1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/User.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/IR/Verifier.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/BranchProbability.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/LoopSimplify.h" 96 #include "llvm/Transforms/Utils/LoopUtils.h" 97 #include "llvm/Transforms/Utils/LoopVersioning.h" 98 #include "llvm/Transforms/Vectorize.h" 99 #include <algorithm> 100 #include <map> 101 #include <tuple> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define LV_NAME "loop-vectorize" 107 #define DEBUG_TYPE LV_NAME 108 109 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 110 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 111 112 static cl::opt<bool> 113 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 114 cl::desc("Enable if-conversion during vectorization.")); 115 116 /// We don't vectorize loops with a known constant trip count below this number. 117 static cl::opt<unsigned> TinyTripCountVectorThreshold( 118 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 119 cl::desc("Don't vectorize loops with a constant " 120 "trip count that is smaller than this " 121 "value.")); 122 123 static cl::opt<bool> MaximizeBandwidth( 124 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 125 cl::desc("Maximize bandwidth when selecting vectorization factor which " 126 "will be determined by the smallest type in loop.")); 127 128 static cl::opt<bool> EnableInterleavedMemAccesses( 129 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 130 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 131 132 /// Maximum factor for an interleaved memory access. 133 static cl::opt<unsigned> MaxInterleaveGroupFactor( 134 "max-interleave-group-factor", cl::Hidden, 135 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 136 cl::init(8)); 137 138 /// We don't interleave loops with a known constant trip count below this 139 /// number. 140 static const unsigned TinyTripCountInterleaveThreshold = 128; 141 142 static cl::opt<unsigned> ForceTargetNumScalarRegs( 143 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 144 cl::desc("A flag that overrides the target's number of scalar registers.")); 145 146 static cl::opt<unsigned> ForceTargetNumVectorRegs( 147 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 148 cl::desc("A flag that overrides the target's number of vector registers.")); 149 150 /// Maximum vectorization interleave count. 151 static const unsigned MaxInterleaveFactor = 16; 152 153 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 154 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 155 cl::desc("A flag that overrides the target's max interleave factor for " 156 "scalar loops.")); 157 158 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 159 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's max interleave factor for " 161 "vectorized loops.")); 162 163 static cl::opt<unsigned> ForceTargetInstructionCost( 164 "force-target-instruction-cost", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's expected cost for " 166 "an instruction to a single constant value. Mostly " 167 "useful for getting consistent testing.")); 168 169 static cl::opt<unsigned> SmallLoopCost( 170 "small-loop-cost", cl::init(20), cl::Hidden, 171 cl::desc( 172 "The cost of a loop that is considered 'small' by the interleaver.")); 173 174 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 175 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 176 cl::desc("Enable the use of the block frequency analysis to access PGO " 177 "heuristics minimizing code growth in cold regions and being more " 178 "aggressive in hot regions.")); 179 180 // Runtime interleave loops for load/store throughput. 181 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 182 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 183 cl::desc( 184 "Enable runtime interleaving until load/store ports are saturated")); 185 186 /// The number of stores in a loop that are allowed to need predication. 187 static cl::opt<unsigned> NumberOfStoresToPredicate( 188 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 189 cl::desc("Max number of stores to be predicated behind an if.")); 190 191 static cl::opt<bool> EnableIndVarRegisterHeur( 192 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 193 cl::desc("Count the induction variable only once when interleaving")); 194 195 static cl::opt<bool> EnableCondStoresVectorization( 196 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 197 cl::desc("Enable if predication of stores during vectorization.")); 198 199 static cl::opt<unsigned> MaxNestedScalarReductionIC( 200 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 201 cl::desc("The maximum interleave count to use when interleaving a scalar " 202 "reduction in a nested loop.")); 203 204 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 205 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 206 cl::desc("The maximum allowed number of runtime memory checks with a " 207 "vectorize(enable) pragma.")); 208 209 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 210 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 211 cl::desc("The maximum number of SCEV checks allowed.")); 212 213 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 214 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 215 cl::desc("The maximum number of SCEV checks allowed with a " 216 "vectorize(enable) pragma")); 217 218 /// Create an analysis remark that explains why vectorization failed 219 /// 220 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 221 /// RemarkName is the identifier for the remark. If \p I is passed it is an 222 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 223 /// the location of the remark. \return the remark object that can be 224 /// streamed to. 225 static OptimizationRemarkAnalysis 226 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 227 Instruction *I = nullptr) { 228 Value *CodeRegion = TheLoop->getHeader(); 229 DebugLoc DL = TheLoop->getStartLoc(); 230 231 if (I) { 232 CodeRegion = I->getParent(); 233 // If there is no debug location attached to the instruction, revert back to 234 // using the loop's. 235 if (I->getDebugLoc()) 236 DL = I->getDebugLoc(); 237 } 238 239 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 240 R << "loop not vectorized: "; 241 return R; 242 } 243 244 namespace { 245 246 // Forward declarations. 247 class LoopVectorizeHints; 248 class LoopVectorizationLegality; 249 class LoopVectorizationCostModel; 250 class LoopVectorizationRequirements; 251 252 /// Returns true if the given loop body has a cycle, excluding the loop 253 /// itself. 254 static bool hasCyclesInLoopBody(const Loop &L) { 255 if (!L.empty()) 256 return true; 257 258 for (const auto &SCC : 259 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 260 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 261 if (SCC.size() > 1) { 262 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 263 DEBUG(L.dump()); 264 return true; 265 } 266 } 267 return false; 268 } 269 270 /// \brief This modifies LoopAccessReport to initialize message with 271 /// loop-vectorizer-specific part. 272 class VectorizationReport : public LoopAccessReport { 273 public: 274 VectorizationReport(Instruction *I = nullptr) 275 : LoopAccessReport("loop not vectorized: ", I) {} 276 277 /// \brief This allows promotion of the loop-access analysis report into the 278 /// loop-vectorizer report. It modifies the message to add the 279 /// loop-vectorizer-specific part of the message. 280 explicit VectorizationReport(const LoopAccessReport &R) 281 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 282 R.getInstr()) {} 283 }; 284 285 /// A helper function for converting Scalar types to vector types. 286 /// If the incoming type is void, we return void. If the VF is 1, we return 287 /// the scalar type. 288 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 289 if (Scalar->isVoidTy() || VF == 1) 290 return Scalar; 291 return VectorType::get(Scalar, VF); 292 } 293 294 /// A helper function that returns GEP instruction and knows to skip a 295 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 296 /// pointee types of the 'bitcast' have the same size. 297 /// For example: 298 /// bitcast double** %var to i64* - can be skipped 299 /// bitcast double** %var to i8* - can not 300 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 301 302 if (isa<GetElementPtrInst>(Ptr)) 303 return cast<GetElementPtrInst>(Ptr); 304 305 if (isa<BitCastInst>(Ptr) && 306 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 307 Type *BitcastTy = Ptr->getType(); 308 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 309 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 310 return nullptr; 311 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 312 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 313 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 314 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 315 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 316 } 317 return nullptr; 318 } 319 320 /// A helper function that returns the pointer operand of a load or store 321 /// instruction. 322 static Value *getPointerOperand(Value *I) { 323 if (auto *LI = dyn_cast<LoadInst>(I)) 324 return LI->getPointerOperand(); 325 if (auto *SI = dyn_cast<StoreInst>(I)) 326 return SI->getPointerOperand(); 327 return nullptr; 328 } 329 330 /// A helper function that returns true if the given type is irregular. The 331 /// type is irregular if its allocated size doesn't equal the store size of an 332 /// element of the corresponding vector type at the given vectorization factor. 333 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 334 335 // Determine if an array of VF elements of type Ty is "bitcast compatible" 336 // with a <VF x Ty> vector. 337 if (VF > 1) { 338 auto *VectorTy = VectorType::get(Ty, VF); 339 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 340 } 341 342 // If the vectorization factor is one, we just check if an array of type Ty 343 // requires padding between elements. 344 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 345 } 346 347 /// A helper function that returns the reciprocal of the block probability of 348 /// predicated blocks. If we return X, we are assuming the predicated block 349 /// will execute once for for every X iterations of the loop header. 350 /// 351 /// TODO: We should use actual block probability here, if available. Currently, 352 /// we always assume predicated blocks have a 50% chance of executing. 353 static unsigned getReciprocalPredBlockProb() { return 2; } 354 355 /// InnerLoopVectorizer vectorizes loops which contain only one basic 356 /// block to a specified vectorization factor (VF). 357 /// This class performs the widening of scalars into vectors, or multiple 358 /// scalars. This class also implements the following features: 359 /// * It inserts an epilogue loop for handling loops that don't have iteration 360 /// counts that are known to be a multiple of the vectorization factor. 361 /// * It handles the code generation for reduction variables. 362 /// * Scalarization (implementation using scalars) of un-vectorizable 363 /// instructions. 364 /// InnerLoopVectorizer does not perform any vectorization-legality 365 /// checks, and relies on the caller to check for the different legality 366 /// aspects. The InnerLoopVectorizer relies on the 367 /// LoopVectorizationLegality class to provide information about the induction 368 /// and reduction variables that were found to a given vectorization factor. 369 class InnerLoopVectorizer { 370 public: 371 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 372 LoopInfo *LI, DominatorTree *DT, 373 const TargetLibraryInfo *TLI, 374 const TargetTransformInfo *TTI, AssumptionCache *AC, 375 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 376 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 377 LoopVectorizationCostModel *CM) 378 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 379 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 380 Builder(PSE.getSE()->getContext()), Induction(nullptr), 381 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 382 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 383 AddedSafetyChecks(false) {} 384 385 // Perform the actual loop widening (vectorization). 386 void vectorize() { 387 // Create a new empty loop. Unlink the old loop and connect the new one. 388 createEmptyLoop(); 389 // Widen each instruction in the old loop to a new one in the new loop. 390 vectorizeLoop(); 391 } 392 393 // Return true if any runtime check is added. 394 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 395 396 virtual ~InnerLoopVectorizer() {} 397 398 protected: 399 /// A small list of PHINodes. 400 typedef SmallVector<PHINode *, 4> PhiVector; 401 402 /// A type for vectorized values in the new loop. Each value from the 403 /// original loop, when vectorized, is represented by UF vector values in the 404 /// new unrolled loop, where UF is the unroll factor. 405 typedef SmallVector<Value *, 2> VectorParts; 406 407 /// A type for scalarized values in the new loop. Each value from the 408 /// original loop, when scalarized, is represented by UF x VF scalar values 409 /// in the new unrolled loop, where UF is the unroll factor and VF is the 410 /// vectorization factor. 411 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 412 413 // When we if-convert we need to create edge masks. We have to cache values 414 // so that we don't end up with exponential recursion/IR. 415 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 416 EdgeMaskCache; 417 418 /// Create an empty loop, based on the loop ranges of the old loop. 419 void createEmptyLoop(); 420 421 /// Set up the values of the IVs correctly when exiting the vector loop. 422 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 423 Value *CountRoundDown, Value *EndValue, 424 BasicBlock *MiddleBlock); 425 426 /// Create a new induction variable inside L. 427 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 428 Value *Step, Instruction *DL); 429 /// Copy and widen the instructions from the old loop. 430 virtual void vectorizeLoop(); 431 432 /// Fix a first-order recurrence. This is the second phase of vectorizing 433 /// this phi node. 434 void fixFirstOrderRecurrence(PHINode *Phi); 435 436 /// \brief The Loop exit block may have single value PHI nodes where the 437 /// incoming value is 'Undef'. While vectorizing we only handled real values 438 /// that were defined inside the loop. Here we fix the 'undef case'. 439 /// See PR14725. 440 void fixLCSSAPHIs(); 441 442 /// Iteratively sink the scalarized operands of a predicated instruction into 443 /// the block that was created for it. 444 void sinkScalarOperands(Instruction *PredInst); 445 446 /// Predicate conditional instructions that require predication on their 447 /// respective conditions. 448 void predicateInstructions(); 449 450 /// Collect the instructions from the original loop that would be trivially 451 /// dead in the vectorized loop if generated. 452 void collectTriviallyDeadInstructions(); 453 454 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 455 /// represented as. 456 void truncateToMinimalBitwidths(); 457 458 /// A helper function that computes the predicate of the block BB, assuming 459 /// that the header block of the loop is set to True. It returns the *entry* 460 /// mask for the block BB. 461 VectorParts createBlockInMask(BasicBlock *BB); 462 /// A helper function that computes the predicate of the edge between SRC 463 /// and DST. 464 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 465 466 /// A helper function to vectorize a single BB within the innermost loop. 467 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 468 469 /// Vectorize a single PHINode in a block. This method handles the induction 470 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 471 /// arbitrary length vectors. 472 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF, 473 PhiVector *PV); 474 475 /// Insert the new loop to the loop hierarchy and pass manager 476 /// and update the analysis passes. 477 void updateAnalysis(); 478 479 /// This instruction is un-vectorizable. Implement it as a sequence 480 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 481 /// scalarized instruction behind an if block predicated on the control 482 /// dependence of the instruction. 483 virtual void scalarizeInstruction(Instruction *Instr, 484 bool IfPredicateInstr = false); 485 486 /// Vectorize Load and Store instructions, 487 virtual void vectorizeMemoryInstruction(Instruction *Instr); 488 489 /// Create a broadcast instruction. This method generates a broadcast 490 /// instruction (shuffle) for loop invariant values and for the induction 491 /// value. If this is the induction variable then we extend it to N, N+1, ... 492 /// this is needed because each iteration in the loop corresponds to a SIMD 493 /// element. 494 virtual Value *getBroadcastInstrs(Value *V); 495 496 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 497 /// to each vector element of Val. The sequence starts at StartIndex. 498 /// \p Opcode is relevant for FP induction variable. 499 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 500 Instruction::BinaryOps Opcode = 501 Instruction::BinaryOpsEnd); 502 503 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 504 /// variable on which to base the steps, \p Step is the size of the step, and 505 /// \p EntryVal is the value from the original loop that maps to the steps. 506 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 507 /// can be a truncate instruction). 508 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 509 510 /// Create a vector induction phi node based on an existing scalar one. This 511 /// currently only works for integer induction variables with a constant 512 /// step. \p EntryVal is the value from the original loop that maps to the 513 /// vector phi node. If \p EntryVal is a truncate instruction, instead of 514 /// widening the original IV, we widen a version of the IV truncated to \p 515 /// EntryVal's type. 516 void createVectorIntInductionPHI(const InductionDescriptor &II, 517 Instruction *EntryVal); 518 519 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 520 /// induction variable will first be truncated to the corresponding type. 521 void widenIntInduction(PHINode *IV, TruncInst *Trunc = nullptr); 522 523 /// Returns true if an instruction \p I should be scalarized instead of 524 /// vectorized for the chosen vectorization factor. 525 bool shouldScalarizeInstruction(Instruction *I) const; 526 527 /// Returns true if we should generate a scalar version of \p IV. 528 bool needsScalarInduction(Instruction *IV) const; 529 530 /// Return a constant reference to the VectorParts corresponding to \p V from 531 /// the original loop. If the value has already been vectorized, the 532 /// corresponding vector entry in VectorLoopValueMap is returned. If, 533 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 534 /// new vector values on-demand by inserting the scalar values into vectors 535 /// with an insertelement sequence. If the value has been neither vectorized 536 /// nor scalarized, it must be loop invariant, so we simply broadcast the 537 /// value into vectors. 538 const VectorParts &getVectorValue(Value *V); 539 540 /// Return a value in the new loop corresponding to \p V from the original 541 /// loop at unroll index \p Part and vector index \p Lane. If the value has 542 /// been vectorized but not scalarized, the necessary extractelement 543 /// instruction will be generated. 544 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 545 546 /// Try to vectorize the interleaved access group that \p Instr belongs to. 547 void vectorizeInterleaveGroup(Instruction *Instr); 548 549 /// Generate a shuffle sequence that will reverse the vector Vec. 550 virtual Value *reverseVector(Value *Vec); 551 552 /// Returns (and creates if needed) the original loop trip count. 553 Value *getOrCreateTripCount(Loop *NewLoop); 554 555 /// Returns (and creates if needed) the trip count of the widened loop. 556 Value *getOrCreateVectorTripCount(Loop *NewLoop); 557 558 /// Emit a bypass check to see if the trip count would overflow, or we 559 /// wouldn't have enough iterations to execute one vector loop. 560 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 561 /// Emit a bypass check to see if the vector trip count is nonzero. 562 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 563 /// Emit a bypass check to see if all of the SCEV assumptions we've 564 /// had to make are correct. 565 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 566 /// Emit bypass checks to check any memory assumptions we may have made. 567 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 568 569 /// Add additional metadata to \p To that was not present on \p Orig. 570 /// 571 /// Currently this is used to add the noalias annotations based on the 572 /// inserted memchecks. Use this for instructions that are *cloned* into the 573 /// vector loop. 574 void addNewMetadata(Instruction *To, const Instruction *Orig); 575 576 /// Add metadata from one instruction to another. 577 /// 578 /// This includes both the original MDs from \p From and additional ones (\see 579 /// addNewMetadata). Use this for *newly created* instructions in the vector 580 /// loop. 581 void addMetadata(Instruction *To, Instruction *From); 582 583 /// \brief Similar to the previous function but it adds the metadata to a 584 /// vector of instructions. 585 void addMetadata(ArrayRef<Value *> To, Instruction *From); 586 587 /// This is a helper class for maintaining vectorization state. It's used for 588 /// mapping values from the original loop to their corresponding values in 589 /// the new loop. Two mappings are maintained: one for vectorized values and 590 /// one for scalarized values. Vectorized values are represented with UF 591 /// vector values in the new loop, and scalarized values are represented with 592 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 593 /// vectorization factors, respectively. 594 /// 595 /// Entries can be added to either map with initVector and initScalar, which 596 /// initialize and return a constant reference to the new entry. If a 597 /// non-constant reference to a vector entry is required, getVector can be 598 /// used to retrieve a mutable entry. We currently directly modify the mapped 599 /// values during "fix-up" operations that occur once the first phase of 600 /// widening is complete. These operations include type truncation and the 601 /// second phase of recurrence widening. 602 /// 603 /// Otherwise, entries from either map should be accessed using the 604 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 605 /// getVectorValue and getScalarValue coordinate to generate a vector or 606 /// scalar value on-demand if one is not yet available. When vectorizing a 607 /// loop, we visit the definition of an instruction before its uses. When 608 /// visiting the definition, we either vectorize or scalarize the 609 /// instruction, creating an entry for it in the corresponding map. (In some 610 /// cases, such as induction variables, we will create both vector and scalar 611 /// entries.) Then, as we encounter uses of the definition, we derive values 612 /// for each scalar or vector use unless such a value is already available. 613 /// For example, if we scalarize a definition and one of its uses is vector, 614 /// we build the required vector on-demand with an insertelement sequence 615 /// when visiting the use. Otherwise, if the use is scalar, we can use the 616 /// existing scalar definition. 617 struct ValueMap { 618 619 /// Construct an empty map with the given unroll and vectorization factors. 620 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 621 : UF(UnrollFactor), VF(VecWidth) { 622 // The unroll and vectorization factors are only used in asserts builds 623 // to verify map entries are sized appropriately. 624 (void)UF; 625 (void)VF; 626 } 627 628 /// \return True if the map has a vector entry for \p Key. 629 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 630 631 /// \return True if the map has a scalar entry for \p Key. 632 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 633 634 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 635 /// constant reference to the new vector map entry. The given key should 636 /// not already be in the map, and the given VectorParts should be 637 /// correctly sized for the current unroll factor. 638 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 639 assert(!hasVector(Key) && "Vector entry already initialized"); 640 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 641 VectorMapStorage[Key] = Entry; 642 return VectorMapStorage[Key]; 643 } 644 645 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 646 /// constant reference to the new scalar map entry. The given key should 647 /// not already be in the map, and the given ScalarParts should be 648 /// correctly sized for the current unroll and vectorization factors. 649 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 650 assert(!hasScalar(Key) && "Scalar entry already initialized"); 651 assert(Entry.size() == UF && 652 all_of(make_range(Entry.begin(), Entry.end()), 653 [&](const SmallVectorImpl<Value *> &Values) -> bool { 654 return Values.size() == VF; 655 }) && 656 "ScalarParts has wrong dimensions"); 657 ScalarMapStorage[Key] = Entry; 658 return ScalarMapStorage[Key]; 659 } 660 661 /// \return A reference to the vector map entry corresponding to \p Key. 662 /// The key should already be in the map. This function should only be used 663 /// when it's necessary to update values that have already been vectorized. 664 /// This is the case for "fix-up" operations including type truncation and 665 /// the second phase of recurrence vectorization. If a non-const reference 666 /// isn't required, getVectorValue should be used instead. 667 VectorParts &getVector(Value *Key) { 668 assert(hasVector(Key) && "Vector entry not initialized"); 669 return VectorMapStorage.find(Key)->second; 670 } 671 672 /// Retrieve an entry from the vector or scalar maps. The preferred way to 673 /// access an existing mapped entry is with getVectorValue or 674 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 675 /// moved inside ValueMap, we have to declare them as friends. 676 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 677 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 678 unsigned Lane); 679 680 private: 681 /// The unroll factor. Each entry in the vector map contains UF vector 682 /// values. 683 unsigned UF; 684 685 /// The vectorization factor. Each entry in the scalar map contains UF x VF 686 /// scalar values. 687 unsigned VF; 688 689 /// The vector and scalar map storage. We use std::map and not DenseMap 690 /// because insertions to DenseMap invalidate its iterators. 691 std::map<Value *, VectorParts> VectorMapStorage; 692 std::map<Value *, ScalarParts> ScalarMapStorage; 693 }; 694 695 /// The original loop. 696 Loop *OrigLoop; 697 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 698 /// dynamic knowledge to simplify SCEV expressions and converts them to a 699 /// more usable form. 700 PredicatedScalarEvolution &PSE; 701 /// Loop Info. 702 LoopInfo *LI; 703 /// Dominator Tree. 704 DominatorTree *DT; 705 /// Alias Analysis. 706 AliasAnalysis *AA; 707 /// Target Library Info. 708 const TargetLibraryInfo *TLI; 709 /// Target Transform Info. 710 const TargetTransformInfo *TTI; 711 /// Assumption Cache. 712 AssumptionCache *AC; 713 /// Interface to emit optimization remarks. 714 OptimizationRemarkEmitter *ORE; 715 716 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 717 /// used. 718 /// 719 /// This is currently only used to add no-alias metadata based on the 720 /// memchecks. The actually versioning is performed manually. 721 std::unique_ptr<LoopVersioning> LVer; 722 723 /// The vectorization SIMD factor to use. Each vector will have this many 724 /// vector elements. 725 unsigned VF; 726 727 protected: 728 /// The vectorization unroll factor to use. Each scalar is vectorized to this 729 /// many different vector instructions. 730 unsigned UF; 731 732 /// The builder that we use 733 IRBuilder<> Builder; 734 735 // --- Vectorization state --- 736 737 /// The vector-loop preheader. 738 BasicBlock *LoopVectorPreHeader; 739 /// The scalar-loop preheader. 740 BasicBlock *LoopScalarPreHeader; 741 /// Middle Block between the vector and the scalar. 742 BasicBlock *LoopMiddleBlock; 743 /// The ExitBlock of the scalar loop. 744 BasicBlock *LoopExitBlock; 745 /// The vector loop body. 746 BasicBlock *LoopVectorBody; 747 /// The scalar loop body. 748 BasicBlock *LoopScalarBody; 749 /// A list of all bypass blocks. The first block is the entry of the loop. 750 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 751 752 /// The new Induction variable which was added to the new block. 753 PHINode *Induction; 754 /// The induction variable of the old basic block. 755 PHINode *OldInduction; 756 757 /// Maps values from the original loop to their corresponding values in the 758 /// vectorized loop. A key value can map to either vector values, scalar 759 /// values or both kinds of values, depending on whether the key was 760 /// vectorized and scalarized. 761 ValueMap VectorLoopValueMap; 762 763 /// Store instructions that should be predicated, as a pair 764 /// <StoreInst, Predicate> 765 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 766 EdgeMaskCache MaskCache; 767 /// Trip count of the original loop. 768 Value *TripCount; 769 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 770 Value *VectorTripCount; 771 772 /// The legality analysis. 773 LoopVectorizationLegality *Legal; 774 775 /// The profitablity analysis. 776 LoopVectorizationCostModel *Cost; 777 778 // Record whether runtime checks are added. 779 bool AddedSafetyChecks; 780 781 // Holds instructions from the original loop whose counterparts in the 782 // vectorized loop would be trivially dead if generated. For example, 783 // original induction update instructions can become dead because we 784 // separately emit induction "steps" when generating code for the new loop. 785 // Similarly, we create a new latch condition when setting up the structure 786 // of the new loop, so the old one can become dead. 787 SmallPtrSet<Instruction *, 4> DeadInstructions; 788 789 // Holds the end values for each induction variable. We save the end values 790 // so we can later fix-up the external users of the induction variables. 791 DenseMap<PHINode *, Value *> IVEndValues; 792 }; 793 794 class InnerLoopUnroller : public InnerLoopVectorizer { 795 public: 796 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 797 LoopInfo *LI, DominatorTree *DT, 798 const TargetLibraryInfo *TLI, 799 const TargetTransformInfo *TTI, AssumptionCache *AC, 800 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 801 LoopVectorizationLegality *LVL, 802 LoopVectorizationCostModel *CM) 803 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 804 UnrollFactor, LVL, CM) {} 805 806 private: 807 void scalarizeInstruction(Instruction *Instr, 808 bool IfPredicateInstr = false) override; 809 void vectorizeMemoryInstruction(Instruction *Instr) override; 810 Value *getBroadcastInstrs(Value *V) override; 811 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 812 Instruction::BinaryOps Opcode = 813 Instruction::BinaryOpsEnd) override; 814 Value *reverseVector(Value *Vec) override; 815 }; 816 817 /// \brief Look for a meaningful debug location on the instruction or it's 818 /// operands. 819 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 820 if (!I) 821 return I; 822 823 DebugLoc Empty; 824 if (I->getDebugLoc() != Empty) 825 return I; 826 827 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 828 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 829 if (OpInst->getDebugLoc() != Empty) 830 return OpInst; 831 } 832 833 return I; 834 } 835 836 /// \brief Set the debug location in the builder using the debug location in the 837 /// instruction. 838 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 839 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 840 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 841 else 842 B.SetCurrentDebugLocation(DebugLoc()); 843 } 844 845 #ifndef NDEBUG 846 /// \return string containing a file name and a line # for the given loop. 847 static std::string getDebugLocString(const Loop *L) { 848 std::string Result; 849 if (L) { 850 raw_string_ostream OS(Result); 851 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 852 LoopDbgLoc.print(OS); 853 else 854 // Just print the module name. 855 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 856 OS.flush(); 857 } 858 return Result; 859 } 860 #endif 861 862 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 863 const Instruction *Orig) { 864 // If the loop was versioned with memchecks, add the corresponding no-alias 865 // metadata. 866 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 867 LVer->annotateInstWithNoAlias(To, Orig); 868 } 869 870 void InnerLoopVectorizer::addMetadata(Instruction *To, 871 Instruction *From) { 872 propagateMetadata(To, From); 873 addNewMetadata(To, From); 874 } 875 876 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 877 Instruction *From) { 878 for (Value *V : To) { 879 if (Instruction *I = dyn_cast<Instruction>(V)) 880 addMetadata(I, From); 881 } 882 } 883 884 /// \brief The group of interleaved loads/stores sharing the same stride and 885 /// close to each other. 886 /// 887 /// Each member in this group has an index starting from 0, and the largest 888 /// index should be less than interleaved factor, which is equal to the absolute 889 /// value of the access's stride. 890 /// 891 /// E.g. An interleaved load group of factor 4: 892 /// for (unsigned i = 0; i < 1024; i+=4) { 893 /// a = A[i]; // Member of index 0 894 /// b = A[i+1]; // Member of index 1 895 /// d = A[i+3]; // Member of index 3 896 /// ... 897 /// } 898 /// 899 /// An interleaved store group of factor 4: 900 /// for (unsigned i = 0; i < 1024; i+=4) { 901 /// ... 902 /// A[i] = a; // Member of index 0 903 /// A[i+1] = b; // Member of index 1 904 /// A[i+2] = c; // Member of index 2 905 /// A[i+3] = d; // Member of index 3 906 /// } 907 /// 908 /// Note: the interleaved load group could have gaps (missing members), but 909 /// the interleaved store group doesn't allow gaps. 910 class InterleaveGroup { 911 public: 912 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 913 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 914 assert(Align && "The alignment should be non-zero"); 915 916 Factor = std::abs(Stride); 917 assert(Factor > 1 && "Invalid interleave factor"); 918 919 Reverse = Stride < 0; 920 Members[0] = Instr; 921 } 922 923 bool isReverse() const { return Reverse; } 924 unsigned getFactor() const { return Factor; } 925 unsigned getAlignment() const { return Align; } 926 unsigned getNumMembers() const { return Members.size(); } 927 928 /// \brief Try to insert a new member \p Instr with index \p Index and 929 /// alignment \p NewAlign. The index is related to the leader and it could be 930 /// negative if it is the new leader. 931 /// 932 /// \returns false if the instruction doesn't belong to the group. 933 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 934 assert(NewAlign && "The new member's alignment should be non-zero"); 935 936 int Key = Index + SmallestKey; 937 938 // Skip if there is already a member with the same index. 939 if (Members.count(Key)) 940 return false; 941 942 if (Key > LargestKey) { 943 // The largest index is always less than the interleave factor. 944 if (Index >= static_cast<int>(Factor)) 945 return false; 946 947 LargestKey = Key; 948 } else if (Key < SmallestKey) { 949 // The largest index is always less than the interleave factor. 950 if (LargestKey - Key >= static_cast<int>(Factor)) 951 return false; 952 953 SmallestKey = Key; 954 } 955 956 // It's always safe to select the minimum alignment. 957 Align = std::min(Align, NewAlign); 958 Members[Key] = Instr; 959 return true; 960 } 961 962 /// \brief Get the member with the given index \p Index 963 /// 964 /// \returns nullptr if contains no such member. 965 Instruction *getMember(unsigned Index) const { 966 int Key = SmallestKey + Index; 967 if (!Members.count(Key)) 968 return nullptr; 969 970 return Members.find(Key)->second; 971 } 972 973 /// \brief Get the index for the given member. Unlike the key in the member 974 /// map, the index starts from 0. 975 unsigned getIndex(Instruction *Instr) const { 976 for (auto I : Members) 977 if (I.second == Instr) 978 return I.first - SmallestKey; 979 980 llvm_unreachable("InterleaveGroup contains no such member"); 981 } 982 983 Instruction *getInsertPos() const { return InsertPos; } 984 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 985 986 private: 987 unsigned Factor; // Interleave Factor. 988 bool Reverse; 989 unsigned Align; 990 DenseMap<int, Instruction *> Members; 991 int SmallestKey; 992 int LargestKey; 993 994 // To avoid breaking dependences, vectorized instructions of an interleave 995 // group should be inserted at either the first load or the last store in 996 // program order. 997 // 998 // E.g. %even = load i32 // Insert Position 999 // %add = add i32 %even // Use of %even 1000 // %odd = load i32 1001 // 1002 // store i32 %even 1003 // %odd = add i32 // Def of %odd 1004 // store i32 %odd // Insert Position 1005 Instruction *InsertPos; 1006 }; 1007 1008 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1009 /// 1010 /// Use this class to analyze interleaved accesses only when we can vectorize 1011 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1012 /// on interleaved accesses is unsafe. 1013 /// 1014 /// The analysis collects interleave groups and records the relationships 1015 /// between the member and the group in a map. 1016 class InterleavedAccessInfo { 1017 public: 1018 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1019 DominatorTree *DT, LoopInfo *LI) 1020 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1021 RequiresScalarEpilogue(false) {} 1022 1023 ~InterleavedAccessInfo() { 1024 SmallSet<InterleaveGroup *, 4> DelSet; 1025 // Avoid releasing a pointer twice. 1026 for (auto &I : InterleaveGroupMap) 1027 DelSet.insert(I.second); 1028 for (auto *Ptr : DelSet) 1029 delete Ptr; 1030 } 1031 1032 /// \brief Analyze the interleaved accesses and collect them in interleave 1033 /// groups. Substitute symbolic strides using \p Strides. 1034 void analyzeInterleaving(const ValueToValueMap &Strides); 1035 1036 /// \brief Check if \p Instr belongs to any interleave group. 1037 bool isInterleaved(Instruction *Instr) const { 1038 return InterleaveGroupMap.count(Instr); 1039 } 1040 1041 /// \brief Return the maximum interleave factor of all interleaved groups. 1042 unsigned getMaxInterleaveFactor() const { 1043 unsigned MaxFactor = 1; 1044 for (auto &Entry : InterleaveGroupMap) 1045 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1046 return MaxFactor; 1047 } 1048 1049 /// \brief Get the interleave group that \p Instr belongs to. 1050 /// 1051 /// \returns nullptr if doesn't have such group. 1052 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1053 if (InterleaveGroupMap.count(Instr)) 1054 return InterleaveGroupMap.find(Instr)->second; 1055 return nullptr; 1056 } 1057 1058 /// \brief Returns true if an interleaved group that may access memory 1059 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1060 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1061 1062 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1063 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1064 1065 private: 1066 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1067 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1068 /// The interleaved access analysis can also add new predicates (for example 1069 /// by versioning strides of pointers). 1070 PredicatedScalarEvolution &PSE; 1071 Loop *TheLoop; 1072 DominatorTree *DT; 1073 LoopInfo *LI; 1074 const LoopAccessInfo *LAI; 1075 1076 /// True if the loop may contain non-reversed interleaved groups with 1077 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1078 /// out-of-bounds by executing at least one scalar epilogue iteration. 1079 bool RequiresScalarEpilogue; 1080 1081 /// Holds the relationships between the members and the interleave group. 1082 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1083 1084 /// Holds dependences among the memory accesses in the loop. It maps a source 1085 /// access to a set of dependent sink accesses. 1086 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1087 1088 /// \brief The descriptor for a strided memory access. 1089 struct StrideDescriptor { 1090 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1091 unsigned Align) 1092 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1093 1094 StrideDescriptor() = default; 1095 1096 // The access's stride. It is negative for a reverse access. 1097 int64_t Stride = 0; 1098 const SCEV *Scev = nullptr; // The scalar expression of this access 1099 uint64_t Size = 0; // The size of the memory object. 1100 unsigned Align = 0; // The alignment of this access. 1101 }; 1102 1103 /// \brief A type for holding instructions and their stride descriptors. 1104 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1105 1106 /// \brief Create a new interleave group with the given instruction \p Instr, 1107 /// stride \p Stride and alignment \p Align. 1108 /// 1109 /// \returns the newly created interleave group. 1110 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1111 unsigned Align) { 1112 assert(!InterleaveGroupMap.count(Instr) && 1113 "Already in an interleaved access group"); 1114 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1115 return InterleaveGroupMap[Instr]; 1116 } 1117 1118 /// \brief Release the group and remove all the relationships. 1119 void releaseGroup(InterleaveGroup *Group) { 1120 for (unsigned i = 0; i < Group->getFactor(); i++) 1121 if (Instruction *Member = Group->getMember(i)) 1122 InterleaveGroupMap.erase(Member); 1123 1124 delete Group; 1125 } 1126 1127 /// \brief Collect all the accesses with a constant stride in program order. 1128 void collectConstStrideAccesses( 1129 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1130 const ValueToValueMap &Strides); 1131 1132 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1133 static bool isStrided(int Stride) { 1134 unsigned Factor = std::abs(Stride); 1135 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1136 } 1137 1138 /// \brief Returns true if \p BB is a predicated block. 1139 bool isPredicated(BasicBlock *BB) const { 1140 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1141 } 1142 1143 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1144 bool areDependencesValid() const { 1145 return LAI && LAI->getDepChecker().getDependences(); 1146 } 1147 1148 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1149 /// necessary, when constructing interleaved groups. 1150 /// 1151 /// \p A must precede \p B in program order. We return false if reordering is 1152 /// not necessary or is prevented because \p A and \p B may be dependent. 1153 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1154 StrideEntry *B) const { 1155 1156 // Code motion for interleaved accesses can potentially hoist strided loads 1157 // and sink strided stores. The code below checks the legality of the 1158 // following two conditions: 1159 // 1160 // 1. Potentially moving a strided load (B) before any store (A) that 1161 // precedes B, or 1162 // 1163 // 2. Potentially moving a strided store (A) after any load or store (B) 1164 // that A precedes. 1165 // 1166 // It's legal to reorder A and B if we know there isn't a dependence from A 1167 // to B. Note that this determination is conservative since some 1168 // dependences could potentially be reordered safely. 1169 1170 // A is potentially the source of a dependence. 1171 auto *Src = A->first; 1172 auto SrcDes = A->second; 1173 1174 // B is potentially the sink of a dependence. 1175 auto *Sink = B->first; 1176 auto SinkDes = B->second; 1177 1178 // Code motion for interleaved accesses can't violate WAR dependences. 1179 // Thus, reordering is legal if the source isn't a write. 1180 if (!Src->mayWriteToMemory()) 1181 return true; 1182 1183 // At least one of the accesses must be strided. 1184 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1185 return true; 1186 1187 // If dependence information is not available from LoopAccessInfo, 1188 // conservatively assume the instructions can't be reordered. 1189 if (!areDependencesValid()) 1190 return false; 1191 1192 // If we know there is a dependence from source to sink, assume the 1193 // instructions can't be reordered. Otherwise, reordering is legal. 1194 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1195 } 1196 1197 /// \brief Collect the dependences from LoopAccessInfo. 1198 /// 1199 /// We process the dependences once during the interleaved access analysis to 1200 /// enable constant-time dependence queries. 1201 void collectDependences() { 1202 if (!areDependencesValid()) 1203 return; 1204 auto *Deps = LAI->getDepChecker().getDependences(); 1205 for (auto Dep : *Deps) 1206 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1207 } 1208 }; 1209 1210 /// Utility class for getting and setting loop vectorizer hints in the form 1211 /// of loop metadata. 1212 /// This class keeps a number of loop annotations locally (as member variables) 1213 /// and can, upon request, write them back as metadata on the loop. It will 1214 /// initially scan the loop for existing metadata, and will update the local 1215 /// values based on information in the loop. 1216 /// We cannot write all values to metadata, as the mere presence of some info, 1217 /// for example 'force', means a decision has been made. So, we need to be 1218 /// careful NOT to add them if the user hasn't specifically asked so. 1219 class LoopVectorizeHints { 1220 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1221 1222 /// Hint - associates name and validation with the hint value. 1223 struct Hint { 1224 const char *Name; 1225 unsigned Value; // This may have to change for non-numeric values. 1226 HintKind Kind; 1227 1228 Hint(const char *Name, unsigned Value, HintKind Kind) 1229 : Name(Name), Value(Value), Kind(Kind) {} 1230 1231 bool validate(unsigned Val) { 1232 switch (Kind) { 1233 case HK_WIDTH: 1234 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1235 case HK_UNROLL: 1236 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1237 case HK_FORCE: 1238 return (Val <= 1); 1239 } 1240 return false; 1241 } 1242 }; 1243 1244 /// Vectorization width. 1245 Hint Width; 1246 /// Vectorization interleave factor. 1247 Hint Interleave; 1248 /// Vectorization forced 1249 Hint Force; 1250 1251 /// Return the loop metadata prefix. 1252 static StringRef Prefix() { return "llvm.loop."; } 1253 1254 /// True if there is any unsafe math in the loop. 1255 bool PotentiallyUnsafe; 1256 1257 public: 1258 enum ForceKind { 1259 FK_Undefined = -1, ///< Not selected. 1260 FK_Disabled = 0, ///< Forcing disabled. 1261 FK_Enabled = 1, ///< Forcing enabled. 1262 }; 1263 1264 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1265 OptimizationRemarkEmitter &ORE) 1266 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1267 HK_WIDTH), 1268 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1269 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1270 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1271 // Populate values with existing loop metadata. 1272 getHintsFromMetadata(); 1273 1274 // force-vector-interleave overrides DisableInterleaving. 1275 if (VectorizerParams::isInterleaveForced()) 1276 Interleave.Value = VectorizerParams::VectorizationInterleave; 1277 1278 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1279 << "LV: Interleaving disabled by the pass manager\n"); 1280 } 1281 1282 /// Mark the loop L as already vectorized by setting the width to 1. 1283 void setAlreadyVectorized() { 1284 Width.Value = Interleave.Value = 1; 1285 Hint Hints[] = {Width, Interleave}; 1286 writeHintsToMetadata(Hints); 1287 } 1288 1289 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1290 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1291 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1292 emitRemarkWithHints(); 1293 return false; 1294 } 1295 1296 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1297 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1298 emitRemarkWithHints(); 1299 return false; 1300 } 1301 1302 if (getWidth() == 1 && getInterleave() == 1) { 1303 // FIXME: Add a separate metadata to indicate when the loop has already 1304 // been vectorized instead of setting width and count to 1. 1305 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1306 // FIXME: Add interleave.disable metadata. This will allow 1307 // vectorize.disable to be used without disabling the pass and errors 1308 // to differentiate between disabled vectorization and a width of 1. 1309 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1310 "AllDisabled", L->getStartLoc(), 1311 L->getHeader()) 1312 << "loop not vectorized: vectorization and interleaving are " 1313 "explicitly disabled, or vectorize width and interleave " 1314 "count are both set to 1"); 1315 return false; 1316 } 1317 1318 return true; 1319 } 1320 1321 /// Dumps all the hint information. 1322 void emitRemarkWithHints() const { 1323 using namespace ore; 1324 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1325 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1326 TheLoop->getStartLoc(), 1327 TheLoop->getHeader()) 1328 << "loop not vectorized: vectorization is explicitly disabled"); 1329 else { 1330 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1331 TheLoop->getStartLoc(), TheLoop->getHeader()); 1332 R << "loop not vectorized"; 1333 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1334 R << " (Force=" << NV("Force", true); 1335 if (Width.Value != 0) 1336 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1337 if (Interleave.Value != 0) 1338 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1339 R << ")"; 1340 } 1341 ORE.emit(R); 1342 } 1343 } 1344 1345 unsigned getWidth() const { return Width.Value; } 1346 unsigned getInterleave() const { return Interleave.Value; } 1347 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1348 1349 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1350 /// pass name to force the frontend to print the diagnostic. 1351 const char *vectorizeAnalysisPassName() const { 1352 if (getWidth() == 1) 1353 return LV_NAME; 1354 if (getForce() == LoopVectorizeHints::FK_Disabled) 1355 return LV_NAME; 1356 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1357 return LV_NAME; 1358 return OptimizationRemarkAnalysis::AlwaysPrint; 1359 } 1360 1361 bool allowReordering() const { 1362 // When enabling loop hints are provided we allow the vectorizer to change 1363 // the order of operations that is given by the scalar loop. This is not 1364 // enabled by default because can be unsafe or inefficient. For example, 1365 // reordering floating-point operations will change the way round-off 1366 // error accumulates in the loop. 1367 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1368 } 1369 1370 bool isPotentiallyUnsafe() const { 1371 // Avoid FP vectorization if the target is unsure about proper support. 1372 // This may be related to the SIMD unit in the target not handling 1373 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1374 // Otherwise, a sequence of vectorized loops, even without reduction, 1375 // could lead to different end results on the destination vectors. 1376 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1377 } 1378 1379 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1380 1381 private: 1382 /// Find hints specified in the loop metadata and update local values. 1383 void getHintsFromMetadata() { 1384 MDNode *LoopID = TheLoop->getLoopID(); 1385 if (!LoopID) 1386 return; 1387 1388 // First operand should refer to the loop id itself. 1389 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1390 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1391 1392 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1393 const MDString *S = nullptr; 1394 SmallVector<Metadata *, 4> Args; 1395 1396 // The expected hint is either a MDString or a MDNode with the first 1397 // operand a MDString. 1398 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1399 if (!MD || MD->getNumOperands() == 0) 1400 continue; 1401 S = dyn_cast<MDString>(MD->getOperand(0)); 1402 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1403 Args.push_back(MD->getOperand(i)); 1404 } else { 1405 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1406 assert(Args.size() == 0 && "too many arguments for MDString"); 1407 } 1408 1409 if (!S) 1410 continue; 1411 1412 // Check if the hint starts with the loop metadata prefix. 1413 StringRef Name = S->getString(); 1414 if (Args.size() == 1) 1415 setHint(Name, Args[0]); 1416 } 1417 } 1418 1419 /// Checks string hint with one operand and set value if valid. 1420 void setHint(StringRef Name, Metadata *Arg) { 1421 if (!Name.startswith(Prefix())) 1422 return; 1423 Name = Name.substr(Prefix().size(), StringRef::npos); 1424 1425 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1426 if (!C) 1427 return; 1428 unsigned Val = C->getZExtValue(); 1429 1430 Hint *Hints[] = {&Width, &Interleave, &Force}; 1431 for (auto H : Hints) { 1432 if (Name == H->Name) { 1433 if (H->validate(Val)) 1434 H->Value = Val; 1435 else 1436 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1437 break; 1438 } 1439 } 1440 } 1441 1442 /// Create a new hint from name / value pair. 1443 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1444 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1445 Metadata *MDs[] = {MDString::get(Context, Name), 1446 ConstantAsMetadata::get( 1447 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1448 return MDNode::get(Context, MDs); 1449 } 1450 1451 /// Matches metadata with hint name. 1452 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1453 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1454 if (!Name) 1455 return false; 1456 1457 for (auto H : HintTypes) 1458 if (Name->getString().endswith(H.Name)) 1459 return true; 1460 return false; 1461 } 1462 1463 /// Sets current hints into loop metadata, keeping other values intact. 1464 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1465 if (HintTypes.size() == 0) 1466 return; 1467 1468 // Reserve the first element to LoopID (see below). 1469 SmallVector<Metadata *, 4> MDs(1); 1470 // If the loop already has metadata, then ignore the existing operands. 1471 MDNode *LoopID = TheLoop->getLoopID(); 1472 if (LoopID) { 1473 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1474 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1475 // If node in update list, ignore old value. 1476 if (!matchesHintMetadataName(Node, HintTypes)) 1477 MDs.push_back(Node); 1478 } 1479 } 1480 1481 // Now, add the missing hints. 1482 for (auto H : HintTypes) 1483 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1484 1485 // Replace current metadata node with new one. 1486 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1487 MDNode *NewLoopID = MDNode::get(Context, MDs); 1488 // Set operand 0 to refer to the loop id itself. 1489 NewLoopID->replaceOperandWith(0, NewLoopID); 1490 1491 TheLoop->setLoopID(NewLoopID); 1492 } 1493 1494 /// The loop these hints belong to. 1495 const Loop *TheLoop; 1496 1497 /// Interface to emit optimization remarks. 1498 OptimizationRemarkEmitter &ORE; 1499 }; 1500 1501 static void emitAnalysisDiag(const Loop *TheLoop, 1502 const LoopVectorizeHints &Hints, 1503 OptimizationRemarkEmitter &ORE, 1504 const LoopAccessReport &Message) { 1505 const char *Name = Hints.vectorizeAnalysisPassName(); 1506 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1507 } 1508 1509 static void emitMissedWarning(Function *F, Loop *L, 1510 const LoopVectorizeHints &LH, 1511 OptimizationRemarkEmitter *ORE) { 1512 LH.emitRemarkWithHints(); 1513 1514 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1515 if (LH.getWidth() != 1) 1516 ORE->emit(DiagnosticInfoOptimizationFailure( 1517 DEBUG_TYPE, "FailedRequestedVectorization", 1518 L->getStartLoc(), L->getHeader()) 1519 << "loop not vectorized: " 1520 << "failed explicitly specified loop vectorization"); 1521 else if (LH.getInterleave() != 1) 1522 ORE->emit(DiagnosticInfoOptimizationFailure( 1523 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1524 L->getHeader()) 1525 << "loop not interleaved: " 1526 << "failed explicitly specified loop interleaving"); 1527 } 1528 } 1529 1530 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1531 /// to what vectorization factor. 1532 /// This class does not look at the profitability of vectorization, only the 1533 /// legality. This class has two main kinds of checks: 1534 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1535 /// will change the order of memory accesses in a way that will change the 1536 /// correctness of the program. 1537 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1538 /// checks for a number of different conditions, such as the availability of a 1539 /// single induction variable, that all types are supported and vectorize-able, 1540 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1541 /// This class is also used by InnerLoopVectorizer for identifying 1542 /// induction variable and the different reduction variables. 1543 class LoopVectorizationLegality { 1544 public: 1545 LoopVectorizationLegality( 1546 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1547 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1548 const TargetTransformInfo *TTI, 1549 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1550 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1551 LoopVectorizeHints *H) 1552 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1553 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1554 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1555 Requirements(R), Hints(H) {} 1556 1557 /// ReductionList contains the reduction descriptors for all 1558 /// of the reductions that were found in the loop. 1559 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1560 1561 /// InductionList saves induction variables and maps them to the 1562 /// induction descriptor. 1563 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1564 1565 /// RecurrenceSet contains the phi nodes that are recurrences other than 1566 /// inductions and reductions. 1567 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1568 1569 /// Returns true if it is legal to vectorize this loop. 1570 /// This does not mean that it is profitable to vectorize this 1571 /// loop, only that it is legal to do so. 1572 bool canVectorize(); 1573 1574 /// Returns the Induction variable. 1575 PHINode *getInduction() { return Induction; } 1576 1577 /// Returns the reduction variables found in the loop. 1578 ReductionList *getReductionVars() { return &Reductions; } 1579 1580 /// Returns the induction variables found in the loop. 1581 InductionList *getInductionVars() { return &Inductions; } 1582 1583 /// Return the first-order recurrences found in the loop. 1584 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1585 1586 /// Returns the widest induction type. 1587 Type *getWidestInductionType() { return WidestIndTy; } 1588 1589 /// Returns True if V is an induction variable in this loop. 1590 bool isInductionVariable(const Value *V); 1591 1592 /// Returns True if PN is a reduction variable in this loop. 1593 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1594 1595 /// Returns True if Phi is a first-order recurrence in this loop. 1596 bool isFirstOrderRecurrence(const PHINode *Phi); 1597 1598 /// Return true if the block BB needs to be predicated in order for the loop 1599 /// to be vectorized. 1600 bool blockNeedsPredication(BasicBlock *BB); 1601 1602 /// Check if this pointer is consecutive when vectorizing. This happens 1603 /// when the last index of the GEP is the induction variable, or that the 1604 /// pointer itself is an induction variable. 1605 /// This check allows us to vectorize A[idx] into a wide load/store. 1606 /// Returns: 1607 /// 0 - Stride is unknown or non-consecutive. 1608 /// 1 - Address is consecutive. 1609 /// -1 - Address is consecutive, and decreasing. 1610 int isConsecutivePtr(Value *Ptr); 1611 1612 /// Returns true if the value V is uniform within the loop. 1613 bool isUniform(Value *V); 1614 1615 /// Returns true if \p I is known to be uniform after vectorization. 1616 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1617 1618 /// Returns true if \p I is known to be scalar after vectorization. 1619 bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); } 1620 1621 /// Returns the information that we collected about runtime memory check. 1622 const RuntimePointerChecking *getRuntimePointerChecking() const { 1623 return LAI->getRuntimePointerChecking(); 1624 } 1625 1626 const LoopAccessInfo *getLAI() const { return LAI; } 1627 1628 /// \brief Check if \p Instr belongs to any interleaved access group. 1629 bool isAccessInterleaved(Instruction *Instr) { 1630 return InterleaveInfo.isInterleaved(Instr); 1631 } 1632 1633 /// \brief Return the maximum interleave factor of all interleaved groups. 1634 unsigned getMaxInterleaveFactor() const { 1635 return InterleaveInfo.getMaxInterleaveFactor(); 1636 } 1637 1638 /// \brief Get the interleaved access group that \p Instr belongs to. 1639 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1640 return InterleaveInfo.getInterleaveGroup(Instr); 1641 } 1642 1643 /// \brief Returns true if an interleaved group requires a scalar iteration 1644 /// to handle accesses with gaps. 1645 bool requiresScalarEpilogue() const { 1646 return InterleaveInfo.requiresScalarEpilogue(); 1647 } 1648 1649 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1650 1651 bool hasStride(Value *V) { return LAI->hasStride(V); } 1652 1653 /// Returns true if the target machine supports masked store operation 1654 /// for the given \p DataType and kind of access to \p Ptr. 1655 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1656 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1657 } 1658 /// Returns true if the target machine supports masked load operation 1659 /// for the given \p DataType and kind of access to \p Ptr. 1660 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1661 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1662 } 1663 /// Returns true if the target machine supports masked scatter operation 1664 /// for the given \p DataType. 1665 bool isLegalMaskedScatter(Type *DataType) { 1666 return TTI->isLegalMaskedScatter(DataType); 1667 } 1668 /// Returns true if the target machine supports masked gather operation 1669 /// for the given \p DataType. 1670 bool isLegalMaskedGather(Type *DataType) { 1671 return TTI->isLegalMaskedGather(DataType); 1672 } 1673 /// Returns true if the target machine can represent \p V as a masked gather 1674 /// or scatter operation. 1675 bool isLegalGatherOrScatter(Value *V) { 1676 auto *LI = dyn_cast<LoadInst>(V); 1677 auto *SI = dyn_cast<StoreInst>(V); 1678 if (!LI && !SI) 1679 return false; 1680 auto *Ptr = getPointerOperand(V); 1681 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1682 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1683 } 1684 1685 /// Returns true if vector representation of the instruction \p I 1686 /// requires mask. 1687 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1688 unsigned getNumStores() const { return LAI->getNumStores(); } 1689 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1690 unsigned getNumPredStores() const { return NumPredStores; } 1691 1692 /// Returns true if \p I is an instruction that will be scalarized with 1693 /// predication. Such instructions include conditional stores and 1694 /// instructions that may divide by zero. 1695 bool isScalarWithPredication(Instruction *I); 1696 1697 /// Returns true if \p I is a memory instruction that has a consecutive or 1698 /// consecutive-like pointer operand. Consecutive-like pointers are pointers 1699 /// that are treated like consecutive pointers during vectorization. The 1700 /// pointer operands of interleaved accesses are an example. 1701 bool hasConsecutiveLikePtrOperand(Instruction *I); 1702 1703 /// Returns true if \p I is a memory instruction that must be scalarized 1704 /// during vectorization. 1705 bool memoryInstructionMustBeScalarized(Instruction *I, unsigned VF = 1); 1706 1707 private: 1708 /// Check if a single basic block loop is vectorizable. 1709 /// At this point we know that this is a loop with a constant trip count 1710 /// and we only need to check individual instructions. 1711 bool canVectorizeInstrs(); 1712 1713 /// When we vectorize loops we may change the order in which 1714 /// we read and write from memory. This method checks if it is 1715 /// legal to vectorize the code, considering only memory constrains. 1716 /// Returns true if the loop is vectorizable 1717 bool canVectorizeMemory(); 1718 1719 /// Return true if we can vectorize this loop using the IF-conversion 1720 /// transformation. 1721 bool canVectorizeWithIfConvert(); 1722 1723 /// Collect the instructions that are uniform after vectorization. An 1724 /// instruction is uniform if we represent it with a single scalar value in 1725 /// the vectorized loop corresponding to each vector iteration. Examples of 1726 /// uniform instructions include pointer operands of consecutive or 1727 /// interleaved memory accesses. Note that although uniformity implies an 1728 /// instruction will be scalar, the reverse is not true. In general, a 1729 /// scalarized instruction will be represented by VF scalar values in the 1730 /// vectorized loop, each corresponding to an iteration of the original 1731 /// scalar loop. 1732 void collectLoopUniforms(); 1733 1734 /// Collect the instructions that are scalar after vectorization. An 1735 /// instruction is scalar if it is known to be uniform or will be scalarized 1736 /// during vectorization. Non-uniform scalarized instructions will be 1737 /// represented by VF values in the vectorized loop, each corresponding to an 1738 /// iteration of the original scalar loop. 1739 void collectLoopScalars(); 1740 1741 /// Return true if all of the instructions in the block can be speculatively 1742 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1743 /// and we know that we can read from them without segfault. 1744 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1745 1746 /// Updates the vectorization state by adding \p Phi to the inductions list. 1747 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1748 /// better choice for the main induction than the existing one. 1749 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1750 SmallPtrSetImpl<Value *> &AllowedExit); 1751 1752 /// Report an analysis message to assist the user in diagnosing loops that are 1753 /// not vectorized. These are handled as LoopAccessReport rather than 1754 /// VectorizationReport because the << operator of VectorizationReport returns 1755 /// LoopAccessReport. 1756 void emitAnalysis(const LoopAccessReport &Message) const { 1757 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1758 } 1759 1760 /// Create an analysis remark that explains why vectorization failed 1761 /// 1762 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1763 /// an instruction that prevents vectorization. Otherwise the loop is used 1764 /// for the location of the remark. \return the remark object that can be 1765 /// streamed to. 1766 OptimizationRemarkAnalysis 1767 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1768 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1769 RemarkName, TheLoop, I); 1770 } 1771 1772 /// \brief If an access has a symbolic strides, this maps the pointer value to 1773 /// the stride symbol. 1774 const ValueToValueMap *getSymbolicStrides() { 1775 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1776 // it's collected. This happens from canVectorizeWithIfConvert, when the 1777 // pointer is checked to reference consecutive elements suitable for a 1778 // masked access. 1779 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1780 } 1781 1782 unsigned NumPredStores; 1783 1784 /// The loop that we evaluate. 1785 Loop *TheLoop; 1786 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1787 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1788 /// of existing SCEV assumptions. The analysis will also add a minimal set 1789 /// of new predicates if this is required to enable vectorization and 1790 /// unrolling. 1791 PredicatedScalarEvolution &PSE; 1792 /// Target Library Info. 1793 TargetLibraryInfo *TLI; 1794 /// Target Transform Info 1795 const TargetTransformInfo *TTI; 1796 /// Dominator Tree. 1797 DominatorTree *DT; 1798 // LoopAccess analysis. 1799 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1800 // And the loop-accesses info corresponding to this loop. This pointer is 1801 // null until canVectorizeMemory sets it up. 1802 const LoopAccessInfo *LAI; 1803 /// Interface to emit optimization remarks. 1804 OptimizationRemarkEmitter *ORE; 1805 1806 /// The interleave access information contains groups of interleaved accesses 1807 /// with the same stride and close to each other. 1808 InterleavedAccessInfo InterleaveInfo; 1809 1810 // --- vectorization state --- // 1811 1812 /// Holds the integer induction variable. This is the counter of the 1813 /// loop. 1814 PHINode *Induction; 1815 /// Holds the reduction variables. 1816 ReductionList Reductions; 1817 /// Holds all of the induction variables that we found in the loop. 1818 /// Notice that inductions don't need to start at zero and that induction 1819 /// variables can be pointers. 1820 InductionList Inductions; 1821 /// Holds the phi nodes that are first-order recurrences. 1822 RecurrenceSet FirstOrderRecurrences; 1823 /// Holds the widest induction type encountered. 1824 Type *WidestIndTy; 1825 1826 /// Allowed outside users. This holds the induction and reduction 1827 /// vars which can be accessed from outside the loop. 1828 SmallPtrSet<Value *, 4> AllowedExit; 1829 1830 /// Holds the instructions known to be uniform after vectorization. 1831 SmallPtrSet<Instruction *, 4> Uniforms; 1832 1833 /// Holds the instructions known to be scalar after vectorization. 1834 SmallPtrSet<Instruction *, 4> Scalars; 1835 1836 /// Can we assume the absence of NaNs. 1837 bool HasFunNoNaNAttr; 1838 1839 /// Vectorization requirements that will go through late-evaluation. 1840 LoopVectorizationRequirements *Requirements; 1841 1842 /// Used to emit an analysis of any legality issues. 1843 LoopVectorizeHints *Hints; 1844 1845 /// While vectorizing these instructions we have to generate a 1846 /// call to the appropriate masked intrinsic 1847 SmallPtrSet<const Instruction *, 8> MaskedOp; 1848 }; 1849 1850 /// LoopVectorizationCostModel - estimates the expected speedups due to 1851 /// vectorization. 1852 /// In many cases vectorization is not profitable. This can happen because of 1853 /// a number of reasons. In this class we mainly attempt to predict the 1854 /// expected speedup/slowdowns due to the supported instruction set. We use the 1855 /// TargetTransformInfo to query the different backends for the cost of 1856 /// different operations. 1857 class LoopVectorizationCostModel { 1858 public: 1859 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1860 LoopInfo *LI, LoopVectorizationLegality *Legal, 1861 const TargetTransformInfo &TTI, 1862 const TargetLibraryInfo *TLI, DemandedBits *DB, 1863 AssumptionCache *AC, 1864 OptimizationRemarkEmitter *ORE, const Function *F, 1865 const LoopVectorizeHints *Hints) 1866 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1867 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1868 1869 /// Information about vectorization costs 1870 struct VectorizationFactor { 1871 unsigned Width; // Vector width with best cost 1872 unsigned Cost; // Cost of the loop with that width 1873 }; 1874 /// \return The most profitable vectorization factor and the cost of that VF. 1875 /// This method checks every power of two up to VF. If UserVF is not ZERO 1876 /// then this vectorization factor will be selected if vectorization is 1877 /// possible. 1878 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1879 1880 /// \return The size (in bits) of the smallest and widest types in the code 1881 /// that needs to be vectorized. We ignore values that remain scalar such as 1882 /// 64 bit loop indices. 1883 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1884 1885 /// \return The desired interleave count. 1886 /// If interleave count has been specified by metadata it will be returned. 1887 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1888 /// are the selected vectorization factor and the cost of the selected VF. 1889 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1890 unsigned LoopCost); 1891 1892 /// \brief A struct that represents some properties of the register usage 1893 /// of a loop. 1894 struct RegisterUsage { 1895 /// Holds the number of loop invariant values that are used in the loop. 1896 unsigned LoopInvariantRegs; 1897 /// Holds the maximum number of concurrent live intervals in the loop. 1898 unsigned MaxLocalUsers; 1899 /// Holds the number of instructions in the loop. 1900 unsigned NumInstructions; 1901 }; 1902 1903 /// \return Returns information about the register usages of the loop for the 1904 /// given vectorization factors. 1905 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1906 1907 /// Collect values we want to ignore in the cost model. 1908 void collectValuesToIgnore(); 1909 1910 /// \returns The smallest bitwidth each instruction can be represented with. 1911 /// The vector equivalents of these instructions should be truncated to this 1912 /// type. 1913 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1914 return MinBWs; 1915 } 1916 1917 /// \returns True if it is more profitable to scalarize instruction \p I for 1918 /// vectorization factor \p VF. 1919 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1920 auto Scalars = InstsToScalarize.find(VF); 1921 assert(Scalars != InstsToScalarize.end() && 1922 "VF not yet analyzed for scalarization profitability"); 1923 return Scalars->second.count(I); 1924 } 1925 1926 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1927 /// for vectorization factor \p VF. 1928 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1929 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1930 !Legal->isScalarAfterVectorization(I); 1931 } 1932 1933 private: 1934 /// The vectorization cost is a combination of the cost itself and a boolean 1935 /// indicating whether any of the contributing operations will actually 1936 /// operate on 1937 /// vector values after type legalization in the backend. If this latter value 1938 /// is 1939 /// false, then all operations will be scalarized (i.e. no vectorization has 1940 /// actually taken place). 1941 typedef std::pair<unsigned, bool> VectorizationCostTy; 1942 1943 /// Returns the expected execution cost. The unit of the cost does 1944 /// not matter because we use the 'cost' units to compare different 1945 /// vector widths. The cost that is returned is *not* normalized by 1946 /// the factor width. 1947 VectorizationCostTy expectedCost(unsigned VF); 1948 1949 /// Returns the execution time cost of an instruction for a given vector 1950 /// width. Vector width of one means scalar. 1951 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1952 1953 /// The cost-computation logic from getInstructionCost which provides 1954 /// the vector type as an output parameter. 1955 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1956 1957 /// Returns whether the instruction is a load or store and will be a emitted 1958 /// as a vector operation. 1959 bool isConsecutiveLoadOrStore(Instruction *I); 1960 1961 /// Create an analysis remark that explains why vectorization failed 1962 /// 1963 /// \p RemarkName is the identifier for the remark. \return the remark object 1964 /// that can be streamed to. 1965 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1966 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1967 RemarkName, TheLoop); 1968 } 1969 1970 /// Map of scalar integer values to the smallest bitwidth they can be legally 1971 /// represented as. The vector equivalents of these values should be truncated 1972 /// to this type. 1973 MapVector<Instruction *, uint64_t> MinBWs; 1974 1975 /// A type representing the costs for instructions if they were to be 1976 /// scalarized rather than vectorized. The entries are Instruction-Cost 1977 /// pairs. 1978 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 1979 1980 /// A map holding scalar costs for different vectorization factors. The 1981 /// presence of a cost for an instruction in the mapping indicates that the 1982 /// instruction will be scalarized when vectorizing with the associated 1983 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1984 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1985 1986 /// Returns the expected difference in cost from scalarizing the expression 1987 /// feeding a predicated instruction \p PredInst. The instructions to 1988 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1989 /// non-negative return value implies the expression will be scalarized. 1990 /// Currently, only single-use chains are considered for scalarization. 1991 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1992 unsigned VF); 1993 1994 /// Collects the instructions to scalarize for each predicated instruction in 1995 /// the loop. 1996 void collectInstsToScalarize(unsigned VF); 1997 1998 public: 1999 /// The loop that we evaluate. 2000 Loop *TheLoop; 2001 /// Predicated scalar evolution analysis. 2002 PredicatedScalarEvolution &PSE; 2003 /// Loop Info analysis. 2004 LoopInfo *LI; 2005 /// Vectorization legality. 2006 LoopVectorizationLegality *Legal; 2007 /// Vector target information. 2008 const TargetTransformInfo &TTI; 2009 /// Target Library Info. 2010 const TargetLibraryInfo *TLI; 2011 /// Demanded bits analysis. 2012 DemandedBits *DB; 2013 /// Assumption cache. 2014 AssumptionCache *AC; 2015 /// Interface to emit optimization remarks. 2016 OptimizationRemarkEmitter *ORE; 2017 2018 const Function *TheFunction; 2019 /// Loop Vectorize Hint. 2020 const LoopVectorizeHints *Hints; 2021 /// Values to ignore in the cost model. 2022 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2023 /// Values to ignore in the cost model when VF > 1. 2024 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2025 }; 2026 2027 /// \brief This holds vectorization requirements that must be verified late in 2028 /// the process. The requirements are set by legalize and costmodel. Once 2029 /// vectorization has been determined to be possible and profitable the 2030 /// requirements can be verified by looking for metadata or compiler options. 2031 /// For example, some loops require FP commutativity which is only allowed if 2032 /// vectorization is explicitly specified or if the fast-math compiler option 2033 /// has been provided. 2034 /// Late evaluation of these requirements allows helpful diagnostics to be 2035 /// composed that tells the user what need to be done to vectorize the loop. For 2036 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2037 /// evaluation should be used only when diagnostics can generated that can be 2038 /// followed by a non-expert user. 2039 class LoopVectorizationRequirements { 2040 public: 2041 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2042 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2043 2044 void addUnsafeAlgebraInst(Instruction *I) { 2045 // First unsafe algebra instruction. 2046 if (!UnsafeAlgebraInst) 2047 UnsafeAlgebraInst = I; 2048 } 2049 2050 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2051 2052 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2053 const char *PassName = Hints.vectorizeAnalysisPassName(); 2054 bool Failed = false; 2055 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2056 ORE.emit( 2057 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2058 UnsafeAlgebraInst->getDebugLoc(), 2059 UnsafeAlgebraInst->getParent()) 2060 << "loop not vectorized: cannot prove it is safe to reorder " 2061 "floating-point operations"); 2062 Failed = true; 2063 } 2064 2065 // Test if runtime memcheck thresholds are exceeded. 2066 bool PragmaThresholdReached = 2067 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2068 bool ThresholdReached = 2069 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2070 if ((ThresholdReached && !Hints.allowReordering()) || 2071 PragmaThresholdReached) { 2072 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2073 L->getStartLoc(), 2074 L->getHeader()) 2075 << "loop not vectorized: cannot prove it is safe to reorder " 2076 "memory operations"); 2077 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2078 Failed = true; 2079 } 2080 2081 return Failed; 2082 } 2083 2084 private: 2085 unsigned NumRuntimePointerChecks; 2086 Instruction *UnsafeAlgebraInst; 2087 2088 /// Interface to emit optimization remarks. 2089 OptimizationRemarkEmitter &ORE; 2090 }; 2091 2092 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2093 if (L.empty()) { 2094 if (!hasCyclesInLoopBody(L)) 2095 V.push_back(&L); 2096 return; 2097 } 2098 for (Loop *InnerL : L) 2099 addAcyclicInnerLoop(*InnerL, V); 2100 } 2101 2102 /// The LoopVectorize Pass. 2103 struct LoopVectorize : public FunctionPass { 2104 /// Pass identification, replacement for typeid 2105 static char ID; 2106 2107 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2108 : FunctionPass(ID) { 2109 Impl.DisableUnrolling = NoUnrolling; 2110 Impl.AlwaysVectorize = AlwaysVectorize; 2111 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2112 } 2113 2114 LoopVectorizePass Impl; 2115 2116 bool runOnFunction(Function &F) override { 2117 if (skipFunction(F)) 2118 return false; 2119 2120 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2121 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2122 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2123 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2124 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2125 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2126 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2127 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2128 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2129 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2130 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2131 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2132 2133 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2134 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2135 2136 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2137 GetLAA, *ORE); 2138 } 2139 2140 void getAnalysisUsage(AnalysisUsage &AU) const override { 2141 AU.addRequired<AssumptionCacheTracker>(); 2142 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2143 AU.addRequired<DominatorTreeWrapperPass>(); 2144 AU.addRequired<LoopInfoWrapperPass>(); 2145 AU.addRequired<ScalarEvolutionWrapperPass>(); 2146 AU.addRequired<TargetTransformInfoWrapperPass>(); 2147 AU.addRequired<AAResultsWrapperPass>(); 2148 AU.addRequired<LoopAccessLegacyAnalysis>(); 2149 AU.addRequired<DemandedBitsWrapperPass>(); 2150 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2151 AU.addPreserved<LoopInfoWrapperPass>(); 2152 AU.addPreserved<DominatorTreeWrapperPass>(); 2153 AU.addPreserved<BasicAAWrapperPass>(); 2154 AU.addPreserved<GlobalsAAWrapperPass>(); 2155 } 2156 }; 2157 2158 } // end anonymous namespace 2159 2160 //===----------------------------------------------------------------------===// 2161 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2162 // LoopVectorizationCostModel. 2163 //===----------------------------------------------------------------------===// 2164 2165 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2166 // We need to place the broadcast of invariant variables outside the loop. 2167 Instruction *Instr = dyn_cast<Instruction>(V); 2168 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2169 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2170 2171 // Place the code for broadcasting invariant variables in the new preheader. 2172 IRBuilder<>::InsertPointGuard Guard(Builder); 2173 if (Invariant) 2174 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2175 2176 // Broadcast the scalar into all locations in the vector. 2177 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2178 2179 return Shuf; 2180 } 2181 2182 void InnerLoopVectorizer::createVectorIntInductionPHI( 2183 const InductionDescriptor &II, Instruction *EntryVal) { 2184 Value *Start = II.getStartValue(); 2185 ConstantInt *Step = II.getConstIntStepValue(); 2186 assert(Step && "Can not widen an IV with a non-constant step"); 2187 2188 // Construct the initial value of the vector IV in the vector loop preheader 2189 auto CurrIP = Builder.saveIP(); 2190 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2191 if (isa<TruncInst>(EntryVal)) { 2192 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2193 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2194 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2195 } 2196 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2197 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2198 Builder.restoreIP(CurrIP); 2199 2200 Value *SplatVF = 2201 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2202 VF * Step->getSExtValue())); 2203 // We may need to add the step a number of times, depending on the unroll 2204 // factor. The last of those goes into the PHI. 2205 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2206 &*LoopVectorBody->getFirstInsertionPt()); 2207 Instruction *LastInduction = VecInd; 2208 VectorParts Entry(UF); 2209 for (unsigned Part = 0; Part < UF; ++Part) { 2210 Entry[Part] = LastInduction; 2211 LastInduction = cast<Instruction>( 2212 Builder.CreateAdd(LastInduction, SplatVF, "step.add")); 2213 } 2214 VectorLoopValueMap.initVector(EntryVal, Entry); 2215 if (isa<TruncInst>(EntryVal)) 2216 addMetadata(Entry, EntryVal); 2217 2218 // Move the last step to the end of the latch block. This ensures consistent 2219 // placement of all induction updates. 2220 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2221 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2222 auto *ICmp = cast<Instruction>(Br->getCondition()); 2223 LastInduction->moveBefore(ICmp); 2224 LastInduction->setName("vec.ind.next"); 2225 2226 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2227 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2228 } 2229 2230 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2231 return Legal->isScalarAfterVectorization(I) || 2232 Cost->isProfitableToScalarize(I, VF); 2233 } 2234 2235 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2236 if (shouldScalarizeInstruction(IV)) 2237 return true; 2238 auto isScalarInst = [&](User *U) -> bool { 2239 auto *I = cast<Instruction>(U); 2240 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2241 }; 2242 return any_of(IV->users(), isScalarInst); 2243 } 2244 2245 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) { 2246 2247 auto II = Legal->getInductionVars()->find(IV); 2248 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2249 2250 auto ID = II->second; 2251 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2252 2253 // The scalar value to broadcast. This will be derived from the canonical 2254 // induction variable. 2255 Value *ScalarIV = nullptr; 2256 2257 // The step of the induction. 2258 Value *Step = nullptr; 2259 2260 // The value from the original loop to which we are mapping the new induction 2261 // variable. 2262 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2263 2264 // True if we have vectorized the induction variable. 2265 auto VectorizedIV = false; 2266 2267 // Determine if we want a scalar version of the induction variable. This is 2268 // true if the induction variable itself is not widened, or if it has at 2269 // least one user in the loop that is not widened. 2270 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2271 2272 // If the induction variable has a constant integer step value, go ahead and 2273 // get it now. 2274 if (ID.getConstIntStepValue()) 2275 Step = ID.getConstIntStepValue(); 2276 2277 // Try to create a new independent vector induction variable. If we can't 2278 // create the phi node, we will splat the scalar induction variable in each 2279 // loop iteration. 2280 if (VF > 1 && IV->getType() == Induction->getType() && Step && 2281 !shouldScalarizeInstruction(EntryVal)) { 2282 createVectorIntInductionPHI(ID, EntryVal); 2283 VectorizedIV = true; 2284 } 2285 2286 // If we haven't yet vectorized the induction variable, or if we will create 2287 // a scalar one, we need to define the scalar induction variable and step 2288 // values. If we were given a truncation type, truncate the canonical 2289 // induction variable and constant step. Otherwise, derive these values from 2290 // the induction descriptor. 2291 if (!VectorizedIV || NeedsScalarIV) { 2292 if (Trunc) { 2293 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2294 assert(Step && "Truncation requires constant integer step"); 2295 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 2296 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2297 Step = ConstantInt::getSigned(TruncType, StepInt); 2298 } else { 2299 ScalarIV = Induction; 2300 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2301 if (IV != OldInduction) { 2302 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2303 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2304 ScalarIV->setName("offset.idx"); 2305 } 2306 if (!Step) { 2307 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2308 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2309 &*Builder.GetInsertPoint()); 2310 } 2311 } 2312 } 2313 2314 // If we haven't yet vectorized the induction variable, splat the scalar 2315 // induction variable, and build the necessary step vectors. 2316 if (!VectorizedIV) { 2317 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2318 VectorParts Entry(UF); 2319 for (unsigned Part = 0; Part < UF; ++Part) 2320 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2321 VectorLoopValueMap.initVector(EntryVal, Entry); 2322 if (Trunc) 2323 addMetadata(Entry, Trunc); 2324 } 2325 2326 // If an induction variable is only used for counting loop iterations or 2327 // calculating addresses, it doesn't need to be widened. Create scalar steps 2328 // that can be used by instructions we will later scalarize. Note that the 2329 // addition of the scalar steps will not increase the number of instructions 2330 // in the loop in the common case prior to InstCombine. We will be trading 2331 // one vector extract for each scalar step. 2332 if (NeedsScalarIV) 2333 buildScalarSteps(ScalarIV, Step, EntryVal); 2334 } 2335 2336 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2337 Instruction::BinaryOps BinOp) { 2338 // Create and check the types. 2339 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2340 int VLen = Val->getType()->getVectorNumElements(); 2341 2342 Type *STy = Val->getType()->getScalarType(); 2343 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2344 "Induction Step must be an integer or FP"); 2345 assert(Step->getType() == STy && "Step has wrong type"); 2346 2347 SmallVector<Constant *, 8> Indices; 2348 2349 if (STy->isIntegerTy()) { 2350 // Create a vector of consecutive numbers from zero to VF. 2351 for (int i = 0; i < VLen; ++i) 2352 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2353 2354 // Add the consecutive indices to the vector value. 2355 Constant *Cv = ConstantVector::get(Indices); 2356 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2357 Step = Builder.CreateVectorSplat(VLen, Step); 2358 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2359 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2360 // which can be found from the original scalar operations. 2361 Step = Builder.CreateMul(Cv, Step); 2362 return Builder.CreateAdd(Val, Step, "induction"); 2363 } 2364 2365 // Floating point induction. 2366 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2367 "Binary Opcode should be specified for FP induction"); 2368 // Create a vector of consecutive numbers from zero to VF. 2369 for (int i = 0; i < VLen; ++i) 2370 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2371 2372 // Add the consecutive indices to the vector value. 2373 Constant *Cv = ConstantVector::get(Indices); 2374 2375 Step = Builder.CreateVectorSplat(VLen, Step); 2376 2377 // Floating point operations had to be 'fast' to enable the induction. 2378 FastMathFlags Flags; 2379 Flags.setUnsafeAlgebra(); 2380 2381 Value *MulOp = Builder.CreateFMul(Cv, Step); 2382 if (isa<Instruction>(MulOp)) 2383 // Have to check, MulOp may be a constant 2384 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2385 2386 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2387 if (isa<Instruction>(BOp)) 2388 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2389 return BOp; 2390 } 2391 2392 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2393 Value *EntryVal) { 2394 2395 // We shouldn't have to build scalar steps if we aren't vectorizing. 2396 assert(VF > 1 && "VF should be greater than one"); 2397 2398 // Get the value type and ensure it and the step have the same integer type. 2399 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2400 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2401 "Val and Step should have the same integer type"); 2402 2403 // Determine the number of scalars we need to generate for each unroll 2404 // iteration. If EntryVal is uniform, we only need to generate the first 2405 // lane. Otherwise, we generate all VF values. 2406 unsigned Lanes = 2407 Legal->isUniformAfterVectorization(cast<Instruction>(EntryVal)) ? 1 : VF; 2408 2409 // Compute the scalar steps and save the results in VectorLoopValueMap. 2410 ScalarParts Entry(UF); 2411 for (unsigned Part = 0; Part < UF; ++Part) { 2412 Entry[Part].resize(VF); 2413 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2414 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane); 2415 auto *Mul = Builder.CreateMul(StartIdx, Step); 2416 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2417 Entry[Part][Lane] = Add; 2418 } 2419 } 2420 VectorLoopValueMap.initScalar(EntryVal, Entry); 2421 } 2422 2423 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2424 2425 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2426 ValueToValueMap(); 2427 2428 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2429 if (Stride == 1 || Stride == -1) 2430 return Stride; 2431 return 0; 2432 } 2433 2434 bool LoopVectorizationLegality::isUniform(Value *V) { 2435 return LAI->isUniform(V); 2436 } 2437 2438 const InnerLoopVectorizer::VectorParts & 2439 InnerLoopVectorizer::getVectorValue(Value *V) { 2440 assert(V != Induction && "The new induction variable should not be used."); 2441 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2442 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2443 2444 // If we have a stride that is replaced by one, do it here. 2445 if (Legal->hasStride(V)) 2446 V = ConstantInt::get(V->getType(), 1); 2447 2448 // If we have this scalar in the map, return it. 2449 if (VectorLoopValueMap.hasVector(V)) 2450 return VectorLoopValueMap.VectorMapStorage[V]; 2451 2452 // If the value has not been vectorized, check if it has been scalarized 2453 // instead. If it has been scalarized, and we actually need the value in 2454 // vector form, we will construct the vector values on demand. 2455 if (VectorLoopValueMap.hasScalar(V)) { 2456 2457 // Initialize a new vector map entry. 2458 VectorParts Entry(UF); 2459 2460 // If we've scalarized a value, that value should be an instruction. 2461 auto *I = cast<Instruction>(V); 2462 2463 // If we aren't vectorizing, we can just copy the scalar map values over to 2464 // the vector map. 2465 if (VF == 1) { 2466 for (unsigned Part = 0; Part < UF; ++Part) 2467 Entry[Part] = getScalarValue(V, Part, 0); 2468 return VectorLoopValueMap.initVector(V, Entry); 2469 } 2470 2471 // Get the last scalar instruction we generated for V. If the value is 2472 // known to be uniform after vectorization, this corresponds to lane zero 2473 // of the last unroll iteration. Otherwise, the last instruction is the one 2474 // we created for the last vector lane of the last unroll iteration. 2475 unsigned LastLane = Legal->isUniformAfterVectorization(I) ? 0 : VF - 1; 2476 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2477 2478 // Set the insert point after the last scalarized instruction. This ensures 2479 // the insertelement sequence will directly follow the scalar definitions. 2480 auto OldIP = Builder.saveIP(); 2481 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2482 Builder.SetInsertPoint(&*NewIP); 2483 2484 // However, if we are vectorizing, we need to construct the vector values. 2485 // If the value is known to be uniform after vectorization, we can just 2486 // broadcast the scalar value corresponding to lane zero for each unroll 2487 // iteration. Otherwise, we construct the vector values using insertelement 2488 // instructions. Since the resulting vectors are stored in 2489 // VectorLoopValueMap, we will only generate the insertelements once. 2490 for (unsigned Part = 0; Part < UF; ++Part) { 2491 Value *VectorValue = nullptr; 2492 if (Legal->isUniformAfterVectorization(I)) { 2493 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2494 } else { 2495 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2496 for (unsigned Lane = 0; Lane < VF; ++Lane) 2497 VectorValue = Builder.CreateInsertElement( 2498 VectorValue, getScalarValue(V, Part, Lane), 2499 Builder.getInt32(Lane)); 2500 } 2501 Entry[Part] = VectorValue; 2502 } 2503 Builder.restoreIP(OldIP); 2504 return VectorLoopValueMap.initVector(V, Entry); 2505 } 2506 2507 // If this scalar is unknown, assume that it is a constant or that it is 2508 // loop invariant. Broadcast V and save the value for future uses. 2509 Value *B = getBroadcastInstrs(V); 2510 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2511 } 2512 2513 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2514 unsigned Lane) { 2515 2516 // If the value is not an instruction contained in the loop, it should 2517 // already be scalar. 2518 if (OrigLoop->isLoopInvariant(V)) 2519 return V; 2520 2521 assert(Lane > 0 ? !Legal->isUniformAfterVectorization(cast<Instruction>(V)) 2522 : true && "Uniform values only have lane zero"); 2523 2524 // If the value from the original loop has not been vectorized, it is 2525 // represented by UF x VF scalar values in the new loop. Return the requested 2526 // scalar value. 2527 if (VectorLoopValueMap.hasScalar(V)) 2528 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2529 2530 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2531 // for the given unroll part. If this entry is not a vector type (i.e., the 2532 // vectorization factor is one), there is no need to generate an 2533 // extractelement instruction. 2534 auto *U = getVectorValue(V)[Part]; 2535 if (!U->getType()->isVectorTy()) { 2536 assert(VF == 1 && "Value not scalarized has non-vector type"); 2537 return U; 2538 } 2539 2540 // Otherwise, the value from the original loop has been vectorized and is 2541 // represented by UF vector values. Extract and return the requested scalar 2542 // value from the appropriate vector lane. 2543 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2544 } 2545 2546 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2547 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2548 SmallVector<Constant *, 8> ShuffleMask; 2549 for (unsigned i = 0; i < VF; ++i) 2550 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2551 2552 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2553 ConstantVector::get(ShuffleMask), 2554 "reverse"); 2555 } 2556 2557 // Try to vectorize the interleave group that \p Instr belongs to. 2558 // 2559 // E.g. Translate following interleaved load group (factor = 3): 2560 // for (i = 0; i < N; i+=3) { 2561 // R = Pic[i]; // Member of index 0 2562 // G = Pic[i+1]; // Member of index 1 2563 // B = Pic[i+2]; // Member of index 2 2564 // ... // do something to R, G, B 2565 // } 2566 // To: 2567 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2568 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2569 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2570 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2571 // 2572 // Or translate following interleaved store group (factor = 3): 2573 // for (i = 0; i < N; i+=3) { 2574 // ... do something to R, G, B 2575 // Pic[i] = R; // Member of index 0 2576 // Pic[i+1] = G; // Member of index 1 2577 // Pic[i+2] = B; // Member of index 2 2578 // } 2579 // To: 2580 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2581 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2582 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2583 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2584 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2585 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2586 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2587 assert(Group && "Fail to get an interleaved access group."); 2588 2589 // Skip if current instruction is not the insert position. 2590 if (Instr != Group->getInsertPos()) 2591 return; 2592 2593 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2594 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2595 Value *Ptr = getPointerOperand(Instr); 2596 2597 // Prepare for the vector type of the interleaved load/store. 2598 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2599 unsigned InterleaveFactor = Group->getFactor(); 2600 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2601 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2602 2603 // Prepare for the new pointers. 2604 setDebugLocFromInst(Builder, Ptr); 2605 SmallVector<Value *, 2> NewPtrs; 2606 unsigned Index = Group->getIndex(Instr); 2607 2608 // If the group is reverse, adjust the index to refer to the last vector lane 2609 // instead of the first. We adjust the index from the first vector lane, 2610 // rather than directly getting the pointer for lane VF - 1, because the 2611 // pointer operand of the interleaved access is supposed to be uniform. For 2612 // uniform instructions, we're only required to generate a value for the 2613 // first vector lane in each unroll iteration. 2614 if (Group->isReverse()) 2615 Index += (VF - 1) * Group->getFactor(); 2616 2617 for (unsigned Part = 0; Part < UF; Part++) { 2618 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2619 2620 // Notice current instruction could be any index. Need to adjust the address 2621 // to the member of index 0. 2622 // 2623 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2624 // b = A[i]; // Member of index 0 2625 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2626 // 2627 // E.g. A[i+1] = a; // Member of index 1 2628 // A[i] = b; // Member of index 0 2629 // A[i+2] = c; // Member of index 2 (Current instruction) 2630 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2631 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2632 2633 // Cast to the vector pointer type. 2634 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2635 } 2636 2637 setDebugLocFromInst(Builder, Instr); 2638 Value *UndefVec = UndefValue::get(VecTy); 2639 2640 // Vectorize the interleaved load group. 2641 if (LI) { 2642 2643 // For each unroll part, create a wide load for the group. 2644 SmallVector<Value *, 2> NewLoads; 2645 for (unsigned Part = 0; Part < UF; Part++) { 2646 auto *NewLoad = Builder.CreateAlignedLoad( 2647 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2648 addMetadata(NewLoad, Instr); 2649 NewLoads.push_back(NewLoad); 2650 } 2651 2652 // For each member in the group, shuffle out the appropriate data from the 2653 // wide loads. 2654 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2655 Instruction *Member = Group->getMember(I); 2656 2657 // Skip the gaps in the group. 2658 if (!Member) 2659 continue; 2660 2661 VectorParts Entry(UF); 2662 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2663 for (unsigned Part = 0; Part < UF; Part++) { 2664 Value *StridedVec = Builder.CreateShuffleVector( 2665 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2666 2667 // If this member has different type, cast the result type. 2668 if (Member->getType() != ScalarTy) { 2669 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2670 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2671 } 2672 2673 Entry[Part] = 2674 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2675 } 2676 VectorLoopValueMap.initVector(Member, Entry); 2677 } 2678 return; 2679 } 2680 2681 // The sub vector type for current instruction. 2682 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2683 2684 // Vectorize the interleaved store group. 2685 for (unsigned Part = 0; Part < UF; Part++) { 2686 // Collect the stored vector from each member. 2687 SmallVector<Value *, 4> StoredVecs; 2688 for (unsigned i = 0; i < InterleaveFactor; i++) { 2689 // Interleaved store group doesn't allow a gap, so each index has a member 2690 Instruction *Member = Group->getMember(i); 2691 assert(Member && "Fail to get a member from an interleaved store group"); 2692 2693 Value *StoredVec = 2694 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2695 if (Group->isReverse()) 2696 StoredVec = reverseVector(StoredVec); 2697 2698 // If this member has different type, cast it to an unified type. 2699 if (StoredVec->getType() != SubVT) 2700 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2701 2702 StoredVecs.push_back(StoredVec); 2703 } 2704 2705 // Concatenate all vectors into a wide vector. 2706 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2707 2708 // Interleave the elements in the wide vector. 2709 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2710 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2711 "interleaved.vec"); 2712 2713 Instruction *NewStoreInstr = 2714 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2715 addMetadata(NewStoreInstr, Instr); 2716 } 2717 } 2718 2719 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2720 // Attempt to issue a wide load. 2721 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2722 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2723 2724 assert((LI || SI) && "Invalid Load/Store instruction"); 2725 2726 // Try to vectorize the interleave group if this access is interleaved. 2727 if (Legal->isAccessInterleaved(Instr)) 2728 return vectorizeInterleaveGroup(Instr); 2729 2730 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2731 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2732 Value *Ptr = getPointerOperand(Instr); 2733 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2734 // An alignment of 0 means target abi alignment. We need to use the scalar's 2735 // target abi alignment in such a case. 2736 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2737 if (!Alignment) 2738 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2739 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2740 2741 // Scalarize the memory instruction if necessary. 2742 if (Legal->memoryInstructionMustBeScalarized(Instr, VF)) 2743 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2744 2745 // Determine if the pointer operand of the access is either consecutive or 2746 // reverse consecutive. 2747 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2748 bool Reverse = ConsecutiveStride < 0; 2749 2750 // Determine if either a gather or scatter operation is legal. 2751 bool CreateGatherScatter = 2752 !ConsecutiveStride && Legal->isLegalGatherOrScatter(Instr); 2753 2754 VectorParts VectorGep; 2755 2756 // Handle consecutive loads/stores. 2757 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2758 if (ConsecutiveStride) { 2759 if (Gep) { 2760 unsigned NumOperands = Gep->getNumOperands(); 2761 #ifndef NDEBUG 2762 // The original GEP that identified as a consecutive memory access 2763 // should have only one loop-variant operand. 2764 unsigned NumOfLoopVariantOps = 0; 2765 for (unsigned i = 0; i < NumOperands; ++i) 2766 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 2767 OrigLoop)) 2768 NumOfLoopVariantOps++; 2769 assert(NumOfLoopVariantOps == 1 && 2770 "Consecutive GEP should have only one loop-variant operand"); 2771 #endif 2772 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2773 Gep2->setName("gep.indvar"); 2774 2775 // A new GEP is created for a 0-lane value of the first unroll iteration. 2776 // The GEPs for the rest of the unroll iterations are computed below as an 2777 // offset from this GEP. 2778 for (unsigned i = 0; i < NumOperands; ++i) 2779 // We can apply getScalarValue() for all GEP indices. It returns an 2780 // original value for loop-invariant operand and 0-lane for consecutive 2781 // operand. 2782 Gep2->setOperand(i, getScalarValue(Gep->getOperand(i), 2783 0, /* First unroll iteration */ 2784 0 /* 0-lane of the vector */ )); 2785 setDebugLocFromInst(Builder, Gep); 2786 Ptr = Builder.Insert(Gep2); 2787 2788 } else { // No GEP 2789 setDebugLocFromInst(Builder, Ptr); 2790 Ptr = getScalarValue(Ptr, 0, 0); 2791 } 2792 } else { 2793 // At this point we should vector version of GEP for Gather or Scatter 2794 assert(CreateGatherScatter && "The instruction should be scalarized"); 2795 if (Gep) { 2796 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2797 // and each index that's defined inside the loop, even if it is 2798 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2799 // scalar. 2800 SmallVector<VectorParts, 4> OpsV; 2801 for (Value *Op : Gep->operands()) { 2802 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2803 if (SrcInst && OrigLoop->contains(SrcInst)) 2804 OpsV.push_back(getVectorValue(Op)); 2805 else 2806 OpsV.push_back(VectorParts(UF, Op)); 2807 } 2808 for (unsigned Part = 0; Part < UF; ++Part) { 2809 SmallVector<Value *, 4> Ops; 2810 Value *GEPBasePtr = OpsV[0][Part]; 2811 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2812 Ops.push_back(OpsV[i][Part]); 2813 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2814 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2815 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2816 2817 NewGep = 2818 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2819 VectorGep.push_back(NewGep); 2820 } 2821 } else 2822 VectorGep = getVectorValue(Ptr); 2823 } 2824 2825 VectorParts Mask = createBlockInMask(Instr->getParent()); 2826 // Handle Stores: 2827 if (SI) { 2828 assert(!Legal->isUniform(SI->getPointerOperand()) && 2829 "We do not allow storing to uniform addresses"); 2830 setDebugLocFromInst(Builder, SI); 2831 // We don't want to update the value in the map as it might be used in 2832 // another expression. So don't use a reference type for "StoredVal". 2833 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2834 2835 for (unsigned Part = 0; Part < UF; ++Part) { 2836 Instruction *NewSI = nullptr; 2837 if (CreateGatherScatter) { 2838 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2839 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2840 Alignment, MaskPart); 2841 } else { 2842 // Calculate the pointer for the specific unroll-part. 2843 Value *PartPtr = 2844 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2845 2846 if (Reverse) { 2847 // If we store to reverse consecutive memory locations, then we need 2848 // to reverse the order of elements in the stored value. 2849 StoredVal[Part] = reverseVector(StoredVal[Part]); 2850 // If the address is consecutive but reversed, then the 2851 // wide store needs to start at the last vector element. 2852 PartPtr = 2853 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2854 PartPtr = 2855 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2856 Mask[Part] = reverseVector(Mask[Part]); 2857 } 2858 2859 Value *VecPtr = 2860 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2861 2862 if (Legal->isMaskRequired(SI)) 2863 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2864 Mask[Part]); 2865 else 2866 NewSI = 2867 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2868 } 2869 addMetadata(NewSI, SI); 2870 } 2871 return; 2872 } 2873 2874 // Handle loads. 2875 assert(LI && "Must have a load instruction"); 2876 setDebugLocFromInst(Builder, LI); 2877 VectorParts Entry(UF); 2878 for (unsigned Part = 0; Part < UF; ++Part) { 2879 Instruction *NewLI; 2880 if (CreateGatherScatter) { 2881 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2882 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2883 0, "wide.masked.gather"); 2884 Entry[Part] = NewLI; 2885 } else { 2886 // Calculate the pointer for the specific unroll-part. 2887 Value *PartPtr = 2888 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2889 2890 if (Reverse) { 2891 // If the address is consecutive but reversed, then the 2892 // wide load needs to start at the last vector element. 2893 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2894 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2895 Mask[Part] = reverseVector(Mask[Part]); 2896 } 2897 2898 Value *VecPtr = 2899 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2900 if (Legal->isMaskRequired(LI)) 2901 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2902 UndefValue::get(DataTy), 2903 "wide.masked.load"); 2904 else 2905 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2906 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2907 } 2908 addMetadata(NewLI, LI); 2909 } 2910 VectorLoopValueMap.initVector(Instr, Entry); 2911 } 2912 2913 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2914 bool IfPredicateInstr) { 2915 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2916 DEBUG(dbgs() << "LV: Scalarizing" 2917 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 2918 << '\n'); 2919 // Holds vector parameters or scalars, in case of uniform vals. 2920 SmallVector<VectorParts, 4> Params; 2921 2922 setDebugLocFromInst(Builder, Instr); 2923 2924 // Does this instruction return a value ? 2925 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2926 2927 // Initialize a new scalar map entry. 2928 ScalarParts Entry(UF); 2929 2930 VectorParts Cond; 2931 if (IfPredicateInstr) 2932 Cond = createBlockInMask(Instr->getParent()); 2933 2934 // Determine the number of scalars we need to generate for each unroll 2935 // iteration. If the instruction is uniform, we only need to generate the 2936 // first lane. Otherwise, we generate all VF values. 2937 unsigned Lanes = Legal->isUniformAfterVectorization(Instr) ? 1 : VF; 2938 2939 // For each vector unroll 'part': 2940 for (unsigned Part = 0; Part < UF; ++Part) { 2941 Entry[Part].resize(VF); 2942 // For each scalar that we create: 2943 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2944 2945 // Start if-block. 2946 Value *Cmp = nullptr; 2947 if (IfPredicateInstr) { 2948 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Lane)); 2949 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2950 ConstantInt::get(Cmp->getType(), 1)); 2951 } 2952 2953 Instruction *Cloned = Instr->clone(); 2954 if (!IsVoidRetTy) 2955 Cloned->setName(Instr->getName() + ".cloned"); 2956 2957 // Replace the operands of the cloned instructions with their scalar 2958 // equivalents in the new loop. 2959 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2960 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 2961 Cloned->setOperand(op, NewOp); 2962 } 2963 addNewMetadata(Cloned, Instr); 2964 2965 // Place the cloned scalar in the new loop. 2966 Builder.Insert(Cloned); 2967 2968 // Add the cloned scalar to the scalar map entry. 2969 Entry[Part][Lane] = Cloned; 2970 2971 // If we just cloned a new assumption, add it the assumption cache. 2972 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2973 if (II->getIntrinsicID() == Intrinsic::assume) 2974 AC->registerAssumption(II); 2975 2976 // End if-block. 2977 if (IfPredicateInstr) 2978 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 2979 } 2980 } 2981 VectorLoopValueMap.initScalar(Instr, Entry); 2982 } 2983 2984 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2985 Value *End, Value *Step, 2986 Instruction *DL) { 2987 BasicBlock *Header = L->getHeader(); 2988 BasicBlock *Latch = L->getLoopLatch(); 2989 // As we're just creating this loop, it's possible no latch exists 2990 // yet. If so, use the header as this will be a single block loop. 2991 if (!Latch) 2992 Latch = Header; 2993 2994 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2995 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2996 setDebugLocFromInst(Builder, OldInst); 2997 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2998 2999 Builder.SetInsertPoint(Latch->getTerminator()); 3000 setDebugLocFromInst(Builder, OldInst); 3001 3002 // Create i+1 and fill the PHINode. 3003 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3004 Induction->addIncoming(Start, L->getLoopPreheader()); 3005 Induction->addIncoming(Next, Latch); 3006 // Create the compare. 3007 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3008 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3009 3010 // Now we have two terminators. Remove the old one from the block. 3011 Latch->getTerminator()->eraseFromParent(); 3012 3013 return Induction; 3014 } 3015 3016 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3017 if (TripCount) 3018 return TripCount; 3019 3020 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3021 // Find the loop boundaries. 3022 ScalarEvolution *SE = PSE.getSE(); 3023 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3024 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3025 "Invalid loop count"); 3026 3027 Type *IdxTy = Legal->getWidestInductionType(); 3028 3029 // The exit count might have the type of i64 while the phi is i32. This can 3030 // happen if we have an induction variable that is sign extended before the 3031 // compare. The only way that we get a backedge taken count is that the 3032 // induction variable was signed and as such will not overflow. In such a case 3033 // truncation is legal. 3034 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3035 IdxTy->getPrimitiveSizeInBits()) 3036 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3037 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3038 3039 // Get the total trip count from the count by adding 1. 3040 const SCEV *ExitCount = SE->getAddExpr( 3041 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3042 3043 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3044 3045 // Expand the trip count and place the new instructions in the preheader. 3046 // Notice that the pre-header does not change, only the loop body. 3047 SCEVExpander Exp(*SE, DL, "induction"); 3048 3049 // Count holds the overall loop count (N). 3050 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3051 L->getLoopPreheader()->getTerminator()); 3052 3053 if (TripCount->getType()->isPointerTy()) 3054 TripCount = 3055 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3056 L->getLoopPreheader()->getTerminator()); 3057 3058 return TripCount; 3059 } 3060 3061 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3062 if (VectorTripCount) 3063 return VectorTripCount; 3064 3065 Value *TC = getOrCreateTripCount(L); 3066 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3067 3068 // Now we need to generate the expression for the part of the loop that the 3069 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3070 // iterations are not required for correctness, or N - Step, otherwise. Step 3071 // is equal to the vectorization factor (number of SIMD elements) times the 3072 // unroll factor (number of SIMD instructions). 3073 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3074 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3075 3076 // If there is a non-reversed interleaved group that may speculatively access 3077 // memory out-of-bounds, we need to ensure that there will be at least one 3078 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3079 // the trip count, we set the remainder to be equal to the step. If the step 3080 // does not evenly divide the trip count, no adjustment is necessary since 3081 // there will already be scalar iterations. Note that the minimum iterations 3082 // check ensures that N >= Step. 3083 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3084 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3085 R = Builder.CreateSelect(IsZero, Step, R); 3086 } 3087 3088 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3089 3090 return VectorTripCount; 3091 } 3092 3093 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3094 BasicBlock *Bypass) { 3095 Value *Count = getOrCreateTripCount(L); 3096 BasicBlock *BB = L->getLoopPreheader(); 3097 IRBuilder<> Builder(BB->getTerminator()); 3098 3099 // Generate code to check that the loop's trip count that we computed by 3100 // adding one to the backedge-taken count will not overflow. 3101 Value *CheckMinIters = Builder.CreateICmpULT( 3102 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3103 3104 BasicBlock *NewBB = 3105 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3106 // Update dominator tree immediately if the generated block is a 3107 // LoopBypassBlock because SCEV expansions to generate loop bypass 3108 // checks may query it before the current function is finished. 3109 DT->addNewBlock(NewBB, BB); 3110 if (L->getParentLoop()) 3111 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3112 ReplaceInstWithInst(BB->getTerminator(), 3113 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3114 LoopBypassBlocks.push_back(BB); 3115 } 3116 3117 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3118 BasicBlock *Bypass) { 3119 Value *TC = getOrCreateVectorTripCount(L); 3120 BasicBlock *BB = L->getLoopPreheader(); 3121 IRBuilder<> Builder(BB->getTerminator()); 3122 3123 // Now, compare the new count to zero. If it is zero skip the vector loop and 3124 // jump to the scalar loop. 3125 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3126 "cmp.zero"); 3127 3128 // Generate code to check that the loop's trip count that we computed by 3129 // adding one to the backedge-taken count will not overflow. 3130 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3131 // Update dominator tree immediately if the generated block is a 3132 // LoopBypassBlock because SCEV expansions to generate loop bypass 3133 // checks may query it before the current function is finished. 3134 DT->addNewBlock(NewBB, BB); 3135 if (L->getParentLoop()) 3136 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3137 ReplaceInstWithInst(BB->getTerminator(), 3138 BranchInst::Create(Bypass, NewBB, Cmp)); 3139 LoopBypassBlocks.push_back(BB); 3140 } 3141 3142 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3143 BasicBlock *BB = L->getLoopPreheader(); 3144 3145 // Generate the code to check that the SCEV assumptions that we made. 3146 // We want the new basic block to start at the first instruction in a 3147 // sequence of instructions that form a check. 3148 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3149 "scev.check"); 3150 Value *SCEVCheck = 3151 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3152 3153 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3154 if (C->isZero()) 3155 return; 3156 3157 // Create a new block containing the stride check. 3158 BB->setName("vector.scevcheck"); 3159 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3160 // Update dominator tree immediately if the generated block is a 3161 // LoopBypassBlock because SCEV expansions to generate loop bypass 3162 // checks may query it before the current function is finished. 3163 DT->addNewBlock(NewBB, BB); 3164 if (L->getParentLoop()) 3165 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3166 ReplaceInstWithInst(BB->getTerminator(), 3167 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3168 LoopBypassBlocks.push_back(BB); 3169 AddedSafetyChecks = true; 3170 } 3171 3172 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3173 BasicBlock *BB = L->getLoopPreheader(); 3174 3175 // Generate the code that checks in runtime if arrays overlap. We put the 3176 // checks into a separate block to make the more common case of few elements 3177 // faster. 3178 Instruction *FirstCheckInst; 3179 Instruction *MemRuntimeCheck; 3180 std::tie(FirstCheckInst, MemRuntimeCheck) = 3181 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3182 if (!MemRuntimeCheck) 3183 return; 3184 3185 // Create a new block containing the memory check. 3186 BB->setName("vector.memcheck"); 3187 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3188 // Update dominator tree immediately if the generated block is a 3189 // LoopBypassBlock because SCEV expansions to generate loop bypass 3190 // checks may query it before the current function is finished. 3191 DT->addNewBlock(NewBB, BB); 3192 if (L->getParentLoop()) 3193 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3194 ReplaceInstWithInst(BB->getTerminator(), 3195 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3196 LoopBypassBlocks.push_back(BB); 3197 AddedSafetyChecks = true; 3198 3199 // We currently don't use LoopVersioning for the actual loop cloning but we 3200 // still use it to add the noalias metadata. 3201 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3202 PSE.getSE()); 3203 LVer->prepareNoAliasMetadata(); 3204 } 3205 3206 void InnerLoopVectorizer::createEmptyLoop() { 3207 /* 3208 In this function we generate a new loop. The new loop will contain 3209 the vectorized instructions while the old loop will continue to run the 3210 scalar remainder. 3211 3212 [ ] <-- loop iteration number check. 3213 / | 3214 / v 3215 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3216 | / | 3217 | / v 3218 || [ ] <-- vector pre header. 3219 |/ | 3220 | v 3221 | [ ] \ 3222 | [ ]_| <-- vector loop. 3223 | | 3224 | v 3225 | -[ ] <--- middle-block. 3226 | / | 3227 | / v 3228 -|- >[ ] <--- new preheader. 3229 | | 3230 | v 3231 | [ ] \ 3232 | [ ]_| <-- old scalar loop to handle remainder. 3233 \ | 3234 \ v 3235 >[ ] <-- exit block. 3236 ... 3237 */ 3238 3239 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3240 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3241 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3242 assert(VectorPH && "Invalid loop structure"); 3243 assert(ExitBlock && "Must have an exit block"); 3244 3245 // Some loops have a single integer induction variable, while other loops 3246 // don't. One example is c++ iterators that often have multiple pointer 3247 // induction variables. In the code below we also support a case where we 3248 // don't have a single induction variable. 3249 // 3250 // We try to obtain an induction variable from the original loop as hard 3251 // as possible. However if we don't find one that: 3252 // - is an integer 3253 // - counts from zero, stepping by one 3254 // - is the size of the widest induction variable type 3255 // then we create a new one. 3256 OldInduction = Legal->getInduction(); 3257 Type *IdxTy = Legal->getWidestInductionType(); 3258 3259 // Split the single block loop into the two loop structure described above. 3260 BasicBlock *VecBody = 3261 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3262 BasicBlock *MiddleBlock = 3263 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3264 BasicBlock *ScalarPH = 3265 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3266 3267 // Create and register the new vector loop. 3268 Loop *Lp = new Loop(); 3269 Loop *ParentLoop = OrigLoop->getParentLoop(); 3270 3271 // Insert the new loop into the loop nest and register the new basic blocks 3272 // before calling any utilities such as SCEV that require valid LoopInfo. 3273 if (ParentLoop) { 3274 ParentLoop->addChildLoop(Lp); 3275 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3276 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3277 } else { 3278 LI->addTopLevelLoop(Lp); 3279 } 3280 Lp->addBasicBlockToLoop(VecBody, *LI); 3281 3282 // Find the loop boundaries. 3283 Value *Count = getOrCreateTripCount(Lp); 3284 3285 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3286 3287 // We need to test whether the backedge-taken count is uint##_max. Adding one 3288 // to it will cause overflow and an incorrect loop trip count in the vector 3289 // body. In case of overflow we want to directly jump to the scalar remainder 3290 // loop. 3291 emitMinimumIterationCountCheck(Lp, ScalarPH); 3292 // Now, compare the new count to zero. If it is zero skip the vector loop and 3293 // jump to the scalar loop. 3294 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3295 // Generate the code to check any assumptions that we've made for SCEV 3296 // expressions. 3297 emitSCEVChecks(Lp, ScalarPH); 3298 3299 // Generate the code that checks in runtime if arrays overlap. We put the 3300 // checks into a separate block to make the more common case of few elements 3301 // faster. 3302 emitMemRuntimeChecks(Lp, ScalarPH); 3303 3304 // Generate the induction variable. 3305 // The loop step is equal to the vectorization factor (num of SIMD elements) 3306 // times the unroll factor (num of SIMD instructions). 3307 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3308 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3309 Induction = 3310 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3311 getDebugLocFromInstOrOperands(OldInduction)); 3312 3313 // We are going to resume the execution of the scalar loop. 3314 // Go over all of the induction variables that we found and fix the 3315 // PHIs that are left in the scalar version of the loop. 3316 // The starting values of PHI nodes depend on the counter of the last 3317 // iteration in the vectorized loop. 3318 // If we come from a bypass edge then we need to start from the original 3319 // start value. 3320 3321 // This variable saves the new starting index for the scalar loop. It is used 3322 // to test if there are any tail iterations left once the vector loop has 3323 // completed. 3324 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3325 for (auto &InductionEntry : *List) { 3326 PHINode *OrigPhi = InductionEntry.first; 3327 InductionDescriptor II = InductionEntry.second; 3328 3329 // Create phi nodes to merge from the backedge-taken check block. 3330 PHINode *BCResumeVal = PHINode::Create( 3331 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3332 Value *&EndValue = IVEndValues[OrigPhi]; 3333 if (OrigPhi == OldInduction) { 3334 // We know what the end value is. 3335 EndValue = CountRoundDown; 3336 } else { 3337 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3338 Type *StepType = II.getStep()->getType(); 3339 Instruction::CastOps CastOp = 3340 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3341 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3342 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3343 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3344 EndValue->setName("ind.end"); 3345 } 3346 3347 // The new PHI merges the original incoming value, in case of a bypass, 3348 // or the value at the end of the vectorized loop. 3349 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3350 3351 // Fix the scalar body counter (PHI node). 3352 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3353 3354 // The old induction's phi node in the scalar body needs the truncated 3355 // value. 3356 for (BasicBlock *BB : LoopBypassBlocks) 3357 BCResumeVal->addIncoming(II.getStartValue(), BB); 3358 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3359 } 3360 3361 // Add a check in the middle block to see if we have completed 3362 // all of the iterations in the first vector loop. 3363 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3364 Value *CmpN = 3365 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3366 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3367 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3368 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3369 3370 // Get ready to start creating new instructions into the vectorized body. 3371 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3372 3373 // Save the state. 3374 LoopVectorPreHeader = Lp->getLoopPreheader(); 3375 LoopScalarPreHeader = ScalarPH; 3376 LoopMiddleBlock = MiddleBlock; 3377 LoopExitBlock = ExitBlock; 3378 LoopVectorBody = VecBody; 3379 LoopScalarBody = OldBasicBlock; 3380 3381 // Keep all loop hints from the original loop on the vector loop (we'll 3382 // replace the vectorizer-specific hints below). 3383 if (MDNode *LID = OrigLoop->getLoopID()) 3384 Lp->setLoopID(LID); 3385 3386 LoopVectorizeHints Hints(Lp, true, *ORE); 3387 Hints.setAlreadyVectorized(); 3388 } 3389 3390 // Fix up external users of the induction variable. At this point, we are 3391 // in LCSSA form, with all external PHIs that use the IV having one input value, 3392 // coming from the remainder loop. We need those PHIs to also have a correct 3393 // value for the IV when arriving directly from the middle block. 3394 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3395 const InductionDescriptor &II, 3396 Value *CountRoundDown, Value *EndValue, 3397 BasicBlock *MiddleBlock) { 3398 // There are two kinds of external IV usages - those that use the value 3399 // computed in the last iteration (the PHI) and those that use the penultimate 3400 // value (the value that feeds into the phi from the loop latch). 3401 // We allow both, but they, obviously, have different values. 3402 3403 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3404 3405 DenseMap<Value *, Value *> MissingVals; 3406 3407 // An external user of the last iteration's value should see the value that 3408 // the remainder loop uses to initialize its own IV. 3409 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3410 for (User *U : PostInc->users()) { 3411 Instruction *UI = cast<Instruction>(U); 3412 if (!OrigLoop->contains(UI)) { 3413 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3414 MissingVals[UI] = EndValue; 3415 } 3416 } 3417 3418 // An external user of the penultimate value need to see EndValue - Step. 3419 // The simplest way to get this is to recompute it from the constituent SCEVs, 3420 // that is Start + (Step * (CRD - 1)). 3421 for (User *U : OrigPhi->users()) { 3422 auto *UI = cast<Instruction>(U); 3423 if (!OrigLoop->contains(UI)) { 3424 const DataLayout &DL = 3425 OrigLoop->getHeader()->getModule()->getDataLayout(); 3426 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3427 3428 IRBuilder<> B(MiddleBlock->getTerminator()); 3429 Value *CountMinusOne = B.CreateSub( 3430 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3431 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3432 "cast.cmo"); 3433 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3434 Escape->setName("ind.escape"); 3435 MissingVals[UI] = Escape; 3436 } 3437 } 3438 3439 for (auto &I : MissingVals) { 3440 PHINode *PHI = cast<PHINode>(I.first); 3441 // One corner case we have to handle is two IVs "chasing" each-other, 3442 // that is %IV2 = phi [...], [ %IV1, %latch ] 3443 // In this case, if IV1 has an external use, we need to avoid adding both 3444 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3445 // don't already have an incoming value for the middle block. 3446 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3447 PHI->addIncoming(I.second, MiddleBlock); 3448 } 3449 } 3450 3451 namespace { 3452 struct CSEDenseMapInfo { 3453 static bool canHandle(Instruction *I) { 3454 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3455 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3456 } 3457 static inline Instruction *getEmptyKey() { 3458 return DenseMapInfo<Instruction *>::getEmptyKey(); 3459 } 3460 static inline Instruction *getTombstoneKey() { 3461 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3462 } 3463 static unsigned getHashValue(Instruction *I) { 3464 assert(canHandle(I) && "Unknown instruction!"); 3465 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3466 I->value_op_end())); 3467 } 3468 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3469 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3470 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3471 return LHS == RHS; 3472 return LHS->isIdenticalTo(RHS); 3473 } 3474 }; 3475 } 3476 3477 ///\brief Perform cse of induction variable instructions. 3478 static void cse(BasicBlock *BB) { 3479 // Perform simple cse. 3480 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3481 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3482 Instruction *In = &*I++; 3483 3484 if (!CSEDenseMapInfo::canHandle(In)) 3485 continue; 3486 3487 // Check if we can replace this instruction with any of the 3488 // visited instructions. 3489 if (Instruction *V = CSEMap.lookup(In)) { 3490 In->replaceAllUsesWith(V); 3491 In->eraseFromParent(); 3492 continue; 3493 } 3494 3495 CSEMap[In] = In; 3496 } 3497 } 3498 3499 /// \brief Adds a 'fast' flag to floating point operations. 3500 static Value *addFastMathFlag(Value *V) { 3501 if (isa<FPMathOperator>(V)) { 3502 FastMathFlags Flags; 3503 Flags.setUnsafeAlgebra(); 3504 cast<Instruction>(V)->setFastMathFlags(Flags); 3505 } 3506 return V; 3507 } 3508 3509 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3510 /// convenience wrapper for the type-based getScalarizationOverhead API. 3511 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3512 const TargetTransformInfo &TTI) { 3513 if (VF == 1) 3514 return 0; 3515 3516 unsigned Cost = 0; 3517 Type *RetTy = ToVectorTy(I->getType(), VF); 3518 if (!RetTy->isVoidTy()) 3519 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3520 3521 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3522 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3523 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3524 } else { 3525 SmallVector<const Value *, 4> Operands(I->operand_values()); 3526 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3527 } 3528 3529 return Cost; 3530 } 3531 3532 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3533 // Return the cost of the instruction, including scalarization overhead if it's 3534 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3535 // i.e. either vector version isn't available, or is too expensive. 3536 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3537 const TargetTransformInfo &TTI, 3538 const TargetLibraryInfo *TLI, 3539 bool &NeedToScalarize) { 3540 Function *F = CI->getCalledFunction(); 3541 StringRef FnName = CI->getCalledFunction()->getName(); 3542 Type *ScalarRetTy = CI->getType(); 3543 SmallVector<Type *, 4> Tys, ScalarTys; 3544 for (auto &ArgOp : CI->arg_operands()) 3545 ScalarTys.push_back(ArgOp->getType()); 3546 3547 // Estimate cost of scalarized vector call. The source operands are assumed 3548 // to be vectors, so we need to extract individual elements from there, 3549 // execute VF scalar calls, and then gather the result into the vector return 3550 // value. 3551 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3552 if (VF == 1) 3553 return ScalarCallCost; 3554 3555 // Compute corresponding vector type for return value and arguments. 3556 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3557 for (Type *ScalarTy : ScalarTys) 3558 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3559 3560 // Compute costs of unpacking argument values for the scalar calls and 3561 // packing the return values to a vector. 3562 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3563 3564 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3565 3566 // If we can't emit a vector call for this function, then the currently found 3567 // cost is the cost we need to return. 3568 NeedToScalarize = true; 3569 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3570 return Cost; 3571 3572 // If the corresponding vector cost is cheaper, return its cost. 3573 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3574 if (VectorCallCost < Cost) { 3575 NeedToScalarize = false; 3576 return VectorCallCost; 3577 } 3578 return Cost; 3579 } 3580 3581 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3582 // factor VF. Return the cost of the instruction, including scalarization 3583 // overhead if it's needed. 3584 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3585 const TargetTransformInfo &TTI, 3586 const TargetLibraryInfo *TLI) { 3587 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3588 assert(ID && "Expected intrinsic call!"); 3589 3590 Type *RetTy = ToVectorTy(CI->getType(), VF); 3591 SmallVector<Type *, 4> Tys; 3592 for (Value *ArgOperand : CI->arg_operands()) 3593 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3594 3595 FastMathFlags FMF; 3596 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3597 FMF = FPMO->getFastMathFlags(); 3598 3599 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3600 } 3601 3602 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3603 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3604 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3605 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3606 } 3607 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3608 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3609 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3610 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3611 } 3612 3613 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3614 // For every instruction `I` in MinBWs, truncate the operands, create a 3615 // truncated version of `I` and reextend its result. InstCombine runs 3616 // later and will remove any ext/trunc pairs. 3617 // 3618 SmallPtrSet<Value *, 4> Erased; 3619 for (const auto &KV : Cost->getMinimalBitwidths()) { 3620 // If the value wasn't vectorized, we must maintain the original scalar 3621 // type. The absence of the value from VectorLoopValueMap indicates that it 3622 // wasn't vectorized. 3623 if (!VectorLoopValueMap.hasVector(KV.first)) 3624 continue; 3625 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3626 for (Value *&I : Parts) { 3627 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3628 continue; 3629 Type *OriginalTy = I->getType(); 3630 Type *ScalarTruncatedTy = 3631 IntegerType::get(OriginalTy->getContext(), KV.second); 3632 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3633 OriginalTy->getVectorNumElements()); 3634 if (TruncatedTy == OriginalTy) 3635 continue; 3636 3637 IRBuilder<> B(cast<Instruction>(I)); 3638 auto ShrinkOperand = [&](Value *V) -> Value * { 3639 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3640 if (ZI->getSrcTy() == TruncatedTy) 3641 return ZI->getOperand(0); 3642 return B.CreateZExtOrTrunc(V, TruncatedTy); 3643 }; 3644 3645 // The actual instruction modification depends on the instruction type, 3646 // unfortunately. 3647 Value *NewI = nullptr; 3648 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3649 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3650 ShrinkOperand(BO->getOperand(1))); 3651 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3652 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3653 NewI = 3654 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3655 ShrinkOperand(CI->getOperand(1))); 3656 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3657 NewI = B.CreateSelect(SI->getCondition(), 3658 ShrinkOperand(SI->getTrueValue()), 3659 ShrinkOperand(SI->getFalseValue())); 3660 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3661 switch (CI->getOpcode()) { 3662 default: 3663 llvm_unreachable("Unhandled cast!"); 3664 case Instruction::Trunc: 3665 NewI = ShrinkOperand(CI->getOperand(0)); 3666 break; 3667 case Instruction::SExt: 3668 NewI = B.CreateSExtOrTrunc( 3669 CI->getOperand(0), 3670 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3671 break; 3672 case Instruction::ZExt: 3673 NewI = B.CreateZExtOrTrunc( 3674 CI->getOperand(0), 3675 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3676 break; 3677 } 3678 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3679 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3680 auto *O0 = B.CreateZExtOrTrunc( 3681 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3682 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3683 auto *O1 = B.CreateZExtOrTrunc( 3684 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3685 3686 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3687 } else if (isa<LoadInst>(I)) { 3688 // Don't do anything with the operands, just extend the result. 3689 continue; 3690 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3691 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3692 auto *O0 = B.CreateZExtOrTrunc( 3693 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3694 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3695 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3696 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3697 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3698 auto *O0 = B.CreateZExtOrTrunc( 3699 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3700 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3701 } else { 3702 llvm_unreachable("Unhandled instruction type!"); 3703 } 3704 3705 // Lastly, extend the result. 3706 NewI->takeName(cast<Instruction>(I)); 3707 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3708 I->replaceAllUsesWith(Res); 3709 cast<Instruction>(I)->eraseFromParent(); 3710 Erased.insert(I); 3711 I = Res; 3712 } 3713 } 3714 3715 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3716 for (const auto &KV : Cost->getMinimalBitwidths()) { 3717 // If the value wasn't vectorized, we must maintain the original scalar 3718 // type. The absence of the value from VectorLoopValueMap indicates that it 3719 // wasn't vectorized. 3720 if (!VectorLoopValueMap.hasVector(KV.first)) 3721 continue; 3722 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3723 for (Value *&I : Parts) { 3724 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3725 if (Inst && Inst->use_empty()) { 3726 Value *NewI = Inst->getOperand(0); 3727 Inst->eraseFromParent(); 3728 I = NewI; 3729 } 3730 } 3731 } 3732 } 3733 3734 void InnerLoopVectorizer::vectorizeLoop() { 3735 //===------------------------------------------------===// 3736 // 3737 // Notice: any optimization or new instruction that go 3738 // into the code below should be also be implemented in 3739 // the cost-model. 3740 // 3741 //===------------------------------------------------===// 3742 Constant *Zero = Builder.getInt32(0); 3743 3744 // In order to support recurrences we need to be able to vectorize Phi nodes. 3745 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3746 // we create a new vector PHI node with no incoming edges. We use this value 3747 // when we vectorize all of the instructions that use the PHI. Next, after 3748 // all of the instructions in the block are complete we add the new incoming 3749 // edges to the PHI. At this point all of the instructions in the basic block 3750 // are vectorized, so we can use them to construct the PHI. 3751 PhiVector PHIsToFix; 3752 3753 // Collect instructions from the original loop that will become trivially 3754 // dead in the vectorized loop. We don't need to vectorize these 3755 // instructions. 3756 collectTriviallyDeadInstructions(); 3757 3758 // Scan the loop in a topological order to ensure that defs are vectorized 3759 // before users. 3760 LoopBlocksDFS DFS(OrigLoop); 3761 DFS.perform(LI); 3762 3763 // Vectorize all of the blocks in the original loop. 3764 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3765 vectorizeBlockInLoop(BB, &PHIsToFix); 3766 3767 // Insert truncates and extends for any truncated instructions as hints to 3768 // InstCombine. 3769 if (VF > 1) 3770 truncateToMinimalBitwidths(); 3771 3772 // At this point every instruction in the original loop is widened to a 3773 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3774 // nodes are currently empty because we did not want to introduce cycles. 3775 // This is the second stage of vectorizing recurrences. 3776 for (PHINode *Phi : PHIsToFix) { 3777 assert(Phi && "Unable to recover vectorized PHI"); 3778 3779 // Handle first-order recurrences that need to be fixed. 3780 if (Legal->isFirstOrderRecurrence(Phi)) { 3781 fixFirstOrderRecurrence(Phi); 3782 continue; 3783 } 3784 3785 // If the phi node is not a first-order recurrence, it must be a reduction. 3786 // Get it's reduction variable descriptor. 3787 assert(Legal->isReductionVariable(Phi) && 3788 "Unable to find the reduction variable"); 3789 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3790 3791 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3792 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3793 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3794 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3795 RdxDesc.getMinMaxRecurrenceKind(); 3796 setDebugLocFromInst(Builder, ReductionStartValue); 3797 3798 // We need to generate a reduction vector from the incoming scalar. 3799 // To do so, we need to generate the 'identity' vector and override 3800 // one of the elements with the incoming scalar reduction. We need 3801 // to do it in the vector-loop preheader. 3802 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3803 3804 // This is the vector-clone of the value that leaves the loop. 3805 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 3806 Type *VecTy = VectorExit[0]->getType(); 3807 3808 // Find the reduction identity variable. Zero for addition, or, xor, 3809 // one for multiplication, -1 for And. 3810 Value *Identity; 3811 Value *VectorStart; 3812 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3813 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3814 // MinMax reduction have the start value as their identify. 3815 if (VF == 1) { 3816 VectorStart = Identity = ReductionStartValue; 3817 } else { 3818 VectorStart = Identity = 3819 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3820 } 3821 } else { 3822 // Handle other reduction kinds: 3823 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3824 RK, VecTy->getScalarType()); 3825 if (VF == 1) { 3826 Identity = Iden; 3827 // This vector is the Identity vector where the first element is the 3828 // incoming scalar reduction. 3829 VectorStart = ReductionStartValue; 3830 } else { 3831 Identity = ConstantVector::getSplat(VF, Iden); 3832 3833 // This vector is the Identity vector where the first element is the 3834 // incoming scalar reduction. 3835 VectorStart = 3836 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3837 } 3838 } 3839 3840 // Fix the vector-loop phi. 3841 3842 // Reductions do not have to start at zero. They can start with 3843 // any loop invariant values. 3844 const VectorParts &VecRdxPhi = getVectorValue(Phi); 3845 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3846 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3847 const VectorParts &Val = getVectorValue(LoopVal); 3848 for (unsigned part = 0; part < UF; ++part) { 3849 // Make sure to add the reduction stat value only to the 3850 // first unroll part. 3851 Value *StartVal = (part == 0) ? VectorStart : Identity; 3852 cast<PHINode>(VecRdxPhi[part]) 3853 ->addIncoming(StartVal, LoopVectorPreHeader); 3854 cast<PHINode>(VecRdxPhi[part]) 3855 ->addIncoming(Val[part], LoopVectorBody); 3856 } 3857 3858 // Before each round, move the insertion point right between 3859 // the PHIs and the values we are going to write. 3860 // This allows us to write both PHINodes and the extractelement 3861 // instructions. 3862 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3863 3864 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 3865 setDebugLocFromInst(Builder, LoopExitInst); 3866 3867 // If the vector reduction can be performed in a smaller type, we truncate 3868 // then extend the loop exit value to enable InstCombine to evaluate the 3869 // entire expression in the smaller type. 3870 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3871 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3872 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3873 for (unsigned part = 0; part < UF; ++part) { 3874 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3875 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3876 : Builder.CreateZExt(Trunc, VecTy); 3877 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3878 UI != RdxParts[part]->user_end();) 3879 if (*UI != Trunc) { 3880 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3881 RdxParts[part] = Extnd; 3882 } else { 3883 ++UI; 3884 } 3885 } 3886 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3887 for (unsigned part = 0; part < UF; ++part) 3888 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3889 } 3890 3891 // Reduce all of the unrolled parts into a single vector. 3892 Value *ReducedPartRdx = RdxParts[0]; 3893 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3894 setDebugLocFromInst(Builder, ReducedPartRdx); 3895 for (unsigned part = 1; part < UF; ++part) { 3896 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3897 // Floating point operations had to be 'fast' to enable the reduction. 3898 ReducedPartRdx = addFastMathFlag( 3899 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3900 ReducedPartRdx, "bin.rdx")); 3901 else 3902 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3903 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3904 } 3905 3906 if (VF > 1) { 3907 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3908 // and vector ops, reducing the set of values being computed by half each 3909 // round. 3910 assert(isPowerOf2_32(VF) && 3911 "Reduction emission only supported for pow2 vectors!"); 3912 Value *TmpVec = ReducedPartRdx; 3913 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3914 for (unsigned i = VF; i != 1; i >>= 1) { 3915 // Move the upper half of the vector to the lower half. 3916 for (unsigned j = 0; j != i / 2; ++j) 3917 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3918 3919 // Fill the rest of the mask with undef. 3920 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3921 UndefValue::get(Builder.getInt32Ty())); 3922 3923 Value *Shuf = Builder.CreateShuffleVector( 3924 TmpVec, UndefValue::get(TmpVec->getType()), 3925 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3926 3927 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3928 // Floating point operations had to be 'fast' to enable the reduction. 3929 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3930 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3931 else 3932 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3933 TmpVec, Shuf); 3934 } 3935 3936 // The result is in the first element of the vector. 3937 ReducedPartRdx = 3938 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3939 3940 // If the reduction can be performed in a smaller type, we need to extend 3941 // the reduction to the wider type before we branch to the original loop. 3942 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3943 ReducedPartRdx = 3944 RdxDesc.isSigned() 3945 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3946 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3947 } 3948 3949 // Create a phi node that merges control-flow from the backedge-taken check 3950 // block and the middle block. 3951 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3952 LoopScalarPreHeader->getTerminator()); 3953 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3954 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3955 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3956 3957 // Now, we need to fix the users of the reduction variable 3958 // inside and outside of the scalar remainder loop. 3959 // We know that the loop is in LCSSA form. We need to update the 3960 // PHI nodes in the exit blocks. 3961 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3962 LEE = LoopExitBlock->end(); 3963 LEI != LEE; ++LEI) { 3964 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3965 if (!LCSSAPhi) 3966 break; 3967 3968 // All PHINodes need to have a single entry edge, or two if 3969 // we already fixed them. 3970 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3971 3972 // We found a reduction value exit-PHI. Update it with the 3973 // incoming bypass edge. 3974 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 3975 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3976 } // end of the LCSSA phi scan. 3977 3978 // Fix the scalar loop reduction variable with the incoming reduction sum 3979 // from the vector body and from the backedge value. 3980 int IncomingEdgeBlockIdx = 3981 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3982 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3983 // Pick the other block. 3984 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3985 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3986 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3987 } // end of for each Phi in PHIsToFix. 3988 3989 // Update the dominator tree. 3990 // 3991 // FIXME: After creating the structure of the new loop, the dominator tree is 3992 // no longer up-to-date, and it remains that way until we update it 3993 // here. An out-of-date dominator tree is problematic for SCEV, 3994 // because SCEVExpander uses it to guide code generation. The 3995 // vectorizer use SCEVExpanders in several places. Instead, we should 3996 // keep the dominator tree up-to-date as we go. 3997 updateAnalysis(); 3998 3999 // Fix-up external users of the induction variables. 4000 for (auto &Entry : *Legal->getInductionVars()) 4001 fixupIVUsers(Entry.first, Entry.second, 4002 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4003 IVEndValues[Entry.first], LoopMiddleBlock); 4004 4005 fixLCSSAPHIs(); 4006 predicateInstructions(); 4007 4008 // Remove redundant induction instructions. 4009 cse(LoopVectorBody); 4010 } 4011 4012 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4013 4014 // This is the second phase of vectorizing first-order recurrences. An 4015 // overview of the transformation is described below. Suppose we have the 4016 // following loop. 4017 // 4018 // for (int i = 0; i < n; ++i) 4019 // b[i] = a[i] - a[i - 1]; 4020 // 4021 // There is a first-order recurrence on "a". For this loop, the shorthand 4022 // scalar IR looks like: 4023 // 4024 // scalar.ph: 4025 // s_init = a[-1] 4026 // br scalar.body 4027 // 4028 // scalar.body: 4029 // i = phi [0, scalar.ph], [i+1, scalar.body] 4030 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4031 // s2 = a[i] 4032 // b[i] = s2 - s1 4033 // br cond, scalar.body, ... 4034 // 4035 // In this example, s1 is a recurrence because it's value depends on the 4036 // previous iteration. In the first phase of vectorization, we created a 4037 // temporary value for s1. We now complete the vectorization and produce the 4038 // shorthand vector IR shown below (for VF = 4, UF = 1). 4039 // 4040 // vector.ph: 4041 // v_init = vector(..., ..., ..., a[-1]) 4042 // br vector.body 4043 // 4044 // vector.body 4045 // i = phi [0, vector.ph], [i+4, vector.body] 4046 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4047 // v2 = a[i, i+1, i+2, i+3]; 4048 // v3 = vector(v1(3), v2(0, 1, 2)) 4049 // b[i, i+1, i+2, i+3] = v2 - v3 4050 // br cond, vector.body, middle.block 4051 // 4052 // middle.block: 4053 // x = v2(3) 4054 // br scalar.ph 4055 // 4056 // scalar.ph: 4057 // s_init = phi [x, middle.block], [a[-1], otherwise] 4058 // br scalar.body 4059 // 4060 // After execution completes the vector loop, we extract the next value of 4061 // the recurrence (x) to use as the initial value in the scalar loop. 4062 4063 // Get the original loop preheader and single loop latch. 4064 auto *Preheader = OrigLoop->getLoopPreheader(); 4065 auto *Latch = OrigLoop->getLoopLatch(); 4066 4067 // Get the initial and previous values of the scalar recurrence. 4068 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4069 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4070 4071 // Create a vector from the initial value. 4072 auto *VectorInit = ScalarInit; 4073 if (VF > 1) { 4074 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4075 VectorInit = Builder.CreateInsertElement( 4076 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4077 Builder.getInt32(VF - 1), "vector.recur.init"); 4078 } 4079 4080 // We constructed a temporary phi node in the first phase of vectorization. 4081 // This phi node will eventually be deleted. 4082 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4083 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4084 4085 // Create a phi node for the new recurrence. The current value will either be 4086 // the initial value inserted into a vector or loop-varying vector value. 4087 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4088 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4089 4090 // Get the vectorized previous value. We ensured the previous values was an 4091 // instruction when detecting the recurrence. 4092 auto &PreviousParts = getVectorValue(Previous); 4093 4094 // Set the insertion point to be after this instruction. We ensured the 4095 // previous value dominated all uses of the phi when detecting the 4096 // recurrence. 4097 Builder.SetInsertPoint( 4098 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4099 4100 // We will construct a vector for the recurrence by combining the values for 4101 // the current and previous iterations. This is the required shuffle mask. 4102 SmallVector<Constant *, 8> ShuffleMask(VF); 4103 ShuffleMask[0] = Builder.getInt32(VF - 1); 4104 for (unsigned I = 1; I < VF; ++I) 4105 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4106 4107 // The vector from which to take the initial value for the current iteration 4108 // (actual or unrolled). Initially, this is the vector phi node. 4109 Value *Incoming = VecPhi; 4110 4111 // Shuffle the current and previous vector and update the vector parts. 4112 for (unsigned Part = 0; Part < UF; ++Part) { 4113 auto *Shuffle = 4114 VF > 1 4115 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4116 ConstantVector::get(ShuffleMask)) 4117 : Incoming; 4118 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4119 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4120 PhiParts[Part] = Shuffle; 4121 Incoming = PreviousParts[Part]; 4122 } 4123 4124 // Fix the latch value of the new recurrence in the vector loop. 4125 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4126 4127 // Extract the last vector element in the middle block. This will be the 4128 // initial value for the recurrence when jumping to the scalar loop. 4129 auto *Extract = Incoming; 4130 if (VF > 1) { 4131 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4132 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4133 "vector.recur.extract"); 4134 } 4135 4136 // Fix the initial value of the original recurrence in the scalar loop. 4137 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4138 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4139 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4140 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4141 Start->addIncoming(Incoming, BB); 4142 } 4143 4144 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4145 Phi->setName("scalar.recur"); 4146 4147 // Finally, fix users of the recurrence outside the loop. The users will need 4148 // either the last value of the scalar recurrence or the last value of the 4149 // vector recurrence we extracted in the middle block. Since the loop is in 4150 // LCSSA form, we just need to find the phi node for the original scalar 4151 // recurrence in the exit block, and then add an edge for the middle block. 4152 for (auto &I : *LoopExitBlock) { 4153 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4154 if (!LCSSAPhi) 4155 break; 4156 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4157 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4158 break; 4159 } 4160 } 4161 } 4162 4163 void InnerLoopVectorizer::fixLCSSAPHIs() { 4164 for (Instruction &LEI : *LoopExitBlock) { 4165 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4166 if (!LCSSAPhi) 4167 break; 4168 if (LCSSAPhi->getNumIncomingValues() == 1) 4169 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4170 LoopMiddleBlock); 4171 } 4172 } 4173 4174 void InnerLoopVectorizer::collectTriviallyDeadInstructions() { 4175 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4176 4177 // We create new control-flow for the vectorized loop, so the original 4178 // condition will be dead after vectorization if it's only used by the 4179 // branch. 4180 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4181 if (Cmp && Cmp->hasOneUse()) 4182 DeadInstructions.insert(Cmp); 4183 4184 // We create new "steps" for induction variable updates to which the original 4185 // induction variables map. An original update instruction will be dead if 4186 // all its users except the induction variable are dead. 4187 for (auto &Induction : *Legal->getInductionVars()) { 4188 PHINode *Ind = Induction.first; 4189 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4190 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4191 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4192 })) 4193 DeadInstructions.insert(IndUpdate); 4194 } 4195 } 4196 4197 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4198 4199 // The basic block and loop containing the predicated instruction. 4200 auto *PredBB = PredInst->getParent(); 4201 auto *VectorLoop = LI->getLoopFor(PredBB); 4202 4203 // Initialize a worklist with the operands of the predicated instruction. 4204 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4205 4206 // Holds instructions that we need to analyze again. An instruction may be 4207 // reanalyzed if we don't yet know if we can sink it or not. 4208 SmallVector<Instruction *, 8> InstsToReanalyze; 4209 4210 // Returns true if a given use occurs in the predicated block. Phi nodes use 4211 // their operands in their corresponding predecessor blocks. 4212 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4213 auto *I = cast<Instruction>(U.getUser()); 4214 BasicBlock *BB = I->getParent(); 4215 if (auto *Phi = dyn_cast<PHINode>(I)) 4216 BB = Phi->getIncomingBlock( 4217 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4218 return BB == PredBB; 4219 }; 4220 4221 // Iteratively sink the scalarized operands of the predicated instruction 4222 // into the block we created for it. When an instruction is sunk, it's 4223 // operands are then added to the worklist. The algorithm ends after one pass 4224 // through the worklist doesn't sink a single instruction. 4225 bool Changed; 4226 do { 4227 4228 // Add the instructions that need to be reanalyzed to the worklist, and 4229 // reset the changed indicator. 4230 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4231 InstsToReanalyze.clear(); 4232 Changed = false; 4233 4234 while (!Worklist.empty()) { 4235 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4236 4237 // We can't sink an instruction if it is a phi node, is already in the 4238 // predicated block, is not in the loop, or may have side effects. 4239 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4240 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4241 continue; 4242 4243 // It's legal to sink the instruction if all its uses occur in the 4244 // predicated block. Otherwise, there's nothing to do yet, and we may 4245 // need to reanalyze the instruction. 4246 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4247 InstsToReanalyze.push_back(I); 4248 continue; 4249 } 4250 4251 // Move the instruction to the beginning of the predicated block, and add 4252 // it's operands to the worklist. 4253 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4254 Worklist.insert(I->op_begin(), I->op_end()); 4255 4256 // The sinking may have enabled other instructions to be sunk, so we will 4257 // need to iterate. 4258 Changed = true; 4259 } 4260 } while (Changed); 4261 } 4262 4263 void InnerLoopVectorizer::predicateInstructions() { 4264 4265 // For each instruction I marked for predication on value C, split I into its 4266 // own basic block to form an if-then construct over C. Since I may be fed by 4267 // an extractelement instruction or other scalar operand, we try to 4268 // iteratively sink its scalar operands into the predicated block. If I feeds 4269 // an insertelement instruction, we try to move this instruction into the 4270 // predicated block as well. For non-void types, a phi node will be created 4271 // for the resulting value (either vector or scalar). 4272 // 4273 // So for some predicated instruction, e.g. the conditional sdiv in: 4274 // 4275 // for.body: 4276 // ... 4277 // %add = add nsw i32 %mul, %0 4278 // %cmp5 = icmp sgt i32 %2, 7 4279 // br i1 %cmp5, label %if.then, label %if.end 4280 // 4281 // if.then: 4282 // %div = sdiv i32 %0, %1 4283 // br label %if.end 4284 // 4285 // if.end: 4286 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4287 // 4288 // the sdiv at this point is scalarized and if-converted using a select. 4289 // The inactive elements in the vector are not used, but the predicated 4290 // instruction is still executed for all vector elements, essentially: 4291 // 4292 // vector.body: 4293 // ... 4294 // %17 = add nsw <2 x i32> %16, %wide.load 4295 // %29 = extractelement <2 x i32> %wide.load, i32 0 4296 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4297 // %31 = sdiv i32 %29, %30 4298 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4299 // %35 = extractelement <2 x i32> %wide.load, i32 1 4300 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4301 // %37 = sdiv i32 %35, %36 4302 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4303 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4304 // 4305 // Predication will now re-introduce the original control flow to avoid false 4306 // side-effects by the sdiv instructions on the inactive elements, yielding 4307 // (after cleanup): 4308 // 4309 // vector.body: 4310 // ... 4311 // %5 = add nsw <2 x i32> %4, %wide.load 4312 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4313 // %9 = extractelement <2 x i1> %8, i32 0 4314 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4315 // 4316 // pred.sdiv.if: 4317 // %10 = extractelement <2 x i32> %wide.load, i32 0 4318 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4319 // %12 = sdiv i32 %10, %11 4320 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4321 // br label %pred.sdiv.continue 4322 // 4323 // pred.sdiv.continue: 4324 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4325 // %15 = extractelement <2 x i1> %8, i32 1 4326 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4327 // 4328 // pred.sdiv.if54: 4329 // %16 = extractelement <2 x i32> %wide.load, i32 1 4330 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4331 // %18 = sdiv i32 %16, %17 4332 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4333 // br label %pred.sdiv.continue55 4334 // 4335 // pred.sdiv.continue55: 4336 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4337 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4338 4339 for (auto KV : PredicatedInstructions) { 4340 BasicBlock::iterator I(KV.first); 4341 BasicBlock *Head = I->getParent(); 4342 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4343 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4344 /*BranchWeights=*/nullptr, DT, LI); 4345 I->moveBefore(T); 4346 sinkScalarOperands(&*I); 4347 4348 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4349 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4350 4351 // If the instruction is non-void create a Phi node at reconvergence point. 4352 if (!I->getType()->isVoidTy()) { 4353 Value *IncomingTrue = nullptr; 4354 Value *IncomingFalse = nullptr; 4355 4356 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4357 // If the predicated instruction is feeding an insert-element, move it 4358 // into the Then block; Phi node will be created for the vector. 4359 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4360 IEI->moveBefore(T); 4361 IncomingTrue = IEI; // the new vector with the inserted element. 4362 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4363 } else { 4364 // Phi node will be created for the scalar predicated instruction. 4365 IncomingTrue = &*I; 4366 IncomingFalse = UndefValue::get(I->getType()); 4367 } 4368 4369 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4370 assert(PostDom && "Then block has multiple successors"); 4371 PHINode *Phi = 4372 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4373 IncomingTrue->replaceAllUsesWith(Phi); 4374 Phi->addIncoming(IncomingFalse, Head); 4375 Phi->addIncoming(IncomingTrue, I->getParent()); 4376 } 4377 } 4378 4379 DEBUG(DT->verifyDomTree()); 4380 } 4381 4382 InnerLoopVectorizer::VectorParts 4383 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4384 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4385 4386 // Look for cached value. 4387 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4388 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4389 if (ECEntryIt != MaskCache.end()) 4390 return ECEntryIt->second; 4391 4392 VectorParts SrcMask = createBlockInMask(Src); 4393 4394 // The terminator has to be a branch inst! 4395 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4396 assert(BI && "Unexpected terminator found"); 4397 4398 if (BI->isConditional()) { 4399 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4400 4401 if (BI->getSuccessor(0) != Dst) 4402 for (unsigned part = 0; part < UF; ++part) 4403 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4404 4405 for (unsigned part = 0; part < UF; ++part) 4406 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4407 4408 MaskCache[Edge] = EdgeMask; 4409 return EdgeMask; 4410 } 4411 4412 MaskCache[Edge] = SrcMask; 4413 return SrcMask; 4414 } 4415 4416 InnerLoopVectorizer::VectorParts 4417 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4418 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4419 4420 // Loop incoming mask is all-one. 4421 if (OrigLoop->getHeader() == BB) { 4422 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4423 return getVectorValue(C); 4424 } 4425 4426 // This is the block mask. We OR all incoming edges, and with zero. 4427 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4428 VectorParts BlockMask = getVectorValue(Zero); 4429 4430 // For each pred: 4431 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4432 VectorParts EM = createEdgeMask(*it, BB); 4433 for (unsigned part = 0; part < UF; ++part) 4434 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4435 } 4436 4437 return BlockMask; 4438 } 4439 4440 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4441 unsigned VF, PhiVector *PV) { 4442 PHINode *P = cast<PHINode>(PN); 4443 // Handle recurrences. 4444 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4445 VectorParts Entry(UF); 4446 for (unsigned part = 0; part < UF; ++part) { 4447 // This is phase one of vectorizing PHIs. 4448 Type *VecTy = 4449 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4450 Entry[part] = PHINode::Create( 4451 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4452 } 4453 VectorLoopValueMap.initVector(P, Entry); 4454 PV->push_back(P); 4455 return; 4456 } 4457 4458 setDebugLocFromInst(Builder, P); 4459 // Check for PHI nodes that are lowered to vector selects. 4460 if (P->getParent() != OrigLoop->getHeader()) { 4461 // We know that all PHIs in non-header blocks are converted into 4462 // selects, so we don't have to worry about the insertion order and we 4463 // can just use the builder. 4464 // At this point we generate the predication tree. There may be 4465 // duplications since this is a simple recursive scan, but future 4466 // optimizations will clean it up. 4467 4468 unsigned NumIncoming = P->getNumIncomingValues(); 4469 4470 // Generate a sequence of selects of the form: 4471 // SELECT(Mask3, In3, 4472 // SELECT(Mask2, In2, 4473 // ( ...))) 4474 VectorParts Entry(UF); 4475 for (unsigned In = 0; In < NumIncoming; In++) { 4476 VectorParts Cond = 4477 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4478 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4479 4480 for (unsigned part = 0; part < UF; ++part) { 4481 // We might have single edge PHIs (blocks) - use an identity 4482 // 'select' for the first PHI operand. 4483 if (In == 0) 4484 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4485 else 4486 // Select between the current value and the previous incoming edge 4487 // based on the incoming mask. 4488 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4489 "predphi"); 4490 } 4491 } 4492 VectorLoopValueMap.initVector(P, Entry); 4493 return; 4494 } 4495 4496 // This PHINode must be an induction variable. 4497 // Make sure that we know about it. 4498 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4499 4500 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4501 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4502 4503 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4504 // which can be found from the original scalar operations. 4505 switch (II.getKind()) { 4506 case InductionDescriptor::IK_NoInduction: 4507 llvm_unreachable("Unknown induction"); 4508 case InductionDescriptor::IK_IntInduction: 4509 return widenIntInduction(P); 4510 case InductionDescriptor::IK_PtrInduction: { 4511 // Handle the pointer induction variable case. 4512 assert(P->getType()->isPointerTy() && "Unexpected type."); 4513 // This is the normalized GEP that starts counting at zero. 4514 Value *PtrInd = Induction; 4515 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4516 // Determine the number of scalars we need to generate for each unroll 4517 // iteration. If the instruction is uniform, we only need to generate the 4518 // first lane. Otherwise, we generate all VF values. 4519 unsigned Lanes = Legal->isUniformAfterVectorization(P) ? 1 : VF; 4520 // These are the scalar results. Notice that we don't generate vector GEPs 4521 // because scalar GEPs result in better code. 4522 ScalarParts Entry(UF); 4523 for (unsigned Part = 0; Part < UF; ++Part) { 4524 Entry[Part].resize(VF); 4525 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4526 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4527 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4528 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4529 SclrGep->setName("next.gep"); 4530 Entry[Part][Lane] = SclrGep; 4531 } 4532 } 4533 VectorLoopValueMap.initScalar(P, Entry); 4534 return; 4535 } 4536 case InductionDescriptor::IK_FpInduction: { 4537 assert(P->getType() == II.getStartValue()->getType() && 4538 "Types must match"); 4539 // Handle other induction variables that are now based on the 4540 // canonical one. 4541 assert(P != OldInduction && "Primary induction can be integer only"); 4542 4543 Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType()); 4544 V = II.transform(Builder, V, PSE.getSE(), DL); 4545 V->setName("fp.offset.idx"); 4546 4547 // Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal 4548 4549 Value *Broadcasted = getBroadcastInstrs(V); 4550 // After broadcasting the induction variable we need to make the vector 4551 // consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc. 4552 Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue(); 4553 VectorParts Entry(UF); 4554 for (unsigned part = 0; part < UF; ++part) 4555 Entry[part] = getStepVector(Broadcasted, VF * part, StepVal, 4556 II.getInductionOpcode()); 4557 VectorLoopValueMap.initVector(P, Entry); 4558 return; 4559 } 4560 } 4561 } 4562 4563 /// A helper function for checking whether an integer division-related 4564 /// instruction may divide by zero (in which case it must be predicated if 4565 /// executed conditionally in the scalar code). 4566 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4567 /// Non-zero divisors that are non compile-time constants will not be 4568 /// converted into multiplication, so we will still end up scalarizing 4569 /// the division, but can do so w/o predication. 4570 static bool mayDivideByZero(Instruction &I) { 4571 assert((I.getOpcode() == Instruction::UDiv || 4572 I.getOpcode() == Instruction::SDiv || 4573 I.getOpcode() == Instruction::URem || 4574 I.getOpcode() == Instruction::SRem) && 4575 "Unexpected instruction"); 4576 Value *Divisor = I.getOperand(1); 4577 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4578 return !CInt || CInt->isZero(); 4579 } 4580 4581 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4582 // For each instruction in the old loop. 4583 for (Instruction &I : *BB) { 4584 4585 // If the instruction will become trivially dead when vectorized, we don't 4586 // need to generate it. 4587 if (DeadInstructions.count(&I)) 4588 continue; 4589 4590 // Scalarize instructions that should remain scalar after vectorization. 4591 if (VF > 1 && 4592 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || 4593 isa<DbgInfoIntrinsic>(&I)) && 4594 shouldScalarizeInstruction(&I)) { 4595 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4596 continue; 4597 } 4598 4599 switch (I.getOpcode()) { 4600 case Instruction::Br: 4601 // Nothing to do for PHIs and BR, since we already took care of the 4602 // loop control flow instructions. 4603 continue; 4604 case Instruction::PHI: { 4605 // Vectorize PHINodes. 4606 widenPHIInstruction(&I, UF, VF, PV); 4607 continue; 4608 } // End of PHI. 4609 4610 case Instruction::UDiv: 4611 case Instruction::SDiv: 4612 case Instruction::SRem: 4613 case Instruction::URem: 4614 // Scalarize with predication if this instruction may divide by zero and 4615 // block execution is conditional, otherwise fallthrough. 4616 if (Legal->isScalarWithPredication(&I)) { 4617 scalarizeInstruction(&I, true); 4618 continue; 4619 } 4620 case Instruction::Add: 4621 case Instruction::FAdd: 4622 case Instruction::Sub: 4623 case Instruction::FSub: 4624 case Instruction::Mul: 4625 case Instruction::FMul: 4626 case Instruction::FDiv: 4627 case Instruction::FRem: 4628 case Instruction::Shl: 4629 case Instruction::LShr: 4630 case Instruction::AShr: 4631 case Instruction::And: 4632 case Instruction::Or: 4633 case Instruction::Xor: { 4634 // Just widen binops. 4635 auto *BinOp = cast<BinaryOperator>(&I); 4636 setDebugLocFromInst(Builder, BinOp); 4637 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4638 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4639 4640 // Use this vector value for all users of the original instruction. 4641 VectorParts Entry(UF); 4642 for (unsigned Part = 0; Part < UF; ++Part) { 4643 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4644 4645 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4646 VecOp->copyIRFlags(BinOp); 4647 4648 Entry[Part] = V; 4649 } 4650 4651 VectorLoopValueMap.initVector(&I, Entry); 4652 addMetadata(Entry, BinOp); 4653 break; 4654 } 4655 case Instruction::Select: { 4656 // Widen selects. 4657 // If the selector is loop invariant we can create a select 4658 // instruction with a scalar condition. Otherwise, use vector-select. 4659 auto *SE = PSE.getSE(); 4660 bool InvariantCond = 4661 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4662 setDebugLocFromInst(Builder, &I); 4663 4664 // The condition can be loop invariant but still defined inside the 4665 // loop. This means that we can't just use the original 'cond' value. 4666 // We have to take the 'vectorized' value and pick the first lane. 4667 // Instcombine will make this a no-op. 4668 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4669 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4670 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4671 4672 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4673 4674 VectorParts Entry(UF); 4675 for (unsigned Part = 0; Part < UF; ++Part) { 4676 Entry[Part] = Builder.CreateSelect( 4677 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4678 } 4679 4680 VectorLoopValueMap.initVector(&I, Entry); 4681 addMetadata(Entry, &I); 4682 break; 4683 } 4684 4685 case Instruction::ICmp: 4686 case Instruction::FCmp: { 4687 // Widen compares. Generate vector compares. 4688 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4689 auto *Cmp = dyn_cast<CmpInst>(&I); 4690 setDebugLocFromInst(Builder, Cmp); 4691 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4692 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4693 VectorParts Entry(UF); 4694 for (unsigned Part = 0; Part < UF; ++Part) { 4695 Value *C = nullptr; 4696 if (FCmp) { 4697 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4698 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4699 } else { 4700 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4701 } 4702 Entry[Part] = C; 4703 } 4704 4705 VectorLoopValueMap.initVector(&I, Entry); 4706 addMetadata(Entry, &I); 4707 break; 4708 } 4709 4710 case Instruction::Store: 4711 case Instruction::Load: 4712 vectorizeMemoryInstruction(&I); 4713 break; 4714 case Instruction::ZExt: 4715 case Instruction::SExt: 4716 case Instruction::FPToUI: 4717 case Instruction::FPToSI: 4718 case Instruction::FPExt: 4719 case Instruction::PtrToInt: 4720 case Instruction::IntToPtr: 4721 case Instruction::SIToFP: 4722 case Instruction::UIToFP: 4723 case Instruction::Trunc: 4724 case Instruction::FPTrunc: 4725 case Instruction::BitCast: { 4726 auto *CI = dyn_cast<CastInst>(&I); 4727 setDebugLocFromInst(Builder, CI); 4728 4729 // Optimize the special case where the source is a constant integer 4730 // induction variable. Notice that we can only optimize the 'trunc' case 4731 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4732 // (c) other casts depend on pointer size. 4733 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4734 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4735 ID.getConstIntStepValue()) { 4736 widenIntInduction(OldInduction, cast<TruncInst>(CI)); 4737 break; 4738 } 4739 4740 /// Vectorize casts. 4741 Type *DestTy = 4742 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4743 4744 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4745 VectorParts Entry(UF); 4746 for (unsigned Part = 0; Part < UF; ++Part) 4747 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4748 VectorLoopValueMap.initVector(&I, Entry); 4749 addMetadata(Entry, &I); 4750 break; 4751 } 4752 4753 case Instruction::Call: { 4754 // Ignore dbg intrinsics. 4755 if (isa<DbgInfoIntrinsic>(I)) 4756 break; 4757 setDebugLocFromInst(Builder, &I); 4758 4759 Module *M = BB->getParent()->getParent(); 4760 auto *CI = cast<CallInst>(&I); 4761 4762 StringRef FnName = CI->getCalledFunction()->getName(); 4763 Function *F = CI->getCalledFunction(); 4764 Type *RetTy = ToVectorTy(CI->getType(), VF); 4765 SmallVector<Type *, 4> Tys; 4766 for (Value *ArgOperand : CI->arg_operands()) 4767 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4768 4769 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4770 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4771 ID == Intrinsic::lifetime_start)) { 4772 scalarizeInstruction(&I); 4773 break; 4774 } 4775 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4776 // version of the instruction. 4777 // Is it beneficial to perform intrinsic call compared to lib call? 4778 bool NeedToScalarize; 4779 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4780 bool UseVectorIntrinsic = 4781 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4782 if (!UseVectorIntrinsic && NeedToScalarize) { 4783 scalarizeInstruction(&I); 4784 break; 4785 } 4786 4787 VectorParts Entry(UF); 4788 for (unsigned Part = 0; Part < UF; ++Part) { 4789 SmallVector<Value *, 4> Args; 4790 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4791 Value *Arg = CI->getArgOperand(i); 4792 // Some intrinsics have a scalar argument - don't replace it with a 4793 // vector. 4794 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4795 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4796 Arg = VectorArg[Part]; 4797 } 4798 Args.push_back(Arg); 4799 } 4800 4801 Function *VectorF; 4802 if (UseVectorIntrinsic) { 4803 // Use vector version of the intrinsic. 4804 Type *TysForDecl[] = {CI->getType()}; 4805 if (VF > 1) 4806 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4807 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4808 } else { 4809 // Use vector version of the library call. 4810 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4811 assert(!VFnName.empty() && "Vector function name is empty."); 4812 VectorF = M->getFunction(VFnName); 4813 if (!VectorF) { 4814 // Generate a declaration 4815 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4816 VectorF = 4817 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4818 VectorF->copyAttributesFrom(F); 4819 } 4820 } 4821 assert(VectorF && "Can't create vector function."); 4822 4823 SmallVector<OperandBundleDef, 1> OpBundles; 4824 CI->getOperandBundlesAsDefs(OpBundles); 4825 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4826 4827 if (isa<FPMathOperator>(V)) 4828 V->copyFastMathFlags(CI); 4829 4830 Entry[Part] = V; 4831 } 4832 4833 VectorLoopValueMap.initVector(&I, Entry); 4834 addMetadata(Entry, &I); 4835 break; 4836 } 4837 4838 default: 4839 // All other instructions are unsupported. Scalarize them. 4840 scalarizeInstruction(&I); 4841 break; 4842 } // end of switch. 4843 } // end of for_each instr. 4844 } 4845 4846 void InnerLoopVectorizer::updateAnalysis() { 4847 // Forget the original basic block. 4848 PSE.getSE()->forgetLoop(OrigLoop); 4849 4850 // Update the dominator tree information. 4851 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4852 "Entry does not dominate exit."); 4853 4854 // We don't predicate stores by this point, so the vector body should be a 4855 // single loop. 4856 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4857 4858 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4859 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4860 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4861 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4862 4863 DEBUG(DT->verifyDomTree()); 4864 } 4865 4866 /// \brief Check whether it is safe to if-convert this phi node. 4867 /// 4868 /// Phi nodes with constant expressions that can trap are not safe to if 4869 /// convert. 4870 static bool canIfConvertPHINodes(BasicBlock *BB) { 4871 for (Instruction &I : *BB) { 4872 auto *Phi = dyn_cast<PHINode>(&I); 4873 if (!Phi) 4874 return true; 4875 for (Value *V : Phi->incoming_values()) 4876 if (auto *C = dyn_cast<Constant>(V)) 4877 if (C->canTrap()) 4878 return false; 4879 } 4880 return true; 4881 } 4882 4883 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4884 if (!EnableIfConversion) { 4885 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4886 << "if-conversion is disabled"); 4887 return false; 4888 } 4889 4890 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4891 4892 // A list of pointers that we can safely read and write to. 4893 SmallPtrSet<Value *, 8> SafePointes; 4894 4895 // Collect safe addresses. 4896 for (BasicBlock *BB : TheLoop->blocks()) { 4897 if (blockNeedsPredication(BB)) 4898 continue; 4899 4900 for (Instruction &I : *BB) 4901 if (auto *Ptr = getPointerOperand(&I)) 4902 SafePointes.insert(Ptr); 4903 } 4904 4905 // Collect the blocks that need predication. 4906 BasicBlock *Header = TheLoop->getHeader(); 4907 for (BasicBlock *BB : TheLoop->blocks()) { 4908 // We don't support switch statements inside loops. 4909 if (!isa<BranchInst>(BB->getTerminator())) { 4910 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4911 << "loop contains a switch statement"); 4912 return false; 4913 } 4914 4915 // We must be able to predicate all blocks that need to be predicated. 4916 if (blockNeedsPredication(BB)) { 4917 if (!blockCanBePredicated(BB, SafePointes)) { 4918 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4919 << "control flow cannot be substituted for a select"); 4920 return false; 4921 } 4922 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4923 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4924 << "control flow cannot be substituted for a select"); 4925 return false; 4926 } 4927 } 4928 4929 // We can if-convert this loop. 4930 return true; 4931 } 4932 4933 bool LoopVectorizationLegality::canVectorize() { 4934 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4935 // be canonicalized. 4936 if (!TheLoop->getLoopPreheader()) { 4937 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4938 << "loop control flow is not understood by vectorizer"); 4939 return false; 4940 } 4941 4942 // FIXME: The code is currently dead, since the loop gets sent to 4943 // LoopVectorizationLegality is already an innermost loop. 4944 // 4945 // We can only vectorize innermost loops. 4946 if (!TheLoop->empty()) { 4947 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4948 << "loop is not the innermost loop"); 4949 return false; 4950 } 4951 4952 // We must have a single backedge. 4953 if (TheLoop->getNumBackEdges() != 1) { 4954 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4955 << "loop control flow is not understood by vectorizer"); 4956 return false; 4957 } 4958 4959 // We must have a single exiting block. 4960 if (!TheLoop->getExitingBlock()) { 4961 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4962 << "loop control flow is not understood by vectorizer"); 4963 return false; 4964 } 4965 4966 // We only handle bottom-tested loops, i.e. loop in which the condition is 4967 // checked at the end of each iteration. With that we can assume that all 4968 // instructions in the loop are executed the same number of times. 4969 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4970 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4971 << "loop control flow is not understood by vectorizer"); 4972 return false; 4973 } 4974 4975 // We need to have a loop header. 4976 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4977 << '\n'); 4978 4979 // Check if we can if-convert non-single-bb loops. 4980 unsigned NumBlocks = TheLoop->getNumBlocks(); 4981 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4982 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4983 return false; 4984 } 4985 4986 // ScalarEvolution needs to be able to find the exit count. 4987 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4988 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4989 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 4990 << "could not determine number of loop iterations"); 4991 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4992 return false; 4993 } 4994 4995 // Check if we can vectorize the instructions and CFG in this loop. 4996 if (!canVectorizeInstrs()) { 4997 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4998 return false; 4999 } 5000 5001 // Go over each instruction and look at memory deps. 5002 if (!canVectorizeMemory()) { 5003 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5004 return false; 5005 } 5006 5007 DEBUG(dbgs() << "LV: We can vectorize this loop" 5008 << (LAI->getRuntimePointerChecking()->Need 5009 ? " (with a runtime bound check)" 5010 : "") 5011 << "!\n"); 5012 5013 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5014 5015 // If an override option has been passed in for interleaved accesses, use it. 5016 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5017 UseInterleaved = EnableInterleavedMemAccesses; 5018 5019 // Analyze interleaved memory accesses. 5020 if (UseInterleaved) 5021 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5022 5023 // Collect all instructions that are known to be uniform after vectorization. 5024 collectLoopUniforms(); 5025 5026 // Collect all instructions that are known to be scalar after vectorization. 5027 collectLoopScalars(); 5028 5029 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5030 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5031 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5032 5033 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5034 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5035 << "Too many SCEV assumptions need to be made and checked " 5036 << "at runtime"); 5037 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5038 return false; 5039 } 5040 5041 // Okay! We can vectorize. At this point we don't have any other mem analysis 5042 // which may limit our maximum vectorization factor, so just return true with 5043 // no restrictions. 5044 return true; 5045 } 5046 5047 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5048 if (Ty->isPointerTy()) 5049 return DL.getIntPtrType(Ty); 5050 5051 // It is possible that char's or short's overflow when we ask for the loop's 5052 // trip count, work around this by changing the type size. 5053 if (Ty->getScalarSizeInBits() < 32) 5054 return Type::getInt32Ty(Ty->getContext()); 5055 5056 return Ty; 5057 } 5058 5059 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5060 Ty0 = convertPointerToIntegerType(DL, Ty0); 5061 Ty1 = convertPointerToIntegerType(DL, Ty1); 5062 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5063 return Ty0; 5064 return Ty1; 5065 } 5066 5067 /// \brief Check that the instruction has outside loop users and is not an 5068 /// identified reduction variable. 5069 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5070 SmallPtrSetImpl<Value *> &AllowedExit) { 5071 // Reduction and Induction instructions are allowed to have exit users. All 5072 // other instructions must not have external users. 5073 if (!AllowedExit.count(Inst)) 5074 // Check that all of the users of the loop are inside the BB. 5075 for (User *U : Inst->users()) { 5076 Instruction *UI = cast<Instruction>(U); 5077 // This user may be a reduction exit value. 5078 if (!TheLoop->contains(UI)) { 5079 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5080 return true; 5081 } 5082 } 5083 return false; 5084 } 5085 5086 void LoopVectorizationLegality::addInductionPhi( 5087 PHINode *Phi, const InductionDescriptor &ID, 5088 SmallPtrSetImpl<Value *> &AllowedExit) { 5089 Inductions[Phi] = ID; 5090 Type *PhiTy = Phi->getType(); 5091 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5092 5093 // Get the widest type. 5094 if (!PhiTy->isFloatingPointTy()) { 5095 if (!WidestIndTy) 5096 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5097 else 5098 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5099 } 5100 5101 // Int inductions are special because we only allow one IV. 5102 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5103 ID.getConstIntStepValue() && 5104 ID.getConstIntStepValue()->isOne() && 5105 isa<Constant>(ID.getStartValue()) && 5106 cast<Constant>(ID.getStartValue())->isNullValue()) { 5107 5108 // Use the phi node with the widest type as induction. Use the last 5109 // one if there are multiple (no good reason for doing this other 5110 // than it is expedient). We've checked that it begins at zero and 5111 // steps by one, so this is a canonical induction variable. 5112 if (!Induction || PhiTy == WidestIndTy) 5113 Induction = Phi; 5114 } 5115 5116 // Both the PHI node itself, and the "post-increment" value feeding 5117 // back into the PHI node may have external users. 5118 AllowedExit.insert(Phi); 5119 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5120 5121 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5122 return; 5123 } 5124 5125 bool LoopVectorizationLegality::canVectorizeInstrs() { 5126 BasicBlock *Header = TheLoop->getHeader(); 5127 5128 // Look for the attribute signaling the absence of NaNs. 5129 Function &F = *Header->getParent(); 5130 HasFunNoNaNAttr = 5131 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5132 5133 // For each block in the loop. 5134 for (BasicBlock *BB : TheLoop->blocks()) { 5135 // Scan the instructions in the block and look for hazards. 5136 for (Instruction &I : *BB) { 5137 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5138 Type *PhiTy = Phi->getType(); 5139 // Check that this PHI type is allowed. 5140 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5141 !PhiTy->isPointerTy()) { 5142 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5143 << "loop control flow is not understood by vectorizer"); 5144 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5145 return false; 5146 } 5147 5148 // If this PHINode is not in the header block, then we know that we 5149 // can convert it to select during if-conversion. No need to check if 5150 // the PHIs in this block are induction or reduction variables. 5151 if (BB != Header) { 5152 // Check that this instruction has no outside users or is an 5153 // identified reduction value with an outside user. 5154 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5155 continue; 5156 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5157 << "value could not be identified as " 5158 "an induction or reduction variable"); 5159 return false; 5160 } 5161 5162 // We only allow if-converted PHIs with exactly two incoming values. 5163 if (Phi->getNumIncomingValues() != 2) { 5164 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5165 << "control flow not understood by vectorizer"); 5166 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5167 return false; 5168 } 5169 5170 RecurrenceDescriptor RedDes; 5171 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5172 if (RedDes.hasUnsafeAlgebra()) 5173 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5174 AllowedExit.insert(RedDes.getLoopExitInstr()); 5175 Reductions[Phi] = RedDes; 5176 continue; 5177 } 5178 5179 InductionDescriptor ID; 5180 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5181 addInductionPhi(Phi, ID, AllowedExit); 5182 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5183 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5184 continue; 5185 } 5186 5187 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5188 FirstOrderRecurrences.insert(Phi); 5189 continue; 5190 } 5191 5192 // As a last resort, coerce the PHI to a AddRec expression 5193 // and re-try classifying it a an induction PHI. 5194 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5195 addInductionPhi(Phi, ID, AllowedExit); 5196 continue; 5197 } 5198 5199 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5200 << "value that could not be identified as " 5201 "reduction is used outside the loop"); 5202 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5203 return false; 5204 } // end of PHI handling 5205 5206 // We handle calls that: 5207 // * Are debug info intrinsics. 5208 // * Have a mapping to an IR intrinsic. 5209 // * Have a vector version available. 5210 auto *CI = dyn_cast<CallInst>(&I); 5211 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5212 !isa<DbgInfoIntrinsic>(CI) && 5213 !(CI->getCalledFunction() && TLI && 5214 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5215 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5216 << "call instruction cannot be vectorized"); 5217 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5218 return false; 5219 } 5220 5221 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5222 // second argument is the same (i.e. loop invariant) 5223 if (CI && hasVectorInstrinsicScalarOpd( 5224 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5225 auto *SE = PSE.getSE(); 5226 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5227 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5228 << "intrinsic instruction cannot be vectorized"); 5229 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5230 return false; 5231 } 5232 } 5233 5234 // Check that the instruction return type is vectorizable. 5235 // Also, we can't vectorize extractelement instructions. 5236 if ((!VectorType::isValidElementType(I.getType()) && 5237 !I.getType()->isVoidTy()) || 5238 isa<ExtractElementInst>(I)) { 5239 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5240 << "instruction return type cannot be vectorized"); 5241 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5242 return false; 5243 } 5244 5245 // Check that the stored type is vectorizable. 5246 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5247 Type *T = ST->getValueOperand()->getType(); 5248 if (!VectorType::isValidElementType(T)) { 5249 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5250 << "store instruction cannot be vectorized"); 5251 return false; 5252 } 5253 5254 // FP instructions can allow unsafe algebra, thus vectorizable by 5255 // non-IEEE-754 compliant SIMD units. 5256 // This applies to floating-point math operations and calls, not memory 5257 // operations, shuffles, or casts, as they don't change precision or 5258 // semantics. 5259 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5260 !I.hasUnsafeAlgebra()) { 5261 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5262 Hints->setPotentiallyUnsafe(); 5263 } 5264 5265 // Reduction instructions are allowed to have exit users. 5266 // All other instructions must not have external users. 5267 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5268 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5269 << "value cannot be used outside the loop"); 5270 return false; 5271 } 5272 5273 } // next instr. 5274 } 5275 5276 if (!Induction) { 5277 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5278 if (Inductions.empty()) { 5279 ORE->emit(createMissedAnalysis("NoInductionVariable") 5280 << "loop induction variable could not be identified"); 5281 return false; 5282 } 5283 } 5284 5285 // Now we know the widest induction type, check if our found induction 5286 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5287 // will create another. 5288 if (Induction && WidestIndTy != Induction->getType()) 5289 Induction = nullptr; 5290 5291 return true; 5292 } 5293 5294 void LoopVectorizationLegality::collectLoopScalars() { 5295 5296 // If an instruction is uniform after vectorization, it will remain scalar. 5297 Scalars.insert(Uniforms.begin(), Uniforms.end()); 5298 5299 // Collect the getelementptr instructions that will not be vectorized. A 5300 // getelementptr instruction is only vectorized if it is used for a legal 5301 // gather or scatter operation. 5302 for (auto *BB : TheLoop->blocks()) 5303 for (auto &I : *BB) { 5304 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5305 Scalars.insert(GEP); 5306 continue; 5307 } 5308 auto *Ptr = getPointerOperand(&I); 5309 if (!Ptr) 5310 continue; 5311 auto *GEP = getGEPInstruction(Ptr); 5312 if (GEP && isLegalGatherOrScatter(&I)) 5313 Scalars.erase(GEP); 5314 } 5315 5316 // An induction variable will remain scalar if all users of the induction 5317 // variable and induction variable update remain scalar. 5318 auto *Latch = TheLoop->getLoopLatch(); 5319 for (auto &Induction : *getInductionVars()) { 5320 auto *Ind = Induction.first; 5321 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5322 5323 // Determine if all users of the induction variable are scalar after 5324 // vectorization. 5325 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5326 auto *I = cast<Instruction>(U); 5327 return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I); 5328 }); 5329 if (!ScalarInd) 5330 continue; 5331 5332 // Determine if all users of the induction variable update instruction are 5333 // scalar after vectorization. 5334 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5335 auto *I = cast<Instruction>(U); 5336 return I == Ind || !TheLoop->contains(I) || Scalars.count(I); 5337 }); 5338 if (!ScalarIndUpdate) 5339 continue; 5340 5341 // The induction variable and its update instruction will remain scalar. 5342 Scalars.insert(Ind); 5343 Scalars.insert(IndUpdate); 5344 } 5345 } 5346 5347 bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) { 5348 if (isAccessInterleaved(I)) 5349 return true; 5350 if (auto *Ptr = getPointerOperand(I)) 5351 return isConsecutivePtr(Ptr); 5352 return false; 5353 } 5354 5355 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5356 if (!blockNeedsPredication(I->getParent())) 5357 return false; 5358 switch(I->getOpcode()) { 5359 default: 5360 break; 5361 case Instruction::Store: 5362 return !isMaskRequired(I); 5363 case Instruction::UDiv: 5364 case Instruction::SDiv: 5365 case Instruction::SRem: 5366 case Instruction::URem: 5367 return mayDivideByZero(*I); 5368 } 5369 return false; 5370 } 5371 5372 bool LoopVectorizationLegality::memoryInstructionMustBeScalarized( 5373 Instruction *I, unsigned VF) { 5374 5375 // If the memory instruction is in an interleaved group, it will be 5376 // vectorized and its pointer will remain uniform. 5377 if (isAccessInterleaved(I)) 5378 return false; 5379 5380 // Get and ensure we have a valid memory instruction. 5381 LoadInst *LI = dyn_cast<LoadInst>(I); 5382 StoreInst *SI = dyn_cast<StoreInst>(I); 5383 assert((LI || SI) && "Invalid memory instruction"); 5384 5385 // If the pointer operand is uniform (loop invariant), the memory instruction 5386 // will be scalarized. 5387 auto *Ptr = getPointerOperand(I); 5388 if (LI && isUniform(Ptr)) 5389 return true; 5390 5391 // If the pointer operand is non-consecutive and neither a gather nor a 5392 // scatter operation is legal, the memory instruction will be scalarized. 5393 if (!isConsecutivePtr(Ptr) && !isLegalGatherOrScatter(I)) 5394 return true; 5395 5396 // If the instruction is a store located in a predicated block, it will be 5397 // scalarized. 5398 if (isScalarWithPredication(I)) 5399 return true; 5400 5401 // If the instruction's allocated size doesn't equal it's type size, it 5402 // requires padding and will be scalarized. 5403 auto &DL = I->getModule()->getDataLayout(); 5404 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5405 if (hasIrregularType(ScalarTy, DL, VF)) 5406 return true; 5407 5408 // Otherwise, the memory instruction should be vectorized if the rest of the 5409 // loop is. 5410 return false; 5411 } 5412 5413 void LoopVectorizationLegality::collectLoopUniforms() { 5414 // We now know that the loop is vectorizable! 5415 // Collect instructions inside the loop that will remain uniform after 5416 // vectorization. 5417 5418 // Global values, params and instructions outside of current loop are out of 5419 // scope. 5420 auto isOutOfScope = [&](Value *V) -> bool { 5421 Instruction *I = dyn_cast<Instruction>(V); 5422 return (!I || !TheLoop->contains(I)); 5423 }; 5424 5425 SetVector<Instruction *> Worklist; 5426 BasicBlock *Latch = TheLoop->getLoopLatch(); 5427 5428 // Start with the conditional branch. If the branch condition is an 5429 // instruction contained in the loop that is only used by the branch, it is 5430 // uniform. 5431 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5432 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5433 Worklist.insert(Cmp); 5434 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5435 } 5436 5437 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5438 // are pointers that are treated like consecutive pointers during 5439 // vectorization. The pointer operands of interleaved accesses are an 5440 // example. 5441 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5442 5443 // Holds pointer operands of instructions that are possibly non-uniform. 5444 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5445 5446 // Iterate over the instructions in the loop, and collect all 5447 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5448 // that a consecutive-like pointer operand will be scalarized, we collect it 5449 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5450 // getelementptr instruction can be used by both vectorized and scalarized 5451 // memory instructions. For example, if a loop loads and stores from the same 5452 // location, but the store is conditional, the store will be scalarized, and 5453 // the getelementptr won't remain uniform. 5454 for (auto *BB : TheLoop->blocks()) 5455 for (auto &I : *BB) { 5456 5457 // If there's no pointer operand, there's nothing to do. 5458 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5459 if (!Ptr) 5460 continue; 5461 5462 // True if all users of Ptr are memory accesses that have Ptr as their 5463 // pointer operand. 5464 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5465 return getPointerOperand(U) == Ptr; 5466 }); 5467 5468 // Ensure the memory instruction will not be scalarized, making its 5469 // pointer operand non-uniform. If the pointer operand is used by some 5470 // instruction other than a memory access, we're not going to check if 5471 // that other instruction may be scalarized here. Thus, conservatively 5472 // assume the pointer operand may be non-uniform. 5473 if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I)) 5474 PossibleNonUniformPtrs.insert(Ptr); 5475 5476 // If the memory instruction will be vectorized and its pointer operand 5477 // is consecutive-like, the pointer operand should remain uniform. 5478 else if (hasConsecutiveLikePtrOperand(&I)) 5479 ConsecutiveLikePtrs.insert(Ptr); 5480 5481 // Otherwise, if the memory instruction will be vectorized and its 5482 // pointer operand is non-consecutive-like, the memory instruction should 5483 // be a gather or scatter operation. Its pointer operand will be 5484 // non-uniform. 5485 else 5486 PossibleNonUniformPtrs.insert(Ptr); 5487 } 5488 5489 // Add to the Worklist all consecutive and consecutive-like pointers that 5490 // aren't also identified as possibly non-uniform. 5491 for (auto *V : ConsecutiveLikePtrs) 5492 if (!PossibleNonUniformPtrs.count(V)) { 5493 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5494 Worklist.insert(V); 5495 } 5496 5497 // Expand Worklist in topological order: whenever a new instruction 5498 // is added , its users should be either already inside Worklist, or 5499 // out of scope. It ensures a uniform instruction will only be used 5500 // by uniform instructions or out of scope instructions. 5501 unsigned idx = 0; 5502 while (idx != Worklist.size()) { 5503 Instruction *I = Worklist[idx++]; 5504 5505 for (auto OV : I->operand_values()) { 5506 if (isOutOfScope(OV)) 5507 continue; 5508 auto *OI = cast<Instruction>(OV); 5509 if (all_of(OI->users(), [&](User *U) -> bool { 5510 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 5511 })) { 5512 Worklist.insert(OI); 5513 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5514 } 5515 } 5516 } 5517 5518 // Returns true if Ptr is the pointer operand of a memory access instruction 5519 // I, and I is known to not require scalarization. 5520 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5521 return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I); 5522 }; 5523 5524 // For an instruction to be added into Worklist above, all its users inside 5525 // the loop should also be in Worklist. However, this condition cannot be 5526 // true for phi nodes that form a cyclic dependence. We must process phi 5527 // nodes separately. An induction variable will remain uniform if all users 5528 // of the induction variable and induction variable update remain uniform. 5529 // The code below handles both pointer and non-pointer induction variables. 5530 for (auto &Induction : Inductions) { 5531 auto *Ind = Induction.first; 5532 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5533 5534 // Determine if all users of the induction variable are uniform after 5535 // vectorization. 5536 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5537 auto *I = cast<Instruction>(U); 5538 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5539 isVectorizedMemAccessUse(I, Ind); 5540 }); 5541 if (!UniformInd) 5542 continue; 5543 5544 // Determine if all users of the induction variable update instruction are 5545 // uniform after vectorization. 5546 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5547 auto *I = cast<Instruction>(U); 5548 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5549 isVectorizedMemAccessUse(I, IndUpdate); 5550 }); 5551 if (!UniformIndUpdate) 5552 continue; 5553 5554 // The induction variable and its update instruction will remain uniform. 5555 Worklist.insert(Ind); 5556 Worklist.insert(IndUpdate); 5557 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5558 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5559 } 5560 5561 Uniforms.insert(Worklist.begin(), Worklist.end()); 5562 } 5563 5564 bool LoopVectorizationLegality::canVectorizeMemory() { 5565 LAI = &(*GetLAA)(*TheLoop); 5566 InterleaveInfo.setLAI(LAI); 5567 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5568 if (LAR) { 5569 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5570 "loop not vectorized: ", *LAR); 5571 ORE->emit(VR); 5572 } 5573 if (!LAI->canVectorizeMemory()) 5574 return false; 5575 5576 if (LAI->hasStoreToLoopInvariantAddress()) { 5577 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5578 << "write to a loop invariant address could not be vectorized"); 5579 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5580 return false; 5581 } 5582 5583 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5584 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5585 5586 return true; 5587 } 5588 5589 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5590 Value *In0 = const_cast<Value *>(V); 5591 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5592 if (!PN) 5593 return false; 5594 5595 return Inductions.count(PN); 5596 } 5597 5598 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5599 return FirstOrderRecurrences.count(Phi); 5600 } 5601 5602 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5603 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5604 } 5605 5606 bool LoopVectorizationLegality::blockCanBePredicated( 5607 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5608 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5609 5610 for (Instruction &I : *BB) { 5611 // Check that we don't have a constant expression that can trap as operand. 5612 for (Value *Operand : I.operands()) { 5613 if (auto *C = dyn_cast<Constant>(Operand)) 5614 if (C->canTrap()) 5615 return false; 5616 } 5617 // We might be able to hoist the load. 5618 if (I.mayReadFromMemory()) { 5619 auto *LI = dyn_cast<LoadInst>(&I); 5620 if (!LI) 5621 return false; 5622 if (!SafePtrs.count(LI->getPointerOperand())) { 5623 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5624 isLegalMaskedGather(LI->getType())) { 5625 MaskedOp.insert(LI); 5626 continue; 5627 } 5628 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5629 if (IsAnnotatedParallel) 5630 continue; 5631 return false; 5632 } 5633 } 5634 5635 if (I.mayWriteToMemory()) { 5636 auto *SI = dyn_cast<StoreInst>(&I); 5637 // We only support predication of stores in basic blocks with one 5638 // predecessor. 5639 if (!SI) 5640 return false; 5641 5642 // Build a masked store if it is legal for the target. 5643 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5644 SI->getPointerOperand()) || 5645 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5646 MaskedOp.insert(SI); 5647 continue; 5648 } 5649 5650 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5651 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5652 5653 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5654 !isSinglePredecessor) 5655 return false; 5656 } 5657 if (I.mayThrow()) 5658 return false; 5659 } 5660 5661 return true; 5662 } 5663 5664 void InterleavedAccessInfo::collectConstStrideAccesses( 5665 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5666 const ValueToValueMap &Strides) { 5667 5668 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5669 5670 // Since it's desired that the load/store instructions be maintained in 5671 // "program order" for the interleaved access analysis, we have to visit the 5672 // blocks in the loop in reverse postorder (i.e., in a topological order). 5673 // Such an ordering will ensure that any load/store that may be executed 5674 // before a second load/store will precede the second load/store in 5675 // AccessStrideInfo. 5676 LoopBlocksDFS DFS(TheLoop); 5677 DFS.perform(LI); 5678 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5679 for (auto &I : *BB) { 5680 auto *LI = dyn_cast<LoadInst>(&I); 5681 auto *SI = dyn_cast<StoreInst>(&I); 5682 if (!LI && !SI) 5683 continue; 5684 5685 Value *Ptr = getPointerOperand(&I); 5686 // We don't check wrapping here because we don't know yet if Ptr will be 5687 // part of a full group or a group with gaps. Checking wrapping for all 5688 // pointers (even those that end up in groups with no gaps) will be overly 5689 // conservative. For full groups, wrapping should be ok since if we would 5690 // wrap around the address space we would do a memory access at nullptr 5691 // even without the transformation. The wrapping checks are therefore 5692 // deferred until after we've formed the interleaved groups. 5693 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5694 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5695 5696 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5697 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5698 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5699 5700 // An alignment of 0 means target ABI alignment. 5701 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5702 if (!Align) 5703 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5704 5705 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5706 } 5707 } 5708 5709 // Analyze interleaved accesses and collect them into interleaved load and 5710 // store groups. 5711 // 5712 // When generating code for an interleaved load group, we effectively hoist all 5713 // loads in the group to the location of the first load in program order. When 5714 // generating code for an interleaved store group, we sink all stores to the 5715 // location of the last store. This code motion can change the order of load 5716 // and store instructions and may break dependences. 5717 // 5718 // The code generation strategy mentioned above ensures that we won't violate 5719 // any write-after-read (WAR) dependences. 5720 // 5721 // E.g., for the WAR dependence: a = A[i]; // (1) 5722 // A[i] = b; // (2) 5723 // 5724 // The store group of (2) is always inserted at or below (2), and the load 5725 // group of (1) is always inserted at or above (1). Thus, the instructions will 5726 // never be reordered. All other dependences are checked to ensure the 5727 // correctness of the instruction reordering. 5728 // 5729 // The algorithm visits all memory accesses in the loop in bottom-up program 5730 // order. Program order is established by traversing the blocks in the loop in 5731 // reverse postorder when collecting the accesses. 5732 // 5733 // We visit the memory accesses in bottom-up order because it can simplify the 5734 // construction of store groups in the presence of write-after-write (WAW) 5735 // dependences. 5736 // 5737 // E.g., for the WAW dependence: A[i] = a; // (1) 5738 // A[i] = b; // (2) 5739 // A[i + 1] = c; // (3) 5740 // 5741 // We will first create a store group with (3) and (2). (1) can't be added to 5742 // this group because it and (2) are dependent. However, (1) can be grouped 5743 // with other accesses that may precede it in program order. Note that a 5744 // bottom-up order does not imply that WAW dependences should not be checked. 5745 void InterleavedAccessInfo::analyzeInterleaving( 5746 const ValueToValueMap &Strides) { 5747 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5748 5749 // Holds all accesses with a constant stride. 5750 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5751 collectConstStrideAccesses(AccessStrideInfo, Strides); 5752 5753 if (AccessStrideInfo.empty()) 5754 return; 5755 5756 // Collect the dependences in the loop. 5757 collectDependences(); 5758 5759 // Holds all interleaved store groups temporarily. 5760 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5761 // Holds all interleaved load groups temporarily. 5762 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5763 5764 // Search in bottom-up program order for pairs of accesses (A and B) that can 5765 // form interleaved load or store groups. In the algorithm below, access A 5766 // precedes access B in program order. We initialize a group for B in the 5767 // outer loop of the algorithm, and then in the inner loop, we attempt to 5768 // insert each A into B's group if: 5769 // 5770 // 1. A and B have the same stride, 5771 // 2. A and B have the same memory object size, and 5772 // 3. A belongs in B's group according to its distance from B. 5773 // 5774 // Special care is taken to ensure group formation will not break any 5775 // dependences. 5776 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5777 BI != E; ++BI) { 5778 Instruction *B = BI->first; 5779 StrideDescriptor DesB = BI->second; 5780 5781 // Initialize a group for B if it has an allowable stride. Even if we don't 5782 // create a group for B, we continue with the bottom-up algorithm to ensure 5783 // we don't break any of B's dependences. 5784 InterleaveGroup *Group = nullptr; 5785 if (isStrided(DesB.Stride)) { 5786 Group = getInterleaveGroup(B); 5787 if (!Group) { 5788 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5789 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5790 } 5791 if (B->mayWriteToMemory()) 5792 StoreGroups.insert(Group); 5793 else 5794 LoadGroups.insert(Group); 5795 } 5796 5797 for (auto AI = std::next(BI); AI != E; ++AI) { 5798 Instruction *A = AI->first; 5799 StrideDescriptor DesA = AI->second; 5800 5801 // Our code motion strategy implies that we can't have dependences 5802 // between accesses in an interleaved group and other accesses located 5803 // between the first and last member of the group. Note that this also 5804 // means that a group can't have more than one member at a given offset. 5805 // The accesses in a group can have dependences with other accesses, but 5806 // we must ensure we don't extend the boundaries of the group such that 5807 // we encompass those dependent accesses. 5808 // 5809 // For example, assume we have the sequence of accesses shown below in a 5810 // stride-2 loop: 5811 // 5812 // (1, 2) is a group | A[i] = a; // (1) 5813 // | A[i-1] = b; // (2) | 5814 // A[i-3] = c; // (3) 5815 // A[i] = d; // (4) | (2, 4) is not a group 5816 // 5817 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5818 // but not with (4). If we did, the dependent access (3) would be within 5819 // the boundaries of the (2, 4) group. 5820 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5821 5822 // If a dependence exists and A is already in a group, we know that A 5823 // must be a store since A precedes B and WAR dependences are allowed. 5824 // Thus, A would be sunk below B. We release A's group to prevent this 5825 // illegal code motion. A will then be free to form another group with 5826 // instructions that precede it. 5827 if (isInterleaved(A)) { 5828 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5829 StoreGroups.remove(StoreGroup); 5830 releaseGroup(StoreGroup); 5831 } 5832 5833 // If a dependence exists and A is not already in a group (or it was 5834 // and we just released it), B might be hoisted above A (if B is a 5835 // load) or another store might be sunk below A (if B is a store). In 5836 // either case, we can't add additional instructions to B's group. B 5837 // will only form a group with instructions that it precedes. 5838 break; 5839 } 5840 5841 // At this point, we've checked for illegal code motion. If either A or B 5842 // isn't strided, there's nothing left to do. 5843 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5844 continue; 5845 5846 // Ignore A if it's already in a group or isn't the same kind of memory 5847 // operation as B. 5848 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5849 continue; 5850 5851 // Check rules 1 and 2. Ignore A if its stride or size is different from 5852 // that of B. 5853 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5854 continue; 5855 5856 // Calculate the distance from A to B. 5857 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5858 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5859 if (!DistToB) 5860 continue; 5861 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5862 5863 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5864 // size. 5865 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5866 continue; 5867 5868 // Ignore A if either A or B is in a predicated block. Although we 5869 // currently prevent group formation for predicated accesses, we may be 5870 // able to relax this limitation in the future once we handle more 5871 // complicated blocks. 5872 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5873 continue; 5874 5875 // The index of A is the index of B plus A's distance to B in multiples 5876 // of the size. 5877 int IndexA = 5878 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5879 5880 // Try to insert A into B's group. 5881 if (Group->insertMember(A, IndexA, DesA.Align)) { 5882 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5883 << " into the interleave group with" << *B << '\n'); 5884 InterleaveGroupMap[A] = Group; 5885 5886 // Set the first load in program order as the insert position. 5887 if (A->mayReadFromMemory()) 5888 Group->setInsertPos(A); 5889 } 5890 } // Iteration over A accesses. 5891 } // Iteration over B accesses. 5892 5893 // Remove interleaved store groups with gaps. 5894 for (InterleaveGroup *Group : StoreGroups) 5895 if (Group->getNumMembers() != Group->getFactor()) 5896 releaseGroup(Group); 5897 5898 // Remove interleaved groups with gaps (currently only loads) whose memory 5899 // accesses may wrap around. We have to revisit the getPtrStride analysis, 5900 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 5901 // not check wrapping (see documentation there). 5902 // FORNOW we use Assume=false; 5903 // TODO: Change to Assume=true but making sure we don't exceed the threshold 5904 // of runtime SCEV assumptions checks (thereby potentially failing to 5905 // vectorize altogether). 5906 // Additional optional optimizations: 5907 // TODO: If we are peeling the loop and we know that the first pointer doesn't 5908 // wrap then we can deduce that all pointers in the group don't wrap. 5909 // This means that we can forcefully peel the loop in order to only have to 5910 // check the first pointer for no-wrap. When we'll change to use Assume=true 5911 // we'll only need at most one runtime check per interleaved group. 5912 // 5913 for (InterleaveGroup *Group : LoadGroups) { 5914 5915 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 5916 // load would wrap around the address space we would do a memory access at 5917 // nullptr even without the transformation. 5918 if (Group->getNumMembers() == Group->getFactor()) 5919 continue; 5920 5921 // Case 2: If first and last members of the group don't wrap this implies 5922 // that all the pointers in the group don't wrap. 5923 // So we check only group member 0 (which is always guaranteed to exist), 5924 // and group member Factor - 1; If the latter doesn't exist we rely on 5925 // peeling (if it is a non-reveresed accsess -- see Case 3). 5926 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 5927 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 5928 /*ShouldCheckWrap=*/true)) { 5929 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 5930 "first group member potentially pointer-wrapping.\n"); 5931 releaseGroup(Group); 5932 continue; 5933 } 5934 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 5935 if (LastMember) { 5936 Value *LastMemberPtr = getPointerOperand(LastMember); 5937 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 5938 /*ShouldCheckWrap=*/true)) { 5939 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 5940 "last group member potentially pointer-wrapping.\n"); 5941 releaseGroup(Group); 5942 } 5943 } 5944 else { 5945 // Case 3: A non-reversed interleaved load group with gaps: We need 5946 // to execute at least one scalar epilogue iteration. This will ensure 5947 // we don't speculatively access memory out-of-bounds. We only need 5948 // to look for a member at index factor - 1, since every group must have 5949 // a member at index zero. 5950 if (Group->isReverse()) { 5951 releaseGroup(Group); 5952 continue; 5953 } 5954 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5955 RequiresScalarEpilogue = true; 5956 } 5957 } 5958 } 5959 5960 LoopVectorizationCostModel::VectorizationFactor 5961 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5962 // Width 1 means no vectorize 5963 VectorizationFactor Factor = {1U, 0U}; 5964 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5965 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 5966 << "runtime pointer checks needed. Enable vectorization of this " 5967 "loop with '#pragma clang loop vectorize(enable)' when " 5968 "compiling with -Os/-Oz"); 5969 DEBUG(dbgs() 5970 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5971 return Factor; 5972 } 5973 5974 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5975 ORE->emit(createMissedAnalysis("ConditionalStore") 5976 << "store that is conditionally executed prevents vectorization"); 5977 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5978 return Factor; 5979 } 5980 5981 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5982 unsigned SmallestType, WidestType; 5983 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5984 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5985 unsigned MaxSafeDepDist = -1U; 5986 5987 // Get the maximum safe dependence distance in bits computed by LAA. If the 5988 // loop contains any interleaved accesses, we divide the dependence distance 5989 // by the maximum interleave factor of all interleaved groups. Note that 5990 // although the division ensures correctness, this is a fairly conservative 5991 // computation because the maximum distance computed by LAA may not involve 5992 // any of the interleaved accesses. 5993 if (Legal->getMaxSafeDepDistBytes() != -1U) 5994 MaxSafeDepDist = 5995 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5996 5997 WidestRegister = 5998 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5999 unsigned MaxVectorSize = WidestRegister / WidestType; 6000 6001 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6002 << WidestType << " bits.\n"); 6003 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6004 << " bits.\n"); 6005 6006 if (MaxVectorSize == 0) { 6007 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6008 MaxVectorSize = 1; 6009 } 6010 6011 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6012 " into one vector!"); 6013 6014 unsigned VF = MaxVectorSize; 6015 if (MaximizeBandwidth && !OptForSize) { 6016 // Collect all viable vectorization factors. 6017 SmallVector<unsigned, 8> VFs; 6018 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6019 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6020 VFs.push_back(VS); 6021 6022 // For each VF calculate its register usage. 6023 auto RUs = calculateRegisterUsage(VFs); 6024 6025 // Select the largest VF which doesn't require more registers than existing 6026 // ones. 6027 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6028 for (int i = RUs.size() - 1; i >= 0; --i) { 6029 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6030 VF = VFs[i]; 6031 break; 6032 } 6033 } 6034 } 6035 6036 // If we optimize the program for size, avoid creating the tail loop. 6037 if (OptForSize) { 6038 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6039 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6040 6041 // If we don't know the precise trip count, don't try to vectorize. 6042 if (TC < 2) { 6043 ORE->emit( 6044 createMissedAnalysis("UnknownLoopCountComplexCFG") 6045 << "unable to calculate the loop count due to complex control flow"); 6046 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6047 return Factor; 6048 } 6049 6050 // Find the maximum SIMD width that can fit within the trip count. 6051 VF = TC % MaxVectorSize; 6052 6053 if (VF == 0) 6054 VF = MaxVectorSize; 6055 else { 6056 // If the trip count that we found modulo the vectorization factor is not 6057 // zero then we require a tail. 6058 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6059 << "cannot optimize for size and vectorize at the " 6060 "same time. Enable vectorization of this loop " 6061 "with '#pragma clang loop vectorize(enable)' " 6062 "when compiling with -Os/-Oz"); 6063 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6064 return Factor; 6065 } 6066 } 6067 6068 int UserVF = Hints->getWidth(); 6069 if (UserVF != 0) { 6070 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6071 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6072 6073 Factor.Width = UserVF; 6074 collectInstsToScalarize(UserVF); 6075 return Factor; 6076 } 6077 6078 float Cost = expectedCost(1).first; 6079 #ifndef NDEBUG 6080 const float ScalarCost = Cost; 6081 #endif /* NDEBUG */ 6082 unsigned Width = 1; 6083 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6084 6085 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6086 // Ignore scalar width, because the user explicitly wants vectorization. 6087 if (ForceVectorization && VF > 1) { 6088 Width = 2; 6089 Cost = expectedCost(Width).first / (float)Width; 6090 } 6091 6092 for (unsigned i = 2; i <= VF; i *= 2) { 6093 // Notice that the vector loop needs to be executed less times, so 6094 // we need to divide the cost of the vector loops by the width of 6095 // the vector elements. 6096 VectorizationCostTy C = expectedCost(i); 6097 float VectorCost = C.first / (float)i; 6098 DEBUG(dbgs() << "LV: Vector loop of width " << i 6099 << " costs: " << (int)VectorCost << ".\n"); 6100 if (!C.second && !ForceVectorization) { 6101 DEBUG( 6102 dbgs() << "LV: Not considering vector loop of width " << i 6103 << " because it will not generate any vector instructions.\n"); 6104 continue; 6105 } 6106 if (VectorCost < Cost) { 6107 Cost = VectorCost; 6108 Width = i; 6109 } 6110 } 6111 6112 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6113 << "LV: Vectorization seems to be not beneficial, " 6114 << "but was forced by a user.\n"); 6115 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6116 Factor.Width = Width; 6117 Factor.Cost = Width * Cost; 6118 return Factor; 6119 } 6120 6121 std::pair<unsigned, unsigned> 6122 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6123 unsigned MinWidth = -1U; 6124 unsigned MaxWidth = 8; 6125 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6126 6127 // For each block. 6128 for (BasicBlock *BB : TheLoop->blocks()) { 6129 // For each instruction in the loop. 6130 for (Instruction &I : *BB) { 6131 Type *T = I.getType(); 6132 6133 // Skip ignored values. 6134 if (ValuesToIgnore.count(&I)) 6135 continue; 6136 6137 // Only examine Loads, Stores and PHINodes. 6138 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6139 continue; 6140 6141 // Examine PHI nodes that are reduction variables. Update the type to 6142 // account for the recurrence type. 6143 if (auto *PN = dyn_cast<PHINode>(&I)) { 6144 if (!Legal->isReductionVariable(PN)) 6145 continue; 6146 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6147 T = RdxDesc.getRecurrenceType(); 6148 } 6149 6150 // Examine the stored values. 6151 if (auto *ST = dyn_cast<StoreInst>(&I)) 6152 T = ST->getValueOperand()->getType(); 6153 6154 // Ignore loaded pointer types and stored pointer types that are not 6155 // consecutive. However, we do want to take consecutive stores/loads of 6156 // pointer vectors into account. 6157 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 6158 continue; 6159 6160 MinWidth = std::min(MinWidth, 6161 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6162 MaxWidth = std::max(MaxWidth, 6163 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6164 } 6165 } 6166 6167 return {MinWidth, MaxWidth}; 6168 } 6169 6170 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6171 unsigned VF, 6172 unsigned LoopCost) { 6173 6174 // -- The interleave heuristics -- 6175 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6176 // There are many micro-architectural considerations that we can't predict 6177 // at this level. For example, frontend pressure (on decode or fetch) due to 6178 // code size, or the number and capabilities of the execution ports. 6179 // 6180 // We use the following heuristics to select the interleave count: 6181 // 1. If the code has reductions, then we interleave to break the cross 6182 // iteration dependency. 6183 // 2. If the loop is really small, then we interleave to reduce the loop 6184 // overhead. 6185 // 3. We don't interleave if we think that we will spill registers to memory 6186 // due to the increased register pressure. 6187 6188 // When we optimize for size, we don't interleave. 6189 if (OptForSize) 6190 return 1; 6191 6192 // We used the distance for the interleave count. 6193 if (Legal->getMaxSafeDepDistBytes() != -1U) 6194 return 1; 6195 6196 // Do not interleave loops with a relatively small trip count. 6197 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6198 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6199 return 1; 6200 6201 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6202 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6203 << " registers\n"); 6204 6205 if (VF == 1) { 6206 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6207 TargetNumRegisters = ForceTargetNumScalarRegs; 6208 } else { 6209 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6210 TargetNumRegisters = ForceTargetNumVectorRegs; 6211 } 6212 6213 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6214 // We divide by these constants so assume that we have at least one 6215 // instruction that uses at least one register. 6216 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6217 R.NumInstructions = std::max(R.NumInstructions, 1U); 6218 6219 // We calculate the interleave count using the following formula. 6220 // Subtract the number of loop invariants from the number of available 6221 // registers. These registers are used by all of the interleaved instances. 6222 // Next, divide the remaining registers by the number of registers that is 6223 // required by the loop, in order to estimate how many parallel instances 6224 // fit without causing spills. All of this is rounded down if necessary to be 6225 // a power of two. We want power of two interleave count to simplify any 6226 // addressing operations or alignment considerations. 6227 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6228 R.MaxLocalUsers); 6229 6230 // Don't count the induction variable as interleaved. 6231 if (EnableIndVarRegisterHeur) 6232 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6233 std::max(1U, (R.MaxLocalUsers - 1))); 6234 6235 // Clamp the interleave ranges to reasonable counts. 6236 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6237 6238 // Check if the user has overridden the max. 6239 if (VF == 1) { 6240 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6241 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6242 } else { 6243 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6244 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6245 } 6246 6247 // If we did not calculate the cost for VF (because the user selected the VF) 6248 // then we calculate the cost of VF here. 6249 if (LoopCost == 0) 6250 LoopCost = expectedCost(VF).first; 6251 6252 // Clamp the calculated IC to be between the 1 and the max interleave count 6253 // that the target allows. 6254 if (IC > MaxInterleaveCount) 6255 IC = MaxInterleaveCount; 6256 else if (IC < 1) 6257 IC = 1; 6258 6259 // Interleave if we vectorized this loop and there is a reduction that could 6260 // benefit from interleaving. 6261 if (VF > 1 && Legal->getReductionVars()->size()) { 6262 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6263 return IC; 6264 } 6265 6266 // Note that if we've already vectorized the loop we will have done the 6267 // runtime check and so interleaving won't require further checks. 6268 bool InterleavingRequiresRuntimePointerCheck = 6269 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6270 6271 // We want to interleave small loops in order to reduce the loop overhead and 6272 // potentially expose ILP opportunities. 6273 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6274 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6275 // We assume that the cost overhead is 1 and we use the cost model 6276 // to estimate the cost of the loop and interleave until the cost of the 6277 // loop overhead is about 5% of the cost of the loop. 6278 unsigned SmallIC = 6279 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6280 6281 // Interleave until store/load ports (estimated by max interleave count) are 6282 // saturated. 6283 unsigned NumStores = Legal->getNumStores(); 6284 unsigned NumLoads = Legal->getNumLoads(); 6285 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6286 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6287 6288 // If we have a scalar reduction (vector reductions are already dealt with 6289 // by this point), we can increase the critical path length if the loop 6290 // we're interleaving is inside another loop. Limit, by default to 2, so the 6291 // critical path only gets increased by one reduction operation. 6292 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6293 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6294 SmallIC = std::min(SmallIC, F); 6295 StoresIC = std::min(StoresIC, F); 6296 LoadsIC = std::min(LoadsIC, F); 6297 } 6298 6299 if (EnableLoadStoreRuntimeInterleave && 6300 std::max(StoresIC, LoadsIC) > SmallIC) { 6301 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6302 return std::max(StoresIC, LoadsIC); 6303 } 6304 6305 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6306 return SmallIC; 6307 } 6308 6309 // Interleave if this is a large loop (small loops are already dealt with by 6310 // this point) that could benefit from interleaving. 6311 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6312 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6313 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6314 return IC; 6315 } 6316 6317 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6318 return 1; 6319 } 6320 6321 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6322 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6323 // This function calculates the register usage by measuring the highest number 6324 // of values that are alive at a single location. Obviously, this is a very 6325 // rough estimation. We scan the loop in a topological order in order and 6326 // assign a number to each instruction. We use RPO to ensure that defs are 6327 // met before their users. We assume that each instruction that has in-loop 6328 // users starts an interval. We record every time that an in-loop value is 6329 // used, so we have a list of the first and last occurrences of each 6330 // instruction. Next, we transpose this data structure into a multi map that 6331 // holds the list of intervals that *end* at a specific location. This multi 6332 // map allows us to perform a linear search. We scan the instructions linearly 6333 // and record each time that a new interval starts, by placing it in a set. 6334 // If we find this value in the multi-map then we remove it from the set. 6335 // The max register usage is the maximum size of the set. 6336 // We also search for instructions that are defined outside the loop, but are 6337 // used inside the loop. We need this number separately from the max-interval 6338 // usage number because when we unroll, loop-invariant values do not take 6339 // more register. 6340 LoopBlocksDFS DFS(TheLoop); 6341 DFS.perform(LI); 6342 6343 RegisterUsage RU; 6344 RU.NumInstructions = 0; 6345 6346 // Each 'key' in the map opens a new interval. The values 6347 // of the map are the index of the 'last seen' usage of the 6348 // instruction that is the key. 6349 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6350 // Maps instruction to its index. 6351 DenseMap<unsigned, Instruction *> IdxToInstr; 6352 // Marks the end of each interval. 6353 IntervalMap EndPoint; 6354 // Saves the list of instruction indices that are used in the loop. 6355 SmallSet<Instruction *, 8> Ends; 6356 // Saves the list of values that are used in the loop but are 6357 // defined outside the loop, such as arguments and constants. 6358 SmallPtrSet<Value *, 8> LoopInvariants; 6359 6360 unsigned Index = 0; 6361 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6362 RU.NumInstructions += BB->size(); 6363 for (Instruction &I : *BB) { 6364 IdxToInstr[Index++] = &I; 6365 6366 // Save the end location of each USE. 6367 for (Value *U : I.operands()) { 6368 auto *Instr = dyn_cast<Instruction>(U); 6369 6370 // Ignore non-instruction values such as arguments, constants, etc. 6371 if (!Instr) 6372 continue; 6373 6374 // If this instruction is outside the loop then record it and continue. 6375 if (!TheLoop->contains(Instr)) { 6376 LoopInvariants.insert(Instr); 6377 continue; 6378 } 6379 6380 // Overwrite previous end points. 6381 EndPoint[Instr] = Index; 6382 Ends.insert(Instr); 6383 } 6384 } 6385 } 6386 6387 // Saves the list of intervals that end with the index in 'key'. 6388 typedef SmallVector<Instruction *, 2> InstrList; 6389 DenseMap<unsigned, InstrList> TransposeEnds; 6390 6391 // Transpose the EndPoints to a list of values that end at each index. 6392 for (auto &Interval : EndPoint) 6393 TransposeEnds[Interval.second].push_back(Interval.first); 6394 6395 SmallSet<Instruction *, 8> OpenIntervals; 6396 6397 // Get the size of the widest register. 6398 unsigned MaxSafeDepDist = -1U; 6399 if (Legal->getMaxSafeDepDistBytes() != -1U) 6400 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6401 unsigned WidestRegister = 6402 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6403 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6404 6405 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6406 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6407 6408 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6409 6410 // A lambda that gets the register usage for the given type and VF. 6411 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6412 if (Ty->isTokenTy()) 6413 return 0U; 6414 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6415 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6416 }; 6417 6418 for (unsigned int i = 0; i < Index; ++i) { 6419 Instruction *I = IdxToInstr[i]; 6420 6421 // Remove all of the instructions that end at this location. 6422 InstrList &List = TransposeEnds[i]; 6423 for (Instruction *ToRemove : List) 6424 OpenIntervals.erase(ToRemove); 6425 6426 // Ignore instructions that are never used within the loop. 6427 if (!Ends.count(I)) 6428 continue; 6429 6430 // Skip ignored values. 6431 if (ValuesToIgnore.count(I)) 6432 continue; 6433 6434 // For each VF find the maximum usage of registers. 6435 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6436 if (VFs[j] == 1) { 6437 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6438 continue; 6439 } 6440 6441 // Count the number of live intervals. 6442 unsigned RegUsage = 0; 6443 for (auto Inst : OpenIntervals) { 6444 // Skip ignored values for VF > 1. 6445 if (VecValuesToIgnore.count(Inst)) 6446 continue; 6447 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6448 } 6449 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6450 } 6451 6452 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6453 << OpenIntervals.size() << '\n'); 6454 6455 // Add the current instruction to the list of open intervals. 6456 OpenIntervals.insert(I); 6457 } 6458 6459 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6460 unsigned Invariant = 0; 6461 if (VFs[i] == 1) 6462 Invariant = LoopInvariants.size(); 6463 else { 6464 for (auto Inst : LoopInvariants) 6465 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6466 } 6467 6468 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6469 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6470 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6471 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6472 6473 RU.LoopInvariantRegs = Invariant; 6474 RU.MaxLocalUsers = MaxUsages[i]; 6475 RUs[i] = RU; 6476 } 6477 6478 return RUs; 6479 } 6480 6481 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6482 6483 // If we aren't vectorizing the loop, or if we've already collected the 6484 // instructions to scalarize, there's nothing to do. Collection may already 6485 // have occurred if we have a user-selected VF and are now computing the 6486 // expected cost for interleaving. 6487 if (VF < 2 || InstsToScalarize.count(VF)) 6488 return; 6489 6490 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6491 // not profitable to scalarize any instructions, the presence of VF in the 6492 // map will indicate that we've analyzed it already. 6493 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6494 6495 // Find all the instructions that are scalar with predication in the loop and 6496 // determine if it would be better to not if-convert the blocks they are in. 6497 // If so, we also record the instructions to scalarize. 6498 for (BasicBlock *BB : TheLoop->blocks()) { 6499 if (!Legal->blockNeedsPredication(BB)) 6500 continue; 6501 for (Instruction &I : *BB) 6502 if (Legal->isScalarWithPredication(&I)) { 6503 ScalarCostsTy ScalarCosts; 6504 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6505 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6506 } 6507 } 6508 } 6509 6510 int LoopVectorizationCostModel::computePredInstDiscount( 6511 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6512 unsigned VF) { 6513 6514 assert(!Legal->isUniformAfterVectorization(PredInst) && 6515 "Instruction marked uniform-after-vectorization will be predicated"); 6516 6517 // Initialize the discount to zero, meaning that the scalar version and the 6518 // vector version cost the same. 6519 int Discount = 0; 6520 6521 // Holds instructions to analyze. The instructions we visit are mapped in 6522 // ScalarCosts. Those instructions are the ones that would be scalarized if 6523 // we find that the scalar version costs less. 6524 SmallVector<Instruction *, 8> Worklist; 6525 6526 // Returns true if the given instruction can be scalarized. 6527 auto canBeScalarized = [&](Instruction *I) -> bool { 6528 6529 // We only attempt to scalarize instructions forming a single-use chain 6530 // from the original predicated block that would otherwise be vectorized. 6531 // Although not strictly necessary, we give up on instructions we know will 6532 // already be scalar to avoid traversing chains that are unlikely to be 6533 // beneficial. 6534 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6535 Legal->isScalarAfterVectorization(I)) 6536 return false; 6537 6538 // If the instruction is scalar with predication, it will be analyzed 6539 // separately. We ignore it within the context of PredInst. 6540 if (Legal->isScalarWithPredication(I)) 6541 return false; 6542 6543 // If any of the instruction's operands are uniform after vectorization, 6544 // the instruction cannot be scalarized. This prevents, for example, a 6545 // masked load from being scalarized. 6546 // 6547 // We assume we will only emit a value for lane zero of an instruction 6548 // marked uniform after vectorization, rather than VF identical values. 6549 // Thus, if we scalarize an instruction that uses a uniform, we would 6550 // create uses of values corresponding to the lanes we aren't emitting code 6551 // for. This behavior can be changed by allowing getScalarValue to clone 6552 // the lane zero values for uniforms rather than asserting. 6553 for (Use &U : I->operands()) 6554 if (auto *J = dyn_cast<Instruction>(U.get())) 6555 if (Legal->isUniformAfterVectorization(J)) 6556 return false; 6557 6558 // Otherwise, we can scalarize the instruction. 6559 return true; 6560 }; 6561 6562 // Returns true if an operand that cannot be scalarized must be extracted 6563 // from a vector. We will account for this scalarization overhead below. Note 6564 // that the non-void predicated instructions are placed in their own blocks, 6565 // and their return values are inserted into vectors. Thus, an extract would 6566 // still be required. 6567 auto needsExtract = [&](Instruction *I) -> bool { 6568 return TheLoop->contains(I) && !Legal->isScalarAfterVectorization(I); 6569 }; 6570 6571 // Compute the expected cost discount from scalarizing the entire expression 6572 // feeding the predicated instruction. We currently only consider expressions 6573 // that are single-use instruction chains. 6574 Worklist.push_back(PredInst); 6575 while (!Worklist.empty()) { 6576 Instruction *I = Worklist.pop_back_val(); 6577 6578 // If we've already analyzed the instruction, there's nothing to do. 6579 if (ScalarCosts.count(I)) 6580 continue; 6581 6582 // Compute the cost of the vector instruction. Note that this cost already 6583 // includes the scalarization overhead of the predicated instruction. 6584 unsigned VectorCost = getInstructionCost(I, VF).first; 6585 6586 // Compute the cost of the scalarized instruction. This cost is the cost of 6587 // the instruction as if it wasn't if-converted and instead remained in the 6588 // predicated block. We will scale this cost by block probability after 6589 // computing the scalarization overhead. 6590 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6591 6592 // Compute the scalarization overhead of needed insertelement instructions 6593 // and phi nodes. 6594 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6595 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6596 true, false); 6597 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6598 } 6599 6600 // Compute the scalarization overhead of needed extractelement 6601 // instructions. For each of the instruction's operands, if the operand can 6602 // be scalarized, add it to the worklist; otherwise, account for the 6603 // overhead. 6604 for (Use &U : I->operands()) 6605 if (auto *J = dyn_cast<Instruction>(U.get())) { 6606 assert(VectorType::isValidElementType(J->getType()) && 6607 "Instruction has non-scalar type"); 6608 if (canBeScalarized(J)) 6609 Worklist.push_back(J); 6610 else if (needsExtract(J)) 6611 ScalarCost += TTI.getScalarizationOverhead( 6612 ToVectorTy(J->getType(),VF), false, true); 6613 } 6614 6615 // Scale the total scalar cost by block probability. 6616 ScalarCost /= getReciprocalPredBlockProb(); 6617 6618 // Compute the discount. A non-negative discount means the vector version 6619 // of the instruction costs more, and scalarizing would be beneficial. 6620 Discount += VectorCost - ScalarCost; 6621 ScalarCosts[I] = ScalarCost; 6622 } 6623 6624 return Discount; 6625 } 6626 6627 LoopVectorizationCostModel::VectorizationCostTy 6628 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6629 VectorizationCostTy Cost; 6630 6631 // Collect the instructions (and their associated costs) that will be more 6632 // profitable to scalarize. 6633 collectInstsToScalarize(VF); 6634 6635 // For each block. 6636 for (BasicBlock *BB : TheLoop->blocks()) { 6637 VectorizationCostTy BlockCost; 6638 6639 // For each instruction in the old loop. 6640 for (Instruction &I : *BB) { 6641 // Skip dbg intrinsics. 6642 if (isa<DbgInfoIntrinsic>(I)) 6643 continue; 6644 6645 // Skip ignored values. 6646 if (ValuesToIgnore.count(&I)) 6647 continue; 6648 6649 VectorizationCostTy C = getInstructionCost(&I, VF); 6650 6651 // Check if we should override the cost. 6652 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6653 C.first = ForceTargetInstructionCost; 6654 6655 BlockCost.first += C.first; 6656 BlockCost.second |= C.second; 6657 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6658 << VF << " For instruction: " << I << '\n'); 6659 } 6660 6661 // If we are vectorizing a predicated block, it will have been 6662 // if-converted. This means that the block's instructions (aside from 6663 // stores and instructions that may divide by zero) will now be 6664 // unconditionally executed. For the scalar case, we may not always execute 6665 // the predicated block. Thus, scale the block's cost by the probability of 6666 // executing it. 6667 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6668 BlockCost.first /= getReciprocalPredBlockProb(); 6669 6670 Cost.first += BlockCost.first; 6671 Cost.second |= BlockCost.second; 6672 } 6673 6674 return Cost; 6675 } 6676 6677 /// \brief Gets Address Access SCEV after verifying that the access pattern 6678 /// is loop invariant except the induction variable dependence. 6679 /// 6680 /// This SCEV can be sent to the Target in order to estimate the address 6681 /// calculation cost. 6682 static const SCEV *getAddressAccessSCEV( 6683 Value *Ptr, 6684 LoopVectorizationLegality *Legal, 6685 ScalarEvolution *SE, 6686 const Loop *TheLoop) { 6687 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6688 if (!Gep) 6689 return nullptr; 6690 6691 // We are looking for a gep with all loop invariant indices except for one 6692 // which should be an induction variable. 6693 unsigned NumOperands = Gep->getNumOperands(); 6694 for (unsigned i = 1; i < NumOperands; ++i) { 6695 Value *Opd = Gep->getOperand(i); 6696 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6697 !Legal->isInductionVariable(Opd)) 6698 return nullptr; 6699 } 6700 6701 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6702 return SE->getSCEV(Ptr); 6703 } 6704 6705 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6706 return Legal->hasStride(I->getOperand(0)) || 6707 Legal->hasStride(I->getOperand(1)); 6708 } 6709 6710 LoopVectorizationCostModel::VectorizationCostTy 6711 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6712 // If we know that this instruction will remain uniform, check the cost of 6713 // the scalar version. 6714 if (Legal->isUniformAfterVectorization(I)) 6715 VF = 1; 6716 6717 if (VF > 1 && isProfitableToScalarize(I, VF)) 6718 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6719 6720 Type *VectorTy; 6721 unsigned C = getInstructionCost(I, VF, VectorTy); 6722 6723 bool TypeNotScalarized = 6724 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6725 return VectorizationCostTy(C, TypeNotScalarized); 6726 } 6727 6728 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6729 unsigned VF, 6730 Type *&VectorTy) { 6731 Type *RetTy = I->getType(); 6732 if (canTruncateToMinimalBitwidth(I, VF)) 6733 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6734 VectorTy = ToVectorTy(RetTy, VF); 6735 auto SE = PSE.getSE(); 6736 6737 // TODO: We need to estimate the cost of intrinsic calls. 6738 switch (I->getOpcode()) { 6739 case Instruction::GetElementPtr: 6740 // We mark this instruction as zero-cost because the cost of GEPs in 6741 // vectorized code depends on whether the corresponding memory instruction 6742 // is scalarized or not. Therefore, we handle GEPs with the memory 6743 // instruction cost. 6744 return 0; 6745 case Instruction::Br: { 6746 return TTI.getCFInstrCost(I->getOpcode()); 6747 } 6748 case Instruction::PHI: { 6749 auto *Phi = cast<PHINode>(I); 6750 6751 // First-order recurrences are replaced by vector shuffles inside the loop. 6752 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6753 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6754 VectorTy, VF - 1, VectorTy); 6755 6756 // TODO: IF-converted IFs become selects. 6757 return 0; 6758 } 6759 case Instruction::UDiv: 6760 case Instruction::SDiv: 6761 case Instruction::URem: 6762 case Instruction::SRem: 6763 // If we have a predicated instruction, it may not be executed for each 6764 // vector lane. Get the scalarization cost and scale this amount by the 6765 // probability of executing the predicated block. If the instruction is not 6766 // predicated, we fall through to the next case. 6767 if (VF > 1 && Legal->isScalarWithPredication(I)) { 6768 unsigned Cost = 0; 6769 6770 // These instructions have a non-void type, so account for the phi nodes 6771 // that we will create. This cost is likely to be zero. The phi node 6772 // cost, if any, should be scaled by the block probability because it 6773 // models a copy at the end of each predicated block. 6774 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6775 6776 // The cost of the non-predicated instruction. 6777 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6778 6779 // The cost of insertelement and extractelement instructions needed for 6780 // scalarization. 6781 Cost += getScalarizationOverhead(I, VF, TTI); 6782 6783 // Scale the cost by the probability of executing the predicated blocks. 6784 // This assumes the predicated block for each vector lane is equally 6785 // likely. 6786 return Cost / getReciprocalPredBlockProb(); 6787 } 6788 case Instruction::Add: 6789 case Instruction::FAdd: 6790 case Instruction::Sub: 6791 case Instruction::FSub: 6792 case Instruction::Mul: 6793 case Instruction::FMul: 6794 case Instruction::FDiv: 6795 case Instruction::FRem: 6796 case Instruction::Shl: 6797 case Instruction::LShr: 6798 case Instruction::AShr: 6799 case Instruction::And: 6800 case Instruction::Or: 6801 case Instruction::Xor: { 6802 // Since we will replace the stride by 1 the multiplication should go away. 6803 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6804 return 0; 6805 // Certain instructions can be cheaper to vectorize if they have a constant 6806 // second vector operand. One example of this are shifts on x86. 6807 TargetTransformInfo::OperandValueKind Op1VK = 6808 TargetTransformInfo::OK_AnyValue; 6809 TargetTransformInfo::OperandValueKind Op2VK = 6810 TargetTransformInfo::OK_AnyValue; 6811 TargetTransformInfo::OperandValueProperties Op1VP = 6812 TargetTransformInfo::OP_None; 6813 TargetTransformInfo::OperandValueProperties Op2VP = 6814 TargetTransformInfo::OP_None; 6815 Value *Op2 = I->getOperand(1); 6816 6817 // Check for a splat or for a non uniform vector of constants. 6818 if (isa<ConstantInt>(Op2)) { 6819 ConstantInt *CInt = cast<ConstantInt>(Op2); 6820 if (CInt && CInt->getValue().isPowerOf2()) 6821 Op2VP = TargetTransformInfo::OP_PowerOf2; 6822 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6823 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6824 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6825 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6826 if (SplatValue) { 6827 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6828 if (CInt && CInt->getValue().isPowerOf2()) 6829 Op2VP = TargetTransformInfo::OP_PowerOf2; 6830 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6831 } 6832 } else if (Legal->isUniform(Op2)) { 6833 Op2VK = TargetTransformInfo::OK_UniformValue; 6834 } 6835 SmallVector<const Value *, 4> Operands(I->operand_values()); 6836 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 6837 Op2VK, Op1VP, Op2VP, Operands); 6838 } 6839 case Instruction::Select: { 6840 SelectInst *SI = cast<SelectInst>(I); 6841 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6842 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6843 Type *CondTy = SI->getCondition()->getType(); 6844 if (!ScalarCond) 6845 CondTy = VectorType::get(CondTy, VF); 6846 6847 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6848 } 6849 case Instruction::ICmp: 6850 case Instruction::FCmp: { 6851 Type *ValTy = I->getOperand(0)->getType(); 6852 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6853 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6854 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6855 VectorTy = ToVectorTy(ValTy, VF); 6856 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6857 } 6858 case Instruction::Store: 6859 case Instruction::Load: { 6860 StoreInst *SI = dyn_cast<StoreInst>(I); 6861 LoadInst *LI = dyn_cast<LoadInst>(I); 6862 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6863 VectorTy = ToVectorTy(ValTy, VF); 6864 6865 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6866 unsigned AS = 6867 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6868 Value *Ptr = getPointerOperand(I); 6869 // We add the cost of address computation here instead of with the gep 6870 // instruction because only here we know whether the operation is 6871 // scalarized. 6872 if (VF == 1) 6873 return TTI.getAddressComputationCost(VectorTy) + 6874 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6875 6876 if (LI && Legal->isUniform(Ptr)) { 6877 // Scalar load + broadcast 6878 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6879 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6880 Alignment, AS); 6881 return Cost + 6882 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6883 } 6884 6885 // For an interleaved access, calculate the total cost of the whole 6886 // interleave group. 6887 if (Legal->isAccessInterleaved(I)) { 6888 auto Group = Legal->getInterleavedAccessGroup(I); 6889 assert(Group && "Fail to get an interleaved access group."); 6890 6891 // Only calculate the cost once at the insert position. 6892 if (Group->getInsertPos() != I) 6893 return 0; 6894 6895 unsigned InterleaveFactor = Group->getFactor(); 6896 Type *WideVecTy = 6897 VectorType::get(VectorTy->getVectorElementType(), 6898 VectorTy->getVectorNumElements() * InterleaveFactor); 6899 6900 // Holds the indices of existing members in an interleaved load group. 6901 // An interleaved store group doesn't need this as it doesn't allow gaps. 6902 SmallVector<unsigned, 4> Indices; 6903 if (LI) { 6904 for (unsigned i = 0; i < InterleaveFactor; i++) 6905 if (Group->getMember(i)) 6906 Indices.push_back(i); 6907 } 6908 6909 // Calculate the cost of the whole interleaved group. 6910 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6911 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6912 Group->getAlignment(), AS); 6913 6914 if (Group->isReverse()) 6915 Cost += 6916 Group->getNumMembers() * 6917 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6918 6919 // FIXME: The interleaved load group with a huge gap could be even more 6920 // expensive than scalar operations. Then we could ignore such group and 6921 // use scalar operations instead. 6922 return Cost; 6923 } 6924 6925 // Check if the memory instruction will be scalarized. 6926 if (Legal->memoryInstructionMustBeScalarized(I, VF)) { 6927 unsigned Cost = 0; 6928 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6929 6930 // Figure out whether the access is strided and get the stride value 6931 // if it's known in compile time 6932 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 6933 6934 // Get the cost of the scalar memory instruction and address computation. 6935 Cost += VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6936 Cost += VF * 6937 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6938 Alignment, AS); 6939 6940 // Get the overhead of the extractelement and insertelement instructions 6941 // we might create due to scalarization. 6942 Cost += getScalarizationOverhead(I, VF, TTI); 6943 6944 // If we have a predicated store, it may not be executed for each vector 6945 // lane. Scale the cost by the probability of executing the predicated 6946 // block. 6947 if (Legal->isScalarWithPredication(I)) 6948 Cost /= getReciprocalPredBlockProb(); 6949 6950 return Cost; 6951 } 6952 6953 // Determine if the pointer operand of the access is either consecutive or 6954 // reverse consecutive. 6955 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6956 bool Reverse = ConsecutiveStride < 0; 6957 6958 // Determine if either a gather or scatter operation is legal. 6959 bool UseGatherOrScatter = 6960 !ConsecutiveStride && Legal->isLegalGatherOrScatter(I); 6961 6962 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6963 if (UseGatherOrScatter) { 6964 assert(ConsecutiveStride == 0 && 6965 "Gather/Scatter are not used for consecutive stride"); 6966 return Cost + 6967 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6968 Legal->isMaskRequired(I), Alignment); 6969 } 6970 // Wide load/stores. 6971 if (Legal->isMaskRequired(I)) 6972 Cost += 6973 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6974 else 6975 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6976 6977 if (Reverse) 6978 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6979 return Cost; 6980 } 6981 case Instruction::ZExt: 6982 case Instruction::SExt: 6983 case Instruction::FPToUI: 6984 case Instruction::FPToSI: 6985 case Instruction::FPExt: 6986 case Instruction::PtrToInt: 6987 case Instruction::IntToPtr: 6988 case Instruction::SIToFP: 6989 case Instruction::UIToFP: 6990 case Instruction::Trunc: 6991 case Instruction::FPTrunc: 6992 case Instruction::BitCast: { 6993 // We optimize the truncation of induction variable. 6994 // The cost of these is the same as the scalar operation. 6995 if (I->getOpcode() == Instruction::Trunc && 6996 Legal->isInductionVariable(I->getOperand(0))) 6997 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6998 I->getOperand(0)->getType()); 6999 7000 Type *SrcScalarTy = I->getOperand(0)->getType(); 7001 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7002 if (canTruncateToMinimalBitwidth(I, VF)) { 7003 // This cast is going to be shrunk. This may remove the cast or it might 7004 // turn it into slightly different cast. For example, if MinBW == 16, 7005 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7006 // 7007 // Calculate the modified src and dest types. 7008 Type *MinVecTy = VectorTy; 7009 if (I->getOpcode() == Instruction::Trunc) { 7010 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7011 VectorTy = 7012 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7013 } else if (I->getOpcode() == Instruction::ZExt || 7014 I->getOpcode() == Instruction::SExt) { 7015 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7016 VectorTy = 7017 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7018 } 7019 } 7020 7021 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 7022 } 7023 case Instruction::Call: { 7024 bool NeedToScalarize; 7025 CallInst *CI = cast<CallInst>(I); 7026 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7027 if (getVectorIntrinsicIDForCall(CI, TLI)) 7028 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7029 return CallCost; 7030 } 7031 default: 7032 // The cost of executing VF copies of the scalar instruction. This opcode 7033 // is unknown. Assume that it is the same as 'mul'. 7034 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7035 getScalarizationOverhead(I, VF, TTI); 7036 } // end of switch. 7037 } 7038 7039 char LoopVectorize::ID = 0; 7040 static const char lv_name[] = "Loop Vectorization"; 7041 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7042 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7043 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7044 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7045 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7046 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7047 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7048 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7049 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7050 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7051 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7052 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7053 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7054 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7055 7056 namespace llvm { 7057 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7058 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7059 } 7060 } 7061 7062 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7063 7064 // Check if the pointer operand of a load or store instruction is 7065 // consecutive. 7066 if (auto *Ptr = getPointerOperand(Inst)) 7067 return Legal->isConsecutivePtr(Ptr); 7068 return false; 7069 } 7070 7071 void LoopVectorizationCostModel::collectValuesToIgnore() { 7072 // Ignore ephemeral values. 7073 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7074 7075 // Ignore type-promoting instructions we identified during reduction 7076 // detection. 7077 for (auto &Reduction : *Legal->getReductionVars()) { 7078 RecurrenceDescriptor &RedDes = Reduction.second; 7079 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7080 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7081 } 7082 7083 // Insert values known to be scalar into VecValuesToIgnore. This is a 7084 // conservative estimation of the values that will later be scalarized. 7085 // 7086 // FIXME: Even though an instruction is not scalar-after-vectoriztion, it may 7087 // still be scalarized. For example, we may find an instruction to be 7088 // more profitable for a given vectorization factor if it were to be 7089 // scalarized. But at this point, we haven't yet computed the 7090 // vectorization factor. 7091 for (auto *BB : TheLoop->getBlocks()) 7092 for (auto &I : *BB) 7093 if (Legal->isScalarAfterVectorization(&I)) 7094 VecValuesToIgnore.insert(&I); 7095 } 7096 7097 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 7098 bool IfPredicateInstr) { 7099 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 7100 // Holds vector parameters or scalars, in case of uniform vals. 7101 SmallVector<VectorParts, 4> Params; 7102 7103 setDebugLocFromInst(Builder, Instr); 7104 7105 // Does this instruction return a value ? 7106 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 7107 7108 // Initialize a new scalar map entry. 7109 ScalarParts Entry(UF); 7110 7111 VectorParts Cond; 7112 if (IfPredicateInstr) 7113 Cond = createBlockInMask(Instr->getParent()); 7114 7115 // For each vector unroll 'part': 7116 for (unsigned Part = 0; Part < UF; ++Part) { 7117 Entry[Part].resize(1); 7118 // For each scalar that we create: 7119 7120 // Start an "if (pred) a[i] = ..." block. 7121 Value *Cmp = nullptr; 7122 if (IfPredicateInstr) { 7123 if (Cond[Part]->getType()->isVectorTy()) 7124 Cond[Part] = 7125 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 7126 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 7127 ConstantInt::get(Cond[Part]->getType(), 1)); 7128 } 7129 7130 Instruction *Cloned = Instr->clone(); 7131 if (!IsVoidRetTy) 7132 Cloned->setName(Instr->getName() + ".cloned"); 7133 7134 // Replace the operands of the cloned instructions with their scalar 7135 // equivalents in the new loop. 7136 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 7137 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0); 7138 Cloned->setOperand(op, NewOp); 7139 } 7140 7141 // Place the cloned scalar in the new loop. 7142 Builder.Insert(Cloned); 7143 7144 // Add the cloned scalar to the scalar map entry. 7145 Entry[Part][0] = Cloned; 7146 7147 // If we just cloned a new assumption, add it the assumption cache. 7148 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 7149 if (II->getIntrinsicID() == Intrinsic::assume) 7150 AC->registerAssumption(II); 7151 7152 // End if-block. 7153 if (IfPredicateInstr) 7154 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 7155 } 7156 VectorLoopValueMap.initScalar(Instr, Entry); 7157 } 7158 7159 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7160 auto *SI = dyn_cast<StoreInst>(Instr); 7161 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7162 7163 return scalarizeInstruction(Instr, IfPredicateInstr); 7164 } 7165 7166 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7167 7168 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7169 7170 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7171 Instruction::BinaryOps BinOp) { 7172 // When unrolling and the VF is 1, we only need to add a simple scalar. 7173 Type *Ty = Val->getType(); 7174 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7175 7176 if (Ty->isFloatingPointTy()) { 7177 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7178 7179 // Floating point operations had to be 'fast' to enable the unrolling. 7180 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7181 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7182 } 7183 Constant *C = ConstantInt::get(Ty, StartIdx); 7184 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7185 } 7186 7187 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7188 SmallVector<Metadata *, 4> MDs; 7189 // Reserve first location for self reference to the LoopID metadata node. 7190 MDs.push_back(nullptr); 7191 bool IsUnrollMetadata = false; 7192 MDNode *LoopID = L->getLoopID(); 7193 if (LoopID) { 7194 // First find existing loop unrolling disable metadata. 7195 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7196 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7197 if (MD) { 7198 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7199 IsUnrollMetadata = 7200 S && S->getString().startswith("llvm.loop.unroll.disable"); 7201 } 7202 MDs.push_back(LoopID->getOperand(i)); 7203 } 7204 } 7205 7206 if (!IsUnrollMetadata) { 7207 // Add runtime unroll disable metadata. 7208 LLVMContext &Context = L->getHeader()->getContext(); 7209 SmallVector<Metadata *, 1> DisableOperands; 7210 DisableOperands.push_back( 7211 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7212 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7213 MDs.push_back(DisableNode); 7214 MDNode *NewLoopID = MDNode::get(Context, MDs); 7215 // Set operand 0 to refer to the loop id itself. 7216 NewLoopID->replaceOperandWith(0, NewLoopID); 7217 L->setLoopID(NewLoopID); 7218 } 7219 } 7220 7221 bool LoopVectorizePass::processLoop(Loop *L) { 7222 assert(L->empty() && "Only process inner loops."); 7223 7224 #ifndef NDEBUG 7225 const std::string DebugLocStr = getDebugLocString(L); 7226 #endif /* NDEBUG */ 7227 7228 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7229 << L->getHeader()->getParent()->getName() << "\" from " 7230 << DebugLocStr << "\n"); 7231 7232 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7233 7234 DEBUG(dbgs() << "LV: Loop hints:" 7235 << " force=" 7236 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7237 ? "disabled" 7238 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7239 ? "enabled" 7240 : "?")) 7241 << " width=" << Hints.getWidth() 7242 << " unroll=" << Hints.getInterleave() << "\n"); 7243 7244 // Function containing loop 7245 Function *F = L->getHeader()->getParent(); 7246 7247 // Looking at the diagnostic output is the only way to determine if a loop 7248 // was vectorized (other than looking at the IR or machine code), so it 7249 // is important to generate an optimization remark for each loop. Most of 7250 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7251 // generated as OptimizationRemark and OptimizationRemarkMissed are 7252 // less verbose reporting vectorized loops and unvectorized loops that may 7253 // benefit from vectorization, respectively. 7254 7255 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7256 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7257 return false; 7258 } 7259 7260 // Check the loop for a trip count threshold: 7261 // do not vectorize loops with a tiny trip count. 7262 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7263 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7264 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7265 << "This loop is not worth vectorizing."); 7266 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7267 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7268 else { 7269 DEBUG(dbgs() << "\n"); 7270 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7271 "NotBeneficial", L) 7272 << "vectorization is not beneficial " 7273 "and is not explicitly forced"); 7274 return false; 7275 } 7276 } 7277 7278 PredicatedScalarEvolution PSE(*SE, *L); 7279 7280 // Check if it is legal to vectorize the loop. 7281 LoopVectorizationRequirements Requirements(*ORE); 7282 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7283 &Requirements, &Hints); 7284 if (!LVL.canVectorize()) { 7285 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7286 emitMissedWarning(F, L, Hints, ORE); 7287 return false; 7288 } 7289 7290 // Use the cost model. 7291 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7292 &Hints); 7293 CM.collectValuesToIgnore(); 7294 7295 // Check the function attributes to find out if this function should be 7296 // optimized for size. 7297 bool OptForSize = 7298 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7299 7300 // Compute the weighted frequency of this loop being executed and see if it 7301 // is less than 20% of the function entry baseline frequency. Note that we 7302 // always have a canonical loop here because we think we *can* vectorize. 7303 // FIXME: This is hidden behind a flag due to pervasive problems with 7304 // exactly what block frequency models. 7305 if (LoopVectorizeWithBlockFrequency) { 7306 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7307 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7308 LoopEntryFreq < ColdEntryFreq) 7309 OptForSize = true; 7310 } 7311 7312 // Check the function attributes to see if implicit floats are allowed. 7313 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7314 // an integer loop and the vector instructions selected are purely integer 7315 // vector instructions? 7316 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7317 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7318 "attribute is used.\n"); 7319 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7320 "NoImplicitFloat", L) 7321 << "loop not vectorized due to NoImplicitFloat attribute"); 7322 emitMissedWarning(F, L, Hints, ORE); 7323 return false; 7324 } 7325 7326 // Check if the target supports potentially unsafe FP vectorization. 7327 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7328 // for the target we're vectorizing for, to make sure none of the 7329 // additional fp-math flags can help. 7330 if (Hints.isPotentiallyUnsafe() && 7331 TTI->isFPVectorizationPotentiallyUnsafe()) { 7332 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7333 ORE->emit( 7334 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7335 << "loop not vectorized due to unsafe FP support."); 7336 emitMissedWarning(F, L, Hints, ORE); 7337 return false; 7338 } 7339 7340 // Select the optimal vectorization factor. 7341 const LoopVectorizationCostModel::VectorizationFactor VF = 7342 CM.selectVectorizationFactor(OptForSize); 7343 7344 // Select the interleave count. 7345 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7346 7347 // Get user interleave count. 7348 unsigned UserIC = Hints.getInterleave(); 7349 7350 // Identify the diagnostic messages that should be produced. 7351 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7352 bool VectorizeLoop = true, InterleaveLoop = true; 7353 if (Requirements.doesNotMeet(F, L, Hints)) { 7354 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7355 "requirements.\n"); 7356 emitMissedWarning(F, L, Hints, ORE); 7357 return false; 7358 } 7359 7360 if (VF.Width == 1) { 7361 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7362 VecDiagMsg = std::make_pair( 7363 "VectorizationNotBeneficial", 7364 "the cost-model indicates that vectorization is not beneficial"); 7365 VectorizeLoop = false; 7366 } 7367 7368 if (IC == 1 && UserIC <= 1) { 7369 // Tell the user interleaving is not beneficial. 7370 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7371 IntDiagMsg = std::make_pair( 7372 "InterleavingNotBeneficial", 7373 "the cost-model indicates that interleaving is not beneficial"); 7374 InterleaveLoop = false; 7375 if (UserIC == 1) { 7376 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7377 IntDiagMsg.second += 7378 " and is explicitly disabled or interleave count is set to 1"; 7379 } 7380 } else if (IC > 1 && UserIC == 1) { 7381 // Tell the user interleaving is beneficial, but it explicitly disabled. 7382 DEBUG(dbgs() 7383 << "LV: Interleaving is beneficial but is explicitly disabled."); 7384 IntDiagMsg = std::make_pair( 7385 "InterleavingBeneficialButDisabled", 7386 "the cost-model indicates that interleaving is beneficial " 7387 "but is explicitly disabled or interleave count is set to 1"); 7388 InterleaveLoop = false; 7389 } 7390 7391 // Override IC if user provided an interleave count. 7392 IC = UserIC > 0 ? UserIC : IC; 7393 7394 // Emit diagnostic messages, if any. 7395 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7396 if (!VectorizeLoop && !InterleaveLoop) { 7397 // Do not vectorize or interleaving the loop. 7398 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7399 L->getStartLoc(), L->getHeader()) 7400 << VecDiagMsg.second); 7401 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7402 L->getStartLoc(), L->getHeader()) 7403 << IntDiagMsg.second); 7404 return false; 7405 } else if (!VectorizeLoop && InterleaveLoop) { 7406 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7407 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7408 L->getStartLoc(), L->getHeader()) 7409 << VecDiagMsg.second); 7410 } else if (VectorizeLoop && !InterleaveLoop) { 7411 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7412 << DebugLocStr << '\n'); 7413 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7414 L->getStartLoc(), L->getHeader()) 7415 << IntDiagMsg.second); 7416 } else if (VectorizeLoop && InterleaveLoop) { 7417 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7418 << DebugLocStr << '\n'); 7419 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7420 } 7421 7422 using namespace ore; 7423 if (!VectorizeLoop) { 7424 assert(IC > 1 && "interleave count should not be 1 or 0"); 7425 // If we decided that it is not legal to vectorize the loop, then 7426 // interleave it. 7427 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7428 &CM); 7429 Unroller.vectorize(); 7430 7431 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7432 L->getHeader()) 7433 << "interleaved loop (interleaved count: " 7434 << NV("InterleaveCount", IC) << ")"); 7435 } else { 7436 // If we decided that it is *legal* to vectorize the loop, then do it. 7437 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7438 &LVL, &CM); 7439 LB.vectorize(); 7440 ++LoopsVectorized; 7441 7442 // Add metadata to disable runtime unrolling a scalar loop when there are 7443 // no runtime checks about strides and memory. A scalar loop that is 7444 // rarely used is not worth unrolling. 7445 if (!LB.areSafetyChecksAdded()) 7446 AddRuntimeUnrollDisableMetaData(L); 7447 7448 // Report the vectorization decision. 7449 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7450 L->getHeader()) 7451 << "vectorized loop (vectorization width: " 7452 << NV("VectorizationFactor", VF.Width) 7453 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7454 } 7455 7456 // Mark the loop as already vectorized to avoid vectorizing again. 7457 Hints.setAlreadyVectorized(); 7458 7459 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7460 return true; 7461 } 7462 7463 bool LoopVectorizePass::runImpl( 7464 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7465 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7466 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7467 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7468 OptimizationRemarkEmitter &ORE_) { 7469 7470 SE = &SE_; 7471 LI = &LI_; 7472 TTI = &TTI_; 7473 DT = &DT_; 7474 BFI = &BFI_; 7475 TLI = TLI_; 7476 AA = &AA_; 7477 AC = &AC_; 7478 GetLAA = &GetLAA_; 7479 DB = &DB_; 7480 ORE = &ORE_; 7481 7482 // Compute some weights outside of the loop over the loops. Compute this 7483 // using a BranchProbability to re-use its scaling math. 7484 const BranchProbability ColdProb(1, 5); // 20% 7485 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7486 7487 // Don't attempt if 7488 // 1. the target claims to have no vector registers, and 7489 // 2. interleaving won't help ILP. 7490 // 7491 // The second condition is necessary because, even if the target has no 7492 // vector registers, loop vectorization may still enable scalar 7493 // interleaving. 7494 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7495 return false; 7496 7497 bool Changed = false; 7498 7499 // The vectorizer requires loops to be in simplified form. 7500 // Since simplification may add new inner loops, it has to run before the 7501 // legality and profitability checks. This means running the loop vectorizer 7502 // will simplify all loops, regardless of whether anything end up being 7503 // vectorized. 7504 for (auto &L : *LI) 7505 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7506 7507 // Build up a worklist of inner-loops to vectorize. This is necessary as 7508 // the act of vectorizing or partially unrolling a loop creates new loops 7509 // and can invalidate iterators across the loops. 7510 SmallVector<Loop *, 8> Worklist; 7511 7512 for (Loop *L : *LI) 7513 addAcyclicInnerLoop(*L, Worklist); 7514 7515 LoopsAnalyzed += Worklist.size(); 7516 7517 // Now walk the identified inner loops. 7518 while (!Worklist.empty()) { 7519 Loop *L = Worklist.pop_back_val(); 7520 7521 // For the inner loops we actually process, form LCSSA to simplify the 7522 // transform. 7523 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7524 7525 Changed |= processLoop(L); 7526 } 7527 7528 // Process each loop nest in the function. 7529 return Changed; 7530 7531 } 7532 7533 7534 PreservedAnalyses LoopVectorizePass::run(Function &F, 7535 FunctionAnalysisManager &AM) { 7536 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7537 auto &LI = AM.getResult<LoopAnalysis>(F); 7538 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7539 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7540 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7541 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7542 auto &AA = AM.getResult<AAManager>(F); 7543 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7544 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7545 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7546 7547 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7548 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7549 [&](Loop &L) -> const LoopAccessInfo & { 7550 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 7551 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7552 }; 7553 bool Changed = 7554 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7555 if (!Changed) 7556 return PreservedAnalyses::all(); 7557 PreservedAnalyses PA; 7558 PA.preserve<LoopAnalysis>(); 7559 PA.preserve<DominatorTreeAnalysis>(); 7560 PA.preserve<BasicAA>(); 7561 PA.preserve<GlobalsAA>(); 7562 return PA; 7563 } 7564