948 nullptr, "vector.scevcheck"); 1949 1950 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1951 &UnionPred, SCEVCheckBlock->getTerminator()); 1952 } 1953 1954 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1955 if (RtPtrChecking.Need) { 1956 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1957 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1958 "vector.memcheck"); 1959 1960 std::tie(std::ignore, MemRuntimeCheckCond) = 1961 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1962 RtPtrChecking.getChecks(), MemCheckExp); 1963 assert(MemRuntimeCheckCond && 1964 "no RT checks generated although RtPtrChecking " 1965 "claimed checks are required"); 1966 } 1967 1968 if (!MemCheckBlock && !SCEVCheckBlock) 1969 return; 1970 1971 // Unhook the temporary block with the checks, update various places 1972 // accordingly. 1973 if (SCEVCheckBlock) 1974 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1975 if (MemCheckBlock) 1976 MemCheckBlock->replaceAllUsesWith(Preheader); 1977 1978 if (SCEVCheckBlock) { 1979 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1980 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1981 Preheader->getTerminator()->eraseFromParent(); 1982 } 1983 if (MemCheckBlock) { 1984 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1985 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1986 Preheader->getTerminator()->eraseFromParent(); 1987 } 1988 1989 DT->changeImmediateDominator(LoopHeader, Preheader); 1990 if (MemCheckBlock) { 1991 DT->eraseNode(MemCheckBlock); 1992 LI->removeBlock(MemCheckBlock); 1993 } 1994 if (SCEVCheckBlock) { 1995 DT->eraseNode(SCEVCheckBlock); 1996 LI->removeBlock(SCEVCheckBlock); 1997 } 1998 } 1999 2000 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2001 /// unused. 2002 ~GeneratedRTChecks() { 2003 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2004 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2005 if (!SCEVCheckCond) 2006 SCEVCleaner.markResultUsed(); 2007 2008 if (!MemRuntimeCheckCond) 2009 MemCheckCleaner.markResultUsed(); 2010 2011 if (MemRuntimeCheckCond) { 2012 auto &SE = *MemCheckExp.getSE(); 2013 // Memory runtime check generation creates compares that use expanded 2014 // values. Remove them before running the SCEVExpanderCleaners. 2015 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2016 if (MemCheckExp.isInsertedInstruction(&I)) 2017 continue; 2018 SE.forgetValue(&I); 2019 SE.eraseValueFromMap(&I); 2020 I.eraseFromParent(); 2021 } 2022 } 2023 MemCheckCleaner.cleanup(); 2024 SCEVCleaner.cleanup(); 2025 2026 if (SCEVCheckCond) 2027 SCEVCheckBlock->eraseFromParent(); 2028 if (MemRuntimeCheckCond) 2029 MemCheckBlock->eraseFromParent(); 2030 } 2031 2032 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2033 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2034 /// depending on the generated condition. 2035 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2036 BasicBlock *LoopVectorPreHeader, 2037 BasicBlock *LoopExitBlock) { 2038 if (!SCEVCheckCond) 2039 return nullptr; 2040 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2041 if (C->isZero()) 2042 return nullptr; 2043 2044 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2045 2046 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2047 // Create new preheader for vector loop. 2048 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2049 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2050 2051 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2052 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2053 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2054 SCEVCheckBlock); 2055 2056 DT->addNewBlock(SCEVCheckBlock, Pred); 2057 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2058 2059 ReplaceInstWithInst( 2060 SCEVCheckBlock->getTerminator(), 2061 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2062 // Mark the check as used, to prevent it from being removed during cleanup. 2063 SCEVCheckCond = nullptr; 2064 return SCEVCheckBlock; 2065 } 2066 2067 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2068 /// the branches to branch to the vector preheader or \p Bypass, depending on 2069 /// the generated condition. 2070 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2071 BasicBlock *LoopVectorPreHeader) { 2072 // Check if we generated code that checks in runtime if arrays overlap. 2073 if (!MemRuntimeCheckCond) 2074 return nullptr; 2075 2076 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2077 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2078 MemCheckBlock); 2079 2080 DT->addNewBlock(MemCheckBlock, Pred); 2081 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2082 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2083 2084 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2085 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2086 2087 ReplaceInstWithInst( 2088 MemCheckBlock->getTerminator(), 2089 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2090 MemCheckBlock->getTerminator()->setDebugLoc( 2091 Pred->getTerminator()->getDebugLoc()); 2092 2093 // Mark the check as used, to prevent it from being removed during cleanup. 2094 MemRuntimeCheckCond = nullptr; 2095 return MemCheckBlock; 2096 } 2097 }; 2098 2099 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2100 // vectorization. The loop needs to be annotated with #pragma omp simd 2101 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2102 // vector length information is not provided, vectorization is not considered 2103 // explicit. Interleave hints are not allowed either. These limitations will be 2104 // relaxed in the future. 2105 // Please, note that we are currently forced to abuse the pragma 'clang 2106 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2107 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2108 // provides *explicit vectorization hints* (LV can bypass legal checks and 2109 // assume that vectorization is legal). However, both hints are implemented 2110 // using the same metadata (llvm.loop.vectorize, processed by 2111 // LoopVectorizeHints). This will be fixed in the future when the native IR 2112 // representation for pragma 'omp simd' is introduced. 2113 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2114 OptimizationRemarkEmitter *ORE) { 2115 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2116 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2117 2118 // Only outer loops with an explicit vectorization hint are supported. 2119 // Unannotated outer loops are ignored. 2120 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2121 return false; 2122 2123 Function *Fn = OuterLp->getHeader()->getParent(); 2124 if (!Hints.allowVectorization(Fn, OuterLp, 2125 true /*VectorizeOnlyWhenForced*/)) { 2126 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2127 return false; 2128 } 2129 2130 if (Hints.getInterleave() > 1) { 2131 // TODO: Interleave support is future work. 2132 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2133 "outer loops.\n"); 2134 Hints.emitRemarkWithHints(); 2135 return false; 2136 } 2137 2138 return true; 2139 } 2140 2141 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2142 OptimizationRemarkEmitter *ORE, 2143 SmallVectorImpl<Loop *> &V) { 2144 // Collect inner loops and outer loops without irreducible control flow. For 2145 // now, only collect outer loops that have explicit vectorization hints. If we 2146 // are stress testing the VPlan H-CFG construction, we collect the outermost 2147 // loop of every loop nest. 2148 if (L.isInnermost() || VPlanBuildStressTest || 2149 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2150 LoopBlocksRPO RPOT(&L); 2151 RPOT.perform(LI); 2152 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2153 V.push_back(&L); 2154 // TODO: Collect inner loops inside marked outer loops in case 2155 // vectorization fails for the outer loop. Do not invoke 2156 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2157 // already known to be reducible. We can use an inherited attribute for 2158 // that. 2159 return; 2160 } 2161 } 2162 for (Loop *InnerL : L) 2163 collectSupportedLoops(*InnerL, LI, ORE, V); 2164 } 2165 2166 namespace { 2167 2168 /// The LoopVectorize Pass. 2169 struct LoopVectorize : public FunctionPass { 2170 /// Pass identification, replacement for typeid 2171 static char ID; 2172 2173 LoopVectorizePass Impl; 2174 2175 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2176 bool VectorizeOnlyWhenForced = false) 2177 : FunctionPass(ID), 2178 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2179 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2180 } 2181 2182 bool runOnFunction(Function &F) override { 2183 if (skipFunction(F)) 2184 return false; 2185 2186 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2187 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2188 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2189 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2190 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2191 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2192 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2193 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2194 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2195 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2196 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2197 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2198 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2199 2200 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2201 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2202 2203 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2204 GetLAA, *ORE, PSI).MadeAnyChange; 2205 } 2206 2207 void getAnalysisUsage(AnalysisUsage &AU) const override { 2208 AU.addRequired<AssumptionCacheTracker>(); 2209 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2210 AU.addRequired<DominatorTreeWrapperPass>(); 2211 AU.addRequired<LoopInfoWrapperPass>(); 2212 AU.addRequired<ScalarEvolutionWrapperPass>(); 2213 AU.addRequired<TargetTransformInfoWrapperPass>(); 2214 AU.addRequired<AAResultsWrapperPass>(); 2215 AU.addRequired<LoopAccessLegacyAnalysis>(); 2216 AU.addRequired<DemandedBitsWrapperPass>(); 2217 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2218 AU.addRequired<InjectTLIMappingsLegacy>(); 2219 2220 // We currently do not preserve loopinfo/dominator analyses with outer loop 2221 // vectorization. Until this is addressed, mark these analyses as preserved 2222 // only for non-VPlan-native path. 2223 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2224 if (!EnableVPlanNativePath) { 2225 AU.addPreserved<LoopInfoWrapperPass>(); 2226 AU.addPreserved<DominatorTreeWrapperPass>(); 2227 } 2228 2229 AU.addPreserved<BasicAAWrapperPass>(); 2230 AU.addPreserved<GlobalsAAWrapperPass>(); 2231 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2232 } 2233 }; 2234 2235 } // end anonymous namespace 2236 2237 //===----------------------------------------------------------------------===// 2238 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2239 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2240 //===----------------------------------------------------------------------===// 2241 2242 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2243 // We need to place the broadcast of invariant variables outside the loop, 2244 // but only if it's proven safe to do so. Else, broadcast will be inside 2245 // vector loop body. 2246 Instruction *Instr = dyn_cast<Instruction>(V); 2247 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2248 (!Instr || 2249 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2250 // Place the code for broadcasting invariant variables in the new preheader. 2251 IRBuilder<>::InsertPointGuard Guard(Builder); 2252 if (SafeToHoist) 2253 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2254 2255 // Broadcast the scalar into all locations in the vector. 2256 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2257 2258 return Shuf; 2259 } 2260 2261 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2262 const InductionDescriptor &II, Value *Step, Value *Start, 2263 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2264 VPTransformState &State) { 2265 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2266 "Expected either an induction phi-node or a truncate of it!"); 2267 2268 // Construct the initial value of the vector IV in the vector loop preheader 2269 auto CurrIP = Builder.saveIP(); 2270 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2271 if (isa<TruncInst>(EntryVal)) { 2272 assert(Start->getType()->isIntegerTy() && 2273 "Truncation requires an integer type"); 2274 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2275 Step = Builder.CreateTrunc(Step, TruncType); 2276 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2277 } 2278 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2279 Value *SteppedStart = 2280 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2281 2282 // We create vector phi nodes for both integer and floating-point induction 2283 // variables. Here, we determine the kind of arithmetic we will perform. 2284 Instruction::BinaryOps AddOp; 2285 Instruction::BinaryOps MulOp; 2286 if (Step->getType()->isIntegerTy()) { 2287 AddOp = Instruction::Add; 2288 MulOp = Instruction::Mul; 2289 } else { 2290 AddOp = II.getInductionOpcode(); 2291 MulOp = Instruction::FMul; 2292 } 2293 2294 // Multiply the vectorization factor by the step using integer or 2295 // floating-point arithmetic as appropriate. 2296 Type *StepType = Step->getType(); 2297 if (Step->getType()->isFloatingPointTy()) 2298 StepType = IntegerType::get(StepType->getContext(), 2299 StepType->getScalarSizeInBits()); 2300 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2301 if (Step->getType()->isFloatingPointTy()) 2302 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2303 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2304 2305 // Create a vector splat to use in the induction update. 2306 // 2307 // FIXME: If the step is non-constant, we create the vector splat with 2308 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2309 // handle a constant vector splat. 2310 Value *SplatVF = isa<Constant>(Mul) 2311 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2312 : Builder.CreateVectorSplat(VF, Mul); 2313 Builder.restoreIP(CurrIP); 2314 2315 // We may need to add the step a number of times, depending on the unroll 2316 // factor. The last of those goes into the PHI. 2317 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2318 &*LoopVectorBody->getFirstInsertionPt()); 2319 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2320 Instruction *LastInduction = VecInd; 2321 for (unsigned Part = 0; Part < UF; ++Part) { 2322 State.set(Def, LastInduction, Part); 2323 2324 if (isa<TruncInst>(EntryVal)) 2325 addMetadata(LastInduction, EntryVal); 2326 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2327 State, Part); 2328 2329 LastInduction = cast<Instruction>( 2330 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2331 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2332 } 2333 2334 // Move the last step to the end of the latch block. This ensures consistent 2335 // placement of all induction updates. 2336 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2337 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2338 auto *ICmp = cast<Instruction>(Br->getCondition()); 2339 LastInduction->moveBefore(ICmp); 2340 LastInduction->setName("vec.ind.next"); 2341 2342 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2343 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2344 } 2345 2346 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2347 return Cost->isScalarAfterVectorization(I, VF) || 2348 Cost->isProfitableToScalarize(I, VF); 2349 } 2350 2351 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2352 if (shouldScalarizeInstruction(IV)) 2353 return true; 2354 auto isScalarInst = [&](User *U) -> bool { 2355 auto *I = cast<Instruction>(U); 2356 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2357 }; 2358 return llvm::any_of(IV->users(), isScalarInst); 2359 } 2360 2361 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2362 const InductionDescriptor &ID, const Instruction *EntryVal, 2363 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2364 unsigned Part, unsigned Lane) { 2365 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2366 "Expected either an induction phi-node or a truncate of it!"); 2367 2368 // This induction variable is not the phi from the original loop but the 2369 // newly-created IV based on the proof that casted Phi is equal to the 2370 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2371 // re-uses the same InductionDescriptor that original IV uses but we don't 2372 // have to do any recording in this case - that is done when original IV is 2373 // processed. 2374 if (isa<TruncInst>(EntryVal)) 2375 return; 2376 2377 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2378 if (Casts.empty()) 2379 return; 2380 // Only the first Cast instruction in the Casts vector is of interest. 2381 // The rest of the Casts (if exist) have no uses outside the 2382 // induction update chain itself. 2383 if (Lane < UINT_MAX) 2384 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2385 else 2386 State.set(CastDef, VectorLoopVal, Part); 2387 } 2388 2389 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2390 TruncInst *Trunc, VPValue *Def, 2391 VPValue *CastDef, 2392 VPTransformState &State) { 2393 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2394 "Primary induction variable must have an integer type"); 2395 2396 auto II = Legal->getInductionVars().find(IV); 2397 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2398 2399 auto ID = II->second; 2400 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2401 2402 // The value from the original loop to which we are mapping the new induction 2403 // variable. 2404 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2405 2406 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2407 2408 // Generate code for the induction step. Note that induction steps are 2409 // required to be loop-invariant 2410 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2411 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2412 "Induction step should be loop invariant"); 2413 if (PSE.getSE()->isSCEVable(IV->getType())) { 2414 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2415 return Exp.expandCodeFor(Step, Step->getType(), 2416 LoopVectorPreHeader->getTerminator()); 2417 } 2418 return cast<SCEVUnknown>(Step)->getValue(); 2419 }; 2420 2421 // The scalar value to broadcast. This is derived from the canonical 2422 // induction variable. If a truncation type is given, truncate the canonical 2423 // induction variable and step. Otherwise, derive these values from the 2424 // induction descriptor. 2425 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2426 Value *ScalarIV = Induction; 2427 if (IV != OldInduction) { 2428 ScalarIV = IV->getType()->isIntegerTy() 2429 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2430 : Builder.CreateCast(Instruction::SIToFP, Induction, 2431 IV->getType()); 2432 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2433 ScalarIV->setName("offset.idx"); 2434 } 2435 if (Trunc) { 2436 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2437 assert(Step->getType()->isIntegerTy() && 2438 "Truncation requires an integer step"); 2439 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2440 Step = Builder.CreateTrunc(Step, TruncType); 2441 } 2442 return ScalarIV; 2443 }; 2444 2445 // Create the vector values from the scalar IV, in the absence of creating a 2446 // vector IV. 2447 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2448 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2449 for (unsigned Part = 0; Part < UF; ++Part) { 2450 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2451 Value *EntryPart = 2452 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2453 ID.getInductionOpcode()); 2454 State.set(Def, EntryPart, Part); 2455 if (Trunc) 2456 addMetadata(EntryPart, Trunc); 2457 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2458 State, Part); 2459 } 2460 }; 2461 2462 // Fast-math-flags propagate from the original induction instruction. 2463 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2464 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2465 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2466 2467 // Now do the actual transformations, and start with creating the step value. 2468 Value *Step = CreateStepValue(ID.getStep()); 2469 if (VF.isZero() || VF.isScalar()) { 2470 Value *ScalarIV = CreateScalarIV(Step); 2471 CreateSplatIV(ScalarIV, Step); 2472 return; 2473 } 2474 2475 // Determine if we want a scalar version of the induction variable. This is 2476 // true if the induction variable itself is not widened, or if it has at 2477 // least one user in the loop that is not widened. 2478 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2479 if (!NeedsScalarIV) { 2480 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2481 State); 2482 return; 2483 } 2484 2485 // Try to create a new independent vector induction variable. If we can't 2486 // create the phi node, we will splat the scalar induction variable in each 2487 // loop iteration. 2488 if (!shouldScalarizeInstruction(EntryVal)) { 2489 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2490 State); 2491 Value *ScalarIV = CreateScalarIV(Step); 2492 // Create scalar steps that can be used by instructions we will later 2493 // scalarize. Note that the addition of the scalar steps will not increase 2494 // the number of instructions in the loop in the common case prior to 2495 // InstCombine. We will be trading one vector extract for each scalar step. 2496 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2497 return; 2498 } 2499 2500 // All IV users are scalar instructions, so only emit a scalar IV, not a 2501 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2502 // predicate used by the masked loads/stores. 2503 Value *ScalarIV = CreateScalarIV(Step); 2504 if (!Cost->isScalarEpilogueAllowed()) 2505 CreateSplatIV(ScalarIV, Step); 2506 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2507 } 2508 2509 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2510 Instruction::BinaryOps BinOp) { 2511 // Create and check the types. 2512 auto *ValVTy = cast<VectorType>(Val->getType()); 2513 ElementCount VLen = ValVTy->getElementCount(); 2514 2515 Type *STy = Val->getType()->getScalarType(); 2516 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2517 "Induction Step must be an integer or FP"); 2518 assert(Step->getType() == STy && "Step has wrong type"); 2519 2520 SmallVector<Constant *, 8> Indices; 2521 2522 // Create a vector of consecutive numbers from zero to VF. 2523 VectorType *InitVecValVTy = ValVTy; 2524 Type *InitVecValSTy = STy; 2525 if (STy->isFloatingPointTy()) { 2526 InitVecValSTy = 2527 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2528 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2529 } 2530 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2531 2532 // Add on StartIdx 2533 Value *StartIdxSplat = Builder.CreateVectorSplat( 2534 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2535 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2536 2537 if (STy->isIntegerTy()) { 2538 Step = Builder.CreateVectorSplat(VLen, Step); 2539 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2540 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2541 // which can be found from the original scalar operations. 2542 Step = Builder.CreateMul(InitVec, Step); 2543 return Builder.CreateAdd(Val, Step, "induction"); 2544 } 2545 2546 // Floating point induction. 2547 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2548 "Binary Opcode should be specified for FP induction"); 2549 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2550 Step = Builder.CreateVectorSplat(VLen, Step); 2551 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2552 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2553 } 2554 2555 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2556 Instruction *EntryVal, 2557 const InductionDescriptor &ID, 2558 VPValue *Def, VPValue *CastDef, 2559 VPTransformState &State) { 2560 // We shouldn't have to build scalar steps if we aren't vectorizing. 2561 assert(VF.isVector() && "VF should be greater than one"); 2562 // Get the value type and ensure it and the step have the same integer type. 2563 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2564 assert(ScalarIVTy == Step->getType() && 2565 "Val and Step should have the same type"); 2566 2567 // We build scalar steps for both integer and floating-point induction 2568 // variables. Here, we determine the kind of arithmetic we will perform. 2569 Instruction::BinaryOps AddOp; 2570 Instruction::BinaryOps MulOp; 2571 if (ScalarIVTy->isIntegerTy()) { 2572 AddOp = Instruction::Add; 2573 MulOp = Instruction::Mul; 2574 } else { 2575 AddOp = ID.getInductionOpcode(); 2576 MulOp = Instruction::FMul; 2577 } 2578 2579 // Determine the number of scalars we need to generate for each unroll 2580 // iteration. If EntryVal is uniform, we only need to generate the first 2581 // lane. Otherwise, we generate all VF values. 2582 bool IsUniform = 2583 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2584 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2585 // Compute the scalar steps and save the results in State. 2586 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2587 ScalarIVTy->getScalarSizeInBits()); 2588 Type *VecIVTy = nullptr; 2589 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2590 if (!IsUniform && VF.isScalable()) { 2591 VecIVTy = VectorType::get(ScalarIVTy, VF); 2592 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2593 SplatStep = Builder.CreateVectorSplat(VF, Step); 2594 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2595 } 2596 2597 for (unsigned Part = 0; Part < UF; ++Part) { 2598 Value *StartIdx0 = 2599 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2600 2601 if (!IsUniform && VF.isScalable()) { 2602 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2603 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2604 if (ScalarIVTy->isFloatingPointTy()) 2605 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2606 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2607 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2608 State.set(Def, Add, Part); 2609 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2610 Part); 2611 // It's useful to record the lane values too for the known minimum number 2612 // of elements so we do those below. This improves the code quality when 2613 // trying to extract the first element, for example. 2614 } 2615 2616 if (ScalarIVTy->isFloatingPointTy()) 2617 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2618 2619 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2620 Value *StartIdx = Builder.CreateBinOp( 2621 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2622 // The step returned by `createStepForVF` is a runtime-evaluated value 2623 // when VF is scalable. Otherwise, it should be folded into a Constant. 2624 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2625 "Expected StartIdx to be folded to a constant when VF is not " 2626 "scalable"); 2627 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2628 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2629 State.set(Def, Add, VPIteration(Part, Lane)); 2630 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2631 Part, Lane); 2632 } 2633 } 2634 } 2635 2636 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2637 const VPIteration &Instance, 2638 VPTransformState &State) { 2639 Value *ScalarInst = State.get(Def, Instance); 2640 Value *VectorValue = State.get(Def, Instance.Part); 2641 VectorValue = Builder.CreateInsertElement( 2642 VectorValue, ScalarInst, 2643 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2644 State.set(Def, VectorValue, Instance.Part); 2645 } 2646 2647 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2648 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2649 return Builder.CreateVectorReverse(Vec, "reverse"); 2650 } 2651 2652 // Return whether we allow using masked interleave-groups (for dealing with 2653 // strided loads/stores that reside in predicated blocks, or for dealing 2654 // with gaps). 2655 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2656 // If an override option has been passed in for interleaved accesses, use it. 2657 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2658 return EnableMaskedInterleavedMemAccesses; 2659 2660 return TTI.enableMaskedInterleavedAccessVectorization(); 2661 } 2662 2663 // Try to vectorize the interleave group that \p Instr belongs to. 2664 // 2665 // E.g. Translate following interleaved load group (factor = 3): 2666 // for (i = 0; i < N; i+=3) { 2667 // R = Pic[i]; // Member of index 0 2668 // G = Pic[i+1]; // Member of index 1 2669 // B = Pic[i+2]; // Member of index 2 2670 // ... // do something to R, G, B 2671 // } 2672 // To: 2673 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2674 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2675 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2676 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2677 // 2678 // Or translate following interleaved store group (factor = 3): 2679 // for (i = 0; i < N; i+=3) { 2680 // ... do something to R, G, B 2681 // Pic[i] = R; // Member of index 0 2682 // Pic[i+1] = G; // Member of index 1 2683 // Pic[i+2] = B; // Member of index 2 2684 // } 2685 // To: 2686 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2687 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2688 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2689 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2690 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2691 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2692 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2693 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2694 VPValue *BlockInMask) { 2695 Instruction *Instr = Group->getInsertPos(); 2696 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2697 2698 // Prepare for the vector type of the interleaved load/store. 2699 Type *ScalarTy = getLoadStoreType(Instr); 2700 unsigned InterleaveFactor = Group->getFactor(); 2701 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2702 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2703 2704 // Prepare for the new pointers. 2705 SmallVector<Value *, 2> AddrParts; 2706 unsigned Index = Group->getIndex(Instr); 2707 2708 // TODO: extend the masked interleaved-group support to reversed access. 2709 assert((!BlockInMask || !Group->isReverse()) && 2710 "Reversed masked interleave-group not supported."); 2711 2712 // If the group is reverse, adjust the index to refer to the last vector lane 2713 // instead of the first. We adjust the index from the first vector lane, 2714 // rather than directly getting the pointer for lane VF - 1, because the 2715 // pointer operand of the interleaved access is supposed to be uniform. For 2716 // uniform instructions, we're only required to generate a value for the 2717 // first vector lane in each unroll iteration. 2718 if (Group->isReverse()) 2719 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2720 2721 for (unsigned Part = 0; Part < UF; Part++) { 2722 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2723 setDebugLocFromInst(Builder, AddrPart); 2724 2725 // Notice current instruction could be any index. Need to adjust the address 2726 // to the member of index 0. 2727 // 2728 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2729 // b = A[i]; // Member of index 0 2730 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2731 // 2732 // E.g. A[i+1] = a; // Member of index 1 2733 // A[i] = b; // Member of index 0 2734 // A[i+2] = c; // Member of index 2 (Current instruction) 2735 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2736 2737 bool InBounds = false; 2738 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2739 InBounds = gep->isInBounds(); 2740 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2741 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2742 2743 // Cast to the vector pointer type. 2744 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2745 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2746 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2747 } 2748 2749 setDebugLocFromInst(Builder, Instr); 2750 Value *PoisonVec = PoisonValue::get(VecTy); 2751 2752 Value *MaskForGaps = nullptr; 2753 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2754 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2755 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2756 } 2757 2758 // Vectorize the interleaved load group. 2759 if (isa<LoadInst>(Instr)) { 2760 // For each unroll part, create a wide load for the group. 2761 SmallVector<Value *, 2> NewLoads; 2762 for (unsigned Part = 0; Part < UF; Part++) { 2763 Instruction *NewLoad; 2764 if (BlockInMask || MaskForGaps) { 2765 assert(useMaskedInterleavedAccesses(*TTI) && 2766 "masked interleaved groups are not allowed."); 2767 Value *GroupMask = MaskForGaps; 2768 if (BlockInMask) { 2769 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2770 Value *ShuffledMask = Builder.CreateShuffleVector( 2771 BlockInMaskPart, 2772 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2773 "interleaved.mask"); 2774 GroupMask = MaskForGaps 2775 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2776 MaskForGaps) 2777 : ShuffledMask; 2778 } 2779 NewLoad = 2780 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2781 GroupMask, PoisonVec, "wide.masked.vec"); 2782 } 2783 else 2784 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2785 Group->getAlign(), "wide.vec"); 2786 Group->addMetadata(NewLoad); 2787 NewLoads.push_back(NewLoad); 2788 } 2789 2790 // For each member in the group, shuffle out the appropriate data from the 2791 // wide loads. 2792 unsigned J = 0; 2793 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2794 Instruction *Member = Group->getMember(I); 2795 2796 // Skip the gaps in the group. 2797 if (!Member) 2798 continue; 2799 2800 auto StrideMask = 2801 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2802 for (unsigned Part = 0; Part < UF; Part++) { 2803 Value *StridedVec = Builder.CreateShuffleVector( 2804 NewLoads[Part], StrideMask, "strided.vec"); 2805 2806 // If this member has different type, cast the result type. 2807 if (Member->getType() != ScalarTy) { 2808 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2809 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2810 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2811 } 2812 2813 if (Group->isReverse()) 2814 StridedVec = reverseVector(StridedVec); 2815 2816 State.set(VPDefs[J], StridedVec, Part); 2817 } 2818 ++J; 2819 } 2820 return; 2821 } 2822 2823 // The sub vector type for current instruction. 2824 auto *SubVT = VectorType::get(ScalarTy, VF); 2825 2826 // Vectorize the interleaved store group. 2827 for (unsigned Part = 0; Part < UF; Part++) { 2828 // Collect the stored vector from each member. 2829 SmallVector<Value *, 4> StoredVecs; 2830 for (unsigned i = 0; i < InterleaveFactor; i++) { 2831 // Interleaved store group doesn't allow a gap, so each index has a member 2832 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2833 2834 Value *StoredVec = State.get(StoredValues[i], Part); 2835 2836 if (Group->isReverse()) 2837 StoredVec = reverseVector(StoredVec); 2838 2839 // If this member has different type, cast it to a unified type. 2840 2841 if (StoredVec->getType() != SubVT) 2842 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2843 2844 StoredVecs.push_back(StoredVec); 2845 } 2846 2847 // Concatenate all vectors into a wide vector. 2848 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2849 2850 // Interleave the elements in the wide vector. 2851 Value *IVec = Builder.CreateShuffleVector( 2852 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2853 "interleaved.vec"); 2854 2855 Instruction *NewStoreInstr; 2856 if (BlockInMask) { 2857 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2858 Value *ShuffledMask = Builder.CreateShuffleVector( 2859 BlockInMaskPart, 2860 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2861 "interleaved.mask"); 2862 NewStoreInstr = Builder.CreateMaskedStore( 2863 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2864 } 2865 else 2866 NewStoreInstr = 2867 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2868 2869 Group->addMetadata(NewStoreInstr); 2870 } 2871 } 2872 2873 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2874 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2875 VPValue *StoredValue, VPValue *BlockInMask) { 2876 // Attempt to issue a wide load. 2877 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2878 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2879 2880 assert((LI || SI) && "Invalid Load/Store instruction"); 2881 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2882 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2883 2884 LoopVectorizationCostModel::InstWidening Decision = 2885 Cost->getWideningDecision(Instr, VF); 2886 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2887 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2888 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2889 "CM decision is not to widen the memory instruction"); 2890 2891 Type *ScalarDataTy = getLoadStoreType(Instr); 2892 2893 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2894 const Align Alignment = getLoadStoreAlignment(Instr); 2895 2896 // Determine if the pointer operand of the access is either consecutive or 2897 // reverse consecutive. 2898 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2899 bool ConsecutiveStride = 2900 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2901 bool CreateGatherScatter = 2902 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2903 2904 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2905 // gather/scatter. Otherwise Decision should have been to Scalarize. 2906 assert((ConsecutiveStride || CreateGatherScatter) && 2907 "The instruction should be scalarized"); 2908 (void)ConsecutiveStride; 2909 2910 VectorParts BlockInMaskParts(UF); 2911 bool isMaskRequired = BlockInMask; 2912 if (isMaskRequired) 2913 for (unsigned Part = 0; Part < UF; ++Part) 2914 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2915 2916 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2917 // Calculate the pointer for the specific unroll-part. 2918 GetElementPtrInst *PartPtr = nullptr; 2919 2920 bool InBounds = false; 2921 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2922 InBounds = gep->isInBounds(); 2923 if (Reverse) { 2924 // If the address is consecutive but reversed, then the 2925 // wide store needs to start at the last vector element. 2926 // RunTimeVF = VScale * VF.getKnownMinValue() 2927 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2928 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2929 // NumElt = -Part * RunTimeVF 2930 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2931 // LastLane = 1 - RunTimeVF 2932 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2933 PartPtr = 2934 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2935 PartPtr->setIsInBounds(InBounds); 2936 PartPtr = cast<GetElementPtrInst>( 2937 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2938 PartPtr->setIsInBounds(InBounds); 2939 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2940 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2941 } else { 2942 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2943 PartPtr = cast<GetElementPtrInst>( 2944 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2945 PartPtr->setIsInBounds(InBounds); 2946 } 2947 2948 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2949 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2950 }; 2951 2952 // Handle Stores: 2953 if (SI) { 2954 setDebugLocFromInst(Builder, SI); 2955 2956 for (unsigned Part = 0; Part < UF; ++Part) { 2957 Instruction *NewSI = nullptr; 2958 Value *StoredVal = State.get(StoredValue, Part); 2959 if (CreateGatherScatter) { 2960 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2961 Value *VectorGep = State.get(Addr, Part); 2962 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2963 MaskPart); 2964 } else { 2965 if (Reverse) { 2966 // If we store to reverse consecutive memory locations, then we need 2967 // to reverse the order of elements in the stored value. 2968 StoredVal = reverseVector(StoredVal); 2969 // We don't want to update the value in the map as it might be used in 2970 // another expression. So don't call resetVectorValue(StoredVal). 2971 } 2972 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2973 if (isMaskRequired) 2974 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2975 BlockInMaskParts[Part]); 2976 else 2977 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2978 } 2979 addMetadata(NewSI, SI); 2980 } 2981 return; 2982 } 2983 2984 // Handle loads. 2985 assert(LI && "Must have a load instruction"); 2986 setDebugLocFromInst(Builder, LI); 2987 for (unsigned Part = 0; Part < UF; ++Part) { 2988 Value *NewLI; 2989 if (CreateGatherScatter) { 2990 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2991 Value *VectorGep = State.get(Addr, Part); 2992 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2993 nullptr, "wide.masked.gather"); 2994 addMetadata(NewLI, LI); 2995 } else { 2996 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2997 if (isMaskRequired) 2998 NewLI = Builder.CreateMaskedLoad( 2999 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 3000 "wide.masked.load"); 3001 else 3002 NewLI = 3003 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3004 3005 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3006 addMetadata(NewLI, LI); 3007 if (Reverse) 3008 NewLI = reverseVector(NewLI); 3009 } 3010 3011 State.set(Def, NewLI, Part); 3012 } 3013 } 3014 3015 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3016 VPUser &User, 3017 const VPIteration &Instance, 3018 bool IfPredicateInstr, 3019 VPTransformState &State) { 3020 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3021 3022 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3023 // the first lane and part. 3024 if (isa<NoAliasScopeDeclInst>(Instr)) 3025 if (!Instance.isFirstIteration()) 3026 return; 3027 3028 setDebugLocFromInst(Builder, Instr); 3029 3030 // Does this instruction return a value ? 3031 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3032 3033 Instruction *Cloned = Instr->clone(); 3034 if (!IsVoidRetTy) 3035 Cloned->setName(Instr->getName() + ".cloned"); 3036 3037 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3038 Builder.GetInsertPoint()); 3039 // Replace the operands of the cloned instructions with their scalar 3040 // equivalents in the new loop. 3041 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3042 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3043 auto InputInstance = Instance; 3044 if (!Operand || !OrigLoop->contains(Operand) || 3045 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3046 InputInstance.Lane = VPLane::getFirstLane(); 3047 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3048 Cloned->setOperand(op, NewOp); 3049 } 3050 addNewMetadata(Cloned, Instr); 3051 3052 // Place the cloned scalar in the new loop. 3053 Builder.Insert(Cloned); 3054 3055 State.set(Def, Cloned, Instance); 3056 3057 // If we just cloned a new assumption, add it the assumption cache. 3058 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3059 AC->registerAssumption(II); 3060 3061 // End if-block. 3062 if (IfPredicateInstr) 3063 PredicatedInstructions.push_back(Cloned); 3064 } 3065 3066 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3067 Value *End, Value *Step, 3068 Instruction *DL) { 3069 BasicBlock *Header = L->getHeader(); 3070 BasicBlock *Latch = L->getLoopLatch(); 3071 // As we're just creating this loop, it's possible no latch exists 3072 // yet. If so, use the header as this will be a single block loop. 3073 if (!Latch) 3074 Latch = Header; 3075 3076 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3077 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3078 setDebugLocFromInst(Builder, OldInst); 3079 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3080 3081 Builder.SetInsertPoint(Latch->getTerminator()); 3082 setDebugLocFromInst(Builder, OldInst); 3083 3084 // Create i+1 and fill the PHINode. 3085 // 3086 // If the tail is not folded, we know that End - Start >= Step (either 3087 // statically or through the minimum iteration checks). We also know that both 3088 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3089 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3090 // overflows and we can mark the induction increment as NUW. 3091 Value *Next = 3092 Builder.CreateAdd(Induction, Step, "index.next", 3093 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3094 Induction->addIncoming(Start, L->getLoopPreheader()); 3095 Induction->addIncoming(Next, Latch); 3096 // Create the compare. 3097 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3098 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3099 3100 // Now we have two terminators. Remove the old one from the block. 3101 Latch->getTerminator()->eraseFromParent(); 3102 3103 return Induction; 3104 } 3105 3106 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3107 if (TripCount) 3108 return TripCount; 3109 3110 assert(L && "Create Trip Count for null loop."); 3111 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3112 // Find the loop boundaries. 3113 ScalarEvolution *SE = PSE.getSE(); 3114 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3115 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3116 "Invalid loop count"); 3117 3118 Type *IdxTy = Legal->getWidestInductionType(); 3119 assert(IdxTy && "No type for induction"); 3120 3121 // The exit count might have the type of i64 while the phi is i32. This can 3122 // happen if we have an induction variable that is sign extended before the 3123 // compare. The only way that we get a backedge taken count is that the 3124 // induction variable was signed and as such will not overflow. In such a case 3125 // truncation is legal. 3126 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3127 IdxTy->getPrimitiveSizeInBits()) 3128 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3129 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3130 3131 // Get the total trip count from the count by adding 1. 3132 const SCEV *ExitCount = SE->getAddExpr( 3133 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3134 3135 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3136 3137 // Expand the trip count and place the new instructions in the preheader. 3138 // Notice that the pre-header does not change, only the loop body. 3139 SCEVExpander Exp(*SE, DL, "induction"); 3140 3141 // Count holds the overall loop count (N). 3142 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3143 L->getLoopPreheader()->getTerminator()); 3144 3145 if (TripCount->getType()->isPointerTy()) 3146 TripCount = 3147 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3148 L->getLoopPreheader()->getTerminator()); 3149 3150 return TripCount; 3151 } 3152 3153 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3154 if (VectorTripCount) 3155 return VectorTripCount; 3156 3157 Value *TC = getOrCreateTripCount(L); 3158 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3159 3160 Type *Ty = TC->getType(); 3161 // This is where we can make the step a runtime constant. 3162 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3163 3164 // If the tail is to be folded by masking, round the number of iterations N 3165 // up to a multiple of Step instead of rounding down. This is done by first 3166 // adding Step-1 and then rounding down. Note that it's ok if this addition 3167 // overflows: the vector induction variable will eventually wrap to zero given 3168 // that it starts at zero and its Step is a power of two; the loop will then 3169 // exit, with the last early-exit vector comparison also producing all-true. 3170 if (Cost->foldTailByMasking()) { 3171 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3172 "VF*UF must be a power of 2 when folding tail by masking"); 3173 assert(!VF.isScalable() && 3174 "Tail folding not yet supported for scalable vectors"); 3175 TC = Builder.CreateAdd( 3176 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3177 } 3178 3179 // Now we need to generate the expression for the part of the loop that the 3180 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3181 // iterations are not required for correctness, or N - Step, otherwise. Step 3182 // is equal to the vectorization factor (number of SIMD elements) times the 3183 // unroll factor (number of SIMD instructions). 3184 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3185 3186 // There are two cases where we need to ensure (at least) the last iteration 3187 // runs in the scalar remainder loop. Thus, if the step evenly divides 3188 // the trip count, we set the remainder to be equal to the step. If the step 3189 // does not evenly divide the trip count, no adjustment is necessary since 3190 // there will already be scalar iterations. Note that the minimum iterations 3191 // check ensures that N >= Step. The cases are: 3192 // 1) If there is a non-reversed interleaved group that may speculatively 3193 // access memory out-of-bounds. 3194 // 2) If any instruction may follow a conditionally taken exit. That is, if 3195 // the loop contains multiple exiting blocks, or a single exiting block 3196 // which is not the latch. 3197 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3198 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3199 R = Builder.CreateSelect(IsZero, Step, R); 3200 } 3201 3202 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3203 3204 return VectorTripCount; 3205 } 3206 3207 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3208 const DataLayout &DL) { 3209 // Verify that V is a vector type with same number of elements as DstVTy. 3210 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3211 unsigned VF = DstFVTy->getNumElements(); 3212 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3213 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3214 Type *SrcElemTy = SrcVecTy->getElementType(); 3215 Type *DstElemTy = DstFVTy->getElementType(); 3216 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3217 "Vector elements must have same size"); 3218 3219 // Do a direct cast if element types are castable. 3220 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3221 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3222 } 3223 // V cannot be directly casted to desired vector type. 3224 // May happen when V is a floating point vector but DstVTy is a vector of 3225 // pointers or vice-versa. Handle this using a two-step bitcast using an 3226 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3227 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3228 "Only one type should be a pointer type"); 3229 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3230 "Only one type should be a floating point type"); 3231 Type *IntTy = 3232 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3233 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3234 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3235 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3236 } 3237 3238 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3239 BasicBlock *Bypass) { 3240 Value *Count = getOrCreateTripCount(L); 3241 // Reuse existing vector loop preheader for TC checks. 3242 // Note that new preheader block is generated for vector loop. 3243 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3244 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3245 3246 // Generate code to check if the loop's trip count is less than VF * UF, or 3247 // equal to it in case a scalar epilogue is required; this implies that the 3248 // vector trip count is zero. This check also covers the case where adding one 3249 // to the backedge-taken count overflowed leading to an incorrect trip count 3250 // of zero. In this case we will also jump to the scalar loop. 3251 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3252 : ICmpInst::ICMP_ULT; 3253 3254 // If tail is to be folded, vector loop takes care of all iterations. 3255 Value *CheckMinIters = Builder.getFalse(); 3256 if (!Cost->foldTailByMasking()) { 3257 Value *Step = 3258 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3259 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3260 } 3261 // Create new preheader for vector loop. 3262 LoopVectorPreHeader = 3263 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3264 "vector.ph"); 3265 3266 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3267 DT->getNode(Bypass)->getIDom()) && 3268 "TC check is expected to dominate Bypass"); 3269 3270 // Update dominator for Bypass & LoopExit. 3271 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3272 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3273 3274 ReplaceInstWithInst( 3275 TCCheckBlock->getTerminator(), 3276 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3277 LoopBypassBlocks.push_back(TCCheckBlock); 3278 } 3279 3280 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3281 3282 BasicBlock *const SCEVCheckBlock = 3283 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3284 if (!SCEVCheckBlock) 3285 return nullptr; 3286 3287 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3288 (OptForSizeBasedOnProfile && 3289 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3290 "Cannot SCEV check stride or overflow when optimizing for size"); 3291 3292 3293 // Update dominator only if this is first RT check. 3294 if (LoopBypassBlocks.empty()) { 3295 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3296 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3297 } 3298 3299 LoopBypassBlocks.push_back(SCEVCheckBlock); 3300 AddedSafetyChecks = true; 3301 return SCEVCheckBlock; 3302 } 3303 3304 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3305 BasicBlock *Bypass) { 3306 // VPlan-native path does not do any analysis for runtime checks currently. 3307 if (EnableVPlanNativePath) 3308 return nullptr; 3309 3310 BasicBlock *const MemCheckBlock = 3311 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3312 3313 // Check if we generated code that checks in runtime if arrays overlap. We put 3314 // the checks into a separate block to make the more common case of few 3315 // elements faster. 3316 if (!MemCheckBlock) 3317 return nullptr; 3318 3319 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3320 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3321 "Cannot emit memory checks when optimizing for size, unless forced " 3322 "to vectorize."); 3323 ORE->emit([&]() { 3324 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3325 L->getStartLoc(), L->getHeader()) 3326 << "Code-size may be reduced by not forcing " 3327 "vectorization, or by source-code modifications " 3328 "eliminating the need for runtime checks " 3329 "(e.g., adding 'restrict')."; 3330 }); 3331 } 3332 3333 LoopBypassBlocks.push_back(MemCheckBlock); 3334 3335 AddedSafetyChecks = true; 3336 3337 // We currently don't use LoopVersioning for the actual loop cloning but we 3338 // still use it to add the noalias metadata. 3339 LVer = std::make_unique<LoopVersioning>( 3340 *Legal->getLAI(), 3341 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3342 DT, PSE.getSE()); 3343 LVer->prepareNoAliasMetadata(); 3344 return MemCheckBlock; 3345 } 3346 3347 Value *InnerLoopVectorizer::emitTransformedIndex( 3348 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3349 const InductionDescriptor &ID) const { 3350 3351 SCEVExpander Exp(*SE, DL, "induction"); 3352 auto Step = ID.getStep(); 3353 auto StartValue = ID.getStartValue(); 3354 assert(Index->getType()->getScalarType() == Step->getType() && 3355 "Index scalar type does not match StepValue type"); 3356 3357 // Note: the IR at this point is broken. We cannot use SE to create any new 3358 // SCEV and then expand it, hoping that SCEV's simplification will give us 3359 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3360 // lead to various SCEV crashes. So all we can do is to use builder and rely 3361 // on InstCombine for future simplifications. Here we handle some trivial 3362 // cases only. 3363 auto CreateAdd = [&B](Value *X, Value *Y) { 3364 assert(X->getType() == Y->getType() && "Types don't match!"); 3365 if (auto *CX = dyn_cast<ConstantInt>(X)) 3366 if (CX->isZero()) 3367 return Y; 3368 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3369 if (CY->isZero()) 3370 return X; 3371 return B.CreateAdd(X, Y); 3372 }; 3373 3374 // We allow X to be a vector type, in which case Y will potentially be 3375 // splatted into a vector with the same element count. 3376 auto CreateMul = [&B](Value *X, Value *Y) { 3377 assert(X->getType()->getScalarType() == Y->getType() && 3378 "Types don't match!"); 3379 if (auto *CX = dyn_cast<ConstantInt>(X)) 3380 if (CX->isOne()) 3381 return Y; 3382 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3383 if (CY->isOne()) 3384 return X; 3385 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3386 if (XVTy && !isa<VectorType>(Y->getType())) 3387 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3388 return B.CreateMul(X, Y); 3389 }; 3390 3391 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3392 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3393 // the DomTree is not kept up-to-date for additional blocks generated in the 3394 // vector loop. By using the header as insertion point, we guarantee that the 3395 // expanded instructions dominate all their uses. 3396 auto GetInsertPoint = [this, &B]() { 3397 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3398 if (InsertBB != LoopVectorBody && 3399 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3400 return LoopVectorBody->getTerminator(); 3401 return &*B.GetInsertPoint(); 3402 }; 3403 3404 switch (ID.getKind()) { 3405 case InductionDescriptor::IK_IntInduction: { 3406 assert(!isa<VectorType>(Index->getType()) && 3407 "Vector indices not supported for integer inductions yet"); 3408 assert(Index->getType() == StartValue->getType() && 3409 "Index type does not match StartValue type"); 3410 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3411 return B.CreateSub(StartValue, Index); 3412 auto *Offset = CreateMul( 3413 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3414 return CreateAdd(StartValue, Offset); 3415 } 3416 case InductionDescriptor::IK_PtrInduction: { 3417 assert(isa<SCEVConstant>(Step) && 3418 "Expected constant step for pointer induction"); 3419 return B.CreateGEP( 3420 StartValue->getType()->getPointerElementType(), StartValue, 3421 CreateMul(Index, 3422 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3423 GetInsertPoint()))); 3424 } 3425 case InductionDescriptor::IK_FpInduction: { 3426 assert(!isa<VectorType>(Index->getType()) && 3427 "Vector indices not supported for FP inductions yet"); 3428 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3429 auto InductionBinOp = ID.getInductionBinOp(); 3430 assert(InductionBinOp && 3431 (InductionBinOp->getOpcode() == Instruction::FAdd || 3432 InductionBinOp->getOpcode() == Instruction::FSub) && 3433 "Original bin op should be defined for FP induction"); 3434 3435 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3436 Value *MulExp = B.CreateFMul(StepValue, Index); 3437 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3438 "induction"); 3439 } 3440 case InductionDescriptor::IK_NoInduction: 3441 return nullptr; 3442 } 3443 llvm_unreachable("invalid enum"); 3444 } 3445 3446 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3447 LoopScalarBody = OrigLoop->getHeader(); 3448 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3449 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3450 assert(LoopExitBlock && "Must have an exit block"); 3451 assert(LoopVectorPreHeader && "Invalid loop structure"); 3452 3453 LoopMiddleBlock = 3454 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3455 LI, nullptr, Twine(Prefix) + "middle.block"); 3456 LoopScalarPreHeader = 3457 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3458 nullptr, Twine(Prefix) + "scalar.ph"); 3459 3460 // Set up branch from middle block to the exit and scalar preheader blocks. 3461 // completeLoopSkeleton will update the condition to use an iteration check, 3462 // if required to decide whether to execute the remainder. 3463 BranchInst *BrInst = 3464 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3465 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3466 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3467 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3468 3469 // We intentionally don't let SplitBlock to update LoopInfo since 3470 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3471 // LoopVectorBody is explicitly added to the correct place few lines later. 3472 LoopVectorBody = 3473 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3474 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3475 3476 // Update dominator for loop exit. 3477 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3478 3479 // Create and register the new vector loop. 3480 Loop *Lp = LI->AllocateLoop(); 3481 Loop *ParentLoop = OrigLoop->getParentLoop(); 3482 3483 // Insert the new loop into the loop nest and register the new basic blocks 3484 // before calling any utilities such as SCEV that require valid LoopInfo. 3485 if (ParentLoop) { 3486 ParentLoop->addChildLoop(Lp); 3487 } else { 3488 LI->addTopLevelLoop(Lp); 3489 } 3490 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3491 return Lp; 3492 } 3493 3494 void InnerLoopVectorizer::createInductionResumeValues( 3495 Loop *L, Value *VectorTripCount, 3496 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3497 assert(VectorTripCount && L && "Expected valid arguments"); 3498 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3499 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3500 "Inconsistent information about additional bypass."); 3501 // We are going to resume the execution of the scalar loop. 3502 // Go over all of the induction variables that we found and fix the 3503 // PHIs that are left in the scalar version of the loop. 3504 // The starting values of PHI nodes depend on the counter of the last 3505 // iteration in the vectorized loop. 3506 // If we come from a bypass edge then we need to start from the original 3507 // start value. 3508 for (auto &InductionEntry : Legal->getInductionVars()) { 3509 PHINode *OrigPhi = InductionEntry.first; 3510 InductionDescriptor II = InductionEntry.second; 3511 3512 // Create phi nodes to merge from the backedge-taken check block. 3513 PHINode *BCResumeVal = 3514 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3515 LoopScalarPreHeader->getTerminator()); 3516 // Copy original phi DL over to the new one. 3517 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3518 Value *&EndValue = IVEndValues[OrigPhi]; 3519 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3520 if (OrigPhi == OldInduction) { 3521 // We know what the end value is. 3522 EndValue = VectorTripCount; 3523 } else { 3524 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3525 3526 // Fast-math-flags propagate from the original induction instruction. 3527 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3528 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3529 3530 Type *StepType = II.getStep()->getType(); 3531 Instruction::CastOps CastOp = 3532 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3533 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3534 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3535 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3536 EndValue->setName("ind.end"); 3537 3538 // Compute the end value for the additional bypass (if applicable). 3539 if (AdditionalBypass.first) { 3540 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3541 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3542 StepType, true); 3543 CRD = 3544 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3545 EndValueFromAdditionalBypass = 3546 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3547 EndValueFromAdditionalBypass->setName("ind.end"); 3548 } 3549 } 3550 // The new PHI merges the original incoming value, in case of a bypass, 3551 // or the value at the end of the vectorized loop. 3552 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3553 3554 // Fix the scalar body counter (PHI node). 3555 // The old induction's phi node in the scalar body needs the truncated 3556 // value. 3557 for (BasicBlock *BB : LoopBypassBlocks) 3558 BCResumeVal->addIncoming(II.getStartValue(), BB); 3559 3560 if (AdditionalBypass.first) 3561 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3562 EndValueFromAdditionalBypass); 3563 3564 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3565 } 3566 } 3567 3568 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3569 MDNode *OrigLoopID) { 3570 assert(L && "Expected valid loop."); 3571 3572 // The trip counts should be cached by now. 3573 Value *Count = getOrCreateTripCount(L); 3574 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3575 3576 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3577 3578 // Add a check in the middle block to see if we have completed 3579 // all of the iterations in the first vector loop. 3580 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3581 // If tail is to be folded, we know we don't need to run the remainder. 3582 if (!Cost->foldTailByMasking()) { 3583 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3584 Count, VectorTripCount, "cmp.n", 3585 LoopMiddleBlock->getTerminator()); 3586 3587 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3588 // of the corresponding compare because they may have ended up with 3589 // different line numbers and we want to avoid awkward line stepping while 3590 // debugging. Eg. if the compare has got a line number inside the loop. 3591 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3592 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3593 } 3594 3595 // Get ready to start creating new instructions into the vectorized body. 3596 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3597 "Inconsistent vector loop preheader"); 3598 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3599 3600 Optional<MDNode *> VectorizedLoopID = 3601 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3602 LLVMLoopVectorizeFollowupVectorized}); 3603 if (VectorizedLoopID.hasValue()) { 3604 L->setLoopID(VectorizedLoopID.getValue()); 3605 3606 // Do not setAlreadyVectorized if loop attributes have been defined 3607 // explicitly. 3608 return LoopVectorPreHeader; 3609 } 3610 3611 // Keep all loop hints from the original loop on the vector loop (we'll 3612 // replace the vectorizer-specific hints below). 3613 if (MDNode *LID = OrigLoop->getLoopID()) 3614 L->setLoopID(LID); 3615 3616 LoopVectorizeHints Hints(L, true, *ORE); 3617 Hints.setAlreadyVectorized(); 3618 3619 #ifdef EXPENSIVE_CHECKS 3620 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3621 LI->verify(*DT); 3622 #endif 3623 3624 return LoopVectorPreHeader; 3625 } 3626 3627 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3628 /* 3629 In this function we generate a new loop. The new loop will contain 3630 the vectorized instructions while the old loop will continue to run the 3631 scalar remainder. 3632 3633 [ ] <-- loop iteration number check. 3634 / | 3635 / v 3636 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3637 | / | 3638 | / v 3639 || [ ] <-- vector pre header. 3640 |/ | 3641 | v 3642 | [ ] \ 3643 | [ ]_| <-- vector loop. 3644 | | 3645 | v 3646 | -[ ] <--- middle-block. 3647 | / | 3648 | / v 3649 -|- >[ ] <--- new preheader. 3650 | | 3651 | v 3652 | [ ] \ 3653 | [ ]_| <-- old scalar loop to handle remainder. 3654 \ | 3655 \ v 3656 >[ ] <-- exit block. 3657 ... 3658 */ 3659 3660 // Get the metadata of the original loop before it gets modified. 3661 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3662 3663 // Workaround! Compute the trip count of the original loop and cache it 3664 // before we start modifying the CFG. This code has a systemic problem 3665 // wherein it tries to run analysis over partially constructed IR; this is 3666 // wrong, and not simply for SCEV. The trip count of the original loop 3667 // simply happens to be prone to hitting this in practice. In theory, we 3668 // can hit the same issue for any SCEV, or ValueTracking query done during 3669 // mutation. See PR49900. 3670 getOrCreateTripCount(OrigLoop); 3671 3672 // Create an empty vector loop, and prepare basic blocks for the runtime 3673 // checks. 3674 Loop *Lp = createVectorLoopSkeleton(""); 3675 3676 // Now, compare the new count to zero. If it is zero skip the vector loop and 3677 // jump to the scalar loop. This check also covers the case where the 3678 // backedge-taken count is uint##_max: adding one to it will overflow leading 3679 // to an incorrect trip count of zero. In this (rare) case we will also jump 3680 // to the scalar loop. 3681 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3682 3683 // Generate the code to check any assumptions that we've made for SCEV 3684 // expressions. 3685 emitSCEVChecks(Lp, LoopScalarPreHeader); 3686 3687 // Generate the code that checks in runtime if arrays overlap. We put the 3688 // checks into a separate block to make the more common case of few elements 3689 // faster. 3690 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3691 3692 // Some loops have a single integer induction variable, while other loops 3693 // don't. One example is c++ iterators that often have multiple pointer 3694 // induction variables. In the code below we also support a case where we 3695 // don't have a single induction variable. 3696 // 3697 // We try to obtain an induction variable from the original loop as hard 3698 // as possible. However if we don't find one that: 3699 // - is an integer 3700 // - counts from zero, stepping by one 3701 // - is the size of the widest induction variable type 3702 // then we create a new one. 3703 OldInduction = Legal->getPrimaryInduction(); 3704 Type *IdxTy = Legal->getWidestInductionType(); 3705 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3706 // The loop step is equal to the vectorization factor (num of SIMD elements) 3707 // times the unroll factor (num of SIMD instructions). 3708 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3709 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3710 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3711 Induction = 3712 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3713 getDebugLocFromInstOrOperands(OldInduction)); 3714 3715 // Emit phis for the new starting index of the scalar loop. 3716 createInductionResumeValues(Lp, CountRoundDown); 3717 3718 return completeLoopSkeleton(Lp, OrigLoopID); 3719 } 3720 3721 // Fix up external users of the induction variable. At this point, we are 3722 // in LCSSA form, with all external PHIs that use the IV having one input value, 3723 // coming from the remainder loop. We need those PHIs to also have a correct 3724 // value for the IV when arriving directly from the middle block. 3725 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3726 const InductionDescriptor &II, 3727 Value *CountRoundDown, Value *EndValue, 3728 BasicBlock *MiddleBlock) { 3729 // There are two kinds of external IV usages - those that use the value 3730 // computed in the last iteration (the PHI) and those that use the penultimate 3731 // value (the value that feeds into the phi from the loop latch). 3732 // We allow both, but they, obviously, have different values. 3733 3734 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3735 3736 DenseMap<Value *, Value *> MissingVals; 3737 3738 // An external user of the last iteration's value should see the value that 3739 // the remainder loop uses to initialize its own IV. 3740 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3741 for (User *U : PostInc->users()) { 3742 Instruction *UI = cast<Instruction>(U); 3743 if (!OrigLoop->contains(UI)) { 3744 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3745 MissingVals[UI] = EndValue; 3746 } 3747 } 3748 3749 // An external user of the penultimate value need to see EndValue - Step. 3750 // The simplest way to get this is to recompute it from the constituent SCEVs, 3751 // that is Start + (Step * (CRD - 1)). 3752 for (User *U : OrigPhi->users()) { 3753 auto *UI = cast<Instruction>(U); 3754 if (!OrigLoop->contains(UI)) { 3755 const DataLayout &DL = 3756 OrigLoop->getHeader()->getModule()->getDataLayout(); 3757 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3758 3759 IRBuilder<> B(MiddleBlock->getTerminator()); 3760 3761 // Fast-math-flags propagate from the original induction instruction. 3762 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3763 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3764 3765 Value *CountMinusOne = B.CreateSub( 3766 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3767 Value *CMO = 3768 !II.getStep()->getType()->isIntegerTy() 3769 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3770 II.getStep()->getType()) 3771 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3772 CMO->setName("cast.cmo"); 3773 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3774 Escape->setName("ind.escape"); 3775 MissingVals[UI] = Escape; 3776 } 3777 } 3778 3779 for (auto &I : MissingVals) { 3780 PHINode *PHI = cast<PHINode>(I.first); 3781 // One corner case we have to handle is two IVs "chasing" each-other, 3782 // that is %IV2 = phi [...], [ %IV1, %latch ] 3783 // In this case, if IV1 has an external use, we need to avoid adding both 3784 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3785 // don't already have an incoming value for the middle block. 3786 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3787 PHI->addIncoming(I.second, MiddleBlock); 3788 } 3789 } 3790 3791 namespace { 3792 3793 struct CSEDenseMapInfo { 3794 static bool canHandle(const Instruction *I) { 3795 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3796 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3797 } 3798 3799 static inline Instruction *getEmptyKey() { 3800 return DenseMapInfo<Instruction *>::getEmptyKey(); 3801 } 3802 3803 static inline Instruction *getTombstoneKey() { 3804 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3805 } 3806 3807 static unsigned getHashValue(const Instruction *I) { 3808 assert(canHandle(I) && "Unknown instruction!"); 3809 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3810 I->value_op_end())); 3811 } 3812 3813 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3814 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3815 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3816 return LHS == RHS; 3817 return LHS->isIdenticalTo(RHS); 3818 } 3819 }; 3820 3821 } // end anonymous namespace 3822 3823 ///Perform cse of induction variable instructions. 3824 static void cse(BasicBlock *BB) { 3825 // Perform simple cse. 3826 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3827 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3828 Instruction *In = &*I++; 3829 3830 if (!CSEDenseMapInfo::canHandle(In)) 3831 continue; 3832 3833 // Check if we can replace this instruction with any of the 3834 // visited instructions. 3835 if (Instruction *V = CSEMap.lookup(In)) { 3836 In->replaceAllUsesWith(V); 3837 In->eraseFromParent(); 3838 continue; 3839 } 3840 3841 CSEMap[In] = In; 3842 } 3843 } 3844 3845 InstructionCost 3846 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3847 bool &NeedToScalarize) const { 3848 Function *F = CI->getCalledFunction(); 3849 Type *ScalarRetTy = CI->getType(); 3850 SmallVector<Type *, 4> Tys, ScalarTys; 3851 for (auto &ArgOp : CI->arg_operands()) 3852 ScalarTys.push_back(ArgOp->getType()); 3853 3854 // Estimate cost of scalarized vector call. The source operands are assumed 3855 // to be vectors, so we need to extract individual elements from there, 3856 // execute VF scalar calls, and then gather the result into the vector return 3857 // value. 3858 InstructionCost ScalarCallCost = 3859 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3860 if (VF.isScalar()) 3861 return ScalarCallCost; 3862 3863 // Compute corresponding vector type for return value and arguments. 3864 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3865 for (Type *ScalarTy : ScalarTys) 3866 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3867 3868 // Compute costs of unpacking argument values for the scalar calls and 3869 // packing the return values to a vector. 3870 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3871 3872 InstructionCost Cost = 3873 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3874 3875 // If we can't emit a vector call for this function, then the currently found 3876 // cost is the cost we need to return. 3877 NeedToScalarize = true; 3878 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3879 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3880 3881 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3882 return Cost; 3883 3884 // If the corresponding vector cost is cheaper, return its cost. 3885 InstructionCost VectorCallCost = 3886 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3887 if (VectorCallCost < Cost) { 3888 NeedToScalarize = false; 3889 Cost = VectorCallCost; 3890 } 3891 return Cost; 3892 } 3893 3894 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3895 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3896 return Elt; 3897 return VectorType::get(Elt, VF); 3898 } 3899 3900 InstructionCost 3901 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3902 ElementCount VF) const { 3903 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3904 assert(ID && "Expected intrinsic call!"); 3905 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3906 FastMathFlags FMF; 3907 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3908 FMF = FPMO->getFastMathFlags(); 3909 3910 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3911 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3912 SmallVector<Type *> ParamTys; 3913 std::transform(FTy->param_begin(), FTy->param_end(), 3914 std::back_inserter(ParamTys), 3915 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3916 3917 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3918 dyn_cast<IntrinsicInst>(CI)); 3919 return TTI.getIntrinsicInstrCost(CostAttrs, 3920 TargetTransformInfo::TCK_RecipThroughput); 3921 } 3922 3923 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3924 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3925 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3926 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3927 } 3928 3929 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3930 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3931 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3932 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3933 } 3934 3935 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3936 // For every instruction `I` in MinBWs, truncate the operands, create a 3937 // truncated version of `I` and reextend its result. InstCombine runs 3938 // later and will remove any ext/trunc pairs. 3939 SmallPtrSet<Value *, 4> Erased; 3940 for (const auto &KV : Cost->getMinimalBitwidths()) { 3941 // If the value wasn't vectorized, we must maintain the original scalar 3942 // type. The absence of the value from State indicates that it 3943 // wasn't vectorized. 3944 VPValue *Def = State.Plan->getVPValue(KV.first); 3945 if (!State.hasAnyVectorValue(Def)) 3946 continue; 3947 for (unsigned Part = 0; Part < UF; ++Part) { 3948 Value *I = State.get(Def, Part); 3949 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3950 continue; 3951 Type *OriginalTy = I->getType(); 3952 Type *ScalarTruncatedTy = 3953 IntegerType::get(OriginalTy->getContext(), KV.second); 3954 auto *TruncatedTy = FixedVectorType::get( 3955 ScalarTruncatedTy, 3956 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3957 if (TruncatedTy == OriginalTy) 3958 continue; 3959 3960 IRBuilder<> B(cast<Instruction>(I)); 3961 auto ShrinkOperand = [&](Value *V) -> Value * { 3962 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3963 if (ZI->getSrcTy() == TruncatedTy) 3964 return ZI->getOperand(0); 3965 return B.CreateZExtOrTrunc(V, TruncatedTy); 3966 }; 3967 3968 // The actual instruction modification depends on the instruction type, 3969 // unfortunately. 3970 Value *NewI = nullptr; 3971 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3972 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3973 ShrinkOperand(BO->getOperand(1))); 3974 3975 // Any wrapping introduced by shrinking this operation shouldn't be 3976 // considered undefined behavior. So, we can't unconditionally copy 3977 // arithmetic wrapping flags to NewI. 3978 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3979 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3980 NewI = 3981 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3982 ShrinkOperand(CI->getOperand(1))); 3983 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3984 NewI = B.CreateSelect(SI->getCondition(), 3985 ShrinkOperand(SI->getTrueValue()), 3986 ShrinkOperand(SI->getFalseValue())); 3987 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3988 switch (CI->getOpcode()) { 3989 default: 3990 llvm_unreachable("Unhandled cast!"); 3991 case Instruction::Trunc: 3992 NewI = ShrinkOperand(CI->getOperand(0)); 3993 break; 3994 case Instruction::SExt: 3995 NewI = B.CreateSExtOrTrunc( 3996 CI->getOperand(0), 3997 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3998 break; 3999 case Instruction::ZExt: 4000 NewI = B.CreateZExtOrTrunc( 4001 CI->getOperand(0), 4002 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4003 break; 4004 } 4005 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4006 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 4007 ->getNumElements(); 4008 auto *O0 = B.CreateZExtOrTrunc( 4009 SI->getOperand(0), 4010 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 4011 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 4012 ->getNumElements(); 4013 auto *O1 = B.CreateZExtOrTrunc( 4014 SI->getOperand(1), 4015 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 4016 4017 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4018 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4019 // Don't do anything with the operands, just extend the result. 4020 continue; 4021 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4022 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 4023 ->getNumElements(); 4024 auto *O0 = B.CreateZExtOrTrunc( 4025 IE->getOperand(0), 4026 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4027 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4028 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4029 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4030 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4031 ->getNumElements(); 4032 auto *O0 = B.CreateZExtOrTrunc( 4033 EE->getOperand(0), 4034 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4035 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4036 } else { 4037 // If we don't know what to do, be conservative and don't do anything. 4038 continue; 4039 } 4040 4041 // Lastly, extend the result. 4042 NewI->takeName(cast<Instruction>(I)); 4043 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4044 I->replaceAllUsesWith(Res); 4045 cast<Instruction>(I)->eraseFromParent(); 4046 Erased.insert(I); 4047 State.reset(Def, Res, Part); 4048 } 4049 } 4050 4051 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4052 for (const auto &KV : Cost->getMinimalBitwidths()) { 4053 // If the value wasn't vectorized, we must maintain the original scalar 4054 // type. The absence of the value from State indicates that it 4055 // wasn't vectorized. 4056 VPValue *Def = State.Plan->getVPValue(KV.first); 4057 if (!State.hasAnyVectorValue(Def)) 4058 continue; 4059 for (unsigned Part = 0; Part < UF; ++Part) { 4060 Value *I = State.get(Def, Part); 4061 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4062 if (Inst && Inst->use_empty()) { 4063 Value *NewI = Inst->getOperand(0); 4064 Inst->eraseFromParent(); 4065 State.reset(Def, NewI, Part); 4066 } 4067 } 4068 } 4069 } 4070 4071 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4072 // Insert truncates and extends for any truncated instructions as hints to 4073 // InstCombine. 4074 if (VF.isVector()) 4075 truncateToMinimalBitwidths(State); 4076 4077 // Fix widened non-induction PHIs by setting up the PHI operands. 4078 if (OrigPHIsToFix.size()) { 4079 assert(EnableVPlanNativePath && 4080 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4081 fixNonInductionPHIs(State); 4082 } 4083 4084 // At this point every instruction in the original loop is widened to a 4085 // vector form. Now we need to fix the recurrences in the loop. These PHI 4086 // nodes are currently empty because we did not want to introduce cycles. 4087 // This is the second stage of vectorizing recurrences. 4088 fixCrossIterationPHIs(State); 4089 4090 // Forget the original basic block. 4091 PSE.getSE()->forgetLoop(OrigLoop); 4092 4093 // Fix-up external users of the induction variables. 4094 for (auto &Entry : Legal->getInductionVars()) 4095 fixupIVUsers(Entry.first, Entry.second, 4096 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4097 IVEndValues[Entry.first], LoopMiddleBlock); 4098 4099 fixLCSSAPHIs(State); 4100 for (Instruction *PI : PredicatedInstructions) 4101 sinkScalarOperands(&*PI); 4102 4103 // Remove redundant induction instructions. 4104 cse(LoopVectorBody); 4105 4106 // Set/update profile weights for the vector and remainder loops as original 4107 // loop iterations are now distributed among them. Note that original loop 4108 // represented by LoopScalarBody becomes remainder loop after vectorization. 4109 // 4110 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4111 // end up getting slightly roughened result but that should be OK since 4112 // profile is not inherently precise anyway. Note also possible bypass of 4113 // vector code caused by legality checks is ignored, assigning all the weight 4114 // to the vector loop, optimistically. 4115 // 4116 // For scalable vectorization we can't know at compile time how many iterations 4117 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4118 // vscale of '1'. 4119 setProfileInfoAfterUnrolling( 4120 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4121 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4122 } 4123 4124 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4125 // In order to support recurrences we need to be able to vectorize Phi nodes. 4126 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4127 // stage #2: We now need to fix the recurrences by adding incoming edges to 4128 // the currently empty PHI nodes. At this point every instruction in the 4129 // original loop is widened to a vector form so we can use them to construct 4130 // the incoming edges. 4131 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4132 for (VPRecipeBase &R : Header->phis()) { 4133 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4134 if (!PhiR) 4135 continue; 4136 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4137 if (PhiR->getRecurrenceDescriptor()) { 4138 fixReduction(PhiR, State); 4139 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4140 fixFirstOrderRecurrence(OrigPhi, State); 4141 } 4142 } 4143 4144 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4145 VPTransformState &State) { 4146 // This is the second phase of vectorizing first-order recurrences. An 4147 // overview of the transformation is described below. Suppose we have the 4148 // following loop. 4149 // 4150 // for (int i = 0; i < n; ++i) 4151 // b[i] = a[i] - a[i - 1]; 4152 // 4153 // There is a first-order recurrence on "a". For this loop, the shorthand 4154 // scalar IR looks like: 4155 // 4156 // scalar.ph: 4157 // s_init = a[-1] 4158 // br scalar.body 4159 // 4160 // scalar.body: 4161 // i = phi [0, scalar.ph], [i+1, scalar.body] 4162 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4163 // s2 = a[i] 4164 // b[i] = s2 - s1 4165 // br cond, scalar.body, ... 4166 // 4167 // In this example, s1 is a recurrence because it's value depends on the 4168 // previous iteration. In the first phase of vectorization, we created a 4169 // temporary value for s1. We now complete the vectorization and produce the 4170 // shorthand vector IR shown below (for VF = 4, UF = 1). 4171 // 4172 // vector.ph: 4173 // v_init = vector(..., ..., ..., a[-1]) 4174 // br vector.body 4175 // 4176 // vector.body 4177 // i = phi [0, vector.ph], [i+4, vector.body] 4178 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4179 // v2 = a[i, i+1, i+2, i+3]; 4180 // v3 = vector(v1(3), v2(0, 1, 2)) 4181 // b[i, i+1, i+2, i+3] = v2 - v3 4182 // br cond, vector.body, middle.block 4183 // 4184 // middle.block: 4185 // x = v2(3) 4186 // br scalar.ph 4187 // 4188 // scalar.ph: 4189 // s_init = phi [x, middle.block], [a[-1], otherwise] 4190 // br scalar.body 4191 // 4192 // After execution completes the vector loop, we extract the next value of 4193 // the recurrence (x) to use as the initial value in the scalar loop. 4194 4195 // Get the original loop preheader and single loop latch. 4196 auto *Preheader = OrigLoop->getLoopPreheader(); 4197 auto *Latch = OrigLoop->getLoopLatch(); 4198 4199 // Get the initial and previous values of the scalar recurrence. 4200 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4201 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4202 4203 auto *IdxTy = Builder.getInt32Ty(); 4204 auto *One = ConstantInt::get(IdxTy, 1); 4205 4206 // Create a vector from the initial value. 4207 auto *VectorInit = ScalarInit; 4208 if (VF.isVector()) { 4209 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4210 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4211 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4212 VectorInit = Builder.CreateInsertElement( 4213 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4214 VectorInit, LastIdx, "vector.recur.init"); 4215 } 4216 4217 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4218 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4219 // We constructed a temporary phi node in the first phase of vectorization. 4220 // This phi node will eventually be deleted. 4221 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4222 4223 // Create a phi node for the new recurrence. The current value will either be 4224 // the initial value inserted into a vector or loop-varying vector value. 4225 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4226 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4227 4228 // Get the vectorized previous value of the last part UF - 1. It appears last 4229 // among all unrolled iterations, due to the order of their construction. 4230 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4231 4232 // Find and set the insertion point after the previous value if it is an 4233 // instruction. 4234 BasicBlock::iterator InsertPt; 4235 // Note that the previous value may have been constant-folded so it is not 4236 // guaranteed to be an instruction in the vector loop. 4237 // FIXME: Loop invariant values do not form recurrences. We should deal with 4238 // them earlier. 4239 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4240 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4241 else { 4242 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4243 if (isa<PHINode>(PreviousLastPart)) 4244 // If the previous value is a phi node, we should insert after all the phi 4245 // nodes in the block containing the PHI to avoid breaking basic block 4246 // verification. Note that the basic block may be different to 4247 // LoopVectorBody, in case we predicate the loop. 4248 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4249 else 4250 InsertPt = ++PreviousInst->getIterator(); 4251 } 4252 Builder.SetInsertPoint(&*InsertPt); 4253 4254 // The vector from which to take the initial value for the current iteration 4255 // (actual or unrolled). Initially, this is the vector phi node. 4256 Value *Incoming = VecPhi; 4257 4258 // Shuffle the current and previous vector and update the vector parts. 4259 for (unsigned Part = 0; Part < UF; ++Part) { 4260 Value *PreviousPart = State.get(PreviousDef, Part); 4261 Value *PhiPart = State.get(PhiDef, Part); 4262 auto *Shuffle = VF.isVector() 4263 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4264 : Incoming; 4265 PhiPart->replaceAllUsesWith(Shuffle); 4266 cast<Instruction>(PhiPart)->eraseFromParent(); 4267 State.reset(PhiDef, Shuffle, Part); 4268 Incoming = PreviousPart; 4269 } 4270 4271 // Fix the latch value of the new recurrence in the vector loop. 4272 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4273 4274 // Extract the last vector element in the middle block. This will be the 4275 // initial value for the recurrence when jumping to the scalar loop. 4276 auto *ExtractForScalar = Incoming; 4277 if (VF.isVector()) { 4278 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4279 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4280 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4281 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4282 "vector.recur.extract"); 4283 } 4284 // Extract the second last element in the middle block if the 4285 // Phi is used outside the loop. We need to extract the phi itself 4286 // and not the last element (the phi update in the current iteration). This 4287 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4288 // when the scalar loop is not run at all. 4289 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4290 if (VF.isVector()) { 4291 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4292 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4293 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4294 Incoming, Idx, "vector.recur.extract.for.phi"); 4295 } else if (UF > 1) 4296 // When loop is unrolled without vectorizing, initialize 4297 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4298 // of `Incoming`. This is analogous to the vectorized case above: extracting 4299 // the second last element when VF > 1. 4300 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4301 4302 // Fix the initial value of the original recurrence in the scalar loop. 4303 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4304 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4305 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4306 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4307 Start->addIncoming(Incoming, BB); 4308 } 4309 4310 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4311 Phi->setName("scalar.recur"); 4312 4313 // Finally, fix users of the recurrence outside the loop. The users will need 4314 // either the last value of the scalar recurrence or the last value of the 4315 // vector recurrence we extracted in the middle block. Since the loop is in 4316 // LCSSA form, we just need to find all the phi nodes for the original scalar 4317 // recurrence in the exit block, and then add an edge for the middle block. 4318 // Note that LCSSA does not imply single entry when the original scalar loop 4319 // had multiple exiting edges (as we always run the last iteration in the 4320 // scalar epilogue); in that case, the exiting path through middle will be 4321 // dynamically dead and the value picked for the phi doesn't matter. 4322 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4323 if (any_of(LCSSAPhi.incoming_values(), 4324 [Phi](Value *V) { return V == Phi; })) 4325 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4326 } 4327 4328 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR, 4329 VPTransformState &State) { 4330 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4331 // Get it's reduction variable descriptor. 4332 assert(Legal->isReductionVariable(OrigPhi) && 4333 "Unable to find the reduction variable"); 4334 const RecurrenceDescriptor &RdxDesc = *PhiR->getRecurrenceDescriptor(); 4335 4336 RecurKind RK = RdxDesc.getRecurrenceKind(); 4337 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4338 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4339 setDebugLocFromInst(Builder, ReductionStartValue); 4340 bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi); 4341 4342 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4343 // This is the vector-clone of the value that leaves the loop. 4344 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4345 4346 // Wrap flags are in general invalid after vectorization, clear them. 4347 clearReductionWrapFlags(RdxDesc, State); 4348 4349 // Fix the vector-loop phi. 4350 4351 // Reductions do not have to start at zero. They can start with 4352 // any loop invariant values. 4353 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4354 4355 bool IsOrdered = State.VF.isVector() && IsInLoopReductionPhi && 4356 Cost->useOrderedReductions(RdxDesc); 4357 4358 for (unsigned Part = 0; Part < UF; ++Part) { 4359 if (IsOrdered && Part > 0) 4360 break; 4361 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4362 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4363 if (IsOrdered) 4364 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4365 4366 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4367 } 4368 4369 // Before each round, move the insertion point right between 4370 // the PHIs and the values we are going to write. 4371 // This allows us to write both PHINodes and the extractelement 4372 // instructions. 4373 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4374 4375 setDebugLocFromInst(Builder, LoopExitInst); 4376 4377 Type *PhiTy = OrigPhi->getType(); 4378 // If tail is folded by masking, the vector value to leave the loop should be 4379 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4380 // instead of the former. For an inloop reduction the reduction will already 4381 // be predicated, and does not need to be handled here. 4382 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4383 for (unsigned Part = 0; Part < UF; ++Part) { 4384 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4385 Value *Sel = nullptr; 4386 for (User *U : VecLoopExitInst->users()) { 4387 if (isa<SelectInst>(U)) { 4388 assert(!Sel && "Reduction exit feeding two selects"); 4389 Sel = U; 4390 } else 4391 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4392 } 4393 assert(Sel && "Reduction exit feeds no select"); 4394 State.reset(LoopExitInstDef, Sel, Part); 4395 4396 // If the target can create a predicated operator for the reduction at no 4397 // extra cost in the loop (for example a predicated vadd), it can be 4398 // cheaper for the select to remain in the loop than be sunk out of it, 4399 // and so use the select value for the phi instead of the old 4400 // LoopExitValue. 4401 if (PreferPredicatedReductionSelect || 4402 TTI->preferPredicatedReductionSelect( 4403 RdxDesc.getOpcode(), PhiTy, 4404 TargetTransformInfo::ReductionFlags())) { 4405 auto *VecRdxPhi = 4406 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4407 VecRdxPhi->setIncomingValueForBlock( 4408 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4409 } 4410 } 4411 } 4412 4413 // If the vector reduction can be performed in a smaller type, we truncate 4414 // then extend the loop exit value to enable InstCombine to evaluate the 4415 // entire expression in the smaller type. 4416 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4417 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4418 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4419 Builder.SetInsertPoint( 4420 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4421 VectorParts RdxParts(UF); 4422 for (unsigned Part = 0; Part < UF; ++Part) { 4423 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4424 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4425 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4426 : Builder.CreateZExt(Trunc, VecTy); 4427 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4428 UI != RdxParts[Part]->user_end();) 4429 if (*UI != Trunc) { 4430 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4431 RdxParts[Part] = Extnd; 4432 } else { 4433 ++UI; 4434 } 4435 } 4436 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4437 for (unsigned Part = 0; Part < UF; ++Part) { 4438 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4439 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4440 } 4441 } 4442 4443 // Reduce all of the unrolled parts into a single vector. 4444 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4445 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4446 4447 // The middle block terminator has already been assigned a DebugLoc here (the 4448 // OrigLoop's single latch terminator). We want the whole middle block to 4449 // appear to execute on this line because: (a) it is all compiler generated, 4450 // (b) these instructions are always executed after evaluating the latch 4451 // conditional branch, and (c) other passes may add new predecessors which 4452 // terminate on this line. This is the easiest way to ensure we don't 4453 // accidentally cause an extra step back into the loop while debugging. 4454 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4455 if (IsOrdered) 4456 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4457 else { 4458 // Floating-point operations should have some FMF to enable the reduction. 4459 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4460 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4461 for (unsigned Part = 1; Part < UF; ++Part) { 4462 Value *RdxPart = State.get(LoopExitInstDef, Part); 4463 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4464 ReducedPartRdx = Builder.CreateBinOp( 4465 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4466 } else { 4467 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4468 } 4469 } 4470 } 4471 4472 // Create the reduction after the loop. Note that inloop reductions create the 4473 // target reduction in the loop using a Reduction recipe. 4474 if (VF.isVector() && !IsInLoopReductionPhi) { 4475 ReducedPartRdx = 4476 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4477 // If the reduction can be performed in a smaller type, we need to extend 4478 // the reduction to the wider type before we branch to the original loop. 4479 if (PhiTy != RdxDesc.getRecurrenceType()) 4480 ReducedPartRdx = RdxDesc.isSigned() 4481 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4482 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4483 } 4484 4485 // Create a phi node that merges control-flow from the backedge-taken check 4486 // block and the middle block. 4487 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4488 LoopScalarPreHeader->getTerminator()); 4489 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4490 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4491 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4492 4493 // Now, we need to fix the users of the reduction variable 4494 // inside and outside of the scalar remainder loop. 4495 4496 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4497 // in the exit blocks. See comment on analogous loop in 4498 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4499 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4500 if (any_of(LCSSAPhi.incoming_values(), 4501 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4502 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4503 4504 // Fix the scalar loop reduction variable with the incoming reduction sum 4505 // from the vector body and from the backedge value. 4506 int IncomingEdgeBlockIdx = 4507 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4508 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4509 // Pick the other block. 4510 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4511 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4512 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4513 } 4514 4515 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4516 VPTransformState &State) { 4517 RecurKind RK = RdxDesc.getRecurrenceKind(); 4518 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4519 return; 4520 4521 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4522 assert(LoopExitInstr && "null loop exit instruction"); 4523 SmallVector<Instruction *, 8> Worklist; 4524 SmallPtrSet<Instruction *, 8> Visited; 4525 Worklist.push_back(LoopExitInstr); 4526 Visited.insert(LoopExitInstr); 4527 4528 while (!Worklist.empty()) { 4529 Instruction *Cur = Worklist.pop_back_val(); 4530 if (isa<OverflowingBinaryOperator>(Cur)) 4531 for (unsigned Part = 0; Part < UF; ++Part) { 4532 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4533 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4534 } 4535 4536 for (User *U : Cur->users()) { 4537 Instruction *UI = cast<Instruction>(U); 4538 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4539 Visited.insert(UI).second) 4540 Worklist.push_back(UI); 4541 } 4542 } 4543 } 4544 4545 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4546 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4547 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4548 // Some phis were already hand updated by the reduction and recurrence 4549 // code above, leave them alone. 4550 continue; 4551 4552 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4553 // Non-instruction incoming values will have only one value. 4554 4555 VPLane Lane = VPLane::getFirstLane(); 4556 if (isa<Instruction>(IncomingValue) && 4557 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4558 VF)) 4559 Lane = VPLane::getLastLaneForVF(VF); 4560 4561 // Can be a loop invariant incoming value or the last scalar value to be 4562 // extracted from the vectorized loop. 4563 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4564 Value *lastIncomingValue = 4565 OrigLoop->isLoopInvariant(IncomingValue) 4566 ? IncomingValue 4567 : State.get(State.Plan->getVPValue(IncomingValue), 4568 VPIteration(UF - 1, Lane)); 4569 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4570 } 4571 } 4572 4573 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4574 // The basic block and loop containing the predicated instruction. 4575 auto *PredBB = PredInst->getParent(); 4576 auto *VectorLoop = LI->getLoopFor(PredBB); 4577 4578 // Initialize a worklist with the operands of the predicated instruction. 4579 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4580 4581 // Holds instructions that we need to analyze again. An instruction may be 4582 // reanalyzed if we don't yet know if we can sink it or not. 4583 SmallVector<Instruction *, 8> InstsToReanalyze; 4584 4585 // Returns true if a given use occurs in the predicated block. Phi nodes use 4586 // their operands in their corresponding predecessor blocks. 4587 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4588 auto *I = cast<Instruction>(U.getUser()); 4589 BasicBlock *BB = I->getParent(); 4590 if (auto *Phi = dyn_cast<PHINode>(I)) 4591 BB = Phi->getIncomingBlock( 4592 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4593 return BB == PredBB; 4594 }; 4595 4596 // Iteratively sink the scalarized operands of the predicated instruction 4597 // into the block we created for it. When an instruction is sunk, it's 4598 // operands are then added to the worklist. The algorithm ends after one pass 4599 // through the worklist doesn't sink a single instruction. 4600 bool Changed; 4601 do { 4602 // Add the instructions that need to be reanalyzed to the worklist, and 4603 // reset the changed indicator. 4604 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4605 InstsToReanalyze.clear(); 4606 Changed = false; 4607 4608 while (!Worklist.empty()) { 4609 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4610 4611 // We can't sink an instruction if it is a phi node, is not in the loop, 4612 // or may have side effects. 4613 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4614 I->mayHaveSideEffects()) 4615 continue; 4616 4617 // If the instruction is already in PredBB, check if we can sink its 4618 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4619 // sinking the scalar instruction I, hence it appears in PredBB; but it 4620 // may have failed to sink I's operands (recursively), which we try 4621 // (again) here. 4622 if (I->getParent() == PredBB) { 4623 Worklist.insert(I->op_begin(), I->op_end()); 4624 continue; 4625 } 4626 4627 // It's legal to sink the instruction if all its uses occur in the 4628 // predicated block. Otherwise, there's nothing to do yet, and we may 4629 // need to reanalyze the instruction. 4630 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4631 InstsToReanalyze.push_back(I); 4632 continue; 4633 } 4634 4635 // Move the instruction to the beginning of the predicated block, and add 4636 // it's operands to the worklist. 4637 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4638 Worklist.insert(I->op_begin(), I->op_end()); 4639 4640 // The sinking may have enabled other instructions to be sunk, so we will 4641 // need to iterate. 4642 Changed = true; 4643 } 4644 } while (Changed); 4645 } 4646 4647 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4648 for (PHINode *OrigPhi : OrigPHIsToFix) { 4649 VPWidenPHIRecipe *VPPhi = 4650 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4651 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4652 // Make sure the builder has a valid insert point. 4653 Builder.SetInsertPoint(NewPhi); 4654 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4655 VPValue *Inc = VPPhi->getIncomingValue(i); 4656 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4657 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4658 } 4659 } 4660 } 4661 4662 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4663 return Cost->useOrderedReductions(RdxDesc); 4664 } 4665 4666 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4667 VPUser &Operands, unsigned UF, 4668 ElementCount VF, bool IsPtrLoopInvariant, 4669 SmallBitVector &IsIndexLoopInvariant, 4670 VPTransformState &State) { 4671 // Construct a vector GEP by widening the operands of the scalar GEP as 4672 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4673 // results in a vector of pointers when at least one operand of the GEP 4674 // is vector-typed. Thus, to keep the representation compact, we only use 4675 // vector-typed operands for loop-varying values. 4676 4677 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4678 // If we are vectorizing, but the GEP has only loop-invariant operands, 4679 // the GEP we build (by only using vector-typed operands for 4680 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4681 // produce a vector of pointers, we need to either arbitrarily pick an 4682 // operand to broadcast, or broadcast a clone of the original GEP. 4683 // Here, we broadcast a clone of the original. 4684 // 4685 // TODO: If at some point we decide to scalarize instructions having 4686 // loop-invariant operands, this special case will no longer be 4687 // required. We would add the scalarization decision to 4688 // collectLoopScalars() and teach getVectorValue() to broadcast 4689 // the lane-zero scalar value. 4690 auto *Clone = Builder.Insert(GEP->clone()); 4691 for (unsigned Part = 0; Part < UF; ++Part) { 4692 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4693 State.set(VPDef, EntryPart, Part); 4694 addMetadata(EntryPart, GEP); 4695 } 4696 } else { 4697 // If the GEP has at least one loop-varying operand, we are sure to 4698 // produce a vector of pointers. But if we are only unrolling, we want 4699 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4700 // produce with the code below will be scalar (if VF == 1) or vector 4701 // (otherwise). Note that for the unroll-only case, we still maintain 4702 // values in the vector mapping with initVector, as we do for other 4703 // instructions. 4704 for (unsigned Part = 0; Part < UF; ++Part) { 4705 // The pointer operand of the new GEP. If it's loop-invariant, we 4706 // won't broadcast it. 4707 auto *Ptr = IsPtrLoopInvariant 4708 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4709 : State.get(Operands.getOperand(0), Part); 4710 4711 // Collect all the indices for the new GEP. If any index is 4712 // loop-invariant, we won't broadcast it. 4713 SmallVector<Value *, 4> Indices; 4714 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4715 VPValue *Operand = Operands.getOperand(I); 4716 if (IsIndexLoopInvariant[I - 1]) 4717 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4718 else 4719 Indices.push_back(State.get(Operand, Part)); 4720 } 4721 4722 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4723 // but it should be a vector, otherwise. 4724 auto *NewGEP = 4725 GEP->isInBounds() 4726 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4727 Indices) 4728 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4729 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4730 "NewGEP is not a pointer vector"); 4731 State.set(VPDef, NewGEP, Part); 4732 addMetadata(NewGEP, GEP); 4733 } 4734 } 4735 } 4736 4737 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4738 RecurrenceDescriptor *RdxDesc, 4739 VPWidenPHIRecipe *PhiR, 4740 VPTransformState &State) { 4741 PHINode *P = cast<PHINode>(PN); 4742 if (EnableVPlanNativePath) { 4743 // Currently we enter here in the VPlan-native path for non-induction 4744 // PHIs where all control flow is uniform. We simply widen these PHIs. 4745 // Create a vector phi with no operands - the vector phi operands will be 4746 // set at the end of vector code generation. 4747 Type *VecTy = (State.VF.isScalar()) 4748 ? PN->getType() 4749 : VectorType::get(PN->getType(), State.VF); 4750 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4751 State.set(PhiR, VecPhi, 0); 4752 OrigPHIsToFix.push_back(P); 4753 4754 return; 4755 } 4756 4757 assert(PN->getParent() == OrigLoop->getHeader() && 4758 "Non-header phis should have been handled elsewhere"); 4759 4760 VPValue *StartVPV = PhiR->getStartValue(); 4761 Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr; 4762 // In order to support recurrences we need to be able to vectorize Phi nodes. 4763 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4764 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4765 // this value when we vectorize all of the instructions that use the PHI. 4766 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4767 Value *Iden = nullptr; 4768 bool ScalarPHI = 4769 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4770 Type *VecTy = 4771 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4772 4773 if (RdxDesc) { 4774 assert(Legal->isReductionVariable(P) && StartV && 4775 "RdxDesc should only be set for reduction variables; in that case " 4776 "a StartV is also required"); 4777 RecurKind RK = RdxDesc->getRecurrenceKind(); 4778 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4779 // MinMax reduction have the start value as their identify. 4780 if (ScalarPHI) { 4781 Iden = StartV; 4782 } else { 4783 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4784 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4785 StartV = Iden = 4786 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4787 } 4788 } else { 4789 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4790 RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags()); 4791 Iden = IdenC; 4792 4793 if (!ScalarPHI) { 4794 Iden = ConstantVector::getSplat(State.VF, IdenC); 4795 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4796 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4797 Constant *Zero = Builder.getInt32(0); 4798 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4799 } 4800 } 4801 } 4802 4803 bool IsOrdered = State.VF.isVector() && 4804 Cost->isInLoopReduction(cast<PHINode>(PN)) && 4805 Cost->useOrderedReductions(*RdxDesc); 4806 4807 for (unsigned Part = 0; Part < State.UF; ++Part) { 4808 // This is phase one of vectorizing PHIs. 4809 if (Part > 0 && IsOrdered) 4810 return; 4811 Value *EntryPart = PHINode::Create( 4812 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4813 State.set(PhiR, EntryPart, Part); 4814 if (StartV) { 4815 // Make sure to add the reduction start value only to the 4816 // first unroll part. 4817 Value *StartVal = (Part == 0) ? StartV : Iden; 4818 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4819 } 4820 } 4821 return; 4822 } 4823 4824 assert(!Legal->isReductionVariable(P) && 4825 "reductions should be handled above"); 4826 4827 setDebugLocFromInst(Builder, P); 4828 4829 // This PHINode must be an induction variable. 4830 // Make sure that we know about it. 4831 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4832 4833 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4834 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4835 4836 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4837 // which can be found from the original scalar operations. 4838 switch (II.getKind()) { 4839 case InductionDescriptor::IK_NoInduction: 4840 llvm_unreachable("Unknown induction"); 4841 case InductionDescriptor::IK_IntInduction: 4842 case InductionDescriptor::IK_FpInduction: 4843 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4844 case InductionDescriptor::IK_PtrInduction: { 4845 // Handle the pointer induction variable case. 4846 assert(P->getType()->isPointerTy() && "Unexpected type."); 4847 4848 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4849 // This is the normalized GEP that starts counting at zero. 4850 Value *PtrInd = 4851 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4852 // Determine the number of scalars we need to generate for each unroll 4853 // iteration. If the instruction is uniform, we only need to generate the 4854 // first lane. Otherwise, we generate all VF values. 4855 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4856 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4857 4858 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4859 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4860 if (NeedsVectorIndex) { 4861 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4862 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4863 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4864 } 4865 4866 for (unsigned Part = 0; Part < UF; ++Part) { 4867 Value *PartStart = createStepForVF( 4868 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4869 4870 if (NeedsVectorIndex) { 4871 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4872 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4873 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4874 Value *SclrGep = 4875 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4876 SclrGep->setName("next.gep"); 4877 State.set(PhiR, SclrGep, Part); 4878 // We've cached the whole vector, which means we can support the 4879 // extraction of any lane. 4880 continue; 4881 } 4882 4883 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4884 Value *Idx = Builder.CreateAdd( 4885 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4886 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4887 Value *SclrGep = 4888 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4889 SclrGep->setName("next.gep"); 4890 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4891 } 4892 } 4893 return; 4894 } 4895 assert(isa<SCEVConstant>(II.getStep()) && 4896 "Induction step not a SCEV constant!"); 4897 Type *PhiType = II.getStep()->getType(); 4898 4899 // Build a pointer phi 4900 Value *ScalarStartValue = II.getStartValue(); 4901 Type *ScStValueType = ScalarStartValue->getType(); 4902 PHINode *NewPointerPhi = 4903 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4904 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4905 4906 // A pointer induction, performed by using a gep 4907 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4908 Instruction *InductionLoc = LoopLatch->getTerminator(); 4909 const SCEV *ScalarStep = II.getStep(); 4910 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4911 Value *ScalarStepValue = 4912 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4913 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4914 Value *NumUnrolledElems = 4915 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4916 Value *InductionGEP = GetElementPtrInst::Create( 4917 ScStValueType->getPointerElementType(), NewPointerPhi, 4918 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4919 InductionLoc); 4920 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4921 4922 // Create UF many actual address geps that use the pointer 4923 // phi as base and a vectorized version of the step value 4924 // (<step*0, ..., step*N>) as offset. 4925 for (unsigned Part = 0; Part < State.UF; ++Part) { 4926 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4927 Value *StartOffsetScalar = 4928 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4929 Value *StartOffset = 4930 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4931 // Create a vector of consecutive numbers from zero to VF. 4932 StartOffset = 4933 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4934 4935 Value *GEP = Builder.CreateGEP( 4936 ScStValueType->getPointerElementType(), NewPointerPhi, 4937 Builder.CreateMul( 4938 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4939 "vector.gep")); 4940 State.set(PhiR, GEP, Part); 4941 } 4942 } 4943 } 4944 } 4945 4946 /// A helper function for checking whether an integer division-related 4947 /// instruction may divide by zero (in which case it must be predicated if 4948 /// executed conditionally in the scalar code). 4949 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4950 /// Non-zero divisors that are non compile-time constants will not be 4951 /// converted into multiplication, so we will still end up scalarizing 4952 /// the division, but can do so w/o predication. 4953 static bool mayDivideByZero(Instruction &I) { 4954 assert((I.getOpcode() == Instruction::UDiv || 4955 I.getOpcode() == Instruction::SDiv || 4956 I.getOpcode() == Instruction::URem || 4957 I.getOpcode() == Instruction::SRem) && 4958 "Unexpected instruction"); 4959 Value *Divisor = I.getOperand(1); 4960 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4961 return !CInt || CInt->isZero(); 4962 } 4963 4964 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4965 VPUser &User, 4966 VPTransformState &State) { 4967 switch (I.getOpcode()) { 4968 case Instruction::Call: 4969 case Instruction::Br: 4970 case Instruction::PHI: 4971 case Instruction::GetElementPtr: 4972 case Instruction::Select: 4973 llvm_unreachable("This instruction is handled by a different recipe."); 4974 case Instruction::UDiv: 4975 case Instruction::SDiv: 4976 case Instruction::SRem: 4977 case Instruction::URem: 4978 case Instruction::Add: 4979 case Instruction::FAdd: 4980 case Instruction::Sub: 4981 case Instruction::FSub: 4982 case Instruction::FNeg: 4983 case Instruction::Mul: 4984 case Instruction::FMul: 4985 case Instruction::FDiv: 4986 case Instruction::FRem: 4987 case Instruction::Shl: 4988 case Instruction::LShr: 4989 case Instruction::AShr: 4990 case Instruction::And: 4991 case Instruction::Or: 4992 case Instruction::Xor: { 4993 // Just widen unops and binops. 4994 setDebugLocFromInst(Builder, &I); 4995 4996 for (unsigned Part = 0; Part < UF; ++Part) { 4997 SmallVector<Value *, 2> Ops; 4998 for (VPValue *VPOp : User.operands()) 4999 Ops.push_back(State.get(VPOp, Part)); 5000 5001 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 5002 5003 if (auto *VecOp = dyn_cast<Instruction>(V)) 5004 VecOp->copyIRFlags(&I); 5005 5006 // Use this vector value for all users of the original instruction. 5007 State.set(Def, V, Part); 5008 addMetadata(V, &I); 5009 } 5010 5011 break; 5012 } 5013 case Instruction::ICmp: 5014 case Instruction::FCmp: { 5015 // Widen compares. Generate vector compares. 5016 bool FCmp = (I.getOpcode() == Instruction::FCmp); 5017 auto *Cmp = cast<CmpInst>(&I); 5018 setDebugLocFromInst(Builder, Cmp); 5019 for (unsigned Part = 0; Part < UF; ++Part) { 5020 Value *A = State.get(User.getOperand(0), Part); 5021 Value *B = State.get(User.getOperand(1), Part); 5022 Value *C = nullptr; 5023 if (FCmp) { 5024 // Propagate fast math flags. 5025 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 5026 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 5027 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 5028 } else { 5029 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 5030 } 5031 State.set(Def, C, Part); 5032 addMetadata(C, &I); 5033 } 5034 5035 break; 5036 } 5037 5038 case Instruction::ZExt: 5039 case Instruction::SExt: 5040 case Instruction::FPToUI: 5041 case Instruction::FPToSI: 5042 case Instruction::FPExt: 5043 case Instruction::PtrToInt: 5044 case Instruction::IntToPtr: 5045 case Instruction::SIToFP: 5046 case Instruction::UIToFP: 5047 case Instruction::Trunc: 5048 case Instruction::FPTrunc: 5049 case Instruction::BitCast: { 5050 auto *CI = cast<CastInst>(&I); 5051 setDebugLocFromInst(Builder, CI); 5052 5053 /// Vectorize casts. 5054 Type *DestTy = 5055 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5056 5057 for (unsigned Part = 0; Part < UF; ++Part) { 5058 Value *A = State.get(User.getOperand(0), Part); 5059 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5060 State.set(Def, Cast, Part); 5061 addMetadata(Cast, &I); 5062 } 5063 break; 5064 } 5065 default: 5066 // This instruction is not vectorized by simple widening. 5067 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5068 llvm_unreachable("Unhandled instruction!"); 5069 } // end of switch. 5070 } 5071 5072 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5073 VPUser &ArgOperands, 5074 VPTransformState &State) { 5075 assert(!isa<DbgInfoIntrinsic>(I) && 5076 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5077 setDebugLocFromInst(Builder, &I); 5078 5079 Module *M = I.getParent()->getParent()->getParent(); 5080 auto *CI = cast<CallInst>(&I); 5081 5082 SmallVector<Type *, 4> Tys; 5083 for (Value *ArgOperand : CI->arg_operands()) 5084 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5085 5086 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5087 5088 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5089 // version of the instruction. 5090 // Is it beneficial to perform intrinsic call compared to lib call? 5091 bool NeedToScalarize = false; 5092 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5093 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5094 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5095 assert((UseVectorIntrinsic || !NeedToScalarize) && 5096 "Instruction should be scalarized elsewhere."); 5097 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5098 "Either the intrinsic cost or vector call cost must be valid"); 5099 5100 for (unsigned Part = 0; Part < UF; ++Part) { 5101 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5102 SmallVector<Value *, 4> Args; 5103 for (auto &I : enumerate(ArgOperands.operands())) { 5104 // Some intrinsics have a scalar argument - don't replace it with a 5105 // vector. 5106 Value *Arg; 5107 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5108 Arg = State.get(I.value(), Part); 5109 else { 5110 Arg = State.get(I.value(), VPIteration(0, 0)); 5111 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5112 TysForDecl.push_back(Arg->getType()); 5113 } 5114 Args.push_back(Arg); 5115 } 5116 5117 Function *VectorF; 5118 if (UseVectorIntrinsic) { 5119 // Use vector version of the intrinsic. 5120 if (VF.isVector()) 5121 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5122 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5123 assert(VectorF && "Can't retrieve vector intrinsic."); 5124 } else { 5125 // Use vector version of the function call. 5126 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5127 #ifndef NDEBUG 5128 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5129 "Can't create vector function."); 5130 #endif 5131 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5132 } 5133 SmallVector<OperandBundleDef, 1> OpBundles; 5134 CI->getOperandBundlesAsDefs(OpBundles); 5135 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5136 5137 if (isa<FPMathOperator>(V)) 5138 V->copyFastMathFlags(CI); 5139 5140 State.set(Def, V, Part); 5141 addMetadata(V, &I); 5142 } 5143 } 5144 5145 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5146 VPUser &Operands, 5147 bool InvariantCond, 5148 VPTransformState &State) { 5149 setDebugLocFromInst(Builder, &I); 5150 5151 // The condition can be loop invariant but still defined inside the 5152 // loop. This means that we can't just use the original 'cond' value. 5153 // We have to take the 'vectorized' value and pick the first lane. 5154 // Instcombine will make this a no-op. 5155 auto *InvarCond = InvariantCond 5156 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5157 : nullptr; 5158 5159 for (unsigned Part = 0; Part < UF; ++Part) { 5160 Value *Cond = 5161 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5162 Value *Op0 = State.get(Operands.getOperand(1), Part); 5163 Value *Op1 = State.get(Operands.getOperand(2), Part); 5164 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5165 State.set(VPDef, Sel, Part); 5166 addMetadata(Sel, &I); 5167 } 5168 } 5169 5170 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5171 // We should not collect Scalars more than once per VF. Right now, this 5172 // function is called from collectUniformsAndScalars(), which already does 5173 // this check. Collecting Scalars for VF=1 does not make any sense. 5174 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5175 "This function should not be visited twice for the same VF"); 5176 5177 SmallSetVector<Instruction *, 8> Worklist; 5178 5179 // These sets are used to seed the analysis with pointers used by memory 5180 // accesses that will remain scalar. 5181 SmallSetVector<Instruction *, 8> ScalarPtrs; 5182 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5183 auto *Latch = TheLoop->getLoopLatch(); 5184 5185 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5186 // The pointer operands of loads and stores will be scalar as long as the 5187 // memory access is not a gather or scatter operation. The value operand of a 5188 // store will remain scalar if the store is scalarized. 5189 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5190 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5191 assert(WideningDecision != CM_Unknown && 5192 "Widening decision should be ready at this moment"); 5193 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5194 if (Ptr == Store->getValueOperand()) 5195 return WideningDecision == CM_Scalarize; 5196 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5197 "Ptr is neither a value or pointer operand"); 5198 return WideningDecision != CM_GatherScatter; 5199 }; 5200 5201 // A helper that returns true if the given value is a bitcast or 5202 // getelementptr instruction contained in the loop. 5203 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5204 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5205 isa<GetElementPtrInst>(V)) && 5206 !TheLoop->isLoopInvariant(V); 5207 }; 5208 5209 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5210 if (!isa<PHINode>(Ptr) || 5211 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5212 return false; 5213 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5214 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5215 return false; 5216 return isScalarUse(MemAccess, Ptr); 5217 }; 5218 5219 // A helper that evaluates a memory access's use of a pointer. If the 5220 // pointer is actually the pointer induction of a loop, it is being 5221 // inserted into Worklist. If the use will be a scalar use, and the 5222 // pointer is only used by memory accesses, we place the pointer in 5223 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5224 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5225 if (isScalarPtrInduction(MemAccess, Ptr)) { 5226 Worklist.insert(cast<Instruction>(Ptr)); 5227 Instruction *Update = cast<Instruction>( 5228 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5229 Worklist.insert(Update); 5230 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5231 << "\n"); 5232 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5233 << "\n"); 5234 return; 5235 } 5236 // We only care about bitcast and getelementptr instructions contained in 5237 // the loop. 5238 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5239 return; 5240 5241 // If the pointer has already been identified as scalar (e.g., if it was 5242 // also identified as uniform), there's nothing to do. 5243 auto *I = cast<Instruction>(Ptr); 5244 if (Worklist.count(I)) 5245 return; 5246 5247 // If the use of the pointer will be a scalar use, and all users of the 5248 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5249 // place the pointer in PossibleNonScalarPtrs. 5250 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5251 return isa<LoadInst>(U) || isa<StoreInst>(U); 5252 })) 5253 ScalarPtrs.insert(I); 5254 else 5255 PossibleNonScalarPtrs.insert(I); 5256 }; 5257 5258 // We seed the scalars analysis with three classes of instructions: (1) 5259 // instructions marked uniform-after-vectorization and (2) bitcast, 5260 // getelementptr and (pointer) phi instructions used by memory accesses 5261 // requiring a scalar use. 5262 // 5263 // (1) Add to the worklist all instructions that have been identified as 5264 // uniform-after-vectorization. 5265 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5266 5267 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5268 // memory accesses requiring a scalar use. The pointer operands of loads and 5269 // stores will be scalar as long as the memory accesses is not a gather or 5270 // scatter operation. The value operand of a store will remain scalar if the 5271 // store is scalarized. 5272 for (auto *BB : TheLoop->blocks()) 5273 for (auto &I : *BB) { 5274 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5275 evaluatePtrUse(Load, Load->getPointerOperand()); 5276 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5277 evaluatePtrUse(Store, Store->getPointerOperand()); 5278 evaluatePtrUse(Store, Store->getValueOperand()); 5279 } 5280 } 5281 for (auto *I : ScalarPtrs) 5282 if (!PossibleNonScalarPtrs.count(I)) { 5283 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5284 Worklist.insert(I); 5285 } 5286 5287 // Insert the forced scalars. 5288 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5289 // induction variable when the PHI user is scalarized. 5290 auto ForcedScalar = ForcedScalars.find(VF); 5291 if (ForcedScalar != ForcedScalars.end()) 5292 for (auto *I : ForcedScalar->second) 5293 Worklist.insert(I); 5294 5295 // Expand the worklist by looking through any bitcasts and getelementptr 5296 // instructions we've already identified as scalar. This is similar to the 5297 // expansion step in collectLoopUniforms(); however, here we're only 5298 // expanding to include additional bitcasts and getelementptr instructions. 5299 unsigned Idx = 0; 5300 while (Idx != Worklist.size()) { 5301 Instruction *Dst = Worklist[Idx++]; 5302 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5303 continue; 5304 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5305 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5306 auto *J = cast<Instruction>(U); 5307 return !TheLoop->contains(J) || Worklist.count(J) || 5308 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5309 isScalarUse(J, Src)); 5310 })) { 5311 Worklist.insert(Src); 5312 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5313 } 5314 } 5315 5316 // An induction variable will remain scalar if all users of the induction 5317 // variable and induction variable update remain scalar. 5318 for (auto &Induction : Legal->getInductionVars()) { 5319 auto *Ind = Induction.first; 5320 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5321 5322 // If tail-folding is applied, the primary induction variable will be used 5323 // to feed a vector compare. 5324 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5325 continue; 5326 5327 // Determine if all users of the induction variable are scalar after 5328 // vectorization. 5329 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5330 auto *I = cast<Instruction>(U); 5331 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5332 }); 5333 if (!ScalarInd) 5334 continue; 5335 5336 // Determine if all users of the induction variable update instruction are 5337 // scalar after vectorization. 5338 auto ScalarIndUpdate = 5339 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5340 auto *I = cast<Instruction>(U); 5341 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5342 }); 5343 if (!ScalarIndUpdate) 5344 continue; 5345 5346 // The induction variable and its update instruction will remain scalar. 5347 Worklist.insert(Ind); 5348 Worklist.insert(IndUpdate); 5349 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5350 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5351 << "\n"); 5352 } 5353 5354 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5355 } 5356 5357 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5358 if (!blockNeedsPredication(I->getParent())) 5359 return false; 5360 switch(I->getOpcode()) { 5361 default: 5362 break; 5363 case Instruction::Load: 5364 case Instruction::Store: { 5365 if (!Legal->isMaskRequired(I)) 5366 return false; 5367 auto *Ptr = getLoadStorePointerOperand(I); 5368 auto *Ty = getLoadStoreType(I); 5369 const Align Alignment = getLoadStoreAlignment(I); 5370 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5371 TTI.isLegalMaskedGather(Ty, Alignment)) 5372 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5373 TTI.isLegalMaskedScatter(Ty, Alignment)); 5374 } 5375 case Instruction::UDiv: 5376 case Instruction::SDiv: 5377 case Instruction::SRem: 5378 case Instruction::URem: 5379 return mayDivideByZero(*I); 5380 } 5381 return false; 5382 } 5383 5384 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5385 Instruction *I, ElementCount VF) { 5386 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5387 assert(getWideningDecision(I, VF) == CM_Unknown && 5388 "Decision should not be set yet."); 5389 auto *Group = getInterleavedAccessGroup(I); 5390 assert(Group && "Must have a group."); 5391 5392 // If the instruction's allocated size doesn't equal it's type size, it 5393 // requires padding and will be scalarized. 5394 auto &DL = I->getModule()->getDataLayout(); 5395 auto *ScalarTy = getLoadStoreType(I); 5396 if (hasIrregularType(ScalarTy, DL)) 5397 return false; 5398 5399 // Check if masking is required. 5400 // A Group may need masking for one of two reasons: it resides in a block that 5401 // needs predication, or it was decided to use masking to deal with gaps. 5402 bool PredicatedAccessRequiresMasking = 5403 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5404 bool AccessWithGapsRequiresMasking = 5405 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5406 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5407 return true; 5408 5409 // If masked interleaving is required, we expect that the user/target had 5410 // enabled it, because otherwise it either wouldn't have been created or 5411 // it should have been invalidated by the CostModel. 5412 assert(useMaskedInterleavedAccesses(TTI) && 5413 "Masked interleave-groups for predicated accesses are not enabled."); 5414 5415 auto *Ty = getLoadStoreType(I); 5416 const Align Alignment = getLoadStoreAlignment(I); 5417 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5418 : TTI.isLegalMaskedStore(Ty, Alignment); 5419 } 5420 5421 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5422 Instruction *I, ElementCount VF) { 5423 // Get and ensure we have a valid memory instruction. 5424 LoadInst *LI = dyn_cast<LoadInst>(I); 5425 StoreInst *SI = dyn_cast<StoreInst>(I); 5426 assert((LI || SI) && "Invalid memory instruction"); 5427 5428 auto *Ptr = getLoadStorePointerOperand(I); 5429 5430 // In order to be widened, the pointer should be consecutive, first of all. 5431 if (!Legal->isConsecutivePtr(Ptr)) 5432 return false; 5433 5434 // If the instruction is a store located in a predicated block, it will be 5435 // scalarized. 5436 if (isScalarWithPredication(I)) 5437 return false; 5438 5439 // If the instruction's allocated size doesn't equal it's type size, it 5440 // requires padding and will be scalarized. 5441 auto &DL = I->getModule()->getDataLayout(); 5442 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5443 if (hasIrregularType(ScalarTy, DL)) 5444 return false; 5445 5446 return true; 5447 } 5448 5449 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5450 // We should not collect Uniforms more than once per VF. Right now, 5451 // this function is called from collectUniformsAndScalars(), which 5452 // already does this check. Collecting Uniforms for VF=1 does not make any 5453 // sense. 5454 5455 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5456 "This function should not be visited twice for the same VF"); 5457 5458 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5459 // not analyze again. Uniforms.count(VF) will return 1. 5460 Uniforms[VF].clear(); 5461 5462 // We now know that the loop is vectorizable! 5463 // Collect instructions inside the loop that will remain uniform after 5464 // vectorization. 5465 5466 // Global values, params and instructions outside of current loop are out of 5467 // scope. 5468 auto isOutOfScope = [&](Value *V) -> bool { 5469 Instruction *I = dyn_cast<Instruction>(V); 5470 return (!I || !TheLoop->contains(I)); 5471 }; 5472 5473 SetVector<Instruction *> Worklist; 5474 BasicBlock *Latch = TheLoop->getLoopLatch(); 5475 5476 // Instructions that are scalar with predication must not be considered 5477 // uniform after vectorization, because that would create an erroneous 5478 // replicating region where only a single instance out of VF should be formed. 5479 // TODO: optimize such seldom cases if found important, see PR40816. 5480 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5481 if (isOutOfScope(I)) { 5482 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5483 << *I << "\n"); 5484 return; 5485 } 5486 if (isScalarWithPredication(I)) { 5487 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5488 << *I << "\n"); 5489 return; 5490 } 5491 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5492 Worklist.insert(I); 5493 }; 5494 5495 // Start with the conditional branch. If the branch condition is an 5496 // instruction contained in the loop that is only used by the branch, it is 5497 // uniform. 5498 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5499 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5500 addToWorklistIfAllowed(Cmp); 5501 5502 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5503 InstWidening WideningDecision = getWideningDecision(I, VF); 5504 assert(WideningDecision != CM_Unknown && 5505 "Widening decision should be ready at this moment"); 5506 5507 // A uniform memory op is itself uniform. We exclude uniform stores 5508 // here as they demand the last lane, not the first one. 5509 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5510 assert(WideningDecision == CM_Scalarize); 5511 return true; 5512 } 5513 5514 return (WideningDecision == CM_Widen || 5515 WideningDecision == CM_Widen_Reverse || 5516 WideningDecision == CM_Interleave); 5517 }; 5518 5519 5520 // Returns true if Ptr is the pointer operand of a memory access instruction 5521 // I, and I is known to not require scalarization. 5522 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5523 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5524 }; 5525 5526 // Holds a list of values which are known to have at least one uniform use. 5527 // Note that there may be other uses which aren't uniform. A "uniform use" 5528 // here is something which only demands lane 0 of the unrolled iterations; 5529 // it does not imply that all lanes produce the same value (e.g. this is not 5530 // the usual meaning of uniform) 5531 SetVector<Value *> HasUniformUse; 5532 5533 // Scan the loop for instructions which are either a) known to have only 5534 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5535 for (auto *BB : TheLoop->blocks()) 5536 for (auto &I : *BB) { 5537 // If there's no pointer operand, there's nothing to do. 5538 auto *Ptr = getLoadStorePointerOperand(&I); 5539 if (!Ptr) 5540 continue; 5541 5542 // A uniform memory op is itself uniform. We exclude uniform stores 5543 // here as they demand the last lane, not the first one. 5544 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5545 addToWorklistIfAllowed(&I); 5546 5547 if (isUniformDecision(&I, VF)) { 5548 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5549 HasUniformUse.insert(Ptr); 5550 } 5551 } 5552 5553 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5554 // demanding) users. Since loops are assumed to be in LCSSA form, this 5555 // disallows uses outside the loop as well. 5556 for (auto *V : HasUniformUse) { 5557 if (isOutOfScope(V)) 5558 continue; 5559 auto *I = cast<Instruction>(V); 5560 auto UsersAreMemAccesses = 5561 llvm::all_of(I->users(), [&](User *U) -> bool { 5562 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5563 }); 5564 if (UsersAreMemAccesses) 5565 addToWorklistIfAllowed(I); 5566 } 5567 5568 // Expand Worklist in topological order: whenever a new instruction 5569 // is added , its users should be already inside Worklist. It ensures 5570 // a uniform instruction will only be used by uniform instructions. 5571 unsigned idx = 0; 5572 while (idx != Worklist.size()) { 5573 Instruction *I = Worklist[idx++]; 5574 5575 for (auto OV : I->operand_values()) { 5576 // isOutOfScope operands cannot be uniform instructions. 5577 if (isOutOfScope(OV)) 5578 continue; 5579 // First order recurrence Phi's should typically be considered 5580 // non-uniform. 5581 auto *OP = dyn_cast<PHINode>(OV); 5582 if (OP && Legal->isFirstOrderRecurrence(OP)) 5583 continue; 5584 // If all the users of the operand are uniform, then add the 5585 // operand into the uniform worklist. 5586 auto *OI = cast<Instruction>(OV); 5587 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5588 auto *J = cast<Instruction>(U); 5589 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5590 })) 5591 addToWorklistIfAllowed(OI); 5592 } 5593 } 5594 5595 // For an instruction to be added into Worklist above, all its users inside 5596 // the loop should also be in Worklist. However, this condition cannot be 5597 // true for phi nodes that form a cyclic dependence. We must process phi 5598 // nodes separately. An induction variable will remain uniform if all users 5599 // of the induction variable and induction variable update remain uniform. 5600 // The code below handles both pointer and non-pointer induction variables. 5601 for (auto &Induction : Legal->getInductionVars()) { 5602 auto *Ind = Induction.first; 5603 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5604 5605 // Determine if all users of the induction variable are uniform after 5606 // vectorization. 5607 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5608 auto *I = cast<Instruction>(U); 5609 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5610 isVectorizedMemAccessUse(I, Ind); 5611 }); 5612 if (!UniformInd) 5613 continue; 5614 5615 // Determine if all users of the induction variable update instruction are 5616 // uniform after vectorization. 5617 auto UniformIndUpdate = 5618 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5619 auto *I = cast<Instruction>(U); 5620 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5621 isVectorizedMemAccessUse(I, IndUpdate); 5622 }); 5623 if (!UniformIndUpdate) 5624 continue; 5625 5626 // The induction variable and its update instruction will remain uniform. 5627 addToWorklistIfAllowed(Ind); 5628 addToWorklistIfAllowed(IndUpdate); 5629 } 5630 5631 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5632 } 5633 5634 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5635 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5636 5637 if (Legal->getRuntimePointerChecking()->Need) { 5638 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5639 "runtime pointer checks needed. Enable vectorization of this " 5640 "loop with '#pragma clang loop vectorize(enable)' when " 5641 "compiling with -Os/-Oz", 5642 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5643 return true; 5644 } 5645 5646 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5647 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5648 "runtime SCEV checks needed. Enable vectorization of this " 5649 "loop with '#pragma clang loop vectorize(enable)' when " 5650 "compiling with -Os/-Oz", 5651 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5652 return true; 5653 } 5654 5655 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5656 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5657 reportVectorizationFailure("Runtime stride check for small trip count", 5658 "runtime stride == 1 checks needed. Enable vectorization of " 5659 "this loop without such check by compiling with -Os/-Oz", 5660 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5661 return true; 5662 } 5663 5664 return false; 5665 } 5666 5667 ElementCount 5668 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5669 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5670 reportVectorizationInfo( 5671 "Disabling scalable vectorization, because target does not " 5672 "support scalable vectors.", 5673 "ScalableVectorsUnsupported", ORE, TheLoop); 5674 return ElementCount::getScalable(0); 5675 } 5676 5677 if (Hints->isScalableVectorizationDisabled()) { 5678 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5679 "ScalableVectorizationDisabled", ORE, TheLoop); 5680 return ElementCount::getScalable(0); 5681 } 5682 5683 auto MaxScalableVF = ElementCount::getScalable( 5684 std::numeric_limits<ElementCount::ScalarTy>::max()); 5685 5686 // Disable scalable vectorization if the loop contains unsupported reductions. 5687 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5688 // FIXME: While for scalable vectors this is currently sufficient, this should 5689 // be replaced by a more detailed mechanism that filters out specific VFs, 5690 // instead of invalidating vectorization for a whole set of VFs based on the 5691 // MaxVF. 5692 if (!canVectorizeReductions(MaxScalableVF)) { 5693 reportVectorizationInfo( 5694 "Scalable vectorization not supported for the reduction " 5695 "operations found in this loop.", 5696 "ScalableVFUnfeasible", ORE, TheLoop); 5697 return ElementCount::getScalable(0); 5698 } 5699 5700 if (Legal->isSafeForAnyVectorWidth()) 5701 return MaxScalableVF; 5702 5703 // Limit MaxScalableVF by the maximum safe dependence distance. 5704 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5705 MaxScalableVF = ElementCount::getScalable( 5706 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5707 if (!MaxScalableVF) 5708 reportVectorizationInfo( 5709 "Max legal vector width too small, scalable vectorization " 5710 "unfeasible.", 5711 "ScalableVFUnfeasible", ORE, TheLoop); 5712 5713 return MaxScalableVF; 5714 } 5715 5716 FixedScalableVFPair 5717 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5718 ElementCount UserVF) { 5719 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5720 unsigned SmallestType, WidestType; 5721 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5722 5723 // Get the maximum safe dependence distance in bits computed by LAA. 5724 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5725 // the memory accesses that is most restrictive (involved in the smallest 5726 // dependence distance). 5727 unsigned MaxSafeElements = 5728 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5729 5730 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5731 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5732 5733 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5734 << ".\n"); 5735 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5736 << ".\n"); 5737 5738 // First analyze the UserVF, fall back if the UserVF should be ignored. 5739 if (UserVF) { 5740 auto MaxSafeUserVF = 5741 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5742 5743 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) 5744 return UserVF; 5745 5746 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5747 5748 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5749 // is better to ignore the hint and let the compiler choose a suitable VF. 5750 if (!UserVF.isScalable()) { 5751 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5752 << " is unsafe, clamping to max safe VF=" 5753 << MaxSafeFixedVF << ".\n"); 5754 ORE->emit([&]() { 5755 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5756 TheLoop->getStartLoc(), 5757 TheLoop->getHeader()) 5758 << "User-specified vectorization factor " 5759 << ore::NV("UserVectorizationFactor", UserVF) 5760 << " is unsafe, clamping to maximum safe vectorization factor " 5761 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5762 }); 5763 return MaxSafeFixedVF; 5764 } 5765 5766 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5767 << " is unsafe. Ignoring scalable UserVF.\n"); 5768 ORE->emit([&]() { 5769 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5770 TheLoop->getStartLoc(), 5771 TheLoop->getHeader()) 5772 << "User-specified vectorization factor " 5773 << ore::NV("UserVectorizationFactor", UserVF) 5774 << " is unsafe. Ignoring the hint to let the compiler pick a " 5775 "suitable VF."; 5776 }); 5777 } 5778 5779 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5780 << " / " << WidestType << " bits.\n"); 5781 5782 FixedScalableVFPair Result(ElementCount::getFixed(1), 5783 ElementCount::getScalable(0)); 5784 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5785 WidestType, MaxSafeFixedVF)) 5786 Result.FixedVF = MaxVF; 5787 5788 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5789 WidestType, MaxSafeScalableVF)) 5790 if (MaxVF.isScalable()) { 5791 Result.ScalableVF = MaxVF; 5792 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5793 << "\n"); 5794 } 5795 5796 return Result; 5797 } 5798 5799 FixedScalableVFPair 5800 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5801 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5802 // TODO: It may by useful to do since it's still likely to be dynamically 5803 // uniform if the target can skip. 5804 reportVectorizationFailure( 5805 "Not inserting runtime ptr check for divergent target", 5806 "runtime pointer checks needed. Not enabled for divergent target", 5807 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5808 return FixedScalableVFPair::getNone(); 5809 } 5810 5811 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5812 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5813 if (TC == 1) { 5814 reportVectorizationFailure("Single iteration (non) loop", 5815 "loop trip count is one, irrelevant for vectorization", 5816 "SingleIterationLoop", ORE, TheLoop); 5817 return FixedScalableVFPair::getNone(); 5818 } 5819 5820 switch (ScalarEpilogueStatus) { 5821 case CM_ScalarEpilogueAllowed: 5822 return computeFeasibleMaxVF(TC, UserVF); 5823 case CM_ScalarEpilogueNotAllowedUsePredicate: 5824 LLVM_FALLTHROUGH; 5825 case CM_ScalarEpilogueNotNeededUsePredicate: 5826 LLVM_DEBUG( 5827 dbgs() << "LV: vector predicate hint/switch found.\n" 5828 << "LV: Not allowing scalar epilogue, creating predicated " 5829 << "vector loop.\n"); 5830 break; 5831 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5832 // fallthrough as a special case of OptForSize 5833 case CM_ScalarEpilogueNotAllowedOptSize: 5834 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5835 LLVM_DEBUG( 5836 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5837 else 5838 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5839 << "count.\n"); 5840 5841 // Bail if runtime checks are required, which are not good when optimising 5842 // for size. 5843 if (runtimeChecksRequired()) 5844 return FixedScalableVFPair::getNone(); 5845 5846 break; 5847 } 5848 5849 // The only loops we can vectorize without a scalar epilogue, are loops with 5850 // a bottom-test and a single exiting block. We'd have to handle the fact 5851 // that not every instruction executes on the last iteration. This will 5852 // require a lane mask which varies through the vector loop body. (TODO) 5853 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5854 // If there was a tail-folding hint/switch, but we can't fold the tail by 5855 // masking, fallback to a vectorization with a scalar epilogue. 5856 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5857 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5858 "scalar epilogue instead.\n"); 5859 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5860 return computeFeasibleMaxVF(TC, UserVF); 5861 } 5862 return FixedScalableVFPair::getNone(); 5863 } 5864 5865 // Now try the tail folding 5866 5867 // Invalidate interleave groups that require an epilogue if we can't mask 5868 // the interleave-group. 5869 if (!useMaskedInterleavedAccesses(TTI)) { 5870 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5871 "No decisions should have been taken at this point"); 5872 // Note: There is no need to invalidate any cost modeling decisions here, as 5873 // non where taken so far. 5874 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5875 } 5876 5877 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5878 // Avoid tail folding if the trip count is known to be a multiple of any VF 5879 // we chose. 5880 // FIXME: The condition below pessimises the case for fixed-width vectors, 5881 // when scalable VFs are also candidates for vectorization. 5882 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5883 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5884 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5885 "MaxFixedVF must be a power of 2"); 5886 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5887 : MaxFixedVF.getFixedValue(); 5888 ScalarEvolution *SE = PSE.getSE(); 5889 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5890 const SCEV *ExitCount = SE->getAddExpr( 5891 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5892 const SCEV *Rem = SE->getURemExpr( 5893 SE->applyLoopGuards(ExitCount, TheLoop), 5894 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5895 if (Rem->isZero()) { 5896 // Accept MaxFixedVF if we do not have a tail. 5897 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5898 return MaxFactors; 5899 } 5900 } 5901 5902 // If we don't know the precise trip count, or if the trip count that we 5903 // found modulo the vectorization factor is not zero, try to fold the tail 5904 // by masking. 5905 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5906 if (Legal->prepareToFoldTailByMasking()) { 5907 FoldTailByMasking = true; 5908 return MaxFactors; 5909 } 5910 5911 // If there was a tail-folding hint/switch, but we can't fold the tail by 5912 // masking, fallback to a vectorization with a scalar epilogue. 5913 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5914 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5915 "scalar epilogue instead.\n"); 5916 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5917 return MaxFactors; 5918 } 5919 5920 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5921 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5922 return FixedScalableVFPair::getNone(); 5923 } 5924 5925 if (TC == 0) { 5926 reportVectorizationFailure( 5927 "Unable to calculate the loop count due to complex control flow", 5928 "unable to calculate the loop count due to complex control flow", 5929 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5930 return FixedScalableVFPair::getNone(); 5931 } 5932 5933 reportVectorizationFailure( 5934 "Cannot optimize for size and vectorize at the same time.", 5935 "cannot optimize for size and vectorize at the same time. " 5936 "Enable vectorization of this loop with '#pragma clang loop " 5937 "vectorize(enable)' when compiling with -Os/-Oz", 5938 "NoTailLoopWithOptForSize", ORE, TheLoop); 5939 return FixedScalableVFPair::getNone(); 5940 } 5941 5942 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5943 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5944 const ElementCount &MaxSafeVF) { 5945 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5946 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5947 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5948 : TargetTransformInfo::RGK_FixedWidthVector); 5949 5950 // Convenience function to return the minimum of two ElementCounts. 5951 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5952 assert((LHS.isScalable() == RHS.isScalable()) && 5953 "Scalable flags must match"); 5954 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5955 }; 5956 5957 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5958 // Note that both WidestRegister and WidestType may not be a powers of 2. 5959 auto MaxVectorElementCount = ElementCount::get( 5960 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5961 ComputeScalableMaxVF); 5962 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5963 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5964 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5965 5966 if (!MaxVectorElementCount) { 5967 LLVM_DEBUG(dbgs() << "LV: The target has no " 5968 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5969 << " vector registers.\n"); 5970 return ElementCount::getFixed(1); 5971 } 5972 5973 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5974 if (ConstTripCount && 5975 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5976 isPowerOf2_32(ConstTripCount)) { 5977 // We need to clamp the VF to be the ConstTripCount. There is no point in 5978 // choosing a higher viable VF as done in the loop below. If 5979 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5980 // the TC is less than or equal to the known number of lanes. 5981 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5982 << ConstTripCount << "\n"); 5983 return TripCountEC; 5984 } 5985 5986 ElementCount MaxVF = MaxVectorElementCount; 5987 if (TTI.shouldMaximizeVectorBandwidth() || 5988 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5989 auto MaxVectorElementCountMaxBW = ElementCount::get( 5990 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5991 ComputeScalableMaxVF); 5992 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5993 5994 // Collect all viable vectorization factors larger than the default MaxVF 5995 // (i.e. MaxVectorElementCount). 5996 SmallVector<ElementCount, 8> VFs; 5997 for (ElementCount VS = MaxVectorElementCount * 2; 5998 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5999 VFs.push_back(VS); 6000 6001 // For each VF calculate its register usage. 6002 auto RUs = calculateRegisterUsage(VFs); 6003 6004 // Select the largest VF which doesn't require more registers than existing 6005 // ones. 6006 for (int i = RUs.size() - 1; i >= 0; --i) { 6007 bool Selected = true; 6008 for (auto &pair : RUs[i].MaxLocalUsers) { 6009 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6010 if (pair.second > TargetNumRegisters) 6011 Selected = false; 6012 } 6013 if (Selected) { 6014 MaxVF = VFs[i]; 6015 break; 6016 } 6017 } 6018 if (ElementCount MinVF = 6019 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6020 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6021 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6022 << ") with target's minimum: " << MinVF << '\n'); 6023 MaxVF = MinVF; 6024 } 6025 } 6026 } 6027 return MaxVF; 6028 } 6029 6030 bool LoopVectorizationCostModel::isMoreProfitable( 6031 const VectorizationFactor &A, const VectorizationFactor &B) const { 6032 InstructionCost::CostType CostA = *A.Cost.getValue(); 6033 InstructionCost::CostType CostB = *B.Cost.getValue(); 6034 6035 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6036 6037 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6038 MaxTripCount) { 6039 // If we are folding the tail and the trip count is a known (possibly small) 6040 // constant, the trip count will be rounded up to an integer number of 6041 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6042 // which we compare directly. When not folding the tail, the total cost will 6043 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6044 // approximated with the per-lane cost below instead of using the tripcount 6045 // as here. 6046 int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6047 int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6048 return RTCostA < RTCostB; 6049 } 6050 6051 // When set to preferred, for now assume vscale may be larger than 1, so 6052 // that scalable vectorization is slightly favorable over fixed-width 6053 // vectorization. 6054 if (Hints->isScalableVectorizationPreferred()) 6055 if (A.Width.isScalable() && !B.Width.isScalable()) 6056 return (CostA * B.Width.getKnownMinValue()) <= 6057 (CostB * A.Width.getKnownMinValue()); 6058 6059 // To avoid the need for FP division: 6060 // (CostA / A.Width) < (CostB / B.Width) 6061 // <=> (CostA * B.Width) < (CostB * A.Width) 6062 return (CostA * B.Width.getKnownMinValue()) < 6063 (CostB * A.Width.getKnownMinValue()); 6064 } 6065 6066 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6067 const ElementCountSet &VFCandidates) { 6068 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6069 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6070 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6071 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6072 "Expected Scalar VF to be a candidate"); 6073 6074 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6075 VectorizationFactor ChosenFactor = ScalarCost; 6076 6077 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6078 if (ForceVectorization && VFCandidates.size() > 1) { 6079 // Ignore scalar width, because the user explicitly wants vectorization. 6080 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6081 // evaluation. 6082 ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max(); 6083 } 6084 6085 for (const auto &i : VFCandidates) { 6086 // The cost for scalar VF=1 is already calculated, so ignore it. 6087 if (i.isScalar()) 6088 continue; 6089 6090 // Notice that the vector loop needs to be executed less times, so 6091 // we need to divide the cost of the vector loops by the width of 6092 // the vector elements. 6093 VectorizationCostTy C = expectedCost(i); 6094 6095 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 6096 VectorizationFactor Candidate(i, C.first); 6097 LLVM_DEBUG( 6098 dbgs() << "LV: Vector loop of width " << i << " costs: " 6099 << (*Candidate.Cost.getValue() / 6100 Candidate.Width.getKnownMinValue()) 6101 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6102 << ".\n"); 6103 6104 if (!C.second && !ForceVectorization) { 6105 LLVM_DEBUG( 6106 dbgs() << "LV: Not considering vector loop of width " << i 6107 << " because it will not generate any vector instructions.\n"); 6108 continue; 6109 } 6110 6111 // If profitable add it to ProfitableVF list. 6112 if (isMoreProfitable(Candidate, ScalarCost)) 6113 ProfitableVFs.push_back(Candidate); 6114 6115 if (isMoreProfitable(Candidate, ChosenFactor)) 6116 ChosenFactor = Candidate; 6117 } 6118 6119 if (!EnableCondStoresVectorization && NumPredStores) { 6120 reportVectorizationFailure("There are conditional stores.", 6121 "store that is conditionally executed prevents vectorization", 6122 "ConditionalStore", ORE, TheLoop); 6123 ChosenFactor = ScalarCost; 6124 } 6125 6126 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6127 *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) 6128 dbgs() 6129 << "LV: Vectorization seems to be not beneficial, " 6130 << "but was forced by a user.\n"); 6131 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6132 return ChosenFactor; 6133 } 6134 6135 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6136 const Loop &L, ElementCount VF) const { 6137 // Cross iteration phis such as reductions need special handling and are 6138 // currently unsupported. 6139 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6140 return Legal->isFirstOrderRecurrence(&Phi) || 6141 Legal->isReductionVariable(&Phi); 6142 })) 6143 return false; 6144 6145 // Phis with uses outside of the loop require special handling and are 6146 // currently unsupported. 6147 for (auto &Entry : Legal->getInductionVars()) { 6148 // Look for uses of the value of the induction at the last iteration. 6149 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6150 for (User *U : PostInc->users()) 6151 if (!L.contains(cast<Instruction>(U))) 6152 return false; 6153 // Look for uses of penultimate value of the induction. 6154 for (User *U : Entry.first->users()) 6155 if (!L.contains(cast<Instruction>(U))) 6156 return false; 6157 } 6158 6159 // Induction variables that are widened require special handling that is 6160 // currently not supported. 6161 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6162 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6163 this->isProfitableToScalarize(Entry.first, VF)); 6164 })) 6165 return false; 6166 6167 return true; 6168 } 6169 6170 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6171 const ElementCount VF) const { 6172 // FIXME: We need a much better cost-model to take different parameters such 6173 // as register pressure, code size increase and cost of extra branches into 6174 // account. For now we apply a very crude heuristic and only consider loops 6175 // with vectorization factors larger than a certain value. 6176 // We also consider epilogue vectorization unprofitable for targets that don't 6177 // consider interleaving beneficial (eg. MVE). 6178 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6179 return false; 6180 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6181 return true; 6182 return false; 6183 } 6184 6185 VectorizationFactor 6186 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6187 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6188 VectorizationFactor Result = VectorizationFactor::Disabled(); 6189 if (!EnableEpilogueVectorization) { 6190 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6191 return Result; 6192 } 6193 6194 if (!isScalarEpilogueAllowed()) { 6195 LLVM_DEBUG( 6196 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6197 "allowed.\n";); 6198 return Result; 6199 } 6200 6201 // FIXME: This can be fixed for scalable vectors later, because at this stage 6202 // the LoopVectorizer will only consider vectorizing a loop with scalable 6203 // vectors when the loop has a hint to enable vectorization for a given VF. 6204 if (MainLoopVF.isScalable()) { 6205 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6206 "yet supported.\n"); 6207 return Result; 6208 } 6209 6210 // Not really a cost consideration, but check for unsupported cases here to 6211 // simplify the logic. 6212 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6213 LLVM_DEBUG( 6214 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6215 "not a supported candidate.\n";); 6216 return Result; 6217 } 6218 6219 if (EpilogueVectorizationForceVF > 1) { 6220 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6221 if (LVP.hasPlanWithVFs( 6222 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6223 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6224 else { 6225 LLVM_DEBUG( 6226 dbgs() 6227 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6228 return Result; 6229 } 6230 } 6231 6232 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6233 TheLoop->getHeader()->getParent()->hasMinSize()) { 6234 LLVM_DEBUG( 6235 dbgs() 6236 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6237 return Result; 6238 } 6239 6240 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6241 return Result; 6242 6243 for (auto &NextVF : ProfitableVFs) 6244 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6245 (Result.Width.getFixedValue() == 1 || 6246 isMoreProfitable(NextVF, Result)) && 6247 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6248 Result = NextVF; 6249 6250 if (Result != VectorizationFactor::Disabled()) 6251 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6252 << Result.Width.getFixedValue() << "\n";); 6253 return Result; 6254 } 6255 6256 std::pair<unsigned, unsigned> 6257 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6258 unsigned MinWidth = -1U; 6259 unsigned MaxWidth = 8; 6260 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6261 6262 // For each block. 6263 for (BasicBlock *BB : TheLoop->blocks()) { 6264 // For each instruction in the loop. 6265 for (Instruction &I : BB->instructionsWithoutDebug()) { 6266 Type *T = I.getType(); 6267 6268 // Skip ignored values. 6269 if (ValuesToIgnore.count(&I)) 6270 continue; 6271 6272 // Only examine Loads, Stores and PHINodes. 6273 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6274 continue; 6275 6276 // Examine PHI nodes that are reduction variables. Update the type to 6277 // account for the recurrence type. 6278 if (auto *PN = dyn_cast<PHINode>(&I)) { 6279 if (!Legal->isReductionVariable(PN)) 6280 continue; 6281 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6282 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6283 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6284 RdxDesc.getRecurrenceType(), 6285 TargetTransformInfo::ReductionFlags())) 6286 continue; 6287 T = RdxDesc.getRecurrenceType(); 6288 } 6289 6290 // Examine the stored values. 6291 if (auto *ST = dyn_cast<StoreInst>(&I)) 6292 T = ST->getValueOperand()->getType(); 6293 6294 // Ignore loaded pointer types and stored pointer types that are not 6295 // vectorizable. 6296 // 6297 // FIXME: The check here attempts to predict whether a load or store will 6298 // be vectorized. We only know this for certain after a VF has 6299 // been selected. Here, we assume that if an access can be 6300 // vectorized, it will be. We should also look at extending this 6301 // optimization to non-pointer types. 6302 // 6303 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6304 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6305 continue; 6306 6307 MinWidth = std::min(MinWidth, 6308 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6309 MaxWidth = std::max(MaxWidth, 6310 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6311 } 6312 } 6313 6314 return {MinWidth, MaxWidth}; 6315 } 6316 6317 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6318 unsigned LoopCost) { 6319 // -- The interleave heuristics -- 6320 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6321 // There are many micro-architectural considerations that we can't predict 6322 // at this level. For example, frontend pressure (on decode or fetch) due to 6323 // code size, or the number and capabilities of the execution ports. 6324 // 6325 // We use the following heuristics to select the interleave count: 6326 // 1. If the code has reductions, then we interleave to break the cross 6327 // iteration dependency. 6328 // 2. If the loop is really small, then we interleave to reduce the loop 6329 // overhead. 6330 // 3. We don't interleave if we think that we will spill registers to memory 6331 // due to the increased register pressure. 6332 6333 if (!isScalarEpilogueAllowed()) 6334 return 1; 6335 6336 // We used the distance for the interleave count. 6337 if (Legal->getMaxSafeDepDistBytes() != -1U) 6338 return 1; 6339 6340 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6341 const bool HasReductions = !Legal->getReductionVars().empty(); 6342 // Do not interleave loops with a relatively small known or estimated trip 6343 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6344 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6345 // because with the above conditions interleaving can expose ILP and break 6346 // cross iteration dependences for reductions. 6347 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6348 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6349 return 1; 6350 6351 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6352 // We divide by these constants so assume that we have at least one 6353 // instruction that uses at least one register. 6354 for (auto& pair : R.MaxLocalUsers) { 6355 pair.second = std::max(pair.second, 1U); 6356 } 6357 6358 // We calculate the interleave count using the following formula. 6359 // Subtract the number of loop invariants from the number of available 6360 // registers. These registers are used by all of the interleaved instances. 6361 // Next, divide the remaining registers by the number of registers that is 6362 // required by the loop, in order to estimate how many parallel instances 6363 // fit without causing spills. All of this is rounded down if necessary to be 6364 // a power of two. We want power of two interleave count to simplify any 6365 // addressing operations or alignment considerations. 6366 // We also want power of two interleave counts to ensure that the induction 6367 // variable of the vector loop wraps to zero, when tail is folded by masking; 6368 // this currently happens when OptForSize, in which case IC is set to 1 above. 6369 unsigned IC = UINT_MAX; 6370 6371 for (auto& pair : R.MaxLocalUsers) { 6372 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6373 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6374 << " registers of " 6375 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6376 if (VF.isScalar()) { 6377 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6378 TargetNumRegisters = ForceTargetNumScalarRegs; 6379 } else { 6380 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6381 TargetNumRegisters = ForceTargetNumVectorRegs; 6382 } 6383 unsigned MaxLocalUsers = pair.second; 6384 unsigned LoopInvariantRegs = 0; 6385 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6386 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6387 6388 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6389 // Don't count the induction variable as interleaved. 6390 if (EnableIndVarRegisterHeur) { 6391 TmpIC = 6392 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6393 std::max(1U, (MaxLocalUsers - 1))); 6394 } 6395 6396 IC = std::min(IC, TmpIC); 6397 } 6398 6399 // Clamp the interleave ranges to reasonable counts. 6400 unsigned MaxInterleaveCount = 6401 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6402 6403 // Check if the user has overridden the max. 6404 if (VF.isScalar()) { 6405 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6406 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6407 } else { 6408 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6409 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6410 } 6411 6412 // If trip count is known or estimated compile time constant, limit the 6413 // interleave count to be less than the trip count divided by VF, provided it 6414 // is at least 1. 6415 // 6416 // For scalable vectors we can't know if interleaving is beneficial. It may 6417 // not be beneficial for small loops if none of the lanes in the second vector 6418 // iterations is enabled. However, for larger loops, there is likely to be a 6419 // similar benefit as for fixed-width vectors. For now, we choose to leave 6420 // the InterleaveCount as if vscale is '1', although if some information about 6421 // the vector is known (e.g. min vector size), we can make a better decision. 6422 if (BestKnownTC) { 6423 MaxInterleaveCount = 6424 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6425 // Make sure MaxInterleaveCount is greater than 0. 6426 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6427 } 6428 6429 assert(MaxInterleaveCount > 0 && 6430 "Maximum interleave count must be greater than 0"); 6431 6432 // Clamp the calculated IC to be between the 1 and the max interleave count 6433 // that the target and trip count allows. 6434 if (IC > MaxInterleaveCount) 6435 IC = MaxInterleaveCount; 6436 else 6437 // Make sure IC is greater than 0. 6438 IC = std::max(1u, IC); 6439 6440 assert(IC > 0 && "Interleave count must be greater than 0."); 6441 6442 // If we did not calculate the cost for VF (because the user selected the VF) 6443 // then we calculate the cost of VF here. 6444 if (LoopCost == 0) { 6445 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6446 LoopCost = *expectedCost(VF).first.getValue(); 6447 } 6448 6449 assert(LoopCost && "Non-zero loop cost expected"); 6450 6451 // Interleave if we vectorized this loop and there is a reduction that could 6452 // benefit from interleaving. 6453 if (VF.isVector() && HasReductions) { 6454 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6455 return IC; 6456 } 6457 6458 // Note that if we've already vectorized the loop we will have done the 6459 // runtime check and so interleaving won't require further checks. 6460 bool InterleavingRequiresRuntimePointerCheck = 6461 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6462 6463 // We want to interleave small loops in order to reduce the loop overhead and 6464 // potentially expose ILP opportunities. 6465 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6466 << "LV: IC is " << IC << '\n' 6467 << "LV: VF is " << VF << '\n'); 6468 const bool AggressivelyInterleaveReductions = 6469 TTI.enableAggressiveInterleaving(HasReductions); 6470 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6471 // We assume that the cost overhead is 1 and we use the cost model 6472 // to estimate the cost of the loop and interleave until the cost of the 6473 // loop overhead is about 5% of the cost of the loop. 6474 unsigned SmallIC = 6475 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6476 6477 // Interleave until store/load ports (estimated by max interleave count) are 6478 // saturated. 6479 unsigned NumStores = Legal->getNumStores(); 6480 unsigned NumLoads = Legal->getNumLoads(); 6481 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6482 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6483 6484 // If we have a scalar reduction (vector reductions are already dealt with 6485 // by this point), we can increase the critical path length if the loop 6486 // we're interleaving is inside another loop. Limit, by default to 2, so the 6487 // critical path only gets increased by one reduction operation. 6488 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6489 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6490 SmallIC = std::min(SmallIC, F); 6491 StoresIC = std::min(StoresIC, F); 6492 LoadsIC = std::min(LoadsIC, F); 6493 } 6494 6495 if (EnableLoadStoreRuntimeInterleave && 6496 std::max(StoresIC, LoadsIC) > SmallIC) { 6497 LLVM_DEBUG( 6498 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6499 return std::max(StoresIC, LoadsIC); 6500 } 6501 6502 // If there are scalar reductions and TTI has enabled aggressive 6503 // interleaving for reductions, we will interleave to expose ILP. 6504 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6505 AggressivelyInterleaveReductions) { 6506 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6507 // Interleave no less than SmallIC but not as aggressive as the normal IC 6508 // to satisfy the rare situation when resources are too limited. 6509 return std::max(IC / 2, SmallIC); 6510 } else { 6511 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6512 return SmallIC; 6513 } 6514 } 6515 6516 // Interleave if this is a large loop (small loops are already dealt with by 6517 // this point) that could benefit from interleaving. 6518 if (AggressivelyInterleaveReductions) { 6519 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6520 return IC; 6521 } 6522 6523 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6524 return 1; 6525 } 6526 6527 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6528 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6529 // This function calculates the register usage by measuring the highest number 6530 // of values that are alive at a single location. Obviously, this is a very 6531 // rough estimation. We scan the loop in a topological order in order and 6532 // assign a number to each instruction. We use RPO to ensure that defs are 6533 // met before their users. We assume that each instruction that has in-loop 6534 // users starts an interval. We record every time that an in-loop value is 6535 // used, so we have a list of the first and last occurrences of each 6536 // instruction. Next, we transpose this data structure into a multi map that 6537 // holds the list of intervals that *end* at a specific location. This multi 6538 // map allows us to perform a linear search. We scan the instructions linearly 6539 // and record each time that a new interval starts, by placing it in a set. 6540 // If we find this value in the multi-map then we remove it from the set. 6541 // The max register usage is the maximum size of the set. 6542 // We also search for instructions that are defined outside the loop, but are 6543 // used inside the loop. We need this number separately from the max-interval 6544 // usage number because when we unroll, loop-invariant values do not take 6545 // more register. 6546 LoopBlocksDFS DFS(TheLoop); 6547 DFS.perform(LI); 6548 6549 RegisterUsage RU; 6550 6551 // Each 'key' in the map opens a new interval. The values 6552 // of the map are the index of the 'last seen' usage of the 6553 // instruction that is the key. 6554 using IntervalMap = DenseMap<Instruction *, unsigned>; 6555 6556 // Maps instruction to its index. 6557 SmallVector<Instruction *, 64> IdxToInstr; 6558 // Marks the end of each interval. 6559 IntervalMap EndPoint; 6560 // Saves the list of instruction indices that are used in the loop. 6561 SmallPtrSet<Instruction *, 8> Ends; 6562 // Saves the list of values that are used in the loop but are 6563 // defined outside the loop, such as arguments and constants. 6564 SmallPtrSet<Value *, 8> LoopInvariants; 6565 6566 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6567 for (Instruction &I : BB->instructionsWithoutDebug()) { 6568 IdxToInstr.push_back(&I); 6569 6570 // Save the end location of each USE. 6571 for (Value *U : I.operands()) { 6572 auto *Instr = dyn_cast<Instruction>(U); 6573 6574 // Ignore non-instruction values such as arguments, constants, etc. 6575 if (!Instr) 6576 continue; 6577 6578 // If this instruction is outside the loop then record it and continue. 6579 if (!TheLoop->contains(Instr)) { 6580 LoopInvariants.insert(Instr); 6581 continue; 6582 } 6583 6584 // Overwrite previous end points. 6585 EndPoint[Instr] = IdxToInstr.size(); 6586 Ends.insert(Instr); 6587 } 6588 } 6589 } 6590 6591 // Saves the list of intervals that end with the index in 'key'. 6592 using InstrList = SmallVector<Instruction *, 2>; 6593 DenseMap<unsigned, InstrList> TransposeEnds; 6594 6595 // Transpose the EndPoints to a list of values that end at each index. 6596 for (auto &Interval : EndPoint) 6597 TransposeEnds[Interval.second].push_back(Interval.first); 6598 6599 SmallPtrSet<Instruction *, 8> OpenIntervals; 6600 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6601 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6602 6603 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6604 6605 // A lambda that gets the register usage for the given type and VF. 6606 const auto &TTICapture = TTI; 6607 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6608 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6609 return 0; 6610 return *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6611 }; 6612 6613 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6614 Instruction *I = IdxToInstr[i]; 6615 6616 // Remove all of the instructions that end at this location. 6617 InstrList &List = TransposeEnds[i]; 6618 for (Instruction *ToRemove : List) 6619 OpenIntervals.erase(ToRemove); 6620 6621 // Ignore instructions that are never used within the loop. 6622 if (!Ends.count(I)) 6623 continue; 6624 6625 // Skip ignored values. 6626 if (ValuesToIgnore.count(I)) 6627 continue; 6628 6629 // For each VF find the maximum usage of registers. 6630 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6631 // Count the number of live intervals. 6632 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6633 6634 if (VFs[j].isScalar()) { 6635 for (auto Inst : OpenIntervals) { 6636 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6637 if (RegUsage.find(ClassID) == RegUsage.end()) 6638 RegUsage[ClassID] = 1; 6639 else 6640 RegUsage[ClassID] += 1; 6641 } 6642 } else { 6643 collectUniformsAndScalars(VFs[j]); 6644 for (auto Inst : OpenIntervals) { 6645 // Skip ignored values for VF > 1. 6646 if (VecValuesToIgnore.count(Inst)) 6647 continue; 6648 if (isScalarAfterVectorization(Inst, VFs[j])) { 6649 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6650 if (RegUsage.find(ClassID) == RegUsage.end()) 6651 RegUsage[ClassID] = 1; 6652 else 6653 RegUsage[ClassID] += 1; 6654 } else { 6655 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6656 if (RegUsage.find(ClassID) == RegUsage.end()) 6657 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6658 else 6659 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6660 } 6661 } 6662 } 6663 6664 for (auto& pair : RegUsage) { 6665 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6666 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6667 else 6668 MaxUsages[j][pair.first] = pair.second; 6669 } 6670 } 6671 6672 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6673 << OpenIntervals.size() << '\n'); 6674 6675 // Add the current instruction to the list of open intervals. 6676 OpenIntervals.insert(I); 6677 } 6678 6679 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6680 SmallMapVector<unsigned, unsigned, 4> Invariant; 6681 6682 for (auto Inst : LoopInvariants) { 6683 unsigned Usage = 6684 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6685 unsigned ClassID = 6686 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6687 if (Invariant.find(ClassID) == Invariant.end()) 6688 Invariant[ClassID] = Usage; 6689 else 6690 Invariant[ClassID] += Usage; 6691 } 6692 6693 LLVM_DEBUG({ 6694 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6695 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6696 << " item\n"; 6697 for (const auto &pair : MaxUsages[i]) { 6698 dbgs() << "LV(REG): RegisterClass: " 6699 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6700 << " registers\n"; 6701 } 6702 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6703 << " item\n"; 6704 for (const auto &pair : Invariant) { 6705 dbgs() << "LV(REG): RegisterClass: " 6706 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6707 << " registers\n"; 6708 } 6709 }); 6710 6711 RU.LoopInvariantRegs = Invariant; 6712 RU.MaxLocalUsers = MaxUsages[i]; 6713 RUs[i] = RU; 6714 } 6715 6716 return RUs; 6717 } 6718 6719 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6720 // TODO: Cost model for emulated masked load/store is completely 6721 // broken. This hack guides the cost model to use an artificially 6722 // high enough value to practically disable vectorization with such 6723 // operations, except where previously deployed legality hack allowed 6724 // using very low cost values. This is to avoid regressions coming simply 6725 // from moving "masked load/store" check from legality to cost model. 6726 // Masked Load/Gather emulation was previously never allowed. 6727 // Limited number of Masked Store/Scatter emulation was allowed. 6728 assert(isPredicatedInst(I) && 6729 "Expecting a scalar emulated instruction"); 6730 return isa<LoadInst>(I) || 6731 (isa<StoreInst>(I) && 6732 NumPredStores > NumberOfStoresToPredicate); 6733 } 6734 6735 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6736 // If we aren't vectorizing the loop, or if we've already collected the 6737 // instructions to scalarize, there's nothing to do. Collection may already 6738 // have occurred if we have a user-selected VF and are now computing the 6739 // expected cost for interleaving. 6740 if (VF.isScalar() || VF.isZero() || 6741 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6742 return; 6743 6744 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6745 // not profitable to scalarize any instructions, the presence of VF in the 6746 // map will indicate that we've analyzed it already. 6747 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6748 6749 // Find all the instructions that are scalar with predication in the loop and 6750 // determine if it would be better to not if-convert the blocks they are in. 6751 // If so, we also record the instructions to scalarize. 6752 for (BasicBlock *BB : TheLoop->blocks()) { 6753 if (!blockNeedsPredication(BB)) 6754 continue; 6755 for (Instruction &I : *BB) 6756 if (isScalarWithPredication(&I)) { 6757 ScalarCostsTy ScalarCosts; 6758 // Do not apply discount logic if hacked cost is needed 6759 // for emulated masked memrefs. 6760 if (!useEmulatedMaskMemRefHack(&I) && 6761 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6762 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6763 // Remember that BB will remain after vectorization. 6764 PredicatedBBsAfterVectorization.insert(BB); 6765 } 6766 } 6767 } 6768 6769 int LoopVectorizationCostModel::computePredInstDiscount( 6770 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6771 assert(!isUniformAfterVectorization(PredInst, VF) && 6772 "Instruction marked uniform-after-vectorization will be predicated"); 6773 6774 // Initialize the discount to zero, meaning that the scalar version and the 6775 // vector version cost the same. 6776 InstructionCost Discount = 0; 6777 6778 // Holds instructions to analyze. The instructions we visit are mapped in 6779 // ScalarCosts. Those instructions are the ones that would be scalarized if 6780 // we find that the scalar version costs less. 6781 SmallVector<Instruction *, 8> Worklist; 6782 6783 // Returns true if the given instruction can be scalarized. 6784 auto canBeScalarized = [&](Instruction *I) -> bool { 6785 // We only attempt to scalarize instructions forming a single-use chain 6786 // from the original predicated block that would otherwise be vectorized. 6787 // Although not strictly necessary, we give up on instructions we know will 6788 // already be scalar to avoid traversing chains that are unlikely to be 6789 // beneficial. 6790 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6791 isScalarAfterVectorization(I, VF)) 6792 return false; 6793 6794 // If the instruction is scalar with predication, it will be analyzed 6795 // separately. We ignore it within the context of PredInst. 6796 if (isScalarWithPredication(I)) 6797 return false; 6798 6799 // If any of the instruction's operands are uniform after vectorization, 6800 // the instruction cannot be scalarized. This prevents, for example, a 6801 // masked load from being scalarized. 6802 // 6803 // We assume we will only emit a value for lane zero of an instruction 6804 // marked uniform after vectorization, rather than VF identical values. 6805 // Thus, if we scalarize an instruction that uses a uniform, we would 6806 // create uses of values corresponding to the lanes we aren't emitting code 6807 // for. This behavior can be changed by allowing getScalarValue to clone 6808 // the lane zero values for uniforms rather than asserting. 6809 for (Use &U : I->operands()) 6810 if (auto *J = dyn_cast<Instruction>(U.get())) 6811 if (isUniformAfterVectorization(J, VF)) 6812 return false; 6813 6814 // Otherwise, we can scalarize the instruction. 6815 return true; 6816 }; 6817 6818 // Compute the expected cost discount from scalarizing the entire expression 6819 // feeding the predicated instruction. We currently only consider expressions 6820 // that are single-use instruction chains. 6821 Worklist.push_back(PredInst); 6822 while (!Worklist.empty()) { 6823 Instruction *I = Worklist.pop_back_val(); 6824 6825 // If we've already analyzed the instruction, there's nothing to do. 6826 if (ScalarCosts.find(I) != ScalarCosts.end()) 6827 continue; 6828 6829 // Compute the cost of the vector instruction. Note that this cost already 6830 // includes the scalarization overhead of the predicated instruction. 6831 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6832 6833 // Compute the cost of the scalarized instruction. This cost is the cost of 6834 // the instruction as if it wasn't if-converted and instead remained in the 6835 // predicated block. We will scale this cost by block probability after 6836 // computing the scalarization overhead. 6837 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6838 InstructionCost ScalarCost = 6839 VF.getKnownMinValue() * 6840 getInstructionCost(I, ElementCount::getFixed(1)).first; 6841 6842 // Compute the scalarization overhead of needed insertelement instructions 6843 // and phi nodes. 6844 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6845 ScalarCost += TTI.getScalarizationOverhead( 6846 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6847 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6848 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6849 ScalarCost += 6850 VF.getKnownMinValue() * 6851 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6852 } 6853 6854 // Compute the scalarization overhead of needed extractelement 6855 // instructions. For each of the instruction's operands, if the operand can 6856 // be scalarized, add it to the worklist; otherwise, account for the 6857 // overhead. 6858 for (Use &U : I->operands()) 6859 if (auto *J = dyn_cast<Instruction>(U.get())) { 6860 assert(VectorType::isValidElementType(J->getType()) && 6861 "Instruction has non-scalar type"); 6862 if (canBeScalarized(J)) 6863 Worklist.push_back(J); 6864 else if (needsExtract(J, VF)) { 6865 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6866 ScalarCost += TTI.getScalarizationOverhead( 6867 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6868 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6869 } 6870 } 6871 6872 // Scale the total scalar cost by block probability. 6873 ScalarCost /= getReciprocalPredBlockProb(); 6874 6875 // Compute the discount. A non-negative discount means the vector version 6876 // of the instruction costs more, and scalarizing would be beneficial. 6877 Discount += VectorCost - ScalarCost; 6878 ScalarCosts[I] = ScalarCost; 6879 } 6880 6881 return *Discount.getValue(); 6882 } 6883 6884 LoopVectorizationCostModel::VectorizationCostTy 6885 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6886 VectorizationCostTy Cost; 6887 6888 // For each block. 6889 for (BasicBlock *BB : TheLoop->blocks()) { 6890 VectorizationCostTy BlockCost; 6891 6892 // For each instruction in the old loop. 6893 for (Instruction &I : BB->instructionsWithoutDebug()) { 6894 // Skip ignored values. 6895 if (ValuesToIgnore.count(&I) || 6896 (VF.isVector() && VecValuesToIgnore.count(&I))) 6897 continue; 6898 6899 VectorizationCostTy C = getInstructionCost(&I, VF); 6900 6901 // Check if we should override the cost. 6902 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6903 C.first = InstructionCost(ForceTargetInstructionCost); 6904 6905 BlockCost.first += C.first; 6906 BlockCost.second |= C.second; 6907 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6908 << " for VF " << VF << " For instruction: " << I 6909 << '\n'); 6910 } 6911 6912 // If we are vectorizing a predicated block, it will have been 6913 // if-converted. This means that the block's instructions (aside from 6914 // stores and instructions that may divide by zero) will now be 6915 // unconditionally executed. For the scalar case, we may not always execute 6916 // the predicated block, if it is an if-else block. Thus, scale the block's 6917 // cost by the probability of executing it. blockNeedsPredication from 6918 // Legal is used so as to not include all blocks in tail folded loops. 6919 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6920 BlockCost.first /= getReciprocalPredBlockProb(); 6921 6922 Cost.first += BlockCost.first; 6923 Cost.second |= BlockCost.second; 6924 } 6925 6926 return Cost; 6927 } 6928 6929 /// Gets Address Access SCEV after verifying that the access pattern 6930 /// is loop invariant except the induction variable dependence. 6931 /// 6932 /// This SCEV can be sent to the Target in order to estimate the address 6933 /// calculation cost. 6934 static const SCEV *getAddressAccessSCEV( 6935 Value *Ptr, 6936 LoopVectorizationLegality *Legal, 6937 PredicatedScalarEvolution &PSE, 6938 const Loop *TheLoop) { 6939 6940 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6941 if (!Gep) 6942 return nullptr; 6943 6944 // We are looking for a gep with all loop invariant indices except for one 6945 // which should be an induction variable. 6946 auto SE = PSE.getSE(); 6947 unsigned NumOperands = Gep->getNumOperands(); 6948 for (unsigned i = 1; i < NumOperands; ++i) { 6949 Value *Opd = Gep->getOperand(i); 6950 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6951 !Legal->isInductionVariable(Opd)) 6952 return nullptr; 6953 } 6954 6955 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6956 return PSE.getSCEV(Ptr); 6957 } 6958 6959 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6960 return Legal->hasStride(I->getOperand(0)) || 6961 Legal->hasStride(I->getOperand(1)); 6962 } 6963 6964 InstructionCost 6965 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6966 ElementCount VF) { 6967 assert(VF.isVector() && 6968 "Scalarization cost of instruction implies vectorization."); 6969 if (VF.isScalable()) 6970 return InstructionCost::getInvalid(); 6971 6972 Type *ValTy = getLoadStoreType(I); 6973 auto SE = PSE.getSE(); 6974 6975 unsigned AS = getLoadStoreAddressSpace(I); 6976 Value *Ptr = getLoadStorePointerOperand(I); 6977 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6978 6979 // Figure out whether the access is strided and get the stride value 6980 // if it's known in compile time 6981 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6982 6983 // Get the cost of the scalar memory instruction and address computation. 6984 InstructionCost Cost = 6985 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6986 6987 // Don't pass *I here, since it is scalar but will actually be part of a 6988 // vectorized loop where the user of it is a vectorized instruction. 6989 const Align Alignment = getLoadStoreAlignment(I); 6990 Cost += VF.getKnownMinValue() * 6991 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6992 AS, TTI::TCK_RecipThroughput); 6993 6994 // Get the overhead of the extractelement and insertelement instructions 6995 // we might create due to scalarization. 6996 Cost += getScalarizationOverhead(I, VF); 6997 6998 // If we have a predicated load/store, it will need extra i1 extracts and 6999 // conditional branches, but may not be executed for each vector lane. Scale 7000 // the cost by the probability of executing the predicated block. 7001 if (isPredicatedInst(I)) { 7002 Cost /= getReciprocalPredBlockProb(); 7003 7004 // Add the cost of an i1 extract and a branch 7005 auto *Vec_i1Ty = 7006 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7007 Cost += TTI.getScalarizationOverhead( 7008 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7009 /*Insert=*/false, /*Extract=*/true); 7010 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7011 7012 if (useEmulatedMaskMemRefHack(I)) 7013 // Artificially setting to a high enough value to practically disable 7014 // vectorization with such operations. 7015 Cost = 3000000; 7016 } 7017 7018 return Cost; 7019 } 7020 7021 InstructionCost 7022 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7023 ElementCount VF) { 7024 Type *ValTy = getLoadStoreType(I); 7025 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7026 Value *Ptr = getLoadStorePointerOperand(I); 7027 unsigned AS = getLoadStoreAddressSpace(I); 7028 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7029 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7030 7031 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7032 "Stride should be 1 or -1 for consecutive memory access"); 7033 const Align Alignment = getLoadStoreAlignment(I); 7034 InstructionCost Cost = 0; 7035 if (Legal->isMaskRequired(I)) 7036 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7037 CostKind); 7038 else 7039 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7040 CostKind, I); 7041 7042 bool Reverse = ConsecutiveStride < 0; 7043 if (Reverse) 7044 Cost += 7045 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7046 return Cost; 7047 } 7048 7049 InstructionCost 7050 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7051 ElementCount VF) { 7052 assert(Legal->isUniformMemOp(*I)); 7053 7054 Type *ValTy = getLoadStoreType(I); 7055 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7056 const Align Alignment = getLoadStoreAlignment(I); 7057 unsigned AS = getLoadStoreAddressSpace(I); 7058 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7059 if (isa<LoadInst>(I)) { 7060 return TTI.getAddressComputationCost(ValTy) + 7061 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7062 CostKind) + 7063 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7064 } 7065 StoreInst *SI = cast<StoreInst>(I); 7066 7067 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7068 return TTI.getAddressComputationCost(ValTy) + 7069 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7070 CostKind) + 7071 (isLoopInvariantStoreValue 7072 ? 0 7073 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7074 VF.getKnownMinValue() - 1)); 7075 } 7076 7077 InstructionCost 7078 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7079 ElementCount VF) { 7080 Type *ValTy = getLoadStoreType(I); 7081 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7082 const Align Alignment = getLoadStoreAlignment(I); 7083 const Value *Ptr = getLoadStorePointerOperand(I); 7084 7085 return TTI.getAddressComputationCost(VectorTy) + 7086 TTI.getGatherScatterOpCost( 7087 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7088 TargetTransformInfo::TCK_RecipThroughput, I); 7089 } 7090 7091 InstructionCost 7092 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7093 ElementCount VF) { 7094 // TODO: Once we have support for interleaving with scalable vectors 7095 // we can calculate the cost properly here. 7096 if (VF.isScalable()) 7097 return InstructionCost::getInvalid(); 7098 7099 Type *ValTy = getLoadStoreType(I); 7100 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7101 unsigned AS = getLoadStoreAddressSpace(I); 7102 7103 auto Group = getInterleavedAccessGroup(I); 7104 assert(Group && "Fail to get an interleaved access group."); 7105 7106 unsigned InterleaveFactor = Group->getFactor(); 7107 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7108 7109 // Holds the indices of existing members in an interleaved load group. 7110 // An interleaved store group doesn't need this as it doesn't allow gaps. 7111 SmallVector<unsigned, 4> Indices; 7112 if (isa<LoadInst>(I)) { 7113 for (unsigned i = 0; i < InterleaveFactor; i++) 7114 if (Group->getMember(i)) 7115 Indices.push_back(i); 7116 } 7117 7118 // Calculate the cost of the whole interleaved group. 7119 bool UseMaskForGaps = 7120 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7121 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7122 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7123 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7124 7125 if (Group->isReverse()) { 7126 // TODO: Add support for reversed masked interleaved access. 7127 assert(!Legal->isMaskRequired(I) && 7128 "Reverse masked interleaved access not supported."); 7129 Cost += 7130 Group->getNumMembers() * 7131 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7132 } 7133 return Cost; 7134 } 7135 7136 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7137 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7138 // Early exit for no inloop reductions 7139 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7140 return InstructionCost::getInvalid(); 7141 auto *VectorTy = cast<VectorType>(Ty); 7142 7143 // We are looking for a pattern of, and finding the minimal acceptable cost: 7144 // reduce(mul(ext(A), ext(B))) or 7145 // reduce(mul(A, B)) or 7146 // reduce(ext(A)) or 7147 // reduce(A). 7148 // The basic idea is that we walk down the tree to do that, finding the root 7149 // reduction instruction in InLoopReductionImmediateChains. From there we find 7150 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7151 // of the components. If the reduction cost is lower then we return it for the 7152 // reduction instruction and 0 for the other instructions in the pattern. If 7153 // it is not we return an invalid cost specifying the orignal cost method 7154 // should be used. 7155 Instruction *RetI = I; 7156 if ((RetI->getOpcode() == Instruction::SExt || 7157 RetI->getOpcode() == Instruction::ZExt)) { 7158 if (!RetI->hasOneUser()) 7159 return InstructionCost::getInvalid(); 7160 RetI = RetI->user_back(); 7161 } 7162 if (RetI->getOpcode() == Instruction::Mul && 7163 RetI->user_back()->getOpcode() == Instruction::Add) { 7164 if (!RetI->hasOneUser()) 7165 return InstructionCost::getInvalid(); 7166 RetI = RetI->user_back(); 7167 } 7168 7169 // Test if the found instruction is a reduction, and if not return an invalid 7170 // cost specifying the parent to use the original cost modelling. 7171 if (!InLoopReductionImmediateChains.count(RetI)) 7172 return InstructionCost::getInvalid(); 7173 7174 // Find the reduction this chain is a part of and calculate the basic cost of 7175 // the reduction on its own. 7176 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7177 Instruction *ReductionPhi = LastChain; 7178 while (!isa<PHINode>(ReductionPhi)) 7179 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7180 7181 const RecurrenceDescriptor &RdxDesc = 7182 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7183 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7184 RdxDesc.getOpcode(), VectorTy, false, CostKind); 7185 7186 // Get the operand that was not the reduction chain and match it to one of the 7187 // patterns, returning the better cost if it is found. 7188 Instruction *RedOp = RetI->getOperand(1) == LastChain 7189 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7190 : dyn_cast<Instruction>(RetI->getOperand(1)); 7191 7192 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7193 7194 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7195 !TheLoop->isLoopInvariant(RedOp)) { 7196 bool IsUnsigned = isa<ZExtInst>(RedOp); 7197 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7198 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7199 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7200 CostKind); 7201 7202 InstructionCost ExtCost = 7203 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7204 TTI::CastContextHint::None, CostKind, RedOp); 7205 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7206 return I == RetI ? *RedCost.getValue() : 0; 7207 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7208 Instruction *Mul = RedOp; 7209 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7210 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7211 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7212 Op0->getOpcode() == Op1->getOpcode() && 7213 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7214 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7215 bool IsUnsigned = isa<ZExtInst>(Op0); 7216 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7217 // reduce(mul(ext, ext)) 7218 InstructionCost ExtCost = 7219 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7220 TTI::CastContextHint::None, CostKind, Op0); 7221 InstructionCost MulCost = 7222 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7223 7224 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7225 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7226 CostKind); 7227 7228 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7229 return I == RetI ? *RedCost.getValue() : 0; 7230 } else { 7231 InstructionCost MulCost = 7232 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7233 7234 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7235 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7236 CostKind); 7237 7238 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7239 return I == RetI ? *RedCost.getValue() : 0; 7240 } 7241 } 7242 7243 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7244 } 7245 7246 InstructionCost 7247 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7248 ElementCount VF) { 7249 // Calculate scalar cost only. Vectorization cost should be ready at this 7250 // moment. 7251 if (VF.isScalar()) { 7252 Type *ValTy = getLoadStoreType(I); 7253 const Align Alignment = getLoadStoreAlignment(I); 7254 unsigned AS = getLoadStoreAddressSpace(I); 7255 7256 return TTI.getAddressComputationCost(ValTy) + 7257 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7258 TTI::TCK_RecipThroughput, I); 7259 } 7260 return getWideningCost(I, VF); 7261 } 7262 7263 LoopVectorizationCostModel::VectorizationCostTy 7264 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7265 ElementCount VF) { 7266 // If we know that this instruction will remain uniform, check the cost of 7267 // the scalar version. 7268 if (isUniformAfterVectorization(I, VF)) 7269 VF = ElementCount::getFixed(1); 7270 7271 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7272 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7273 7274 // Forced scalars do not have any scalarization overhead. 7275 auto ForcedScalar = ForcedScalars.find(VF); 7276 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7277 auto InstSet = ForcedScalar->second; 7278 if (InstSet.count(I)) 7279 return VectorizationCostTy( 7280 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7281 VF.getKnownMinValue()), 7282 false); 7283 } 7284 7285 Type *VectorTy; 7286 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7287 7288 bool TypeNotScalarized = 7289 VF.isVector() && VectorTy->isVectorTy() && 7290 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7291 return VectorizationCostTy(C, TypeNotScalarized); 7292 } 7293 7294 InstructionCost 7295 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7296 ElementCount VF) const { 7297 7298 if (VF.isScalable()) 7299 return InstructionCost::getInvalid(); 7300 7301 if (VF.isScalar()) 7302 return 0; 7303 7304 InstructionCost Cost = 0; 7305 Type *RetTy = ToVectorTy(I->getType(), VF); 7306 if (!RetTy->isVoidTy() && 7307 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7308 Cost += TTI.getScalarizationOverhead( 7309 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7310 true, false); 7311 7312 // Some targets keep addresses scalar. 7313 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7314 return Cost; 7315 7316 // Some targets support efficient element stores. 7317 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7318 return Cost; 7319 7320 // Collect operands to consider. 7321 CallInst *CI = dyn_cast<CallInst>(I); 7322 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7323 7324 // Skip operands that do not require extraction/scalarization and do not incur 7325 // any overhead. 7326 SmallVector<Type *> Tys; 7327 for (auto *V : filterExtractingOperands(Ops, VF)) 7328 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7329 return Cost + TTI.getOperandsScalarizationOverhead( 7330 filterExtractingOperands(Ops, VF), Tys); 7331 } 7332 7333 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7334 if (VF.isScalar()) 7335 return; 7336 NumPredStores = 0; 7337 for (BasicBlock *BB : TheLoop->blocks()) { 7338 // For each instruction in the old loop. 7339 for (Instruction &I : *BB) { 7340 Value *Ptr = getLoadStorePointerOperand(&I); 7341 if (!Ptr) 7342 continue; 7343 7344 // TODO: We should generate better code and update the cost model for 7345 // predicated uniform stores. Today they are treated as any other 7346 // predicated store (see added test cases in 7347 // invariant-store-vectorization.ll). 7348 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7349 NumPredStores++; 7350 7351 if (Legal->isUniformMemOp(I)) { 7352 // TODO: Avoid replicating loads and stores instead of 7353 // relying on instcombine to remove them. 7354 // Load: Scalar load + broadcast 7355 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7356 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7357 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7358 continue; 7359 } 7360 7361 // We assume that widening is the best solution when possible. 7362 if (memoryInstructionCanBeWidened(&I, VF)) { 7363 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7364 int ConsecutiveStride = 7365 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7366 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7367 "Expected consecutive stride."); 7368 InstWidening Decision = 7369 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7370 setWideningDecision(&I, VF, Decision, Cost); 7371 continue; 7372 } 7373 7374 // Choose between Interleaving, Gather/Scatter or Scalarization. 7375 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7376 unsigned NumAccesses = 1; 7377 if (isAccessInterleaved(&I)) { 7378 auto Group = getInterleavedAccessGroup(&I); 7379 assert(Group && "Fail to get an interleaved access group."); 7380 7381 // Make one decision for the whole group. 7382 if (getWideningDecision(&I, VF) != CM_Unknown) 7383 continue; 7384 7385 NumAccesses = Group->getNumMembers(); 7386 if (interleavedAccessCanBeWidened(&I, VF)) 7387 InterleaveCost = getInterleaveGroupCost(&I, VF); 7388 } 7389 7390 InstructionCost GatherScatterCost = 7391 isLegalGatherOrScatter(&I) 7392 ? getGatherScatterCost(&I, VF) * NumAccesses 7393 : InstructionCost::getInvalid(); 7394 7395 InstructionCost ScalarizationCost = 7396 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7397 7398 // Choose better solution for the current VF, 7399 // write down this decision and use it during vectorization. 7400 InstructionCost Cost; 7401 InstWidening Decision; 7402 if (InterleaveCost <= GatherScatterCost && 7403 InterleaveCost < ScalarizationCost) { 7404 Decision = CM_Interleave; 7405 Cost = InterleaveCost; 7406 } else if (GatherScatterCost < ScalarizationCost) { 7407 Decision = CM_GatherScatter; 7408 Cost = GatherScatterCost; 7409 } else { 7410 assert(!VF.isScalable() && 7411 "We cannot yet scalarise for scalable vectors"); 7412 Decision = CM_Scalarize; 7413 Cost = ScalarizationCost; 7414 } 7415 // If the instructions belongs to an interleave group, the whole group 7416 // receives the same decision. The whole group receives the cost, but 7417 // the cost will actually be assigned to one instruction. 7418 if (auto Group = getInterleavedAccessGroup(&I)) 7419 setWideningDecision(Group, VF, Decision, Cost); 7420 else 7421 setWideningDecision(&I, VF, Decision, Cost); 7422 } 7423 } 7424 7425 // Make sure that any load of address and any other address computation 7426 // remains scalar unless there is gather/scatter support. This avoids 7427 // inevitable extracts into address registers, and also has the benefit of 7428 // activating LSR more, since that pass can't optimize vectorized 7429 // addresses. 7430 if (TTI.prefersVectorizedAddressing()) 7431 return; 7432 7433 // Start with all scalar pointer uses. 7434 SmallPtrSet<Instruction *, 8> AddrDefs; 7435 for (BasicBlock *BB : TheLoop->blocks()) 7436 for (Instruction &I : *BB) { 7437 Instruction *PtrDef = 7438 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7439 if (PtrDef && TheLoop->contains(PtrDef) && 7440 getWideningDecision(&I, VF) != CM_GatherScatter) 7441 AddrDefs.insert(PtrDef); 7442 } 7443 7444 // Add all instructions used to generate the addresses. 7445 SmallVector<Instruction *, 4> Worklist; 7446 append_range(Worklist, AddrDefs); 7447 while (!Worklist.empty()) { 7448 Instruction *I = Worklist.pop_back_val(); 7449 for (auto &Op : I->operands()) 7450 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7451 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7452 AddrDefs.insert(InstOp).second) 7453 Worklist.push_back(InstOp); 7454 } 7455 7456 for (auto *I : AddrDefs) { 7457 if (isa<LoadInst>(I)) { 7458 // Setting the desired widening decision should ideally be handled in 7459 // by cost functions, but since this involves the task of finding out 7460 // if the loaded register is involved in an address computation, it is 7461 // instead changed here when we know this is the case. 7462 InstWidening Decision = getWideningDecision(I, VF); 7463 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7464 // Scalarize a widened load of address. 7465 setWideningDecision( 7466 I, VF, CM_Scalarize, 7467 (VF.getKnownMinValue() * 7468 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7469 else if (auto Group = getInterleavedAccessGroup(I)) { 7470 // Scalarize an interleave group of address loads. 7471 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7472 if (Instruction *Member = Group->getMember(I)) 7473 setWideningDecision( 7474 Member, VF, CM_Scalarize, 7475 (VF.getKnownMinValue() * 7476 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7477 } 7478 } 7479 } else 7480 // Make sure I gets scalarized and a cost estimate without 7481 // scalarization overhead. 7482 ForcedScalars[VF].insert(I); 7483 } 7484 } 7485 7486 InstructionCost 7487 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7488 Type *&VectorTy) { 7489 Type *RetTy = I->getType(); 7490 if (canTruncateToMinimalBitwidth(I, VF)) 7491 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7492 auto SE = PSE.getSE(); 7493 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7494 7495 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7496 ElementCount VF) -> bool { 7497 if (VF.isScalar()) 7498 return true; 7499 7500 auto Scalarized = InstsToScalarize.find(VF); 7501 assert(Scalarized != InstsToScalarize.end() && 7502 "VF not yet analyzed for scalarization profitability"); 7503 return !Scalarized->second.count(I) && 7504 llvm::all_of(I->users(), [&](User *U) { 7505 auto *UI = cast<Instruction>(U); 7506 return !Scalarized->second.count(UI); 7507 }); 7508 }; 7509 (void) hasSingleCopyAfterVectorization; 7510 7511 if (isScalarAfterVectorization(I, VF)) { 7512 // With the exception of GEPs and PHIs, after scalarization there should 7513 // only be one copy of the instruction generated in the loop. This is 7514 // because the VF is either 1, or any instructions that need scalarizing 7515 // have already been dealt with by the the time we get here. As a result, 7516 // it means we don't have to multiply the instruction cost by VF. 7517 assert(I->getOpcode() == Instruction::GetElementPtr || 7518 I->getOpcode() == Instruction::PHI || 7519 (I->getOpcode() == Instruction::BitCast && 7520 I->getType()->isPointerTy()) || 7521 hasSingleCopyAfterVectorization(I, VF)); 7522 VectorTy = RetTy; 7523 } else 7524 VectorTy = ToVectorTy(RetTy, VF); 7525 7526 // TODO: We need to estimate the cost of intrinsic calls. 7527 switch (I->getOpcode()) { 7528 case Instruction::GetElementPtr: 7529 // We mark this instruction as zero-cost because the cost of GEPs in 7530 // vectorized code depends on whether the corresponding memory instruction 7531 // is scalarized or not. Therefore, we handle GEPs with the memory 7532 // instruction cost. 7533 return 0; 7534 case Instruction::Br: { 7535 // In cases of scalarized and predicated instructions, there will be VF 7536 // predicated blocks in the vectorized loop. Each branch around these 7537 // blocks requires also an extract of its vector compare i1 element. 7538 bool ScalarPredicatedBB = false; 7539 BranchInst *BI = cast<BranchInst>(I); 7540 if (VF.isVector() && BI->isConditional() && 7541 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7542 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7543 ScalarPredicatedBB = true; 7544 7545 if (ScalarPredicatedBB) { 7546 // Return cost for branches around scalarized and predicated blocks. 7547 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7548 auto *Vec_i1Ty = 7549 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7550 return (TTI.getScalarizationOverhead( 7551 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7552 false, true) + 7553 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7554 VF.getKnownMinValue())); 7555 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7556 // The back-edge branch will remain, as will all scalar branches. 7557 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7558 else 7559 // This branch will be eliminated by if-conversion. 7560 return 0; 7561 // Note: We currently assume zero cost for an unconditional branch inside 7562 // a predicated block since it will become a fall-through, although we 7563 // may decide in the future to call TTI for all branches. 7564 } 7565 case Instruction::PHI: { 7566 auto *Phi = cast<PHINode>(I); 7567 7568 // First-order recurrences are replaced by vector shuffles inside the loop. 7569 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7570 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7571 return TTI.getShuffleCost( 7572 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7573 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7574 7575 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7576 // converted into select instructions. We require N - 1 selects per phi 7577 // node, where N is the number of incoming values. 7578 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7579 return (Phi->getNumIncomingValues() - 1) * 7580 TTI.getCmpSelInstrCost( 7581 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7582 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7583 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7584 7585 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7586 } 7587 case Instruction::UDiv: 7588 case Instruction::SDiv: 7589 case Instruction::URem: 7590 case Instruction::SRem: 7591 // If we have a predicated instruction, it may not be executed for each 7592 // vector lane. Get the scalarization cost and scale this amount by the 7593 // probability of executing the predicated block. If the instruction is not 7594 // predicated, we fall through to the next case. 7595 if (VF.isVector() && isScalarWithPredication(I)) { 7596 InstructionCost Cost = 0; 7597 7598 // These instructions have a non-void type, so account for the phi nodes 7599 // that we will create. This cost is likely to be zero. The phi node 7600 // cost, if any, should be scaled by the block probability because it 7601 // models a copy at the end of each predicated block. 7602 Cost += VF.getKnownMinValue() * 7603 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7604 7605 // The cost of the non-predicated instruction. 7606 Cost += VF.getKnownMinValue() * 7607 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7608 7609 // The cost of insertelement and extractelement instructions needed for 7610 // scalarization. 7611 Cost += getScalarizationOverhead(I, VF); 7612 7613 // Scale the cost by the probability of executing the predicated blocks. 7614 // This assumes the predicated block for each vector lane is equally 7615 // likely. 7616 return Cost / getReciprocalPredBlockProb(); 7617 } 7618 LLVM_FALLTHROUGH; 7619 case Instruction::Add: 7620 case Instruction::FAdd: 7621 case Instruction::Sub: 7622 case Instruction::FSub: 7623 case Instruction::Mul: 7624 case Instruction::FMul: 7625 case Instruction::FDiv: 7626 case Instruction::FRem: 7627 case Instruction::Shl: 7628 case Instruction::LShr: 7629 case Instruction::AShr: 7630 case Instruction::And: 7631 case Instruction::Or: 7632 case Instruction::Xor: { 7633 // Since we will replace the stride by 1 the multiplication should go away. 7634 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7635 return 0; 7636 7637 // Detect reduction patterns 7638 InstructionCost RedCost; 7639 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7640 .isValid()) 7641 return RedCost; 7642 7643 // Certain instructions can be cheaper to vectorize if they have a constant 7644 // second vector operand. One example of this are shifts on x86. 7645 Value *Op2 = I->getOperand(1); 7646 TargetTransformInfo::OperandValueProperties Op2VP; 7647 TargetTransformInfo::OperandValueKind Op2VK = 7648 TTI.getOperandInfo(Op2, Op2VP); 7649 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7650 Op2VK = TargetTransformInfo::OK_UniformValue; 7651 7652 SmallVector<const Value *, 4> Operands(I->operand_values()); 7653 return TTI.getArithmeticInstrCost( 7654 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7655 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7656 } 7657 case Instruction::FNeg: { 7658 return TTI.getArithmeticInstrCost( 7659 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7660 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7661 TargetTransformInfo::OP_None, I->getOperand(0), I); 7662 } 7663 case Instruction::Select: { 7664 SelectInst *SI = cast<SelectInst>(I); 7665 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7666 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7667 7668 const Value *Op0, *Op1; 7669 using namespace llvm::PatternMatch; 7670 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7671 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7672 // select x, y, false --> x & y 7673 // select x, true, y --> x | y 7674 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7675 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7676 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7677 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7678 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7679 Op1->getType()->getScalarSizeInBits() == 1); 7680 7681 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7682 return TTI.getArithmeticInstrCost( 7683 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7684 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7685 } 7686 7687 Type *CondTy = SI->getCondition()->getType(); 7688 if (!ScalarCond) 7689 CondTy = VectorType::get(CondTy, VF); 7690 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7691 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7692 } 7693 case Instruction::ICmp: 7694 case Instruction::FCmp: { 7695 Type *ValTy = I->getOperand(0)->getType(); 7696 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7697 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7698 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7699 VectorTy = ToVectorTy(ValTy, VF); 7700 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7701 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7702 } 7703 case Instruction::Store: 7704 case Instruction::Load: { 7705 ElementCount Width = VF; 7706 if (Width.isVector()) { 7707 InstWidening Decision = getWideningDecision(I, Width); 7708 assert(Decision != CM_Unknown && 7709 "CM decision should be taken at this point"); 7710 if (Decision == CM_Scalarize) 7711 Width = ElementCount::getFixed(1); 7712 } 7713 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7714 return getMemoryInstructionCost(I, VF); 7715 } 7716 case Instruction::BitCast: 7717 if (I->getType()->isPointerTy()) 7718 return 0; 7719 LLVM_FALLTHROUGH; 7720 case Instruction::ZExt: 7721 case Instruction::SExt: 7722 case Instruction::FPToUI: 7723 case Instruction::FPToSI: 7724 case Instruction::FPExt: 7725 case Instruction::PtrToInt: 7726 case Instruction::IntToPtr: 7727 case Instruction::SIToFP: 7728 case Instruction::UIToFP: 7729 case Instruction::Trunc: 7730 case Instruction::FPTrunc: { 7731 // Computes the CastContextHint from a Load/Store instruction. 7732 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7733 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7734 "Expected a load or a store!"); 7735 7736 if (VF.isScalar() || !TheLoop->contains(I)) 7737 return TTI::CastContextHint::Normal; 7738 7739 switch (getWideningDecision(I, VF)) { 7740 case LoopVectorizationCostModel::CM_GatherScatter: 7741 return TTI::CastContextHint::GatherScatter; 7742 case LoopVectorizationCostModel::CM_Interleave: 7743 return TTI::CastContextHint::Interleave; 7744 case LoopVectorizationCostModel::CM_Scalarize: 7745 case LoopVectorizationCostModel::CM_Widen: 7746 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7747 : TTI::CastContextHint::Normal; 7748 case LoopVectorizationCostModel::CM_Widen_Reverse: 7749 return TTI::CastContextHint::Reversed; 7750 case LoopVectorizationCostModel::CM_Unknown: 7751 llvm_unreachable("Instr did not go through cost modelling?"); 7752 } 7753 7754 llvm_unreachable("Unhandled case!"); 7755 }; 7756 7757 unsigned Opcode = I->getOpcode(); 7758 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7759 // For Trunc, the context is the only user, which must be a StoreInst. 7760 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7761 if (I->hasOneUse()) 7762 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7763 CCH = ComputeCCH(Store); 7764 } 7765 // For Z/Sext, the context is the operand, which must be a LoadInst. 7766 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7767 Opcode == Instruction::FPExt) { 7768 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7769 CCH = ComputeCCH(Load); 7770 } 7771 7772 // We optimize the truncation of induction variables having constant 7773 // integer steps. The cost of these truncations is the same as the scalar 7774 // operation. 7775 if (isOptimizableIVTruncate(I, VF)) { 7776 auto *Trunc = cast<TruncInst>(I); 7777 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7778 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7779 } 7780 7781 // Detect reduction patterns 7782 InstructionCost RedCost; 7783 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7784 .isValid()) 7785 return RedCost; 7786 7787 Type *SrcScalarTy = I->getOperand(0)->getType(); 7788 Type *SrcVecTy = 7789 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7790 if (canTruncateToMinimalBitwidth(I, VF)) { 7791 // This cast is going to be shrunk. This may remove the cast or it might 7792 // turn it into slightly different cast. For example, if MinBW == 16, 7793 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7794 // 7795 // Calculate the modified src and dest types. 7796 Type *MinVecTy = VectorTy; 7797 if (Opcode == Instruction::Trunc) { 7798 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7799 VectorTy = 7800 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7801 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7802 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7803 VectorTy = 7804 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7805 } 7806 } 7807 7808 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7809 } 7810 case Instruction::Call: { 7811 bool NeedToScalarize; 7812 CallInst *CI = cast<CallInst>(I); 7813 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7814 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7815 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7816 return std::min(CallCost, IntrinsicCost); 7817 } 7818 return CallCost; 7819 } 7820 case Instruction::ExtractValue: 7821 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7822 default: 7823 // This opcode is unknown. Assume that it is the same as 'mul'. 7824 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7825 } // end of switch. 7826 } 7827 7828 char LoopVectorize::ID = 0; 7829 7830 static const char lv_name[] = "Loop Vectorization"; 7831 7832 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7833 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7834 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7835 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7836 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7837 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7838 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7839 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7840 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7841 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7842 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7843 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7844 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7845 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7846 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7847 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7848 7849 namespace llvm { 7850 7851 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7852 7853 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7854 bool VectorizeOnlyWhenForced) { 7855 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7856 } 7857 7858 } // end namespace llvm 7859 7860 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7861 // Check if the pointer operand of a load or store instruction is 7862 // consecutive. 7863 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7864 return Legal->isConsecutivePtr(Ptr); 7865 return false; 7866 } 7867 7868 void LoopVectorizationCostModel::collectValuesToIgnore() { 7869 // Ignore ephemeral values. 7870 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7871 7872 // Ignore type-promoting instructions we identified during reduction 7873 // detection. 7874 for (auto &Reduction : Legal->getReductionVars()) { 7875 RecurrenceDescriptor &RedDes = Reduction.second; 7876 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7877 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7878 } 7879 // Ignore type-casting instructions we identified during induction 7880 // detection. 7881 for (auto &Induction : Legal->getInductionVars()) { 7882 InductionDescriptor &IndDes = Induction.second; 7883 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7884 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7885 } 7886 } 7887 7888 void LoopVectorizationCostModel::collectInLoopReductions() { 7889 for (auto &Reduction : Legal->getReductionVars()) { 7890 PHINode *Phi = Reduction.first; 7891 RecurrenceDescriptor &RdxDesc = Reduction.second; 7892 7893 // We don't collect reductions that are type promoted (yet). 7894 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7895 continue; 7896 7897 // If the target would prefer this reduction to happen "in-loop", then we 7898 // want to record it as such. 7899 unsigned Opcode = RdxDesc.getOpcode(); 7900 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7901 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7902 TargetTransformInfo::ReductionFlags())) 7903 continue; 7904 7905 // Check that we can correctly put the reductions into the loop, by 7906 // finding the chain of operations that leads from the phi to the loop 7907 // exit value. 7908 SmallVector<Instruction *, 4> ReductionOperations = 7909 RdxDesc.getReductionOpChain(Phi, TheLoop); 7910 bool InLoop = !ReductionOperations.empty(); 7911 if (InLoop) { 7912 InLoopReductionChains[Phi] = ReductionOperations; 7913 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7914 Instruction *LastChain = Phi; 7915 for (auto *I : ReductionOperations) { 7916 InLoopReductionImmediateChains[I] = LastChain; 7917 LastChain = I; 7918 } 7919 } 7920 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7921 << " reduction for phi: " << *Phi << "\n"); 7922 } 7923 } 7924 7925 // TODO: we could return a pair of values that specify the max VF and 7926 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7927 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7928 // doesn't have a cost model that can choose which plan to execute if 7929 // more than one is generated. 7930 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7931 LoopVectorizationCostModel &CM) { 7932 unsigned WidestType; 7933 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7934 return WidestVectorRegBits / WidestType; 7935 } 7936 7937 VectorizationFactor 7938 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7939 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7940 ElementCount VF = UserVF; 7941 // Outer loop handling: They may require CFG and instruction level 7942 // transformations before even evaluating whether vectorization is profitable. 7943 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7944 // the vectorization pipeline. 7945 if (!OrigLoop->isInnermost()) { 7946 // If the user doesn't provide a vectorization factor, determine a 7947 // reasonable one. 7948 if (UserVF.isZero()) { 7949 VF = ElementCount::getFixed(determineVPlanVF( 7950 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7951 .getFixedSize(), 7952 CM)); 7953 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7954 7955 // Make sure we have a VF > 1 for stress testing. 7956 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7957 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7958 << "overriding computed VF.\n"); 7959 VF = ElementCount::getFixed(4); 7960 } 7961 } 7962 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7963 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7964 "VF needs to be a power of two"); 7965 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7966 << "VF " << VF << " to build VPlans.\n"); 7967 buildVPlans(VF, VF); 7968 7969 // For VPlan build stress testing, we bail out after VPlan construction. 7970 if (VPlanBuildStressTest) 7971 return VectorizationFactor::Disabled(); 7972 7973 return {VF, 0 /*Cost*/}; 7974 } 7975 7976 LLVM_DEBUG( 7977 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7978 "VPlan-native path.\n"); 7979 return VectorizationFactor::Disabled(); 7980 } 7981 7982 Optional<VectorizationFactor> 7983 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7984 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7985 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7986 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7987 return None; 7988 7989 // Invalidate interleave groups if all blocks of loop will be predicated. 7990 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7991 !useMaskedInterleavedAccesses(*TTI)) { 7992 LLVM_DEBUG( 7993 dbgs() 7994 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7995 "which requires masked-interleaved support.\n"); 7996 if (CM.InterleaveInfo.invalidateGroups()) 7997 // Invalidating interleave groups also requires invalidating all decisions 7998 // based on them, which includes widening decisions and uniform and scalar 7999 // values. 8000 CM.invalidateCostModelingDecisions(); 8001 } 8002 8003 ElementCount MaxUserVF = 8004 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8005 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8006 if (!UserVF.isZero() && UserVFIsLegal) { 8007 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 8008 << " VF " << UserVF << ".\n"); 8009 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8010 "VF needs to be a power of two"); 8011 // Collect the instructions (and their associated costs) that will be more 8012 // profitable to scalarize. 8013 CM.selectUserVectorizationFactor(UserVF); 8014 CM.collectInLoopReductions(); 8015 buildVPlansWithVPRecipes(UserVF, UserVF); 8016 LLVM_DEBUG(printPlans(dbgs())); 8017 return {{UserVF, 0}}; 8018 } 8019 8020 // Populate the set of Vectorization Factor Candidates. 8021 ElementCountSet VFCandidates; 8022 for (auto VF = ElementCount::getFixed(1); 8023 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8024 VFCandidates.insert(VF); 8025 for (auto VF = ElementCount::getScalable(1); 8026 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8027 VFCandidates.insert(VF); 8028 8029 for (const auto &VF : VFCandidates) { 8030 // Collect Uniform and Scalar instructions after vectorization with VF. 8031 CM.collectUniformsAndScalars(VF); 8032 8033 // Collect the instructions (and their associated costs) that will be more 8034 // profitable to scalarize. 8035 if (VF.isVector()) 8036 CM.collectInstsToScalarize(VF); 8037 } 8038 8039 CM.collectInLoopReductions(); 8040 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8041 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8042 8043 LLVM_DEBUG(printPlans(dbgs())); 8044 if (!MaxFactors.hasVector()) 8045 return VectorizationFactor::Disabled(); 8046 8047 // Select the optimal vectorization factor. 8048 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8049 8050 // Check if it is profitable to vectorize with runtime checks. 8051 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8052 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8053 bool PragmaThresholdReached = 8054 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8055 bool ThresholdReached = 8056 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8057 if ((ThresholdReached && !Hints.allowReordering()) || 8058 PragmaThresholdReached) { 8059 ORE->emit([&]() { 8060 return OptimizationRemarkAnalysisAliasing( 8061 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8062 OrigLoop->getHeader()) 8063 << "loop not vectorized: cannot prove it is safe to reorder " 8064 "memory operations"; 8065 }); 8066 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8067 Hints.emitRemarkWithHints(); 8068 return VectorizationFactor::Disabled(); 8069 } 8070 } 8071 return SelectedVF; 8072 } 8073 8074 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8075 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8076 << '\n'); 8077 BestVF = VF; 8078 BestUF = UF; 8079 8080 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8081 return !Plan->hasVF(VF); 8082 }); 8083 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8084 } 8085 8086 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8087 DominatorTree *DT) { 8088 // Perform the actual loop transformation. 8089 8090 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8091 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8092 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8093 8094 VPTransformState State{ 8095 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8096 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8097 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8098 State.CanonicalIV = ILV.Induction; 8099 8100 ILV.printDebugTracesAtStart(); 8101 8102 //===------------------------------------------------===// 8103 // 8104 // Notice: any optimization or new instruction that go 8105 // into the code below should also be implemented in 8106 // the cost-model. 8107 // 8108 //===------------------------------------------------===// 8109 8110 // 2. Copy and widen instructions from the old loop into the new loop. 8111 VPlans.front()->execute(&State); 8112 8113 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8114 // predication, updating analyses. 8115 ILV.fixVectorizedLoop(State); 8116 8117 ILV.printDebugTracesAtEnd(); 8118 } 8119 8120 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8121 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8122 for (const auto &Plan : VPlans) 8123 if (PrintVPlansInDotFormat) 8124 Plan->printDOT(O); 8125 else 8126 Plan->print(O); 8127 } 8128 #endif 8129 8130 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8131 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8132 8133 // We create new control-flow for the vectorized loop, so the original exit 8134 // conditions will be dead after vectorization if it's only used by the 8135 // terminator 8136 SmallVector<BasicBlock*> ExitingBlocks; 8137 OrigLoop->getExitingBlocks(ExitingBlocks); 8138 for (auto *BB : ExitingBlocks) { 8139 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8140 if (!Cmp || !Cmp->hasOneUse()) 8141 continue; 8142 8143 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8144 if (!DeadInstructions.insert(Cmp).second) 8145 continue; 8146 8147 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8148 // TODO: can recurse through operands in general 8149 for (Value *Op : Cmp->operands()) { 8150 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8151 DeadInstructions.insert(cast<Instruction>(Op)); 8152 } 8153 } 8154 8155 // We create new "steps" for induction variable updates to which the original 8156 // induction variables map. An original update instruction will be dead if 8157 // all its users except the induction variable are dead. 8158 auto *Latch = OrigLoop->getLoopLatch(); 8159 for (auto &Induction : Legal->getInductionVars()) { 8160 PHINode *Ind = Induction.first; 8161 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8162 8163 // If the tail is to be folded by masking, the primary induction variable, 8164 // if exists, isn't dead: it will be used for masking. Don't kill it. 8165 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8166 continue; 8167 8168 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8169 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8170 })) 8171 DeadInstructions.insert(IndUpdate); 8172 8173 // We record as "Dead" also the type-casting instructions we had identified 8174 // during induction analysis. We don't need any handling for them in the 8175 // vectorized loop because we have proven that, under a proper runtime 8176 // test guarding the vectorized loop, the value of the phi, and the casted 8177 // value of the phi, are the same. The last instruction in this casting chain 8178 // will get its scalar/vector/widened def from the scalar/vector/widened def 8179 // of the respective phi node. Any other casts in the induction def-use chain 8180 // have no other uses outside the phi update chain, and will be ignored. 8181 InductionDescriptor &IndDes = Induction.second; 8182 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8183 DeadInstructions.insert(Casts.begin(), Casts.end()); 8184 } 8185 } 8186 8187 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8188 8189 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8190 8191 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8192 Instruction::BinaryOps BinOp) { 8193 // When unrolling and the VF is 1, we only need to add a simple scalar. 8194 Type *Ty = Val->getType(); 8195 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8196 8197 if (Ty->isFloatingPointTy()) { 8198 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8199 8200 // Floating-point operations inherit FMF via the builder's flags. 8201 Value *MulOp = Builder.CreateFMul(C, Step); 8202 return Builder.CreateBinOp(BinOp, Val, MulOp); 8203 } 8204 Constant *C = ConstantInt::get(Ty, StartIdx); 8205 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8206 } 8207 8208 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8209 SmallVector<Metadata *, 4> MDs; 8210 // Reserve first location for self reference to the LoopID metadata node. 8211 MDs.push_back(nullptr); 8212 bool IsUnrollMetadata = false; 8213 MDNode *LoopID = L->getLoopID(); 8214 if (LoopID) { 8215 // First find existing loop unrolling disable metadata. 8216 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8217 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8218 if (MD) { 8219 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8220 IsUnrollMetadata = 8221 S && S->getString().startswith("llvm.loop.unroll.disable"); 8222 } 8223 MDs.push_back(LoopID->getOperand(i)); 8224 } 8225 } 8226 8227 if (!IsUnrollMetadata) { 8228 // Add runtime unroll disable metadata. 8229 LLVMContext &Context = L->getHeader()->getContext(); 8230 SmallVector<Metadata *, 1> DisableOperands; 8231 DisableOperands.push_back( 8232 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8233 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8234 MDs.push_back(DisableNode); 8235 MDNode *NewLoopID = MDNode::get(Context, MDs); 8236 // Set operand 0 to refer to the loop id itself. 8237 NewLoopID->replaceOperandWith(0, NewLoopID); 8238 L->setLoopID(NewLoopID); 8239 } 8240 } 8241 8242 //===--------------------------------------------------------------------===// 8243 // EpilogueVectorizerMainLoop 8244 //===--------------------------------------------------------------------===// 8245 8246 /// This function is partially responsible for generating the control flow 8247 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8248 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8249 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8250 Loop *Lp = createVectorLoopSkeleton(""); 8251 8252 // Generate the code to check the minimum iteration count of the vector 8253 // epilogue (see below). 8254 EPI.EpilogueIterationCountCheck = 8255 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8256 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8257 8258 // Generate the code to check any assumptions that we've made for SCEV 8259 // expressions. 8260 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8261 8262 // Generate the code that checks at runtime if arrays overlap. We put the 8263 // checks into a separate block to make the more common case of few elements 8264 // faster. 8265 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8266 8267 // Generate the iteration count check for the main loop, *after* the check 8268 // for the epilogue loop, so that the path-length is shorter for the case 8269 // that goes directly through the vector epilogue. The longer-path length for 8270 // the main loop is compensated for, by the gain from vectorizing the larger 8271 // trip count. Note: the branch will get updated later on when we vectorize 8272 // the epilogue. 8273 EPI.MainLoopIterationCountCheck = 8274 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8275 8276 // Generate the induction variable. 8277 OldInduction = Legal->getPrimaryInduction(); 8278 Type *IdxTy = Legal->getWidestInductionType(); 8279 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8280 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8281 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8282 EPI.VectorTripCount = CountRoundDown; 8283 Induction = 8284 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8285 getDebugLocFromInstOrOperands(OldInduction)); 8286 8287 // Skip induction resume value creation here because they will be created in 8288 // the second pass. If we created them here, they wouldn't be used anyway, 8289 // because the vplan in the second pass still contains the inductions from the 8290 // original loop. 8291 8292 return completeLoopSkeleton(Lp, OrigLoopID); 8293 } 8294 8295 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8296 LLVM_DEBUG({ 8297 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8298 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8299 << ", Main Loop UF:" << EPI.MainLoopUF 8300 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8301 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8302 }); 8303 } 8304 8305 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8306 DEBUG_WITH_TYPE(VerboseDebug, { 8307 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8308 }); 8309 } 8310 8311 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8312 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8313 assert(L && "Expected valid Loop."); 8314 assert(Bypass && "Expected valid bypass basic block."); 8315 unsigned VFactor = 8316 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8317 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8318 Value *Count = getOrCreateTripCount(L); 8319 // Reuse existing vector loop preheader for TC checks. 8320 // Note that new preheader block is generated for vector loop. 8321 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8322 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8323 8324 // Generate code to check if the loop's trip count is less than VF * UF of the 8325 // main vector loop. 8326 auto P = 8327 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8328 8329 Value *CheckMinIters = Builder.CreateICmp( 8330 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8331 "min.iters.check"); 8332 8333 if (!ForEpilogue) 8334 TCCheckBlock->setName("vector.main.loop.iter.check"); 8335 8336 // Create new preheader for vector loop. 8337 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8338 DT, LI, nullptr, "vector.ph"); 8339 8340 if (ForEpilogue) { 8341 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8342 DT->getNode(Bypass)->getIDom()) && 8343 "TC check is expected to dominate Bypass"); 8344 8345 // Update dominator for Bypass & LoopExit. 8346 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8347 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8348 8349 LoopBypassBlocks.push_back(TCCheckBlock); 8350 8351 // Save the trip count so we don't have to regenerate it in the 8352 // vec.epilog.iter.check. This is safe to do because the trip count 8353 // generated here dominates the vector epilog iter check. 8354 EPI.TripCount = Count; 8355 } 8356 8357 ReplaceInstWithInst( 8358 TCCheckBlock->getTerminator(), 8359 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8360 8361 return TCCheckBlock; 8362 } 8363 8364 //===--------------------------------------------------------------------===// 8365 // EpilogueVectorizerEpilogueLoop 8366 //===--------------------------------------------------------------------===// 8367 8368 /// This function is partially responsible for generating the control flow 8369 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8370 BasicBlock * 8371 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8372 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8373 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8374 8375 // Now, compare the remaining count and if there aren't enough iterations to 8376 // execute the vectorized epilogue skip to the scalar part. 8377 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8378 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8379 LoopVectorPreHeader = 8380 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8381 LI, nullptr, "vec.epilog.ph"); 8382 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8383 VecEpilogueIterationCountCheck); 8384 8385 // Adjust the control flow taking the state info from the main loop 8386 // vectorization into account. 8387 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8388 "expected this to be saved from the previous pass."); 8389 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8390 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8391 8392 DT->changeImmediateDominator(LoopVectorPreHeader, 8393 EPI.MainLoopIterationCountCheck); 8394 8395 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8396 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8397 8398 if (EPI.SCEVSafetyCheck) 8399 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8400 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8401 if (EPI.MemSafetyCheck) 8402 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8403 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8404 8405 DT->changeImmediateDominator( 8406 VecEpilogueIterationCountCheck, 8407 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8408 8409 DT->changeImmediateDominator(LoopScalarPreHeader, 8410 EPI.EpilogueIterationCountCheck); 8411 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8412 8413 // Keep track of bypass blocks, as they feed start values to the induction 8414 // phis in the scalar loop preheader. 8415 if (EPI.SCEVSafetyCheck) 8416 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8417 if (EPI.MemSafetyCheck) 8418 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8419 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8420 8421 // Generate a resume induction for the vector epilogue and put it in the 8422 // vector epilogue preheader 8423 Type *IdxTy = Legal->getWidestInductionType(); 8424 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8425 LoopVectorPreHeader->getFirstNonPHI()); 8426 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8427 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8428 EPI.MainLoopIterationCountCheck); 8429 8430 // Generate the induction variable. 8431 OldInduction = Legal->getPrimaryInduction(); 8432 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8433 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8434 Value *StartIdx = EPResumeVal; 8435 Induction = 8436 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8437 getDebugLocFromInstOrOperands(OldInduction)); 8438 8439 // Generate induction resume values. These variables save the new starting 8440 // indexes for the scalar loop. They are used to test if there are any tail 8441 // iterations left once the vector loop has completed. 8442 // Note that when the vectorized epilogue is skipped due to iteration count 8443 // check, then the resume value for the induction variable comes from 8444 // the trip count of the main vector loop, hence passing the AdditionalBypass 8445 // argument. 8446 createInductionResumeValues(Lp, CountRoundDown, 8447 {VecEpilogueIterationCountCheck, 8448 EPI.VectorTripCount} /* AdditionalBypass */); 8449 8450 AddRuntimeUnrollDisableMetaData(Lp); 8451 return completeLoopSkeleton(Lp, OrigLoopID); 8452 } 8453 8454 BasicBlock * 8455 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8456 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8457 8458 assert(EPI.TripCount && 8459 "Expected trip count to have been safed in the first pass."); 8460 assert( 8461 (!isa<Instruction>(EPI.TripCount) || 8462 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8463 "saved trip count does not dominate insertion point."); 8464 Value *TC = EPI.TripCount; 8465 IRBuilder<> Builder(Insert->getTerminator()); 8466 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8467 8468 // Generate code to check if the loop's trip count is less than VF * UF of the 8469 // vector epilogue loop. 8470 auto P = 8471 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8472 8473 Value *CheckMinIters = Builder.CreateICmp( 8474 P, Count, 8475 ConstantInt::get(Count->getType(), 8476 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8477 "min.epilog.iters.check"); 8478 8479 ReplaceInstWithInst( 8480 Insert->getTerminator(), 8481 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8482 8483 LoopBypassBlocks.push_back(Insert); 8484 return Insert; 8485 } 8486 8487 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8488 LLVM_DEBUG({ 8489 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8490 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8491 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8492 }); 8493 } 8494 8495 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8496 DEBUG_WITH_TYPE(VerboseDebug, { 8497 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8498 }); 8499 } 8500 8501 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8502 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8503 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8504 bool PredicateAtRangeStart = Predicate(Range.Start); 8505 8506 for (ElementCount TmpVF = Range.Start * 2; 8507 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8508 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8509 Range.End = TmpVF; 8510 break; 8511 } 8512 8513 return PredicateAtRangeStart; 8514 } 8515 8516 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8517 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8518 /// of VF's starting at a given VF and extending it as much as possible. Each 8519 /// vectorization decision can potentially shorten this sub-range during 8520 /// buildVPlan(). 8521 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8522 ElementCount MaxVF) { 8523 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8524 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8525 VFRange SubRange = {VF, MaxVFPlusOne}; 8526 VPlans.push_back(buildVPlan(SubRange)); 8527 VF = SubRange.End; 8528 } 8529 } 8530 8531 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8532 VPlanPtr &Plan) { 8533 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8534 8535 // Look for cached value. 8536 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8537 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8538 if (ECEntryIt != EdgeMaskCache.end()) 8539 return ECEntryIt->second; 8540 8541 VPValue *SrcMask = createBlockInMask(Src, Plan); 8542 8543 // The terminator has to be a branch inst! 8544 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8545 assert(BI && "Unexpected terminator found"); 8546 8547 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8548 return EdgeMaskCache[Edge] = SrcMask; 8549 8550 // If source is an exiting block, we know the exit edge is dynamically dead 8551 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8552 // adding uses of an otherwise potentially dead instruction. 8553 if (OrigLoop->isLoopExiting(Src)) 8554 return EdgeMaskCache[Edge] = SrcMask; 8555 8556 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8557 assert(EdgeMask && "No Edge Mask found for condition"); 8558 8559 if (BI->getSuccessor(0) != Dst) 8560 EdgeMask = Builder.createNot(EdgeMask); 8561 8562 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8563 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8564 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8565 // The select version does not introduce new UB if SrcMask is false and 8566 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8567 VPValue *False = Plan->getOrAddVPValue( 8568 ConstantInt::getFalse(BI->getCondition()->getType())); 8569 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8570 } 8571 8572 return EdgeMaskCache[Edge] = EdgeMask; 8573 } 8574 8575 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8576 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8577 8578 // Look for cached value. 8579 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8580 if (BCEntryIt != BlockMaskCache.end()) 8581 return BCEntryIt->second; 8582 8583 // All-one mask is modelled as no-mask following the convention for masked 8584 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8585 VPValue *BlockMask = nullptr; 8586 8587 if (OrigLoop->getHeader() == BB) { 8588 if (!CM.blockNeedsPredication(BB)) 8589 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8590 8591 // Create the block in mask as the first non-phi instruction in the block. 8592 VPBuilder::InsertPointGuard Guard(Builder); 8593 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8594 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8595 8596 // Introduce the early-exit compare IV <= BTC to form header block mask. 8597 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8598 // Start by constructing the desired canonical IV. 8599 VPValue *IV = nullptr; 8600 if (Legal->getPrimaryInduction()) 8601 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8602 else { 8603 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8604 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8605 IV = IVRecipe->getVPSingleValue(); 8606 } 8607 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8608 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8609 8610 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8611 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8612 // as a second argument, we only pass the IV here and extract the 8613 // tripcount from the transform state where codegen of the VP instructions 8614 // happen. 8615 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8616 } else { 8617 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8618 } 8619 return BlockMaskCache[BB] = BlockMask; 8620 } 8621 8622 // This is the block mask. We OR all incoming edges. 8623 for (auto *Predecessor : predecessors(BB)) { 8624 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8625 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8626 return BlockMaskCache[BB] = EdgeMask; 8627 8628 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8629 BlockMask = EdgeMask; 8630 continue; 8631 } 8632 8633 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8634 } 8635 8636 return BlockMaskCache[BB] = BlockMask; 8637 } 8638 8639 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8640 ArrayRef<VPValue *> Operands, 8641 VFRange &Range, 8642 VPlanPtr &Plan) { 8643 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8644 "Must be called with either a load or store"); 8645 8646 auto willWiden = [&](ElementCount VF) -> bool { 8647 if (VF.isScalar()) 8648 return false; 8649 LoopVectorizationCostModel::InstWidening Decision = 8650 CM.getWideningDecision(I, VF); 8651 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8652 "CM decision should be taken at this point."); 8653 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8654 return true; 8655 if (CM.isScalarAfterVectorization(I, VF) || 8656 CM.isProfitableToScalarize(I, VF)) 8657 return false; 8658 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8659 }; 8660 8661 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8662 return nullptr; 8663 8664 VPValue *Mask = nullptr; 8665 if (Legal->isMaskRequired(I)) 8666 Mask = createBlockInMask(I->getParent(), Plan); 8667 8668 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8669 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8670 8671 StoreInst *Store = cast<StoreInst>(I); 8672 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8673 Mask); 8674 } 8675 8676 VPWidenIntOrFpInductionRecipe * 8677 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8678 ArrayRef<VPValue *> Operands) const { 8679 // Check if this is an integer or fp induction. If so, build the recipe that 8680 // produces its scalar and vector values. 8681 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8682 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8683 II.getKind() == InductionDescriptor::IK_FpInduction) { 8684 assert(II.getStartValue() == 8685 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8686 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8687 return new VPWidenIntOrFpInductionRecipe( 8688 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8689 } 8690 8691 return nullptr; 8692 } 8693 8694 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8695 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8696 VPlan &Plan) const { 8697 // Optimize the special case where the source is a constant integer 8698 // induction variable. Notice that we can only optimize the 'trunc' case 8699 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8700 // (c) other casts depend on pointer size. 8701 8702 // Determine whether \p K is a truncation based on an induction variable that 8703 // can be optimized. 8704 auto isOptimizableIVTruncate = 8705 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8706 return [=](ElementCount VF) -> bool { 8707 return CM.isOptimizableIVTruncate(K, VF); 8708 }; 8709 }; 8710 8711 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8712 isOptimizableIVTruncate(I), Range)) { 8713 8714 InductionDescriptor II = 8715 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8716 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8717 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8718 Start, nullptr, I); 8719 } 8720 return nullptr; 8721 } 8722 8723 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8724 ArrayRef<VPValue *> Operands, 8725 VPlanPtr &Plan) { 8726 // If all incoming values are equal, the incoming VPValue can be used directly 8727 // instead of creating a new VPBlendRecipe. 8728 VPValue *FirstIncoming = Operands[0]; 8729 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8730 return FirstIncoming == Inc; 8731 })) { 8732 return Operands[0]; 8733 } 8734 8735 // We know that all PHIs in non-header blocks are converted into selects, so 8736 // we don't have to worry about the insertion order and we can just use the 8737 // builder. At this point we generate the predication tree. There may be 8738 // duplications since this is a simple recursive scan, but future 8739 // optimizations will clean it up. 8740 SmallVector<VPValue *, 2> OperandsWithMask; 8741 unsigned NumIncoming = Phi->getNumIncomingValues(); 8742 8743 for (unsigned In = 0; In < NumIncoming; In++) { 8744 VPValue *EdgeMask = 8745 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8746 assert((EdgeMask || NumIncoming == 1) && 8747 "Multiple predecessors with one having a full mask"); 8748 OperandsWithMask.push_back(Operands[In]); 8749 if (EdgeMask) 8750 OperandsWithMask.push_back(EdgeMask); 8751 } 8752 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8753 } 8754 8755 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8756 ArrayRef<VPValue *> Operands, 8757 VFRange &Range) const { 8758 8759 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8760 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8761 Range); 8762 8763 if (IsPredicated) 8764 return nullptr; 8765 8766 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8767 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8768 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8769 ID == Intrinsic::pseudoprobe || 8770 ID == Intrinsic::experimental_noalias_scope_decl)) 8771 return nullptr; 8772 8773 auto willWiden = [&](ElementCount VF) -> bool { 8774 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8775 // The following case may be scalarized depending on the VF. 8776 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8777 // version of the instruction. 8778 // Is it beneficial to perform intrinsic call compared to lib call? 8779 bool NeedToScalarize = false; 8780 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8781 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8782 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8783 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8784 "Either the intrinsic cost or vector call cost must be valid"); 8785 return UseVectorIntrinsic || !NeedToScalarize; 8786 }; 8787 8788 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8789 return nullptr; 8790 8791 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8792 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8793 } 8794 8795 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8796 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8797 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8798 // Instruction should be widened, unless it is scalar after vectorization, 8799 // scalarization is profitable or it is predicated. 8800 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8801 return CM.isScalarAfterVectorization(I, VF) || 8802 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8803 }; 8804 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8805 Range); 8806 } 8807 8808 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8809 ArrayRef<VPValue *> Operands) const { 8810 auto IsVectorizableOpcode = [](unsigned Opcode) { 8811 switch (Opcode) { 8812 case Instruction::Add: 8813 case Instruction::And: 8814 case Instruction::AShr: 8815 case Instruction::BitCast: 8816 case Instruction::FAdd: 8817 case Instruction::FCmp: 8818 case Instruction::FDiv: 8819 case Instruction::FMul: 8820 case Instruction::FNeg: 8821 case Instruction::FPExt: 8822 case Instruction::FPToSI: 8823 case Instruction::FPToUI: 8824 case Instruction::FPTrunc: 8825 case Instruction::FRem: 8826 case Instruction::FSub: 8827 case Instruction::ICmp: 8828 case Instruction::IntToPtr: 8829 case Instruction::LShr: 8830 case Instruction::Mul: 8831 case Instruction::Or: 8832 case Instruction::PtrToInt: 8833 case Instruction::SDiv: 8834 case Instruction::Select: 8835 case Instruction::SExt: 8836 case Instruction::Shl: 8837 case Instruction::SIToFP: 8838 case Instruction::SRem: 8839 case Instruction::Sub: 8840 case Instruction::Trunc: 8841 case Instruction::UDiv: 8842 case Instruction::UIToFP: 8843 case Instruction::URem: 8844 case Instruction::Xor: 8845 case Instruction::ZExt: 8846 return true; 8847 } 8848 return false; 8849 }; 8850 8851 if (!IsVectorizableOpcode(I->getOpcode())) 8852 return nullptr; 8853 8854 // Success: widen this instruction. 8855 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8856 } 8857 8858 void VPRecipeBuilder::fixHeaderPhis() { 8859 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8860 for (VPWidenPHIRecipe *R : PhisToFix) { 8861 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8862 VPRecipeBase *IncR = 8863 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8864 R->addOperand(IncR->getVPSingleValue()); 8865 } 8866 } 8867 8868 VPBasicBlock *VPRecipeBuilder::handleReplication( 8869 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8870 VPlanPtr &Plan) { 8871 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8872 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8873 Range); 8874 8875 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8876 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8877 8878 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8879 IsUniform, IsPredicated); 8880 setRecipe(I, Recipe); 8881 Plan->addVPValue(I, Recipe); 8882 8883 // Find if I uses a predicated instruction. If so, it will use its scalar 8884 // value. Avoid hoisting the insert-element which packs the scalar value into 8885 // a vector value, as that happens iff all users use the vector value. 8886 for (VPValue *Op : Recipe->operands()) { 8887 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8888 if (!PredR) 8889 continue; 8890 auto *RepR = 8891 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8892 assert(RepR->isPredicated() && 8893 "expected Replicate recipe to be predicated"); 8894 RepR->setAlsoPack(false); 8895 } 8896 8897 // Finalize the recipe for Instr, first if it is not predicated. 8898 if (!IsPredicated) { 8899 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8900 VPBB->appendRecipe(Recipe); 8901 return VPBB; 8902 } 8903 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8904 assert(VPBB->getSuccessors().empty() && 8905 "VPBB has successors when handling predicated replication."); 8906 // Record predicated instructions for above packing optimizations. 8907 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8908 VPBlockUtils::insertBlockAfter(Region, VPBB); 8909 auto *RegSucc = new VPBasicBlock(); 8910 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8911 return RegSucc; 8912 } 8913 8914 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8915 VPRecipeBase *PredRecipe, 8916 VPlanPtr &Plan) { 8917 // Instructions marked for predication are replicated and placed under an 8918 // if-then construct to prevent side-effects. 8919 8920 // Generate recipes to compute the block mask for this region. 8921 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8922 8923 // Build the triangular if-then region. 8924 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8925 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8926 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8927 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8928 auto *PHIRecipe = Instr->getType()->isVoidTy() 8929 ? nullptr 8930 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8931 if (PHIRecipe) { 8932 Plan->removeVPValueFor(Instr); 8933 Plan->addVPValue(Instr, PHIRecipe); 8934 } 8935 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8936 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8937 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8938 8939 // Note: first set Entry as region entry and then connect successors starting 8940 // from it in order, to propagate the "parent" of each VPBasicBlock. 8941 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8942 VPBlockUtils::connectBlocks(Pred, Exit); 8943 8944 return Region; 8945 } 8946 8947 VPRecipeOrVPValueTy 8948 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8949 ArrayRef<VPValue *> Operands, 8950 VFRange &Range, VPlanPtr &Plan) { 8951 // First, check for specific widening recipes that deal with calls, memory 8952 // operations, inductions and Phi nodes. 8953 if (auto *CI = dyn_cast<CallInst>(Instr)) 8954 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8955 8956 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8957 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8958 8959 VPRecipeBase *Recipe; 8960 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8961 if (Phi->getParent() != OrigLoop->getHeader()) 8962 return tryToBlend(Phi, Operands, Plan); 8963 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8964 return toVPRecipeResult(Recipe); 8965 8966 if (Legal->isReductionVariable(Phi)) { 8967 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8968 assert(RdxDesc.getRecurrenceStartValue() == 8969 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8970 VPValue *StartV = Operands[0]; 8971 8972 auto *PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8973 PhisToFix.push_back(PhiRecipe); 8974 // Record the incoming value from the backedge, so we can add the incoming 8975 // value from the backedge after all recipes have been created. 8976 recordRecipeOf(cast<Instruction>( 8977 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8978 return toVPRecipeResult(PhiRecipe); 8979 } 8980 8981 return toVPRecipeResult(new VPWidenPHIRecipe(Phi)); 8982 } 8983 8984 if (isa<TruncInst>(Instr) && 8985 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8986 Range, *Plan))) 8987 return toVPRecipeResult(Recipe); 8988 8989 if (!shouldWiden(Instr, Range)) 8990 return nullptr; 8991 8992 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8993 return toVPRecipeResult(new VPWidenGEPRecipe( 8994 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8995 8996 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8997 bool InvariantCond = 8998 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8999 return toVPRecipeResult(new VPWidenSelectRecipe( 9000 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9001 } 9002 9003 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9004 } 9005 9006 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9007 ElementCount MaxVF) { 9008 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9009 9010 // Collect instructions from the original loop that will become trivially dead 9011 // in the vectorized loop. We don't need to vectorize these instructions. For 9012 // example, original induction update instructions can become dead because we 9013 // separately emit induction "steps" when generating code for the new loop. 9014 // Similarly, we create a new latch condition when setting up the structure 9015 // of the new loop, so the old one can become dead. 9016 SmallPtrSet<Instruction *, 4> DeadInstructions; 9017 collectTriviallyDeadInstructions(DeadInstructions); 9018 9019 // Add assume instructions we need to drop to DeadInstructions, to prevent 9020 // them from being added to the VPlan. 9021 // TODO: We only need to drop assumes in blocks that get flattend. If the 9022 // control flow is preserved, we should keep them. 9023 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9024 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9025 9026 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9027 // Dead instructions do not need sinking. Remove them from SinkAfter. 9028 for (Instruction *I : DeadInstructions) 9029 SinkAfter.erase(I); 9030 9031 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9032 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9033 VFRange SubRange = {VF, MaxVFPlusOne}; 9034 VPlans.push_back( 9035 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9036 VF = SubRange.End; 9037 } 9038 } 9039 9040 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9041 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9042 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9043 9044 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9045 9046 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9047 9048 // --------------------------------------------------------------------------- 9049 // Pre-construction: record ingredients whose recipes we'll need to further 9050 // process after constructing the initial VPlan. 9051 // --------------------------------------------------------------------------- 9052 9053 // Mark instructions we'll need to sink later and their targets as 9054 // ingredients whose recipe we'll need to record. 9055 for (auto &Entry : SinkAfter) { 9056 RecipeBuilder.recordRecipeOf(Entry.first); 9057 RecipeBuilder.recordRecipeOf(Entry.second); 9058 } 9059 for (auto &Reduction : CM.getInLoopReductionChains()) { 9060 PHINode *Phi = Reduction.first; 9061 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9062 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9063 9064 RecipeBuilder.recordRecipeOf(Phi); 9065 for (auto &R : ReductionOperations) { 9066 RecipeBuilder.recordRecipeOf(R); 9067 // For min/max reducitons, where we have a pair of icmp/select, we also 9068 // need to record the ICmp recipe, so it can be removed later. 9069 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9070 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9071 } 9072 } 9073 9074 // For each interleave group which is relevant for this (possibly trimmed) 9075 // Range, add it to the set of groups to be later applied to the VPlan and add 9076 // placeholders for its members' Recipes which we'll be replacing with a 9077 // single VPInterleaveRecipe. 9078 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9079 auto applyIG = [IG, this](ElementCount VF) -> bool { 9080 return (VF.isVector() && // Query is illegal for VF == 1 9081 CM.getWideningDecision(IG->getInsertPos(), VF) == 9082 LoopVectorizationCostModel::CM_Interleave); 9083 }; 9084 if (!getDecisionAndClampRange(applyIG, Range)) 9085 continue; 9086 InterleaveGroups.insert(IG); 9087 for (unsigned i = 0; i < IG->getFactor(); i++) 9088 if (Instruction *Member = IG->getMember(i)) 9089 RecipeBuilder.recordRecipeOf(Member); 9090 }; 9091 9092 // --------------------------------------------------------------------------- 9093 // Build initial VPlan: Scan the body of the loop in a topological order to 9094 // visit each basic block after having visited its predecessor basic blocks. 9095 // --------------------------------------------------------------------------- 9096 9097 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9098 auto Plan = std::make_unique<VPlan>(); 9099 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9100 Plan->setEntry(VPBB); 9101 9102 // Scan the body of the loop in a topological order to visit each basic block 9103 // after having visited its predecessor basic blocks. 9104 LoopBlocksDFS DFS(OrigLoop); 9105 DFS.perform(LI); 9106 9107 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9108 // Relevant instructions from basic block BB will be grouped into VPRecipe 9109 // ingredients and fill a new VPBasicBlock. 9110 unsigned VPBBsForBB = 0; 9111 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9112 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9113 VPBB = FirstVPBBForBB; 9114 Builder.setInsertPoint(VPBB); 9115 9116 // Introduce each ingredient into VPlan. 9117 // TODO: Model and preserve debug instrinsics in VPlan. 9118 for (Instruction &I : BB->instructionsWithoutDebug()) { 9119 Instruction *Instr = &I; 9120 9121 // First filter out irrelevant instructions, to ensure no recipes are 9122 // built for them. 9123 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9124 continue; 9125 9126 SmallVector<VPValue *, 4> Operands; 9127 auto *Phi = dyn_cast<PHINode>(Instr); 9128 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9129 Operands.push_back(Plan->getOrAddVPValue( 9130 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9131 } else { 9132 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9133 Operands = {OpRange.begin(), OpRange.end()}; 9134 } 9135 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9136 Instr, Operands, Range, Plan)) { 9137 // If Instr can be simplified to an existing VPValue, use it. 9138 if (RecipeOrValue.is<VPValue *>()) { 9139 auto *VPV = RecipeOrValue.get<VPValue *>(); 9140 Plan->addVPValue(Instr, VPV); 9141 // If the re-used value is a recipe, register the recipe for the 9142 // instruction, in case the recipe for Instr needs to be recorded. 9143 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9144 RecipeBuilder.setRecipe(Instr, R); 9145 continue; 9146 } 9147 // Otherwise, add the new recipe. 9148 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9149 for (auto *Def : Recipe->definedValues()) { 9150 auto *UV = Def->getUnderlyingValue(); 9151 Plan->addVPValue(UV, Def); 9152 } 9153 9154 RecipeBuilder.setRecipe(Instr, Recipe); 9155 VPBB->appendRecipe(Recipe); 9156 continue; 9157 } 9158 9159 // Otherwise, if all widening options failed, Instruction is to be 9160 // replicated. This may create a successor for VPBB. 9161 VPBasicBlock *NextVPBB = 9162 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9163 if (NextVPBB != VPBB) { 9164 VPBB = NextVPBB; 9165 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9166 : ""); 9167 } 9168 } 9169 } 9170 9171 RecipeBuilder.fixHeaderPhis(); 9172 9173 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9174 // may also be empty, such as the last one VPBB, reflecting original 9175 // basic-blocks with no recipes. 9176 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9177 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9178 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9179 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9180 delete PreEntry; 9181 9182 // --------------------------------------------------------------------------- 9183 // Transform initial VPlan: Apply previously taken decisions, in order, to 9184 // bring the VPlan to its final state. 9185 // --------------------------------------------------------------------------- 9186 9187 // Apply Sink-After legal constraints. 9188 for (auto &Entry : SinkAfter) { 9189 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9190 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9191 9192 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9193 auto *Region = 9194 dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9195 if (Region && Region->isReplicator()) { 9196 assert(Region->getNumSuccessors() == 1 && 9197 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9198 assert(R->getParent()->size() == 1 && 9199 "A recipe in an original replicator region must be the only " 9200 "recipe in its block"); 9201 return Region; 9202 } 9203 return nullptr; 9204 }; 9205 auto *TargetRegion = GetReplicateRegion(Target); 9206 auto *SinkRegion = GetReplicateRegion(Sink); 9207 if (!SinkRegion) { 9208 // If the sink source is not a replicate region, sink the recipe directly. 9209 if (TargetRegion) { 9210 // The target is in a replication region, make sure to move Sink to 9211 // the block after it, not into the replication region itself. 9212 VPBasicBlock *NextBlock = 9213 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9214 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9215 } else 9216 Sink->moveAfter(Target); 9217 continue; 9218 } 9219 9220 // The sink source is in a replicate region. Unhook the region from the CFG. 9221 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9222 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9223 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9224 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9225 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9226 9227 if (TargetRegion) { 9228 // The target recipe is also in a replicate region, move the sink region 9229 // after the target region. 9230 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9231 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9232 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9233 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9234 } else { 9235 // The sink source is in a replicate region, we need to move the whole 9236 // replicate region, which should only contain a single recipe in the main 9237 // block. 9238 auto *SplitBlock = 9239 Target->getParent()->splitAt(std::next(Target->getIterator())); 9240 9241 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9242 9243 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9244 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9245 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9246 if (VPBB == SplitPred) 9247 VPBB = SplitBlock; 9248 } 9249 } 9250 9251 // Interleave memory: for each Interleave Group we marked earlier as relevant 9252 // for this VPlan, replace the Recipes widening its memory instructions with a 9253 // single VPInterleaveRecipe at its insertion point. 9254 for (auto IG : InterleaveGroups) { 9255 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9256 RecipeBuilder.getRecipe(IG->getInsertPos())); 9257 SmallVector<VPValue *, 4> StoredValues; 9258 for (unsigned i = 0; i < IG->getFactor(); ++i) 9259 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9260 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9261 9262 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9263 Recipe->getMask()); 9264 VPIG->insertBefore(Recipe); 9265 unsigned J = 0; 9266 for (unsigned i = 0; i < IG->getFactor(); ++i) 9267 if (Instruction *Member = IG->getMember(i)) { 9268 if (!Member->getType()->isVoidTy()) { 9269 VPValue *OriginalV = Plan->getVPValue(Member); 9270 Plan->removeVPValueFor(Member); 9271 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9272 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9273 J++; 9274 } 9275 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9276 } 9277 } 9278 9279 // Adjust the recipes for any inloop reductions. 9280 if (Range.Start.isVector()) 9281 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 9282 9283 // Finally, if tail is folded by masking, introduce selects between the phi 9284 // and the live-out instruction of each reduction, at the end of the latch. 9285 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9286 Builder.setInsertPoint(VPBB); 9287 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9288 for (auto &Reduction : Legal->getReductionVars()) { 9289 if (CM.isInLoopReduction(Reduction.first)) 9290 continue; 9291 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9292 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9293 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9294 } 9295 } 9296 9297 VPlanTransforms::sinkScalarOperands(*Plan); 9298 9299 std::string PlanName; 9300 raw_string_ostream RSO(PlanName); 9301 ElementCount VF = Range.Start; 9302 Plan->addVF(VF); 9303 RSO << "Initial VPlan for VF={" << VF; 9304 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9305 Plan->addVF(VF); 9306 RSO << "," << VF; 9307 } 9308 RSO << "},UF>=1"; 9309 RSO.flush(); 9310 Plan->setName(PlanName); 9311 9312 return Plan; 9313 } 9314 9315 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9316 // Outer loop handling: They may require CFG and instruction level 9317 // transformations before even evaluating whether vectorization is profitable. 9318 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9319 // the vectorization pipeline. 9320 assert(!OrigLoop->isInnermost()); 9321 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9322 9323 // Create new empty VPlan 9324 auto Plan = std::make_unique<VPlan>(); 9325 9326 // Build hierarchical CFG 9327 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9328 HCFGBuilder.buildHierarchicalCFG(); 9329 9330 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9331 VF *= 2) 9332 Plan->addVF(VF); 9333 9334 if (EnableVPlanPredication) { 9335 VPlanPredicator VPP(*Plan); 9336 VPP.predicate(); 9337 9338 // Avoid running transformation to recipes until masked code generation in 9339 // VPlan-native path is in place. 9340 return Plan; 9341 } 9342 9343 SmallPtrSet<Instruction *, 1> DeadInstructions; 9344 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9345 Legal->getInductionVars(), 9346 DeadInstructions, *PSE.getSE()); 9347 return Plan; 9348 } 9349 9350 // Adjust the recipes for any inloop reductions. The chain of instructions 9351 // leading from the loop exit instr to the phi need to be converted to 9352 // reductions, with one operand being vector and the other being the scalar 9353 // reduction chain. 9354 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9355 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 9356 for (auto &Reduction : CM.getInLoopReductionChains()) { 9357 PHINode *Phi = Reduction.first; 9358 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9359 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9360 9361 // ReductionOperations are orders top-down from the phi's use to the 9362 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9363 // which of the two operands will remain scalar and which will be reduced. 9364 // For minmax the chain will be the select instructions. 9365 Instruction *Chain = Phi; 9366 for (Instruction *R : ReductionOperations) { 9367 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9368 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9369 9370 VPValue *ChainOp = Plan->getVPValue(Chain); 9371 unsigned FirstOpId; 9372 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9373 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9374 "Expected to replace a VPWidenSelectSC"); 9375 FirstOpId = 1; 9376 } else { 9377 assert(isa<VPWidenRecipe>(WidenRecipe) && 9378 "Expected to replace a VPWidenSC"); 9379 FirstOpId = 0; 9380 } 9381 unsigned VecOpId = 9382 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9383 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9384 9385 auto *CondOp = CM.foldTailByMasking() 9386 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9387 : nullptr; 9388 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9389 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9390 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9391 Plan->removeVPValueFor(R); 9392 Plan->addVPValue(R, RedRecipe); 9393 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9394 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9395 WidenRecipe->eraseFromParent(); 9396 9397 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9398 VPRecipeBase *CompareRecipe = 9399 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9400 assert(isa<VPWidenRecipe>(CompareRecipe) && 9401 "Expected to replace a VPWidenSC"); 9402 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9403 "Expected no remaining users"); 9404 CompareRecipe->eraseFromParent(); 9405 } 9406 Chain = R; 9407 } 9408 } 9409 } 9410 9411 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9412 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9413 VPSlotTracker &SlotTracker) const { 9414 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9415 IG->getInsertPos()->printAsOperand(O, false); 9416 O << ", "; 9417 getAddr()->printAsOperand(O, SlotTracker); 9418 VPValue *Mask = getMask(); 9419 if (Mask) { 9420 O << ", "; 9421 Mask->printAsOperand(O, SlotTracker); 9422 } 9423 for (unsigned i = 0; i < IG->getFactor(); ++i) 9424 if (Instruction *I = IG->getMember(i)) 9425 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9426 } 9427 #endif 9428 9429 void VPWidenCallRecipe::execute(VPTransformState &State) { 9430 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9431 *this, State); 9432 } 9433 9434 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9435 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9436 this, *this, InvariantCond, State); 9437 } 9438 9439 void VPWidenRecipe::execute(VPTransformState &State) { 9440 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9441 } 9442 9443 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9444 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9445 *this, State.UF, State.VF, IsPtrLoopInvariant, 9446 IsIndexLoopInvariant, State); 9447 } 9448 9449 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9450 assert(!State.Instance && "Int or FP induction being replicated."); 9451 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9452 getTruncInst(), getVPValue(0), 9453 getCastValue(), State); 9454 } 9455 9456 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9457 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9458 this, State); 9459 } 9460 9461 void VPBlendRecipe::execute(VPTransformState &State) { 9462 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9463 // We know that all PHIs in non-header blocks are converted into 9464 // selects, so we don't have to worry about the insertion order and we 9465 // can just use the builder. 9466 // At this point we generate the predication tree. There may be 9467 // duplications since this is a simple recursive scan, but future 9468 // optimizations will clean it up. 9469 9470 unsigned NumIncoming = getNumIncomingValues(); 9471 9472 // Generate a sequence of selects of the form: 9473 // SELECT(Mask3, In3, 9474 // SELECT(Mask2, In2, 9475 // SELECT(Mask1, In1, 9476 // In0))) 9477 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9478 // are essentially undef are taken from In0. 9479 InnerLoopVectorizer::VectorParts Entry(State.UF); 9480 for (unsigned In = 0; In < NumIncoming; ++In) { 9481 for (unsigned Part = 0; Part < State.UF; ++Part) { 9482 // We might have single edge PHIs (blocks) - use an identity 9483 // 'select' for the first PHI operand. 9484 Value *In0 = State.get(getIncomingValue(In), Part); 9485 if (In == 0) 9486 Entry[Part] = In0; // Initialize with the first incoming value. 9487 else { 9488 // Select between the current value and the previous incoming edge 9489 // based on the incoming mask. 9490 Value *Cond = State.get(getMask(In), Part); 9491 Entry[Part] = 9492 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9493 } 9494 } 9495 } 9496 for (unsigned Part = 0; Part < State.UF; ++Part) 9497 State.set(this, Entry[Part], Part); 9498 } 9499 9500 void VPInterleaveRecipe::execute(VPTransformState &State) { 9501 assert(!State.Instance && "Interleave group being replicated."); 9502 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9503 getStoredValues(), getMask()); 9504 } 9505 9506 void VPReductionRecipe::execute(VPTransformState &State) { 9507 assert(!State.Instance && "Reduction being replicated."); 9508 Value *PrevInChain = State.get(getChainOp(), 0); 9509 for (unsigned Part = 0; Part < State.UF; ++Part) { 9510 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9511 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9512 Value *NewVecOp = State.get(getVecOp(), Part); 9513 if (VPValue *Cond = getCondOp()) { 9514 Value *NewCond = State.get(Cond, Part); 9515 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9516 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9517 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9518 Constant *IdenVec = 9519 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9520 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9521 NewVecOp = Select; 9522 } 9523 Value *NewRed; 9524 Value *NextInChain; 9525 if (IsOrdered) { 9526 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9527 PrevInChain); 9528 PrevInChain = NewRed; 9529 } else { 9530 PrevInChain = State.get(getChainOp(), Part); 9531 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9532 } 9533 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9534 NextInChain = 9535 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9536 NewRed, PrevInChain); 9537 } else if (IsOrdered) 9538 NextInChain = NewRed; 9539 else { 9540 NextInChain = State.Builder.CreateBinOp( 9541 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9542 PrevInChain); 9543 } 9544 State.set(this, NextInChain, Part); 9545 } 9546 } 9547 9548 void VPReplicateRecipe::execute(VPTransformState &State) { 9549 if (State.Instance) { // Generate a single instance. 9550 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9551 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9552 *State.Instance, IsPredicated, State); 9553 // Insert scalar instance packing it into a vector. 9554 if (AlsoPack && State.VF.isVector()) { 9555 // If we're constructing lane 0, initialize to start from poison. 9556 if (State.Instance->Lane.isFirstLane()) { 9557 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9558 Value *Poison = PoisonValue::get( 9559 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9560 State.set(this, Poison, State.Instance->Part); 9561 } 9562 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9563 } 9564 return; 9565 } 9566 9567 // Generate scalar instances for all VF lanes of all UF parts, unless the 9568 // instruction is uniform inwhich case generate only the first lane for each 9569 // of the UF parts. 9570 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9571 assert((!State.VF.isScalable() || IsUniform) && 9572 "Can't scalarize a scalable vector"); 9573 for (unsigned Part = 0; Part < State.UF; ++Part) 9574 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9575 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9576 VPIteration(Part, Lane), IsPredicated, 9577 State); 9578 } 9579 9580 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9581 assert(State.Instance && "Branch on Mask works only on single instance."); 9582 9583 unsigned Part = State.Instance->Part; 9584 unsigned Lane = State.Instance->Lane.getKnownLane(); 9585 9586 Value *ConditionBit = nullptr; 9587 VPValue *BlockInMask = getMask(); 9588 if (BlockInMask) { 9589 ConditionBit = State.get(BlockInMask, Part); 9590 if (ConditionBit->getType()->isVectorTy()) 9591 ConditionBit = State.Builder.CreateExtractElement( 9592 ConditionBit, State.Builder.getInt32(Lane)); 9593 } else // Block in mask is all-one. 9594 ConditionBit = State.Builder.getTrue(); 9595 9596 // Replace the temporary unreachable terminator with a new conditional branch, 9597 // whose two destinations will be set later when they are created. 9598 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9599 assert(isa<UnreachableInst>(CurrentTerminator) && 9600 "Expected to replace unreachable terminator with conditional branch."); 9601 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9602 CondBr->setSuccessor(0, nullptr); 9603 ReplaceInstWithInst(CurrentTerminator, CondBr); 9604 } 9605 9606 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9607 assert(State.Instance && "Predicated instruction PHI works per instance."); 9608 Instruction *ScalarPredInst = 9609 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9610 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9611 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9612 assert(PredicatingBB && "Predicated block has no single predecessor."); 9613 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9614 "operand must be VPReplicateRecipe"); 9615 9616 // By current pack/unpack logic we need to generate only a single phi node: if 9617 // a vector value for the predicated instruction exists at this point it means 9618 // the instruction has vector users only, and a phi for the vector value is 9619 // needed. In this case the recipe of the predicated instruction is marked to 9620 // also do that packing, thereby "hoisting" the insert-element sequence. 9621 // Otherwise, a phi node for the scalar value is needed. 9622 unsigned Part = State.Instance->Part; 9623 if (State.hasVectorValue(getOperand(0), Part)) { 9624 Value *VectorValue = State.get(getOperand(0), Part); 9625 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9626 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9627 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9628 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9629 if (State.hasVectorValue(this, Part)) 9630 State.reset(this, VPhi, Part); 9631 else 9632 State.set(this, VPhi, Part); 9633 // NOTE: Currently we need to update the value of the operand, so the next 9634 // predicated iteration inserts its generated value in the correct vector. 9635 State.reset(getOperand(0), VPhi, Part); 9636 } else { 9637 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9638 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9639 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9640 PredicatingBB); 9641 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9642 if (State.hasScalarValue(this, *State.Instance)) 9643 State.reset(this, Phi, *State.Instance); 9644 else 9645 State.set(this, Phi, *State.Instance); 9646 // NOTE: Currently we need to update the value of the operand, so the next 9647 // predicated iteration inserts its generated value in the correct vector. 9648 State.reset(getOperand(0), Phi, *State.Instance); 9649 } 9650 } 9651 9652 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9653 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9654 State.ILV->vectorizeMemoryInstruction( 9655 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9656 StoredValue, getMask()); 9657 } 9658 9659 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9660 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9661 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9662 // for predication. 9663 static ScalarEpilogueLowering getScalarEpilogueLowering( 9664 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9665 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9666 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9667 LoopVectorizationLegality &LVL) { 9668 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9669 // don't look at hints or options, and don't request a scalar epilogue. 9670 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9671 // LoopAccessInfo (due to code dependency and not being able to reliably get 9672 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9673 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9674 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9675 // back to the old way and vectorize with versioning when forced. See D81345.) 9676 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9677 PGSOQueryType::IRPass) && 9678 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9679 return CM_ScalarEpilogueNotAllowedOptSize; 9680 9681 // 2) If set, obey the directives 9682 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9683 switch (PreferPredicateOverEpilogue) { 9684 case PreferPredicateTy::ScalarEpilogue: 9685 return CM_ScalarEpilogueAllowed; 9686 case PreferPredicateTy::PredicateElseScalarEpilogue: 9687 return CM_ScalarEpilogueNotNeededUsePredicate; 9688 case PreferPredicateTy::PredicateOrDontVectorize: 9689 return CM_ScalarEpilogueNotAllowedUsePredicate; 9690 }; 9691 } 9692 9693 // 3) If set, obey the hints 9694 switch (Hints.getPredicate()) { 9695 case LoopVectorizeHints::FK_Enabled: 9696 return CM_ScalarEpilogueNotNeededUsePredicate; 9697 case LoopVectorizeHints::FK_Disabled: 9698 return CM_ScalarEpilogueAllowed; 9699 }; 9700 9701 // 4) if the TTI hook indicates this is profitable, request predication. 9702 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9703 LVL.getLAI())) 9704 return CM_ScalarEpilogueNotNeededUsePredicate; 9705 9706 return CM_ScalarEpilogueAllowed; 9707 } 9708 9709 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9710 // If Values have been set for this Def return the one relevant for \p Part. 9711 if (hasVectorValue(Def, Part)) 9712 return Data.PerPartOutput[Def][Part]; 9713 9714 if (!hasScalarValue(Def, {Part, 0})) { 9715 Value *IRV = Def->getLiveInIRValue(); 9716 Value *B = ILV->getBroadcastInstrs(IRV); 9717 set(Def, B, Part); 9718 return B; 9719 } 9720 9721 Value *ScalarValue = get(Def, {Part, 0}); 9722 // If we aren't vectorizing, we can just copy the scalar map values over 9723 // to the vector map. 9724 if (VF.isScalar()) { 9725 set(Def, ScalarValue, Part); 9726 return ScalarValue; 9727 } 9728 9729 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9730 bool IsUniform = RepR && RepR->isUniform(); 9731 9732 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9733 // Check if there is a scalar value for the selected lane. 9734 if (!hasScalarValue(Def, {Part, LastLane})) { 9735 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9736 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9737 "unexpected recipe found to be invariant"); 9738 IsUniform = true; 9739 LastLane = 0; 9740 } 9741 9742 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9743 // Set the insert point after the last scalarized instruction or after the 9744 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9745 // will directly follow the scalar definitions. 9746 auto OldIP = Builder.saveIP(); 9747 auto NewIP = 9748 isa<PHINode>(LastInst) 9749 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9750 : std::next(BasicBlock::iterator(LastInst)); 9751 Builder.SetInsertPoint(&*NewIP); 9752 9753 // However, if we are vectorizing, we need to construct the vector values. 9754 // If the value is known to be uniform after vectorization, we can just 9755 // broadcast the scalar value corresponding to lane zero for each unroll 9756 // iteration. Otherwise, we construct the vector values using 9757 // insertelement instructions. Since the resulting vectors are stored in 9758 // State, we will only generate the insertelements once. 9759 Value *VectorValue = nullptr; 9760 if (IsUniform) { 9761 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9762 set(Def, VectorValue, Part); 9763 } else { 9764 // Initialize packing with insertelements to start from undef. 9765 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9766 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9767 set(Def, Undef, Part); 9768 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9769 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9770 VectorValue = get(Def, Part); 9771 } 9772 Builder.restoreIP(OldIP); 9773 return VectorValue; 9774 } 9775 9776 // Process the loop in the VPlan-native vectorization path. This path builds 9777 // VPlan upfront in the vectorization pipeline, which allows to apply 9778 // VPlan-to-VPlan transformations from the very beginning without modifying the 9779 // input LLVM IR. 9780 static bool processLoopInVPlanNativePath( 9781 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9782 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9783 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9784 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9785 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9786 LoopVectorizationRequirements &Requirements) { 9787 9788 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9789 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9790 return false; 9791 } 9792 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9793 Function *F = L->getHeader()->getParent(); 9794 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9795 9796 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9797 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9798 9799 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9800 &Hints, IAI); 9801 // Use the planner for outer loop vectorization. 9802 // TODO: CM is not used at this point inside the planner. Turn CM into an 9803 // optional argument if we don't need it in the future. 9804 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9805 Requirements, ORE); 9806 9807 // Get user vectorization factor. 9808 ElementCount UserVF = Hints.getWidth(); 9809 9810 // Plan how to best vectorize, return the best VF and its cost. 9811 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9812 9813 // If we are stress testing VPlan builds, do not attempt to generate vector 9814 // code. Masked vector code generation support will follow soon. 9815 // Also, do not attempt to vectorize if no vector code will be produced. 9816 if (VPlanBuildStressTest || EnableVPlanPredication || 9817 VectorizationFactor::Disabled() == VF) 9818 return false; 9819 9820 LVP.setBestPlan(VF.Width, 1); 9821 9822 { 9823 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9824 F->getParent()->getDataLayout()); 9825 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9826 &CM, BFI, PSI, Checks); 9827 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9828 << L->getHeader()->getParent()->getName() << "\"\n"); 9829 LVP.executePlan(LB, DT); 9830 } 9831 9832 // Mark the loop as already vectorized to avoid vectorizing again. 9833 Hints.setAlreadyVectorized(); 9834 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9835 return true; 9836 } 9837 9838 // Emit a remark if there are stores to floats that required a floating point 9839 // extension. If the vectorized loop was generated with floating point there 9840 // will be a performance penalty from the conversion overhead and the change in 9841 // the vector width. 9842 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9843 SmallVector<Instruction *, 4> Worklist; 9844 for (BasicBlock *BB : L->getBlocks()) { 9845 for (Instruction &Inst : *BB) { 9846 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9847 if (S->getValueOperand()->getType()->isFloatTy()) 9848 Worklist.push_back(S); 9849 } 9850 } 9851 } 9852 9853 // Traverse the floating point stores upwards searching, for floating point 9854 // conversions. 9855 SmallPtrSet<const Instruction *, 4> Visited; 9856 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9857 while (!Worklist.empty()) { 9858 auto *I = Worklist.pop_back_val(); 9859 if (!L->contains(I)) 9860 continue; 9861 if (!Visited.insert(I).second) 9862 continue; 9863 9864 // Emit a remark if the floating point store required a floating 9865 // point conversion. 9866 // TODO: More work could be done to identify the root cause such as a 9867 // constant or a function return type and point the user to it. 9868 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9869 ORE->emit([&]() { 9870 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9871 I->getDebugLoc(), L->getHeader()) 9872 << "floating point conversion changes vector width. " 9873 << "Mixed floating point precision requires an up/down " 9874 << "cast that will negatively impact performance."; 9875 }); 9876 9877 for (Use &Op : I->operands()) 9878 if (auto *OpI = dyn_cast<Instruction>(Op)) 9879 Worklist.push_back(OpI); 9880 } 9881 } 9882 9883 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9884 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9885 !EnableLoopInterleaving), 9886 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9887 !EnableLoopVectorization) {} 9888 9889 bool LoopVectorizePass::processLoop(Loop *L) { 9890 assert((EnableVPlanNativePath || L->isInnermost()) && 9891 "VPlan-native path is not enabled. Only process inner loops."); 9892 9893 #ifndef NDEBUG 9894 const std::string DebugLocStr = getDebugLocString(L); 9895 #endif /* NDEBUG */ 9896 9897 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9898 << L->getHeader()->getParent()->getName() << "\" from " 9899 << DebugLocStr << "\n"); 9900 9901 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9902 9903 LLVM_DEBUG( 9904 dbgs() << "LV: Loop hints:" 9905 << " force=" 9906 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9907 ? "disabled" 9908 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9909 ? "enabled" 9910 : "?")) 9911 << " width=" << Hints.getWidth() 9912 << " interleave=" << Hints.getInterleave() << "\n"); 9913 9914 // Function containing loop 9915 Function *F = L->getHeader()->getParent(); 9916 9917 // Looking at the diagnostic output is the only way to determine if a loop 9918 // was vectorized (other than looking at the IR or machine code), so it 9919 // is important to generate an optimization remark for each loop. Most of 9920 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9921 // generated as OptimizationRemark and OptimizationRemarkMissed are 9922 // less verbose reporting vectorized loops and unvectorized loops that may 9923 // benefit from vectorization, respectively. 9924 9925 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9926 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9927 return false; 9928 } 9929 9930 PredicatedScalarEvolution PSE(*SE, *L); 9931 9932 // Check if it is legal to vectorize the loop. 9933 LoopVectorizationRequirements Requirements; 9934 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9935 &Requirements, &Hints, DB, AC, BFI, PSI); 9936 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9937 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9938 Hints.emitRemarkWithHints(); 9939 return false; 9940 } 9941 9942 // Check the function attributes and profiles to find out if this function 9943 // should be optimized for size. 9944 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9945 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9946 9947 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9948 // here. They may require CFG and instruction level transformations before 9949 // even evaluating whether vectorization is profitable. Since we cannot modify 9950 // the incoming IR, we need to build VPlan upfront in the vectorization 9951 // pipeline. 9952 if (!L->isInnermost()) 9953 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9954 ORE, BFI, PSI, Hints, Requirements); 9955 9956 assert(L->isInnermost() && "Inner loop expected."); 9957 9958 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9959 // count by optimizing for size, to minimize overheads. 9960 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9961 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9962 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9963 << "This loop is worth vectorizing only if no scalar " 9964 << "iteration overheads are incurred."); 9965 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9966 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9967 else { 9968 LLVM_DEBUG(dbgs() << "\n"); 9969 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9970 } 9971 } 9972 9973 // Check the function attributes to see if implicit floats are allowed. 9974 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9975 // an integer loop and the vector instructions selected are purely integer 9976 // vector instructions? 9977 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9978 reportVectorizationFailure( 9979 "Can't vectorize when the NoImplicitFloat attribute is used", 9980 "loop not vectorized due to NoImplicitFloat attribute", 9981 "NoImplicitFloat", ORE, L); 9982 Hints.emitRemarkWithHints(); 9983 return false; 9984 } 9985 9986 // Check if the target supports potentially unsafe FP vectorization. 9987 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9988 // for the target we're vectorizing for, to make sure none of the 9989 // additional fp-math flags can help. 9990 if (Hints.isPotentiallyUnsafe() && 9991 TTI->isFPVectorizationPotentiallyUnsafe()) { 9992 reportVectorizationFailure( 9993 "Potentially unsafe FP op prevents vectorization", 9994 "loop not vectorized due to unsafe FP support.", 9995 "UnsafeFP", ORE, L); 9996 Hints.emitRemarkWithHints(); 9997 return false; 9998 } 9999 10000 if (!LVL.canVectorizeFPMath(EnableStrictReductions)) { 10001 ORE->emit([&]() { 10002 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10003 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10004 ExactFPMathInst->getDebugLoc(), 10005 ExactFPMathInst->getParent()) 10006 << "loop not vectorized: cannot prove it is safe to reorder " 10007 "floating-point operations"; 10008 }); 10009 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10010 "reorder floating-point operations\n"); 10011 Hints.emitRemarkWithHints(); 10012 return false; 10013 } 10014 10015 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10016 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10017 10018 // If an override option has been passed in for interleaved accesses, use it. 10019 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10020 UseInterleaved = EnableInterleavedMemAccesses; 10021 10022 // Analyze interleaved memory accesses. 10023 if (UseInterleaved) { 10024 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10025 } 10026 10027 // Use the cost model. 10028 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10029 F, &Hints, IAI); 10030 CM.collectValuesToIgnore(); 10031 10032 // Use the planner for vectorization. 10033 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10034 Requirements, ORE); 10035 10036 // Get user vectorization factor and interleave count. 10037 ElementCount UserVF = Hints.getWidth(); 10038 unsigned UserIC = Hints.getInterleave(); 10039 10040 // Plan how to best vectorize, return the best VF and its cost. 10041 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10042 10043 VectorizationFactor VF = VectorizationFactor::Disabled(); 10044 unsigned IC = 1; 10045 10046 if (MaybeVF) { 10047 VF = *MaybeVF; 10048 // Select the interleave count. 10049 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10050 } 10051 10052 // Identify the diagnostic messages that should be produced. 10053 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10054 bool VectorizeLoop = true, InterleaveLoop = true; 10055 if (VF.Width.isScalar()) { 10056 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10057 VecDiagMsg = std::make_pair( 10058 "VectorizationNotBeneficial", 10059 "the cost-model indicates that vectorization is not beneficial"); 10060 VectorizeLoop = false; 10061 } 10062 10063 if (!MaybeVF && UserIC > 1) { 10064 // Tell the user interleaving was avoided up-front, despite being explicitly 10065 // requested. 10066 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10067 "interleaving should be avoided up front\n"); 10068 IntDiagMsg = std::make_pair( 10069 "InterleavingAvoided", 10070 "Ignoring UserIC, because interleaving was avoided up front"); 10071 InterleaveLoop = false; 10072 } else if (IC == 1 && UserIC <= 1) { 10073 // Tell the user interleaving is not beneficial. 10074 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10075 IntDiagMsg = std::make_pair( 10076 "InterleavingNotBeneficial", 10077 "the cost-model indicates that interleaving is not beneficial"); 10078 InterleaveLoop = false; 10079 if (UserIC == 1) { 10080 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10081 IntDiagMsg.second += 10082 " and is explicitly disabled or interleave count is set to 1"; 10083 } 10084 } else if (IC > 1 && UserIC == 1) { 10085 // Tell the user interleaving is beneficial, but it explicitly disabled. 10086 LLVM_DEBUG( 10087 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10088 IntDiagMsg = std::make_pair( 10089 "InterleavingBeneficialButDisabled", 10090 "the cost-model indicates that interleaving is beneficial " 10091 "but is explicitly disabled or interleave count is set to 1"); 10092 InterleaveLoop = false; 10093 } 10094 10095 // Override IC if user provided an interleave count. 10096 IC = UserIC > 0 ? UserIC : IC; 10097 10098 // Emit diagnostic messages, if any. 10099 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10100 if (!VectorizeLoop && !InterleaveLoop) { 10101 // Do not vectorize or interleaving the loop. 10102 ORE->emit([&]() { 10103 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10104 L->getStartLoc(), L->getHeader()) 10105 << VecDiagMsg.second; 10106 }); 10107 ORE->emit([&]() { 10108 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10109 L->getStartLoc(), L->getHeader()) 10110 << IntDiagMsg.second; 10111 }); 10112 return false; 10113 } else if (!VectorizeLoop && InterleaveLoop) { 10114 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10115 ORE->emit([&]() { 10116 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10117 L->getStartLoc(), L->getHeader()) 10118 << VecDiagMsg.second; 10119 }); 10120 } else if (VectorizeLoop && !InterleaveLoop) { 10121 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10122 << ") in " << DebugLocStr << '\n'); 10123 ORE->emit([&]() { 10124 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10125 L->getStartLoc(), L->getHeader()) 10126 << IntDiagMsg.second; 10127 }); 10128 } else if (VectorizeLoop && InterleaveLoop) { 10129 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10130 << ") in " << DebugLocStr << '\n'); 10131 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10132 } 10133 10134 bool DisableRuntimeUnroll = false; 10135 MDNode *OrigLoopID = L->getLoopID(); 10136 { 10137 // Optimistically generate runtime checks. Drop them if they turn out to not 10138 // be profitable. Limit the scope of Checks, so the cleanup happens 10139 // immediately after vector codegeneration is done. 10140 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10141 F->getParent()->getDataLayout()); 10142 if (!VF.Width.isScalar() || IC > 1) 10143 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10144 LVP.setBestPlan(VF.Width, IC); 10145 10146 using namespace ore; 10147 if (!VectorizeLoop) { 10148 assert(IC > 1 && "interleave count should not be 1 or 0"); 10149 // If we decided that it is not legal to vectorize the loop, then 10150 // interleave it. 10151 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10152 &CM, BFI, PSI, Checks); 10153 LVP.executePlan(Unroller, DT); 10154 10155 ORE->emit([&]() { 10156 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10157 L->getHeader()) 10158 << "interleaved loop (interleaved count: " 10159 << NV("InterleaveCount", IC) << ")"; 10160 }); 10161 } else { 10162 // If we decided that it is *legal* to vectorize the loop, then do it. 10163 10164 // Consider vectorizing the epilogue too if it's profitable. 10165 VectorizationFactor EpilogueVF = 10166 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10167 if (EpilogueVF.Width.isVector()) { 10168 10169 // The first pass vectorizes the main loop and creates a scalar epilogue 10170 // to be vectorized by executing the plan (potentially with a different 10171 // factor) again shortly afterwards. 10172 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10173 EpilogueVF.Width.getKnownMinValue(), 10174 1); 10175 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10176 EPI, &LVL, &CM, BFI, PSI, Checks); 10177 10178 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10179 LVP.executePlan(MainILV, DT); 10180 ++LoopsVectorized; 10181 10182 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10183 formLCSSARecursively(*L, *DT, LI, SE); 10184 10185 // Second pass vectorizes the epilogue and adjusts the control flow 10186 // edges from the first pass. 10187 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10188 EPI.MainLoopVF = EPI.EpilogueVF; 10189 EPI.MainLoopUF = EPI.EpilogueUF; 10190 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10191 ORE, EPI, &LVL, &CM, BFI, PSI, 10192 Checks); 10193 LVP.executePlan(EpilogILV, DT); 10194 ++LoopsEpilogueVectorized; 10195 10196 if (!MainILV.areSafetyChecksAdded()) 10197 DisableRuntimeUnroll = true; 10198 } else { 10199 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10200 &LVL, &CM, BFI, PSI, Checks); 10201 LVP.executePlan(LB, DT); 10202 ++LoopsVectorized; 10203 10204 // Add metadata to disable runtime unrolling a scalar loop when there 10205 // are no runtime checks about strides and memory. A scalar loop that is 10206 // rarely used is not worth unrolling. 10207 if (!LB.areSafetyChecksAdded()) 10208 DisableRuntimeUnroll = true; 10209 } 10210 // Report the vectorization decision. 10211 ORE->emit([&]() { 10212 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10213 L->getHeader()) 10214 << "vectorized loop (vectorization width: " 10215 << NV("VectorizationFactor", VF.Width) 10216 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10217 }); 10218 } 10219 10220 if (ORE->allowExtraAnalysis(LV_NAME)) 10221 checkMixedPrecision(L, ORE); 10222 } 10223 10224 Optional<MDNode *> RemainderLoopID = 10225 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10226 LLVMLoopVectorizeFollowupEpilogue}); 10227 if (RemainderLoopID.hasValue()) { 10228 L->setLoopID(RemainderLoopID.getValue()); 10229 } else { 10230 if (DisableRuntimeUnroll) 10231 AddRuntimeUnrollDisableMetaData(L); 10232 10233 // Mark the loop as already vectorized to avoid vectorizing again. 10234 Hints.setAlreadyVectorized(); 10235 } 10236 10237 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10238 return true; 10239 } 10240 10241 LoopVectorizeResult LoopVectorizePass::runImpl( 10242 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10243 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10244 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10245 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10246 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10247 SE = &SE_; 10248 LI = &LI_; 10249 TTI = &TTI_; 10250 DT = &DT_; 10251 BFI = &BFI_; 10252 TLI = TLI_; 10253 AA = &AA_; 10254 AC = &AC_; 10255 GetLAA = &GetLAA_; 10256 DB = &DB_; 10257 ORE = &ORE_; 10258 PSI = PSI_; 10259 10260 // Don't attempt if 10261 // 1. the target claims to have no vector registers, and 10262 // 2. interleaving won't help ILP. 10263 // 10264 // The second condition is necessary because, even if the target has no 10265 // vector registers, loop vectorization may still enable scalar 10266 // interleaving. 10267 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10268 TTI->getMaxInterleaveFactor(1) < 2) 10269 return LoopVectorizeResult(false, false); 10270 10271 bool Changed = false, CFGChanged = false; 10272 10273 // The vectorizer requires loops to be in simplified form. 10274 // Since simplification may add new inner loops, it has to run before the 10275 // legality and profitability checks. This means running the loop vectorizer 10276 // will simplify all loops, regardless of whether anything end up being 10277 // vectorized. 10278 for (auto &L : *LI) 10279 Changed |= CFGChanged |= 10280 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10281 10282 // Build up a worklist of inner-loops to vectorize. This is necessary as 10283 // the act of vectorizing or partially unrolling a loop creates new loops 10284 // and can invalidate iterators across the loops. 10285 SmallVector<Loop *, 8> Worklist; 10286 10287 for (Loop *L : *LI) 10288 collectSupportedLoops(*L, LI, ORE, Worklist); 10289 10290 LoopsAnalyzed += Worklist.size(); 10291 10292 // Now walk the identified inner loops. 10293 while (!Worklist.empty()) { 10294 Loop *L = Worklist.pop_back_val(); 10295 10296 // For the inner loops we actually process, form LCSSA to simplify the 10297 // transform. 10298 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10299 10300 Changed |= CFGChanged |= processLoop(L); 10301 } 10302 10303 // Process each loop nest in the function. 10304 return LoopVectorizeResult(Changed, CFGChanged); 10305 } 10306 10307 PreservedAnalyses LoopVectorizePass::run(Function &F, 10308 FunctionAnalysisManager &AM) { 10309 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10310 auto &LI = AM.getResult<LoopAnalysis>(F); 10311 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10312 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10313 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10314 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10315 auto &AA = AM.getResult<AAManager>(F); 10316 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10317 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10318 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10319 MemorySSA *MSSA = EnableMSSALoopDependency 10320 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10321 : nullptr; 10322 10323 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10324 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10325 [&](Loop &L) -> const LoopAccessInfo & { 10326 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10327 TLI, TTI, nullptr, MSSA}; 10328 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10329 }; 10330 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10331 ProfileSummaryInfo *PSI = 10332 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10333 LoopVectorizeResult Result = 10334 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10335 if (!Result.MadeAnyChange) 10336 return PreservedAnalyses::all(); 10337 PreservedAnalyses PA; 10338 10339 // We currently do not preserve loopinfo/dominator analyses with outer loop 10340 // vectorization. Until this is addressed, mark these analyses as preserved 10341 // only for non-VPlan-native path. 10342 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10343 if (!EnableVPlanNativePath) { 10344 PA.preserve<LoopAnalysis>(); 10345 PA.preserve<DominatorTreeAnalysis>(); 10346 } 10347 if (!Result.MadeCFGChange) 10348 PA.preserveSet<CFGAnalyses>(); 10349 return PA; 10350 } 10351