1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlanHCFGBuilder.h" 60 #include "VPlanHCFGTransforms.h" 61 #include "VPlanPredicator.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ScalarEvolution.h" 91 #include "llvm/Analysis/ScalarEvolutionExpander.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/LLVMContext.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/Pass.h" 125 #include "llvm/Support/Casting.h" 126 #include "llvm/Support/CommandLine.h" 127 #include "llvm/Support/Compiler.h" 128 #include "llvm/Support/Debug.h" 129 #include "llvm/Support/ErrorHandling.h" 130 #include "llvm/Support/MathExtras.h" 131 #include "llvm/Support/raw_ostream.h" 132 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 133 #include "llvm/Transforms/Utils/LoopSimplify.h" 134 #include "llvm/Transforms/Utils/LoopUtils.h" 135 #include "llvm/Transforms/Utils/LoopVersioning.h" 136 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 137 #include <algorithm> 138 #include <cassert> 139 #include <cstdint> 140 #include <cstdlib> 141 #include <functional> 142 #include <iterator> 143 #include <limits> 144 #include <memory> 145 #include <string> 146 #include <tuple> 147 #include <utility> 148 #include <vector> 149 150 using namespace llvm; 151 152 #define LV_NAME "loop-vectorize" 153 #define DEBUG_TYPE LV_NAME 154 155 /// @{ 156 /// Metadata attribute names 157 static const char *const LLVMLoopVectorizeFollowupAll = 158 "llvm.loop.vectorize.followup_all"; 159 static const char *const LLVMLoopVectorizeFollowupVectorized = 160 "llvm.loop.vectorize.followup_vectorized"; 161 static const char *const LLVMLoopVectorizeFollowupEpilogue = 162 "llvm.loop.vectorize.followup_epilogue"; 163 /// @} 164 165 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 166 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 167 168 /// Loops with a known constant trip count below this number are vectorized only 169 /// if no scalar iteration overheads are incurred. 170 static cl::opt<unsigned> TinyTripCountVectorThreshold( 171 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 172 cl::desc("Loops with a constant trip count that is smaller than this " 173 "value are vectorized only if no scalar iteration overheads " 174 "are incurred.")); 175 176 static cl::opt<bool> MaximizeBandwidth( 177 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 178 cl::desc("Maximize bandwidth when selecting vectorization factor which " 179 "will be determined by the smallest type in loop.")); 180 181 static cl::opt<bool> EnableInterleavedMemAccesses( 182 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 183 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 184 185 /// An interleave-group may need masking if it resides in a block that needs 186 /// predication, or in order to mask away gaps. 187 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 188 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 189 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 190 191 /// We don't interleave loops with a known constant trip count below this 192 /// number. 193 static const unsigned TinyTripCountInterleaveThreshold = 128; 194 195 static cl::opt<unsigned> ForceTargetNumScalarRegs( 196 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 197 cl::desc("A flag that overrides the target's number of scalar registers.")); 198 199 static cl::opt<unsigned> ForceTargetNumVectorRegs( 200 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's number of vector registers.")); 202 203 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 204 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 205 cl::desc("A flag that overrides the target's max interleave factor for " 206 "scalar loops.")); 207 208 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 209 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 210 cl::desc("A flag that overrides the target's max interleave factor for " 211 "vectorized loops.")); 212 213 static cl::opt<unsigned> ForceTargetInstructionCost( 214 "force-target-instruction-cost", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's expected cost for " 216 "an instruction to a single constant value. Mostly " 217 "useful for getting consistent testing.")); 218 219 static cl::opt<unsigned> SmallLoopCost( 220 "small-loop-cost", cl::init(20), cl::Hidden, 221 cl::desc( 222 "The cost of a loop that is considered 'small' by the interleaver.")); 223 224 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 225 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 226 cl::desc("Enable the use of the block frequency analysis to access PGO " 227 "heuristics minimizing code growth in cold regions and being more " 228 "aggressive in hot regions.")); 229 230 // Runtime interleave loops for load/store throughput. 231 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 232 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 233 cl::desc( 234 "Enable runtime interleaving until load/store ports are saturated")); 235 236 /// The number of stores in a loop that are allowed to need predication. 237 static cl::opt<unsigned> NumberOfStoresToPredicate( 238 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 239 cl::desc("Max number of stores to be predicated behind an if.")); 240 241 static cl::opt<bool> EnableIndVarRegisterHeur( 242 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 243 cl::desc("Count the induction variable only once when interleaving")); 244 245 static cl::opt<bool> EnableCondStoresVectorization( 246 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 247 cl::desc("Enable if predication of stores during vectorization.")); 248 249 static cl::opt<unsigned> MaxNestedScalarReductionIC( 250 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 251 cl::desc("The maximum interleave count to use when interleaving a scalar " 252 "reduction in a nested loop.")); 253 254 cl::opt<bool> EnableVPlanNativePath( 255 "enable-vplan-native-path", cl::init(false), cl::Hidden, 256 cl::desc("Enable VPlan-native vectorization path with " 257 "support for outer loop vectorization.")); 258 259 // FIXME: Remove this switch once we have divergence analysis. Currently we 260 // assume divergent non-backedge branches when this switch is true. 261 cl::opt<bool> EnableVPlanPredication( 262 "enable-vplan-predication", cl::init(false), cl::Hidden, 263 cl::desc("Enable VPlan-native vectorization path predicator with " 264 "support for outer loop vectorization.")); 265 266 // This flag enables the stress testing of the VPlan H-CFG construction in the 267 // VPlan-native vectorization path. It must be used in conjuction with 268 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 269 // verification of the H-CFGs built. 270 static cl::opt<bool> VPlanBuildStressTest( 271 "vplan-build-stress-test", cl::init(false), cl::Hidden, 272 cl::desc( 273 "Build VPlan for every supported loop nest in the function and bail " 274 "out right after the build (stress test the VPlan H-CFG construction " 275 "in the VPlan-native vectorization path).")); 276 277 /// A helper function for converting Scalar types to vector types. 278 /// If the incoming type is void, we return void. If the VF is 1, we return 279 /// the scalar type. 280 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 281 if (Scalar->isVoidTy() || VF == 1) 282 return Scalar; 283 return VectorType::get(Scalar, VF); 284 } 285 286 /// A helper function that returns the type of loaded or stored value. 287 static Type *getMemInstValueType(Value *I) { 288 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 289 "Expected Load or Store instruction"); 290 if (auto *LI = dyn_cast<LoadInst>(I)) 291 return LI->getType(); 292 return cast<StoreInst>(I)->getValueOperand()->getType(); 293 } 294 295 /// A helper function that returns true if the given type is irregular. The 296 /// type is irregular if its allocated size doesn't equal the store size of an 297 /// element of the corresponding vector type at the given vectorization factor. 298 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 299 // Determine if an array of VF elements of type Ty is "bitcast compatible" 300 // with a <VF x Ty> vector. 301 if (VF > 1) { 302 auto *VectorTy = VectorType::get(Ty, VF); 303 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 304 } 305 306 // If the vectorization factor is one, we just check if an array of type Ty 307 // requires padding between elements. 308 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 309 } 310 311 /// A helper function that returns the reciprocal of the block probability of 312 /// predicated blocks. If we return X, we are assuming the predicated block 313 /// will execute once for every X iterations of the loop header. 314 /// 315 /// TODO: We should use actual block probability here, if available. Currently, 316 /// we always assume predicated blocks have a 50% chance of executing. 317 static unsigned getReciprocalPredBlockProb() { return 2; } 318 319 /// A helper function that adds a 'fast' flag to floating-point operations. 320 static Value *addFastMathFlag(Value *V) { 321 if (isa<FPMathOperator>(V)) { 322 FastMathFlags Flags; 323 Flags.setFast(); 324 cast<Instruction>(V)->setFastMathFlags(Flags); 325 } 326 return V; 327 } 328 329 /// A helper function that returns an integer or floating-point constant with 330 /// value C. 331 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 332 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 333 : ConstantFP::get(Ty, C); 334 } 335 336 namespace llvm { 337 338 /// InnerLoopVectorizer vectorizes loops which contain only one basic 339 /// block to a specified vectorization factor (VF). 340 /// This class performs the widening of scalars into vectors, or multiple 341 /// scalars. This class also implements the following features: 342 /// * It inserts an epilogue loop for handling loops that don't have iteration 343 /// counts that are known to be a multiple of the vectorization factor. 344 /// * It handles the code generation for reduction variables. 345 /// * Scalarization (implementation using scalars) of un-vectorizable 346 /// instructions. 347 /// InnerLoopVectorizer does not perform any vectorization-legality 348 /// checks, and relies on the caller to check for the different legality 349 /// aspects. The InnerLoopVectorizer relies on the 350 /// LoopVectorizationLegality class to provide information about the induction 351 /// and reduction variables that were found to a given vectorization factor. 352 class InnerLoopVectorizer { 353 public: 354 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 355 LoopInfo *LI, DominatorTree *DT, 356 const TargetLibraryInfo *TLI, 357 const TargetTransformInfo *TTI, AssumptionCache *AC, 358 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 359 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 360 LoopVectorizationCostModel *CM) 361 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 362 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 363 Builder(PSE.getSE()->getContext()), 364 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 365 virtual ~InnerLoopVectorizer() = default; 366 367 /// Create a new empty loop. Unlink the old loop and connect the new one. 368 /// Return the pre-header block of the new loop. 369 BasicBlock *createVectorizedLoopSkeleton(); 370 371 /// Widen a single instruction within the innermost loop. 372 void widenInstruction(Instruction &I); 373 374 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 375 void fixVectorizedLoop(); 376 377 // Return true if any runtime check is added. 378 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 379 380 /// A type for vectorized values in the new loop. Each value from the 381 /// original loop, when vectorized, is represented by UF vector values in the 382 /// new unrolled loop, where UF is the unroll factor. 383 using VectorParts = SmallVector<Value *, 2>; 384 385 /// Vectorize a single PHINode in a block. This method handles the induction 386 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 387 /// arbitrary length vectors. 388 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 389 390 /// A helper function to scalarize a single Instruction in the innermost loop. 391 /// Generates a sequence of scalar instances for each lane between \p MinLane 392 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 393 /// inclusive.. 394 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 395 bool IfPredicateInstr); 396 397 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 398 /// is provided, the integer induction variable will first be truncated to 399 /// the corresponding type. 400 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 401 402 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 403 /// vector or scalar value on-demand if one is not yet available. When 404 /// vectorizing a loop, we visit the definition of an instruction before its 405 /// uses. When visiting the definition, we either vectorize or scalarize the 406 /// instruction, creating an entry for it in the corresponding map. (In some 407 /// cases, such as induction variables, we will create both vector and scalar 408 /// entries.) Then, as we encounter uses of the definition, we derive values 409 /// for each scalar or vector use unless such a value is already available. 410 /// For example, if we scalarize a definition and one of its uses is vector, 411 /// we build the required vector on-demand with an insertelement sequence 412 /// when visiting the use. Otherwise, if the use is scalar, we can use the 413 /// existing scalar definition. 414 /// 415 /// Return a value in the new loop corresponding to \p V from the original 416 /// loop at unroll index \p Part. If the value has already been vectorized, 417 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 418 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 419 /// a new vector value on-demand by inserting the scalar values into a vector 420 /// with an insertelement sequence. If the value has been neither vectorized 421 /// nor scalarized, it must be loop invariant, so we simply broadcast the 422 /// value into a vector. 423 Value *getOrCreateVectorValue(Value *V, unsigned Part); 424 425 /// Return a value in the new loop corresponding to \p V from the original 426 /// loop at unroll and vector indices \p Instance. If the value has been 427 /// vectorized but not scalarized, the necessary extractelement instruction 428 /// will be generated. 429 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 430 431 /// Construct the vector value of a scalarized value \p V one lane at a time. 432 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 433 434 /// Try to vectorize the interleaved access group that \p Instr belongs to, 435 /// optionally masking the vector operations if \p BlockInMask is non-null. 436 void vectorizeInterleaveGroup(Instruction *Instr, 437 VectorParts *BlockInMask = nullptr); 438 439 /// Vectorize Load and Store instructions, optionally masking the vector 440 /// operations if \p BlockInMask is non-null. 441 void vectorizeMemoryInstruction(Instruction *Instr, 442 VectorParts *BlockInMask = nullptr); 443 444 /// Set the debug location in the builder using the debug location in 445 /// the instruction. 446 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 447 448 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 449 void fixNonInductionPHIs(void); 450 451 protected: 452 friend class LoopVectorizationPlanner; 453 454 /// A small list of PHINodes. 455 using PhiVector = SmallVector<PHINode *, 4>; 456 457 /// A type for scalarized values in the new loop. Each value from the 458 /// original loop, when scalarized, is represented by UF x VF scalar values 459 /// in the new unrolled loop, where UF is the unroll factor and VF is the 460 /// vectorization factor. 461 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 462 463 /// Set up the values of the IVs correctly when exiting the vector loop. 464 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 465 Value *CountRoundDown, Value *EndValue, 466 BasicBlock *MiddleBlock); 467 468 /// Create a new induction variable inside L. 469 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 470 Value *Step, Instruction *DL); 471 472 /// Handle all cross-iteration phis in the header. 473 void fixCrossIterationPHIs(); 474 475 /// Fix a first-order recurrence. This is the second phase of vectorizing 476 /// this phi node. 477 void fixFirstOrderRecurrence(PHINode *Phi); 478 479 /// Fix a reduction cross-iteration phi. This is the second phase of 480 /// vectorizing this phi node. 481 void fixReduction(PHINode *Phi); 482 483 /// The Loop exit block may have single value PHI nodes with some 484 /// incoming value. While vectorizing we only handled real values 485 /// that were defined inside the loop and we should have one value for 486 /// each predecessor of its parent basic block. See PR14725. 487 void fixLCSSAPHIs(); 488 489 /// Iteratively sink the scalarized operands of a predicated instruction into 490 /// the block that was created for it. 491 void sinkScalarOperands(Instruction *PredInst); 492 493 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 494 /// represented as. 495 void truncateToMinimalBitwidths(); 496 497 /// Insert the new loop to the loop hierarchy and pass manager 498 /// and update the analysis passes. 499 void updateAnalysis(); 500 501 /// Create a broadcast instruction. This method generates a broadcast 502 /// instruction (shuffle) for loop invariant values and for the induction 503 /// value. If this is the induction variable then we extend it to N, N+1, ... 504 /// this is needed because each iteration in the loop corresponds to a SIMD 505 /// element. 506 virtual Value *getBroadcastInstrs(Value *V); 507 508 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 509 /// to each vector element of Val. The sequence starts at StartIndex. 510 /// \p Opcode is relevant for FP induction variable. 511 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 512 Instruction::BinaryOps Opcode = 513 Instruction::BinaryOpsEnd); 514 515 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 516 /// variable on which to base the steps, \p Step is the size of the step, and 517 /// \p EntryVal is the value from the original loop that maps to the steps. 518 /// Note that \p EntryVal doesn't have to be an induction variable - it 519 /// can also be a truncate instruction. 520 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 521 const InductionDescriptor &ID); 522 523 /// Create a vector induction phi node based on an existing scalar one. \p 524 /// EntryVal is the value from the original loop that maps to the vector phi 525 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 526 /// truncate instruction, instead of widening the original IV, we widen a 527 /// version of the IV truncated to \p EntryVal's type. 528 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 529 Value *Step, Instruction *EntryVal); 530 531 /// Returns true if an instruction \p I should be scalarized instead of 532 /// vectorized for the chosen vectorization factor. 533 bool shouldScalarizeInstruction(Instruction *I) const; 534 535 /// Returns true if we should generate a scalar version of \p IV. 536 bool needsScalarInduction(Instruction *IV) const; 537 538 /// If there is a cast involved in the induction variable \p ID, which should 539 /// be ignored in the vectorized loop body, this function records the 540 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 541 /// cast. We had already proved that the casted Phi is equal to the uncasted 542 /// Phi in the vectorized loop (under a runtime guard), and therefore 543 /// there is no need to vectorize the cast - the same value can be used in the 544 /// vector loop for both the Phi and the cast. 545 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 546 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 547 /// 548 /// \p EntryVal is the value from the original loop that maps to the vector 549 /// phi node and is used to distinguish what is the IV currently being 550 /// processed - original one (if \p EntryVal is a phi corresponding to the 551 /// original IV) or the "newly-created" one based on the proof mentioned above 552 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 553 /// latter case \p EntryVal is a TruncInst and we must not record anything for 554 /// that IV, but it's error-prone to expect callers of this routine to care 555 /// about that, hence this explicit parameter. 556 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 557 const Instruction *EntryVal, 558 Value *VectorLoopValue, 559 unsigned Part, 560 unsigned Lane = UINT_MAX); 561 562 /// Generate a shuffle sequence that will reverse the vector Vec. 563 virtual Value *reverseVector(Value *Vec); 564 565 /// Returns (and creates if needed) the original loop trip count. 566 Value *getOrCreateTripCount(Loop *NewLoop); 567 568 /// Returns (and creates if needed) the trip count of the widened loop. 569 Value *getOrCreateVectorTripCount(Loop *NewLoop); 570 571 /// Returns a bitcasted value to the requested vector type. 572 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 573 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 574 const DataLayout &DL); 575 576 /// Emit a bypass check to see if the vector trip count is zero, including if 577 /// it overflows. 578 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 579 580 /// Emit a bypass check to see if all of the SCEV assumptions we've 581 /// had to make are correct. 582 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 583 584 /// Emit bypass checks to check any memory assumptions we may have made. 585 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 586 587 /// Compute the transformed value of Index at offset StartValue using step 588 /// StepValue. 589 /// For integer induction, returns StartValue + Index * StepValue. 590 /// For pointer induction, returns StartValue[Index * StepValue]. 591 /// FIXME: The newly created binary instructions should contain nsw/nuw 592 /// flags, which can be found from the original scalar operations. 593 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 594 const DataLayout &DL, 595 const InductionDescriptor &ID) const; 596 597 /// Add additional metadata to \p To that was not present on \p Orig. 598 /// 599 /// Currently this is used to add the noalias annotations based on the 600 /// inserted memchecks. Use this for instructions that are *cloned* into the 601 /// vector loop. 602 void addNewMetadata(Instruction *To, const Instruction *Orig); 603 604 /// Add metadata from one instruction to another. 605 /// 606 /// This includes both the original MDs from \p From and additional ones (\see 607 /// addNewMetadata). Use this for *newly created* instructions in the vector 608 /// loop. 609 void addMetadata(Instruction *To, Instruction *From); 610 611 /// Similar to the previous function but it adds the metadata to a 612 /// vector of instructions. 613 void addMetadata(ArrayRef<Value *> To, Instruction *From); 614 615 /// The original loop. 616 Loop *OrigLoop; 617 618 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 619 /// dynamic knowledge to simplify SCEV expressions and converts them to a 620 /// more usable form. 621 PredicatedScalarEvolution &PSE; 622 623 /// Loop Info. 624 LoopInfo *LI; 625 626 /// Dominator Tree. 627 DominatorTree *DT; 628 629 /// Alias Analysis. 630 AliasAnalysis *AA; 631 632 /// Target Library Info. 633 const TargetLibraryInfo *TLI; 634 635 /// Target Transform Info. 636 const TargetTransformInfo *TTI; 637 638 /// Assumption Cache. 639 AssumptionCache *AC; 640 641 /// Interface to emit optimization remarks. 642 OptimizationRemarkEmitter *ORE; 643 644 /// LoopVersioning. It's only set up (non-null) if memchecks were 645 /// used. 646 /// 647 /// This is currently only used to add no-alias metadata based on the 648 /// memchecks. The actually versioning is performed manually. 649 std::unique_ptr<LoopVersioning> LVer; 650 651 /// The vectorization SIMD factor to use. Each vector will have this many 652 /// vector elements. 653 unsigned VF; 654 655 /// The vectorization unroll factor to use. Each scalar is vectorized to this 656 /// many different vector instructions. 657 unsigned UF; 658 659 /// The builder that we use 660 IRBuilder<> Builder; 661 662 // --- Vectorization state --- 663 664 /// The vector-loop preheader. 665 BasicBlock *LoopVectorPreHeader; 666 667 /// The scalar-loop preheader. 668 BasicBlock *LoopScalarPreHeader; 669 670 /// Middle Block between the vector and the scalar. 671 BasicBlock *LoopMiddleBlock; 672 673 /// The ExitBlock of the scalar loop. 674 BasicBlock *LoopExitBlock; 675 676 /// The vector loop body. 677 BasicBlock *LoopVectorBody; 678 679 /// The scalar loop body. 680 BasicBlock *LoopScalarBody; 681 682 /// A list of all bypass blocks. The first block is the entry of the loop. 683 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 684 685 /// The new Induction variable which was added to the new block. 686 PHINode *Induction = nullptr; 687 688 /// The induction variable of the old basic block. 689 PHINode *OldInduction = nullptr; 690 691 /// Maps values from the original loop to their corresponding values in the 692 /// vectorized loop. A key value can map to either vector values, scalar 693 /// values or both kinds of values, depending on whether the key was 694 /// vectorized and scalarized. 695 VectorizerValueMap VectorLoopValueMap; 696 697 /// Store instructions that were predicated. 698 SmallVector<Instruction *, 4> PredicatedInstructions; 699 700 /// Trip count of the original loop. 701 Value *TripCount = nullptr; 702 703 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 704 Value *VectorTripCount = nullptr; 705 706 /// The legality analysis. 707 LoopVectorizationLegality *Legal; 708 709 /// The profitablity analysis. 710 LoopVectorizationCostModel *Cost; 711 712 // Record whether runtime checks are added. 713 bool AddedSafetyChecks = false; 714 715 // Holds the end values for each induction variable. We save the end values 716 // so we can later fix-up the external users of the induction variables. 717 DenseMap<PHINode *, Value *> IVEndValues; 718 719 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 720 // fixed up at the end of vector code generation. 721 SmallVector<PHINode *, 8> OrigPHIsToFix; 722 }; 723 724 class InnerLoopUnroller : public InnerLoopVectorizer { 725 public: 726 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 727 LoopInfo *LI, DominatorTree *DT, 728 const TargetLibraryInfo *TLI, 729 const TargetTransformInfo *TTI, AssumptionCache *AC, 730 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 731 LoopVectorizationLegality *LVL, 732 LoopVectorizationCostModel *CM) 733 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 734 UnrollFactor, LVL, CM) {} 735 736 private: 737 Value *getBroadcastInstrs(Value *V) override; 738 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 739 Instruction::BinaryOps Opcode = 740 Instruction::BinaryOpsEnd) override; 741 Value *reverseVector(Value *Vec) override; 742 }; 743 744 } // end namespace llvm 745 746 /// Look for a meaningful debug location on the instruction or it's 747 /// operands. 748 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 749 if (!I) 750 return I; 751 752 DebugLoc Empty; 753 if (I->getDebugLoc() != Empty) 754 return I; 755 756 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 757 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 758 if (OpInst->getDebugLoc() != Empty) 759 return OpInst; 760 } 761 762 return I; 763 } 764 765 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 766 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 767 const DILocation *DIL = Inst->getDebugLoc(); 768 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 769 !isa<DbgInfoIntrinsic>(Inst)) { 770 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 771 if (NewDIL) 772 B.SetCurrentDebugLocation(NewDIL.getValue()); 773 else 774 LLVM_DEBUG(dbgs() 775 << "Failed to create new discriminator: " 776 << DIL->getFilename() << " Line: " << DIL->getLine()); 777 } 778 else 779 B.SetCurrentDebugLocation(DIL); 780 } else 781 B.SetCurrentDebugLocation(DebugLoc()); 782 } 783 784 #ifndef NDEBUG 785 /// \return string containing a file name and a line # for the given loop. 786 static std::string getDebugLocString(const Loop *L) { 787 std::string Result; 788 if (L) { 789 raw_string_ostream OS(Result); 790 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 791 LoopDbgLoc.print(OS); 792 else 793 // Just print the module name. 794 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 795 OS.flush(); 796 } 797 return Result; 798 } 799 #endif 800 801 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 802 const Instruction *Orig) { 803 // If the loop was versioned with memchecks, add the corresponding no-alias 804 // metadata. 805 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 806 LVer->annotateInstWithNoAlias(To, Orig); 807 } 808 809 void InnerLoopVectorizer::addMetadata(Instruction *To, 810 Instruction *From) { 811 propagateMetadata(To, From); 812 addNewMetadata(To, From); 813 } 814 815 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 816 Instruction *From) { 817 for (Value *V : To) { 818 if (Instruction *I = dyn_cast<Instruction>(V)) 819 addMetadata(I, From); 820 } 821 } 822 823 namespace llvm { 824 825 /// LoopVectorizationCostModel - estimates the expected speedups due to 826 /// vectorization. 827 /// In many cases vectorization is not profitable. This can happen because of 828 /// a number of reasons. In this class we mainly attempt to predict the 829 /// expected speedup/slowdowns due to the supported instruction set. We use the 830 /// TargetTransformInfo to query the different backends for the cost of 831 /// different operations. 832 class LoopVectorizationCostModel { 833 public: 834 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 835 LoopInfo *LI, LoopVectorizationLegality *Legal, 836 const TargetTransformInfo &TTI, 837 const TargetLibraryInfo *TLI, DemandedBits *DB, 838 AssumptionCache *AC, 839 OptimizationRemarkEmitter *ORE, const Function *F, 840 const LoopVectorizeHints *Hints, 841 InterleavedAccessInfo &IAI) 842 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 843 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 844 845 /// \return An upper bound for the vectorization factor, or None if 846 /// vectorization should be avoided up front. 847 Optional<unsigned> computeMaxVF(bool OptForSize); 848 849 /// \return The most profitable vectorization factor and the cost of that VF. 850 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 851 /// then this vectorization factor will be selected if vectorization is 852 /// possible. 853 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 854 855 /// Setup cost-based decisions for user vectorization factor. 856 void selectUserVectorizationFactor(unsigned UserVF) { 857 collectUniformsAndScalars(UserVF); 858 collectInstsToScalarize(UserVF); 859 } 860 861 /// \return The size (in bits) of the smallest and widest types in the code 862 /// that needs to be vectorized. We ignore values that remain scalar such as 863 /// 64 bit loop indices. 864 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 865 866 /// \return The desired interleave count. 867 /// If interleave count has been specified by metadata it will be returned. 868 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 869 /// are the selected vectorization factor and the cost of the selected VF. 870 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 871 unsigned LoopCost); 872 873 /// Memory access instruction may be vectorized in more than one way. 874 /// Form of instruction after vectorization depends on cost. 875 /// This function takes cost-based decisions for Load/Store instructions 876 /// and collects them in a map. This decisions map is used for building 877 /// the lists of loop-uniform and loop-scalar instructions. 878 /// The calculated cost is saved with widening decision in order to 879 /// avoid redundant calculations. 880 void setCostBasedWideningDecision(unsigned VF); 881 882 /// A struct that represents some properties of the register usage 883 /// of a loop. 884 struct RegisterUsage { 885 /// Holds the number of loop invariant values that are used in the loop. 886 unsigned LoopInvariantRegs; 887 888 /// Holds the maximum number of concurrent live intervals in the loop. 889 unsigned MaxLocalUsers; 890 }; 891 892 /// \return Returns information about the register usages of the loop for the 893 /// given vectorization factors. 894 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 895 896 /// Collect values we want to ignore in the cost model. 897 void collectValuesToIgnore(); 898 899 /// \returns The smallest bitwidth each instruction can be represented with. 900 /// The vector equivalents of these instructions should be truncated to this 901 /// type. 902 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 903 return MinBWs; 904 } 905 906 /// \returns True if it is more profitable to scalarize instruction \p I for 907 /// vectorization factor \p VF. 908 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 909 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 910 911 // Cost model is not run in the VPlan-native path - return conservative 912 // result until this changes. 913 if (EnableVPlanNativePath) 914 return false; 915 916 auto Scalars = InstsToScalarize.find(VF); 917 assert(Scalars != InstsToScalarize.end() && 918 "VF not yet analyzed for scalarization profitability"); 919 return Scalars->second.find(I) != Scalars->second.end(); 920 } 921 922 /// Returns true if \p I is known to be uniform after vectorization. 923 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 924 if (VF == 1) 925 return true; 926 927 // Cost model is not run in the VPlan-native path - return conservative 928 // result until this changes. 929 if (EnableVPlanNativePath) 930 return false; 931 932 auto UniformsPerVF = Uniforms.find(VF); 933 assert(UniformsPerVF != Uniforms.end() && 934 "VF not yet analyzed for uniformity"); 935 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 936 } 937 938 /// Returns true if \p I is known to be scalar after vectorization. 939 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 940 if (VF == 1) 941 return true; 942 943 // Cost model is not run in the VPlan-native path - return conservative 944 // result until this changes. 945 if (EnableVPlanNativePath) 946 return false; 947 948 auto ScalarsPerVF = Scalars.find(VF); 949 assert(ScalarsPerVF != Scalars.end() && 950 "Scalar values are not calculated for VF"); 951 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 952 } 953 954 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 955 /// for vectorization factor \p VF. 956 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 957 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 958 !isProfitableToScalarize(I, VF) && 959 !isScalarAfterVectorization(I, VF); 960 } 961 962 /// Decision that was taken during cost calculation for memory instruction. 963 enum InstWidening { 964 CM_Unknown, 965 CM_Widen, // For consecutive accesses with stride +1. 966 CM_Widen_Reverse, // For consecutive accesses with stride -1. 967 CM_Interleave, 968 CM_GatherScatter, 969 CM_Scalarize 970 }; 971 972 /// Save vectorization decision \p W and \p Cost taken by the cost model for 973 /// instruction \p I and vector width \p VF. 974 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 975 unsigned Cost) { 976 assert(VF >= 2 && "Expected VF >=2"); 977 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 978 } 979 980 /// Save vectorization decision \p W and \p Cost taken by the cost model for 981 /// interleaving group \p Grp and vector width \p VF. 982 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 983 InstWidening W, unsigned Cost) { 984 assert(VF >= 2 && "Expected VF >=2"); 985 /// Broadcast this decicion to all instructions inside the group. 986 /// But the cost will be assigned to one instruction only. 987 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 988 if (auto *I = Grp->getMember(i)) { 989 if (Grp->getInsertPos() == I) 990 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 991 else 992 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 993 } 994 } 995 } 996 997 /// Return the cost model decision for the given instruction \p I and vector 998 /// width \p VF. Return CM_Unknown if this instruction did not pass 999 /// through the cost modeling. 1000 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1001 assert(VF >= 2 && "Expected VF >=2"); 1002 1003 // Cost model is not run in the VPlan-native path - return conservative 1004 // result until this changes. 1005 if (EnableVPlanNativePath) 1006 return CM_GatherScatter; 1007 1008 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1009 auto Itr = WideningDecisions.find(InstOnVF); 1010 if (Itr == WideningDecisions.end()) 1011 return CM_Unknown; 1012 return Itr->second.first; 1013 } 1014 1015 /// Return the vectorization cost for the given instruction \p I and vector 1016 /// width \p VF. 1017 unsigned getWideningCost(Instruction *I, unsigned VF) { 1018 assert(VF >= 2 && "Expected VF >=2"); 1019 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1020 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1021 "The cost is not calculated"); 1022 return WideningDecisions[InstOnVF].second; 1023 } 1024 1025 /// Return True if instruction \p I is an optimizable truncate whose operand 1026 /// is an induction variable. Such a truncate will be removed by adding a new 1027 /// induction variable with the destination type. 1028 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1029 // If the instruction is not a truncate, return false. 1030 auto *Trunc = dyn_cast<TruncInst>(I); 1031 if (!Trunc) 1032 return false; 1033 1034 // Get the source and destination types of the truncate. 1035 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1036 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1037 1038 // If the truncate is free for the given types, return false. Replacing a 1039 // free truncate with an induction variable would add an induction variable 1040 // update instruction to each iteration of the loop. We exclude from this 1041 // check the primary induction variable since it will need an update 1042 // instruction regardless. 1043 Value *Op = Trunc->getOperand(0); 1044 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1045 return false; 1046 1047 // If the truncated value is not an induction variable, return false. 1048 return Legal->isInductionPhi(Op); 1049 } 1050 1051 /// Collects the instructions to scalarize for each predicated instruction in 1052 /// the loop. 1053 void collectInstsToScalarize(unsigned VF); 1054 1055 /// Collect Uniform and Scalar values for the given \p VF. 1056 /// The sets depend on CM decision for Load/Store instructions 1057 /// that may be vectorized as interleave, gather-scatter or scalarized. 1058 void collectUniformsAndScalars(unsigned VF) { 1059 // Do the analysis once. 1060 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1061 return; 1062 setCostBasedWideningDecision(VF); 1063 collectLoopUniforms(VF); 1064 collectLoopScalars(VF); 1065 } 1066 1067 /// Returns true if the target machine supports masked store operation 1068 /// for the given \p DataType and kind of access to \p Ptr. 1069 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1070 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1071 } 1072 1073 /// Returns true if the target machine supports masked load operation 1074 /// for the given \p DataType and kind of access to \p Ptr. 1075 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1076 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1077 } 1078 1079 /// Returns true if the target machine supports masked scatter operation 1080 /// for the given \p DataType. 1081 bool isLegalMaskedScatter(Type *DataType) { 1082 return TTI.isLegalMaskedScatter(DataType); 1083 } 1084 1085 /// Returns true if the target machine supports masked gather operation 1086 /// for the given \p DataType. 1087 bool isLegalMaskedGather(Type *DataType) { 1088 return TTI.isLegalMaskedGather(DataType); 1089 } 1090 1091 /// Returns true if the target machine can represent \p V as a masked gather 1092 /// or scatter operation. 1093 bool isLegalGatherOrScatter(Value *V) { 1094 bool LI = isa<LoadInst>(V); 1095 bool SI = isa<StoreInst>(V); 1096 if (!LI && !SI) 1097 return false; 1098 auto *Ty = getMemInstValueType(V); 1099 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1100 } 1101 1102 /// Returns true if \p I is an instruction that will be scalarized with 1103 /// predication. Such instructions include conditional stores and 1104 /// instructions that may divide by zero. 1105 /// If a non-zero VF has been calculated, we check if I will be scalarized 1106 /// predication for that VF. 1107 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1108 1109 // Returns true if \p I is an instruction that will be predicated either 1110 // through scalar predication or masked load/store or masked gather/scatter. 1111 // Superset of instructions that return true for isScalarWithPredication. 1112 bool isPredicatedInst(Instruction *I) { 1113 if (!blockNeedsPredication(I->getParent())) 1114 return false; 1115 // Loads and stores that need some form of masked operation are predicated 1116 // instructions. 1117 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1118 return Legal->isMaskRequired(I); 1119 return isScalarWithPredication(I); 1120 } 1121 1122 /// Returns true if \p I is a memory instruction with consecutive memory 1123 /// access that can be widened. 1124 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1125 1126 /// Returns true if \p I is a memory instruction in an interleaved-group 1127 /// of memory accesses that can be vectorized with wide vector loads/stores 1128 /// and shuffles. 1129 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1130 1131 /// Check if \p Instr belongs to any interleaved access group. 1132 bool isAccessInterleaved(Instruction *Instr) { 1133 return InterleaveInfo.isInterleaved(Instr); 1134 } 1135 1136 /// Get the interleaved access group that \p Instr belongs to. 1137 const InterleaveGroup<Instruction> * 1138 getInterleavedAccessGroup(Instruction *Instr) { 1139 return InterleaveInfo.getInterleaveGroup(Instr); 1140 } 1141 1142 /// Returns true if an interleaved group requires a scalar iteration 1143 /// to handle accesses with gaps, and there is nothing preventing us from 1144 /// creating a scalar epilogue. 1145 bool requiresScalarEpilogue() const { 1146 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1147 } 1148 1149 /// Returns true if a scalar epilogue is not allowed due to optsize. 1150 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1151 1152 /// Returns true if all loop blocks should be masked to fold tail loop. 1153 bool foldTailByMasking() const { return FoldTailByMasking; } 1154 1155 bool blockNeedsPredication(BasicBlock *BB) { 1156 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1157 } 1158 1159 private: 1160 unsigned NumPredStores = 0; 1161 1162 /// \return An upper bound for the vectorization factor, larger than zero. 1163 /// One is returned if vectorization should best be avoided due to cost. 1164 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1165 1166 /// The vectorization cost is a combination of the cost itself and a boolean 1167 /// indicating whether any of the contributing operations will actually 1168 /// operate on 1169 /// vector values after type legalization in the backend. If this latter value 1170 /// is 1171 /// false, then all operations will be scalarized (i.e. no vectorization has 1172 /// actually taken place). 1173 using VectorizationCostTy = std::pair<unsigned, bool>; 1174 1175 /// Returns the expected execution cost. The unit of the cost does 1176 /// not matter because we use the 'cost' units to compare different 1177 /// vector widths. The cost that is returned is *not* normalized by 1178 /// the factor width. 1179 VectorizationCostTy expectedCost(unsigned VF); 1180 1181 /// Returns the execution time cost of an instruction for a given vector 1182 /// width. Vector width of one means scalar. 1183 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1184 1185 /// The cost-computation logic from getInstructionCost which provides 1186 /// the vector type as an output parameter. 1187 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1188 1189 /// Calculate vectorization cost of memory instruction \p I. 1190 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1191 1192 /// The cost computation for scalarized memory instruction. 1193 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1194 1195 /// The cost computation for interleaving group of memory instructions. 1196 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1197 1198 /// The cost computation for Gather/Scatter instruction. 1199 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1200 1201 /// The cost computation for widening instruction \p I with consecutive 1202 /// memory access. 1203 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1204 1205 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1206 /// Load: scalar load + broadcast. 1207 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1208 /// element) 1209 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1210 1211 /// Returns whether the instruction is a load or store and will be a emitted 1212 /// as a vector operation. 1213 bool isConsecutiveLoadOrStore(Instruction *I); 1214 1215 /// Returns true if an artificially high cost for emulated masked memrefs 1216 /// should be used. 1217 bool useEmulatedMaskMemRefHack(Instruction *I); 1218 1219 /// Create an analysis remark that explains why vectorization failed 1220 /// 1221 /// \p RemarkName is the identifier for the remark. \return the remark object 1222 /// that can be streamed to. 1223 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1224 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1225 RemarkName, TheLoop); 1226 } 1227 1228 /// Map of scalar integer values to the smallest bitwidth they can be legally 1229 /// represented as. The vector equivalents of these values should be truncated 1230 /// to this type. 1231 MapVector<Instruction *, uint64_t> MinBWs; 1232 1233 /// A type representing the costs for instructions if they were to be 1234 /// scalarized rather than vectorized. The entries are Instruction-Cost 1235 /// pairs. 1236 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1237 1238 /// A set containing all BasicBlocks that are known to present after 1239 /// vectorization as a predicated block. 1240 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1241 1242 /// Records whether it is allowed to have the original scalar loop execute at 1243 /// least once. This may be needed as a fallback loop in case runtime 1244 /// aliasing/dependence checks fail, or to handle the tail/remainder 1245 /// iterations when the trip count is unknown or doesn't divide by the VF, 1246 /// or as a peel-loop to handle gaps in interleave-groups. 1247 /// Under optsize and when the trip count is very small we don't allow any 1248 /// iterations to execute in the scalar loop. 1249 bool IsScalarEpilogueAllowed = true; 1250 1251 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1252 bool FoldTailByMasking = false; 1253 1254 /// A map holding scalar costs for different vectorization factors. The 1255 /// presence of a cost for an instruction in the mapping indicates that the 1256 /// instruction will be scalarized when vectorizing with the associated 1257 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1258 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1259 1260 /// Holds the instructions known to be uniform after vectorization. 1261 /// The data is collected per VF. 1262 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1263 1264 /// Holds the instructions known to be scalar after vectorization. 1265 /// The data is collected per VF. 1266 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1267 1268 /// Holds the instructions (address computations) that are forced to be 1269 /// scalarized. 1270 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1271 1272 /// Returns the expected difference in cost from scalarizing the expression 1273 /// feeding a predicated instruction \p PredInst. The instructions to 1274 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1275 /// non-negative return value implies the expression will be scalarized. 1276 /// Currently, only single-use chains are considered for scalarization. 1277 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1278 unsigned VF); 1279 1280 /// Collect the instructions that are uniform after vectorization. An 1281 /// instruction is uniform if we represent it with a single scalar value in 1282 /// the vectorized loop corresponding to each vector iteration. Examples of 1283 /// uniform instructions include pointer operands of consecutive or 1284 /// interleaved memory accesses. Note that although uniformity implies an 1285 /// instruction will be scalar, the reverse is not true. In general, a 1286 /// scalarized instruction will be represented by VF scalar values in the 1287 /// vectorized loop, each corresponding to an iteration of the original 1288 /// scalar loop. 1289 void collectLoopUniforms(unsigned VF); 1290 1291 /// Collect the instructions that are scalar after vectorization. An 1292 /// instruction is scalar if it is known to be uniform or will be scalarized 1293 /// during vectorization. Non-uniform scalarized instructions will be 1294 /// represented by VF values in the vectorized loop, each corresponding to an 1295 /// iteration of the original scalar loop. 1296 void collectLoopScalars(unsigned VF); 1297 1298 /// Keeps cost model vectorization decision and cost for instructions. 1299 /// Right now it is used for memory instructions only. 1300 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1301 std::pair<InstWidening, unsigned>>; 1302 1303 DecisionList WideningDecisions; 1304 1305 public: 1306 /// The loop that we evaluate. 1307 Loop *TheLoop; 1308 1309 /// Predicated scalar evolution analysis. 1310 PredicatedScalarEvolution &PSE; 1311 1312 /// Loop Info analysis. 1313 LoopInfo *LI; 1314 1315 /// Vectorization legality. 1316 LoopVectorizationLegality *Legal; 1317 1318 /// Vector target information. 1319 const TargetTransformInfo &TTI; 1320 1321 /// Target Library Info. 1322 const TargetLibraryInfo *TLI; 1323 1324 /// Demanded bits analysis. 1325 DemandedBits *DB; 1326 1327 /// Assumption cache. 1328 AssumptionCache *AC; 1329 1330 /// Interface to emit optimization remarks. 1331 OptimizationRemarkEmitter *ORE; 1332 1333 const Function *TheFunction; 1334 1335 /// Loop Vectorize Hint. 1336 const LoopVectorizeHints *Hints; 1337 1338 /// The interleave access information contains groups of interleaved accesses 1339 /// with the same stride and close to each other. 1340 InterleavedAccessInfo &InterleaveInfo; 1341 1342 /// Values to ignore in the cost model. 1343 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1344 1345 /// Values to ignore in the cost model when VF > 1. 1346 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1347 }; 1348 1349 } // end namespace llvm 1350 1351 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1352 // vectorization. The loop needs to be annotated with #pragma omp simd 1353 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1354 // vector length information is not provided, vectorization is not considered 1355 // explicit. Interleave hints are not allowed either. These limitations will be 1356 // relaxed in the future. 1357 // Please, note that we are currently forced to abuse the pragma 'clang 1358 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1359 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1360 // provides *explicit vectorization hints* (LV can bypass legal checks and 1361 // assume that vectorization is legal). However, both hints are implemented 1362 // using the same metadata (llvm.loop.vectorize, processed by 1363 // LoopVectorizeHints). This will be fixed in the future when the native IR 1364 // representation for pragma 'omp simd' is introduced. 1365 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1366 OptimizationRemarkEmitter *ORE) { 1367 assert(!OuterLp->empty() && "This is not an outer loop"); 1368 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1369 1370 // Only outer loops with an explicit vectorization hint are supported. 1371 // Unannotated outer loops are ignored. 1372 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1373 return false; 1374 1375 Function *Fn = OuterLp->getHeader()->getParent(); 1376 if (!Hints.allowVectorization(Fn, OuterLp, 1377 true /*VectorizeOnlyWhenForced*/)) { 1378 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1379 return false; 1380 } 1381 1382 if (!Hints.getWidth()) { 1383 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1384 Hints.emitRemarkWithHints(); 1385 return false; 1386 } 1387 1388 if (Hints.getInterleave() > 1) { 1389 // TODO: Interleave support is future work. 1390 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1391 "outer loops.\n"); 1392 Hints.emitRemarkWithHints(); 1393 return false; 1394 } 1395 1396 return true; 1397 } 1398 1399 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1400 OptimizationRemarkEmitter *ORE, 1401 SmallVectorImpl<Loop *> &V) { 1402 // Collect inner loops and outer loops without irreducible control flow. For 1403 // now, only collect outer loops that have explicit vectorization hints. If we 1404 // are stress testing the VPlan H-CFG construction, we collect the outermost 1405 // loop of every loop nest. 1406 if (L.empty() || VPlanBuildStressTest || 1407 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1408 LoopBlocksRPO RPOT(&L); 1409 RPOT.perform(LI); 1410 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1411 V.push_back(&L); 1412 // TODO: Collect inner loops inside marked outer loops in case 1413 // vectorization fails for the outer loop. Do not invoke 1414 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1415 // already known to be reducible. We can use an inherited attribute for 1416 // that. 1417 return; 1418 } 1419 } 1420 for (Loop *InnerL : L) 1421 collectSupportedLoops(*InnerL, LI, ORE, V); 1422 } 1423 1424 namespace { 1425 1426 /// The LoopVectorize Pass. 1427 struct LoopVectorize : public FunctionPass { 1428 /// Pass identification, replacement for typeid 1429 static char ID; 1430 1431 LoopVectorizePass Impl; 1432 1433 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1434 bool VectorizeOnlyWhenForced = false) 1435 : FunctionPass(ID) { 1436 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1437 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1438 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1439 } 1440 1441 bool runOnFunction(Function &F) override { 1442 if (skipFunction(F)) 1443 return false; 1444 1445 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1446 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1447 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1448 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1449 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1450 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1451 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1452 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1453 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1454 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1455 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1456 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1457 1458 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1459 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1460 1461 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1462 GetLAA, *ORE); 1463 } 1464 1465 void getAnalysisUsage(AnalysisUsage &AU) const override { 1466 AU.addRequired<AssumptionCacheTracker>(); 1467 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1468 AU.addRequired<DominatorTreeWrapperPass>(); 1469 AU.addRequired<LoopInfoWrapperPass>(); 1470 AU.addRequired<ScalarEvolutionWrapperPass>(); 1471 AU.addRequired<TargetTransformInfoWrapperPass>(); 1472 AU.addRequired<AAResultsWrapperPass>(); 1473 AU.addRequired<LoopAccessLegacyAnalysis>(); 1474 AU.addRequired<DemandedBitsWrapperPass>(); 1475 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1476 1477 // We currently do not preserve loopinfo/dominator analyses with outer loop 1478 // vectorization. Until this is addressed, mark these analyses as preserved 1479 // only for non-VPlan-native path. 1480 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1481 if (!EnableVPlanNativePath) { 1482 AU.addPreserved<LoopInfoWrapperPass>(); 1483 AU.addPreserved<DominatorTreeWrapperPass>(); 1484 } 1485 1486 AU.addPreserved<BasicAAWrapperPass>(); 1487 AU.addPreserved<GlobalsAAWrapperPass>(); 1488 } 1489 }; 1490 1491 } // end anonymous namespace 1492 1493 //===----------------------------------------------------------------------===// 1494 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1495 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1496 //===----------------------------------------------------------------------===// 1497 1498 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1499 // We need to place the broadcast of invariant variables outside the loop, 1500 // but only if it's proven safe to do so. Else, broadcast will be inside 1501 // vector loop body. 1502 Instruction *Instr = dyn_cast<Instruction>(V); 1503 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1504 (!Instr || 1505 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1506 // Place the code for broadcasting invariant variables in the new preheader. 1507 IRBuilder<>::InsertPointGuard Guard(Builder); 1508 if (SafeToHoist) 1509 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1510 1511 // Broadcast the scalar into all locations in the vector. 1512 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1513 1514 return Shuf; 1515 } 1516 1517 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1518 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1519 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1520 "Expected either an induction phi-node or a truncate of it!"); 1521 Value *Start = II.getStartValue(); 1522 1523 // Construct the initial value of the vector IV in the vector loop preheader 1524 auto CurrIP = Builder.saveIP(); 1525 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1526 if (isa<TruncInst>(EntryVal)) { 1527 assert(Start->getType()->isIntegerTy() && 1528 "Truncation requires an integer type"); 1529 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1530 Step = Builder.CreateTrunc(Step, TruncType); 1531 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1532 } 1533 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1534 Value *SteppedStart = 1535 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1536 1537 // We create vector phi nodes for both integer and floating-point induction 1538 // variables. Here, we determine the kind of arithmetic we will perform. 1539 Instruction::BinaryOps AddOp; 1540 Instruction::BinaryOps MulOp; 1541 if (Step->getType()->isIntegerTy()) { 1542 AddOp = Instruction::Add; 1543 MulOp = Instruction::Mul; 1544 } else { 1545 AddOp = II.getInductionOpcode(); 1546 MulOp = Instruction::FMul; 1547 } 1548 1549 // Multiply the vectorization factor by the step using integer or 1550 // floating-point arithmetic as appropriate. 1551 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1552 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1553 1554 // Create a vector splat to use in the induction update. 1555 // 1556 // FIXME: If the step is non-constant, we create the vector splat with 1557 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1558 // handle a constant vector splat. 1559 Value *SplatVF = isa<Constant>(Mul) 1560 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1561 : Builder.CreateVectorSplat(VF, Mul); 1562 Builder.restoreIP(CurrIP); 1563 1564 // We may need to add the step a number of times, depending on the unroll 1565 // factor. The last of those goes into the PHI. 1566 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1567 &*LoopVectorBody->getFirstInsertionPt()); 1568 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1569 Instruction *LastInduction = VecInd; 1570 for (unsigned Part = 0; Part < UF; ++Part) { 1571 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1572 1573 if (isa<TruncInst>(EntryVal)) 1574 addMetadata(LastInduction, EntryVal); 1575 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1576 1577 LastInduction = cast<Instruction>(addFastMathFlag( 1578 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1579 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1580 } 1581 1582 // Move the last step to the end of the latch block. This ensures consistent 1583 // placement of all induction updates. 1584 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1585 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1586 auto *ICmp = cast<Instruction>(Br->getCondition()); 1587 LastInduction->moveBefore(ICmp); 1588 LastInduction->setName("vec.ind.next"); 1589 1590 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1591 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1592 } 1593 1594 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1595 return Cost->isScalarAfterVectorization(I, VF) || 1596 Cost->isProfitableToScalarize(I, VF); 1597 } 1598 1599 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1600 if (shouldScalarizeInstruction(IV)) 1601 return true; 1602 auto isScalarInst = [&](User *U) -> bool { 1603 auto *I = cast<Instruction>(U); 1604 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1605 }; 1606 return llvm::any_of(IV->users(), isScalarInst); 1607 } 1608 1609 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1610 const InductionDescriptor &ID, const Instruction *EntryVal, 1611 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1612 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1613 "Expected either an induction phi-node or a truncate of it!"); 1614 1615 // This induction variable is not the phi from the original loop but the 1616 // newly-created IV based on the proof that casted Phi is equal to the 1617 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1618 // re-uses the same InductionDescriptor that original IV uses but we don't 1619 // have to do any recording in this case - that is done when original IV is 1620 // processed. 1621 if (isa<TruncInst>(EntryVal)) 1622 return; 1623 1624 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1625 if (Casts.empty()) 1626 return; 1627 // Only the first Cast instruction in the Casts vector is of interest. 1628 // The rest of the Casts (if exist) have no uses outside the 1629 // induction update chain itself. 1630 Instruction *CastInst = *Casts.begin(); 1631 if (Lane < UINT_MAX) 1632 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1633 else 1634 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1635 } 1636 1637 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1638 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1639 "Primary induction variable must have an integer type"); 1640 1641 auto II = Legal->getInductionVars()->find(IV); 1642 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1643 1644 auto ID = II->second; 1645 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1646 1647 // The scalar value to broadcast. This will be derived from the canonical 1648 // induction variable. 1649 Value *ScalarIV = nullptr; 1650 1651 // The value from the original loop to which we are mapping the new induction 1652 // variable. 1653 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1654 1655 // True if we have vectorized the induction variable. 1656 auto VectorizedIV = false; 1657 1658 // Determine if we want a scalar version of the induction variable. This is 1659 // true if the induction variable itself is not widened, or if it has at 1660 // least one user in the loop that is not widened. 1661 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1662 1663 // Generate code for the induction step. Note that induction steps are 1664 // required to be loop-invariant 1665 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1666 "Induction step should be loop invariant"); 1667 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1668 Value *Step = nullptr; 1669 if (PSE.getSE()->isSCEVable(IV->getType())) { 1670 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1671 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1672 LoopVectorPreHeader->getTerminator()); 1673 } else { 1674 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1675 } 1676 1677 // Try to create a new independent vector induction variable. If we can't 1678 // create the phi node, we will splat the scalar induction variable in each 1679 // loop iteration. 1680 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1681 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1682 VectorizedIV = true; 1683 } 1684 1685 // If we haven't yet vectorized the induction variable, or if we will create 1686 // a scalar one, we need to define the scalar induction variable and step 1687 // values. If we were given a truncation type, truncate the canonical 1688 // induction variable and step. Otherwise, derive these values from the 1689 // induction descriptor. 1690 if (!VectorizedIV || NeedsScalarIV) { 1691 ScalarIV = Induction; 1692 if (IV != OldInduction) { 1693 ScalarIV = IV->getType()->isIntegerTy() 1694 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1695 : Builder.CreateCast(Instruction::SIToFP, Induction, 1696 IV->getType()); 1697 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1698 ScalarIV->setName("offset.idx"); 1699 } 1700 if (Trunc) { 1701 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1702 assert(Step->getType()->isIntegerTy() && 1703 "Truncation requires an integer step"); 1704 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1705 Step = Builder.CreateTrunc(Step, TruncType); 1706 } 1707 } 1708 1709 // If we haven't yet vectorized the induction variable, splat the scalar 1710 // induction variable, and build the necessary step vectors. 1711 // TODO: Don't do it unless the vectorized IV is really required. 1712 if (!VectorizedIV) { 1713 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1714 for (unsigned Part = 0; Part < UF; ++Part) { 1715 Value *EntryPart = 1716 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1717 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1718 if (Trunc) 1719 addMetadata(EntryPart, Trunc); 1720 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1721 } 1722 } 1723 1724 // If an induction variable is only used for counting loop iterations or 1725 // calculating addresses, it doesn't need to be widened. Create scalar steps 1726 // that can be used by instructions we will later scalarize. Note that the 1727 // addition of the scalar steps will not increase the number of instructions 1728 // in the loop in the common case prior to InstCombine. We will be trading 1729 // one vector extract for each scalar step. 1730 if (NeedsScalarIV) 1731 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1732 } 1733 1734 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1735 Instruction::BinaryOps BinOp) { 1736 // Create and check the types. 1737 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1738 int VLen = Val->getType()->getVectorNumElements(); 1739 1740 Type *STy = Val->getType()->getScalarType(); 1741 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1742 "Induction Step must be an integer or FP"); 1743 assert(Step->getType() == STy && "Step has wrong type"); 1744 1745 SmallVector<Constant *, 8> Indices; 1746 1747 if (STy->isIntegerTy()) { 1748 // Create a vector of consecutive numbers from zero to VF. 1749 for (int i = 0; i < VLen; ++i) 1750 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1751 1752 // Add the consecutive indices to the vector value. 1753 Constant *Cv = ConstantVector::get(Indices); 1754 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1755 Step = Builder.CreateVectorSplat(VLen, Step); 1756 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1757 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1758 // which can be found from the original scalar operations. 1759 Step = Builder.CreateMul(Cv, Step); 1760 return Builder.CreateAdd(Val, Step, "induction"); 1761 } 1762 1763 // Floating point induction. 1764 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1765 "Binary Opcode should be specified for FP induction"); 1766 // Create a vector of consecutive numbers from zero to VF. 1767 for (int i = 0; i < VLen; ++i) 1768 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1769 1770 // Add the consecutive indices to the vector value. 1771 Constant *Cv = ConstantVector::get(Indices); 1772 1773 Step = Builder.CreateVectorSplat(VLen, Step); 1774 1775 // Floating point operations had to be 'fast' to enable the induction. 1776 FastMathFlags Flags; 1777 Flags.setFast(); 1778 1779 Value *MulOp = Builder.CreateFMul(Cv, Step); 1780 if (isa<Instruction>(MulOp)) 1781 // Have to check, MulOp may be a constant 1782 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1783 1784 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1785 if (isa<Instruction>(BOp)) 1786 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1787 return BOp; 1788 } 1789 1790 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1791 Instruction *EntryVal, 1792 const InductionDescriptor &ID) { 1793 // We shouldn't have to build scalar steps if we aren't vectorizing. 1794 assert(VF > 1 && "VF should be greater than one"); 1795 1796 // Get the value type and ensure it and the step have the same integer type. 1797 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1798 assert(ScalarIVTy == Step->getType() && 1799 "Val and Step should have the same type"); 1800 1801 // We build scalar steps for both integer and floating-point induction 1802 // variables. Here, we determine the kind of arithmetic we will perform. 1803 Instruction::BinaryOps AddOp; 1804 Instruction::BinaryOps MulOp; 1805 if (ScalarIVTy->isIntegerTy()) { 1806 AddOp = Instruction::Add; 1807 MulOp = Instruction::Mul; 1808 } else { 1809 AddOp = ID.getInductionOpcode(); 1810 MulOp = Instruction::FMul; 1811 } 1812 1813 // Determine the number of scalars we need to generate for each unroll 1814 // iteration. If EntryVal is uniform, we only need to generate the first 1815 // lane. Otherwise, we generate all VF values. 1816 unsigned Lanes = 1817 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1818 : VF; 1819 // Compute the scalar steps and save the results in VectorLoopValueMap. 1820 for (unsigned Part = 0; Part < UF; ++Part) { 1821 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1822 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1823 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1824 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1825 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1826 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1827 } 1828 } 1829 } 1830 1831 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1832 assert(V != Induction && "The new induction variable should not be used."); 1833 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1834 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1835 1836 // If we have a stride that is replaced by one, do it here. Defer this for 1837 // the VPlan-native path until we start running Legal checks in that path. 1838 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1839 V = ConstantInt::get(V->getType(), 1); 1840 1841 // If we have a vector mapped to this value, return it. 1842 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1843 return VectorLoopValueMap.getVectorValue(V, Part); 1844 1845 // If the value has not been vectorized, check if it has been scalarized 1846 // instead. If it has been scalarized, and we actually need the value in 1847 // vector form, we will construct the vector values on demand. 1848 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1849 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1850 1851 // If we've scalarized a value, that value should be an instruction. 1852 auto *I = cast<Instruction>(V); 1853 1854 // If we aren't vectorizing, we can just copy the scalar map values over to 1855 // the vector map. 1856 if (VF == 1) { 1857 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1858 return ScalarValue; 1859 } 1860 1861 // Get the last scalar instruction we generated for V and Part. If the value 1862 // is known to be uniform after vectorization, this corresponds to lane zero 1863 // of the Part unroll iteration. Otherwise, the last instruction is the one 1864 // we created for the last vector lane of the Part unroll iteration. 1865 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1866 auto *LastInst = cast<Instruction>( 1867 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1868 1869 // Set the insert point after the last scalarized instruction. This ensures 1870 // the insertelement sequence will directly follow the scalar definitions. 1871 auto OldIP = Builder.saveIP(); 1872 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1873 Builder.SetInsertPoint(&*NewIP); 1874 1875 // However, if we are vectorizing, we need to construct the vector values. 1876 // If the value is known to be uniform after vectorization, we can just 1877 // broadcast the scalar value corresponding to lane zero for each unroll 1878 // iteration. Otherwise, we construct the vector values using insertelement 1879 // instructions. Since the resulting vectors are stored in 1880 // VectorLoopValueMap, we will only generate the insertelements once. 1881 Value *VectorValue = nullptr; 1882 if (Cost->isUniformAfterVectorization(I, VF)) { 1883 VectorValue = getBroadcastInstrs(ScalarValue); 1884 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1885 } else { 1886 // Initialize packing with insertelements to start from undef. 1887 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1888 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1889 for (unsigned Lane = 0; Lane < VF; ++Lane) 1890 packScalarIntoVectorValue(V, {Part, Lane}); 1891 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1892 } 1893 Builder.restoreIP(OldIP); 1894 return VectorValue; 1895 } 1896 1897 // If this scalar is unknown, assume that it is a constant or that it is 1898 // loop invariant. Broadcast V and save the value for future uses. 1899 Value *B = getBroadcastInstrs(V); 1900 VectorLoopValueMap.setVectorValue(V, Part, B); 1901 return B; 1902 } 1903 1904 Value * 1905 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1906 const VPIteration &Instance) { 1907 // If the value is not an instruction contained in the loop, it should 1908 // already be scalar. 1909 if (OrigLoop->isLoopInvariant(V)) 1910 return V; 1911 1912 assert(Instance.Lane > 0 1913 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1914 : true && "Uniform values only have lane zero"); 1915 1916 // If the value from the original loop has not been vectorized, it is 1917 // represented by UF x VF scalar values in the new loop. Return the requested 1918 // scalar value. 1919 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1920 return VectorLoopValueMap.getScalarValue(V, Instance); 1921 1922 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1923 // for the given unroll part. If this entry is not a vector type (i.e., the 1924 // vectorization factor is one), there is no need to generate an 1925 // extractelement instruction. 1926 auto *U = getOrCreateVectorValue(V, Instance.Part); 1927 if (!U->getType()->isVectorTy()) { 1928 assert(VF == 1 && "Value not scalarized has non-vector type"); 1929 return U; 1930 } 1931 1932 // Otherwise, the value from the original loop has been vectorized and is 1933 // represented by UF vector values. Extract and return the requested scalar 1934 // value from the appropriate vector lane. 1935 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1936 } 1937 1938 void InnerLoopVectorizer::packScalarIntoVectorValue( 1939 Value *V, const VPIteration &Instance) { 1940 assert(V != Induction && "The new induction variable should not be used."); 1941 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1942 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1943 1944 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1945 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1946 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1947 Builder.getInt32(Instance.Lane)); 1948 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1949 } 1950 1951 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1952 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1953 SmallVector<Constant *, 8> ShuffleMask; 1954 for (unsigned i = 0; i < VF; ++i) 1955 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1956 1957 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1958 ConstantVector::get(ShuffleMask), 1959 "reverse"); 1960 } 1961 1962 // Return whether we allow using masked interleave-groups (for dealing with 1963 // strided loads/stores that reside in predicated blocks, or for dealing 1964 // with gaps). 1965 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1966 // If an override option has been passed in for interleaved accesses, use it. 1967 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1968 return EnableMaskedInterleavedMemAccesses; 1969 1970 return TTI.enableMaskedInterleavedAccessVectorization(); 1971 } 1972 1973 // Try to vectorize the interleave group that \p Instr belongs to. 1974 // 1975 // E.g. Translate following interleaved load group (factor = 3): 1976 // for (i = 0; i < N; i+=3) { 1977 // R = Pic[i]; // Member of index 0 1978 // G = Pic[i+1]; // Member of index 1 1979 // B = Pic[i+2]; // Member of index 2 1980 // ... // do something to R, G, B 1981 // } 1982 // To: 1983 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1984 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 1985 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 1986 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 1987 // 1988 // Or translate following interleaved store group (factor = 3): 1989 // for (i = 0; i < N; i+=3) { 1990 // ... do something to R, G, B 1991 // Pic[i] = R; // Member of index 0 1992 // Pic[i+1] = G; // Member of index 1 1993 // Pic[i+2] = B; // Member of index 2 1994 // } 1995 // To: 1996 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 1997 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 1998 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 1999 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2000 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2001 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2002 VectorParts *BlockInMask) { 2003 const InterleaveGroup<Instruction> *Group = 2004 Cost->getInterleavedAccessGroup(Instr); 2005 assert(Group && "Fail to get an interleaved access group."); 2006 2007 // Skip if current instruction is not the insert position. 2008 if (Instr != Group->getInsertPos()) 2009 return; 2010 2011 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2012 Value *Ptr = getLoadStorePointerOperand(Instr); 2013 2014 // Prepare for the vector type of the interleaved load/store. 2015 Type *ScalarTy = getMemInstValueType(Instr); 2016 unsigned InterleaveFactor = Group->getFactor(); 2017 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2018 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2019 2020 // Prepare for the new pointers. 2021 setDebugLocFromInst(Builder, Ptr); 2022 SmallVector<Value *, 2> NewPtrs; 2023 unsigned Index = Group->getIndex(Instr); 2024 2025 VectorParts Mask; 2026 bool IsMaskForCondRequired = BlockInMask; 2027 if (IsMaskForCondRequired) { 2028 Mask = *BlockInMask; 2029 // TODO: extend the masked interleaved-group support to reversed access. 2030 assert(!Group->isReverse() && "Reversed masked interleave-group " 2031 "not supported."); 2032 } 2033 2034 // If the group is reverse, adjust the index to refer to the last vector lane 2035 // instead of the first. We adjust the index from the first vector lane, 2036 // rather than directly getting the pointer for lane VF - 1, because the 2037 // pointer operand of the interleaved access is supposed to be uniform. For 2038 // uniform instructions, we're only required to generate a value for the 2039 // first vector lane in each unroll iteration. 2040 if (Group->isReverse()) 2041 Index += (VF - 1) * Group->getFactor(); 2042 2043 bool InBounds = false; 2044 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2045 InBounds = gep->isInBounds(); 2046 2047 for (unsigned Part = 0; Part < UF; Part++) { 2048 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2049 2050 // Notice current instruction could be any index. Need to adjust the address 2051 // to the member of index 0. 2052 // 2053 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2054 // b = A[i]; // Member of index 0 2055 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2056 // 2057 // E.g. A[i+1] = a; // Member of index 1 2058 // A[i] = b; // Member of index 0 2059 // A[i+2] = c; // Member of index 2 (Current instruction) 2060 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2061 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2062 if (InBounds) 2063 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2064 2065 // Cast to the vector pointer type. 2066 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2067 } 2068 2069 setDebugLocFromInst(Builder, Instr); 2070 Value *UndefVec = UndefValue::get(VecTy); 2071 2072 Value *MaskForGaps = nullptr; 2073 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2074 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2075 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2076 } 2077 2078 // Vectorize the interleaved load group. 2079 if (isa<LoadInst>(Instr)) { 2080 // For each unroll part, create a wide load for the group. 2081 SmallVector<Value *, 2> NewLoads; 2082 for (unsigned Part = 0; Part < UF; Part++) { 2083 Instruction *NewLoad; 2084 if (IsMaskForCondRequired || MaskForGaps) { 2085 assert(useMaskedInterleavedAccesses(*TTI) && 2086 "masked interleaved groups are not allowed."); 2087 Value *GroupMask = MaskForGaps; 2088 if (IsMaskForCondRequired) { 2089 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2090 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2091 Value *ShuffledMask = Builder.CreateShuffleVector( 2092 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2093 GroupMask = MaskForGaps 2094 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2095 MaskForGaps) 2096 : ShuffledMask; 2097 } 2098 NewLoad = 2099 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2100 GroupMask, UndefVec, "wide.masked.vec"); 2101 } 2102 else 2103 NewLoad = Builder.CreateAlignedLoad(NewPtrs[Part], 2104 Group->getAlignment(), "wide.vec"); 2105 Group->addMetadata(NewLoad); 2106 NewLoads.push_back(NewLoad); 2107 } 2108 2109 // For each member in the group, shuffle out the appropriate data from the 2110 // wide loads. 2111 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2112 Instruction *Member = Group->getMember(I); 2113 2114 // Skip the gaps in the group. 2115 if (!Member) 2116 continue; 2117 2118 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2119 for (unsigned Part = 0; Part < UF; Part++) { 2120 Value *StridedVec = Builder.CreateShuffleVector( 2121 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2122 2123 // If this member has different type, cast the result type. 2124 if (Member->getType() != ScalarTy) { 2125 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2126 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2127 } 2128 2129 if (Group->isReverse()) 2130 StridedVec = reverseVector(StridedVec); 2131 2132 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2133 } 2134 } 2135 return; 2136 } 2137 2138 // The sub vector type for current instruction. 2139 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2140 2141 // Vectorize the interleaved store group. 2142 for (unsigned Part = 0; Part < UF; Part++) { 2143 // Collect the stored vector from each member. 2144 SmallVector<Value *, 4> StoredVecs; 2145 for (unsigned i = 0; i < InterleaveFactor; i++) { 2146 // Interleaved store group doesn't allow a gap, so each index has a member 2147 Instruction *Member = Group->getMember(i); 2148 assert(Member && "Fail to get a member from an interleaved store group"); 2149 2150 Value *StoredVec = getOrCreateVectorValue( 2151 cast<StoreInst>(Member)->getValueOperand(), Part); 2152 if (Group->isReverse()) 2153 StoredVec = reverseVector(StoredVec); 2154 2155 // If this member has different type, cast it to a unified type. 2156 2157 if (StoredVec->getType() != SubVT) 2158 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2159 2160 StoredVecs.push_back(StoredVec); 2161 } 2162 2163 // Concatenate all vectors into a wide vector. 2164 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2165 2166 // Interleave the elements in the wide vector. 2167 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2168 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2169 "interleaved.vec"); 2170 2171 Instruction *NewStoreInstr; 2172 if (IsMaskForCondRequired) { 2173 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2174 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2175 Value *ShuffledMask = Builder.CreateShuffleVector( 2176 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2177 NewStoreInstr = Builder.CreateMaskedStore( 2178 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2179 } 2180 else 2181 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2182 Group->getAlignment()); 2183 2184 Group->addMetadata(NewStoreInstr); 2185 } 2186 } 2187 2188 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2189 VectorParts *BlockInMask) { 2190 // Attempt to issue a wide load. 2191 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2192 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2193 2194 assert((LI || SI) && "Invalid Load/Store instruction"); 2195 2196 LoopVectorizationCostModel::InstWidening Decision = 2197 Cost->getWideningDecision(Instr, VF); 2198 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2199 "CM decision should be taken at this point"); 2200 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2201 return vectorizeInterleaveGroup(Instr); 2202 2203 Type *ScalarDataTy = getMemInstValueType(Instr); 2204 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2205 Value *Ptr = getLoadStorePointerOperand(Instr); 2206 unsigned Alignment = getLoadStoreAlignment(Instr); 2207 // An alignment of 0 means target abi alignment. We need to use the scalar's 2208 // target abi alignment in such a case. 2209 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2210 if (!Alignment) 2211 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2212 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2213 2214 // Determine if the pointer operand of the access is either consecutive or 2215 // reverse consecutive. 2216 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2217 bool ConsecutiveStride = 2218 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2219 bool CreateGatherScatter = 2220 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2221 2222 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2223 // gather/scatter. Otherwise Decision should have been to Scalarize. 2224 assert((ConsecutiveStride || CreateGatherScatter) && 2225 "The instruction should be scalarized"); 2226 2227 // Handle consecutive loads/stores. 2228 if (ConsecutiveStride) 2229 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2230 2231 VectorParts Mask; 2232 bool isMaskRequired = BlockInMask; 2233 if (isMaskRequired) 2234 Mask = *BlockInMask; 2235 2236 bool InBounds = false; 2237 if (auto *gep = dyn_cast<GetElementPtrInst>( 2238 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2239 InBounds = gep->isInBounds(); 2240 2241 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2242 // Calculate the pointer for the specific unroll-part. 2243 GetElementPtrInst *PartPtr = nullptr; 2244 2245 if (Reverse) { 2246 // If the address is consecutive but reversed, then the 2247 // wide store needs to start at the last vector element. 2248 PartPtr = cast<GetElementPtrInst>( 2249 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2250 PartPtr->setIsInBounds(InBounds); 2251 PartPtr = cast<GetElementPtrInst>( 2252 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2253 PartPtr->setIsInBounds(InBounds); 2254 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2255 Mask[Part] = reverseVector(Mask[Part]); 2256 } else { 2257 PartPtr = cast<GetElementPtrInst>( 2258 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2259 PartPtr->setIsInBounds(InBounds); 2260 } 2261 2262 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2263 }; 2264 2265 // Handle Stores: 2266 if (SI) { 2267 setDebugLocFromInst(Builder, SI); 2268 2269 for (unsigned Part = 0; Part < UF; ++Part) { 2270 Instruction *NewSI = nullptr; 2271 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2272 if (CreateGatherScatter) { 2273 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2274 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2275 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2276 MaskPart); 2277 } else { 2278 if (Reverse) { 2279 // If we store to reverse consecutive memory locations, then we need 2280 // to reverse the order of elements in the stored value. 2281 StoredVal = reverseVector(StoredVal); 2282 // We don't want to update the value in the map as it might be used in 2283 // another expression. So don't call resetVectorValue(StoredVal). 2284 } 2285 auto *VecPtr = CreateVecPtr(Part, Ptr); 2286 if (isMaskRequired) 2287 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2288 Mask[Part]); 2289 else 2290 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2291 } 2292 addMetadata(NewSI, SI); 2293 } 2294 return; 2295 } 2296 2297 // Handle loads. 2298 assert(LI && "Must have a load instruction"); 2299 setDebugLocFromInst(Builder, LI); 2300 for (unsigned Part = 0; Part < UF; ++Part) { 2301 Value *NewLI; 2302 if (CreateGatherScatter) { 2303 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2304 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2305 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2306 nullptr, "wide.masked.gather"); 2307 addMetadata(NewLI, LI); 2308 } else { 2309 auto *VecPtr = CreateVecPtr(Part, Ptr); 2310 if (isMaskRequired) 2311 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2312 UndefValue::get(DataTy), 2313 "wide.masked.load"); 2314 else 2315 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2316 2317 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2318 addMetadata(NewLI, LI); 2319 if (Reverse) 2320 NewLI = reverseVector(NewLI); 2321 } 2322 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2323 } 2324 } 2325 2326 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2327 const VPIteration &Instance, 2328 bool IfPredicateInstr) { 2329 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2330 2331 setDebugLocFromInst(Builder, Instr); 2332 2333 // Does this instruction return a value ? 2334 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2335 2336 Instruction *Cloned = Instr->clone(); 2337 if (!IsVoidRetTy) 2338 Cloned->setName(Instr->getName() + ".cloned"); 2339 2340 // Replace the operands of the cloned instructions with their scalar 2341 // equivalents in the new loop. 2342 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2343 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2344 Cloned->setOperand(op, NewOp); 2345 } 2346 addNewMetadata(Cloned, Instr); 2347 2348 // Place the cloned scalar in the new loop. 2349 Builder.Insert(Cloned); 2350 2351 // Add the cloned scalar to the scalar map entry. 2352 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2353 2354 // If we just cloned a new assumption, add it the assumption cache. 2355 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2356 if (II->getIntrinsicID() == Intrinsic::assume) 2357 AC->registerAssumption(II); 2358 2359 // End if-block. 2360 if (IfPredicateInstr) 2361 PredicatedInstructions.push_back(Cloned); 2362 } 2363 2364 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2365 Value *End, Value *Step, 2366 Instruction *DL) { 2367 BasicBlock *Header = L->getHeader(); 2368 BasicBlock *Latch = L->getLoopLatch(); 2369 // As we're just creating this loop, it's possible no latch exists 2370 // yet. If so, use the header as this will be a single block loop. 2371 if (!Latch) 2372 Latch = Header; 2373 2374 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2375 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2376 setDebugLocFromInst(Builder, OldInst); 2377 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2378 2379 Builder.SetInsertPoint(Latch->getTerminator()); 2380 setDebugLocFromInst(Builder, OldInst); 2381 2382 // Create i+1 and fill the PHINode. 2383 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2384 Induction->addIncoming(Start, L->getLoopPreheader()); 2385 Induction->addIncoming(Next, Latch); 2386 // Create the compare. 2387 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2388 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2389 2390 // Now we have two terminators. Remove the old one from the block. 2391 Latch->getTerminator()->eraseFromParent(); 2392 2393 return Induction; 2394 } 2395 2396 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2397 if (TripCount) 2398 return TripCount; 2399 2400 assert(L && "Create Trip Count for null loop."); 2401 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2402 // Find the loop boundaries. 2403 ScalarEvolution *SE = PSE.getSE(); 2404 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2405 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2406 "Invalid loop count"); 2407 2408 Type *IdxTy = Legal->getWidestInductionType(); 2409 assert(IdxTy && "No type for induction"); 2410 2411 // The exit count might have the type of i64 while the phi is i32. This can 2412 // happen if we have an induction variable that is sign extended before the 2413 // compare. The only way that we get a backedge taken count is that the 2414 // induction variable was signed and as such will not overflow. In such a case 2415 // truncation is legal. 2416 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2417 IdxTy->getPrimitiveSizeInBits()) 2418 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2419 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2420 2421 // Get the total trip count from the count by adding 1. 2422 const SCEV *ExitCount = SE->getAddExpr( 2423 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2424 2425 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2426 2427 // Expand the trip count and place the new instructions in the preheader. 2428 // Notice that the pre-header does not change, only the loop body. 2429 SCEVExpander Exp(*SE, DL, "induction"); 2430 2431 // Count holds the overall loop count (N). 2432 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2433 L->getLoopPreheader()->getTerminator()); 2434 2435 if (TripCount->getType()->isPointerTy()) 2436 TripCount = 2437 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2438 L->getLoopPreheader()->getTerminator()); 2439 2440 return TripCount; 2441 } 2442 2443 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2444 if (VectorTripCount) 2445 return VectorTripCount; 2446 2447 Value *TC = getOrCreateTripCount(L); 2448 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2449 2450 Type *Ty = TC->getType(); 2451 Constant *Step = ConstantInt::get(Ty, VF * UF); 2452 2453 // If the tail is to be folded by masking, round the number of iterations N 2454 // up to a multiple of Step instead of rounding down. This is done by first 2455 // adding Step-1 and then rounding down. Note that it's ok if this addition 2456 // overflows: the vector induction variable will eventually wrap to zero given 2457 // that it starts at zero and its Step is a power of two; the loop will then 2458 // exit, with the last early-exit vector comparison also producing all-true. 2459 if (Cost->foldTailByMasking()) { 2460 assert(isPowerOf2_32(VF * UF) && 2461 "VF*UF must be a power of 2 when folding tail by masking"); 2462 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2463 } 2464 2465 // Now we need to generate the expression for the part of the loop that the 2466 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2467 // iterations are not required for correctness, or N - Step, otherwise. Step 2468 // is equal to the vectorization factor (number of SIMD elements) times the 2469 // unroll factor (number of SIMD instructions). 2470 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2471 2472 // If there is a non-reversed interleaved group that may speculatively access 2473 // memory out-of-bounds, we need to ensure that there will be at least one 2474 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2475 // the trip count, we set the remainder to be equal to the step. If the step 2476 // does not evenly divide the trip count, no adjustment is necessary since 2477 // there will already be scalar iterations. Note that the minimum iterations 2478 // check ensures that N >= Step. 2479 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2480 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2481 R = Builder.CreateSelect(IsZero, Step, R); 2482 } 2483 2484 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2485 2486 return VectorTripCount; 2487 } 2488 2489 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2490 const DataLayout &DL) { 2491 // Verify that V is a vector type with same number of elements as DstVTy. 2492 unsigned VF = DstVTy->getNumElements(); 2493 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2494 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2495 Type *SrcElemTy = SrcVecTy->getElementType(); 2496 Type *DstElemTy = DstVTy->getElementType(); 2497 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2498 "Vector elements must have same size"); 2499 2500 // Do a direct cast if element types are castable. 2501 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2502 return Builder.CreateBitOrPointerCast(V, DstVTy); 2503 } 2504 // V cannot be directly casted to desired vector type. 2505 // May happen when V is a floating point vector but DstVTy is a vector of 2506 // pointers or vice-versa. Handle this using a two-step bitcast using an 2507 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2508 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2509 "Only one type should be a pointer type"); 2510 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2511 "Only one type should be a floating point type"); 2512 Type *IntTy = 2513 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2514 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2515 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2516 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2517 } 2518 2519 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2520 BasicBlock *Bypass) { 2521 Value *Count = getOrCreateTripCount(L); 2522 BasicBlock *BB = L->getLoopPreheader(); 2523 IRBuilder<> Builder(BB->getTerminator()); 2524 2525 // Generate code to check if the loop's trip count is less than VF * UF, or 2526 // equal to it in case a scalar epilogue is required; this implies that the 2527 // vector trip count is zero. This check also covers the case where adding one 2528 // to the backedge-taken count overflowed leading to an incorrect trip count 2529 // of zero. In this case we will also jump to the scalar loop. 2530 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2531 : ICmpInst::ICMP_ULT; 2532 2533 // If tail is to be folded, vector loop takes care of all iterations. 2534 Value *CheckMinIters = Builder.getFalse(); 2535 if (!Cost->foldTailByMasking()) 2536 CheckMinIters = Builder.CreateICmp( 2537 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2538 "min.iters.check"); 2539 2540 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2541 // Update dominator tree immediately if the generated block is a 2542 // LoopBypassBlock because SCEV expansions to generate loop bypass 2543 // checks may query it before the current function is finished. 2544 DT->addNewBlock(NewBB, BB); 2545 if (L->getParentLoop()) 2546 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2547 ReplaceInstWithInst(BB->getTerminator(), 2548 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2549 LoopBypassBlocks.push_back(BB); 2550 } 2551 2552 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2553 BasicBlock *BB = L->getLoopPreheader(); 2554 2555 // Generate the code to check that the SCEV assumptions that we made. 2556 // We want the new basic block to start at the first instruction in a 2557 // sequence of instructions that form a check. 2558 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2559 "scev.check"); 2560 Value *SCEVCheck = 2561 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2562 2563 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2564 if (C->isZero()) 2565 return; 2566 2567 assert(!Cost->foldTailByMasking() && 2568 "Cannot SCEV check stride or overflow when folding tail"); 2569 // Create a new block containing the stride check. 2570 BB->setName("vector.scevcheck"); 2571 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2572 // Update dominator tree immediately if the generated block is a 2573 // LoopBypassBlock because SCEV expansions to generate loop bypass 2574 // checks may query it before the current function is finished. 2575 DT->addNewBlock(NewBB, BB); 2576 if (L->getParentLoop()) 2577 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2578 ReplaceInstWithInst(BB->getTerminator(), 2579 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2580 LoopBypassBlocks.push_back(BB); 2581 AddedSafetyChecks = true; 2582 } 2583 2584 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2585 // VPlan-native path does not do any analysis for runtime checks currently. 2586 if (EnableVPlanNativePath) 2587 return; 2588 2589 BasicBlock *BB = L->getLoopPreheader(); 2590 2591 // Generate the code that checks in runtime if arrays overlap. We put the 2592 // checks into a separate block to make the more common case of few elements 2593 // faster. 2594 Instruction *FirstCheckInst; 2595 Instruction *MemRuntimeCheck; 2596 std::tie(FirstCheckInst, MemRuntimeCheck) = 2597 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2598 if (!MemRuntimeCheck) 2599 return; 2600 2601 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2602 // Create a new block containing the memory check. 2603 BB->setName("vector.memcheck"); 2604 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2605 // Update dominator tree immediately if the generated block is a 2606 // LoopBypassBlock because SCEV expansions to generate loop bypass 2607 // checks may query it before the current function is finished. 2608 DT->addNewBlock(NewBB, BB); 2609 if (L->getParentLoop()) 2610 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2611 ReplaceInstWithInst(BB->getTerminator(), 2612 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2613 LoopBypassBlocks.push_back(BB); 2614 AddedSafetyChecks = true; 2615 2616 // We currently don't use LoopVersioning for the actual loop cloning but we 2617 // still use it to add the noalias metadata. 2618 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2619 PSE.getSE()); 2620 LVer->prepareNoAliasMetadata(); 2621 } 2622 2623 Value *InnerLoopVectorizer::emitTransformedIndex( 2624 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2625 const InductionDescriptor &ID) const { 2626 2627 SCEVExpander Exp(*SE, DL, "induction"); 2628 auto Step = ID.getStep(); 2629 auto StartValue = ID.getStartValue(); 2630 assert(Index->getType() == Step->getType() && 2631 "Index type does not match StepValue type"); 2632 2633 // Note: the IR at this point is broken. We cannot use SE to create any new 2634 // SCEV and then expand it, hoping that SCEV's simplification will give us 2635 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2636 // lead to various SCEV crashes. So all we can do is to use builder and rely 2637 // on InstCombine for future simplifications. Here we handle some trivial 2638 // cases only. 2639 auto CreateAdd = [&B](Value *X, Value *Y) { 2640 assert(X->getType() == Y->getType() && "Types don't match!"); 2641 if (auto *CX = dyn_cast<ConstantInt>(X)) 2642 if (CX->isZero()) 2643 return Y; 2644 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2645 if (CY->isZero()) 2646 return X; 2647 return B.CreateAdd(X, Y); 2648 }; 2649 2650 auto CreateMul = [&B](Value *X, Value *Y) { 2651 assert(X->getType() == Y->getType() && "Types don't match!"); 2652 if (auto *CX = dyn_cast<ConstantInt>(X)) 2653 if (CX->isOne()) 2654 return Y; 2655 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2656 if (CY->isOne()) 2657 return X; 2658 return B.CreateMul(X, Y); 2659 }; 2660 2661 switch (ID.getKind()) { 2662 case InductionDescriptor::IK_IntInduction: { 2663 assert(Index->getType() == StartValue->getType() && 2664 "Index type does not match StartValue type"); 2665 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2666 return B.CreateSub(StartValue, Index); 2667 auto *Offset = CreateMul( 2668 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2669 return CreateAdd(StartValue, Offset); 2670 } 2671 case InductionDescriptor::IK_PtrInduction: { 2672 assert(isa<SCEVConstant>(Step) && 2673 "Expected constant step for pointer induction"); 2674 return B.CreateGEP( 2675 nullptr, StartValue, 2676 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2677 &*B.GetInsertPoint()))); 2678 } 2679 case InductionDescriptor::IK_FpInduction: { 2680 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2681 auto InductionBinOp = ID.getInductionBinOp(); 2682 assert(InductionBinOp && 2683 (InductionBinOp->getOpcode() == Instruction::FAdd || 2684 InductionBinOp->getOpcode() == Instruction::FSub) && 2685 "Original bin op should be defined for FP induction"); 2686 2687 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2688 2689 // Floating point operations had to be 'fast' to enable the induction. 2690 FastMathFlags Flags; 2691 Flags.setFast(); 2692 2693 Value *MulExp = B.CreateFMul(StepValue, Index); 2694 if (isa<Instruction>(MulExp)) 2695 // We have to check, the MulExp may be a constant. 2696 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2697 2698 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2699 "induction"); 2700 if (isa<Instruction>(BOp)) 2701 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2702 2703 return BOp; 2704 } 2705 case InductionDescriptor::IK_NoInduction: 2706 return nullptr; 2707 } 2708 llvm_unreachable("invalid enum"); 2709 } 2710 2711 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2712 /* 2713 In this function we generate a new loop. The new loop will contain 2714 the vectorized instructions while the old loop will continue to run the 2715 scalar remainder. 2716 2717 [ ] <-- loop iteration number check. 2718 / | 2719 / v 2720 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2721 | / | 2722 | / v 2723 || [ ] <-- vector pre header. 2724 |/ | 2725 | v 2726 | [ ] \ 2727 | [ ]_| <-- vector loop. 2728 | | 2729 | v 2730 | -[ ] <--- middle-block. 2731 | / | 2732 | / v 2733 -|- >[ ] <--- new preheader. 2734 | | 2735 | v 2736 | [ ] \ 2737 | [ ]_| <-- old scalar loop to handle remainder. 2738 \ | 2739 \ v 2740 >[ ] <-- exit block. 2741 ... 2742 */ 2743 2744 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2745 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2746 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2747 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2748 assert(VectorPH && "Invalid loop structure"); 2749 assert(ExitBlock && "Must have an exit block"); 2750 2751 // Some loops have a single integer induction variable, while other loops 2752 // don't. One example is c++ iterators that often have multiple pointer 2753 // induction variables. In the code below we also support a case where we 2754 // don't have a single induction variable. 2755 // 2756 // We try to obtain an induction variable from the original loop as hard 2757 // as possible. However if we don't find one that: 2758 // - is an integer 2759 // - counts from zero, stepping by one 2760 // - is the size of the widest induction variable type 2761 // then we create a new one. 2762 OldInduction = Legal->getPrimaryInduction(); 2763 Type *IdxTy = Legal->getWidestInductionType(); 2764 2765 // Split the single block loop into the two loop structure described above. 2766 BasicBlock *VecBody = 2767 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2768 BasicBlock *MiddleBlock = 2769 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2770 BasicBlock *ScalarPH = 2771 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2772 2773 // Create and register the new vector loop. 2774 Loop *Lp = LI->AllocateLoop(); 2775 Loop *ParentLoop = OrigLoop->getParentLoop(); 2776 2777 // Insert the new loop into the loop nest and register the new basic blocks 2778 // before calling any utilities such as SCEV that require valid LoopInfo. 2779 if (ParentLoop) { 2780 ParentLoop->addChildLoop(Lp); 2781 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2782 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2783 } else { 2784 LI->addTopLevelLoop(Lp); 2785 } 2786 Lp->addBasicBlockToLoop(VecBody, *LI); 2787 2788 // Find the loop boundaries. 2789 Value *Count = getOrCreateTripCount(Lp); 2790 2791 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2792 2793 // Now, compare the new count to zero. If it is zero skip the vector loop and 2794 // jump to the scalar loop. This check also covers the case where the 2795 // backedge-taken count is uint##_max: adding one to it will overflow leading 2796 // to an incorrect trip count of zero. In this (rare) case we will also jump 2797 // to the scalar loop. 2798 emitMinimumIterationCountCheck(Lp, ScalarPH); 2799 2800 // Generate the code to check any assumptions that we've made for SCEV 2801 // expressions. 2802 emitSCEVChecks(Lp, ScalarPH); 2803 2804 // Generate the code that checks in runtime if arrays overlap. We put the 2805 // checks into a separate block to make the more common case of few elements 2806 // faster. 2807 emitMemRuntimeChecks(Lp, ScalarPH); 2808 2809 // Generate the induction variable. 2810 // The loop step is equal to the vectorization factor (num of SIMD elements) 2811 // times the unroll factor (num of SIMD instructions). 2812 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2813 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2814 Induction = 2815 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2816 getDebugLocFromInstOrOperands(OldInduction)); 2817 2818 // We are going to resume the execution of the scalar loop. 2819 // Go over all of the induction variables that we found and fix the 2820 // PHIs that are left in the scalar version of the loop. 2821 // The starting values of PHI nodes depend on the counter of the last 2822 // iteration in the vectorized loop. 2823 // If we come from a bypass edge then we need to start from the original 2824 // start value. 2825 2826 // This variable saves the new starting index for the scalar loop. It is used 2827 // to test if there are any tail iterations left once the vector loop has 2828 // completed. 2829 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2830 for (auto &InductionEntry : *List) { 2831 PHINode *OrigPhi = InductionEntry.first; 2832 InductionDescriptor II = InductionEntry.second; 2833 2834 // Create phi nodes to merge from the backedge-taken check block. 2835 PHINode *BCResumeVal = PHINode::Create( 2836 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2837 // Copy original phi DL over to the new one. 2838 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2839 Value *&EndValue = IVEndValues[OrigPhi]; 2840 if (OrigPhi == OldInduction) { 2841 // We know what the end value is. 2842 EndValue = CountRoundDown; 2843 } else { 2844 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2845 Type *StepType = II.getStep()->getType(); 2846 Instruction::CastOps CastOp = 2847 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2848 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2849 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2850 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2851 EndValue->setName("ind.end"); 2852 } 2853 2854 // The new PHI merges the original incoming value, in case of a bypass, 2855 // or the value at the end of the vectorized loop. 2856 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2857 2858 // Fix the scalar body counter (PHI node). 2859 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2860 2861 // The old induction's phi node in the scalar body needs the truncated 2862 // value. 2863 for (BasicBlock *BB : LoopBypassBlocks) 2864 BCResumeVal->addIncoming(II.getStartValue(), BB); 2865 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2866 } 2867 2868 // Add a check in the middle block to see if we have completed 2869 // all of the iterations in the first vector loop. 2870 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2871 // If tail is to be folded, we know we don't need to run the remainder. 2872 Value *CmpN = Builder.getTrue(); 2873 if (!Cost->foldTailByMasking()) 2874 CmpN = 2875 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2876 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2877 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2878 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2879 2880 // Get ready to start creating new instructions into the vectorized body. 2881 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2882 2883 // Save the state. 2884 LoopVectorPreHeader = Lp->getLoopPreheader(); 2885 LoopScalarPreHeader = ScalarPH; 2886 LoopMiddleBlock = MiddleBlock; 2887 LoopExitBlock = ExitBlock; 2888 LoopVectorBody = VecBody; 2889 LoopScalarBody = OldBasicBlock; 2890 2891 Optional<MDNode *> VectorizedLoopID = 2892 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2893 LLVMLoopVectorizeFollowupVectorized}); 2894 if (VectorizedLoopID.hasValue()) { 2895 Lp->setLoopID(VectorizedLoopID.getValue()); 2896 2897 // Do not setAlreadyVectorized if loop attributes have been defined 2898 // explicitly. 2899 return LoopVectorPreHeader; 2900 } 2901 2902 // Keep all loop hints from the original loop on the vector loop (we'll 2903 // replace the vectorizer-specific hints below). 2904 if (MDNode *LID = OrigLoop->getLoopID()) 2905 Lp->setLoopID(LID); 2906 2907 LoopVectorizeHints Hints(Lp, true, *ORE); 2908 Hints.setAlreadyVectorized(); 2909 2910 return LoopVectorPreHeader; 2911 } 2912 2913 // Fix up external users of the induction variable. At this point, we are 2914 // in LCSSA form, with all external PHIs that use the IV having one input value, 2915 // coming from the remainder loop. We need those PHIs to also have a correct 2916 // value for the IV when arriving directly from the middle block. 2917 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2918 const InductionDescriptor &II, 2919 Value *CountRoundDown, Value *EndValue, 2920 BasicBlock *MiddleBlock) { 2921 // There are two kinds of external IV usages - those that use the value 2922 // computed in the last iteration (the PHI) and those that use the penultimate 2923 // value (the value that feeds into the phi from the loop latch). 2924 // We allow both, but they, obviously, have different values. 2925 2926 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2927 2928 DenseMap<Value *, Value *> MissingVals; 2929 2930 // An external user of the last iteration's value should see the value that 2931 // the remainder loop uses to initialize its own IV. 2932 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2933 for (User *U : PostInc->users()) { 2934 Instruction *UI = cast<Instruction>(U); 2935 if (!OrigLoop->contains(UI)) { 2936 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2937 MissingVals[UI] = EndValue; 2938 } 2939 } 2940 2941 // An external user of the penultimate value need to see EndValue - Step. 2942 // The simplest way to get this is to recompute it from the constituent SCEVs, 2943 // that is Start + (Step * (CRD - 1)). 2944 for (User *U : OrigPhi->users()) { 2945 auto *UI = cast<Instruction>(U); 2946 if (!OrigLoop->contains(UI)) { 2947 const DataLayout &DL = 2948 OrigLoop->getHeader()->getModule()->getDataLayout(); 2949 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2950 2951 IRBuilder<> B(MiddleBlock->getTerminator()); 2952 Value *CountMinusOne = B.CreateSub( 2953 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2954 Value *CMO = 2955 !II.getStep()->getType()->isIntegerTy() 2956 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 2957 II.getStep()->getType()) 2958 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 2959 CMO->setName("cast.cmo"); 2960 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 2961 Escape->setName("ind.escape"); 2962 MissingVals[UI] = Escape; 2963 } 2964 } 2965 2966 for (auto &I : MissingVals) { 2967 PHINode *PHI = cast<PHINode>(I.first); 2968 // One corner case we have to handle is two IVs "chasing" each-other, 2969 // that is %IV2 = phi [...], [ %IV1, %latch ] 2970 // In this case, if IV1 has an external use, we need to avoid adding both 2971 // "last value of IV1" and "penultimate value of IV2". So, verify that we 2972 // don't already have an incoming value for the middle block. 2973 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 2974 PHI->addIncoming(I.second, MiddleBlock); 2975 } 2976 } 2977 2978 namespace { 2979 2980 struct CSEDenseMapInfo { 2981 static bool canHandle(const Instruction *I) { 2982 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2983 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2984 } 2985 2986 static inline Instruction *getEmptyKey() { 2987 return DenseMapInfo<Instruction *>::getEmptyKey(); 2988 } 2989 2990 static inline Instruction *getTombstoneKey() { 2991 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2992 } 2993 2994 static unsigned getHashValue(const Instruction *I) { 2995 assert(canHandle(I) && "Unknown instruction!"); 2996 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2997 I->value_op_end())); 2998 } 2999 3000 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3001 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3002 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3003 return LHS == RHS; 3004 return LHS->isIdenticalTo(RHS); 3005 } 3006 }; 3007 3008 } // end anonymous namespace 3009 3010 ///Perform cse of induction variable instructions. 3011 static void cse(BasicBlock *BB) { 3012 // Perform simple cse. 3013 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3014 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3015 Instruction *In = &*I++; 3016 3017 if (!CSEDenseMapInfo::canHandle(In)) 3018 continue; 3019 3020 // Check if we can replace this instruction with any of the 3021 // visited instructions. 3022 if (Instruction *V = CSEMap.lookup(In)) { 3023 In->replaceAllUsesWith(V); 3024 In->eraseFromParent(); 3025 continue; 3026 } 3027 3028 CSEMap[In] = In; 3029 } 3030 } 3031 3032 /// Estimate the overhead of scalarizing an instruction. This is a 3033 /// convenience wrapper for the type-based getScalarizationOverhead API. 3034 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3035 const TargetTransformInfo &TTI) { 3036 if (VF == 1) 3037 return 0; 3038 3039 unsigned Cost = 0; 3040 Type *RetTy = ToVectorTy(I->getType(), VF); 3041 if (!RetTy->isVoidTy() && 3042 (!isa<LoadInst>(I) || 3043 !TTI.supportsEfficientVectorElementLoadStore())) 3044 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3045 3046 // Some targets keep addresses scalar. 3047 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 3048 return Cost; 3049 3050 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3051 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3052 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3053 } 3054 else if (!isa<StoreInst>(I) || 3055 !TTI.supportsEfficientVectorElementLoadStore()) { 3056 SmallVector<const Value *, 4> Operands(I->operand_values()); 3057 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3058 } 3059 3060 return Cost; 3061 } 3062 3063 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3064 // Return the cost of the instruction, including scalarization overhead if it's 3065 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3066 // i.e. either vector version isn't available, or is too expensive. 3067 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3068 const TargetTransformInfo &TTI, 3069 const TargetLibraryInfo *TLI, 3070 bool &NeedToScalarize) { 3071 Function *F = CI->getCalledFunction(); 3072 StringRef FnName = CI->getCalledFunction()->getName(); 3073 Type *ScalarRetTy = CI->getType(); 3074 SmallVector<Type *, 4> Tys, ScalarTys; 3075 for (auto &ArgOp : CI->arg_operands()) 3076 ScalarTys.push_back(ArgOp->getType()); 3077 3078 // Estimate cost of scalarized vector call. The source operands are assumed 3079 // to be vectors, so we need to extract individual elements from there, 3080 // execute VF scalar calls, and then gather the result into the vector return 3081 // value. 3082 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3083 if (VF == 1) 3084 return ScalarCallCost; 3085 3086 // Compute corresponding vector type for return value and arguments. 3087 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3088 for (Type *ScalarTy : ScalarTys) 3089 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3090 3091 // Compute costs of unpacking argument values for the scalar calls and 3092 // packing the return values to a vector. 3093 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3094 3095 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3096 3097 // If we can't emit a vector call for this function, then the currently found 3098 // cost is the cost we need to return. 3099 NeedToScalarize = true; 3100 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3101 return Cost; 3102 3103 // If the corresponding vector cost is cheaper, return its cost. 3104 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3105 if (VectorCallCost < Cost) { 3106 NeedToScalarize = false; 3107 return VectorCallCost; 3108 } 3109 return Cost; 3110 } 3111 3112 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3113 // factor VF. Return the cost of the instruction, including scalarization 3114 // overhead if it's needed. 3115 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3116 const TargetTransformInfo &TTI, 3117 const TargetLibraryInfo *TLI) { 3118 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3119 assert(ID && "Expected intrinsic call!"); 3120 3121 FastMathFlags FMF; 3122 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3123 FMF = FPMO->getFastMathFlags(); 3124 3125 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3126 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3127 } 3128 3129 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3130 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3131 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3132 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3133 } 3134 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3135 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3136 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3137 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3138 } 3139 3140 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3141 // For every instruction `I` in MinBWs, truncate the operands, create a 3142 // truncated version of `I` and reextend its result. InstCombine runs 3143 // later and will remove any ext/trunc pairs. 3144 SmallPtrSet<Value *, 4> Erased; 3145 for (const auto &KV : Cost->getMinimalBitwidths()) { 3146 // If the value wasn't vectorized, we must maintain the original scalar 3147 // type. The absence of the value from VectorLoopValueMap indicates that it 3148 // wasn't vectorized. 3149 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3150 continue; 3151 for (unsigned Part = 0; Part < UF; ++Part) { 3152 Value *I = getOrCreateVectorValue(KV.first, Part); 3153 if (Erased.find(I) != Erased.end() || I->use_empty() || 3154 !isa<Instruction>(I)) 3155 continue; 3156 Type *OriginalTy = I->getType(); 3157 Type *ScalarTruncatedTy = 3158 IntegerType::get(OriginalTy->getContext(), KV.second); 3159 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3160 OriginalTy->getVectorNumElements()); 3161 if (TruncatedTy == OriginalTy) 3162 continue; 3163 3164 IRBuilder<> B(cast<Instruction>(I)); 3165 auto ShrinkOperand = [&](Value *V) -> Value * { 3166 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3167 if (ZI->getSrcTy() == TruncatedTy) 3168 return ZI->getOperand(0); 3169 return B.CreateZExtOrTrunc(V, TruncatedTy); 3170 }; 3171 3172 // The actual instruction modification depends on the instruction type, 3173 // unfortunately. 3174 Value *NewI = nullptr; 3175 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3176 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3177 ShrinkOperand(BO->getOperand(1))); 3178 3179 // Any wrapping introduced by shrinking this operation shouldn't be 3180 // considered undefined behavior. So, we can't unconditionally copy 3181 // arithmetic wrapping flags to NewI. 3182 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3183 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3184 NewI = 3185 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3186 ShrinkOperand(CI->getOperand(1))); 3187 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3188 NewI = B.CreateSelect(SI->getCondition(), 3189 ShrinkOperand(SI->getTrueValue()), 3190 ShrinkOperand(SI->getFalseValue())); 3191 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3192 switch (CI->getOpcode()) { 3193 default: 3194 llvm_unreachable("Unhandled cast!"); 3195 case Instruction::Trunc: 3196 NewI = ShrinkOperand(CI->getOperand(0)); 3197 break; 3198 case Instruction::SExt: 3199 NewI = B.CreateSExtOrTrunc( 3200 CI->getOperand(0), 3201 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3202 break; 3203 case Instruction::ZExt: 3204 NewI = B.CreateZExtOrTrunc( 3205 CI->getOperand(0), 3206 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3207 break; 3208 } 3209 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3210 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3211 auto *O0 = B.CreateZExtOrTrunc( 3212 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3213 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3214 auto *O1 = B.CreateZExtOrTrunc( 3215 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3216 3217 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3218 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3219 // Don't do anything with the operands, just extend the result. 3220 continue; 3221 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3222 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3223 auto *O0 = B.CreateZExtOrTrunc( 3224 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3225 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3226 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3227 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3228 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3229 auto *O0 = B.CreateZExtOrTrunc( 3230 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3231 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3232 } else { 3233 // If we don't know what to do, be conservative and don't do anything. 3234 continue; 3235 } 3236 3237 // Lastly, extend the result. 3238 NewI->takeName(cast<Instruction>(I)); 3239 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3240 I->replaceAllUsesWith(Res); 3241 cast<Instruction>(I)->eraseFromParent(); 3242 Erased.insert(I); 3243 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3244 } 3245 } 3246 3247 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3248 for (const auto &KV : Cost->getMinimalBitwidths()) { 3249 // If the value wasn't vectorized, we must maintain the original scalar 3250 // type. The absence of the value from VectorLoopValueMap indicates that it 3251 // wasn't vectorized. 3252 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3253 continue; 3254 for (unsigned Part = 0; Part < UF; ++Part) { 3255 Value *I = getOrCreateVectorValue(KV.first, Part); 3256 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3257 if (Inst && Inst->use_empty()) { 3258 Value *NewI = Inst->getOperand(0); 3259 Inst->eraseFromParent(); 3260 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3261 } 3262 } 3263 } 3264 } 3265 3266 void InnerLoopVectorizer::fixVectorizedLoop() { 3267 // Insert truncates and extends for any truncated instructions as hints to 3268 // InstCombine. 3269 if (VF > 1) 3270 truncateToMinimalBitwidths(); 3271 3272 // Fix widened non-induction PHIs by setting up the PHI operands. 3273 if (OrigPHIsToFix.size()) { 3274 assert(EnableVPlanNativePath && 3275 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3276 fixNonInductionPHIs(); 3277 } 3278 3279 // At this point every instruction in the original loop is widened to a 3280 // vector form. Now we need to fix the recurrences in the loop. These PHI 3281 // nodes are currently empty because we did not want to introduce cycles. 3282 // This is the second stage of vectorizing recurrences. 3283 fixCrossIterationPHIs(); 3284 3285 // Update the dominator tree. 3286 // 3287 // FIXME: After creating the structure of the new loop, the dominator tree is 3288 // no longer up-to-date, and it remains that way until we update it 3289 // here. An out-of-date dominator tree is problematic for SCEV, 3290 // because SCEVExpander uses it to guide code generation. The 3291 // vectorizer use SCEVExpanders in several places. Instead, we should 3292 // keep the dominator tree up-to-date as we go. 3293 updateAnalysis(); 3294 3295 // Fix-up external users of the induction variables. 3296 for (auto &Entry : *Legal->getInductionVars()) 3297 fixupIVUsers(Entry.first, Entry.second, 3298 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3299 IVEndValues[Entry.first], LoopMiddleBlock); 3300 3301 fixLCSSAPHIs(); 3302 for (Instruction *PI : PredicatedInstructions) 3303 sinkScalarOperands(&*PI); 3304 3305 // Remove redundant induction instructions. 3306 cse(LoopVectorBody); 3307 } 3308 3309 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3310 // In order to support recurrences we need to be able to vectorize Phi nodes. 3311 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3312 // stage #2: We now need to fix the recurrences by adding incoming edges to 3313 // the currently empty PHI nodes. At this point every instruction in the 3314 // original loop is widened to a vector form so we can use them to construct 3315 // the incoming edges. 3316 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3317 // Handle first-order recurrences and reductions that need to be fixed. 3318 if (Legal->isFirstOrderRecurrence(&Phi)) 3319 fixFirstOrderRecurrence(&Phi); 3320 else if (Legal->isReductionVariable(&Phi)) 3321 fixReduction(&Phi); 3322 } 3323 } 3324 3325 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3326 // This is the second phase of vectorizing first-order recurrences. An 3327 // overview of the transformation is described below. Suppose we have the 3328 // following loop. 3329 // 3330 // for (int i = 0; i < n; ++i) 3331 // b[i] = a[i] - a[i - 1]; 3332 // 3333 // There is a first-order recurrence on "a". For this loop, the shorthand 3334 // scalar IR looks like: 3335 // 3336 // scalar.ph: 3337 // s_init = a[-1] 3338 // br scalar.body 3339 // 3340 // scalar.body: 3341 // i = phi [0, scalar.ph], [i+1, scalar.body] 3342 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3343 // s2 = a[i] 3344 // b[i] = s2 - s1 3345 // br cond, scalar.body, ... 3346 // 3347 // In this example, s1 is a recurrence because it's value depends on the 3348 // previous iteration. In the first phase of vectorization, we created a 3349 // temporary value for s1. We now complete the vectorization and produce the 3350 // shorthand vector IR shown below (for VF = 4, UF = 1). 3351 // 3352 // vector.ph: 3353 // v_init = vector(..., ..., ..., a[-1]) 3354 // br vector.body 3355 // 3356 // vector.body 3357 // i = phi [0, vector.ph], [i+4, vector.body] 3358 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3359 // v2 = a[i, i+1, i+2, i+3]; 3360 // v3 = vector(v1(3), v2(0, 1, 2)) 3361 // b[i, i+1, i+2, i+3] = v2 - v3 3362 // br cond, vector.body, middle.block 3363 // 3364 // middle.block: 3365 // x = v2(3) 3366 // br scalar.ph 3367 // 3368 // scalar.ph: 3369 // s_init = phi [x, middle.block], [a[-1], otherwise] 3370 // br scalar.body 3371 // 3372 // After execution completes the vector loop, we extract the next value of 3373 // the recurrence (x) to use as the initial value in the scalar loop. 3374 3375 // Get the original loop preheader and single loop latch. 3376 auto *Preheader = OrigLoop->getLoopPreheader(); 3377 auto *Latch = OrigLoop->getLoopLatch(); 3378 3379 // Get the initial and previous values of the scalar recurrence. 3380 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3381 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3382 3383 // Create a vector from the initial value. 3384 auto *VectorInit = ScalarInit; 3385 if (VF > 1) { 3386 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3387 VectorInit = Builder.CreateInsertElement( 3388 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3389 Builder.getInt32(VF - 1), "vector.recur.init"); 3390 } 3391 3392 // We constructed a temporary phi node in the first phase of vectorization. 3393 // This phi node will eventually be deleted. 3394 Builder.SetInsertPoint( 3395 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3396 3397 // Create a phi node for the new recurrence. The current value will either be 3398 // the initial value inserted into a vector or loop-varying vector value. 3399 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3400 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3401 3402 // Get the vectorized previous value of the last part UF - 1. It appears last 3403 // among all unrolled iterations, due to the order of their construction. 3404 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3405 3406 // Set the insertion point after the previous value if it is an instruction. 3407 // Note that the previous value may have been constant-folded so it is not 3408 // guaranteed to be an instruction in the vector loop. Also, if the previous 3409 // value is a phi node, we should insert after all the phi nodes to avoid 3410 // breaking basic block verification. 3411 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3412 isa<PHINode>(PreviousLastPart)) 3413 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3414 else 3415 Builder.SetInsertPoint( 3416 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3417 3418 // We will construct a vector for the recurrence by combining the values for 3419 // the current and previous iterations. This is the required shuffle mask. 3420 SmallVector<Constant *, 8> ShuffleMask(VF); 3421 ShuffleMask[0] = Builder.getInt32(VF - 1); 3422 for (unsigned I = 1; I < VF; ++I) 3423 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3424 3425 // The vector from which to take the initial value for the current iteration 3426 // (actual or unrolled). Initially, this is the vector phi node. 3427 Value *Incoming = VecPhi; 3428 3429 // Shuffle the current and previous vector and update the vector parts. 3430 for (unsigned Part = 0; Part < UF; ++Part) { 3431 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3432 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3433 auto *Shuffle = 3434 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3435 ConstantVector::get(ShuffleMask)) 3436 : Incoming; 3437 PhiPart->replaceAllUsesWith(Shuffle); 3438 cast<Instruction>(PhiPart)->eraseFromParent(); 3439 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3440 Incoming = PreviousPart; 3441 } 3442 3443 // Fix the latch value of the new recurrence in the vector loop. 3444 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3445 3446 // Extract the last vector element in the middle block. This will be the 3447 // initial value for the recurrence when jumping to the scalar loop. 3448 auto *ExtractForScalar = Incoming; 3449 if (VF > 1) { 3450 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3451 ExtractForScalar = Builder.CreateExtractElement( 3452 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3453 } 3454 // Extract the second last element in the middle block if the 3455 // Phi is used outside the loop. We need to extract the phi itself 3456 // and not the last element (the phi update in the current iteration). This 3457 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3458 // when the scalar loop is not run at all. 3459 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3460 if (VF > 1) 3461 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3462 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3463 // When loop is unrolled without vectorizing, initialize 3464 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3465 // `Incoming`. This is analogous to the vectorized case above: extracting the 3466 // second last element when VF > 1. 3467 else if (UF > 1) 3468 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3469 3470 // Fix the initial value of the original recurrence in the scalar loop. 3471 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3472 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3473 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3474 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3475 Start->addIncoming(Incoming, BB); 3476 } 3477 3478 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3479 Phi->setName("scalar.recur"); 3480 3481 // Finally, fix users of the recurrence outside the loop. The users will need 3482 // either the last value of the scalar recurrence or the last value of the 3483 // vector recurrence we extracted in the middle block. Since the loop is in 3484 // LCSSA form, we just need to find all the phi nodes for the original scalar 3485 // recurrence in the exit block, and then add an edge for the middle block. 3486 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3487 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3488 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3489 } 3490 } 3491 } 3492 3493 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3494 Constant *Zero = Builder.getInt32(0); 3495 3496 // Get it's reduction variable descriptor. 3497 assert(Legal->isReductionVariable(Phi) && 3498 "Unable to find the reduction variable"); 3499 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3500 3501 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3502 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3503 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3504 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3505 RdxDesc.getMinMaxRecurrenceKind(); 3506 setDebugLocFromInst(Builder, ReductionStartValue); 3507 3508 // We need to generate a reduction vector from the incoming scalar. 3509 // To do so, we need to generate the 'identity' vector and override 3510 // one of the elements with the incoming scalar reduction. We need 3511 // to do it in the vector-loop preheader. 3512 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3513 3514 // This is the vector-clone of the value that leaves the loop. 3515 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3516 3517 // Find the reduction identity variable. Zero for addition, or, xor, 3518 // one for multiplication, -1 for And. 3519 Value *Identity; 3520 Value *VectorStart; 3521 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3522 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3523 // MinMax reduction have the start value as their identify. 3524 if (VF == 1) { 3525 VectorStart = Identity = ReductionStartValue; 3526 } else { 3527 VectorStart = Identity = 3528 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3529 } 3530 } else { 3531 // Handle other reduction kinds: 3532 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3533 RK, VecTy->getScalarType()); 3534 if (VF == 1) { 3535 Identity = Iden; 3536 // This vector is the Identity vector where the first element is the 3537 // incoming scalar reduction. 3538 VectorStart = ReductionStartValue; 3539 } else { 3540 Identity = ConstantVector::getSplat(VF, Iden); 3541 3542 // This vector is the Identity vector where the first element is the 3543 // incoming scalar reduction. 3544 VectorStart = 3545 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3546 } 3547 } 3548 3549 // Fix the vector-loop phi. 3550 3551 // Reductions do not have to start at zero. They can start with 3552 // any loop invariant values. 3553 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3554 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3555 for (unsigned Part = 0; Part < UF; ++Part) { 3556 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3557 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3558 // Make sure to add the reduction stat value only to the 3559 // first unroll part. 3560 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3561 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3562 cast<PHINode>(VecRdxPhi) 3563 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3564 } 3565 3566 // Before each round, move the insertion point right between 3567 // the PHIs and the values we are going to write. 3568 // This allows us to write both PHINodes and the extractelement 3569 // instructions. 3570 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3571 3572 setDebugLocFromInst(Builder, LoopExitInst); 3573 3574 // If the vector reduction can be performed in a smaller type, we truncate 3575 // then extend the loop exit value to enable InstCombine to evaluate the 3576 // entire expression in the smaller type. 3577 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3578 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3579 Builder.SetInsertPoint( 3580 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3581 VectorParts RdxParts(UF); 3582 for (unsigned Part = 0; Part < UF; ++Part) { 3583 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3584 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3585 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3586 : Builder.CreateZExt(Trunc, VecTy); 3587 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3588 UI != RdxParts[Part]->user_end();) 3589 if (*UI != Trunc) { 3590 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3591 RdxParts[Part] = Extnd; 3592 } else { 3593 ++UI; 3594 } 3595 } 3596 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3597 for (unsigned Part = 0; Part < UF; ++Part) { 3598 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3599 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3600 } 3601 } 3602 3603 // Reduce all of the unrolled parts into a single vector. 3604 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3605 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3606 setDebugLocFromInst(Builder, ReducedPartRdx); 3607 for (unsigned Part = 1; Part < UF; ++Part) { 3608 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3609 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3610 // Floating point operations had to be 'fast' to enable the reduction. 3611 ReducedPartRdx = addFastMathFlag( 3612 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3613 ReducedPartRdx, "bin.rdx")); 3614 else 3615 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3616 RdxPart); 3617 } 3618 3619 if (VF > 1) { 3620 bool NoNaN = Legal->hasFunNoNaNAttr(); 3621 ReducedPartRdx = 3622 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3623 // If the reduction can be performed in a smaller type, we need to extend 3624 // the reduction to the wider type before we branch to the original loop. 3625 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3626 ReducedPartRdx = 3627 RdxDesc.isSigned() 3628 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3629 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3630 } 3631 3632 // Create a phi node that merges control-flow from the backedge-taken check 3633 // block and the middle block. 3634 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3635 LoopScalarPreHeader->getTerminator()); 3636 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3637 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3638 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3639 3640 // Now, we need to fix the users of the reduction variable 3641 // inside and outside of the scalar remainder loop. 3642 // We know that the loop is in LCSSA form. We need to update the 3643 // PHI nodes in the exit blocks. 3644 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3645 // All PHINodes need to have a single entry edge, or two if 3646 // we already fixed them. 3647 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3648 3649 // We found a reduction value exit-PHI. Update it with the 3650 // incoming bypass edge. 3651 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3652 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3653 } // end of the LCSSA phi scan. 3654 3655 // Fix the scalar loop reduction variable with the incoming reduction sum 3656 // from the vector body and from the backedge value. 3657 int IncomingEdgeBlockIdx = 3658 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3659 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3660 // Pick the other block. 3661 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3662 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3663 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3664 } 3665 3666 void InnerLoopVectorizer::fixLCSSAPHIs() { 3667 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3668 if (LCSSAPhi.getNumIncomingValues() == 1) { 3669 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3670 // Non-instruction incoming values will have only one value. 3671 unsigned LastLane = 0; 3672 if (isa<Instruction>(IncomingValue)) 3673 LastLane = Cost->isUniformAfterVectorization( 3674 cast<Instruction>(IncomingValue), VF) 3675 ? 0 3676 : VF - 1; 3677 // Can be a loop invariant incoming value or the last scalar value to be 3678 // extracted from the vectorized loop. 3679 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3680 Value *lastIncomingValue = 3681 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3682 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3683 } 3684 } 3685 } 3686 3687 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3688 // The basic block and loop containing the predicated instruction. 3689 auto *PredBB = PredInst->getParent(); 3690 auto *VectorLoop = LI->getLoopFor(PredBB); 3691 3692 // Initialize a worklist with the operands of the predicated instruction. 3693 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3694 3695 // Holds instructions that we need to analyze again. An instruction may be 3696 // reanalyzed if we don't yet know if we can sink it or not. 3697 SmallVector<Instruction *, 8> InstsToReanalyze; 3698 3699 // Returns true if a given use occurs in the predicated block. Phi nodes use 3700 // their operands in their corresponding predecessor blocks. 3701 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3702 auto *I = cast<Instruction>(U.getUser()); 3703 BasicBlock *BB = I->getParent(); 3704 if (auto *Phi = dyn_cast<PHINode>(I)) 3705 BB = Phi->getIncomingBlock( 3706 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3707 return BB == PredBB; 3708 }; 3709 3710 // Iteratively sink the scalarized operands of the predicated instruction 3711 // into the block we created for it. When an instruction is sunk, it's 3712 // operands are then added to the worklist. The algorithm ends after one pass 3713 // through the worklist doesn't sink a single instruction. 3714 bool Changed; 3715 do { 3716 // Add the instructions that need to be reanalyzed to the worklist, and 3717 // reset the changed indicator. 3718 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3719 InstsToReanalyze.clear(); 3720 Changed = false; 3721 3722 while (!Worklist.empty()) { 3723 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3724 3725 // We can't sink an instruction if it is a phi node, is already in the 3726 // predicated block, is not in the loop, or may have side effects. 3727 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3728 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3729 continue; 3730 3731 // It's legal to sink the instruction if all its uses occur in the 3732 // predicated block. Otherwise, there's nothing to do yet, and we may 3733 // need to reanalyze the instruction. 3734 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3735 InstsToReanalyze.push_back(I); 3736 continue; 3737 } 3738 3739 // Move the instruction to the beginning of the predicated block, and add 3740 // it's operands to the worklist. 3741 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3742 Worklist.insert(I->op_begin(), I->op_end()); 3743 3744 // The sinking may have enabled other instructions to be sunk, so we will 3745 // need to iterate. 3746 Changed = true; 3747 } 3748 } while (Changed); 3749 } 3750 3751 void InnerLoopVectorizer::fixNonInductionPHIs() { 3752 for (PHINode *OrigPhi : OrigPHIsToFix) { 3753 PHINode *NewPhi = 3754 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3755 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3756 3757 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3758 predecessors(OrigPhi->getParent())); 3759 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3760 predecessors(NewPhi->getParent())); 3761 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3762 "Scalar and Vector BB should have the same number of predecessors"); 3763 3764 // The insertion point in Builder may be invalidated by the time we get 3765 // here. Force the Builder insertion point to something valid so that we do 3766 // not run into issues during insertion point restore in 3767 // getOrCreateVectorValue calls below. 3768 Builder.SetInsertPoint(NewPhi); 3769 3770 // The predecessor order is preserved and we can rely on mapping between 3771 // scalar and vector block predecessors. 3772 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3773 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3774 3775 // When looking up the new scalar/vector values to fix up, use incoming 3776 // values from original phi. 3777 Value *ScIncV = 3778 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3779 3780 // Scalar incoming value may need a broadcast 3781 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3782 NewPhi->addIncoming(NewIncV, NewPredBB); 3783 } 3784 } 3785 } 3786 3787 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3788 unsigned VF) { 3789 PHINode *P = cast<PHINode>(PN); 3790 if (EnableVPlanNativePath) { 3791 // Currently we enter here in the VPlan-native path for non-induction 3792 // PHIs where all control flow is uniform. We simply widen these PHIs. 3793 // Create a vector phi with no operands - the vector phi operands will be 3794 // set at the end of vector code generation. 3795 Type *VecTy = 3796 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3797 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3798 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3799 OrigPHIsToFix.push_back(P); 3800 3801 return; 3802 } 3803 3804 assert(PN->getParent() == OrigLoop->getHeader() && 3805 "Non-header phis should have been handled elsewhere"); 3806 3807 // In order to support recurrences we need to be able to vectorize Phi nodes. 3808 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3809 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3810 // this value when we vectorize all of the instructions that use the PHI. 3811 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3812 for (unsigned Part = 0; Part < UF; ++Part) { 3813 // This is phase one of vectorizing PHIs. 3814 Type *VecTy = 3815 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3816 Value *EntryPart = PHINode::Create( 3817 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3818 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3819 } 3820 return; 3821 } 3822 3823 setDebugLocFromInst(Builder, P); 3824 3825 // This PHINode must be an induction variable. 3826 // Make sure that we know about it. 3827 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3828 3829 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3830 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3831 3832 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3833 // which can be found from the original scalar operations. 3834 switch (II.getKind()) { 3835 case InductionDescriptor::IK_NoInduction: 3836 llvm_unreachable("Unknown induction"); 3837 case InductionDescriptor::IK_IntInduction: 3838 case InductionDescriptor::IK_FpInduction: 3839 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3840 case InductionDescriptor::IK_PtrInduction: { 3841 // Handle the pointer induction variable case. 3842 assert(P->getType()->isPointerTy() && "Unexpected type."); 3843 // This is the normalized GEP that starts counting at zero. 3844 Value *PtrInd = Induction; 3845 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3846 // Determine the number of scalars we need to generate for each unroll 3847 // iteration. If the instruction is uniform, we only need to generate the 3848 // first lane. Otherwise, we generate all VF values. 3849 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3850 // These are the scalar results. Notice that we don't generate vector GEPs 3851 // because scalar GEPs result in better code. 3852 for (unsigned Part = 0; Part < UF; ++Part) { 3853 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3854 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3855 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3856 Value *SclrGep = 3857 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3858 SclrGep->setName("next.gep"); 3859 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3860 } 3861 } 3862 return; 3863 } 3864 } 3865 } 3866 3867 /// A helper function for checking whether an integer division-related 3868 /// instruction may divide by zero (in which case it must be predicated if 3869 /// executed conditionally in the scalar code). 3870 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3871 /// Non-zero divisors that are non compile-time constants will not be 3872 /// converted into multiplication, so we will still end up scalarizing 3873 /// the division, but can do so w/o predication. 3874 static bool mayDivideByZero(Instruction &I) { 3875 assert((I.getOpcode() == Instruction::UDiv || 3876 I.getOpcode() == Instruction::SDiv || 3877 I.getOpcode() == Instruction::URem || 3878 I.getOpcode() == Instruction::SRem) && 3879 "Unexpected instruction"); 3880 Value *Divisor = I.getOperand(1); 3881 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3882 return !CInt || CInt->isZero(); 3883 } 3884 3885 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3886 switch (I.getOpcode()) { 3887 case Instruction::Br: 3888 case Instruction::PHI: 3889 llvm_unreachable("This instruction is handled by a different recipe."); 3890 case Instruction::GetElementPtr: { 3891 // Construct a vector GEP by widening the operands of the scalar GEP as 3892 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3893 // results in a vector of pointers when at least one operand of the GEP 3894 // is vector-typed. Thus, to keep the representation compact, we only use 3895 // vector-typed operands for loop-varying values. 3896 auto *GEP = cast<GetElementPtrInst>(&I); 3897 3898 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3899 // If we are vectorizing, but the GEP has only loop-invariant operands, 3900 // the GEP we build (by only using vector-typed operands for 3901 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3902 // produce a vector of pointers, we need to either arbitrarily pick an 3903 // operand to broadcast, or broadcast a clone of the original GEP. 3904 // Here, we broadcast a clone of the original. 3905 // 3906 // TODO: If at some point we decide to scalarize instructions having 3907 // loop-invariant operands, this special case will no longer be 3908 // required. We would add the scalarization decision to 3909 // collectLoopScalars() and teach getVectorValue() to broadcast 3910 // the lane-zero scalar value. 3911 auto *Clone = Builder.Insert(GEP->clone()); 3912 for (unsigned Part = 0; Part < UF; ++Part) { 3913 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3914 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3915 addMetadata(EntryPart, GEP); 3916 } 3917 } else { 3918 // If the GEP has at least one loop-varying operand, we are sure to 3919 // produce a vector of pointers. But if we are only unrolling, we want 3920 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3921 // produce with the code below will be scalar (if VF == 1) or vector 3922 // (otherwise). Note that for the unroll-only case, we still maintain 3923 // values in the vector mapping with initVector, as we do for other 3924 // instructions. 3925 for (unsigned Part = 0; Part < UF; ++Part) { 3926 // The pointer operand of the new GEP. If it's loop-invariant, we 3927 // won't broadcast it. 3928 auto *Ptr = 3929 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3930 ? GEP->getPointerOperand() 3931 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3932 3933 // Collect all the indices for the new GEP. If any index is 3934 // loop-invariant, we won't broadcast it. 3935 SmallVector<Value *, 4> Indices; 3936 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3937 if (OrigLoop->isLoopInvariant(U.get())) 3938 Indices.push_back(U.get()); 3939 else 3940 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3941 } 3942 3943 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3944 // but it should be a vector, otherwise. 3945 auto *NewGEP = GEP->isInBounds() 3946 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3947 : Builder.CreateGEP(Ptr, Indices); 3948 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3949 "NewGEP is not a pointer vector"); 3950 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3951 addMetadata(NewGEP, GEP); 3952 } 3953 } 3954 3955 break; 3956 } 3957 case Instruction::UDiv: 3958 case Instruction::SDiv: 3959 case Instruction::SRem: 3960 case Instruction::URem: 3961 case Instruction::Add: 3962 case Instruction::FAdd: 3963 case Instruction::Sub: 3964 case Instruction::FSub: 3965 case Instruction::Mul: 3966 case Instruction::FMul: 3967 case Instruction::FDiv: 3968 case Instruction::FRem: 3969 case Instruction::Shl: 3970 case Instruction::LShr: 3971 case Instruction::AShr: 3972 case Instruction::And: 3973 case Instruction::Or: 3974 case Instruction::Xor: { 3975 // Just widen binops. 3976 auto *BinOp = cast<BinaryOperator>(&I); 3977 setDebugLocFromInst(Builder, BinOp); 3978 3979 for (unsigned Part = 0; Part < UF; ++Part) { 3980 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3981 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3982 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3983 3984 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3985 VecOp->copyIRFlags(BinOp); 3986 3987 // Use this vector value for all users of the original instruction. 3988 VectorLoopValueMap.setVectorValue(&I, Part, V); 3989 addMetadata(V, BinOp); 3990 } 3991 3992 break; 3993 } 3994 case Instruction::Select: { 3995 // Widen selects. 3996 // If the selector is loop invariant we can create a select 3997 // instruction with a scalar condition. Otherwise, use vector-select. 3998 auto *SE = PSE.getSE(); 3999 bool InvariantCond = 4000 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4001 setDebugLocFromInst(Builder, &I); 4002 4003 // The condition can be loop invariant but still defined inside the 4004 // loop. This means that we can't just use the original 'cond' value. 4005 // We have to take the 'vectorized' value and pick the first lane. 4006 // Instcombine will make this a no-op. 4007 4008 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4009 4010 for (unsigned Part = 0; Part < UF; ++Part) { 4011 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4012 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4013 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4014 Value *Sel = 4015 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4016 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4017 addMetadata(Sel, &I); 4018 } 4019 4020 break; 4021 } 4022 4023 case Instruction::ICmp: 4024 case Instruction::FCmp: { 4025 // Widen compares. Generate vector compares. 4026 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4027 auto *Cmp = dyn_cast<CmpInst>(&I); 4028 setDebugLocFromInst(Builder, Cmp); 4029 for (unsigned Part = 0; Part < UF; ++Part) { 4030 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4031 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4032 Value *C = nullptr; 4033 if (FCmp) { 4034 // Propagate fast math flags. 4035 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4036 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4037 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4038 } else { 4039 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4040 } 4041 VectorLoopValueMap.setVectorValue(&I, Part, C); 4042 addMetadata(C, &I); 4043 } 4044 4045 break; 4046 } 4047 4048 case Instruction::ZExt: 4049 case Instruction::SExt: 4050 case Instruction::FPToUI: 4051 case Instruction::FPToSI: 4052 case Instruction::FPExt: 4053 case Instruction::PtrToInt: 4054 case Instruction::IntToPtr: 4055 case Instruction::SIToFP: 4056 case Instruction::UIToFP: 4057 case Instruction::Trunc: 4058 case Instruction::FPTrunc: 4059 case Instruction::BitCast: { 4060 auto *CI = dyn_cast<CastInst>(&I); 4061 setDebugLocFromInst(Builder, CI); 4062 4063 /// Vectorize casts. 4064 Type *DestTy = 4065 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4066 4067 for (unsigned Part = 0; Part < UF; ++Part) { 4068 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4069 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4070 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4071 addMetadata(Cast, &I); 4072 } 4073 break; 4074 } 4075 4076 case Instruction::Call: { 4077 // Ignore dbg intrinsics. 4078 if (isa<DbgInfoIntrinsic>(I)) 4079 break; 4080 setDebugLocFromInst(Builder, &I); 4081 4082 Module *M = I.getParent()->getParent()->getParent(); 4083 auto *CI = cast<CallInst>(&I); 4084 4085 StringRef FnName = CI->getCalledFunction()->getName(); 4086 Function *F = CI->getCalledFunction(); 4087 Type *RetTy = ToVectorTy(CI->getType(), VF); 4088 SmallVector<Type *, 4> Tys; 4089 for (Value *ArgOperand : CI->arg_operands()) 4090 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4091 4092 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4093 4094 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4095 // version of the instruction. 4096 // Is it beneficial to perform intrinsic call compared to lib call? 4097 bool NeedToScalarize; 4098 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4099 bool UseVectorIntrinsic = 4100 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4101 assert((UseVectorIntrinsic || !NeedToScalarize) && 4102 "Instruction should be scalarized elsewhere."); 4103 4104 for (unsigned Part = 0; Part < UF; ++Part) { 4105 SmallVector<Value *, 4> Args; 4106 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4107 Value *Arg = CI->getArgOperand(i); 4108 // Some intrinsics have a scalar argument - don't replace it with a 4109 // vector. 4110 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4111 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4112 Args.push_back(Arg); 4113 } 4114 4115 Function *VectorF; 4116 if (UseVectorIntrinsic) { 4117 // Use vector version of the intrinsic. 4118 Type *TysForDecl[] = {CI->getType()}; 4119 if (VF > 1) 4120 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4121 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4122 } else { 4123 // Use vector version of the library call. 4124 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4125 assert(!VFnName.empty() && "Vector function name is empty."); 4126 VectorF = M->getFunction(VFnName); 4127 if (!VectorF) { 4128 // Generate a declaration 4129 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4130 VectorF = 4131 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4132 VectorF->copyAttributesFrom(F); 4133 } 4134 } 4135 assert(VectorF && "Can't create vector function."); 4136 4137 SmallVector<OperandBundleDef, 1> OpBundles; 4138 CI->getOperandBundlesAsDefs(OpBundles); 4139 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4140 4141 if (isa<FPMathOperator>(V)) 4142 V->copyFastMathFlags(CI); 4143 4144 VectorLoopValueMap.setVectorValue(&I, Part, V); 4145 addMetadata(V, &I); 4146 } 4147 4148 break; 4149 } 4150 4151 default: 4152 // This instruction is not vectorized by simple widening. 4153 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4154 llvm_unreachable("Unhandled instruction!"); 4155 } // end of switch. 4156 } 4157 4158 void InnerLoopVectorizer::updateAnalysis() { 4159 // Forget the original basic block. 4160 PSE.getSE()->forgetLoop(OrigLoop); 4161 4162 // DT is not kept up-to-date for outer loop vectorization 4163 if (EnableVPlanNativePath) 4164 return; 4165 4166 // Update the dominator tree information. 4167 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4168 "Entry does not dominate exit."); 4169 4170 DT->addNewBlock(LoopMiddleBlock, 4171 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4172 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4173 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4174 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4175 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4176 } 4177 4178 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4179 // We should not collect Scalars more than once per VF. Right now, this 4180 // function is called from collectUniformsAndScalars(), which already does 4181 // this check. Collecting Scalars for VF=1 does not make any sense. 4182 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4183 "This function should not be visited twice for the same VF"); 4184 4185 SmallSetVector<Instruction *, 8> Worklist; 4186 4187 // These sets are used to seed the analysis with pointers used by memory 4188 // accesses that will remain scalar. 4189 SmallSetVector<Instruction *, 8> ScalarPtrs; 4190 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4191 4192 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4193 // The pointer operands of loads and stores will be scalar as long as the 4194 // memory access is not a gather or scatter operation. The value operand of a 4195 // store will remain scalar if the store is scalarized. 4196 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4197 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4198 assert(WideningDecision != CM_Unknown && 4199 "Widening decision should be ready at this moment"); 4200 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4201 if (Ptr == Store->getValueOperand()) 4202 return WideningDecision == CM_Scalarize; 4203 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4204 "Ptr is neither a value or pointer operand"); 4205 return WideningDecision != CM_GatherScatter; 4206 }; 4207 4208 // A helper that returns true if the given value is a bitcast or 4209 // getelementptr instruction contained in the loop. 4210 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4211 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4212 isa<GetElementPtrInst>(V)) && 4213 !TheLoop->isLoopInvariant(V); 4214 }; 4215 4216 // A helper that evaluates a memory access's use of a pointer. If the use 4217 // will be a scalar use, and the pointer is only used by memory accesses, we 4218 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4219 // PossibleNonScalarPtrs. 4220 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4221 // We only care about bitcast and getelementptr instructions contained in 4222 // the loop. 4223 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4224 return; 4225 4226 // If the pointer has already been identified as scalar (e.g., if it was 4227 // also identified as uniform), there's nothing to do. 4228 auto *I = cast<Instruction>(Ptr); 4229 if (Worklist.count(I)) 4230 return; 4231 4232 // If the use of the pointer will be a scalar use, and all users of the 4233 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4234 // place the pointer in PossibleNonScalarPtrs. 4235 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4236 return isa<LoadInst>(U) || isa<StoreInst>(U); 4237 })) 4238 ScalarPtrs.insert(I); 4239 else 4240 PossibleNonScalarPtrs.insert(I); 4241 }; 4242 4243 // We seed the scalars analysis with three classes of instructions: (1) 4244 // instructions marked uniform-after-vectorization, (2) bitcast and 4245 // getelementptr instructions used by memory accesses requiring a scalar use, 4246 // and (3) pointer induction variables and their update instructions (we 4247 // currently only scalarize these). 4248 // 4249 // (1) Add to the worklist all instructions that have been identified as 4250 // uniform-after-vectorization. 4251 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4252 4253 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4254 // memory accesses requiring a scalar use. The pointer operands of loads and 4255 // stores will be scalar as long as the memory accesses is not a gather or 4256 // scatter operation. The value operand of a store will remain scalar if the 4257 // store is scalarized. 4258 for (auto *BB : TheLoop->blocks()) 4259 for (auto &I : *BB) { 4260 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4261 evaluatePtrUse(Load, Load->getPointerOperand()); 4262 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4263 evaluatePtrUse(Store, Store->getPointerOperand()); 4264 evaluatePtrUse(Store, Store->getValueOperand()); 4265 } 4266 } 4267 for (auto *I : ScalarPtrs) 4268 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4269 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4270 Worklist.insert(I); 4271 } 4272 4273 // (3) Add to the worklist all pointer induction variables and their update 4274 // instructions. 4275 // 4276 // TODO: Once we are able to vectorize pointer induction variables we should 4277 // no longer insert them into the worklist here. 4278 auto *Latch = TheLoop->getLoopLatch(); 4279 for (auto &Induction : *Legal->getInductionVars()) { 4280 auto *Ind = Induction.first; 4281 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4282 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4283 continue; 4284 Worklist.insert(Ind); 4285 Worklist.insert(IndUpdate); 4286 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4287 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4288 << "\n"); 4289 } 4290 4291 // Insert the forced scalars. 4292 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4293 // induction variable when the PHI user is scalarized. 4294 auto ForcedScalar = ForcedScalars.find(VF); 4295 if (ForcedScalar != ForcedScalars.end()) 4296 for (auto *I : ForcedScalar->second) 4297 Worklist.insert(I); 4298 4299 // Expand the worklist by looking through any bitcasts and getelementptr 4300 // instructions we've already identified as scalar. This is similar to the 4301 // expansion step in collectLoopUniforms(); however, here we're only 4302 // expanding to include additional bitcasts and getelementptr instructions. 4303 unsigned Idx = 0; 4304 while (Idx != Worklist.size()) { 4305 Instruction *Dst = Worklist[Idx++]; 4306 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4307 continue; 4308 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4309 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4310 auto *J = cast<Instruction>(U); 4311 return !TheLoop->contains(J) || Worklist.count(J) || 4312 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4313 isScalarUse(J, Src)); 4314 })) { 4315 Worklist.insert(Src); 4316 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4317 } 4318 } 4319 4320 // An induction variable will remain scalar if all users of the induction 4321 // variable and induction variable update remain scalar. 4322 for (auto &Induction : *Legal->getInductionVars()) { 4323 auto *Ind = Induction.first; 4324 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4325 4326 // We already considered pointer induction variables, so there's no reason 4327 // to look at their users again. 4328 // 4329 // TODO: Once we are able to vectorize pointer induction variables we 4330 // should no longer skip over them here. 4331 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4332 continue; 4333 4334 // Determine if all users of the induction variable are scalar after 4335 // vectorization. 4336 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4337 auto *I = cast<Instruction>(U); 4338 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4339 }); 4340 if (!ScalarInd) 4341 continue; 4342 4343 // Determine if all users of the induction variable update instruction are 4344 // scalar after vectorization. 4345 auto ScalarIndUpdate = 4346 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4347 auto *I = cast<Instruction>(U); 4348 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4349 }); 4350 if (!ScalarIndUpdate) 4351 continue; 4352 4353 // The induction variable and its update instruction will remain scalar. 4354 Worklist.insert(Ind); 4355 Worklist.insert(IndUpdate); 4356 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4357 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4358 << "\n"); 4359 } 4360 4361 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4362 } 4363 4364 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4365 if (!blockNeedsPredication(I->getParent())) 4366 return false; 4367 switch(I->getOpcode()) { 4368 default: 4369 break; 4370 case Instruction::Load: 4371 case Instruction::Store: { 4372 if (!Legal->isMaskRequired(I)) 4373 return false; 4374 auto *Ptr = getLoadStorePointerOperand(I); 4375 auto *Ty = getMemInstValueType(I); 4376 // We have already decided how to vectorize this instruction, get that 4377 // result. 4378 if (VF > 1) { 4379 InstWidening WideningDecision = getWideningDecision(I, VF); 4380 assert(WideningDecision != CM_Unknown && 4381 "Widening decision should be ready at this moment"); 4382 return WideningDecision == CM_Scalarize; 4383 } 4384 return isa<LoadInst>(I) ? 4385 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4386 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4387 } 4388 case Instruction::UDiv: 4389 case Instruction::SDiv: 4390 case Instruction::SRem: 4391 case Instruction::URem: 4392 return mayDivideByZero(*I); 4393 } 4394 return false; 4395 } 4396 4397 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4398 unsigned VF) { 4399 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4400 assert(getWideningDecision(I, VF) == CM_Unknown && 4401 "Decision should not be set yet."); 4402 auto *Group = getInterleavedAccessGroup(I); 4403 assert(Group && "Must have a group."); 4404 4405 // Check if masking is required. 4406 // A Group may need masking for one of two reasons: it resides in a block that 4407 // needs predication, or it was decided to use masking to deal with gaps. 4408 bool PredicatedAccessRequiresMasking = 4409 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4410 bool AccessWithGapsRequiresMasking = 4411 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4412 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4413 return true; 4414 4415 // If masked interleaving is required, we expect that the user/target had 4416 // enabled it, because otherwise it either wouldn't have been created or 4417 // it should have been invalidated by the CostModel. 4418 assert(useMaskedInterleavedAccesses(TTI) && 4419 "Masked interleave-groups for predicated accesses are not enabled."); 4420 4421 auto *Ty = getMemInstValueType(I); 4422 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4423 : TTI.isLegalMaskedStore(Ty); 4424 } 4425 4426 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4427 unsigned VF) { 4428 // Get and ensure we have a valid memory instruction. 4429 LoadInst *LI = dyn_cast<LoadInst>(I); 4430 StoreInst *SI = dyn_cast<StoreInst>(I); 4431 assert((LI || SI) && "Invalid memory instruction"); 4432 4433 auto *Ptr = getLoadStorePointerOperand(I); 4434 4435 // In order to be widened, the pointer should be consecutive, first of all. 4436 if (!Legal->isConsecutivePtr(Ptr)) 4437 return false; 4438 4439 // If the instruction is a store located in a predicated block, it will be 4440 // scalarized. 4441 if (isScalarWithPredication(I)) 4442 return false; 4443 4444 // If the instruction's allocated size doesn't equal it's type size, it 4445 // requires padding and will be scalarized. 4446 auto &DL = I->getModule()->getDataLayout(); 4447 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4448 if (hasIrregularType(ScalarTy, DL, VF)) 4449 return false; 4450 4451 return true; 4452 } 4453 4454 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4455 // We should not collect Uniforms more than once per VF. Right now, 4456 // this function is called from collectUniformsAndScalars(), which 4457 // already does this check. Collecting Uniforms for VF=1 does not make any 4458 // sense. 4459 4460 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4461 "This function should not be visited twice for the same VF"); 4462 4463 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4464 // not analyze again. Uniforms.count(VF) will return 1. 4465 Uniforms[VF].clear(); 4466 4467 // We now know that the loop is vectorizable! 4468 // Collect instructions inside the loop that will remain uniform after 4469 // vectorization. 4470 4471 // Global values, params and instructions outside of current loop are out of 4472 // scope. 4473 auto isOutOfScope = [&](Value *V) -> bool { 4474 Instruction *I = dyn_cast<Instruction>(V); 4475 return (!I || !TheLoop->contains(I)); 4476 }; 4477 4478 SetVector<Instruction *> Worklist; 4479 BasicBlock *Latch = TheLoop->getLoopLatch(); 4480 4481 // Start with the conditional branch. If the branch condition is an 4482 // instruction contained in the loop that is only used by the branch, it is 4483 // uniform. 4484 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4485 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4486 Worklist.insert(Cmp); 4487 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4488 } 4489 4490 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4491 // are pointers that are treated like consecutive pointers during 4492 // vectorization. The pointer operands of interleaved accesses are an 4493 // example. 4494 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4495 4496 // Holds pointer operands of instructions that are possibly non-uniform. 4497 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4498 4499 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4500 InstWidening WideningDecision = getWideningDecision(I, VF); 4501 assert(WideningDecision != CM_Unknown && 4502 "Widening decision should be ready at this moment"); 4503 4504 return (WideningDecision == CM_Widen || 4505 WideningDecision == CM_Widen_Reverse || 4506 WideningDecision == CM_Interleave); 4507 }; 4508 // Iterate over the instructions in the loop, and collect all 4509 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4510 // that a consecutive-like pointer operand will be scalarized, we collect it 4511 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4512 // getelementptr instruction can be used by both vectorized and scalarized 4513 // memory instructions. For example, if a loop loads and stores from the same 4514 // location, but the store is conditional, the store will be scalarized, and 4515 // the getelementptr won't remain uniform. 4516 for (auto *BB : TheLoop->blocks()) 4517 for (auto &I : *BB) { 4518 // If there's no pointer operand, there's nothing to do. 4519 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4520 if (!Ptr) 4521 continue; 4522 4523 // True if all users of Ptr are memory accesses that have Ptr as their 4524 // pointer operand. 4525 auto UsersAreMemAccesses = 4526 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4527 return getLoadStorePointerOperand(U) == Ptr; 4528 }); 4529 4530 // Ensure the memory instruction will not be scalarized or used by 4531 // gather/scatter, making its pointer operand non-uniform. If the pointer 4532 // operand is used by any instruction other than a memory access, we 4533 // conservatively assume the pointer operand may be non-uniform. 4534 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4535 PossibleNonUniformPtrs.insert(Ptr); 4536 4537 // If the memory instruction will be vectorized and its pointer operand 4538 // is consecutive-like, or interleaving - the pointer operand should 4539 // remain uniform. 4540 else 4541 ConsecutiveLikePtrs.insert(Ptr); 4542 } 4543 4544 // Add to the Worklist all consecutive and consecutive-like pointers that 4545 // aren't also identified as possibly non-uniform. 4546 for (auto *V : ConsecutiveLikePtrs) 4547 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4548 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4549 Worklist.insert(V); 4550 } 4551 4552 // Expand Worklist in topological order: whenever a new instruction 4553 // is added , its users should be already inside Worklist. It ensures 4554 // a uniform instruction will only be used by uniform instructions. 4555 unsigned idx = 0; 4556 while (idx != Worklist.size()) { 4557 Instruction *I = Worklist[idx++]; 4558 4559 for (auto OV : I->operand_values()) { 4560 // isOutOfScope operands cannot be uniform instructions. 4561 if (isOutOfScope(OV)) 4562 continue; 4563 // First order recurrence Phi's should typically be considered 4564 // non-uniform. 4565 auto *OP = dyn_cast<PHINode>(OV); 4566 if (OP && Legal->isFirstOrderRecurrence(OP)) 4567 continue; 4568 // If all the users of the operand are uniform, then add the 4569 // operand into the uniform worklist. 4570 auto *OI = cast<Instruction>(OV); 4571 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4572 auto *J = cast<Instruction>(U); 4573 return Worklist.count(J) || 4574 (OI == getLoadStorePointerOperand(J) && 4575 isUniformDecision(J, VF)); 4576 })) { 4577 Worklist.insert(OI); 4578 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4579 } 4580 } 4581 } 4582 4583 // Returns true if Ptr is the pointer operand of a memory access instruction 4584 // I, and I is known to not require scalarization. 4585 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4586 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4587 }; 4588 4589 // For an instruction to be added into Worklist above, all its users inside 4590 // the loop should also be in Worklist. However, this condition cannot be 4591 // true for phi nodes that form a cyclic dependence. We must process phi 4592 // nodes separately. An induction variable will remain uniform if all users 4593 // of the induction variable and induction variable update remain uniform. 4594 // The code below handles both pointer and non-pointer induction variables. 4595 for (auto &Induction : *Legal->getInductionVars()) { 4596 auto *Ind = Induction.first; 4597 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4598 4599 // Determine if all users of the induction variable are uniform after 4600 // vectorization. 4601 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4602 auto *I = cast<Instruction>(U); 4603 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4604 isVectorizedMemAccessUse(I, Ind); 4605 }); 4606 if (!UniformInd) 4607 continue; 4608 4609 // Determine if all users of the induction variable update instruction are 4610 // uniform after vectorization. 4611 auto UniformIndUpdate = 4612 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4613 auto *I = cast<Instruction>(U); 4614 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4615 isVectorizedMemAccessUse(I, IndUpdate); 4616 }); 4617 if (!UniformIndUpdate) 4618 continue; 4619 4620 // The induction variable and its update instruction will remain uniform. 4621 Worklist.insert(Ind); 4622 Worklist.insert(IndUpdate); 4623 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4624 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4625 << "\n"); 4626 } 4627 4628 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4629 } 4630 4631 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4632 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4633 // TODO: It may by useful to do since it's still likely to be dynamically 4634 // uniform if the target can skip. 4635 LLVM_DEBUG( 4636 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4637 4638 ORE->emit( 4639 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4640 << "runtime pointer checks needed. Not enabled for divergent target"); 4641 4642 return None; 4643 } 4644 4645 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4646 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4647 return computeFeasibleMaxVF(OptForSize, TC); 4648 4649 if (Legal->getRuntimePointerChecking()->Need) { 4650 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4651 << "runtime pointer checks needed. Enable vectorization of this " 4652 "loop with '#pragma clang loop vectorize(enable)' when " 4653 "compiling with -Os/-Oz"); 4654 LLVM_DEBUG( 4655 dbgs() 4656 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4657 return None; 4658 } 4659 4660 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4661 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4662 << "runtime SCEV checks needed. Enable vectorization of this " 4663 "loop with '#pragma clang loop vectorize(enable)' when " 4664 "compiling with -Os/-Oz"); 4665 LLVM_DEBUG( 4666 dbgs() 4667 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4668 return None; 4669 } 4670 4671 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4672 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4673 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4674 << "runtime stride == 1 checks needed. Enable vectorization of " 4675 "this loop with '#pragma clang loop vectorize(enable)' when " 4676 "compiling with -Os/-Oz"); 4677 LLVM_DEBUG( 4678 dbgs() 4679 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4680 return None; 4681 } 4682 4683 // If we optimize the program for size, avoid creating the tail loop. 4684 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4685 4686 if (TC == 1) { 4687 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4688 << "loop trip count is one, irrelevant for vectorization"); 4689 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4690 return None; 4691 } 4692 4693 // Record that scalar epilogue is not allowed. 4694 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4695 4696 IsScalarEpilogueAllowed = !OptForSize; 4697 4698 // We don't create an epilogue when optimizing for size. 4699 // Invalidate interleave groups that require an epilogue if we can't mask 4700 // the interleave-group. 4701 if (!useMaskedInterleavedAccesses(TTI)) 4702 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4703 4704 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4705 4706 if (TC > 0 && TC % MaxVF == 0) { 4707 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4708 return MaxVF; 4709 } 4710 4711 // If we don't know the precise trip count, or if the trip count that we 4712 // found modulo the vectorization factor is not zero, try to fold the tail 4713 // by masking. 4714 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4715 if (Legal->canFoldTailByMasking()) { 4716 FoldTailByMasking = true; 4717 return MaxVF; 4718 } 4719 4720 if (TC == 0) { 4721 ORE->emit( 4722 createMissedAnalysis("UnknownLoopCountComplexCFG") 4723 << "unable to calculate the loop count due to complex control flow"); 4724 return None; 4725 } 4726 4727 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4728 << "cannot optimize for size and vectorize at the same time. " 4729 "Enable vectorization of this loop with '#pragma clang loop " 4730 "vectorize(enable)' when compiling with -Os/-Oz"); 4731 return None; 4732 } 4733 4734 unsigned 4735 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4736 unsigned ConstTripCount) { 4737 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4738 unsigned SmallestType, WidestType; 4739 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4740 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4741 4742 // Get the maximum safe dependence distance in bits computed by LAA. 4743 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4744 // the memory accesses that is most restrictive (involved in the smallest 4745 // dependence distance). 4746 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4747 4748 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4749 4750 unsigned MaxVectorSize = WidestRegister / WidestType; 4751 4752 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4753 << " / " << WidestType << " bits.\n"); 4754 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4755 << WidestRegister << " bits.\n"); 4756 4757 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4758 " into one vector!"); 4759 if (MaxVectorSize == 0) { 4760 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4761 MaxVectorSize = 1; 4762 return MaxVectorSize; 4763 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4764 isPowerOf2_32(ConstTripCount)) { 4765 // We need to clamp the VF to be the ConstTripCount. There is no point in 4766 // choosing a higher viable VF as done in the loop below. 4767 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4768 << ConstTripCount << "\n"); 4769 MaxVectorSize = ConstTripCount; 4770 return MaxVectorSize; 4771 } 4772 4773 unsigned MaxVF = MaxVectorSize; 4774 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4775 (MaximizeBandwidth && !OptForSize)) { 4776 // Collect all viable vectorization factors larger than the default MaxVF 4777 // (i.e. MaxVectorSize). 4778 SmallVector<unsigned, 8> VFs; 4779 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4780 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4781 VFs.push_back(VS); 4782 4783 // For each VF calculate its register usage. 4784 auto RUs = calculateRegisterUsage(VFs); 4785 4786 // Select the largest VF which doesn't require more registers than existing 4787 // ones. 4788 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4789 for (int i = RUs.size() - 1; i >= 0; --i) { 4790 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4791 MaxVF = VFs[i]; 4792 break; 4793 } 4794 } 4795 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4796 if (MaxVF < MinVF) { 4797 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4798 << ") with target's minimum: " << MinVF << '\n'); 4799 MaxVF = MinVF; 4800 } 4801 } 4802 } 4803 return MaxVF; 4804 } 4805 4806 VectorizationFactor 4807 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4808 float Cost = expectedCost(1).first; 4809 const float ScalarCost = Cost; 4810 unsigned Width = 1; 4811 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4812 4813 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4814 if (ForceVectorization && MaxVF > 1) { 4815 // Ignore scalar width, because the user explicitly wants vectorization. 4816 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4817 // evaluation. 4818 Cost = std::numeric_limits<float>::max(); 4819 } 4820 4821 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4822 // Notice that the vector loop needs to be executed less times, so 4823 // we need to divide the cost of the vector loops by the width of 4824 // the vector elements. 4825 VectorizationCostTy C = expectedCost(i); 4826 float VectorCost = C.first / (float)i; 4827 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4828 << " costs: " << (int)VectorCost << ".\n"); 4829 if (!C.second && !ForceVectorization) { 4830 LLVM_DEBUG( 4831 dbgs() << "LV: Not considering vector loop of width " << i 4832 << " because it will not generate any vector instructions.\n"); 4833 continue; 4834 } 4835 if (VectorCost < Cost) { 4836 Cost = VectorCost; 4837 Width = i; 4838 } 4839 } 4840 4841 if (!EnableCondStoresVectorization && NumPredStores) { 4842 ORE->emit(createMissedAnalysis("ConditionalStore") 4843 << "store that is conditionally executed prevents vectorization"); 4844 LLVM_DEBUG( 4845 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4846 Width = 1; 4847 Cost = ScalarCost; 4848 } 4849 4850 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4851 << "LV: Vectorization seems to be not beneficial, " 4852 << "but was forced by a user.\n"); 4853 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4854 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4855 return Factor; 4856 } 4857 4858 std::pair<unsigned, unsigned> 4859 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4860 unsigned MinWidth = -1U; 4861 unsigned MaxWidth = 8; 4862 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4863 4864 // For each block. 4865 for (BasicBlock *BB : TheLoop->blocks()) { 4866 // For each instruction in the loop. 4867 for (Instruction &I : BB->instructionsWithoutDebug()) { 4868 Type *T = I.getType(); 4869 4870 // Skip ignored values. 4871 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4872 continue; 4873 4874 // Only examine Loads, Stores and PHINodes. 4875 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4876 continue; 4877 4878 // Examine PHI nodes that are reduction variables. Update the type to 4879 // account for the recurrence type. 4880 if (auto *PN = dyn_cast<PHINode>(&I)) { 4881 if (!Legal->isReductionVariable(PN)) 4882 continue; 4883 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4884 T = RdxDesc.getRecurrenceType(); 4885 } 4886 4887 // Examine the stored values. 4888 if (auto *ST = dyn_cast<StoreInst>(&I)) 4889 T = ST->getValueOperand()->getType(); 4890 4891 // Ignore loaded pointer types and stored pointer types that are not 4892 // vectorizable. 4893 // 4894 // FIXME: The check here attempts to predict whether a load or store will 4895 // be vectorized. We only know this for certain after a VF has 4896 // been selected. Here, we assume that if an access can be 4897 // vectorized, it will be. We should also look at extending this 4898 // optimization to non-pointer types. 4899 // 4900 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4901 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4902 continue; 4903 4904 MinWidth = std::min(MinWidth, 4905 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4906 MaxWidth = std::max(MaxWidth, 4907 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4908 } 4909 } 4910 4911 return {MinWidth, MaxWidth}; 4912 } 4913 4914 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4915 unsigned VF, 4916 unsigned LoopCost) { 4917 // -- The interleave heuristics -- 4918 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4919 // There are many micro-architectural considerations that we can't predict 4920 // at this level. For example, frontend pressure (on decode or fetch) due to 4921 // code size, or the number and capabilities of the execution ports. 4922 // 4923 // We use the following heuristics to select the interleave count: 4924 // 1. If the code has reductions, then we interleave to break the cross 4925 // iteration dependency. 4926 // 2. If the loop is really small, then we interleave to reduce the loop 4927 // overhead. 4928 // 3. We don't interleave if we think that we will spill registers to memory 4929 // due to the increased register pressure. 4930 4931 // When we optimize for size, we don't interleave. 4932 if (OptForSize) 4933 return 1; 4934 4935 // We used the distance for the interleave count. 4936 if (Legal->getMaxSafeDepDistBytes() != -1U) 4937 return 1; 4938 4939 // Do not interleave loops with a relatively small trip count. 4940 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4941 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4942 return 1; 4943 4944 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4945 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4946 << " registers\n"); 4947 4948 if (VF == 1) { 4949 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4950 TargetNumRegisters = ForceTargetNumScalarRegs; 4951 } else { 4952 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4953 TargetNumRegisters = ForceTargetNumVectorRegs; 4954 } 4955 4956 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4957 // We divide by these constants so assume that we have at least one 4958 // instruction that uses at least one register. 4959 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4960 4961 // We calculate the interleave count using the following formula. 4962 // Subtract the number of loop invariants from the number of available 4963 // registers. These registers are used by all of the interleaved instances. 4964 // Next, divide the remaining registers by the number of registers that is 4965 // required by the loop, in order to estimate how many parallel instances 4966 // fit without causing spills. All of this is rounded down if necessary to be 4967 // a power of two. We want power of two interleave count to simplify any 4968 // addressing operations or alignment considerations. 4969 // We also want power of two interleave counts to ensure that the induction 4970 // variable of the vector loop wraps to zero, when tail is folded by masking; 4971 // this currently happens when OptForSize, in which case IC is set to 1 above. 4972 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4973 R.MaxLocalUsers); 4974 4975 // Don't count the induction variable as interleaved. 4976 if (EnableIndVarRegisterHeur) 4977 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4978 std::max(1U, (R.MaxLocalUsers - 1))); 4979 4980 // Clamp the interleave ranges to reasonable counts. 4981 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4982 4983 // Check if the user has overridden the max. 4984 if (VF == 1) { 4985 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4986 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4987 } else { 4988 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4989 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4990 } 4991 4992 // If we did not calculate the cost for VF (because the user selected the VF) 4993 // then we calculate the cost of VF here. 4994 if (LoopCost == 0) 4995 LoopCost = expectedCost(VF).first; 4996 4997 // Clamp the calculated IC to be between the 1 and the max interleave count 4998 // that the target allows. 4999 if (IC > MaxInterleaveCount) 5000 IC = MaxInterleaveCount; 5001 else if (IC < 1) 5002 IC = 1; 5003 5004 // Interleave if we vectorized this loop and there is a reduction that could 5005 // benefit from interleaving. 5006 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5007 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5008 return IC; 5009 } 5010 5011 // Note that if we've already vectorized the loop we will have done the 5012 // runtime check and so interleaving won't require further checks. 5013 bool InterleavingRequiresRuntimePointerCheck = 5014 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5015 5016 // We want to interleave small loops in order to reduce the loop overhead and 5017 // potentially expose ILP opportunities. 5018 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5019 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5020 // We assume that the cost overhead is 1 and we use the cost model 5021 // to estimate the cost of the loop and interleave until the cost of the 5022 // loop overhead is about 5% of the cost of the loop. 5023 unsigned SmallIC = 5024 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5025 5026 // Interleave until store/load ports (estimated by max interleave count) are 5027 // saturated. 5028 unsigned NumStores = Legal->getNumStores(); 5029 unsigned NumLoads = Legal->getNumLoads(); 5030 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5031 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5032 5033 // If we have a scalar reduction (vector reductions are already dealt with 5034 // by this point), we can increase the critical path length if the loop 5035 // we're interleaving is inside another loop. Limit, by default to 2, so the 5036 // critical path only gets increased by one reduction operation. 5037 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5038 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5039 SmallIC = std::min(SmallIC, F); 5040 StoresIC = std::min(StoresIC, F); 5041 LoadsIC = std::min(LoadsIC, F); 5042 } 5043 5044 if (EnableLoadStoreRuntimeInterleave && 5045 std::max(StoresIC, LoadsIC) > SmallIC) { 5046 LLVM_DEBUG( 5047 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5048 return std::max(StoresIC, LoadsIC); 5049 } 5050 5051 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5052 return SmallIC; 5053 } 5054 5055 // Interleave if this is a large loop (small loops are already dealt with by 5056 // this point) that could benefit from interleaving. 5057 bool HasReductions = !Legal->getReductionVars()->empty(); 5058 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5059 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5060 return IC; 5061 } 5062 5063 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5064 return 1; 5065 } 5066 5067 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5068 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5069 // This function calculates the register usage by measuring the highest number 5070 // of values that are alive at a single location. Obviously, this is a very 5071 // rough estimation. We scan the loop in a topological order in order and 5072 // assign a number to each instruction. We use RPO to ensure that defs are 5073 // met before their users. We assume that each instruction that has in-loop 5074 // users starts an interval. We record every time that an in-loop value is 5075 // used, so we have a list of the first and last occurrences of each 5076 // instruction. Next, we transpose this data structure into a multi map that 5077 // holds the list of intervals that *end* at a specific location. This multi 5078 // map allows us to perform a linear search. We scan the instructions linearly 5079 // and record each time that a new interval starts, by placing it in a set. 5080 // If we find this value in the multi-map then we remove it from the set. 5081 // The max register usage is the maximum size of the set. 5082 // We also search for instructions that are defined outside the loop, but are 5083 // used inside the loop. We need this number separately from the max-interval 5084 // usage number because when we unroll, loop-invariant values do not take 5085 // more register. 5086 LoopBlocksDFS DFS(TheLoop); 5087 DFS.perform(LI); 5088 5089 RegisterUsage RU; 5090 5091 // Each 'key' in the map opens a new interval. The values 5092 // of the map are the index of the 'last seen' usage of the 5093 // instruction that is the key. 5094 using IntervalMap = DenseMap<Instruction *, unsigned>; 5095 5096 // Maps instruction to its index. 5097 SmallVector<Instruction *, 64> IdxToInstr; 5098 // Marks the end of each interval. 5099 IntervalMap EndPoint; 5100 // Saves the list of instruction indices that are used in the loop. 5101 SmallPtrSet<Instruction *, 8> Ends; 5102 // Saves the list of values that are used in the loop but are 5103 // defined outside the loop, such as arguments and constants. 5104 SmallPtrSet<Value *, 8> LoopInvariants; 5105 5106 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5107 for (Instruction &I : BB->instructionsWithoutDebug()) { 5108 IdxToInstr.push_back(&I); 5109 5110 // Save the end location of each USE. 5111 for (Value *U : I.operands()) { 5112 auto *Instr = dyn_cast<Instruction>(U); 5113 5114 // Ignore non-instruction values such as arguments, constants, etc. 5115 if (!Instr) 5116 continue; 5117 5118 // If this instruction is outside the loop then record it and continue. 5119 if (!TheLoop->contains(Instr)) { 5120 LoopInvariants.insert(Instr); 5121 continue; 5122 } 5123 5124 // Overwrite previous end points. 5125 EndPoint[Instr] = IdxToInstr.size(); 5126 Ends.insert(Instr); 5127 } 5128 } 5129 } 5130 5131 // Saves the list of intervals that end with the index in 'key'. 5132 using InstrList = SmallVector<Instruction *, 2>; 5133 DenseMap<unsigned, InstrList> TransposeEnds; 5134 5135 // Transpose the EndPoints to a list of values that end at each index. 5136 for (auto &Interval : EndPoint) 5137 TransposeEnds[Interval.second].push_back(Interval.first); 5138 5139 SmallPtrSet<Instruction *, 8> OpenIntervals; 5140 5141 // Get the size of the widest register. 5142 unsigned MaxSafeDepDist = -1U; 5143 if (Legal->getMaxSafeDepDistBytes() != -1U) 5144 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5145 unsigned WidestRegister = 5146 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5147 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5148 5149 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5150 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5151 5152 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5153 5154 // A lambda that gets the register usage for the given type and VF. 5155 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5156 if (Ty->isTokenTy()) 5157 return 0U; 5158 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5159 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5160 }; 5161 5162 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5163 Instruction *I = IdxToInstr[i]; 5164 5165 // Remove all of the instructions that end at this location. 5166 InstrList &List = TransposeEnds[i]; 5167 for (Instruction *ToRemove : List) 5168 OpenIntervals.erase(ToRemove); 5169 5170 // Ignore instructions that are never used within the loop. 5171 if (Ends.find(I) == Ends.end()) 5172 continue; 5173 5174 // Skip ignored values. 5175 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5176 continue; 5177 5178 // For each VF find the maximum usage of registers. 5179 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5180 if (VFs[j] == 1) { 5181 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5182 continue; 5183 } 5184 collectUniformsAndScalars(VFs[j]); 5185 // Count the number of live intervals. 5186 unsigned RegUsage = 0; 5187 for (auto Inst : OpenIntervals) { 5188 // Skip ignored values for VF > 1. 5189 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5190 isScalarAfterVectorization(Inst, VFs[j])) 5191 continue; 5192 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5193 } 5194 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5195 } 5196 5197 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5198 << OpenIntervals.size() << '\n'); 5199 5200 // Add the current instruction to the list of open intervals. 5201 OpenIntervals.insert(I); 5202 } 5203 5204 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5205 unsigned Invariant = 0; 5206 if (VFs[i] == 1) 5207 Invariant = LoopInvariants.size(); 5208 else { 5209 for (auto Inst : LoopInvariants) 5210 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5211 } 5212 5213 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5214 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5215 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5216 << '\n'); 5217 5218 RU.LoopInvariantRegs = Invariant; 5219 RU.MaxLocalUsers = MaxUsages[i]; 5220 RUs[i] = RU; 5221 } 5222 5223 return RUs; 5224 } 5225 5226 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5227 // TODO: Cost model for emulated masked load/store is completely 5228 // broken. This hack guides the cost model to use an artificially 5229 // high enough value to practically disable vectorization with such 5230 // operations, except where previously deployed legality hack allowed 5231 // using very low cost values. This is to avoid regressions coming simply 5232 // from moving "masked load/store" check from legality to cost model. 5233 // Masked Load/Gather emulation was previously never allowed. 5234 // Limited number of Masked Store/Scatter emulation was allowed. 5235 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5236 return isa<LoadInst>(I) || 5237 (isa<StoreInst>(I) && 5238 NumPredStores > NumberOfStoresToPredicate); 5239 } 5240 5241 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5242 // If we aren't vectorizing the loop, or if we've already collected the 5243 // instructions to scalarize, there's nothing to do. Collection may already 5244 // have occurred if we have a user-selected VF and are now computing the 5245 // expected cost for interleaving. 5246 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5247 return; 5248 5249 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5250 // not profitable to scalarize any instructions, the presence of VF in the 5251 // map will indicate that we've analyzed it already. 5252 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5253 5254 // Find all the instructions that are scalar with predication in the loop and 5255 // determine if it would be better to not if-convert the blocks they are in. 5256 // If so, we also record the instructions to scalarize. 5257 for (BasicBlock *BB : TheLoop->blocks()) { 5258 if (!blockNeedsPredication(BB)) 5259 continue; 5260 for (Instruction &I : *BB) 5261 if (isScalarWithPredication(&I)) { 5262 ScalarCostsTy ScalarCosts; 5263 // Do not apply discount logic if hacked cost is needed 5264 // for emulated masked memrefs. 5265 if (!useEmulatedMaskMemRefHack(&I) && 5266 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5267 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5268 // Remember that BB will remain after vectorization. 5269 PredicatedBBsAfterVectorization.insert(BB); 5270 } 5271 } 5272 } 5273 5274 int LoopVectorizationCostModel::computePredInstDiscount( 5275 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5276 unsigned VF) { 5277 assert(!isUniformAfterVectorization(PredInst, VF) && 5278 "Instruction marked uniform-after-vectorization will be predicated"); 5279 5280 // Initialize the discount to zero, meaning that the scalar version and the 5281 // vector version cost the same. 5282 int Discount = 0; 5283 5284 // Holds instructions to analyze. The instructions we visit are mapped in 5285 // ScalarCosts. Those instructions are the ones that would be scalarized if 5286 // we find that the scalar version costs less. 5287 SmallVector<Instruction *, 8> Worklist; 5288 5289 // Returns true if the given instruction can be scalarized. 5290 auto canBeScalarized = [&](Instruction *I) -> bool { 5291 // We only attempt to scalarize instructions forming a single-use chain 5292 // from the original predicated block that would otherwise be vectorized. 5293 // Although not strictly necessary, we give up on instructions we know will 5294 // already be scalar to avoid traversing chains that are unlikely to be 5295 // beneficial. 5296 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5297 isScalarAfterVectorization(I, VF)) 5298 return false; 5299 5300 // If the instruction is scalar with predication, it will be analyzed 5301 // separately. We ignore it within the context of PredInst. 5302 if (isScalarWithPredication(I)) 5303 return false; 5304 5305 // If any of the instruction's operands are uniform after vectorization, 5306 // the instruction cannot be scalarized. This prevents, for example, a 5307 // masked load from being scalarized. 5308 // 5309 // We assume we will only emit a value for lane zero of an instruction 5310 // marked uniform after vectorization, rather than VF identical values. 5311 // Thus, if we scalarize an instruction that uses a uniform, we would 5312 // create uses of values corresponding to the lanes we aren't emitting code 5313 // for. This behavior can be changed by allowing getScalarValue to clone 5314 // the lane zero values for uniforms rather than asserting. 5315 for (Use &U : I->operands()) 5316 if (auto *J = dyn_cast<Instruction>(U.get())) 5317 if (isUniformAfterVectorization(J, VF)) 5318 return false; 5319 5320 // Otherwise, we can scalarize the instruction. 5321 return true; 5322 }; 5323 5324 // Returns true if an operand that cannot be scalarized must be extracted 5325 // from a vector. We will account for this scalarization overhead below. Note 5326 // that the non-void predicated instructions are placed in their own blocks, 5327 // and their return values are inserted into vectors. Thus, an extract would 5328 // still be required. 5329 auto needsExtract = [&](Instruction *I) -> bool { 5330 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5331 }; 5332 5333 // Compute the expected cost discount from scalarizing the entire expression 5334 // feeding the predicated instruction. We currently only consider expressions 5335 // that are single-use instruction chains. 5336 Worklist.push_back(PredInst); 5337 while (!Worklist.empty()) { 5338 Instruction *I = Worklist.pop_back_val(); 5339 5340 // If we've already analyzed the instruction, there's nothing to do. 5341 if (ScalarCosts.find(I) != ScalarCosts.end()) 5342 continue; 5343 5344 // Compute the cost of the vector instruction. Note that this cost already 5345 // includes the scalarization overhead of the predicated instruction. 5346 unsigned VectorCost = getInstructionCost(I, VF).first; 5347 5348 // Compute the cost of the scalarized instruction. This cost is the cost of 5349 // the instruction as if it wasn't if-converted and instead remained in the 5350 // predicated block. We will scale this cost by block probability after 5351 // computing the scalarization overhead. 5352 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5353 5354 // Compute the scalarization overhead of needed insertelement instructions 5355 // and phi nodes. 5356 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5357 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5358 true, false); 5359 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5360 } 5361 5362 // Compute the scalarization overhead of needed extractelement 5363 // instructions. For each of the instruction's operands, if the operand can 5364 // be scalarized, add it to the worklist; otherwise, account for the 5365 // overhead. 5366 for (Use &U : I->operands()) 5367 if (auto *J = dyn_cast<Instruction>(U.get())) { 5368 assert(VectorType::isValidElementType(J->getType()) && 5369 "Instruction has non-scalar type"); 5370 if (canBeScalarized(J)) 5371 Worklist.push_back(J); 5372 else if (needsExtract(J)) 5373 ScalarCost += TTI.getScalarizationOverhead( 5374 ToVectorTy(J->getType(),VF), false, true); 5375 } 5376 5377 // Scale the total scalar cost by block probability. 5378 ScalarCost /= getReciprocalPredBlockProb(); 5379 5380 // Compute the discount. A non-negative discount means the vector version 5381 // of the instruction costs more, and scalarizing would be beneficial. 5382 Discount += VectorCost - ScalarCost; 5383 ScalarCosts[I] = ScalarCost; 5384 } 5385 5386 return Discount; 5387 } 5388 5389 LoopVectorizationCostModel::VectorizationCostTy 5390 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5391 VectorizationCostTy Cost; 5392 5393 // For each block. 5394 for (BasicBlock *BB : TheLoop->blocks()) { 5395 VectorizationCostTy BlockCost; 5396 5397 // For each instruction in the old loop. 5398 for (Instruction &I : BB->instructionsWithoutDebug()) { 5399 // Skip ignored values. 5400 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5401 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5402 continue; 5403 5404 VectorizationCostTy C = getInstructionCost(&I, VF); 5405 5406 // Check if we should override the cost. 5407 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5408 C.first = ForceTargetInstructionCost; 5409 5410 BlockCost.first += C.first; 5411 BlockCost.second |= C.second; 5412 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5413 << " for VF " << VF << " For instruction: " << I 5414 << '\n'); 5415 } 5416 5417 // If we are vectorizing a predicated block, it will have been 5418 // if-converted. This means that the block's instructions (aside from 5419 // stores and instructions that may divide by zero) will now be 5420 // unconditionally executed. For the scalar case, we may not always execute 5421 // the predicated block. Thus, scale the block's cost by the probability of 5422 // executing it. 5423 if (VF == 1 && blockNeedsPredication(BB)) 5424 BlockCost.first /= getReciprocalPredBlockProb(); 5425 5426 Cost.first += BlockCost.first; 5427 Cost.second |= BlockCost.second; 5428 } 5429 5430 return Cost; 5431 } 5432 5433 /// Gets Address Access SCEV after verifying that the access pattern 5434 /// is loop invariant except the induction variable dependence. 5435 /// 5436 /// This SCEV can be sent to the Target in order to estimate the address 5437 /// calculation cost. 5438 static const SCEV *getAddressAccessSCEV( 5439 Value *Ptr, 5440 LoopVectorizationLegality *Legal, 5441 PredicatedScalarEvolution &PSE, 5442 const Loop *TheLoop) { 5443 5444 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5445 if (!Gep) 5446 return nullptr; 5447 5448 // We are looking for a gep with all loop invariant indices except for one 5449 // which should be an induction variable. 5450 auto SE = PSE.getSE(); 5451 unsigned NumOperands = Gep->getNumOperands(); 5452 for (unsigned i = 1; i < NumOperands; ++i) { 5453 Value *Opd = Gep->getOperand(i); 5454 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5455 !Legal->isInductionVariable(Opd)) 5456 return nullptr; 5457 } 5458 5459 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5460 return PSE.getSCEV(Ptr); 5461 } 5462 5463 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5464 return Legal->hasStride(I->getOperand(0)) || 5465 Legal->hasStride(I->getOperand(1)); 5466 } 5467 5468 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5469 unsigned VF) { 5470 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5471 Type *ValTy = getMemInstValueType(I); 5472 auto SE = PSE.getSE(); 5473 5474 unsigned Alignment = getLoadStoreAlignment(I); 5475 unsigned AS = getLoadStoreAddressSpace(I); 5476 Value *Ptr = getLoadStorePointerOperand(I); 5477 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5478 5479 // Figure out whether the access is strided and get the stride value 5480 // if it's known in compile time 5481 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5482 5483 // Get the cost of the scalar memory instruction and address computation. 5484 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5485 5486 // Don't pass *I here, since it is scalar but will actually be part of a 5487 // vectorized loop where the user of it is a vectorized instruction. 5488 Cost += VF * 5489 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5490 AS); 5491 5492 // Get the overhead of the extractelement and insertelement instructions 5493 // we might create due to scalarization. 5494 Cost += getScalarizationOverhead(I, VF, TTI); 5495 5496 // If we have a predicated store, it may not be executed for each vector 5497 // lane. Scale the cost by the probability of executing the predicated 5498 // block. 5499 if (isPredicatedInst(I)) { 5500 Cost /= getReciprocalPredBlockProb(); 5501 5502 if (useEmulatedMaskMemRefHack(I)) 5503 // Artificially setting to a high enough value to practically disable 5504 // vectorization with such operations. 5505 Cost = 3000000; 5506 } 5507 5508 return Cost; 5509 } 5510 5511 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5512 unsigned VF) { 5513 Type *ValTy = getMemInstValueType(I); 5514 Type *VectorTy = ToVectorTy(ValTy, VF); 5515 unsigned Alignment = getLoadStoreAlignment(I); 5516 Value *Ptr = getLoadStorePointerOperand(I); 5517 unsigned AS = getLoadStoreAddressSpace(I); 5518 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5519 5520 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5521 "Stride should be 1 or -1 for consecutive memory access"); 5522 unsigned Cost = 0; 5523 if (Legal->isMaskRequired(I)) 5524 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5525 else 5526 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5527 5528 bool Reverse = ConsecutiveStride < 0; 5529 if (Reverse) 5530 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5531 return Cost; 5532 } 5533 5534 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5535 unsigned VF) { 5536 Type *ValTy = getMemInstValueType(I); 5537 Type *VectorTy = ToVectorTy(ValTy, VF); 5538 unsigned Alignment = getLoadStoreAlignment(I); 5539 unsigned AS = getLoadStoreAddressSpace(I); 5540 if (isa<LoadInst>(I)) { 5541 return TTI.getAddressComputationCost(ValTy) + 5542 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5543 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5544 } 5545 StoreInst *SI = cast<StoreInst>(I); 5546 5547 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5548 return TTI.getAddressComputationCost(ValTy) + 5549 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5550 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5551 Instruction::ExtractElement, 5552 VectorTy, VF - 1)); 5553 } 5554 5555 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5556 unsigned VF) { 5557 Type *ValTy = getMemInstValueType(I); 5558 Type *VectorTy = ToVectorTy(ValTy, VF); 5559 unsigned Alignment = getLoadStoreAlignment(I); 5560 Value *Ptr = getLoadStorePointerOperand(I); 5561 5562 return TTI.getAddressComputationCost(VectorTy) + 5563 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5564 Legal->isMaskRequired(I), Alignment); 5565 } 5566 5567 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5568 unsigned VF) { 5569 Type *ValTy = getMemInstValueType(I); 5570 Type *VectorTy = ToVectorTy(ValTy, VF); 5571 unsigned AS = getLoadStoreAddressSpace(I); 5572 5573 auto Group = getInterleavedAccessGroup(I); 5574 assert(Group && "Fail to get an interleaved access group."); 5575 5576 unsigned InterleaveFactor = Group->getFactor(); 5577 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5578 5579 // Holds the indices of existing members in an interleaved load group. 5580 // An interleaved store group doesn't need this as it doesn't allow gaps. 5581 SmallVector<unsigned, 4> Indices; 5582 if (isa<LoadInst>(I)) { 5583 for (unsigned i = 0; i < InterleaveFactor; i++) 5584 if (Group->getMember(i)) 5585 Indices.push_back(i); 5586 } 5587 5588 // Calculate the cost of the whole interleaved group. 5589 bool UseMaskForGaps = 5590 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5591 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5592 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5593 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5594 5595 if (Group->isReverse()) { 5596 // TODO: Add support for reversed masked interleaved access. 5597 assert(!Legal->isMaskRequired(I) && 5598 "Reverse masked interleaved access not supported."); 5599 Cost += Group->getNumMembers() * 5600 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5601 } 5602 return Cost; 5603 } 5604 5605 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5606 unsigned VF) { 5607 // Calculate scalar cost only. Vectorization cost should be ready at this 5608 // moment. 5609 if (VF == 1) { 5610 Type *ValTy = getMemInstValueType(I); 5611 unsigned Alignment = getLoadStoreAlignment(I); 5612 unsigned AS = getLoadStoreAddressSpace(I); 5613 5614 return TTI.getAddressComputationCost(ValTy) + 5615 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5616 } 5617 return getWideningCost(I, VF); 5618 } 5619 5620 LoopVectorizationCostModel::VectorizationCostTy 5621 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5622 // If we know that this instruction will remain uniform, check the cost of 5623 // the scalar version. 5624 if (isUniformAfterVectorization(I, VF)) 5625 VF = 1; 5626 5627 if (VF > 1 && isProfitableToScalarize(I, VF)) 5628 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5629 5630 // Forced scalars do not have any scalarization overhead. 5631 auto ForcedScalar = ForcedScalars.find(VF); 5632 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5633 auto InstSet = ForcedScalar->second; 5634 if (InstSet.find(I) != InstSet.end()) 5635 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5636 } 5637 5638 Type *VectorTy; 5639 unsigned C = getInstructionCost(I, VF, VectorTy); 5640 5641 bool TypeNotScalarized = 5642 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5643 return VectorizationCostTy(C, TypeNotScalarized); 5644 } 5645 5646 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5647 if (VF == 1) 5648 return; 5649 NumPredStores = 0; 5650 for (BasicBlock *BB : TheLoop->blocks()) { 5651 // For each instruction in the old loop. 5652 for (Instruction &I : *BB) { 5653 Value *Ptr = getLoadStorePointerOperand(&I); 5654 if (!Ptr) 5655 continue; 5656 5657 // TODO: We should generate better code and update the cost model for 5658 // predicated uniform stores. Today they are treated as any other 5659 // predicated store (see added test cases in 5660 // invariant-store-vectorization.ll). 5661 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5662 NumPredStores++; 5663 5664 if (Legal->isUniform(Ptr) && 5665 // Conditional loads and stores should be scalarized and predicated. 5666 // isScalarWithPredication cannot be used here since masked 5667 // gather/scatters are not considered scalar with predication. 5668 !Legal->blockNeedsPredication(I.getParent())) { 5669 // TODO: Avoid replicating loads and stores instead of 5670 // relying on instcombine to remove them. 5671 // Load: Scalar load + broadcast 5672 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5673 unsigned Cost = getUniformMemOpCost(&I, VF); 5674 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5675 continue; 5676 } 5677 5678 // We assume that widening is the best solution when possible. 5679 if (memoryInstructionCanBeWidened(&I, VF)) { 5680 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5681 int ConsecutiveStride = 5682 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5683 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5684 "Expected consecutive stride."); 5685 InstWidening Decision = 5686 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5687 setWideningDecision(&I, VF, Decision, Cost); 5688 continue; 5689 } 5690 5691 // Choose between Interleaving, Gather/Scatter or Scalarization. 5692 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5693 unsigned NumAccesses = 1; 5694 if (isAccessInterleaved(&I)) { 5695 auto Group = getInterleavedAccessGroup(&I); 5696 assert(Group && "Fail to get an interleaved access group."); 5697 5698 // Make one decision for the whole group. 5699 if (getWideningDecision(&I, VF) != CM_Unknown) 5700 continue; 5701 5702 NumAccesses = Group->getNumMembers(); 5703 if (interleavedAccessCanBeWidened(&I, VF)) 5704 InterleaveCost = getInterleaveGroupCost(&I, VF); 5705 } 5706 5707 unsigned GatherScatterCost = 5708 isLegalGatherOrScatter(&I) 5709 ? getGatherScatterCost(&I, VF) * NumAccesses 5710 : std::numeric_limits<unsigned>::max(); 5711 5712 unsigned ScalarizationCost = 5713 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5714 5715 // Choose better solution for the current VF, 5716 // write down this decision and use it during vectorization. 5717 unsigned Cost; 5718 InstWidening Decision; 5719 if (InterleaveCost <= GatherScatterCost && 5720 InterleaveCost < ScalarizationCost) { 5721 Decision = CM_Interleave; 5722 Cost = InterleaveCost; 5723 } else if (GatherScatterCost < ScalarizationCost) { 5724 Decision = CM_GatherScatter; 5725 Cost = GatherScatterCost; 5726 } else { 5727 Decision = CM_Scalarize; 5728 Cost = ScalarizationCost; 5729 } 5730 // If the instructions belongs to an interleave group, the whole group 5731 // receives the same decision. The whole group receives the cost, but 5732 // the cost will actually be assigned to one instruction. 5733 if (auto Group = getInterleavedAccessGroup(&I)) 5734 setWideningDecision(Group, VF, Decision, Cost); 5735 else 5736 setWideningDecision(&I, VF, Decision, Cost); 5737 } 5738 } 5739 5740 // Make sure that any load of address and any other address computation 5741 // remains scalar unless there is gather/scatter support. This avoids 5742 // inevitable extracts into address registers, and also has the benefit of 5743 // activating LSR more, since that pass can't optimize vectorized 5744 // addresses. 5745 if (TTI.prefersVectorizedAddressing()) 5746 return; 5747 5748 // Start with all scalar pointer uses. 5749 SmallPtrSet<Instruction *, 8> AddrDefs; 5750 for (BasicBlock *BB : TheLoop->blocks()) 5751 for (Instruction &I : *BB) { 5752 Instruction *PtrDef = 5753 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5754 if (PtrDef && TheLoop->contains(PtrDef) && 5755 getWideningDecision(&I, VF) != CM_GatherScatter) 5756 AddrDefs.insert(PtrDef); 5757 } 5758 5759 // Add all instructions used to generate the addresses. 5760 SmallVector<Instruction *, 4> Worklist; 5761 for (auto *I : AddrDefs) 5762 Worklist.push_back(I); 5763 while (!Worklist.empty()) { 5764 Instruction *I = Worklist.pop_back_val(); 5765 for (auto &Op : I->operands()) 5766 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5767 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5768 AddrDefs.insert(InstOp).second) 5769 Worklist.push_back(InstOp); 5770 } 5771 5772 for (auto *I : AddrDefs) { 5773 if (isa<LoadInst>(I)) { 5774 // Setting the desired widening decision should ideally be handled in 5775 // by cost functions, but since this involves the task of finding out 5776 // if the loaded register is involved in an address computation, it is 5777 // instead changed here when we know this is the case. 5778 InstWidening Decision = getWideningDecision(I, VF); 5779 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5780 // Scalarize a widened load of address. 5781 setWideningDecision(I, VF, CM_Scalarize, 5782 (VF * getMemoryInstructionCost(I, 1))); 5783 else if (auto Group = getInterleavedAccessGroup(I)) { 5784 // Scalarize an interleave group of address loads. 5785 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5786 if (Instruction *Member = Group->getMember(I)) 5787 setWideningDecision(Member, VF, CM_Scalarize, 5788 (VF * getMemoryInstructionCost(Member, 1))); 5789 } 5790 } 5791 } else 5792 // Make sure I gets scalarized and a cost estimate without 5793 // scalarization overhead. 5794 ForcedScalars[VF].insert(I); 5795 } 5796 } 5797 5798 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5799 unsigned VF, 5800 Type *&VectorTy) { 5801 Type *RetTy = I->getType(); 5802 if (canTruncateToMinimalBitwidth(I, VF)) 5803 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5804 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5805 auto SE = PSE.getSE(); 5806 5807 // TODO: We need to estimate the cost of intrinsic calls. 5808 switch (I->getOpcode()) { 5809 case Instruction::GetElementPtr: 5810 // We mark this instruction as zero-cost because the cost of GEPs in 5811 // vectorized code depends on whether the corresponding memory instruction 5812 // is scalarized or not. Therefore, we handle GEPs with the memory 5813 // instruction cost. 5814 return 0; 5815 case Instruction::Br: { 5816 // In cases of scalarized and predicated instructions, there will be VF 5817 // predicated blocks in the vectorized loop. Each branch around these 5818 // blocks requires also an extract of its vector compare i1 element. 5819 bool ScalarPredicatedBB = false; 5820 BranchInst *BI = cast<BranchInst>(I); 5821 if (VF > 1 && BI->isConditional() && 5822 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5823 PredicatedBBsAfterVectorization.end() || 5824 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5825 PredicatedBBsAfterVectorization.end())) 5826 ScalarPredicatedBB = true; 5827 5828 if (ScalarPredicatedBB) { 5829 // Return cost for branches around scalarized and predicated blocks. 5830 Type *Vec_i1Ty = 5831 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5832 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5833 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5834 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5835 // The back-edge branch will remain, as will all scalar branches. 5836 return TTI.getCFInstrCost(Instruction::Br); 5837 else 5838 // This branch will be eliminated by if-conversion. 5839 return 0; 5840 // Note: We currently assume zero cost for an unconditional branch inside 5841 // a predicated block since it will become a fall-through, although we 5842 // may decide in the future to call TTI for all branches. 5843 } 5844 case Instruction::PHI: { 5845 auto *Phi = cast<PHINode>(I); 5846 5847 // First-order recurrences are replaced by vector shuffles inside the loop. 5848 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5849 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5850 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5851 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5852 5853 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5854 // converted into select instructions. We require N - 1 selects per phi 5855 // node, where N is the number of incoming values. 5856 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5857 return (Phi->getNumIncomingValues() - 1) * 5858 TTI.getCmpSelInstrCost( 5859 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5860 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5861 5862 return TTI.getCFInstrCost(Instruction::PHI); 5863 } 5864 case Instruction::UDiv: 5865 case Instruction::SDiv: 5866 case Instruction::URem: 5867 case Instruction::SRem: 5868 // If we have a predicated instruction, it may not be executed for each 5869 // vector lane. Get the scalarization cost and scale this amount by the 5870 // probability of executing the predicated block. If the instruction is not 5871 // predicated, we fall through to the next case. 5872 if (VF > 1 && isScalarWithPredication(I)) { 5873 unsigned Cost = 0; 5874 5875 // These instructions have a non-void type, so account for the phi nodes 5876 // that we will create. This cost is likely to be zero. The phi node 5877 // cost, if any, should be scaled by the block probability because it 5878 // models a copy at the end of each predicated block. 5879 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5880 5881 // The cost of the non-predicated instruction. 5882 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5883 5884 // The cost of insertelement and extractelement instructions needed for 5885 // scalarization. 5886 Cost += getScalarizationOverhead(I, VF, TTI); 5887 5888 // Scale the cost by the probability of executing the predicated blocks. 5889 // This assumes the predicated block for each vector lane is equally 5890 // likely. 5891 return Cost / getReciprocalPredBlockProb(); 5892 } 5893 LLVM_FALLTHROUGH; 5894 case Instruction::Add: 5895 case Instruction::FAdd: 5896 case Instruction::Sub: 5897 case Instruction::FSub: 5898 case Instruction::Mul: 5899 case Instruction::FMul: 5900 case Instruction::FDiv: 5901 case Instruction::FRem: 5902 case Instruction::Shl: 5903 case Instruction::LShr: 5904 case Instruction::AShr: 5905 case Instruction::And: 5906 case Instruction::Or: 5907 case Instruction::Xor: { 5908 // Since we will replace the stride by 1 the multiplication should go away. 5909 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5910 return 0; 5911 // Certain instructions can be cheaper to vectorize if they have a constant 5912 // second vector operand. One example of this are shifts on x86. 5913 Value *Op2 = I->getOperand(1); 5914 TargetTransformInfo::OperandValueProperties Op2VP; 5915 TargetTransformInfo::OperandValueKind Op2VK = 5916 TTI.getOperandInfo(Op2, Op2VP); 5917 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5918 Op2VK = TargetTransformInfo::OK_UniformValue; 5919 5920 SmallVector<const Value *, 4> Operands(I->operand_values()); 5921 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5922 return N * TTI.getArithmeticInstrCost( 5923 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5924 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5925 } 5926 case Instruction::Select: { 5927 SelectInst *SI = cast<SelectInst>(I); 5928 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5929 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5930 Type *CondTy = SI->getCondition()->getType(); 5931 if (!ScalarCond) 5932 CondTy = VectorType::get(CondTy, VF); 5933 5934 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5935 } 5936 case Instruction::ICmp: 5937 case Instruction::FCmp: { 5938 Type *ValTy = I->getOperand(0)->getType(); 5939 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5940 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5941 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5942 VectorTy = ToVectorTy(ValTy, VF); 5943 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5944 } 5945 case Instruction::Store: 5946 case Instruction::Load: { 5947 unsigned Width = VF; 5948 if (Width > 1) { 5949 InstWidening Decision = getWideningDecision(I, Width); 5950 assert(Decision != CM_Unknown && 5951 "CM decision should be taken at this point"); 5952 if (Decision == CM_Scalarize) 5953 Width = 1; 5954 } 5955 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5956 return getMemoryInstructionCost(I, VF); 5957 } 5958 case Instruction::ZExt: 5959 case Instruction::SExt: 5960 case Instruction::FPToUI: 5961 case Instruction::FPToSI: 5962 case Instruction::FPExt: 5963 case Instruction::PtrToInt: 5964 case Instruction::IntToPtr: 5965 case Instruction::SIToFP: 5966 case Instruction::UIToFP: 5967 case Instruction::Trunc: 5968 case Instruction::FPTrunc: 5969 case Instruction::BitCast: { 5970 // We optimize the truncation of induction variables having constant 5971 // integer steps. The cost of these truncations is the same as the scalar 5972 // operation. 5973 if (isOptimizableIVTruncate(I, VF)) { 5974 auto *Trunc = cast<TruncInst>(I); 5975 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 5976 Trunc->getSrcTy(), Trunc); 5977 } 5978 5979 Type *SrcScalarTy = I->getOperand(0)->getType(); 5980 Type *SrcVecTy = 5981 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 5982 if (canTruncateToMinimalBitwidth(I, VF)) { 5983 // This cast is going to be shrunk. This may remove the cast or it might 5984 // turn it into slightly different cast. For example, if MinBW == 16, 5985 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5986 // 5987 // Calculate the modified src and dest types. 5988 Type *MinVecTy = VectorTy; 5989 if (I->getOpcode() == Instruction::Trunc) { 5990 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5991 VectorTy = 5992 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5993 } else if (I->getOpcode() == Instruction::ZExt || 5994 I->getOpcode() == Instruction::SExt) { 5995 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5996 VectorTy = 5997 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5998 } 5999 } 6000 6001 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6002 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6003 } 6004 case Instruction::Call: { 6005 bool NeedToScalarize; 6006 CallInst *CI = cast<CallInst>(I); 6007 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6008 if (getVectorIntrinsicIDForCall(CI, TLI)) 6009 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6010 return CallCost; 6011 } 6012 default: 6013 // The cost of executing VF copies of the scalar instruction. This opcode 6014 // is unknown. Assume that it is the same as 'mul'. 6015 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6016 getScalarizationOverhead(I, VF, TTI); 6017 } // end of switch. 6018 } 6019 6020 char LoopVectorize::ID = 0; 6021 6022 static const char lv_name[] = "Loop Vectorization"; 6023 6024 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6025 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6026 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6027 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6028 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6029 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6030 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6031 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6032 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6033 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6034 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6035 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6036 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6037 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6038 6039 namespace llvm { 6040 6041 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6042 bool VectorizeOnlyWhenForced) { 6043 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6044 } 6045 6046 } // end namespace llvm 6047 6048 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6049 // Check if the pointer operand of a load or store instruction is 6050 // consecutive. 6051 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6052 return Legal->isConsecutivePtr(Ptr); 6053 return false; 6054 } 6055 6056 void LoopVectorizationCostModel::collectValuesToIgnore() { 6057 // Ignore ephemeral values. 6058 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6059 6060 // Ignore type-promoting instructions we identified during reduction 6061 // detection. 6062 for (auto &Reduction : *Legal->getReductionVars()) { 6063 RecurrenceDescriptor &RedDes = Reduction.second; 6064 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6065 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6066 } 6067 // Ignore type-casting instructions we identified during induction 6068 // detection. 6069 for (auto &Induction : *Legal->getInductionVars()) { 6070 InductionDescriptor &IndDes = Induction.second; 6071 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6072 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6073 } 6074 } 6075 6076 VectorizationFactor 6077 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6078 unsigned UserVF) { 6079 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6080 const VectorizationFactor NoVectorization = {1U, 0U}; 6081 6082 // Outer loop handling: They may require CFG and instruction level 6083 // transformations before even evaluating whether vectorization is profitable. 6084 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6085 // the vectorization pipeline. 6086 if (!OrigLoop->empty()) { 6087 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6088 // This won't be necessary when UserVF is not required in the VPlan-native 6089 // path. 6090 if (VPlanBuildStressTest && !UserVF) 6091 UserVF = 4; 6092 6093 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6094 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6095 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6096 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6097 buildVPlans(UserVF, UserVF); 6098 6099 // For VPlan build stress testing, we bail out after VPlan construction. 6100 if (VPlanBuildStressTest) 6101 return NoVectorization; 6102 6103 return {UserVF, 0}; 6104 } 6105 6106 LLVM_DEBUG( 6107 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6108 "VPlan-native path.\n"); 6109 return NoVectorization; 6110 } 6111 6112 VectorizationFactor 6113 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 6114 assert(OrigLoop->empty() && "Inner loop expected."); 6115 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6116 const VectorizationFactor NoVectorization = {1U, 0U}; 6117 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6118 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 6119 return NoVectorization; 6120 6121 // Invalidate interleave groups if all blocks of loop will be predicated. 6122 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6123 !useMaskedInterleavedAccesses(*TTI)) { 6124 LLVM_DEBUG( 6125 dbgs() 6126 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6127 "which requires masked-interleaved support.\n"); 6128 CM.InterleaveInfo.reset(); 6129 } 6130 6131 if (UserVF) { 6132 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6133 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6134 // Collect the instructions (and their associated costs) that will be more 6135 // profitable to scalarize. 6136 CM.selectUserVectorizationFactor(UserVF); 6137 buildVPlansWithVPRecipes(UserVF, UserVF); 6138 LLVM_DEBUG(printPlans(dbgs())); 6139 return {UserVF, 0}; 6140 } 6141 6142 unsigned MaxVF = MaybeMaxVF.getValue(); 6143 assert(MaxVF != 0 && "MaxVF is zero."); 6144 6145 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6146 // Collect Uniform and Scalar instructions after vectorization with VF. 6147 CM.collectUniformsAndScalars(VF); 6148 6149 // Collect the instructions (and their associated costs) that will be more 6150 // profitable to scalarize. 6151 if (VF > 1) 6152 CM.collectInstsToScalarize(VF); 6153 } 6154 6155 buildVPlansWithVPRecipes(1, MaxVF); 6156 LLVM_DEBUG(printPlans(dbgs())); 6157 if (MaxVF == 1) 6158 return NoVectorization; 6159 6160 // Select the optimal vectorization factor. 6161 return CM.selectVectorizationFactor(MaxVF); 6162 } 6163 6164 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6165 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6166 << '\n'); 6167 BestVF = VF; 6168 BestUF = UF; 6169 6170 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6171 return !Plan->hasVF(VF); 6172 }); 6173 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6174 } 6175 6176 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6177 DominatorTree *DT) { 6178 // Perform the actual loop transformation. 6179 6180 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6181 VPCallbackILV CallbackILV(ILV); 6182 6183 VPTransformState State{BestVF, BestUF, LI, 6184 DT, ILV.Builder, ILV.VectorLoopValueMap, 6185 &ILV, CallbackILV}; 6186 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6187 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6188 6189 //===------------------------------------------------===// 6190 // 6191 // Notice: any optimization or new instruction that go 6192 // into the code below should also be implemented in 6193 // the cost-model. 6194 // 6195 //===------------------------------------------------===// 6196 6197 // 2. Copy and widen instructions from the old loop into the new loop. 6198 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6199 VPlans.front()->execute(&State); 6200 6201 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6202 // predication, updating analyses. 6203 ILV.fixVectorizedLoop(); 6204 } 6205 6206 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6207 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6208 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6209 6210 // We create new control-flow for the vectorized loop, so the original 6211 // condition will be dead after vectorization if it's only used by the 6212 // branch. 6213 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6214 if (Cmp && Cmp->hasOneUse()) 6215 DeadInstructions.insert(Cmp); 6216 6217 // We create new "steps" for induction variable updates to which the original 6218 // induction variables map. An original update instruction will be dead if 6219 // all its users except the induction variable are dead. 6220 for (auto &Induction : *Legal->getInductionVars()) { 6221 PHINode *Ind = Induction.first; 6222 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6223 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6224 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6225 DeadInstructions.end(); 6226 })) 6227 DeadInstructions.insert(IndUpdate); 6228 6229 // We record as "Dead" also the type-casting instructions we had identified 6230 // during induction analysis. We don't need any handling for them in the 6231 // vectorized loop because we have proven that, under a proper runtime 6232 // test guarding the vectorized loop, the value of the phi, and the casted 6233 // value of the phi, are the same. The last instruction in this casting chain 6234 // will get its scalar/vector/widened def from the scalar/vector/widened def 6235 // of the respective phi node. Any other casts in the induction def-use chain 6236 // have no other uses outside the phi update chain, and will be ignored. 6237 InductionDescriptor &IndDes = Induction.second; 6238 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6239 DeadInstructions.insert(Casts.begin(), Casts.end()); 6240 } 6241 } 6242 6243 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6244 6245 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6246 6247 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6248 Instruction::BinaryOps BinOp) { 6249 // When unrolling and the VF is 1, we only need to add a simple scalar. 6250 Type *Ty = Val->getType(); 6251 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6252 6253 if (Ty->isFloatingPointTy()) { 6254 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6255 6256 // Floating point operations had to be 'fast' to enable the unrolling. 6257 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6258 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6259 } 6260 Constant *C = ConstantInt::get(Ty, StartIdx); 6261 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6262 } 6263 6264 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6265 SmallVector<Metadata *, 4> MDs; 6266 // Reserve first location for self reference to the LoopID metadata node. 6267 MDs.push_back(nullptr); 6268 bool IsUnrollMetadata = false; 6269 MDNode *LoopID = L->getLoopID(); 6270 if (LoopID) { 6271 // First find existing loop unrolling disable metadata. 6272 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6273 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6274 if (MD) { 6275 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6276 IsUnrollMetadata = 6277 S && S->getString().startswith("llvm.loop.unroll.disable"); 6278 } 6279 MDs.push_back(LoopID->getOperand(i)); 6280 } 6281 } 6282 6283 if (!IsUnrollMetadata) { 6284 // Add runtime unroll disable metadata. 6285 LLVMContext &Context = L->getHeader()->getContext(); 6286 SmallVector<Metadata *, 1> DisableOperands; 6287 DisableOperands.push_back( 6288 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6289 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6290 MDs.push_back(DisableNode); 6291 MDNode *NewLoopID = MDNode::get(Context, MDs); 6292 // Set operand 0 to refer to the loop id itself. 6293 NewLoopID->replaceOperandWith(0, NewLoopID); 6294 L->setLoopID(NewLoopID); 6295 } 6296 } 6297 6298 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6299 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6300 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6301 bool PredicateAtRangeStart = Predicate(Range.Start); 6302 6303 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6304 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6305 Range.End = TmpVF; 6306 break; 6307 } 6308 6309 return PredicateAtRangeStart; 6310 } 6311 6312 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6313 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6314 /// of VF's starting at a given VF and extending it as much as possible. Each 6315 /// vectorization decision can potentially shorten this sub-range during 6316 /// buildVPlan(). 6317 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6318 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6319 VFRange SubRange = {VF, MaxVF + 1}; 6320 VPlans.push_back(buildVPlan(SubRange)); 6321 VF = SubRange.End; 6322 } 6323 } 6324 6325 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6326 VPlanPtr &Plan) { 6327 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6328 6329 // Look for cached value. 6330 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6331 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6332 if (ECEntryIt != EdgeMaskCache.end()) 6333 return ECEntryIt->second; 6334 6335 VPValue *SrcMask = createBlockInMask(Src, Plan); 6336 6337 // The terminator has to be a branch inst! 6338 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6339 assert(BI && "Unexpected terminator found"); 6340 6341 if (!BI->isConditional()) 6342 return EdgeMaskCache[Edge] = SrcMask; 6343 6344 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6345 assert(EdgeMask && "No Edge Mask found for condition"); 6346 6347 if (BI->getSuccessor(0) != Dst) 6348 EdgeMask = Builder.createNot(EdgeMask); 6349 6350 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6351 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6352 6353 return EdgeMaskCache[Edge] = EdgeMask; 6354 } 6355 6356 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6357 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6358 6359 // Look for cached value. 6360 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6361 if (BCEntryIt != BlockMaskCache.end()) 6362 return BCEntryIt->second; 6363 6364 // All-one mask is modelled as no-mask following the convention for masked 6365 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6366 VPValue *BlockMask = nullptr; 6367 6368 if (OrigLoop->getHeader() == BB) { 6369 if (!CM.blockNeedsPredication(BB)) 6370 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6371 6372 // Introduce the early-exit compare IV <= BTC to form header block mask. 6373 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6374 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6375 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6376 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6377 return BlockMaskCache[BB] = BlockMask; 6378 } 6379 6380 // This is the block mask. We OR all incoming edges. 6381 for (auto *Predecessor : predecessors(BB)) { 6382 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6383 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6384 return BlockMaskCache[BB] = EdgeMask; 6385 6386 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6387 BlockMask = EdgeMask; 6388 continue; 6389 } 6390 6391 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6392 } 6393 6394 return BlockMaskCache[BB] = BlockMask; 6395 } 6396 6397 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6398 VFRange &Range, 6399 VPlanPtr &Plan) { 6400 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6401 if (!IG) 6402 return nullptr; 6403 6404 // Now check if IG is relevant for VF's in the given range. 6405 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6406 return [=](unsigned VF) -> bool { 6407 return (VF >= 2 && // Query is illegal for VF == 1 6408 CM.getWideningDecision(I, VF) == 6409 LoopVectorizationCostModel::CM_Interleave); 6410 }; 6411 }; 6412 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6413 return nullptr; 6414 6415 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6416 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6417 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6418 assert(I == IG->getInsertPos() && 6419 "Generating a recipe for an adjunct member of an interleave group"); 6420 6421 VPValue *Mask = nullptr; 6422 if (Legal->isMaskRequired(I)) 6423 Mask = createBlockInMask(I->getParent(), Plan); 6424 6425 return new VPInterleaveRecipe(IG, Mask); 6426 } 6427 6428 VPWidenMemoryInstructionRecipe * 6429 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6430 VPlanPtr &Plan) { 6431 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6432 return nullptr; 6433 6434 auto willWiden = [&](unsigned VF) -> bool { 6435 if (VF == 1) 6436 return false; 6437 if (CM.isScalarAfterVectorization(I, VF) || 6438 CM.isProfitableToScalarize(I, VF)) 6439 return false; 6440 LoopVectorizationCostModel::InstWidening Decision = 6441 CM.getWideningDecision(I, VF); 6442 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6443 "CM decision should be taken at this point."); 6444 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6445 "Interleave memory opportunity should be caught earlier."); 6446 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6447 }; 6448 6449 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6450 return nullptr; 6451 6452 VPValue *Mask = nullptr; 6453 if (Legal->isMaskRequired(I)) 6454 Mask = createBlockInMask(I->getParent(), Plan); 6455 6456 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6457 } 6458 6459 VPWidenIntOrFpInductionRecipe * 6460 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6461 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6462 // Check if this is an integer or fp induction. If so, build the recipe that 6463 // produces its scalar and vector values. 6464 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6465 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6466 II.getKind() == InductionDescriptor::IK_FpInduction) 6467 return new VPWidenIntOrFpInductionRecipe(Phi); 6468 6469 return nullptr; 6470 } 6471 6472 // Optimize the special case where the source is a constant integer 6473 // induction variable. Notice that we can only optimize the 'trunc' case 6474 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6475 // (c) other casts depend on pointer size. 6476 6477 // Determine whether \p K is a truncation based on an induction variable that 6478 // can be optimized. 6479 auto isOptimizableIVTruncate = 6480 [&](Instruction *K) -> std::function<bool(unsigned)> { 6481 return 6482 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6483 }; 6484 6485 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6486 isOptimizableIVTruncate(I), Range)) 6487 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6488 cast<TruncInst>(I)); 6489 return nullptr; 6490 } 6491 6492 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6493 PHINode *Phi = dyn_cast<PHINode>(I); 6494 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6495 return nullptr; 6496 6497 // We know that all PHIs in non-header blocks are converted into selects, so 6498 // we don't have to worry about the insertion order and we can just use the 6499 // builder. At this point we generate the predication tree. There may be 6500 // duplications since this is a simple recursive scan, but future 6501 // optimizations will clean it up. 6502 6503 SmallVector<VPValue *, 2> Masks; 6504 unsigned NumIncoming = Phi->getNumIncomingValues(); 6505 for (unsigned In = 0; In < NumIncoming; In++) { 6506 VPValue *EdgeMask = 6507 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6508 assert((EdgeMask || NumIncoming == 1) && 6509 "Multiple predecessors with one having a full mask"); 6510 if (EdgeMask) 6511 Masks.push_back(EdgeMask); 6512 } 6513 return new VPBlendRecipe(Phi, Masks); 6514 } 6515 6516 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6517 VFRange &Range) { 6518 6519 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6520 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6521 6522 if (IsPredicated) 6523 return false; 6524 6525 auto IsVectorizableOpcode = [](unsigned Opcode) { 6526 switch (Opcode) { 6527 case Instruction::Add: 6528 case Instruction::And: 6529 case Instruction::AShr: 6530 case Instruction::BitCast: 6531 case Instruction::Br: 6532 case Instruction::Call: 6533 case Instruction::FAdd: 6534 case Instruction::FCmp: 6535 case Instruction::FDiv: 6536 case Instruction::FMul: 6537 case Instruction::FPExt: 6538 case Instruction::FPToSI: 6539 case Instruction::FPToUI: 6540 case Instruction::FPTrunc: 6541 case Instruction::FRem: 6542 case Instruction::FSub: 6543 case Instruction::GetElementPtr: 6544 case Instruction::ICmp: 6545 case Instruction::IntToPtr: 6546 case Instruction::Load: 6547 case Instruction::LShr: 6548 case Instruction::Mul: 6549 case Instruction::Or: 6550 case Instruction::PHI: 6551 case Instruction::PtrToInt: 6552 case Instruction::SDiv: 6553 case Instruction::Select: 6554 case Instruction::SExt: 6555 case Instruction::Shl: 6556 case Instruction::SIToFP: 6557 case Instruction::SRem: 6558 case Instruction::Store: 6559 case Instruction::Sub: 6560 case Instruction::Trunc: 6561 case Instruction::UDiv: 6562 case Instruction::UIToFP: 6563 case Instruction::URem: 6564 case Instruction::Xor: 6565 case Instruction::ZExt: 6566 return true; 6567 } 6568 return false; 6569 }; 6570 6571 if (!IsVectorizableOpcode(I->getOpcode())) 6572 return false; 6573 6574 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6575 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6576 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6577 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6578 return false; 6579 } 6580 6581 auto willWiden = [&](unsigned VF) -> bool { 6582 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6583 CM.isProfitableToScalarize(I, VF))) 6584 return false; 6585 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6586 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6587 // The following case may be scalarized depending on the VF. 6588 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6589 // version of the instruction. 6590 // Is it beneficial to perform intrinsic call compared to lib call? 6591 bool NeedToScalarize; 6592 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6593 bool UseVectorIntrinsic = 6594 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6595 return UseVectorIntrinsic || !NeedToScalarize; 6596 } 6597 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6598 assert(CM.getWideningDecision(I, VF) == 6599 LoopVectorizationCostModel::CM_Scalarize && 6600 "Memory widening decisions should have been taken care by now"); 6601 return false; 6602 } 6603 return true; 6604 }; 6605 6606 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6607 return false; 6608 6609 // Success: widen this instruction. We optimize the common case where 6610 // consecutive instructions can be represented by a single recipe. 6611 if (!VPBB->empty()) { 6612 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6613 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6614 return true; 6615 } 6616 6617 VPBB->appendRecipe(new VPWidenRecipe(I)); 6618 return true; 6619 } 6620 6621 VPBasicBlock *VPRecipeBuilder::handleReplication( 6622 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6623 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6624 VPlanPtr &Plan) { 6625 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6626 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6627 Range); 6628 6629 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6630 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6631 6632 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6633 6634 // Find if I uses a predicated instruction. If so, it will use its scalar 6635 // value. Avoid hoisting the insert-element which packs the scalar value into 6636 // a vector value, as that happens iff all users use the vector value. 6637 for (auto &Op : I->operands()) 6638 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6639 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6640 PredInst2Recipe[PredInst]->setAlsoPack(false); 6641 6642 // Finalize the recipe for Instr, first if it is not predicated. 6643 if (!IsPredicated) { 6644 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6645 VPBB->appendRecipe(Recipe); 6646 return VPBB; 6647 } 6648 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6649 assert(VPBB->getSuccessors().empty() && 6650 "VPBB has successors when handling predicated replication."); 6651 // Record predicated instructions for above packing optimizations. 6652 PredInst2Recipe[I] = Recipe; 6653 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6654 VPBlockUtils::insertBlockAfter(Region, VPBB); 6655 auto *RegSucc = new VPBasicBlock(); 6656 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6657 return RegSucc; 6658 } 6659 6660 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6661 VPRecipeBase *PredRecipe, 6662 VPlanPtr &Plan) { 6663 // Instructions marked for predication are replicated and placed under an 6664 // if-then construct to prevent side-effects. 6665 6666 // Generate recipes to compute the block mask for this region. 6667 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6668 6669 // Build the triangular if-then region. 6670 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6671 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6672 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6673 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6674 auto *PHIRecipe = 6675 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6676 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6677 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6678 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6679 6680 // Note: first set Entry as region entry and then connect successors starting 6681 // from it in order, to propagate the "parent" of each VPBasicBlock. 6682 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6683 VPBlockUtils::connectBlocks(Pred, Exit); 6684 6685 return Region; 6686 } 6687 6688 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6689 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6690 VPRecipeBase *Recipe = nullptr; 6691 // Check if Instr should belong to an interleave memory recipe, or already 6692 // does. In the latter case Instr is irrelevant. 6693 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6694 VPBB->appendRecipe(Recipe); 6695 return true; 6696 } 6697 6698 // Check if Instr is a memory operation that should be widened. 6699 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6700 VPBB->appendRecipe(Recipe); 6701 return true; 6702 } 6703 6704 // Check if Instr should form some PHI recipe. 6705 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6706 VPBB->appendRecipe(Recipe); 6707 return true; 6708 } 6709 if ((Recipe = tryToBlend(Instr, Plan))) { 6710 VPBB->appendRecipe(Recipe); 6711 return true; 6712 } 6713 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6714 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6715 return true; 6716 } 6717 6718 // Check if Instr is to be widened by a general VPWidenRecipe, after 6719 // having first checked for specific widening recipes that deal with 6720 // Interleave Groups, Inductions and Phi nodes. 6721 if (tryToWiden(Instr, VPBB, Range)) 6722 return true; 6723 6724 return false; 6725 } 6726 6727 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6728 unsigned MaxVF) { 6729 assert(OrigLoop->empty() && "Inner loop expected."); 6730 6731 // Collect conditions feeding internal conditional branches; they need to be 6732 // represented in VPlan for it to model masking. 6733 SmallPtrSet<Value *, 1> NeedDef; 6734 6735 auto *Latch = OrigLoop->getLoopLatch(); 6736 for (BasicBlock *BB : OrigLoop->blocks()) { 6737 if (BB == Latch) 6738 continue; 6739 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6740 if (Branch && Branch->isConditional()) 6741 NeedDef.insert(Branch->getCondition()); 6742 } 6743 6744 // If the tail is to be folded by masking, the primary induction variable 6745 // needs to be represented in VPlan for it to model early-exit masking. 6746 if (CM.foldTailByMasking()) 6747 NeedDef.insert(Legal->getPrimaryInduction()); 6748 6749 // Collect instructions from the original loop that will become trivially dead 6750 // in the vectorized loop. We don't need to vectorize these instructions. For 6751 // example, original induction update instructions can become dead because we 6752 // separately emit induction "steps" when generating code for the new loop. 6753 // Similarly, we create a new latch condition when setting up the structure 6754 // of the new loop, so the old one can become dead. 6755 SmallPtrSet<Instruction *, 4> DeadInstructions; 6756 collectTriviallyDeadInstructions(DeadInstructions); 6757 6758 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6759 VFRange SubRange = {VF, MaxVF + 1}; 6760 VPlans.push_back( 6761 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6762 VF = SubRange.End; 6763 } 6764 } 6765 6766 LoopVectorizationPlanner::VPlanPtr 6767 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6768 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6769 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6770 // Hold a mapping from predicated instructions to their recipes, in order to 6771 // fix their AlsoPack behavior if a user is determined to replicate and use a 6772 // scalar instead of vector value. 6773 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6774 6775 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6776 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6777 6778 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6779 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6780 auto Plan = llvm::make_unique<VPlan>(VPBB); 6781 6782 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6783 // Represent values that will have defs inside VPlan. 6784 for (Value *V : NeedDef) 6785 Plan->addVPValue(V); 6786 6787 // Scan the body of the loop in a topological order to visit each basic block 6788 // after having visited its predecessor basic blocks. 6789 LoopBlocksDFS DFS(OrigLoop); 6790 DFS.perform(LI); 6791 6792 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6793 // Relevant instructions from basic block BB will be grouped into VPRecipe 6794 // ingredients and fill a new VPBasicBlock. 6795 unsigned VPBBsForBB = 0; 6796 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6797 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6798 VPBB = FirstVPBBForBB; 6799 Builder.setInsertPoint(VPBB); 6800 6801 std::vector<Instruction *> Ingredients; 6802 6803 // Organize the ingredients to vectorize from current basic block in the 6804 // right order. 6805 for (Instruction &I : BB->instructionsWithoutDebug()) { 6806 Instruction *Instr = &I; 6807 6808 // First filter out irrelevant instructions, to ensure no recipes are 6809 // built for them. 6810 if (isa<BranchInst>(Instr) || 6811 DeadInstructions.find(Instr) != DeadInstructions.end()) 6812 continue; 6813 6814 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6815 // member of the IG, do not construct any Recipe for it. 6816 const InterleaveGroup<Instruction> *IG = 6817 CM.getInterleavedAccessGroup(Instr); 6818 if (IG && Instr != IG->getInsertPos() && 6819 Range.Start >= 2 && // Query is illegal for VF == 1 6820 CM.getWideningDecision(Instr, Range.Start) == 6821 LoopVectorizationCostModel::CM_Interleave) { 6822 auto SinkCandidate = SinkAfterInverse.find(Instr); 6823 if (SinkCandidate != SinkAfterInverse.end()) 6824 Ingredients.push_back(SinkCandidate->second); 6825 continue; 6826 } 6827 6828 // Move instructions to handle first-order recurrences, step 1: avoid 6829 // handling this instruction until after we've handled the instruction it 6830 // should follow. 6831 auto SAIt = SinkAfter.find(Instr); 6832 if (SAIt != SinkAfter.end()) { 6833 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6834 << *SAIt->second 6835 << " to vectorize a 1st order recurrence.\n"); 6836 SinkAfterInverse[SAIt->second] = Instr; 6837 continue; 6838 } 6839 6840 Ingredients.push_back(Instr); 6841 6842 // Move instructions to handle first-order recurrences, step 2: push the 6843 // instruction to be sunk at its insertion point. 6844 auto SAInvIt = SinkAfterInverse.find(Instr); 6845 if (SAInvIt != SinkAfterInverse.end()) 6846 Ingredients.push_back(SAInvIt->second); 6847 } 6848 6849 // Introduce each ingredient into VPlan. 6850 for (Instruction *Instr : Ingredients) { 6851 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6852 continue; 6853 6854 // Otherwise, if all widening options failed, Instruction is to be 6855 // replicated. This may create a successor for VPBB. 6856 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6857 Instr, Range, VPBB, PredInst2Recipe, Plan); 6858 if (NextVPBB != VPBB) { 6859 VPBB = NextVPBB; 6860 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6861 : ""); 6862 } 6863 } 6864 } 6865 6866 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6867 // may also be empty, such as the last one VPBB, reflecting original 6868 // basic-blocks with no recipes. 6869 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6870 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6871 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6872 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6873 delete PreEntry; 6874 6875 std::string PlanName; 6876 raw_string_ostream RSO(PlanName); 6877 unsigned VF = Range.Start; 6878 Plan->addVF(VF); 6879 RSO << "Initial VPlan for VF={" << VF; 6880 for (VF *= 2; VF < Range.End; VF *= 2) { 6881 Plan->addVF(VF); 6882 RSO << "," << VF; 6883 } 6884 RSO << "},UF>=1"; 6885 RSO.flush(); 6886 Plan->setName(PlanName); 6887 6888 return Plan; 6889 } 6890 6891 LoopVectorizationPlanner::VPlanPtr 6892 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6893 // Outer loop handling: They may require CFG and instruction level 6894 // transformations before even evaluating whether vectorization is profitable. 6895 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6896 // the vectorization pipeline. 6897 assert(!OrigLoop->empty()); 6898 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6899 6900 // Create new empty VPlan 6901 auto Plan = llvm::make_unique<VPlan>(); 6902 6903 // Build hierarchical CFG 6904 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6905 HCFGBuilder.buildHierarchicalCFG(); 6906 6907 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6908 Plan->addVF(VF); 6909 6910 if (EnableVPlanPredication) { 6911 VPlanPredicator VPP(*Plan); 6912 VPP.predicate(); 6913 6914 // Avoid running transformation to recipes until masked code generation in 6915 // VPlan-native path is in place. 6916 return Plan; 6917 } 6918 6919 SmallPtrSet<Instruction *, 1> DeadInstructions; 6920 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6921 Plan, Legal->getInductionVars(), DeadInstructions); 6922 6923 return Plan; 6924 } 6925 6926 Value* LoopVectorizationPlanner::VPCallbackILV:: 6927 getOrCreateVectorValues(Value *V, unsigned Part) { 6928 return ILV.getOrCreateVectorValue(V, Part); 6929 } 6930 6931 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6932 O << " +\n" 6933 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6934 IG->getInsertPos()->printAsOperand(O, false); 6935 if (User) { 6936 O << ", "; 6937 User->getOperand(0)->printAsOperand(O); 6938 } 6939 O << "\\l\""; 6940 for (unsigned i = 0; i < IG->getFactor(); ++i) 6941 if (Instruction *I = IG->getMember(i)) 6942 O << " +\n" 6943 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6944 } 6945 6946 void VPWidenRecipe::execute(VPTransformState &State) { 6947 for (auto &Instr : make_range(Begin, End)) 6948 State.ILV->widenInstruction(Instr); 6949 } 6950 6951 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 6952 assert(!State.Instance && "Int or FP induction being replicated."); 6953 State.ILV->widenIntOrFpInduction(IV, Trunc); 6954 } 6955 6956 void VPWidenPHIRecipe::execute(VPTransformState &State) { 6957 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 6958 } 6959 6960 void VPBlendRecipe::execute(VPTransformState &State) { 6961 State.ILV->setDebugLocFromInst(State.Builder, Phi); 6962 // We know that all PHIs in non-header blocks are converted into 6963 // selects, so we don't have to worry about the insertion order and we 6964 // can just use the builder. 6965 // At this point we generate the predication tree. There may be 6966 // duplications since this is a simple recursive scan, but future 6967 // optimizations will clean it up. 6968 6969 unsigned NumIncoming = Phi->getNumIncomingValues(); 6970 6971 assert((User || NumIncoming == 1) && 6972 "Multiple predecessors with predecessors having a full mask"); 6973 // Generate a sequence of selects of the form: 6974 // SELECT(Mask3, In3, 6975 // SELECT(Mask2, In2, 6976 // ( ...))) 6977 InnerLoopVectorizer::VectorParts Entry(State.UF); 6978 for (unsigned In = 0; In < NumIncoming; ++In) { 6979 for (unsigned Part = 0; Part < State.UF; ++Part) { 6980 // We might have single edge PHIs (blocks) - use an identity 6981 // 'select' for the first PHI operand. 6982 Value *In0 = 6983 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 6984 if (In == 0) 6985 Entry[Part] = In0; // Initialize with the first incoming value. 6986 else { 6987 // Select between the current value and the previous incoming edge 6988 // based on the incoming mask. 6989 Value *Cond = State.get(User->getOperand(In), Part); 6990 Entry[Part] = 6991 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 6992 } 6993 } 6994 } 6995 for (unsigned Part = 0; Part < State.UF; ++Part) 6996 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 6997 } 6998 6999 void VPInterleaveRecipe::execute(VPTransformState &State) { 7000 assert(!State.Instance && "Interleave group being replicated."); 7001 if (!User) 7002 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7003 7004 // Last (and currently only) operand is a mask. 7005 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7006 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7007 for (unsigned Part = 0; Part < State.UF; ++Part) 7008 MaskValues[Part] = State.get(Mask, Part); 7009 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7010 } 7011 7012 void VPReplicateRecipe::execute(VPTransformState &State) { 7013 if (State.Instance) { // Generate a single instance. 7014 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7015 // Insert scalar instance packing it into a vector. 7016 if (AlsoPack && State.VF > 1) { 7017 // If we're constructing lane 0, initialize to start from undef. 7018 if (State.Instance->Lane == 0) { 7019 Value *Undef = 7020 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7021 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7022 } 7023 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7024 } 7025 return; 7026 } 7027 7028 // Generate scalar instances for all VF lanes of all UF parts, unless the 7029 // instruction is uniform inwhich case generate only the first lane for each 7030 // of the UF parts. 7031 unsigned EndLane = IsUniform ? 1 : State.VF; 7032 for (unsigned Part = 0; Part < State.UF; ++Part) 7033 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7034 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7035 } 7036 7037 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7038 assert(State.Instance && "Branch on Mask works only on single instance."); 7039 7040 unsigned Part = State.Instance->Part; 7041 unsigned Lane = State.Instance->Lane; 7042 7043 Value *ConditionBit = nullptr; 7044 if (!User) // Block in mask is all-one. 7045 ConditionBit = State.Builder.getTrue(); 7046 else { 7047 VPValue *BlockInMask = User->getOperand(0); 7048 ConditionBit = State.get(BlockInMask, Part); 7049 if (ConditionBit->getType()->isVectorTy()) 7050 ConditionBit = State.Builder.CreateExtractElement( 7051 ConditionBit, State.Builder.getInt32(Lane)); 7052 } 7053 7054 // Replace the temporary unreachable terminator with a new conditional branch, 7055 // whose two destinations will be set later when they are created. 7056 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7057 assert(isa<UnreachableInst>(CurrentTerminator) && 7058 "Expected to replace unreachable terminator with conditional branch."); 7059 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7060 CondBr->setSuccessor(0, nullptr); 7061 ReplaceInstWithInst(CurrentTerminator, CondBr); 7062 } 7063 7064 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7065 assert(State.Instance && "Predicated instruction PHI works per instance."); 7066 Instruction *ScalarPredInst = cast<Instruction>( 7067 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7068 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7069 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7070 assert(PredicatingBB && "Predicated block has no single predecessor."); 7071 7072 // By current pack/unpack logic we need to generate only a single phi node: if 7073 // a vector value for the predicated instruction exists at this point it means 7074 // the instruction has vector users only, and a phi for the vector value is 7075 // needed. In this case the recipe of the predicated instruction is marked to 7076 // also do that packing, thereby "hoisting" the insert-element sequence. 7077 // Otherwise, a phi node for the scalar value is needed. 7078 unsigned Part = State.Instance->Part; 7079 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7080 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7081 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7082 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7083 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7084 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7085 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7086 } else { 7087 Type *PredInstType = PredInst->getType(); 7088 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7089 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7090 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7091 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7092 } 7093 } 7094 7095 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7096 if (!User) 7097 return State.ILV->vectorizeMemoryInstruction(&Instr); 7098 7099 // Last (and currently only) operand is a mask. 7100 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7101 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7102 for (unsigned Part = 0; Part < State.UF; ++Part) 7103 MaskValues[Part] = State.get(Mask, Part); 7104 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7105 } 7106 7107 // Process the loop in the VPlan-native vectorization path. This path builds 7108 // VPlan upfront in the vectorization pipeline, which allows to apply 7109 // VPlan-to-VPlan transformations from the very beginning without modifying the 7110 // input LLVM IR. 7111 static bool processLoopInVPlanNativePath( 7112 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7113 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7114 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7115 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7116 7117 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7118 Function *F = L->getHeader()->getParent(); 7119 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7120 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7121 &Hints, IAI); 7122 // Use the planner for outer loop vectorization. 7123 // TODO: CM is not used at this point inside the planner. Turn CM into an 7124 // optional argument if we don't need it in the future. 7125 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7126 7127 // Get user vectorization factor. 7128 unsigned UserVF = Hints.getWidth(); 7129 7130 // Check the function attributes to find out if this function should be 7131 // optimized for size. 7132 bool OptForSize = 7133 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7134 7135 // Plan how to best vectorize, return the best VF and its cost. 7136 VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7137 7138 // If we are stress testing VPlan builds, do not attempt to generate vector 7139 // code. Masked vector code generation support will follow soon. 7140 if (VPlanBuildStressTest || EnableVPlanPredication) 7141 return false; 7142 7143 LVP.setBestPlan(VF.Width, 1); 7144 7145 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, UserVF, 1, LVL, 7146 &CM); 7147 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7148 << L->getHeader()->getParent()->getName() << "\"\n"); 7149 LVP.executePlan(LB, DT); 7150 7151 // Mark the loop as already vectorized to avoid vectorizing again. 7152 Hints.setAlreadyVectorized(); 7153 7154 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7155 return true; 7156 } 7157 7158 bool LoopVectorizePass::processLoop(Loop *L) { 7159 assert((EnableVPlanNativePath || L->empty()) && 7160 "VPlan-native path is not enabled. Only process inner loops."); 7161 7162 #ifndef NDEBUG 7163 const std::string DebugLocStr = getDebugLocString(L); 7164 #endif /* NDEBUG */ 7165 7166 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7167 << L->getHeader()->getParent()->getName() << "\" from " 7168 << DebugLocStr << "\n"); 7169 7170 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7171 7172 LLVM_DEBUG( 7173 dbgs() << "LV: Loop hints:" 7174 << " force=" 7175 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7176 ? "disabled" 7177 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7178 ? "enabled" 7179 : "?")) 7180 << " width=" << Hints.getWidth() 7181 << " unroll=" << Hints.getInterleave() << "\n"); 7182 7183 // Function containing loop 7184 Function *F = L->getHeader()->getParent(); 7185 7186 // Looking at the diagnostic output is the only way to determine if a loop 7187 // was vectorized (other than looking at the IR or machine code), so it 7188 // is important to generate an optimization remark for each loop. Most of 7189 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7190 // generated as OptimizationRemark and OptimizationRemarkMissed are 7191 // less verbose reporting vectorized loops and unvectorized loops that may 7192 // benefit from vectorization, respectively. 7193 7194 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7195 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7196 return false; 7197 } 7198 7199 PredicatedScalarEvolution PSE(*SE, *L); 7200 7201 // Check if it is legal to vectorize the loop. 7202 LoopVectorizationRequirements Requirements(*ORE); 7203 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7204 &Requirements, &Hints, DB, AC); 7205 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7206 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7207 Hints.emitRemarkWithHints(); 7208 return false; 7209 } 7210 7211 // Check the function attributes to find out if this function should be 7212 // optimized for size. 7213 bool OptForSize = 7214 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7215 7216 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7217 // here. They may require CFG and instruction level transformations before 7218 // even evaluating whether vectorization is profitable. Since we cannot modify 7219 // the incoming IR, we need to build VPlan upfront in the vectorization 7220 // pipeline. 7221 if (!L->empty()) 7222 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7223 ORE, Hints); 7224 7225 assert(L->empty() && "Inner loop expected."); 7226 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7227 // count by optimizing for size, to minimize overheads. 7228 // Prefer constant trip counts over profile data, over upper bound estimate. 7229 unsigned ExpectedTC = 0; 7230 bool HasExpectedTC = false; 7231 if (const SCEVConstant *ConstExits = 7232 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7233 const APInt &ExitsCount = ConstExits->getAPInt(); 7234 // We are interested in small values for ExpectedTC. Skip over those that 7235 // can't fit an unsigned. 7236 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7237 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7238 HasExpectedTC = true; 7239 } 7240 } 7241 // ExpectedTC may be large because it's bound by a variable. Check 7242 // profiling information to validate we should vectorize. 7243 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7244 auto EstimatedTC = getLoopEstimatedTripCount(L); 7245 if (EstimatedTC) { 7246 ExpectedTC = *EstimatedTC; 7247 HasExpectedTC = true; 7248 } 7249 } 7250 if (!HasExpectedTC) { 7251 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7252 HasExpectedTC = (ExpectedTC > 0); 7253 } 7254 7255 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7256 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7257 << "This loop is worth vectorizing only if no scalar " 7258 << "iteration overheads are incurred."); 7259 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7260 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7261 else { 7262 LLVM_DEBUG(dbgs() << "\n"); 7263 // Loops with a very small trip count are considered for vectorization 7264 // under OptForSize, thereby making sure the cost of their loop body is 7265 // dominant, free of runtime guards and scalar iteration overheads. 7266 OptForSize = true; 7267 } 7268 } 7269 7270 // Check the function attributes to see if implicit floats are allowed. 7271 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7272 // an integer loop and the vector instructions selected are purely integer 7273 // vector instructions? 7274 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7275 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7276 "attribute is used.\n"); 7277 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7278 "NoImplicitFloat", L) 7279 << "loop not vectorized due to NoImplicitFloat attribute"); 7280 Hints.emitRemarkWithHints(); 7281 return false; 7282 } 7283 7284 // Check if the target supports potentially unsafe FP vectorization. 7285 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7286 // for the target we're vectorizing for, to make sure none of the 7287 // additional fp-math flags can help. 7288 if (Hints.isPotentiallyUnsafe() && 7289 TTI->isFPVectorizationPotentiallyUnsafe()) { 7290 LLVM_DEBUG( 7291 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7292 ORE->emit( 7293 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7294 << "loop not vectorized due to unsafe FP support."); 7295 Hints.emitRemarkWithHints(); 7296 return false; 7297 } 7298 7299 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7300 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7301 7302 // If an override option has been passed in for interleaved accesses, use it. 7303 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7304 UseInterleaved = EnableInterleavedMemAccesses; 7305 7306 // Analyze interleaved memory accesses. 7307 if (UseInterleaved) { 7308 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7309 } 7310 7311 // Use the cost model. 7312 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7313 &Hints, IAI); 7314 CM.collectValuesToIgnore(); 7315 7316 // Use the planner for vectorization. 7317 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7318 7319 // Get user vectorization factor. 7320 unsigned UserVF = Hints.getWidth(); 7321 7322 // Plan how to best vectorize, return the best VF and its cost. 7323 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7324 7325 // Select the interleave count. 7326 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7327 7328 // Get user interleave count. 7329 unsigned UserIC = Hints.getInterleave(); 7330 7331 // Identify the diagnostic messages that should be produced. 7332 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7333 bool VectorizeLoop = true, InterleaveLoop = true; 7334 if (Requirements.doesNotMeet(F, L, Hints)) { 7335 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7336 "requirements.\n"); 7337 Hints.emitRemarkWithHints(); 7338 return false; 7339 } 7340 7341 if (VF.Width == 1) { 7342 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7343 VecDiagMsg = std::make_pair( 7344 "VectorizationNotBeneficial", 7345 "the cost-model indicates that vectorization is not beneficial"); 7346 VectorizeLoop = false; 7347 } 7348 7349 if (IC == 1 && UserIC <= 1) { 7350 // Tell the user interleaving is not beneficial. 7351 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7352 IntDiagMsg = std::make_pair( 7353 "InterleavingNotBeneficial", 7354 "the cost-model indicates that interleaving is not beneficial"); 7355 InterleaveLoop = false; 7356 if (UserIC == 1) { 7357 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7358 IntDiagMsg.second += 7359 " and is explicitly disabled or interleave count is set to 1"; 7360 } 7361 } else if (IC > 1 && UserIC == 1) { 7362 // Tell the user interleaving is beneficial, but it explicitly disabled. 7363 LLVM_DEBUG( 7364 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7365 IntDiagMsg = std::make_pair( 7366 "InterleavingBeneficialButDisabled", 7367 "the cost-model indicates that interleaving is beneficial " 7368 "but is explicitly disabled or interleave count is set to 1"); 7369 InterleaveLoop = false; 7370 } 7371 7372 // Override IC if user provided an interleave count. 7373 IC = UserIC > 0 ? UserIC : IC; 7374 7375 // Emit diagnostic messages, if any. 7376 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7377 if (!VectorizeLoop && !InterleaveLoop) { 7378 // Do not vectorize or interleaving the loop. 7379 ORE->emit([&]() { 7380 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7381 L->getStartLoc(), L->getHeader()) 7382 << VecDiagMsg.second; 7383 }); 7384 ORE->emit([&]() { 7385 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7386 L->getStartLoc(), L->getHeader()) 7387 << IntDiagMsg.second; 7388 }); 7389 return false; 7390 } else if (!VectorizeLoop && InterleaveLoop) { 7391 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7392 ORE->emit([&]() { 7393 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7394 L->getStartLoc(), L->getHeader()) 7395 << VecDiagMsg.second; 7396 }); 7397 } else if (VectorizeLoop && !InterleaveLoop) { 7398 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7399 << ") in " << DebugLocStr << '\n'); 7400 ORE->emit([&]() { 7401 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7402 L->getStartLoc(), L->getHeader()) 7403 << IntDiagMsg.second; 7404 }); 7405 } else if (VectorizeLoop && InterleaveLoop) { 7406 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7407 << ") in " << DebugLocStr << '\n'); 7408 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7409 } 7410 7411 LVP.setBestPlan(VF.Width, IC); 7412 7413 using namespace ore; 7414 bool DisableRuntimeUnroll = false; 7415 MDNode *OrigLoopID = L->getLoopID(); 7416 7417 if (!VectorizeLoop) { 7418 assert(IC > 1 && "interleave count should not be 1 or 0"); 7419 // If we decided that it is not legal to vectorize the loop, then 7420 // interleave it. 7421 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7422 &CM); 7423 LVP.executePlan(Unroller, DT); 7424 7425 ORE->emit([&]() { 7426 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7427 L->getHeader()) 7428 << "interleaved loop (interleaved count: " 7429 << NV("InterleaveCount", IC) << ")"; 7430 }); 7431 } else { 7432 // If we decided that it is *legal* to vectorize the loop, then do it. 7433 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7434 &LVL, &CM); 7435 LVP.executePlan(LB, DT); 7436 ++LoopsVectorized; 7437 7438 // Add metadata to disable runtime unrolling a scalar loop when there are 7439 // no runtime checks about strides and memory. A scalar loop that is 7440 // rarely used is not worth unrolling. 7441 if (!LB.areSafetyChecksAdded()) 7442 DisableRuntimeUnroll = true; 7443 7444 // Report the vectorization decision. 7445 ORE->emit([&]() { 7446 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7447 L->getHeader()) 7448 << "vectorized loop (vectorization width: " 7449 << NV("VectorizationFactor", VF.Width) 7450 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7451 }); 7452 } 7453 7454 Optional<MDNode *> RemainderLoopID = 7455 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7456 LLVMLoopVectorizeFollowupEpilogue}); 7457 if (RemainderLoopID.hasValue()) { 7458 L->setLoopID(RemainderLoopID.getValue()); 7459 } else { 7460 if (DisableRuntimeUnroll) 7461 AddRuntimeUnrollDisableMetaData(L); 7462 7463 // Mark the loop as already vectorized to avoid vectorizing again. 7464 Hints.setAlreadyVectorized(); 7465 } 7466 7467 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7468 return true; 7469 } 7470 7471 bool LoopVectorizePass::runImpl( 7472 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7473 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7474 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7475 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7476 OptimizationRemarkEmitter &ORE_) { 7477 SE = &SE_; 7478 LI = &LI_; 7479 TTI = &TTI_; 7480 DT = &DT_; 7481 BFI = &BFI_; 7482 TLI = TLI_; 7483 AA = &AA_; 7484 AC = &AC_; 7485 GetLAA = &GetLAA_; 7486 DB = &DB_; 7487 ORE = &ORE_; 7488 7489 // Don't attempt if 7490 // 1. the target claims to have no vector registers, and 7491 // 2. interleaving won't help ILP. 7492 // 7493 // The second condition is necessary because, even if the target has no 7494 // vector registers, loop vectorization may still enable scalar 7495 // interleaving. 7496 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7497 return false; 7498 7499 bool Changed = false; 7500 7501 // The vectorizer requires loops to be in simplified form. 7502 // Since simplification may add new inner loops, it has to run before the 7503 // legality and profitability checks. This means running the loop vectorizer 7504 // will simplify all loops, regardless of whether anything end up being 7505 // vectorized. 7506 for (auto &L : *LI) 7507 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7508 7509 // Build up a worklist of inner-loops to vectorize. This is necessary as 7510 // the act of vectorizing or partially unrolling a loop creates new loops 7511 // and can invalidate iterators across the loops. 7512 SmallVector<Loop *, 8> Worklist; 7513 7514 for (Loop *L : *LI) 7515 collectSupportedLoops(*L, LI, ORE, Worklist); 7516 7517 LoopsAnalyzed += Worklist.size(); 7518 7519 // Now walk the identified inner loops. 7520 while (!Worklist.empty()) { 7521 Loop *L = Worklist.pop_back_val(); 7522 7523 // For the inner loops we actually process, form LCSSA to simplify the 7524 // transform. 7525 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7526 7527 Changed |= processLoop(L); 7528 } 7529 7530 // Process each loop nest in the function. 7531 return Changed; 7532 } 7533 7534 PreservedAnalyses LoopVectorizePass::run(Function &F, 7535 FunctionAnalysisManager &AM) { 7536 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7537 auto &LI = AM.getResult<LoopAnalysis>(F); 7538 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7539 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7540 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7541 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7542 auto &AA = AM.getResult<AAManager>(F); 7543 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7544 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7545 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7546 7547 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7548 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7549 [&](Loop &L) -> const LoopAccessInfo & { 7550 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7551 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7552 }; 7553 bool Changed = 7554 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7555 if (!Changed) 7556 return PreservedAnalyses::all(); 7557 PreservedAnalyses PA; 7558 7559 // We currently do not preserve loopinfo/dominator analyses with outer loop 7560 // vectorization. Until this is addressed, mark these analyses as preserved 7561 // only for non-VPlan-native path. 7562 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7563 if (!EnableVPlanNativePath) { 7564 PA.preserve<LoopAnalysis>(); 7565 PA.preserve<DominatorTreeAnalysis>(); 7566 } 7567 PA.preserve<BasicAA>(); 7568 PA.preserve<GlobalsAA>(); 7569 return PA; 7570 } 7571