1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "VPlanPredicator.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/SizeOpts.h" 140 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 141 #include <algorithm> 142 #include <cassert> 143 #include <cstdint> 144 #include <cstdlib> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <memory> 149 #include <string> 150 #include <tuple> 151 #include <utility> 152 #include <vector> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 /// @{ 160 /// Metadata attribute names 161 static const char *const LLVMLoopVectorizeFollowupAll = 162 "llvm.loop.vectorize.followup_all"; 163 static const char *const LLVMLoopVectorizeFollowupVectorized = 164 "llvm.loop.vectorize.followup_vectorized"; 165 static const char *const LLVMLoopVectorizeFollowupEpilogue = 166 "llvm.loop.vectorize.followup_epilogue"; 167 /// @} 168 169 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 171 172 /// Loops with a known constant trip count below this number are vectorized only 173 /// if no scalar iteration overheads are incurred. 174 static cl::opt<unsigned> TinyTripCountVectorThreshold( 175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 176 cl::desc("Loops with a constant trip count that is smaller than this " 177 "value are vectorized only if no scalar iteration overheads " 178 "are incurred.")); 179 180 // Indicates that an epilogue is undesired, predication is preferred. 181 // This means that the vectorizer will try to fold the loop-tail (epilogue) 182 // into the loop and predicate the loop body accordingly. 183 static cl::opt<bool> PreferPredicateOverEpilog( 184 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 185 cl::desc("Indicate that an epilogue is undesired, predication should be " 186 "used instead.")); 187 188 static cl::opt<bool> MaximizeBandwidth( 189 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 190 cl::desc("Maximize bandwidth when selecting vectorization factor which " 191 "will be determined by the smallest type in loop.")); 192 193 static cl::opt<bool> EnableInterleavedMemAccesses( 194 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 195 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 196 197 /// An interleave-group may need masking if it resides in a block that needs 198 /// predication, or in order to mask away gaps. 199 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 200 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 201 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 202 203 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 204 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 205 cl::desc("We don't interleave loops with a estimated constant trip count " 206 "below this number")); 207 208 static cl::opt<unsigned> ForceTargetNumScalarRegs( 209 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 210 cl::desc("A flag that overrides the target's number of scalar registers.")); 211 212 static cl::opt<unsigned> ForceTargetNumVectorRegs( 213 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 214 cl::desc("A flag that overrides the target's number of vector registers.")); 215 216 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 217 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 218 cl::desc("A flag that overrides the target's max interleave factor for " 219 "scalar loops.")); 220 221 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 222 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 223 cl::desc("A flag that overrides the target's max interleave factor for " 224 "vectorized loops.")); 225 226 static cl::opt<unsigned> ForceTargetInstructionCost( 227 "force-target-instruction-cost", cl::init(0), cl::Hidden, 228 cl::desc("A flag that overrides the target's expected cost for " 229 "an instruction to a single constant value. Mostly " 230 "useful for getting consistent testing.")); 231 232 static cl::opt<unsigned> SmallLoopCost( 233 "small-loop-cost", cl::init(20), cl::Hidden, 234 cl::desc( 235 "The cost of a loop that is considered 'small' by the interleaver.")); 236 237 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 238 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 239 cl::desc("Enable the use of the block frequency analysis to access PGO " 240 "heuristics minimizing code growth in cold regions and being more " 241 "aggressive in hot regions.")); 242 243 // Runtime interleave loops for load/store throughput. 244 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 245 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 246 cl::desc( 247 "Enable runtime interleaving until load/store ports are saturated")); 248 249 /// The number of stores in a loop that are allowed to need predication. 250 static cl::opt<unsigned> NumberOfStoresToPredicate( 251 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 252 cl::desc("Max number of stores to be predicated behind an if.")); 253 254 static cl::opt<bool> EnableIndVarRegisterHeur( 255 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 256 cl::desc("Count the induction variable only once when interleaving")); 257 258 static cl::opt<bool> EnableCondStoresVectorization( 259 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 260 cl::desc("Enable if predication of stores during vectorization.")); 261 262 static cl::opt<unsigned> MaxNestedScalarReductionIC( 263 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 264 cl::desc("The maximum interleave count to use when interleaving a scalar " 265 "reduction in a nested loop.")); 266 267 cl::opt<bool> EnableVPlanNativePath( 268 "enable-vplan-native-path", cl::init(false), cl::Hidden, 269 cl::desc("Enable VPlan-native vectorization path with " 270 "support for outer loop vectorization.")); 271 272 // FIXME: Remove this switch once we have divergence analysis. Currently we 273 // assume divergent non-backedge branches when this switch is true. 274 cl::opt<bool> EnableVPlanPredication( 275 "enable-vplan-predication", cl::init(false), cl::Hidden, 276 cl::desc("Enable VPlan-native vectorization path predicator with " 277 "support for outer loop vectorization.")); 278 279 // This flag enables the stress testing of the VPlan H-CFG construction in the 280 // VPlan-native vectorization path. It must be used in conjuction with 281 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 282 // verification of the H-CFGs built. 283 static cl::opt<bool> VPlanBuildStressTest( 284 "vplan-build-stress-test", cl::init(false), cl::Hidden, 285 cl::desc( 286 "Build VPlan for every supported loop nest in the function and bail " 287 "out right after the build (stress test the VPlan H-CFG construction " 288 "in the VPlan-native vectorization path).")); 289 290 cl::opt<bool> llvm::EnableLoopInterleaving( 291 "interleave-loops", cl::init(true), cl::Hidden, 292 cl::desc("Enable loop interleaving in Loop vectorization passes")); 293 cl::opt<bool> llvm::EnableLoopVectorization( 294 "vectorize-loops", cl::init(true), cl::Hidden, 295 cl::desc("Run the Loop vectorization passes")); 296 297 /// A helper function for converting Scalar types to vector types. 298 /// If the incoming type is void, we return void. If the VF is 1, we return 299 /// the scalar type. 300 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 301 if (Scalar->isVoidTy() || VF == 1) 302 return Scalar; 303 return VectorType::get(Scalar, VF); 304 } 305 306 /// A helper function that returns the type of loaded or stored value. 307 static Type *getMemInstValueType(Value *I) { 308 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 309 "Expected Load or Store instruction"); 310 if (auto *LI = dyn_cast<LoadInst>(I)) 311 return LI->getType(); 312 return cast<StoreInst>(I)->getValueOperand()->getType(); 313 } 314 315 /// A helper function that returns true if the given type is irregular. The 316 /// type is irregular if its allocated size doesn't equal the store size of an 317 /// element of the corresponding vector type at the given vectorization factor. 318 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 319 // Determine if an array of VF elements of type Ty is "bitcast compatible" 320 // with a <VF x Ty> vector. 321 if (VF > 1) { 322 auto *VectorTy = VectorType::get(Ty, VF); 323 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 324 } 325 326 // If the vectorization factor is one, we just check if an array of type Ty 327 // requires padding between elements. 328 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 329 } 330 331 /// A helper function that returns the reciprocal of the block probability of 332 /// predicated blocks. If we return X, we are assuming the predicated block 333 /// will execute once for every X iterations of the loop header. 334 /// 335 /// TODO: We should use actual block probability here, if available. Currently, 336 /// we always assume predicated blocks have a 50% chance of executing. 337 static unsigned getReciprocalPredBlockProb() { return 2; } 338 339 /// A helper function that adds a 'fast' flag to floating-point operations. 340 static Value *addFastMathFlag(Value *V) { 341 if (isa<FPMathOperator>(V)) 342 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 343 return V; 344 } 345 346 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 347 if (isa<FPMathOperator>(V)) 348 cast<Instruction>(V)->setFastMathFlags(FMF); 349 return V; 350 } 351 352 /// A helper function that returns an integer or floating-point constant with 353 /// value C. 354 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 355 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 356 : ConstantFP::get(Ty, C); 357 } 358 359 /// Returns "best known" trip count for the specified loop \p L as defined by 360 /// the following procedure: 361 /// 1) Returns exact trip count if it is known. 362 /// 2) Returns expected trip count according to profile data if any. 363 /// 3) Returns upper bound estimate if it is known. 364 /// 4) Returns None if all of the above failed. 365 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 366 // Check if exact trip count is known. 367 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 368 return ExpectedTC; 369 370 // Check if there is an expected trip count available from profile data. 371 if (LoopVectorizeWithBlockFrequency) 372 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 373 return EstimatedTC; 374 375 // Check if upper bound estimate is known. 376 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 377 return ExpectedTC; 378 379 return None; 380 } 381 382 namespace llvm { 383 384 /// InnerLoopVectorizer vectorizes loops which contain only one basic 385 /// block to a specified vectorization factor (VF). 386 /// This class performs the widening of scalars into vectors, or multiple 387 /// scalars. This class also implements the following features: 388 /// * It inserts an epilogue loop for handling loops that don't have iteration 389 /// counts that are known to be a multiple of the vectorization factor. 390 /// * It handles the code generation for reduction variables. 391 /// * Scalarization (implementation using scalars) of un-vectorizable 392 /// instructions. 393 /// InnerLoopVectorizer does not perform any vectorization-legality 394 /// checks, and relies on the caller to check for the different legality 395 /// aspects. The InnerLoopVectorizer relies on the 396 /// LoopVectorizationLegality class to provide information about the induction 397 /// and reduction variables that were found to a given vectorization factor. 398 class InnerLoopVectorizer { 399 public: 400 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 401 LoopInfo *LI, DominatorTree *DT, 402 const TargetLibraryInfo *TLI, 403 const TargetTransformInfo *TTI, AssumptionCache *AC, 404 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 405 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 406 LoopVectorizationCostModel *CM) 407 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 408 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 409 Builder(PSE.getSE()->getContext()), 410 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 411 virtual ~InnerLoopVectorizer() = default; 412 413 /// Create a new empty loop. Unlink the old loop and connect the new one. 414 /// Return the pre-header block of the new loop. 415 BasicBlock *createVectorizedLoopSkeleton(); 416 417 /// Widen a single instruction within the innermost loop. 418 void widenInstruction(Instruction &I); 419 420 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 421 void fixVectorizedLoop(); 422 423 // Return true if any runtime check is added. 424 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 425 426 /// A type for vectorized values in the new loop. Each value from the 427 /// original loop, when vectorized, is represented by UF vector values in the 428 /// new unrolled loop, where UF is the unroll factor. 429 using VectorParts = SmallVector<Value *, 2>; 430 431 /// Vectorize a single PHINode in a block. This method handles the induction 432 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 433 /// arbitrary length vectors. 434 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 435 436 /// A helper function to scalarize a single Instruction in the innermost loop. 437 /// Generates a sequence of scalar instances for each lane between \p MinLane 438 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 439 /// inclusive.. 440 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 441 bool IfPredicateInstr); 442 443 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 444 /// is provided, the integer induction variable will first be truncated to 445 /// the corresponding type. 446 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 447 448 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 449 /// vector or scalar value on-demand if one is not yet available. When 450 /// vectorizing a loop, we visit the definition of an instruction before its 451 /// uses. When visiting the definition, we either vectorize or scalarize the 452 /// instruction, creating an entry for it in the corresponding map. (In some 453 /// cases, such as induction variables, we will create both vector and scalar 454 /// entries.) Then, as we encounter uses of the definition, we derive values 455 /// for each scalar or vector use unless such a value is already available. 456 /// For example, if we scalarize a definition and one of its uses is vector, 457 /// we build the required vector on-demand with an insertelement sequence 458 /// when visiting the use. Otherwise, if the use is scalar, we can use the 459 /// existing scalar definition. 460 /// 461 /// Return a value in the new loop corresponding to \p V from the original 462 /// loop at unroll index \p Part. If the value has already been vectorized, 463 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 464 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 465 /// a new vector value on-demand by inserting the scalar values into a vector 466 /// with an insertelement sequence. If the value has been neither vectorized 467 /// nor scalarized, it must be loop invariant, so we simply broadcast the 468 /// value into a vector. 469 Value *getOrCreateVectorValue(Value *V, unsigned Part); 470 471 /// Return a value in the new loop corresponding to \p V from the original 472 /// loop at unroll and vector indices \p Instance. If the value has been 473 /// vectorized but not scalarized, the necessary extractelement instruction 474 /// will be generated. 475 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 476 477 /// Construct the vector value of a scalarized value \p V one lane at a time. 478 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 479 480 /// Try to vectorize the interleaved access group that \p Instr belongs to, 481 /// optionally masking the vector operations if \p BlockInMask is non-null. 482 void vectorizeInterleaveGroup(Instruction *Instr, 483 VectorParts *BlockInMask = nullptr); 484 485 /// Vectorize Load and Store instructions, optionally masking the vector 486 /// operations if \p BlockInMask is non-null. 487 void vectorizeMemoryInstruction(Instruction *Instr, 488 VectorParts *BlockInMask = nullptr); 489 490 /// Set the debug location in the builder using the debug location in 491 /// the instruction. 492 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 493 494 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 495 void fixNonInductionPHIs(void); 496 497 protected: 498 friend class LoopVectorizationPlanner; 499 500 /// A small list of PHINodes. 501 using PhiVector = SmallVector<PHINode *, 4>; 502 503 /// A type for scalarized values in the new loop. Each value from the 504 /// original loop, when scalarized, is represented by UF x VF scalar values 505 /// in the new unrolled loop, where UF is the unroll factor and VF is the 506 /// vectorization factor. 507 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 508 509 /// Set up the values of the IVs correctly when exiting the vector loop. 510 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 511 Value *CountRoundDown, Value *EndValue, 512 BasicBlock *MiddleBlock); 513 514 /// Create a new induction variable inside L. 515 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 516 Value *Step, Instruction *DL); 517 518 /// Handle all cross-iteration phis in the header. 519 void fixCrossIterationPHIs(); 520 521 /// Fix a first-order recurrence. This is the second phase of vectorizing 522 /// this phi node. 523 void fixFirstOrderRecurrence(PHINode *Phi); 524 525 /// Fix a reduction cross-iteration phi. This is the second phase of 526 /// vectorizing this phi node. 527 void fixReduction(PHINode *Phi); 528 529 /// The Loop exit block may have single value PHI nodes with some 530 /// incoming value. While vectorizing we only handled real values 531 /// that were defined inside the loop and we should have one value for 532 /// each predecessor of its parent basic block. See PR14725. 533 void fixLCSSAPHIs(); 534 535 /// Iteratively sink the scalarized operands of a predicated instruction into 536 /// the block that was created for it. 537 void sinkScalarOperands(Instruction *PredInst); 538 539 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 540 /// represented as. 541 void truncateToMinimalBitwidths(); 542 543 /// Insert the new loop to the loop hierarchy and pass manager 544 /// and update the analysis passes. 545 void updateAnalysis(); 546 547 /// Create a broadcast instruction. This method generates a broadcast 548 /// instruction (shuffle) for loop invariant values and for the induction 549 /// value. If this is the induction variable then we extend it to N, N+1, ... 550 /// this is needed because each iteration in the loop corresponds to a SIMD 551 /// element. 552 virtual Value *getBroadcastInstrs(Value *V); 553 554 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 555 /// to each vector element of Val. The sequence starts at StartIndex. 556 /// \p Opcode is relevant for FP induction variable. 557 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 558 Instruction::BinaryOps Opcode = 559 Instruction::BinaryOpsEnd); 560 561 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 562 /// variable on which to base the steps, \p Step is the size of the step, and 563 /// \p EntryVal is the value from the original loop that maps to the steps. 564 /// Note that \p EntryVal doesn't have to be an induction variable - it 565 /// can also be a truncate instruction. 566 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 567 const InductionDescriptor &ID); 568 569 /// Create a vector induction phi node based on an existing scalar one. \p 570 /// EntryVal is the value from the original loop that maps to the vector phi 571 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 572 /// truncate instruction, instead of widening the original IV, we widen a 573 /// version of the IV truncated to \p EntryVal's type. 574 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 575 Value *Step, Instruction *EntryVal); 576 577 /// Returns true if an instruction \p I should be scalarized instead of 578 /// vectorized for the chosen vectorization factor. 579 bool shouldScalarizeInstruction(Instruction *I) const; 580 581 /// Returns true if we should generate a scalar version of \p IV. 582 bool needsScalarInduction(Instruction *IV) const; 583 584 /// If there is a cast involved in the induction variable \p ID, which should 585 /// be ignored in the vectorized loop body, this function records the 586 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 587 /// cast. We had already proved that the casted Phi is equal to the uncasted 588 /// Phi in the vectorized loop (under a runtime guard), and therefore 589 /// there is no need to vectorize the cast - the same value can be used in the 590 /// vector loop for both the Phi and the cast. 591 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 592 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 593 /// 594 /// \p EntryVal is the value from the original loop that maps to the vector 595 /// phi node and is used to distinguish what is the IV currently being 596 /// processed - original one (if \p EntryVal is a phi corresponding to the 597 /// original IV) or the "newly-created" one based on the proof mentioned above 598 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 599 /// latter case \p EntryVal is a TruncInst and we must not record anything for 600 /// that IV, but it's error-prone to expect callers of this routine to care 601 /// about that, hence this explicit parameter. 602 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 603 const Instruction *EntryVal, 604 Value *VectorLoopValue, 605 unsigned Part, 606 unsigned Lane = UINT_MAX); 607 608 /// Generate a shuffle sequence that will reverse the vector Vec. 609 virtual Value *reverseVector(Value *Vec); 610 611 /// Returns (and creates if needed) the original loop trip count. 612 Value *getOrCreateTripCount(Loop *NewLoop); 613 614 /// Returns (and creates if needed) the trip count of the widened loop. 615 Value *getOrCreateVectorTripCount(Loop *NewLoop); 616 617 /// Returns a bitcasted value to the requested vector type. 618 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 619 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 620 const DataLayout &DL); 621 622 /// Emit a bypass check to see if the vector trip count is zero, including if 623 /// it overflows. 624 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 625 626 /// Emit a bypass check to see if all of the SCEV assumptions we've 627 /// had to make are correct. 628 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 629 630 /// Emit bypass checks to check any memory assumptions we may have made. 631 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 632 633 /// Compute the transformed value of Index at offset StartValue using step 634 /// StepValue. 635 /// For integer induction, returns StartValue + Index * StepValue. 636 /// For pointer induction, returns StartValue[Index * StepValue]. 637 /// FIXME: The newly created binary instructions should contain nsw/nuw 638 /// flags, which can be found from the original scalar operations. 639 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 640 const DataLayout &DL, 641 const InductionDescriptor &ID) const; 642 643 /// Add additional metadata to \p To that was not present on \p Orig. 644 /// 645 /// Currently this is used to add the noalias annotations based on the 646 /// inserted memchecks. Use this for instructions that are *cloned* into the 647 /// vector loop. 648 void addNewMetadata(Instruction *To, const Instruction *Orig); 649 650 /// Add metadata from one instruction to another. 651 /// 652 /// This includes both the original MDs from \p From and additional ones (\see 653 /// addNewMetadata). Use this for *newly created* instructions in the vector 654 /// loop. 655 void addMetadata(Instruction *To, Instruction *From); 656 657 /// Similar to the previous function but it adds the metadata to a 658 /// vector of instructions. 659 void addMetadata(ArrayRef<Value *> To, Instruction *From); 660 661 /// The original loop. 662 Loop *OrigLoop; 663 664 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 665 /// dynamic knowledge to simplify SCEV expressions and converts them to a 666 /// more usable form. 667 PredicatedScalarEvolution &PSE; 668 669 /// Loop Info. 670 LoopInfo *LI; 671 672 /// Dominator Tree. 673 DominatorTree *DT; 674 675 /// Alias Analysis. 676 AliasAnalysis *AA; 677 678 /// Target Library Info. 679 const TargetLibraryInfo *TLI; 680 681 /// Target Transform Info. 682 const TargetTransformInfo *TTI; 683 684 /// Assumption Cache. 685 AssumptionCache *AC; 686 687 /// Interface to emit optimization remarks. 688 OptimizationRemarkEmitter *ORE; 689 690 /// LoopVersioning. It's only set up (non-null) if memchecks were 691 /// used. 692 /// 693 /// This is currently only used to add no-alias metadata based on the 694 /// memchecks. The actually versioning is performed manually. 695 std::unique_ptr<LoopVersioning> LVer; 696 697 /// The vectorization SIMD factor to use. Each vector will have this many 698 /// vector elements. 699 unsigned VF; 700 701 /// The vectorization unroll factor to use. Each scalar is vectorized to this 702 /// many different vector instructions. 703 unsigned UF; 704 705 /// The builder that we use 706 IRBuilder<> Builder; 707 708 // --- Vectorization state --- 709 710 /// The vector-loop preheader. 711 BasicBlock *LoopVectorPreHeader; 712 713 /// The scalar-loop preheader. 714 BasicBlock *LoopScalarPreHeader; 715 716 /// Middle Block between the vector and the scalar. 717 BasicBlock *LoopMiddleBlock; 718 719 /// The ExitBlock of the scalar loop. 720 BasicBlock *LoopExitBlock; 721 722 /// The vector loop body. 723 BasicBlock *LoopVectorBody; 724 725 /// The scalar loop body. 726 BasicBlock *LoopScalarBody; 727 728 /// A list of all bypass blocks. The first block is the entry of the loop. 729 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 730 731 /// The new Induction variable which was added to the new block. 732 PHINode *Induction = nullptr; 733 734 /// The induction variable of the old basic block. 735 PHINode *OldInduction = nullptr; 736 737 /// Maps values from the original loop to their corresponding values in the 738 /// vectorized loop. A key value can map to either vector values, scalar 739 /// values or both kinds of values, depending on whether the key was 740 /// vectorized and scalarized. 741 VectorizerValueMap VectorLoopValueMap; 742 743 /// Store instructions that were predicated. 744 SmallVector<Instruction *, 4> PredicatedInstructions; 745 746 /// Trip count of the original loop. 747 Value *TripCount = nullptr; 748 749 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 750 Value *VectorTripCount = nullptr; 751 752 /// The legality analysis. 753 LoopVectorizationLegality *Legal; 754 755 /// The profitablity analysis. 756 LoopVectorizationCostModel *Cost; 757 758 // Record whether runtime checks are added. 759 bool AddedSafetyChecks = false; 760 761 // Holds the end values for each induction variable. We save the end values 762 // so we can later fix-up the external users of the induction variables. 763 DenseMap<PHINode *, Value *> IVEndValues; 764 765 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 766 // fixed up at the end of vector code generation. 767 SmallVector<PHINode *, 8> OrigPHIsToFix; 768 }; 769 770 class InnerLoopUnroller : public InnerLoopVectorizer { 771 public: 772 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 773 LoopInfo *LI, DominatorTree *DT, 774 const TargetLibraryInfo *TLI, 775 const TargetTransformInfo *TTI, AssumptionCache *AC, 776 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 777 LoopVectorizationLegality *LVL, 778 LoopVectorizationCostModel *CM) 779 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 780 UnrollFactor, LVL, CM) {} 781 782 private: 783 Value *getBroadcastInstrs(Value *V) override; 784 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 785 Instruction::BinaryOps Opcode = 786 Instruction::BinaryOpsEnd) override; 787 Value *reverseVector(Value *Vec) override; 788 }; 789 790 } // end namespace llvm 791 792 /// Look for a meaningful debug location on the instruction or it's 793 /// operands. 794 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 795 if (!I) 796 return I; 797 798 DebugLoc Empty; 799 if (I->getDebugLoc() != Empty) 800 return I; 801 802 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 803 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 804 if (OpInst->getDebugLoc() != Empty) 805 return OpInst; 806 } 807 808 return I; 809 } 810 811 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 812 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 813 const DILocation *DIL = Inst->getDebugLoc(); 814 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 815 !isa<DbgInfoIntrinsic>(Inst)) { 816 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 817 if (NewDIL) 818 B.SetCurrentDebugLocation(NewDIL.getValue()); 819 else 820 LLVM_DEBUG(dbgs() 821 << "Failed to create new discriminator: " 822 << DIL->getFilename() << " Line: " << DIL->getLine()); 823 } 824 else 825 B.SetCurrentDebugLocation(DIL); 826 } else 827 B.SetCurrentDebugLocation(DebugLoc()); 828 } 829 830 /// Write a record \p DebugMsg about vectorization failure to the debug 831 /// output stream. If \p I is passed, it is an instruction that prevents 832 /// vectorization. 833 #ifndef NDEBUG 834 static void debugVectorizationFailure(const StringRef DebugMsg, 835 Instruction *I) { 836 dbgs() << "LV: Not vectorizing: " << DebugMsg; 837 if (I != nullptr) 838 dbgs() << " " << *I; 839 else 840 dbgs() << '.'; 841 dbgs() << '\n'; 842 } 843 #endif 844 845 /// Create an analysis remark that explains why vectorization failed 846 /// 847 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 848 /// RemarkName is the identifier for the remark. If \p I is passed it is an 849 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 850 /// the location of the remark. \return the remark object that can be 851 /// streamed to. 852 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 853 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 854 Value *CodeRegion = TheLoop->getHeader(); 855 DebugLoc DL = TheLoop->getStartLoc(); 856 857 if (I) { 858 CodeRegion = I->getParent(); 859 // If there is no debug location attached to the instruction, revert back to 860 // using the loop's. 861 if (I->getDebugLoc()) 862 DL = I->getDebugLoc(); 863 } 864 865 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 866 R << "loop not vectorized: "; 867 return R; 868 } 869 870 namespace llvm { 871 872 void reportVectorizationFailure(const StringRef DebugMsg, 873 const StringRef OREMsg, const StringRef ORETag, 874 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 875 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 876 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 877 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 878 ORETag, TheLoop, I) << OREMsg); 879 } 880 881 } // end namespace llvm 882 883 #ifndef NDEBUG 884 /// \return string containing a file name and a line # for the given loop. 885 static std::string getDebugLocString(const Loop *L) { 886 std::string Result; 887 if (L) { 888 raw_string_ostream OS(Result); 889 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 890 LoopDbgLoc.print(OS); 891 else 892 // Just print the module name. 893 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 894 OS.flush(); 895 } 896 return Result; 897 } 898 #endif 899 900 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 901 const Instruction *Orig) { 902 // If the loop was versioned with memchecks, add the corresponding no-alias 903 // metadata. 904 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 905 LVer->annotateInstWithNoAlias(To, Orig); 906 } 907 908 void InnerLoopVectorizer::addMetadata(Instruction *To, 909 Instruction *From) { 910 propagateMetadata(To, From); 911 addNewMetadata(To, From); 912 } 913 914 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 915 Instruction *From) { 916 for (Value *V : To) { 917 if (Instruction *I = dyn_cast<Instruction>(V)) 918 addMetadata(I, From); 919 } 920 } 921 922 namespace llvm { 923 924 // Loop vectorization cost-model hints how the scalar epilogue loop should be 925 // lowered. 926 enum ScalarEpilogueLowering { 927 928 // The default: allowing scalar epilogues. 929 CM_ScalarEpilogueAllowed, 930 931 // Vectorization with OptForSize: don't allow epilogues. 932 CM_ScalarEpilogueNotAllowedOptSize, 933 934 // A special case of vectorisation with OptForSize: loops with a very small 935 // trip count are considered for vectorization under OptForSize, thereby 936 // making sure the cost of their loop body is dominant, free of runtime 937 // guards and scalar iteration overheads. 938 CM_ScalarEpilogueNotAllowedLowTripLoop, 939 940 // Loop hint predicate indicating an epilogue is undesired. 941 CM_ScalarEpilogueNotNeededUsePredicate 942 }; 943 944 /// LoopVectorizationCostModel - estimates the expected speedups due to 945 /// vectorization. 946 /// In many cases vectorization is not profitable. This can happen because of 947 /// a number of reasons. In this class we mainly attempt to predict the 948 /// expected speedup/slowdowns due to the supported instruction set. We use the 949 /// TargetTransformInfo to query the different backends for the cost of 950 /// different operations. 951 class LoopVectorizationCostModel { 952 public: 953 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 954 PredicatedScalarEvolution &PSE, LoopInfo *LI, 955 LoopVectorizationLegality *Legal, 956 const TargetTransformInfo &TTI, 957 const TargetLibraryInfo *TLI, DemandedBits *DB, 958 AssumptionCache *AC, 959 OptimizationRemarkEmitter *ORE, const Function *F, 960 const LoopVectorizeHints *Hints, 961 InterleavedAccessInfo &IAI) 962 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 963 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 964 Hints(Hints), InterleaveInfo(IAI) {} 965 966 /// \return An upper bound for the vectorization factor, or None if 967 /// vectorization and interleaving should be avoided up front. 968 Optional<unsigned> computeMaxVF(); 969 970 /// \return True if runtime checks are required for vectorization, and false 971 /// otherwise. 972 bool runtimeChecksRequired(); 973 974 /// \return The most profitable vectorization factor and the cost of that VF. 975 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 976 /// then this vectorization factor will be selected if vectorization is 977 /// possible. 978 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 979 980 /// Setup cost-based decisions for user vectorization factor. 981 void selectUserVectorizationFactor(unsigned UserVF) { 982 collectUniformsAndScalars(UserVF); 983 collectInstsToScalarize(UserVF); 984 } 985 986 /// \return The size (in bits) of the smallest and widest types in the code 987 /// that needs to be vectorized. We ignore values that remain scalar such as 988 /// 64 bit loop indices. 989 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 990 991 /// \return The desired interleave count. 992 /// If interleave count has been specified by metadata it will be returned. 993 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 994 /// are the selected vectorization factor and the cost of the selected VF. 995 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 996 997 /// Memory access instruction may be vectorized in more than one way. 998 /// Form of instruction after vectorization depends on cost. 999 /// This function takes cost-based decisions for Load/Store instructions 1000 /// and collects them in a map. This decisions map is used for building 1001 /// the lists of loop-uniform and loop-scalar instructions. 1002 /// The calculated cost is saved with widening decision in order to 1003 /// avoid redundant calculations. 1004 void setCostBasedWideningDecision(unsigned VF); 1005 1006 /// A struct that represents some properties of the register usage 1007 /// of a loop. 1008 struct RegisterUsage { 1009 /// Holds the number of loop invariant values that are used in the loop. 1010 /// The key is ClassID of target-provided register class. 1011 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1012 /// Holds the maximum number of concurrent live intervals in the loop. 1013 /// The key is ClassID of target-provided register class. 1014 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1015 }; 1016 1017 /// \return Returns information about the register usages of the loop for the 1018 /// given vectorization factors. 1019 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1020 1021 /// Collect values we want to ignore in the cost model. 1022 void collectValuesToIgnore(); 1023 1024 /// \returns The smallest bitwidth each instruction can be represented with. 1025 /// The vector equivalents of these instructions should be truncated to this 1026 /// type. 1027 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1028 return MinBWs; 1029 } 1030 1031 /// \returns True if it is more profitable to scalarize instruction \p I for 1032 /// vectorization factor \p VF. 1033 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1034 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1035 1036 // Cost model is not run in the VPlan-native path - return conservative 1037 // result until this changes. 1038 if (EnableVPlanNativePath) 1039 return false; 1040 1041 auto Scalars = InstsToScalarize.find(VF); 1042 assert(Scalars != InstsToScalarize.end() && 1043 "VF not yet analyzed for scalarization profitability"); 1044 return Scalars->second.find(I) != Scalars->second.end(); 1045 } 1046 1047 /// Returns true if \p I is known to be uniform after vectorization. 1048 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1049 if (VF == 1) 1050 return true; 1051 1052 // Cost model is not run in the VPlan-native path - return conservative 1053 // result until this changes. 1054 if (EnableVPlanNativePath) 1055 return false; 1056 1057 auto UniformsPerVF = Uniforms.find(VF); 1058 assert(UniformsPerVF != Uniforms.end() && 1059 "VF not yet analyzed for uniformity"); 1060 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1061 } 1062 1063 /// Returns true if \p I is known to be scalar after vectorization. 1064 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1065 if (VF == 1) 1066 return true; 1067 1068 // Cost model is not run in the VPlan-native path - return conservative 1069 // result until this changes. 1070 if (EnableVPlanNativePath) 1071 return false; 1072 1073 auto ScalarsPerVF = Scalars.find(VF); 1074 assert(ScalarsPerVF != Scalars.end() && 1075 "Scalar values are not calculated for VF"); 1076 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1077 } 1078 1079 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1080 /// for vectorization factor \p VF. 1081 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1082 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1083 !isProfitableToScalarize(I, VF) && 1084 !isScalarAfterVectorization(I, VF); 1085 } 1086 1087 /// Decision that was taken during cost calculation for memory instruction. 1088 enum InstWidening { 1089 CM_Unknown, 1090 CM_Widen, // For consecutive accesses with stride +1. 1091 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1092 CM_Interleave, 1093 CM_GatherScatter, 1094 CM_Scalarize 1095 }; 1096 1097 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1098 /// instruction \p I and vector width \p VF. 1099 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1100 unsigned Cost) { 1101 assert(VF >= 2 && "Expected VF >=2"); 1102 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1103 } 1104 1105 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1106 /// interleaving group \p Grp and vector width \p VF. 1107 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1108 InstWidening W, unsigned Cost) { 1109 assert(VF >= 2 && "Expected VF >=2"); 1110 /// Broadcast this decicion to all instructions inside the group. 1111 /// But the cost will be assigned to one instruction only. 1112 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1113 if (auto *I = Grp->getMember(i)) { 1114 if (Grp->getInsertPos() == I) 1115 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1116 else 1117 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1118 } 1119 } 1120 } 1121 1122 /// Return the cost model decision for the given instruction \p I and vector 1123 /// width \p VF. Return CM_Unknown if this instruction did not pass 1124 /// through the cost modeling. 1125 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1126 assert(VF >= 2 && "Expected VF >=2"); 1127 1128 // Cost model is not run in the VPlan-native path - return conservative 1129 // result until this changes. 1130 if (EnableVPlanNativePath) 1131 return CM_GatherScatter; 1132 1133 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1134 auto Itr = WideningDecisions.find(InstOnVF); 1135 if (Itr == WideningDecisions.end()) 1136 return CM_Unknown; 1137 return Itr->second.first; 1138 } 1139 1140 /// Return the vectorization cost for the given instruction \p I and vector 1141 /// width \p VF. 1142 unsigned getWideningCost(Instruction *I, unsigned VF) { 1143 assert(VF >= 2 && "Expected VF >=2"); 1144 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1145 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1146 "The cost is not calculated"); 1147 return WideningDecisions[InstOnVF].second; 1148 } 1149 1150 /// Return True if instruction \p I is an optimizable truncate whose operand 1151 /// is an induction variable. Such a truncate will be removed by adding a new 1152 /// induction variable with the destination type. 1153 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1154 // If the instruction is not a truncate, return false. 1155 auto *Trunc = dyn_cast<TruncInst>(I); 1156 if (!Trunc) 1157 return false; 1158 1159 // Get the source and destination types of the truncate. 1160 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1161 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1162 1163 // If the truncate is free for the given types, return false. Replacing a 1164 // free truncate with an induction variable would add an induction variable 1165 // update instruction to each iteration of the loop. We exclude from this 1166 // check the primary induction variable since it will need an update 1167 // instruction regardless. 1168 Value *Op = Trunc->getOperand(0); 1169 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1170 return false; 1171 1172 // If the truncated value is not an induction variable, return false. 1173 return Legal->isInductionPhi(Op); 1174 } 1175 1176 /// Collects the instructions to scalarize for each predicated instruction in 1177 /// the loop. 1178 void collectInstsToScalarize(unsigned VF); 1179 1180 /// Collect Uniform and Scalar values for the given \p VF. 1181 /// The sets depend on CM decision for Load/Store instructions 1182 /// that may be vectorized as interleave, gather-scatter or scalarized. 1183 void collectUniformsAndScalars(unsigned VF) { 1184 // Do the analysis once. 1185 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1186 return; 1187 setCostBasedWideningDecision(VF); 1188 collectLoopUniforms(VF); 1189 collectLoopScalars(VF); 1190 } 1191 1192 /// Returns true if the target machine supports masked store operation 1193 /// for the given \p DataType and kind of access to \p Ptr. 1194 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1195 return Legal->isConsecutivePtr(Ptr) && 1196 TTI.isLegalMaskedStore(DataType, Alignment); 1197 } 1198 1199 /// Returns true if the target machine supports masked load operation 1200 /// for the given \p DataType and kind of access to \p Ptr. 1201 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1202 return Legal->isConsecutivePtr(Ptr) && 1203 TTI.isLegalMaskedLoad(DataType, Alignment); 1204 } 1205 1206 /// Returns true if the target machine supports masked scatter operation 1207 /// for the given \p DataType. 1208 bool isLegalMaskedScatter(Type *DataType) { 1209 return TTI.isLegalMaskedScatter(DataType); 1210 } 1211 1212 /// Returns true if the target machine supports masked gather operation 1213 /// for the given \p DataType. 1214 bool isLegalMaskedGather(Type *DataType) { 1215 return TTI.isLegalMaskedGather(DataType); 1216 } 1217 1218 /// Returns true if the target machine can represent \p V as a masked gather 1219 /// or scatter operation. 1220 bool isLegalGatherOrScatter(Value *V) { 1221 bool LI = isa<LoadInst>(V); 1222 bool SI = isa<StoreInst>(V); 1223 if (!LI && !SI) 1224 return false; 1225 auto *Ty = getMemInstValueType(V); 1226 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1227 } 1228 1229 /// Returns true if \p I is an instruction that will be scalarized with 1230 /// predication. Such instructions include conditional stores and 1231 /// instructions that may divide by zero. 1232 /// If a non-zero VF has been calculated, we check if I will be scalarized 1233 /// predication for that VF. 1234 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1235 1236 // Returns true if \p I is an instruction that will be predicated either 1237 // through scalar predication or masked load/store or masked gather/scatter. 1238 // Superset of instructions that return true for isScalarWithPredication. 1239 bool isPredicatedInst(Instruction *I) { 1240 if (!blockNeedsPredication(I->getParent())) 1241 return false; 1242 // Loads and stores that need some form of masked operation are predicated 1243 // instructions. 1244 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1245 return Legal->isMaskRequired(I); 1246 return isScalarWithPredication(I); 1247 } 1248 1249 /// Returns true if \p I is a memory instruction with consecutive memory 1250 /// access that can be widened. 1251 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1252 1253 /// Returns true if \p I is a memory instruction in an interleaved-group 1254 /// of memory accesses that can be vectorized with wide vector loads/stores 1255 /// and shuffles. 1256 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1257 1258 /// Check if \p Instr belongs to any interleaved access group. 1259 bool isAccessInterleaved(Instruction *Instr) { 1260 return InterleaveInfo.isInterleaved(Instr); 1261 } 1262 1263 /// Get the interleaved access group that \p Instr belongs to. 1264 const InterleaveGroup<Instruction> * 1265 getInterleavedAccessGroup(Instruction *Instr) { 1266 return InterleaveInfo.getInterleaveGroup(Instr); 1267 } 1268 1269 /// Returns true if an interleaved group requires a scalar iteration 1270 /// to handle accesses with gaps, and there is nothing preventing us from 1271 /// creating a scalar epilogue. 1272 bool requiresScalarEpilogue() const { 1273 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1274 } 1275 1276 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1277 /// loop hint annotation. 1278 bool isScalarEpilogueAllowed() const { 1279 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1280 } 1281 1282 /// Returns true if all loop blocks should be masked to fold tail loop. 1283 bool foldTailByMasking() const { return FoldTailByMasking; } 1284 1285 bool blockNeedsPredication(BasicBlock *BB) { 1286 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1287 } 1288 1289 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1290 /// with factor VF. Return the cost of the instruction, including 1291 /// scalarization overhead if it's needed. 1292 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1293 1294 /// Estimate cost of a call instruction CI if it were vectorized with factor 1295 /// VF. Return the cost of the instruction, including scalarization overhead 1296 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1297 /// scalarized - 1298 /// i.e. either vector version isn't available, or is too expensive. 1299 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1300 1301 private: 1302 unsigned NumPredStores = 0; 1303 1304 /// \return An upper bound for the vectorization factor, larger than zero. 1305 /// One is returned if vectorization should best be avoided due to cost. 1306 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1307 1308 /// The vectorization cost is a combination of the cost itself and a boolean 1309 /// indicating whether any of the contributing operations will actually 1310 /// operate on 1311 /// vector values after type legalization in the backend. If this latter value 1312 /// is 1313 /// false, then all operations will be scalarized (i.e. no vectorization has 1314 /// actually taken place). 1315 using VectorizationCostTy = std::pair<unsigned, bool>; 1316 1317 /// Returns the expected execution cost. The unit of the cost does 1318 /// not matter because we use the 'cost' units to compare different 1319 /// vector widths. The cost that is returned is *not* normalized by 1320 /// the factor width. 1321 VectorizationCostTy expectedCost(unsigned VF); 1322 1323 /// Returns the execution time cost of an instruction for a given vector 1324 /// width. Vector width of one means scalar. 1325 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1326 1327 /// The cost-computation logic from getInstructionCost which provides 1328 /// the vector type as an output parameter. 1329 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1330 1331 /// Calculate vectorization cost of memory instruction \p I. 1332 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1333 1334 /// The cost computation for scalarized memory instruction. 1335 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1336 1337 /// The cost computation for interleaving group of memory instructions. 1338 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1339 1340 /// The cost computation for Gather/Scatter instruction. 1341 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1342 1343 /// The cost computation for widening instruction \p I with consecutive 1344 /// memory access. 1345 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1346 1347 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1348 /// Load: scalar load + broadcast. 1349 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1350 /// element) 1351 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1352 1353 /// Estimate the overhead of scalarizing an instruction. This is a 1354 /// convenience wrapper for the type-based getScalarizationOverhead API. 1355 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1356 1357 /// Returns whether the instruction is a load or store and will be a emitted 1358 /// as a vector operation. 1359 bool isConsecutiveLoadOrStore(Instruction *I); 1360 1361 /// Returns true if an artificially high cost for emulated masked memrefs 1362 /// should be used. 1363 bool useEmulatedMaskMemRefHack(Instruction *I); 1364 1365 /// Map of scalar integer values to the smallest bitwidth they can be legally 1366 /// represented as. The vector equivalents of these values should be truncated 1367 /// to this type. 1368 MapVector<Instruction *, uint64_t> MinBWs; 1369 1370 /// A type representing the costs for instructions if they were to be 1371 /// scalarized rather than vectorized. The entries are Instruction-Cost 1372 /// pairs. 1373 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1374 1375 /// A set containing all BasicBlocks that are known to present after 1376 /// vectorization as a predicated block. 1377 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1378 1379 /// Records whether it is allowed to have the original scalar loop execute at 1380 /// least once. This may be needed as a fallback loop in case runtime 1381 /// aliasing/dependence checks fail, or to handle the tail/remainder 1382 /// iterations when the trip count is unknown or doesn't divide by the VF, 1383 /// or as a peel-loop to handle gaps in interleave-groups. 1384 /// Under optsize and when the trip count is very small we don't allow any 1385 /// iterations to execute in the scalar loop. 1386 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1387 1388 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1389 bool FoldTailByMasking = false; 1390 1391 /// A map holding scalar costs for different vectorization factors. The 1392 /// presence of a cost for an instruction in the mapping indicates that the 1393 /// instruction will be scalarized when vectorizing with the associated 1394 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1395 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1396 1397 /// Holds the instructions known to be uniform after vectorization. 1398 /// The data is collected per VF. 1399 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1400 1401 /// Holds the instructions known to be scalar after vectorization. 1402 /// The data is collected per VF. 1403 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1404 1405 /// Holds the instructions (address computations) that are forced to be 1406 /// scalarized. 1407 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1408 1409 /// Returns the expected difference in cost from scalarizing the expression 1410 /// feeding a predicated instruction \p PredInst. The instructions to 1411 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1412 /// non-negative return value implies the expression will be scalarized. 1413 /// Currently, only single-use chains are considered for scalarization. 1414 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1415 unsigned VF); 1416 1417 /// Collect the instructions that are uniform after vectorization. An 1418 /// instruction is uniform if we represent it with a single scalar value in 1419 /// the vectorized loop corresponding to each vector iteration. Examples of 1420 /// uniform instructions include pointer operands of consecutive or 1421 /// interleaved memory accesses. Note that although uniformity implies an 1422 /// instruction will be scalar, the reverse is not true. In general, a 1423 /// scalarized instruction will be represented by VF scalar values in the 1424 /// vectorized loop, each corresponding to an iteration of the original 1425 /// scalar loop. 1426 void collectLoopUniforms(unsigned VF); 1427 1428 /// Collect the instructions that are scalar after vectorization. An 1429 /// instruction is scalar if it is known to be uniform or will be scalarized 1430 /// during vectorization. Non-uniform scalarized instructions will be 1431 /// represented by VF values in the vectorized loop, each corresponding to an 1432 /// iteration of the original scalar loop. 1433 void collectLoopScalars(unsigned VF); 1434 1435 /// Keeps cost model vectorization decision and cost for instructions. 1436 /// Right now it is used for memory instructions only. 1437 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1438 std::pair<InstWidening, unsigned>>; 1439 1440 DecisionList WideningDecisions; 1441 1442 /// Returns true if \p V is expected to be vectorized and it needs to be 1443 /// extracted. 1444 bool needsExtract(Value *V, unsigned VF) const { 1445 Instruction *I = dyn_cast<Instruction>(V); 1446 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1447 return false; 1448 1449 // Assume we can vectorize V (and hence we need extraction) if the 1450 // scalars are not computed yet. This can happen, because it is called 1451 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1452 // the scalars are collected. That should be a safe assumption in most 1453 // cases, because we check if the operands have vectorizable types 1454 // beforehand in LoopVectorizationLegality. 1455 return Scalars.find(VF) == Scalars.end() || 1456 !isScalarAfterVectorization(I, VF); 1457 }; 1458 1459 /// Returns a range containing only operands needing to be extracted. 1460 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1461 unsigned VF) { 1462 return SmallVector<Value *, 4>(make_filter_range( 1463 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1464 } 1465 1466 public: 1467 /// The loop that we evaluate. 1468 Loop *TheLoop; 1469 1470 /// Predicated scalar evolution analysis. 1471 PredicatedScalarEvolution &PSE; 1472 1473 /// Loop Info analysis. 1474 LoopInfo *LI; 1475 1476 /// Vectorization legality. 1477 LoopVectorizationLegality *Legal; 1478 1479 /// Vector target information. 1480 const TargetTransformInfo &TTI; 1481 1482 /// Target Library Info. 1483 const TargetLibraryInfo *TLI; 1484 1485 /// Demanded bits analysis. 1486 DemandedBits *DB; 1487 1488 /// Assumption cache. 1489 AssumptionCache *AC; 1490 1491 /// Interface to emit optimization remarks. 1492 OptimizationRemarkEmitter *ORE; 1493 1494 const Function *TheFunction; 1495 1496 /// Loop Vectorize Hint. 1497 const LoopVectorizeHints *Hints; 1498 1499 /// The interleave access information contains groups of interleaved accesses 1500 /// with the same stride and close to each other. 1501 InterleavedAccessInfo &InterleaveInfo; 1502 1503 /// Values to ignore in the cost model. 1504 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1505 1506 /// Values to ignore in the cost model when VF > 1. 1507 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1508 }; 1509 1510 } // end namespace llvm 1511 1512 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1513 // vectorization. The loop needs to be annotated with #pragma omp simd 1514 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1515 // vector length information is not provided, vectorization is not considered 1516 // explicit. Interleave hints are not allowed either. These limitations will be 1517 // relaxed in the future. 1518 // Please, note that we are currently forced to abuse the pragma 'clang 1519 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1520 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1521 // provides *explicit vectorization hints* (LV can bypass legal checks and 1522 // assume that vectorization is legal). However, both hints are implemented 1523 // using the same metadata (llvm.loop.vectorize, processed by 1524 // LoopVectorizeHints). This will be fixed in the future when the native IR 1525 // representation for pragma 'omp simd' is introduced. 1526 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1527 OptimizationRemarkEmitter *ORE) { 1528 assert(!OuterLp->empty() && "This is not an outer loop"); 1529 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1530 1531 // Only outer loops with an explicit vectorization hint are supported. 1532 // Unannotated outer loops are ignored. 1533 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1534 return false; 1535 1536 Function *Fn = OuterLp->getHeader()->getParent(); 1537 if (!Hints.allowVectorization(Fn, OuterLp, 1538 true /*VectorizeOnlyWhenForced*/)) { 1539 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1540 return false; 1541 } 1542 1543 if (Hints.getInterleave() > 1) { 1544 // TODO: Interleave support is future work. 1545 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1546 "outer loops.\n"); 1547 Hints.emitRemarkWithHints(); 1548 return false; 1549 } 1550 1551 return true; 1552 } 1553 1554 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1555 OptimizationRemarkEmitter *ORE, 1556 SmallVectorImpl<Loop *> &V) { 1557 // Collect inner loops and outer loops without irreducible control flow. For 1558 // now, only collect outer loops that have explicit vectorization hints. If we 1559 // are stress testing the VPlan H-CFG construction, we collect the outermost 1560 // loop of every loop nest. 1561 if (L.empty() || VPlanBuildStressTest || 1562 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1563 LoopBlocksRPO RPOT(&L); 1564 RPOT.perform(LI); 1565 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1566 V.push_back(&L); 1567 // TODO: Collect inner loops inside marked outer loops in case 1568 // vectorization fails for the outer loop. Do not invoke 1569 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1570 // already known to be reducible. We can use an inherited attribute for 1571 // that. 1572 return; 1573 } 1574 } 1575 for (Loop *InnerL : L) 1576 collectSupportedLoops(*InnerL, LI, ORE, V); 1577 } 1578 1579 namespace { 1580 1581 /// The LoopVectorize Pass. 1582 struct LoopVectorize : public FunctionPass { 1583 /// Pass identification, replacement for typeid 1584 static char ID; 1585 1586 LoopVectorizePass Impl; 1587 1588 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1589 bool VectorizeOnlyWhenForced = false) 1590 : FunctionPass(ID) { 1591 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1592 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1593 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1594 } 1595 1596 bool runOnFunction(Function &F) override { 1597 if (skipFunction(F)) 1598 return false; 1599 1600 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1601 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1602 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1603 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1604 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1605 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1606 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1607 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1608 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1609 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1610 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1611 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1612 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1613 1614 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1615 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1616 1617 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1618 GetLAA, *ORE, PSI); 1619 } 1620 1621 void getAnalysisUsage(AnalysisUsage &AU) const override { 1622 AU.addRequired<AssumptionCacheTracker>(); 1623 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1624 AU.addRequired<DominatorTreeWrapperPass>(); 1625 AU.addRequired<LoopInfoWrapperPass>(); 1626 AU.addRequired<ScalarEvolutionWrapperPass>(); 1627 AU.addRequired<TargetTransformInfoWrapperPass>(); 1628 AU.addRequired<AAResultsWrapperPass>(); 1629 AU.addRequired<LoopAccessLegacyAnalysis>(); 1630 AU.addRequired<DemandedBitsWrapperPass>(); 1631 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1632 1633 // We currently do not preserve loopinfo/dominator analyses with outer loop 1634 // vectorization. Until this is addressed, mark these analyses as preserved 1635 // only for non-VPlan-native path. 1636 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1637 if (!EnableVPlanNativePath) { 1638 AU.addPreserved<LoopInfoWrapperPass>(); 1639 AU.addPreserved<DominatorTreeWrapperPass>(); 1640 } 1641 1642 AU.addPreserved<BasicAAWrapperPass>(); 1643 AU.addPreserved<GlobalsAAWrapperPass>(); 1644 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1645 } 1646 }; 1647 1648 } // end anonymous namespace 1649 1650 //===----------------------------------------------------------------------===// 1651 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1652 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1653 //===----------------------------------------------------------------------===// 1654 1655 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1656 // We need to place the broadcast of invariant variables outside the loop, 1657 // but only if it's proven safe to do so. Else, broadcast will be inside 1658 // vector loop body. 1659 Instruction *Instr = dyn_cast<Instruction>(V); 1660 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1661 (!Instr || 1662 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1663 // Place the code for broadcasting invariant variables in the new preheader. 1664 IRBuilder<>::InsertPointGuard Guard(Builder); 1665 if (SafeToHoist) 1666 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1667 1668 // Broadcast the scalar into all locations in the vector. 1669 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1670 1671 return Shuf; 1672 } 1673 1674 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1675 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1676 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1677 "Expected either an induction phi-node or a truncate of it!"); 1678 Value *Start = II.getStartValue(); 1679 1680 // Construct the initial value of the vector IV in the vector loop preheader 1681 auto CurrIP = Builder.saveIP(); 1682 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1683 if (isa<TruncInst>(EntryVal)) { 1684 assert(Start->getType()->isIntegerTy() && 1685 "Truncation requires an integer type"); 1686 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1687 Step = Builder.CreateTrunc(Step, TruncType); 1688 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1689 } 1690 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1691 Value *SteppedStart = 1692 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1693 1694 // We create vector phi nodes for both integer and floating-point induction 1695 // variables. Here, we determine the kind of arithmetic we will perform. 1696 Instruction::BinaryOps AddOp; 1697 Instruction::BinaryOps MulOp; 1698 if (Step->getType()->isIntegerTy()) { 1699 AddOp = Instruction::Add; 1700 MulOp = Instruction::Mul; 1701 } else { 1702 AddOp = II.getInductionOpcode(); 1703 MulOp = Instruction::FMul; 1704 } 1705 1706 // Multiply the vectorization factor by the step using integer or 1707 // floating-point arithmetic as appropriate. 1708 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1709 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1710 1711 // Create a vector splat to use in the induction update. 1712 // 1713 // FIXME: If the step is non-constant, we create the vector splat with 1714 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1715 // handle a constant vector splat. 1716 Value *SplatVF = isa<Constant>(Mul) 1717 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1718 : Builder.CreateVectorSplat(VF, Mul); 1719 Builder.restoreIP(CurrIP); 1720 1721 // We may need to add the step a number of times, depending on the unroll 1722 // factor. The last of those goes into the PHI. 1723 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1724 &*LoopVectorBody->getFirstInsertionPt()); 1725 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1726 Instruction *LastInduction = VecInd; 1727 for (unsigned Part = 0; Part < UF; ++Part) { 1728 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1729 1730 if (isa<TruncInst>(EntryVal)) 1731 addMetadata(LastInduction, EntryVal); 1732 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1733 1734 LastInduction = cast<Instruction>(addFastMathFlag( 1735 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1736 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1737 } 1738 1739 // Move the last step to the end of the latch block. This ensures consistent 1740 // placement of all induction updates. 1741 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1742 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1743 auto *ICmp = cast<Instruction>(Br->getCondition()); 1744 LastInduction->moveBefore(ICmp); 1745 LastInduction->setName("vec.ind.next"); 1746 1747 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1748 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1749 } 1750 1751 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1752 return Cost->isScalarAfterVectorization(I, VF) || 1753 Cost->isProfitableToScalarize(I, VF); 1754 } 1755 1756 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1757 if (shouldScalarizeInstruction(IV)) 1758 return true; 1759 auto isScalarInst = [&](User *U) -> bool { 1760 auto *I = cast<Instruction>(U); 1761 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1762 }; 1763 return llvm::any_of(IV->users(), isScalarInst); 1764 } 1765 1766 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1767 const InductionDescriptor &ID, const Instruction *EntryVal, 1768 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1769 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1770 "Expected either an induction phi-node or a truncate of it!"); 1771 1772 // This induction variable is not the phi from the original loop but the 1773 // newly-created IV based on the proof that casted Phi is equal to the 1774 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1775 // re-uses the same InductionDescriptor that original IV uses but we don't 1776 // have to do any recording in this case - that is done when original IV is 1777 // processed. 1778 if (isa<TruncInst>(EntryVal)) 1779 return; 1780 1781 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1782 if (Casts.empty()) 1783 return; 1784 // Only the first Cast instruction in the Casts vector is of interest. 1785 // The rest of the Casts (if exist) have no uses outside the 1786 // induction update chain itself. 1787 Instruction *CastInst = *Casts.begin(); 1788 if (Lane < UINT_MAX) 1789 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1790 else 1791 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1792 } 1793 1794 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1795 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1796 "Primary induction variable must have an integer type"); 1797 1798 auto II = Legal->getInductionVars()->find(IV); 1799 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1800 1801 auto ID = II->second; 1802 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1803 1804 // The scalar value to broadcast. This will be derived from the canonical 1805 // induction variable. 1806 Value *ScalarIV = nullptr; 1807 1808 // The value from the original loop to which we are mapping the new induction 1809 // variable. 1810 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1811 1812 // True if we have vectorized the induction variable. 1813 auto VectorizedIV = false; 1814 1815 // Determine if we want a scalar version of the induction variable. This is 1816 // true if the induction variable itself is not widened, or if it has at 1817 // least one user in the loop that is not widened. 1818 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1819 1820 // Generate code for the induction step. Note that induction steps are 1821 // required to be loop-invariant 1822 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1823 "Induction step should be loop invariant"); 1824 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1825 Value *Step = nullptr; 1826 if (PSE.getSE()->isSCEVable(IV->getType())) { 1827 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1828 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1829 LoopVectorPreHeader->getTerminator()); 1830 } else { 1831 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1832 } 1833 1834 // Try to create a new independent vector induction variable. If we can't 1835 // create the phi node, we will splat the scalar induction variable in each 1836 // loop iteration. 1837 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1838 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1839 VectorizedIV = true; 1840 } 1841 1842 // If we haven't yet vectorized the induction variable, or if we will create 1843 // a scalar one, we need to define the scalar induction variable and step 1844 // values. If we were given a truncation type, truncate the canonical 1845 // induction variable and step. Otherwise, derive these values from the 1846 // induction descriptor. 1847 if (!VectorizedIV || NeedsScalarIV) { 1848 ScalarIV = Induction; 1849 if (IV != OldInduction) { 1850 ScalarIV = IV->getType()->isIntegerTy() 1851 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1852 : Builder.CreateCast(Instruction::SIToFP, Induction, 1853 IV->getType()); 1854 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1855 ScalarIV->setName("offset.idx"); 1856 } 1857 if (Trunc) { 1858 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1859 assert(Step->getType()->isIntegerTy() && 1860 "Truncation requires an integer step"); 1861 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1862 Step = Builder.CreateTrunc(Step, TruncType); 1863 } 1864 } 1865 1866 // If we haven't yet vectorized the induction variable, splat the scalar 1867 // induction variable, and build the necessary step vectors. 1868 // TODO: Don't do it unless the vectorized IV is really required. 1869 if (!VectorizedIV) { 1870 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1871 for (unsigned Part = 0; Part < UF; ++Part) { 1872 Value *EntryPart = 1873 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1874 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1875 if (Trunc) 1876 addMetadata(EntryPart, Trunc); 1877 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1878 } 1879 } 1880 1881 // If an induction variable is only used for counting loop iterations or 1882 // calculating addresses, it doesn't need to be widened. Create scalar steps 1883 // that can be used by instructions we will later scalarize. Note that the 1884 // addition of the scalar steps will not increase the number of instructions 1885 // in the loop in the common case prior to InstCombine. We will be trading 1886 // one vector extract for each scalar step. 1887 if (NeedsScalarIV) 1888 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1889 } 1890 1891 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1892 Instruction::BinaryOps BinOp) { 1893 // Create and check the types. 1894 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1895 int VLen = Val->getType()->getVectorNumElements(); 1896 1897 Type *STy = Val->getType()->getScalarType(); 1898 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1899 "Induction Step must be an integer or FP"); 1900 assert(Step->getType() == STy && "Step has wrong type"); 1901 1902 SmallVector<Constant *, 8> Indices; 1903 1904 if (STy->isIntegerTy()) { 1905 // Create a vector of consecutive numbers from zero to VF. 1906 for (int i = 0; i < VLen; ++i) 1907 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1908 1909 // Add the consecutive indices to the vector value. 1910 Constant *Cv = ConstantVector::get(Indices); 1911 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1912 Step = Builder.CreateVectorSplat(VLen, Step); 1913 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1914 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1915 // which can be found from the original scalar operations. 1916 Step = Builder.CreateMul(Cv, Step); 1917 return Builder.CreateAdd(Val, Step, "induction"); 1918 } 1919 1920 // Floating point induction. 1921 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1922 "Binary Opcode should be specified for FP induction"); 1923 // Create a vector of consecutive numbers from zero to VF. 1924 for (int i = 0; i < VLen; ++i) 1925 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1926 1927 // Add the consecutive indices to the vector value. 1928 Constant *Cv = ConstantVector::get(Indices); 1929 1930 Step = Builder.CreateVectorSplat(VLen, Step); 1931 1932 // Floating point operations had to be 'fast' to enable the induction. 1933 FastMathFlags Flags; 1934 Flags.setFast(); 1935 1936 Value *MulOp = Builder.CreateFMul(Cv, Step); 1937 if (isa<Instruction>(MulOp)) 1938 // Have to check, MulOp may be a constant 1939 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1940 1941 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1942 if (isa<Instruction>(BOp)) 1943 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1944 return BOp; 1945 } 1946 1947 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1948 Instruction *EntryVal, 1949 const InductionDescriptor &ID) { 1950 // We shouldn't have to build scalar steps if we aren't vectorizing. 1951 assert(VF > 1 && "VF should be greater than one"); 1952 1953 // Get the value type and ensure it and the step have the same integer type. 1954 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1955 assert(ScalarIVTy == Step->getType() && 1956 "Val and Step should have the same type"); 1957 1958 // We build scalar steps for both integer and floating-point induction 1959 // variables. Here, we determine the kind of arithmetic we will perform. 1960 Instruction::BinaryOps AddOp; 1961 Instruction::BinaryOps MulOp; 1962 if (ScalarIVTy->isIntegerTy()) { 1963 AddOp = Instruction::Add; 1964 MulOp = Instruction::Mul; 1965 } else { 1966 AddOp = ID.getInductionOpcode(); 1967 MulOp = Instruction::FMul; 1968 } 1969 1970 // Determine the number of scalars we need to generate for each unroll 1971 // iteration. If EntryVal is uniform, we only need to generate the first 1972 // lane. Otherwise, we generate all VF values. 1973 unsigned Lanes = 1974 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1975 : VF; 1976 // Compute the scalar steps and save the results in VectorLoopValueMap. 1977 for (unsigned Part = 0; Part < UF; ++Part) { 1978 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1979 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1980 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1981 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1982 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1983 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1984 } 1985 } 1986 } 1987 1988 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1989 assert(V != Induction && "The new induction variable should not be used."); 1990 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1991 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1992 1993 // If we have a stride that is replaced by one, do it here. Defer this for 1994 // the VPlan-native path until we start running Legal checks in that path. 1995 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1996 V = ConstantInt::get(V->getType(), 1); 1997 1998 // If we have a vector mapped to this value, return it. 1999 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2000 return VectorLoopValueMap.getVectorValue(V, Part); 2001 2002 // If the value has not been vectorized, check if it has been scalarized 2003 // instead. If it has been scalarized, and we actually need the value in 2004 // vector form, we will construct the vector values on demand. 2005 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2006 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2007 2008 // If we've scalarized a value, that value should be an instruction. 2009 auto *I = cast<Instruction>(V); 2010 2011 // If we aren't vectorizing, we can just copy the scalar map values over to 2012 // the vector map. 2013 if (VF == 1) { 2014 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2015 return ScalarValue; 2016 } 2017 2018 // Get the last scalar instruction we generated for V and Part. If the value 2019 // is known to be uniform after vectorization, this corresponds to lane zero 2020 // of the Part unroll iteration. Otherwise, the last instruction is the one 2021 // we created for the last vector lane of the Part unroll iteration. 2022 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2023 auto *LastInst = cast<Instruction>( 2024 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2025 2026 // Set the insert point after the last scalarized instruction. This ensures 2027 // the insertelement sequence will directly follow the scalar definitions. 2028 auto OldIP = Builder.saveIP(); 2029 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2030 Builder.SetInsertPoint(&*NewIP); 2031 2032 // However, if we are vectorizing, we need to construct the vector values. 2033 // If the value is known to be uniform after vectorization, we can just 2034 // broadcast the scalar value corresponding to lane zero for each unroll 2035 // iteration. Otherwise, we construct the vector values using insertelement 2036 // instructions. Since the resulting vectors are stored in 2037 // VectorLoopValueMap, we will only generate the insertelements once. 2038 Value *VectorValue = nullptr; 2039 if (Cost->isUniformAfterVectorization(I, VF)) { 2040 VectorValue = getBroadcastInstrs(ScalarValue); 2041 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2042 } else { 2043 // Initialize packing with insertelements to start from undef. 2044 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2045 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2046 for (unsigned Lane = 0; Lane < VF; ++Lane) 2047 packScalarIntoVectorValue(V, {Part, Lane}); 2048 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2049 } 2050 Builder.restoreIP(OldIP); 2051 return VectorValue; 2052 } 2053 2054 // If this scalar is unknown, assume that it is a constant or that it is 2055 // loop invariant. Broadcast V and save the value for future uses. 2056 Value *B = getBroadcastInstrs(V); 2057 VectorLoopValueMap.setVectorValue(V, Part, B); 2058 return B; 2059 } 2060 2061 Value * 2062 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2063 const VPIteration &Instance) { 2064 // If the value is not an instruction contained in the loop, it should 2065 // already be scalar. 2066 if (OrigLoop->isLoopInvariant(V)) 2067 return V; 2068 2069 assert(Instance.Lane > 0 2070 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2071 : true && "Uniform values only have lane zero"); 2072 2073 // If the value from the original loop has not been vectorized, it is 2074 // represented by UF x VF scalar values in the new loop. Return the requested 2075 // scalar value. 2076 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2077 return VectorLoopValueMap.getScalarValue(V, Instance); 2078 2079 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2080 // for the given unroll part. If this entry is not a vector type (i.e., the 2081 // vectorization factor is one), there is no need to generate an 2082 // extractelement instruction. 2083 auto *U = getOrCreateVectorValue(V, Instance.Part); 2084 if (!U->getType()->isVectorTy()) { 2085 assert(VF == 1 && "Value not scalarized has non-vector type"); 2086 return U; 2087 } 2088 2089 // Otherwise, the value from the original loop has been vectorized and is 2090 // represented by UF vector values. Extract and return the requested scalar 2091 // value from the appropriate vector lane. 2092 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2093 } 2094 2095 void InnerLoopVectorizer::packScalarIntoVectorValue( 2096 Value *V, const VPIteration &Instance) { 2097 assert(V != Induction && "The new induction variable should not be used."); 2098 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2099 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2100 2101 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2102 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2103 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2104 Builder.getInt32(Instance.Lane)); 2105 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2106 } 2107 2108 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2109 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2110 SmallVector<Constant *, 8> ShuffleMask; 2111 for (unsigned i = 0; i < VF; ++i) 2112 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2113 2114 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2115 ConstantVector::get(ShuffleMask), 2116 "reverse"); 2117 } 2118 2119 // Return whether we allow using masked interleave-groups (for dealing with 2120 // strided loads/stores that reside in predicated blocks, or for dealing 2121 // with gaps). 2122 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2123 // If an override option has been passed in for interleaved accesses, use it. 2124 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2125 return EnableMaskedInterleavedMemAccesses; 2126 2127 return TTI.enableMaskedInterleavedAccessVectorization(); 2128 } 2129 2130 // Try to vectorize the interleave group that \p Instr belongs to. 2131 // 2132 // E.g. Translate following interleaved load group (factor = 3): 2133 // for (i = 0; i < N; i+=3) { 2134 // R = Pic[i]; // Member of index 0 2135 // G = Pic[i+1]; // Member of index 1 2136 // B = Pic[i+2]; // Member of index 2 2137 // ... // do something to R, G, B 2138 // } 2139 // To: 2140 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2141 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2142 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2143 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2144 // 2145 // Or translate following interleaved store group (factor = 3): 2146 // for (i = 0; i < N; i+=3) { 2147 // ... do something to R, G, B 2148 // Pic[i] = R; // Member of index 0 2149 // Pic[i+1] = G; // Member of index 1 2150 // Pic[i+2] = B; // Member of index 2 2151 // } 2152 // To: 2153 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2154 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2155 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2156 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2157 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2158 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2159 VectorParts *BlockInMask) { 2160 const InterleaveGroup<Instruction> *Group = 2161 Cost->getInterleavedAccessGroup(Instr); 2162 assert(Group && "Fail to get an interleaved access group."); 2163 2164 // Skip if current instruction is not the insert position. 2165 if (Instr != Group->getInsertPos()) 2166 return; 2167 2168 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2169 Value *Ptr = getLoadStorePointerOperand(Instr); 2170 2171 // Prepare for the vector type of the interleaved load/store. 2172 Type *ScalarTy = getMemInstValueType(Instr); 2173 unsigned InterleaveFactor = Group->getFactor(); 2174 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2175 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2176 2177 // Prepare for the new pointers. 2178 setDebugLocFromInst(Builder, Ptr); 2179 SmallVector<Value *, 2> NewPtrs; 2180 unsigned Index = Group->getIndex(Instr); 2181 2182 VectorParts Mask; 2183 bool IsMaskForCondRequired = BlockInMask; 2184 if (IsMaskForCondRequired) { 2185 Mask = *BlockInMask; 2186 // TODO: extend the masked interleaved-group support to reversed access. 2187 assert(!Group->isReverse() && "Reversed masked interleave-group " 2188 "not supported."); 2189 } 2190 2191 // If the group is reverse, adjust the index to refer to the last vector lane 2192 // instead of the first. We adjust the index from the first vector lane, 2193 // rather than directly getting the pointer for lane VF - 1, because the 2194 // pointer operand of the interleaved access is supposed to be uniform. For 2195 // uniform instructions, we're only required to generate a value for the 2196 // first vector lane in each unroll iteration. 2197 if (Group->isReverse()) 2198 Index += (VF - 1) * Group->getFactor(); 2199 2200 bool InBounds = false; 2201 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2202 InBounds = gep->isInBounds(); 2203 2204 for (unsigned Part = 0; Part < UF; Part++) { 2205 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2206 2207 // Notice current instruction could be any index. Need to adjust the address 2208 // to the member of index 0. 2209 // 2210 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2211 // b = A[i]; // Member of index 0 2212 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2213 // 2214 // E.g. A[i+1] = a; // Member of index 1 2215 // A[i] = b; // Member of index 0 2216 // A[i+2] = c; // Member of index 2 (Current instruction) 2217 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2218 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2219 if (InBounds) 2220 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2221 2222 // Cast to the vector pointer type. 2223 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2224 } 2225 2226 setDebugLocFromInst(Builder, Instr); 2227 Value *UndefVec = UndefValue::get(VecTy); 2228 2229 Value *MaskForGaps = nullptr; 2230 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2231 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2232 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2233 } 2234 2235 // Vectorize the interleaved load group. 2236 if (isa<LoadInst>(Instr)) { 2237 // For each unroll part, create a wide load for the group. 2238 SmallVector<Value *, 2> NewLoads; 2239 for (unsigned Part = 0; Part < UF; Part++) { 2240 Instruction *NewLoad; 2241 if (IsMaskForCondRequired || MaskForGaps) { 2242 assert(useMaskedInterleavedAccesses(*TTI) && 2243 "masked interleaved groups are not allowed."); 2244 Value *GroupMask = MaskForGaps; 2245 if (IsMaskForCondRequired) { 2246 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2247 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2248 Value *ShuffledMask = Builder.CreateShuffleVector( 2249 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2250 GroupMask = MaskForGaps 2251 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2252 MaskForGaps) 2253 : ShuffledMask; 2254 } 2255 NewLoad = 2256 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2257 GroupMask, UndefVec, "wide.masked.vec"); 2258 } 2259 else 2260 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2261 Group->getAlignment(), "wide.vec"); 2262 Group->addMetadata(NewLoad); 2263 NewLoads.push_back(NewLoad); 2264 } 2265 2266 // For each member in the group, shuffle out the appropriate data from the 2267 // wide loads. 2268 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2269 Instruction *Member = Group->getMember(I); 2270 2271 // Skip the gaps in the group. 2272 if (!Member) 2273 continue; 2274 2275 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2276 for (unsigned Part = 0; Part < UF; Part++) { 2277 Value *StridedVec = Builder.CreateShuffleVector( 2278 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2279 2280 // If this member has different type, cast the result type. 2281 if (Member->getType() != ScalarTy) { 2282 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2283 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2284 } 2285 2286 if (Group->isReverse()) 2287 StridedVec = reverseVector(StridedVec); 2288 2289 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2290 } 2291 } 2292 return; 2293 } 2294 2295 // The sub vector type for current instruction. 2296 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2297 2298 // Vectorize the interleaved store group. 2299 for (unsigned Part = 0; Part < UF; Part++) { 2300 // Collect the stored vector from each member. 2301 SmallVector<Value *, 4> StoredVecs; 2302 for (unsigned i = 0; i < InterleaveFactor; i++) { 2303 // Interleaved store group doesn't allow a gap, so each index has a member 2304 Instruction *Member = Group->getMember(i); 2305 assert(Member && "Fail to get a member from an interleaved store group"); 2306 2307 Value *StoredVec = getOrCreateVectorValue( 2308 cast<StoreInst>(Member)->getValueOperand(), Part); 2309 if (Group->isReverse()) 2310 StoredVec = reverseVector(StoredVec); 2311 2312 // If this member has different type, cast it to a unified type. 2313 2314 if (StoredVec->getType() != SubVT) 2315 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2316 2317 StoredVecs.push_back(StoredVec); 2318 } 2319 2320 // Concatenate all vectors into a wide vector. 2321 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2322 2323 // Interleave the elements in the wide vector. 2324 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2325 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2326 "interleaved.vec"); 2327 2328 Instruction *NewStoreInstr; 2329 if (IsMaskForCondRequired) { 2330 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2331 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2332 Value *ShuffledMask = Builder.CreateShuffleVector( 2333 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2334 NewStoreInstr = Builder.CreateMaskedStore( 2335 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2336 } 2337 else 2338 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2339 Group->getAlignment()); 2340 2341 Group->addMetadata(NewStoreInstr); 2342 } 2343 } 2344 2345 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2346 VectorParts *BlockInMask) { 2347 // Attempt to issue a wide load. 2348 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2349 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2350 2351 assert((LI || SI) && "Invalid Load/Store instruction"); 2352 2353 LoopVectorizationCostModel::InstWidening Decision = 2354 Cost->getWideningDecision(Instr, VF); 2355 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2356 "CM decision should be taken at this point"); 2357 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2358 return vectorizeInterleaveGroup(Instr); 2359 2360 Type *ScalarDataTy = getMemInstValueType(Instr); 2361 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2362 Value *Ptr = getLoadStorePointerOperand(Instr); 2363 // An alignment of 0 means target abi alignment. We need to use the scalar's 2364 // target abi alignment in such a case. 2365 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2366 const Align Alignment = 2367 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy); 2368 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2369 2370 // Determine if the pointer operand of the access is either consecutive or 2371 // reverse consecutive. 2372 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2373 bool ConsecutiveStride = 2374 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2375 bool CreateGatherScatter = 2376 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2377 2378 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2379 // gather/scatter. Otherwise Decision should have been to Scalarize. 2380 assert((ConsecutiveStride || CreateGatherScatter) && 2381 "The instruction should be scalarized"); 2382 2383 // Handle consecutive loads/stores. 2384 if (ConsecutiveStride) 2385 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2386 2387 VectorParts Mask; 2388 bool isMaskRequired = BlockInMask; 2389 if (isMaskRequired) 2390 Mask = *BlockInMask; 2391 2392 bool InBounds = false; 2393 if (auto *gep = dyn_cast<GetElementPtrInst>( 2394 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2395 InBounds = gep->isInBounds(); 2396 2397 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2398 // Calculate the pointer for the specific unroll-part. 2399 GetElementPtrInst *PartPtr = nullptr; 2400 2401 if (Reverse) { 2402 // If the address is consecutive but reversed, then the 2403 // wide store needs to start at the last vector element. 2404 PartPtr = cast<GetElementPtrInst>( 2405 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2406 PartPtr->setIsInBounds(InBounds); 2407 PartPtr = cast<GetElementPtrInst>( 2408 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2409 PartPtr->setIsInBounds(InBounds); 2410 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2411 Mask[Part] = reverseVector(Mask[Part]); 2412 } else { 2413 PartPtr = cast<GetElementPtrInst>( 2414 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2415 PartPtr->setIsInBounds(InBounds); 2416 } 2417 2418 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2419 }; 2420 2421 // Handle Stores: 2422 if (SI) { 2423 setDebugLocFromInst(Builder, SI); 2424 2425 for (unsigned Part = 0; Part < UF; ++Part) { 2426 Instruction *NewSI = nullptr; 2427 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2428 if (CreateGatherScatter) { 2429 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2430 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2431 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, 2432 Alignment.value(), MaskPart); 2433 } else { 2434 if (Reverse) { 2435 // If we store to reverse consecutive memory locations, then we need 2436 // to reverse the order of elements in the stored value. 2437 StoredVal = reverseVector(StoredVal); 2438 // We don't want to update the value in the map as it might be used in 2439 // another expression. So don't call resetVectorValue(StoredVal). 2440 } 2441 auto *VecPtr = CreateVecPtr(Part, Ptr); 2442 if (isMaskRequired) 2443 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, 2444 Alignment.value(), Mask[Part]); 2445 else 2446 NewSI = 2447 Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment.value()); 2448 } 2449 addMetadata(NewSI, SI); 2450 } 2451 return; 2452 } 2453 2454 // Handle loads. 2455 assert(LI && "Must have a load instruction"); 2456 setDebugLocFromInst(Builder, LI); 2457 for (unsigned Part = 0; Part < UF; ++Part) { 2458 Value *NewLI; 2459 if (CreateGatherScatter) { 2460 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2461 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2462 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment.value(), MaskPart, 2463 nullptr, "wide.masked.gather"); 2464 addMetadata(NewLI, LI); 2465 } else { 2466 auto *VecPtr = CreateVecPtr(Part, Ptr); 2467 if (isMaskRequired) 2468 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment.value(), Mask[Part], 2469 UndefValue::get(DataTy), 2470 "wide.masked.load"); 2471 else 2472 NewLI = Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment.value(), 2473 "wide.load"); 2474 2475 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2476 addMetadata(NewLI, LI); 2477 if (Reverse) 2478 NewLI = reverseVector(NewLI); 2479 } 2480 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2481 } 2482 } 2483 2484 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2485 const VPIteration &Instance, 2486 bool IfPredicateInstr) { 2487 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2488 2489 setDebugLocFromInst(Builder, Instr); 2490 2491 // Does this instruction return a value ? 2492 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2493 2494 Instruction *Cloned = Instr->clone(); 2495 if (!IsVoidRetTy) 2496 Cloned->setName(Instr->getName() + ".cloned"); 2497 2498 // Replace the operands of the cloned instructions with their scalar 2499 // equivalents in the new loop. 2500 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2501 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2502 Cloned->setOperand(op, NewOp); 2503 } 2504 addNewMetadata(Cloned, Instr); 2505 2506 // Place the cloned scalar in the new loop. 2507 Builder.Insert(Cloned); 2508 2509 // Add the cloned scalar to the scalar map entry. 2510 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2511 2512 // If we just cloned a new assumption, add it the assumption cache. 2513 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2514 if (II->getIntrinsicID() == Intrinsic::assume) 2515 AC->registerAssumption(II); 2516 2517 // End if-block. 2518 if (IfPredicateInstr) 2519 PredicatedInstructions.push_back(Cloned); 2520 } 2521 2522 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2523 Value *End, Value *Step, 2524 Instruction *DL) { 2525 BasicBlock *Header = L->getHeader(); 2526 BasicBlock *Latch = L->getLoopLatch(); 2527 // As we're just creating this loop, it's possible no latch exists 2528 // yet. If so, use the header as this will be a single block loop. 2529 if (!Latch) 2530 Latch = Header; 2531 2532 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2533 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2534 setDebugLocFromInst(Builder, OldInst); 2535 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2536 2537 Builder.SetInsertPoint(Latch->getTerminator()); 2538 setDebugLocFromInst(Builder, OldInst); 2539 2540 // Create i+1 and fill the PHINode. 2541 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2542 Induction->addIncoming(Start, L->getLoopPreheader()); 2543 Induction->addIncoming(Next, Latch); 2544 // Create the compare. 2545 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2546 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2547 2548 // Now we have two terminators. Remove the old one from the block. 2549 Latch->getTerminator()->eraseFromParent(); 2550 2551 return Induction; 2552 } 2553 2554 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2555 if (TripCount) 2556 return TripCount; 2557 2558 assert(L && "Create Trip Count for null loop."); 2559 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2560 // Find the loop boundaries. 2561 ScalarEvolution *SE = PSE.getSE(); 2562 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2563 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2564 "Invalid loop count"); 2565 2566 Type *IdxTy = Legal->getWidestInductionType(); 2567 assert(IdxTy && "No type for induction"); 2568 2569 // The exit count might have the type of i64 while the phi is i32. This can 2570 // happen if we have an induction variable that is sign extended before the 2571 // compare. The only way that we get a backedge taken count is that the 2572 // induction variable was signed and as such will not overflow. In such a case 2573 // truncation is legal. 2574 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2575 IdxTy->getPrimitiveSizeInBits()) 2576 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2577 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2578 2579 // Get the total trip count from the count by adding 1. 2580 const SCEV *ExitCount = SE->getAddExpr( 2581 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2582 2583 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2584 2585 // Expand the trip count and place the new instructions in the preheader. 2586 // Notice that the pre-header does not change, only the loop body. 2587 SCEVExpander Exp(*SE, DL, "induction"); 2588 2589 // Count holds the overall loop count (N). 2590 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2591 L->getLoopPreheader()->getTerminator()); 2592 2593 if (TripCount->getType()->isPointerTy()) 2594 TripCount = 2595 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2596 L->getLoopPreheader()->getTerminator()); 2597 2598 return TripCount; 2599 } 2600 2601 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2602 if (VectorTripCount) 2603 return VectorTripCount; 2604 2605 Value *TC = getOrCreateTripCount(L); 2606 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2607 2608 Type *Ty = TC->getType(); 2609 Constant *Step = ConstantInt::get(Ty, VF * UF); 2610 2611 // If the tail is to be folded by masking, round the number of iterations N 2612 // up to a multiple of Step instead of rounding down. This is done by first 2613 // adding Step-1 and then rounding down. Note that it's ok if this addition 2614 // overflows: the vector induction variable will eventually wrap to zero given 2615 // that it starts at zero and its Step is a power of two; the loop will then 2616 // exit, with the last early-exit vector comparison also producing all-true. 2617 if (Cost->foldTailByMasking()) { 2618 assert(isPowerOf2_32(VF * UF) && 2619 "VF*UF must be a power of 2 when folding tail by masking"); 2620 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2621 } 2622 2623 // Now we need to generate the expression for the part of the loop that the 2624 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2625 // iterations are not required for correctness, or N - Step, otherwise. Step 2626 // is equal to the vectorization factor (number of SIMD elements) times the 2627 // unroll factor (number of SIMD instructions). 2628 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2629 2630 // If there is a non-reversed interleaved group that may speculatively access 2631 // memory out-of-bounds, we need to ensure that there will be at least one 2632 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2633 // the trip count, we set the remainder to be equal to the step. If the step 2634 // does not evenly divide the trip count, no adjustment is necessary since 2635 // there will already be scalar iterations. Note that the minimum iterations 2636 // check ensures that N >= Step. 2637 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2638 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2639 R = Builder.CreateSelect(IsZero, Step, R); 2640 } 2641 2642 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2643 2644 return VectorTripCount; 2645 } 2646 2647 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2648 const DataLayout &DL) { 2649 // Verify that V is a vector type with same number of elements as DstVTy. 2650 unsigned VF = DstVTy->getNumElements(); 2651 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2652 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2653 Type *SrcElemTy = SrcVecTy->getElementType(); 2654 Type *DstElemTy = DstVTy->getElementType(); 2655 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2656 "Vector elements must have same size"); 2657 2658 // Do a direct cast if element types are castable. 2659 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2660 return Builder.CreateBitOrPointerCast(V, DstVTy); 2661 } 2662 // V cannot be directly casted to desired vector type. 2663 // May happen when V is a floating point vector but DstVTy is a vector of 2664 // pointers or vice-versa. Handle this using a two-step bitcast using an 2665 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2666 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2667 "Only one type should be a pointer type"); 2668 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2669 "Only one type should be a floating point type"); 2670 Type *IntTy = 2671 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2672 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2673 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2674 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2675 } 2676 2677 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2678 BasicBlock *Bypass) { 2679 Value *Count = getOrCreateTripCount(L); 2680 BasicBlock *BB = L->getLoopPreheader(); 2681 IRBuilder<> Builder(BB->getTerminator()); 2682 2683 // Generate code to check if the loop's trip count is less than VF * UF, or 2684 // equal to it in case a scalar epilogue is required; this implies that the 2685 // vector trip count is zero. This check also covers the case where adding one 2686 // to the backedge-taken count overflowed leading to an incorrect trip count 2687 // of zero. In this case we will also jump to the scalar loop. 2688 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2689 : ICmpInst::ICMP_ULT; 2690 2691 // If tail is to be folded, vector loop takes care of all iterations. 2692 Value *CheckMinIters = Builder.getFalse(); 2693 if (!Cost->foldTailByMasking()) 2694 CheckMinIters = Builder.CreateICmp( 2695 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2696 "min.iters.check"); 2697 2698 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2699 // Update dominator tree immediately if the generated block is a 2700 // LoopBypassBlock because SCEV expansions to generate loop bypass 2701 // checks may query it before the current function is finished. 2702 DT->addNewBlock(NewBB, BB); 2703 if (L->getParentLoop()) 2704 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2705 ReplaceInstWithInst(BB->getTerminator(), 2706 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2707 LoopBypassBlocks.push_back(BB); 2708 } 2709 2710 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2711 BasicBlock *BB = L->getLoopPreheader(); 2712 2713 // Generate the code to check that the SCEV assumptions that we made. 2714 // We want the new basic block to start at the first instruction in a 2715 // sequence of instructions that form a check. 2716 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2717 "scev.check"); 2718 Value *SCEVCheck = 2719 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2720 2721 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2722 if (C->isZero()) 2723 return; 2724 2725 assert(!BB->getParent()->hasOptSize() && 2726 "Cannot SCEV check stride or overflow when optimizing for size"); 2727 2728 // Create a new block containing the stride check. 2729 BB->setName("vector.scevcheck"); 2730 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2731 // Update dominator tree immediately if the generated block is a 2732 // LoopBypassBlock because SCEV expansions to generate loop bypass 2733 // checks may query it before the current function is finished. 2734 DT->addNewBlock(NewBB, BB); 2735 if (L->getParentLoop()) 2736 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2737 ReplaceInstWithInst(BB->getTerminator(), 2738 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2739 LoopBypassBlocks.push_back(BB); 2740 AddedSafetyChecks = true; 2741 } 2742 2743 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2744 // VPlan-native path does not do any analysis for runtime checks currently. 2745 if (EnableVPlanNativePath) 2746 return; 2747 2748 BasicBlock *BB = L->getLoopPreheader(); 2749 2750 // Generate the code that checks in runtime if arrays overlap. We put the 2751 // checks into a separate block to make the more common case of few elements 2752 // faster. 2753 Instruction *FirstCheckInst; 2754 Instruction *MemRuntimeCheck; 2755 std::tie(FirstCheckInst, MemRuntimeCheck) = 2756 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2757 if (!MemRuntimeCheck) 2758 return; 2759 2760 if (BB->getParent()->hasOptSize()) { 2761 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2762 "Cannot emit memory checks when optimizing for size, unless forced " 2763 "to vectorize."); 2764 ORE->emit([&]() { 2765 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2766 L->getStartLoc(), L->getHeader()) 2767 << "Code-size may be reduced by not forcing " 2768 "vectorization, or by source-code modifications " 2769 "eliminating the need for runtime checks " 2770 "(e.g., adding 'restrict')."; 2771 }); 2772 } 2773 2774 // Create a new block containing the memory check. 2775 BB->setName("vector.memcheck"); 2776 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2777 // Update dominator tree immediately if the generated block is a 2778 // LoopBypassBlock because SCEV expansions to generate loop bypass 2779 // checks may query it before the current function is finished. 2780 DT->addNewBlock(NewBB, BB); 2781 if (L->getParentLoop()) 2782 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2783 ReplaceInstWithInst(BB->getTerminator(), 2784 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2785 LoopBypassBlocks.push_back(BB); 2786 AddedSafetyChecks = true; 2787 2788 // We currently don't use LoopVersioning for the actual loop cloning but we 2789 // still use it to add the noalias metadata. 2790 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2791 PSE.getSE()); 2792 LVer->prepareNoAliasMetadata(); 2793 } 2794 2795 Value *InnerLoopVectorizer::emitTransformedIndex( 2796 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2797 const InductionDescriptor &ID) const { 2798 2799 SCEVExpander Exp(*SE, DL, "induction"); 2800 auto Step = ID.getStep(); 2801 auto StartValue = ID.getStartValue(); 2802 assert(Index->getType() == Step->getType() && 2803 "Index type does not match StepValue type"); 2804 2805 // Note: the IR at this point is broken. We cannot use SE to create any new 2806 // SCEV and then expand it, hoping that SCEV's simplification will give us 2807 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2808 // lead to various SCEV crashes. So all we can do is to use builder and rely 2809 // on InstCombine for future simplifications. Here we handle some trivial 2810 // cases only. 2811 auto CreateAdd = [&B](Value *X, Value *Y) { 2812 assert(X->getType() == Y->getType() && "Types don't match!"); 2813 if (auto *CX = dyn_cast<ConstantInt>(X)) 2814 if (CX->isZero()) 2815 return Y; 2816 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2817 if (CY->isZero()) 2818 return X; 2819 return B.CreateAdd(X, Y); 2820 }; 2821 2822 auto CreateMul = [&B](Value *X, Value *Y) { 2823 assert(X->getType() == Y->getType() && "Types don't match!"); 2824 if (auto *CX = dyn_cast<ConstantInt>(X)) 2825 if (CX->isOne()) 2826 return Y; 2827 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2828 if (CY->isOne()) 2829 return X; 2830 return B.CreateMul(X, Y); 2831 }; 2832 2833 switch (ID.getKind()) { 2834 case InductionDescriptor::IK_IntInduction: { 2835 assert(Index->getType() == StartValue->getType() && 2836 "Index type does not match StartValue type"); 2837 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2838 return B.CreateSub(StartValue, Index); 2839 auto *Offset = CreateMul( 2840 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2841 return CreateAdd(StartValue, Offset); 2842 } 2843 case InductionDescriptor::IK_PtrInduction: { 2844 assert(isa<SCEVConstant>(Step) && 2845 "Expected constant step for pointer induction"); 2846 return B.CreateGEP( 2847 StartValue->getType()->getPointerElementType(), StartValue, 2848 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2849 &*B.GetInsertPoint()))); 2850 } 2851 case InductionDescriptor::IK_FpInduction: { 2852 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2853 auto InductionBinOp = ID.getInductionBinOp(); 2854 assert(InductionBinOp && 2855 (InductionBinOp->getOpcode() == Instruction::FAdd || 2856 InductionBinOp->getOpcode() == Instruction::FSub) && 2857 "Original bin op should be defined for FP induction"); 2858 2859 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2860 2861 // Floating point operations had to be 'fast' to enable the induction. 2862 FastMathFlags Flags; 2863 Flags.setFast(); 2864 2865 Value *MulExp = B.CreateFMul(StepValue, Index); 2866 if (isa<Instruction>(MulExp)) 2867 // We have to check, the MulExp may be a constant. 2868 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2869 2870 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2871 "induction"); 2872 if (isa<Instruction>(BOp)) 2873 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2874 2875 return BOp; 2876 } 2877 case InductionDescriptor::IK_NoInduction: 2878 return nullptr; 2879 } 2880 llvm_unreachable("invalid enum"); 2881 } 2882 2883 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2884 /* 2885 In this function we generate a new loop. The new loop will contain 2886 the vectorized instructions while the old loop will continue to run the 2887 scalar remainder. 2888 2889 [ ] <-- loop iteration number check. 2890 / | 2891 / v 2892 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2893 | / | 2894 | / v 2895 || [ ] <-- vector pre header. 2896 |/ | 2897 | v 2898 | [ ] \ 2899 | [ ]_| <-- vector loop. 2900 | | 2901 | v 2902 | -[ ] <--- middle-block. 2903 | / | 2904 | / v 2905 -|- >[ ] <--- new preheader. 2906 | | 2907 | v 2908 | [ ] \ 2909 | [ ]_| <-- old scalar loop to handle remainder. 2910 \ | 2911 \ v 2912 >[ ] <-- exit block. 2913 ... 2914 */ 2915 2916 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2917 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2918 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2919 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2920 assert(VectorPH && "Invalid loop structure"); 2921 assert(ExitBlock && "Must have an exit block"); 2922 2923 // Some loops have a single integer induction variable, while other loops 2924 // don't. One example is c++ iterators that often have multiple pointer 2925 // induction variables. In the code below we also support a case where we 2926 // don't have a single induction variable. 2927 // 2928 // We try to obtain an induction variable from the original loop as hard 2929 // as possible. However if we don't find one that: 2930 // - is an integer 2931 // - counts from zero, stepping by one 2932 // - is the size of the widest induction variable type 2933 // then we create a new one. 2934 OldInduction = Legal->getPrimaryInduction(); 2935 Type *IdxTy = Legal->getWidestInductionType(); 2936 2937 // Split the single block loop into the two loop structure described above. 2938 BasicBlock *VecBody = 2939 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2940 BasicBlock *MiddleBlock = 2941 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2942 BasicBlock *ScalarPH = 2943 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2944 2945 // Create and register the new vector loop. 2946 Loop *Lp = LI->AllocateLoop(); 2947 Loop *ParentLoop = OrigLoop->getParentLoop(); 2948 2949 // Insert the new loop into the loop nest and register the new basic blocks 2950 // before calling any utilities such as SCEV that require valid LoopInfo. 2951 if (ParentLoop) { 2952 ParentLoop->addChildLoop(Lp); 2953 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2954 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2955 } else { 2956 LI->addTopLevelLoop(Lp); 2957 } 2958 Lp->addBasicBlockToLoop(VecBody, *LI); 2959 2960 // Find the loop boundaries. 2961 Value *Count = getOrCreateTripCount(Lp); 2962 2963 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2964 2965 // Now, compare the new count to zero. If it is zero skip the vector loop and 2966 // jump to the scalar loop. This check also covers the case where the 2967 // backedge-taken count is uint##_max: adding one to it will overflow leading 2968 // to an incorrect trip count of zero. In this (rare) case we will also jump 2969 // to the scalar loop. 2970 emitMinimumIterationCountCheck(Lp, ScalarPH); 2971 2972 // Generate the code to check any assumptions that we've made for SCEV 2973 // expressions. 2974 emitSCEVChecks(Lp, ScalarPH); 2975 2976 // Generate the code that checks in runtime if arrays overlap. We put the 2977 // checks into a separate block to make the more common case of few elements 2978 // faster. 2979 emitMemRuntimeChecks(Lp, ScalarPH); 2980 2981 // Generate the induction variable. 2982 // The loop step is equal to the vectorization factor (num of SIMD elements) 2983 // times the unroll factor (num of SIMD instructions). 2984 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2985 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2986 Induction = 2987 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2988 getDebugLocFromInstOrOperands(OldInduction)); 2989 2990 // We are going to resume the execution of the scalar loop. 2991 // Go over all of the induction variables that we found and fix the 2992 // PHIs that are left in the scalar version of the loop. 2993 // The starting values of PHI nodes depend on the counter of the last 2994 // iteration in the vectorized loop. 2995 // If we come from a bypass edge then we need to start from the original 2996 // start value. 2997 2998 // This variable saves the new starting index for the scalar loop. It is used 2999 // to test if there are any tail iterations left once the vector loop has 3000 // completed. 3001 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3002 for (auto &InductionEntry : *List) { 3003 PHINode *OrigPhi = InductionEntry.first; 3004 InductionDescriptor II = InductionEntry.second; 3005 3006 // Create phi nodes to merge from the backedge-taken check block. 3007 PHINode *BCResumeVal = PHINode::Create( 3008 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3009 // Copy original phi DL over to the new one. 3010 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3011 Value *&EndValue = IVEndValues[OrigPhi]; 3012 if (OrigPhi == OldInduction) { 3013 // We know what the end value is. 3014 EndValue = CountRoundDown; 3015 } else { 3016 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3017 Type *StepType = II.getStep()->getType(); 3018 Instruction::CastOps CastOp = 3019 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3020 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3021 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3022 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3023 EndValue->setName("ind.end"); 3024 } 3025 3026 // The new PHI merges the original incoming value, in case of a bypass, 3027 // or the value at the end of the vectorized loop. 3028 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3029 3030 // Fix the scalar body counter (PHI node). 3031 // The old induction's phi node in the scalar body needs the truncated 3032 // value. 3033 for (BasicBlock *BB : LoopBypassBlocks) 3034 BCResumeVal->addIncoming(II.getStartValue(), BB); 3035 OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal); 3036 } 3037 3038 // We need the OrigLoop (scalar loop part) latch terminator to help 3039 // produce correct debug info for the middle block BB instructions. 3040 // The legality check stage guarantees that the loop will have a single 3041 // latch. 3042 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3043 "Scalar loop latch terminator isn't a branch"); 3044 BranchInst *ScalarLatchBr = 3045 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3046 3047 // Add a check in the middle block to see if we have completed 3048 // all of the iterations in the first vector loop. 3049 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3050 // If tail is to be folded, we know we don't need to run the remainder. 3051 Value *CmpN = Builder.getTrue(); 3052 if (!Cost->foldTailByMasking()) { 3053 CmpN = 3054 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3055 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3056 3057 // Here we use the same DebugLoc as the scalar loop latch branch instead 3058 // of the corresponding compare because they may have ended up with 3059 // different line numbers and we want to avoid awkward line stepping while 3060 // debugging. Eg. if the compare has got a line number inside the loop. 3061 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3062 } 3063 3064 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 3065 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3066 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 3067 3068 // Get ready to start creating new instructions into the vectorized body. 3069 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3070 3071 // Save the state. 3072 LoopVectorPreHeader = Lp->getLoopPreheader(); 3073 LoopScalarPreHeader = ScalarPH; 3074 LoopMiddleBlock = MiddleBlock; 3075 LoopExitBlock = ExitBlock; 3076 LoopVectorBody = VecBody; 3077 LoopScalarBody = OldBasicBlock; 3078 3079 Optional<MDNode *> VectorizedLoopID = 3080 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3081 LLVMLoopVectorizeFollowupVectorized}); 3082 if (VectorizedLoopID.hasValue()) { 3083 Lp->setLoopID(VectorizedLoopID.getValue()); 3084 3085 // Do not setAlreadyVectorized if loop attributes have been defined 3086 // explicitly. 3087 return LoopVectorPreHeader; 3088 } 3089 3090 // Keep all loop hints from the original loop on the vector loop (we'll 3091 // replace the vectorizer-specific hints below). 3092 if (MDNode *LID = OrigLoop->getLoopID()) 3093 Lp->setLoopID(LID); 3094 3095 LoopVectorizeHints Hints(Lp, true, *ORE); 3096 Hints.setAlreadyVectorized(); 3097 3098 return LoopVectorPreHeader; 3099 } 3100 3101 // Fix up external users of the induction variable. At this point, we are 3102 // in LCSSA form, with all external PHIs that use the IV having one input value, 3103 // coming from the remainder loop. We need those PHIs to also have a correct 3104 // value for the IV when arriving directly from the middle block. 3105 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3106 const InductionDescriptor &II, 3107 Value *CountRoundDown, Value *EndValue, 3108 BasicBlock *MiddleBlock) { 3109 // There are two kinds of external IV usages - those that use the value 3110 // computed in the last iteration (the PHI) and those that use the penultimate 3111 // value (the value that feeds into the phi from the loop latch). 3112 // We allow both, but they, obviously, have different values. 3113 3114 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3115 3116 DenseMap<Value *, Value *> MissingVals; 3117 3118 // An external user of the last iteration's value should see the value that 3119 // the remainder loop uses to initialize its own IV. 3120 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3121 for (User *U : PostInc->users()) { 3122 Instruction *UI = cast<Instruction>(U); 3123 if (!OrigLoop->contains(UI)) { 3124 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3125 MissingVals[UI] = EndValue; 3126 } 3127 } 3128 3129 // An external user of the penultimate value need to see EndValue - Step. 3130 // The simplest way to get this is to recompute it from the constituent SCEVs, 3131 // that is Start + (Step * (CRD - 1)). 3132 for (User *U : OrigPhi->users()) { 3133 auto *UI = cast<Instruction>(U); 3134 if (!OrigLoop->contains(UI)) { 3135 const DataLayout &DL = 3136 OrigLoop->getHeader()->getModule()->getDataLayout(); 3137 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3138 3139 IRBuilder<> B(MiddleBlock->getTerminator()); 3140 Value *CountMinusOne = B.CreateSub( 3141 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3142 Value *CMO = 3143 !II.getStep()->getType()->isIntegerTy() 3144 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3145 II.getStep()->getType()) 3146 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3147 CMO->setName("cast.cmo"); 3148 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3149 Escape->setName("ind.escape"); 3150 MissingVals[UI] = Escape; 3151 } 3152 } 3153 3154 for (auto &I : MissingVals) { 3155 PHINode *PHI = cast<PHINode>(I.first); 3156 // One corner case we have to handle is two IVs "chasing" each-other, 3157 // that is %IV2 = phi [...], [ %IV1, %latch ] 3158 // In this case, if IV1 has an external use, we need to avoid adding both 3159 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3160 // don't already have an incoming value for the middle block. 3161 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3162 PHI->addIncoming(I.second, MiddleBlock); 3163 } 3164 } 3165 3166 namespace { 3167 3168 struct CSEDenseMapInfo { 3169 static bool canHandle(const Instruction *I) { 3170 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3171 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3172 } 3173 3174 static inline Instruction *getEmptyKey() { 3175 return DenseMapInfo<Instruction *>::getEmptyKey(); 3176 } 3177 3178 static inline Instruction *getTombstoneKey() { 3179 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3180 } 3181 3182 static unsigned getHashValue(const Instruction *I) { 3183 assert(canHandle(I) && "Unknown instruction!"); 3184 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3185 I->value_op_end())); 3186 } 3187 3188 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3189 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3190 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3191 return LHS == RHS; 3192 return LHS->isIdenticalTo(RHS); 3193 } 3194 }; 3195 3196 } // end anonymous namespace 3197 3198 ///Perform cse of induction variable instructions. 3199 static void cse(BasicBlock *BB) { 3200 // Perform simple cse. 3201 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3202 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3203 Instruction *In = &*I++; 3204 3205 if (!CSEDenseMapInfo::canHandle(In)) 3206 continue; 3207 3208 // Check if we can replace this instruction with any of the 3209 // visited instructions. 3210 if (Instruction *V = CSEMap.lookup(In)) { 3211 In->replaceAllUsesWith(V); 3212 In->eraseFromParent(); 3213 continue; 3214 } 3215 3216 CSEMap[In] = In; 3217 } 3218 } 3219 3220 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3221 unsigned VF, 3222 bool &NeedToScalarize) { 3223 Function *F = CI->getCalledFunction(); 3224 StringRef FnName = CI->getCalledFunction()->getName(); 3225 Type *ScalarRetTy = CI->getType(); 3226 SmallVector<Type *, 4> Tys, ScalarTys; 3227 for (auto &ArgOp : CI->arg_operands()) 3228 ScalarTys.push_back(ArgOp->getType()); 3229 3230 // Estimate cost of scalarized vector call. The source operands are assumed 3231 // to be vectors, so we need to extract individual elements from there, 3232 // execute VF scalar calls, and then gather the result into the vector return 3233 // value. 3234 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3235 if (VF == 1) 3236 return ScalarCallCost; 3237 3238 // Compute corresponding vector type for return value and arguments. 3239 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3240 for (Type *ScalarTy : ScalarTys) 3241 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3242 3243 // Compute costs of unpacking argument values for the scalar calls and 3244 // packing the return values to a vector. 3245 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3246 3247 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3248 3249 // If we can't emit a vector call for this function, then the currently found 3250 // cost is the cost we need to return. 3251 NeedToScalarize = true; 3252 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3253 return Cost; 3254 3255 // If the corresponding vector cost is cheaper, return its cost. 3256 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3257 if (VectorCallCost < Cost) { 3258 NeedToScalarize = false; 3259 return VectorCallCost; 3260 } 3261 return Cost; 3262 } 3263 3264 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3265 unsigned VF) { 3266 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3267 assert(ID && "Expected intrinsic call!"); 3268 3269 FastMathFlags FMF; 3270 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3271 FMF = FPMO->getFastMathFlags(); 3272 3273 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3274 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3275 } 3276 3277 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3278 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3279 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3280 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3281 } 3282 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3283 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3284 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3285 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3286 } 3287 3288 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3289 // For every instruction `I` in MinBWs, truncate the operands, create a 3290 // truncated version of `I` and reextend its result. InstCombine runs 3291 // later and will remove any ext/trunc pairs. 3292 SmallPtrSet<Value *, 4> Erased; 3293 for (const auto &KV : Cost->getMinimalBitwidths()) { 3294 // If the value wasn't vectorized, we must maintain the original scalar 3295 // type. The absence of the value from VectorLoopValueMap indicates that it 3296 // wasn't vectorized. 3297 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3298 continue; 3299 for (unsigned Part = 0; Part < UF; ++Part) { 3300 Value *I = getOrCreateVectorValue(KV.first, Part); 3301 if (Erased.find(I) != Erased.end() || I->use_empty() || 3302 !isa<Instruction>(I)) 3303 continue; 3304 Type *OriginalTy = I->getType(); 3305 Type *ScalarTruncatedTy = 3306 IntegerType::get(OriginalTy->getContext(), KV.second); 3307 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3308 OriginalTy->getVectorNumElements()); 3309 if (TruncatedTy == OriginalTy) 3310 continue; 3311 3312 IRBuilder<> B(cast<Instruction>(I)); 3313 auto ShrinkOperand = [&](Value *V) -> Value * { 3314 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3315 if (ZI->getSrcTy() == TruncatedTy) 3316 return ZI->getOperand(0); 3317 return B.CreateZExtOrTrunc(V, TruncatedTy); 3318 }; 3319 3320 // The actual instruction modification depends on the instruction type, 3321 // unfortunately. 3322 Value *NewI = nullptr; 3323 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3324 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3325 ShrinkOperand(BO->getOperand(1))); 3326 3327 // Any wrapping introduced by shrinking this operation shouldn't be 3328 // considered undefined behavior. So, we can't unconditionally copy 3329 // arithmetic wrapping flags to NewI. 3330 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3331 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3332 NewI = 3333 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3334 ShrinkOperand(CI->getOperand(1))); 3335 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3336 NewI = B.CreateSelect(SI->getCondition(), 3337 ShrinkOperand(SI->getTrueValue()), 3338 ShrinkOperand(SI->getFalseValue())); 3339 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3340 switch (CI->getOpcode()) { 3341 default: 3342 llvm_unreachable("Unhandled cast!"); 3343 case Instruction::Trunc: 3344 NewI = ShrinkOperand(CI->getOperand(0)); 3345 break; 3346 case Instruction::SExt: 3347 NewI = B.CreateSExtOrTrunc( 3348 CI->getOperand(0), 3349 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3350 break; 3351 case Instruction::ZExt: 3352 NewI = B.CreateZExtOrTrunc( 3353 CI->getOperand(0), 3354 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3355 break; 3356 } 3357 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3358 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3359 auto *O0 = B.CreateZExtOrTrunc( 3360 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3361 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3362 auto *O1 = B.CreateZExtOrTrunc( 3363 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3364 3365 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3366 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3367 // Don't do anything with the operands, just extend the result. 3368 continue; 3369 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3370 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3371 auto *O0 = B.CreateZExtOrTrunc( 3372 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3373 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3374 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3375 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3376 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3377 auto *O0 = B.CreateZExtOrTrunc( 3378 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3379 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3380 } else { 3381 // If we don't know what to do, be conservative and don't do anything. 3382 continue; 3383 } 3384 3385 // Lastly, extend the result. 3386 NewI->takeName(cast<Instruction>(I)); 3387 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3388 I->replaceAllUsesWith(Res); 3389 cast<Instruction>(I)->eraseFromParent(); 3390 Erased.insert(I); 3391 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3392 } 3393 } 3394 3395 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3396 for (const auto &KV : Cost->getMinimalBitwidths()) { 3397 // If the value wasn't vectorized, we must maintain the original scalar 3398 // type. The absence of the value from VectorLoopValueMap indicates that it 3399 // wasn't vectorized. 3400 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3401 continue; 3402 for (unsigned Part = 0; Part < UF; ++Part) { 3403 Value *I = getOrCreateVectorValue(KV.first, Part); 3404 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3405 if (Inst && Inst->use_empty()) { 3406 Value *NewI = Inst->getOperand(0); 3407 Inst->eraseFromParent(); 3408 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3409 } 3410 } 3411 } 3412 } 3413 3414 void InnerLoopVectorizer::fixVectorizedLoop() { 3415 // Insert truncates and extends for any truncated instructions as hints to 3416 // InstCombine. 3417 if (VF > 1) 3418 truncateToMinimalBitwidths(); 3419 3420 // Fix widened non-induction PHIs by setting up the PHI operands. 3421 if (OrigPHIsToFix.size()) { 3422 assert(EnableVPlanNativePath && 3423 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3424 fixNonInductionPHIs(); 3425 } 3426 3427 // At this point every instruction in the original loop is widened to a 3428 // vector form. Now we need to fix the recurrences in the loop. These PHI 3429 // nodes are currently empty because we did not want to introduce cycles. 3430 // This is the second stage of vectorizing recurrences. 3431 fixCrossIterationPHIs(); 3432 3433 // Update the dominator tree. 3434 // 3435 // FIXME: After creating the structure of the new loop, the dominator tree is 3436 // no longer up-to-date, and it remains that way until we update it 3437 // here. An out-of-date dominator tree is problematic for SCEV, 3438 // because SCEVExpander uses it to guide code generation. The 3439 // vectorizer use SCEVExpanders in several places. Instead, we should 3440 // keep the dominator tree up-to-date as we go. 3441 updateAnalysis(); 3442 3443 // Fix-up external users of the induction variables. 3444 for (auto &Entry : *Legal->getInductionVars()) 3445 fixupIVUsers(Entry.first, Entry.second, 3446 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3447 IVEndValues[Entry.first], LoopMiddleBlock); 3448 3449 fixLCSSAPHIs(); 3450 for (Instruction *PI : PredicatedInstructions) 3451 sinkScalarOperands(&*PI); 3452 3453 // Remove redundant induction instructions. 3454 cse(LoopVectorBody); 3455 } 3456 3457 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3458 // In order to support recurrences we need to be able to vectorize Phi nodes. 3459 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3460 // stage #2: We now need to fix the recurrences by adding incoming edges to 3461 // the currently empty PHI nodes. At this point every instruction in the 3462 // original loop is widened to a vector form so we can use them to construct 3463 // the incoming edges. 3464 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3465 // Handle first-order recurrences and reductions that need to be fixed. 3466 if (Legal->isFirstOrderRecurrence(&Phi)) 3467 fixFirstOrderRecurrence(&Phi); 3468 else if (Legal->isReductionVariable(&Phi)) 3469 fixReduction(&Phi); 3470 } 3471 } 3472 3473 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3474 // This is the second phase of vectorizing first-order recurrences. An 3475 // overview of the transformation is described below. Suppose we have the 3476 // following loop. 3477 // 3478 // for (int i = 0; i < n; ++i) 3479 // b[i] = a[i] - a[i - 1]; 3480 // 3481 // There is a first-order recurrence on "a". For this loop, the shorthand 3482 // scalar IR looks like: 3483 // 3484 // scalar.ph: 3485 // s_init = a[-1] 3486 // br scalar.body 3487 // 3488 // scalar.body: 3489 // i = phi [0, scalar.ph], [i+1, scalar.body] 3490 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3491 // s2 = a[i] 3492 // b[i] = s2 - s1 3493 // br cond, scalar.body, ... 3494 // 3495 // In this example, s1 is a recurrence because it's value depends on the 3496 // previous iteration. In the first phase of vectorization, we created a 3497 // temporary value for s1. We now complete the vectorization and produce the 3498 // shorthand vector IR shown below (for VF = 4, UF = 1). 3499 // 3500 // vector.ph: 3501 // v_init = vector(..., ..., ..., a[-1]) 3502 // br vector.body 3503 // 3504 // vector.body 3505 // i = phi [0, vector.ph], [i+4, vector.body] 3506 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3507 // v2 = a[i, i+1, i+2, i+3]; 3508 // v3 = vector(v1(3), v2(0, 1, 2)) 3509 // b[i, i+1, i+2, i+3] = v2 - v3 3510 // br cond, vector.body, middle.block 3511 // 3512 // middle.block: 3513 // x = v2(3) 3514 // br scalar.ph 3515 // 3516 // scalar.ph: 3517 // s_init = phi [x, middle.block], [a[-1], otherwise] 3518 // br scalar.body 3519 // 3520 // After execution completes the vector loop, we extract the next value of 3521 // the recurrence (x) to use as the initial value in the scalar loop. 3522 3523 // Get the original loop preheader and single loop latch. 3524 auto *Preheader = OrigLoop->getLoopPreheader(); 3525 auto *Latch = OrigLoop->getLoopLatch(); 3526 3527 // Get the initial and previous values of the scalar recurrence. 3528 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3529 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3530 3531 // Create a vector from the initial value. 3532 auto *VectorInit = ScalarInit; 3533 if (VF > 1) { 3534 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3535 VectorInit = Builder.CreateInsertElement( 3536 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3537 Builder.getInt32(VF - 1), "vector.recur.init"); 3538 } 3539 3540 // We constructed a temporary phi node in the first phase of vectorization. 3541 // This phi node will eventually be deleted. 3542 Builder.SetInsertPoint( 3543 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3544 3545 // Create a phi node for the new recurrence. The current value will either be 3546 // the initial value inserted into a vector or loop-varying vector value. 3547 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3548 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3549 3550 // Get the vectorized previous value of the last part UF - 1. It appears last 3551 // among all unrolled iterations, due to the order of their construction. 3552 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3553 3554 // Set the insertion point after the previous value if it is an instruction. 3555 // Note that the previous value may have been constant-folded so it is not 3556 // guaranteed to be an instruction in the vector loop. Also, if the previous 3557 // value is a phi node, we should insert after all the phi nodes to avoid 3558 // breaking basic block verification. 3559 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3560 isa<PHINode>(PreviousLastPart)) 3561 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3562 else 3563 Builder.SetInsertPoint( 3564 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3565 3566 // We will construct a vector for the recurrence by combining the values for 3567 // the current and previous iterations. This is the required shuffle mask. 3568 SmallVector<Constant *, 8> ShuffleMask(VF); 3569 ShuffleMask[0] = Builder.getInt32(VF - 1); 3570 for (unsigned I = 1; I < VF; ++I) 3571 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3572 3573 // The vector from which to take the initial value for the current iteration 3574 // (actual or unrolled). Initially, this is the vector phi node. 3575 Value *Incoming = VecPhi; 3576 3577 // Shuffle the current and previous vector and update the vector parts. 3578 for (unsigned Part = 0; Part < UF; ++Part) { 3579 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3580 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3581 auto *Shuffle = 3582 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3583 ConstantVector::get(ShuffleMask)) 3584 : Incoming; 3585 PhiPart->replaceAllUsesWith(Shuffle); 3586 cast<Instruction>(PhiPart)->eraseFromParent(); 3587 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3588 Incoming = PreviousPart; 3589 } 3590 3591 // Fix the latch value of the new recurrence in the vector loop. 3592 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3593 3594 // Extract the last vector element in the middle block. This will be the 3595 // initial value for the recurrence when jumping to the scalar loop. 3596 auto *ExtractForScalar = Incoming; 3597 if (VF > 1) { 3598 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3599 ExtractForScalar = Builder.CreateExtractElement( 3600 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3601 } 3602 // Extract the second last element in the middle block if the 3603 // Phi is used outside the loop. We need to extract the phi itself 3604 // and not the last element (the phi update in the current iteration). This 3605 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3606 // when the scalar loop is not run at all. 3607 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3608 if (VF > 1) 3609 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3610 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3611 // When loop is unrolled without vectorizing, initialize 3612 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3613 // `Incoming`. This is analogous to the vectorized case above: extracting the 3614 // second last element when VF > 1. 3615 else if (UF > 1) 3616 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3617 3618 // Fix the initial value of the original recurrence in the scalar loop. 3619 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3620 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3621 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3622 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3623 Start->addIncoming(Incoming, BB); 3624 } 3625 3626 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3627 Phi->setName("scalar.recur"); 3628 3629 // Finally, fix users of the recurrence outside the loop. The users will need 3630 // either the last value of the scalar recurrence or the last value of the 3631 // vector recurrence we extracted in the middle block. Since the loop is in 3632 // LCSSA form, we just need to find all the phi nodes for the original scalar 3633 // recurrence in the exit block, and then add an edge for the middle block. 3634 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3635 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3636 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3637 } 3638 } 3639 } 3640 3641 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3642 Constant *Zero = Builder.getInt32(0); 3643 3644 // Get it's reduction variable descriptor. 3645 assert(Legal->isReductionVariable(Phi) && 3646 "Unable to find the reduction variable"); 3647 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3648 3649 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3650 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3651 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3652 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3653 RdxDesc.getMinMaxRecurrenceKind(); 3654 setDebugLocFromInst(Builder, ReductionStartValue); 3655 3656 // We need to generate a reduction vector from the incoming scalar. 3657 // To do so, we need to generate the 'identity' vector and override 3658 // one of the elements with the incoming scalar reduction. We need 3659 // to do it in the vector-loop preheader. 3660 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3661 3662 // This is the vector-clone of the value that leaves the loop. 3663 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3664 3665 // Find the reduction identity variable. Zero for addition, or, xor, 3666 // one for multiplication, -1 for And. 3667 Value *Identity; 3668 Value *VectorStart; 3669 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3670 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3671 // MinMax reduction have the start value as their identify. 3672 if (VF == 1) { 3673 VectorStart = Identity = ReductionStartValue; 3674 } else { 3675 VectorStart = Identity = 3676 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3677 } 3678 } else { 3679 // Handle other reduction kinds: 3680 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3681 RK, VecTy->getScalarType()); 3682 if (VF == 1) { 3683 Identity = Iden; 3684 // This vector is the Identity vector where the first element is the 3685 // incoming scalar reduction. 3686 VectorStart = ReductionStartValue; 3687 } else { 3688 Identity = ConstantVector::getSplat(VF, Iden); 3689 3690 // This vector is the Identity vector where the first element is the 3691 // incoming scalar reduction. 3692 VectorStart = 3693 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3694 } 3695 } 3696 3697 // Fix the vector-loop phi. 3698 3699 // Reductions do not have to start at zero. They can start with 3700 // any loop invariant values. 3701 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3702 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3703 for (unsigned Part = 0; Part < UF; ++Part) { 3704 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3705 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3706 // Make sure to add the reduction stat value only to the 3707 // first unroll part. 3708 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3709 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3710 cast<PHINode>(VecRdxPhi) 3711 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3712 } 3713 3714 // Before each round, move the insertion point right between 3715 // the PHIs and the values we are going to write. 3716 // This allows us to write both PHINodes and the extractelement 3717 // instructions. 3718 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3719 3720 setDebugLocFromInst(Builder, LoopExitInst); 3721 3722 // If tail is folded by masking, the vector value to leave the loop should be 3723 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3724 // instead of the former. 3725 if (Cost->foldTailByMasking()) { 3726 for (unsigned Part = 0; Part < UF; ++Part) { 3727 Value *VecLoopExitInst = 3728 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3729 Value *Sel = nullptr; 3730 for (User *U : VecLoopExitInst->users()) { 3731 if (isa<SelectInst>(U)) { 3732 assert(!Sel && "Reduction exit feeding two selects"); 3733 Sel = U; 3734 } else 3735 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3736 } 3737 assert(Sel && "Reduction exit feeds no select"); 3738 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3739 } 3740 } 3741 3742 // If the vector reduction can be performed in a smaller type, we truncate 3743 // then extend the loop exit value to enable InstCombine to evaluate the 3744 // entire expression in the smaller type. 3745 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3746 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3747 Builder.SetInsertPoint( 3748 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3749 VectorParts RdxParts(UF); 3750 for (unsigned Part = 0; Part < UF; ++Part) { 3751 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3752 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3753 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3754 : Builder.CreateZExt(Trunc, VecTy); 3755 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3756 UI != RdxParts[Part]->user_end();) 3757 if (*UI != Trunc) { 3758 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3759 RdxParts[Part] = Extnd; 3760 } else { 3761 ++UI; 3762 } 3763 } 3764 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3765 for (unsigned Part = 0; Part < UF; ++Part) { 3766 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3767 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3768 } 3769 } 3770 3771 // Reduce all of the unrolled parts into a single vector. 3772 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3773 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3774 3775 // The middle block terminator has already been assigned a DebugLoc here (the 3776 // OrigLoop's single latch terminator). We want the whole middle block to 3777 // appear to execute on this line because: (a) it is all compiler generated, 3778 // (b) these instructions are always executed after evaluating the latch 3779 // conditional branch, and (c) other passes may add new predecessors which 3780 // terminate on this line. This is the easiest way to ensure we don't 3781 // accidentally cause an extra step back into the loop while debugging. 3782 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3783 for (unsigned Part = 1; Part < UF; ++Part) { 3784 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3785 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3786 // Floating point operations had to be 'fast' to enable the reduction. 3787 ReducedPartRdx = addFastMathFlag( 3788 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3789 ReducedPartRdx, "bin.rdx"), 3790 RdxDesc.getFastMathFlags()); 3791 else 3792 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3793 RdxPart); 3794 } 3795 3796 if (VF > 1) { 3797 bool NoNaN = Legal->hasFunNoNaNAttr(); 3798 ReducedPartRdx = 3799 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3800 // If the reduction can be performed in a smaller type, we need to extend 3801 // the reduction to the wider type before we branch to the original loop. 3802 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3803 ReducedPartRdx = 3804 RdxDesc.isSigned() 3805 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3806 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3807 } 3808 3809 // Create a phi node that merges control-flow from the backedge-taken check 3810 // block and the middle block. 3811 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3812 LoopScalarPreHeader->getTerminator()); 3813 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3814 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3815 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3816 3817 // Now, we need to fix the users of the reduction variable 3818 // inside and outside of the scalar remainder loop. 3819 // We know that the loop is in LCSSA form. We need to update the 3820 // PHI nodes in the exit blocks. 3821 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3822 // All PHINodes need to have a single entry edge, or two if 3823 // we already fixed them. 3824 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3825 3826 // We found a reduction value exit-PHI. Update it with the 3827 // incoming bypass edge. 3828 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3829 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3830 } // end of the LCSSA phi scan. 3831 3832 // Fix the scalar loop reduction variable with the incoming reduction sum 3833 // from the vector body and from the backedge value. 3834 int IncomingEdgeBlockIdx = 3835 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3836 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3837 // Pick the other block. 3838 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3839 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3840 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3841 } 3842 3843 void InnerLoopVectorizer::fixLCSSAPHIs() { 3844 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3845 if (LCSSAPhi.getNumIncomingValues() == 1) { 3846 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3847 // Non-instruction incoming values will have only one value. 3848 unsigned LastLane = 0; 3849 if (isa<Instruction>(IncomingValue)) 3850 LastLane = Cost->isUniformAfterVectorization( 3851 cast<Instruction>(IncomingValue), VF) 3852 ? 0 3853 : VF - 1; 3854 // Can be a loop invariant incoming value or the last scalar value to be 3855 // extracted from the vectorized loop. 3856 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3857 Value *lastIncomingValue = 3858 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3859 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3860 } 3861 } 3862 } 3863 3864 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3865 // The basic block and loop containing the predicated instruction. 3866 auto *PredBB = PredInst->getParent(); 3867 auto *VectorLoop = LI->getLoopFor(PredBB); 3868 3869 // Initialize a worklist with the operands of the predicated instruction. 3870 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3871 3872 // Holds instructions that we need to analyze again. An instruction may be 3873 // reanalyzed if we don't yet know if we can sink it or not. 3874 SmallVector<Instruction *, 8> InstsToReanalyze; 3875 3876 // Returns true if a given use occurs in the predicated block. Phi nodes use 3877 // their operands in their corresponding predecessor blocks. 3878 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3879 auto *I = cast<Instruction>(U.getUser()); 3880 BasicBlock *BB = I->getParent(); 3881 if (auto *Phi = dyn_cast<PHINode>(I)) 3882 BB = Phi->getIncomingBlock( 3883 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3884 return BB == PredBB; 3885 }; 3886 3887 // Iteratively sink the scalarized operands of the predicated instruction 3888 // into the block we created for it. When an instruction is sunk, it's 3889 // operands are then added to the worklist. The algorithm ends after one pass 3890 // through the worklist doesn't sink a single instruction. 3891 bool Changed; 3892 do { 3893 // Add the instructions that need to be reanalyzed to the worklist, and 3894 // reset the changed indicator. 3895 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3896 InstsToReanalyze.clear(); 3897 Changed = false; 3898 3899 while (!Worklist.empty()) { 3900 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3901 3902 // We can't sink an instruction if it is a phi node, is already in the 3903 // predicated block, is not in the loop, or may have side effects. 3904 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3905 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3906 continue; 3907 3908 // It's legal to sink the instruction if all its uses occur in the 3909 // predicated block. Otherwise, there's nothing to do yet, and we may 3910 // need to reanalyze the instruction. 3911 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3912 InstsToReanalyze.push_back(I); 3913 continue; 3914 } 3915 3916 // Move the instruction to the beginning of the predicated block, and add 3917 // it's operands to the worklist. 3918 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3919 Worklist.insert(I->op_begin(), I->op_end()); 3920 3921 // The sinking may have enabled other instructions to be sunk, so we will 3922 // need to iterate. 3923 Changed = true; 3924 } 3925 } while (Changed); 3926 } 3927 3928 void InnerLoopVectorizer::fixNonInductionPHIs() { 3929 for (PHINode *OrigPhi : OrigPHIsToFix) { 3930 PHINode *NewPhi = 3931 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3932 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3933 3934 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3935 predecessors(OrigPhi->getParent())); 3936 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3937 predecessors(NewPhi->getParent())); 3938 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3939 "Scalar and Vector BB should have the same number of predecessors"); 3940 3941 // The insertion point in Builder may be invalidated by the time we get 3942 // here. Force the Builder insertion point to something valid so that we do 3943 // not run into issues during insertion point restore in 3944 // getOrCreateVectorValue calls below. 3945 Builder.SetInsertPoint(NewPhi); 3946 3947 // The predecessor order is preserved and we can rely on mapping between 3948 // scalar and vector block predecessors. 3949 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3950 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3951 3952 // When looking up the new scalar/vector values to fix up, use incoming 3953 // values from original phi. 3954 Value *ScIncV = 3955 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3956 3957 // Scalar incoming value may need a broadcast 3958 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3959 NewPhi->addIncoming(NewIncV, NewPredBB); 3960 } 3961 } 3962 } 3963 3964 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3965 unsigned VF) { 3966 PHINode *P = cast<PHINode>(PN); 3967 if (EnableVPlanNativePath) { 3968 // Currently we enter here in the VPlan-native path for non-induction 3969 // PHIs where all control flow is uniform. We simply widen these PHIs. 3970 // Create a vector phi with no operands - the vector phi operands will be 3971 // set at the end of vector code generation. 3972 Type *VecTy = 3973 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3974 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3975 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3976 OrigPHIsToFix.push_back(P); 3977 3978 return; 3979 } 3980 3981 assert(PN->getParent() == OrigLoop->getHeader() && 3982 "Non-header phis should have been handled elsewhere"); 3983 3984 // In order to support recurrences we need to be able to vectorize Phi nodes. 3985 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3986 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3987 // this value when we vectorize all of the instructions that use the PHI. 3988 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3989 for (unsigned Part = 0; Part < UF; ++Part) { 3990 // This is phase one of vectorizing PHIs. 3991 Type *VecTy = 3992 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3993 Value *EntryPart = PHINode::Create( 3994 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3995 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3996 } 3997 return; 3998 } 3999 4000 setDebugLocFromInst(Builder, P); 4001 4002 // This PHINode must be an induction variable. 4003 // Make sure that we know about it. 4004 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4005 4006 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4007 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4008 4009 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4010 // which can be found from the original scalar operations. 4011 switch (II.getKind()) { 4012 case InductionDescriptor::IK_NoInduction: 4013 llvm_unreachable("Unknown induction"); 4014 case InductionDescriptor::IK_IntInduction: 4015 case InductionDescriptor::IK_FpInduction: 4016 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4017 case InductionDescriptor::IK_PtrInduction: { 4018 // Handle the pointer induction variable case. 4019 assert(P->getType()->isPointerTy() && "Unexpected type."); 4020 // This is the normalized GEP that starts counting at zero. 4021 Value *PtrInd = Induction; 4022 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4023 // Determine the number of scalars we need to generate for each unroll 4024 // iteration. If the instruction is uniform, we only need to generate the 4025 // first lane. Otherwise, we generate all VF values. 4026 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4027 // These are the scalar results. Notice that we don't generate vector GEPs 4028 // because scalar GEPs result in better code. 4029 for (unsigned Part = 0; Part < UF; ++Part) { 4030 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4031 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4032 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4033 Value *SclrGep = 4034 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4035 SclrGep->setName("next.gep"); 4036 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4037 } 4038 } 4039 return; 4040 } 4041 } 4042 } 4043 4044 /// A helper function for checking whether an integer division-related 4045 /// instruction may divide by zero (in which case it must be predicated if 4046 /// executed conditionally in the scalar code). 4047 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4048 /// Non-zero divisors that are non compile-time constants will not be 4049 /// converted into multiplication, so we will still end up scalarizing 4050 /// the division, but can do so w/o predication. 4051 static bool mayDivideByZero(Instruction &I) { 4052 assert((I.getOpcode() == Instruction::UDiv || 4053 I.getOpcode() == Instruction::SDiv || 4054 I.getOpcode() == Instruction::URem || 4055 I.getOpcode() == Instruction::SRem) && 4056 "Unexpected instruction"); 4057 Value *Divisor = I.getOperand(1); 4058 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4059 return !CInt || CInt->isZero(); 4060 } 4061 4062 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4063 switch (I.getOpcode()) { 4064 case Instruction::Br: 4065 case Instruction::PHI: 4066 llvm_unreachable("This instruction is handled by a different recipe."); 4067 case Instruction::GetElementPtr: { 4068 // Construct a vector GEP by widening the operands of the scalar GEP as 4069 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4070 // results in a vector of pointers when at least one operand of the GEP 4071 // is vector-typed. Thus, to keep the representation compact, we only use 4072 // vector-typed operands for loop-varying values. 4073 auto *GEP = cast<GetElementPtrInst>(&I); 4074 4075 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4076 // If we are vectorizing, but the GEP has only loop-invariant operands, 4077 // the GEP we build (by only using vector-typed operands for 4078 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4079 // produce a vector of pointers, we need to either arbitrarily pick an 4080 // operand to broadcast, or broadcast a clone of the original GEP. 4081 // Here, we broadcast a clone of the original. 4082 // 4083 // TODO: If at some point we decide to scalarize instructions having 4084 // loop-invariant operands, this special case will no longer be 4085 // required. We would add the scalarization decision to 4086 // collectLoopScalars() and teach getVectorValue() to broadcast 4087 // the lane-zero scalar value. 4088 auto *Clone = Builder.Insert(GEP->clone()); 4089 for (unsigned Part = 0; Part < UF; ++Part) { 4090 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4091 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4092 addMetadata(EntryPart, GEP); 4093 } 4094 } else { 4095 // If the GEP has at least one loop-varying operand, we are sure to 4096 // produce a vector of pointers. But if we are only unrolling, we want 4097 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4098 // produce with the code below will be scalar (if VF == 1) or vector 4099 // (otherwise). Note that for the unroll-only case, we still maintain 4100 // values in the vector mapping with initVector, as we do for other 4101 // instructions. 4102 for (unsigned Part = 0; Part < UF; ++Part) { 4103 // The pointer operand of the new GEP. If it's loop-invariant, we 4104 // won't broadcast it. 4105 auto *Ptr = 4106 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4107 ? GEP->getPointerOperand() 4108 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4109 4110 // Collect all the indices for the new GEP. If any index is 4111 // loop-invariant, we won't broadcast it. 4112 SmallVector<Value *, 4> Indices; 4113 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4114 if (OrigLoop->isLoopInvariant(U.get())) 4115 Indices.push_back(U.get()); 4116 else 4117 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4118 } 4119 4120 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4121 // but it should be a vector, otherwise. 4122 auto *NewGEP = 4123 GEP->isInBounds() 4124 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4125 Indices) 4126 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4127 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4128 "NewGEP is not a pointer vector"); 4129 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4130 addMetadata(NewGEP, GEP); 4131 } 4132 } 4133 4134 break; 4135 } 4136 case Instruction::UDiv: 4137 case Instruction::SDiv: 4138 case Instruction::SRem: 4139 case Instruction::URem: 4140 case Instruction::Add: 4141 case Instruction::FAdd: 4142 case Instruction::Sub: 4143 case Instruction::FSub: 4144 case Instruction::FNeg: 4145 case Instruction::Mul: 4146 case Instruction::FMul: 4147 case Instruction::FDiv: 4148 case Instruction::FRem: 4149 case Instruction::Shl: 4150 case Instruction::LShr: 4151 case Instruction::AShr: 4152 case Instruction::And: 4153 case Instruction::Or: 4154 case Instruction::Xor: { 4155 // Just widen unops and binops. 4156 setDebugLocFromInst(Builder, &I); 4157 4158 for (unsigned Part = 0; Part < UF; ++Part) { 4159 SmallVector<Value *, 2> Ops; 4160 for (Value *Op : I.operands()) 4161 Ops.push_back(getOrCreateVectorValue(Op, Part)); 4162 4163 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4164 4165 if (auto *VecOp = dyn_cast<Instruction>(V)) 4166 VecOp->copyIRFlags(&I); 4167 4168 // Use this vector value for all users of the original instruction. 4169 VectorLoopValueMap.setVectorValue(&I, Part, V); 4170 addMetadata(V, &I); 4171 } 4172 4173 break; 4174 } 4175 case Instruction::Select: { 4176 // Widen selects. 4177 // If the selector is loop invariant we can create a select 4178 // instruction with a scalar condition. Otherwise, use vector-select. 4179 auto *SE = PSE.getSE(); 4180 bool InvariantCond = 4181 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4182 setDebugLocFromInst(Builder, &I); 4183 4184 // The condition can be loop invariant but still defined inside the 4185 // loop. This means that we can't just use the original 'cond' value. 4186 // We have to take the 'vectorized' value and pick the first lane. 4187 // Instcombine will make this a no-op. 4188 4189 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4190 4191 for (unsigned Part = 0; Part < UF; ++Part) { 4192 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4193 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4194 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4195 Value *Sel = 4196 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4197 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4198 addMetadata(Sel, &I); 4199 } 4200 4201 break; 4202 } 4203 4204 case Instruction::ICmp: 4205 case Instruction::FCmp: { 4206 // Widen compares. Generate vector compares. 4207 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4208 auto *Cmp = cast<CmpInst>(&I); 4209 setDebugLocFromInst(Builder, Cmp); 4210 for (unsigned Part = 0; Part < UF; ++Part) { 4211 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4212 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4213 Value *C = nullptr; 4214 if (FCmp) { 4215 // Propagate fast math flags. 4216 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4217 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4218 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4219 } else { 4220 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4221 } 4222 VectorLoopValueMap.setVectorValue(&I, Part, C); 4223 addMetadata(C, &I); 4224 } 4225 4226 break; 4227 } 4228 4229 case Instruction::ZExt: 4230 case Instruction::SExt: 4231 case Instruction::FPToUI: 4232 case Instruction::FPToSI: 4233 case Instruction::FPExt: 4234 case Instruction::PtrToInt: 4235 case Instruction::IntToPtr: 4236 case Instruction::SIToFP: 4237 case Instruction::UIToFP: 4238 case Instruction::Trunc: 4239 case Instruction::FPTrunc: 4240 case Instruction::BitCast: { 4241 auto *CI = cast<CastInst>(&I); 4242 setDebugLocFromInst(Builder, CI); 4243 4244 /// Vectorize casts. 4245 Type *DestTy = 4246 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4247 4248 for (unsigned Part = 0; Part < UF; ++Part) { 4249 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4250 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4251 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4252 addMetadata(Cast, &I); 4253 } 4254 break; 4255 } 4256 4257 case Instruction::Call: { 4258 // Ignore dbg intrinsics. 4259 if (isa<DbgInfoIntrinsic>(I)) 4260 break; 4261 setDebugLocFromInst(Builder, &I); 4262 4263 Module *M = I.getParent()->getParent()->getParent(); 4264 auto *CI = cast<CallInst>(&I); 4265 4266 StringRef FnName = CI->getCalledFunction()->getName(); 4267 Function *F = CI->getCalledFunction(); 4268 Type *RetTy = ToVectorTy(CI->getType(), VF); 4269 SmallVector<Type *, 4> Tys; 4270 for (Value *ArgOperand : CI->arg_operands()) 4271 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4272 4273 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4274 4275 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4276 // version of the instruction. 4277 // Is it beneficial to perform intrinsic call compared to lib call? 4278 bool NeedToScalarize; 4279 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4280 bool UseVectorIntrinsic = 4281 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4282 assert((UseVectorIntrinsic || !NeedToScalarize) && 4283 "Instruction should be scalarized elsewhere."); 4284 4285 for (unsigned Part = 0; Part < UF; ++Part) { 4286 SmallVector<Value *, 4> Args; 4287 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4288 Value *Arg = CI->getArgOperand(i); 4289 // Some intrinsics have a scalar argument - don't replace it with a 4290 // vector. 4291 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4292 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4293 Args.push_back(Arg); 4294 } 4295 4296 Function *VectorF; 4297 if (UseVectorIntrinsic) { 4298 // Use vector version of the intrinsic. 4299 Type *TysForDecl[] = {CI->getType()}; 4300 if (VF > 1) 4301 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4302 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4303 } else { 4304 // Use vector version of the library call. 4305 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4306 assert(!VFnName.empty() && "Vector function name is empty."); 4307 VectorF = M->getFunction(VFnName); 4308 if (!VectorF) { 4309 // Generate a declaration 4310 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4311 VectorF = 4312 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4313 VectorF->copyAttributesFrom(F); 4314 } 4315 } 4316 assert(VectorF && "Can't create vector function."); 4317 4318 SmallVector<OperandBundleDef, 1> OpBundles; 4319 CI->getOperandBundlesAsDefs(OpBundles); 4320 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4321 4322 if (isa<FPMathOperator>(V)) 4323 V->copyFastMathFlags(CI); 4324 4325 VectorLoopValueMap.setVectorValue(&I, Part, V); 4326 addMetadata(V, &I); 4327 } 4328 4329 break; 4330 } 4331 4332 default: 4333 // This instruction is not vectorized by simple widening. 4334 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4335 llvm_unreachable("Unhandled instruction!"); 4336 } // end of switch. 4337 } 4338 4339 void InnerLoopVectorizer::updateAnalysis() { 4340 // Forget the original basic block. 4341 PSE.getSE()->forgetLoop(OrigLoop); 4342 4343 // DT is not kept up-to-date for outer loop vectorization 4344 if (EnableVPlanNativePath) 4345 return; 4346 4347 // Update the dominator tree information. 4348 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4349 "Entry does not dominate exit."); 4350 4351 DT->addNewBlock(LoopMiddleBlock, 4352 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4353 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4354 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4355 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4356 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4357 } 4358 4359 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4360 // We should not collect Scalars more than once per VF. Right now, this 4361 // function is called from collectUniformsAndScalars(), which already does 4362 // this check. Collecting Scalars for VF=1 does not make any sense. 4363 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4364 "This function should not be visited twice for the same VF"); 4365 4366 SmallSetVector<Instruction *, 8> Worklist; 4367 4368 // These sets are used to seed the analysis with pointers used by memory 4369 // accesses that will remain scalar. 4370 SmallSetVector<Instruction *, 8> ScalarPtrs; 4371 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4372 4373 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4374 // The pointer operands of loads and stores will be scalar as long as the 4375 // memory access is not a gather or scatter operation. The value operand of a 4376 // store will remain scalar if the store is scalarized. 4377 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4378 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4379 assert(WideningDecision != CM_Unknown && 4380 "Widening decision should be ready at this moment"); 4381 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4382 if (Ptr == Store->getValueOperand()) 4383 return WideningDecision == CM_Scalarize; 4384 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4385 "Ptr is neither a value or pointer operand"); 4386 return WideningDecision != CM_GatherScatter; 4387 }; 4388 4389 // A helper that returns true if the given value is a bitcast or 4390 // getelementptr instruction contained in the loop. 4391 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4392 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4393 isa<GetElementPtrInst>(V)) && 4394 !TheLoop->isLoopInvariant(V); 4395 }; 4396 4397 // A helper that evaluates a memory access's use of a pointer. If the use 4398 // will be a scalar use, and the pointer is only used by memory accesses, we 4399 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4400 // PossibleNonScalarPtrs. 4401 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4402 // We only care about bitcast and getelementptr instructions contained in 4403 // the loop. 4404 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4405 return; 4406 4407 // If the pointer has already been identified as scalar (e.g., if it was 4408 // also identified as uniform), there's nothing to do. 4409 auto *I = cast<Instruction>(Ptr); 4410 if (Worklist.count(I)) 4411 return; 4412 4413 // If the use of the pointer will be a scalar use, and all users of the 4414 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4415 // place the pointer in PossibleNonScalarPtrs. 4416 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4417 return isa<LoadInst>(U) || isa<StoreInst>(U); 4418 })) 4419 ScalarPtrs.insert(I); 4420 else 4421 PossibleNonScalarPtrs.insert(I); 4422 }; 4423 4424 // We seed the scalars analysis with three classes of instructions: (1) 4425 // instructions marked uniform-after-vectorization, (2) bitcast and 4426 // getelementptr instructions used by memory accesses requiring a scalar use, 4427 // and (3) pointer induction variables and their update instructions (we 4428 // currently only scalarize these). 4429 // 4430 // (1) Add to the worklist all instructions that have been identified as 4431 // uniform-after-vectorization. 4432 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4433 4434 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4435 // memory accesses requiring a scalar use. The pointer operands of loads and 4436 // stores will be scalar as long as the memory accesses is not a gather or 4437 // scatter operation. The value operand of a store will remain scalar if the 4438 // store is scalarized. 4439 for (auto *BB : TheLoop->blocks()) 4440 for (auto &I : *BB) { 4441 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4442 evaluatePtrUse(Load, Load->getPointerOperand()); 4443 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4444 evaluatePtrUse(Store, Store->getPointerOperand()); 4445 evaluatePtrUse(Store, Store->getValueOperand()); 4446 } 4447 } 4448 for (auto *I : ScalarPtrs) 4449 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4450 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4451 Worklist.insert(I); 4452 } 4453 4454 // (3) Add to the worklist all pointer induction variables and their update 4455 // instructions. 4456 // 4457 // TODO: Once we are able to vectorize pointer induction variables we should 4458 // no longer insert them into the worklist here. 4459 auto *Latch = TheLoop->getLoopLatch(); 4460 for (auto &Induction : *Legal->getInductionVars()) { 4461 auto *Ind = Induction.first; 4462 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4463 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4464 continue; 4465 Worklist.insert(Ind); 4466 Worklist.insert(IndUpdate); 4467 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4468 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4469 << "\n"); 4470 } 4471 4472 // Insert the forced scalars. 4473 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4474 // induction variable when the PHI user is scalarized. 4475 auto ForcedScalar = ForcedScalars.find(VF); 4476 if (ForcedScalar != ForcedScalars.end()) 4477 for (auto *I : ForcedScalar->second) 4478 Worklist.insert(I); 4479 4480 // Expand the worklist by looking through any bitcasts and getelementptr 4481 // instructions we've already identified as scalar. This is similar to the 4482 // expansion step in collectLoopUniforms(); however, here we're only 4483 // expanding to include additional bitcasts and getelementptr instructions. 4484 unsigned Idx = 0; 4485 while (Idx != Worklist.size()) { 4486 Instruction *Dst = Worklist[Idx++]; 4487 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4488 continue; 4489 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4490 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4491 auto *J = cast<Instruction>(U); 4492 return !TheLoop->contains(J) || Worklist.count(J) || 4493 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4494 isScalarUse(J, Src)); 4495 })) { 4496 Worklist.insert(Src); 4497 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4498 } 4499 } 4500 4501 // An induction variable will remain scalar if all users of the induction 4502 // variable and induction variable update remain scalar. 4503 for (auto &Induction : *Legal->getInductionVars()) { 4504 auto *Ind = Induction.first; 4505 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4506 4507 // We already considered pointer induction variables, so there's no reason 4508 // to look at their users again. 4509 // 4510 // TODO: Once we are able to vectorize pointer induction variables we 4511 // should no longer skip over them here. 4512 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4513 continue; 4514 4515 // Determine if all users of the induction variable are scalar after 4516 // vectorization. 4517 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4518 auto *I = cast<Instruction>(U); 4519 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4520 }); 4521 if (!ScalarInd) 4522 continue; 4523 4524 // Determine if all users of the induction variable update instruction are 4525 // scalar after vectorization. 4526 auto ScalarIndUpdate = 4527 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4528 auto *I = cast<Instruction>(U); 4529 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4530 }); 4531 if (!ScalarIndUpdate) 4532 continue; 4533 4534 // The induction variable and its update instruction will remain scalar. 4535 Worklist.insert(Ind); 4536 Worklist.insert(IndUpdate); 4537 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4538 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4539 << "\n"); 4540 } 4541 4542 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4543 } 4544 4545 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4546 if (!blockNeedsPredication(I->getParent())) 4547 return false; 4548 switch(I->getOpcode()) { 4549 default: 4550 break; 4551 case Instruction::Load: 4552 case Instruction::Store: { 4553 if (!Legal->isMaskRequired(I)) 4554 return false; 4555 auto *Ptr = getLoadStorePointerOperand(I); 4556 auto *Ty = getMemInstValueType(I); 4557 // We have already decided how to vectorize this instruction, get that 4558 // result. 4559 if (VF > 1) { 4560 InstWidening WideningDecision = getWideningDecision(I, VF); 4561 assert(WideningDecision != CM_Unknown && 4562 "Widening decision should be ready at this moment"); 4563 return WideningDecision == CM_Scalarize; 4564 } 4565 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4566 return isa<LoadInst>(I) ? 4567 !(isLegalMaskedLoad(Ty, Ptr, Alignment) || isLegalMaskedGather(Ty)) 4568 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || isLegalMaskedScatter(Ty)); 4569 } 4570 case Instruction::UDiv: 4571 case Instruction::SDiv: 4572 case Instruction::SRem: 4573 case Instruction::URem: 4574 return mayDivideByZero(*I); 4575 } 4576 return false; 4577 } 4578 4579 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4580 unsigned VF) { 4581 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4582 assert(getWideningDecision(I, VF) == CM_Unknown && 4583 "Decision should not be set yet."); 4584 auto *Group = getInterleavedAccessGroup(I); 4585 assert(Group && "Must have a group."); 4586 4587 // If the instruction's allocated size doesn't equal it's type size, it 4588 // requires padding and will be scalarized. 4589 auto &DL = I->getModule()->getDataLayout(); 4590 auto *ScalarTy = getMemInstValueType(I); 4591 if (hasIrregularType(ScalarTy, DL, VF)) 4592 return false; 4593 4594 // Check if masking is required. 4595 // A Group may need masking for one of two reasons: it resides in a block that 4596 // needs predication, or it was decided to use masking to deal with gaps. 4597 bool PredicatedAccessRequiresMasking = 4598 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4599 bool AccessWithGapsRequiresMasking = 4600 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4601 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4602 return true; 4603 4604 // If masked interleaving is required, we expect that the user/target had 4605 // enabled it, because otherwise it either wouldn't have been created or 4606 // it should have been invalidated by the CostModel. 4607 assert(useMaskedInterleavedAccesses(TTI) && 4608 "Masked interleave-groups for predicated accesses are not enabled."); 4609 4610 auto *Ty = getMemInstValueType(I); 4611 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4612 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4613 : TTI.isLegalMaskedStore(Ty, Alignment); 4614 } 4615 4616 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4617 unsigned VF) { 4618 // Get and ensure we have a valid memory instruction. 4619 LoadInst *LI = dyn_cast<LoadInst>(I); 4620 StoreInst *SI = dyn_cast<StoreInst>(I); 4621 assert((LI || SI) && "Invalid memory instruction"); 4622 4623 auto *Ptr = getLoadStorePointerOperand(I); 4624 4625 // In order to be widened, the pointer should be consecutive, first of all. 4626 if (!Legal->isConsecutivePtr(Ptr)) 4627 return false; 4628 4629 // If the instruction is a store located in a predicated block, it will be 4630 // scalarized. 4631 if (isScalarWithPredication(I)) 4632 return false; 4633 4634 // If the instruction's allocated size doesn't equal it's type size, it 4635 // requires padding and will be scalarized. 4636 auto &DL = I->getModule()->getDataLayout(); 4637 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4638 if (hasIrregularType(ScalarTy, DL, VF)) 4639 return false; 4640 4641 return true; 4642 } 4643 4644 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4645 // We should not collect Uniforms more than once per VF. Right now, 4646 // this function is called from collectUniformsAndScalars(), which 4647 // already does this check. Collecting Uniforms for VF=1 does not make any 4648 // sense. 4649 4650 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4651 "This function should not be visited twice for the same VF"); 4652 4653 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4654 // not analyze again. Uniforms.count(VF) will return 1. 4655 Uniforms[VF].clear(); 4656 4657 // We now know that the loop is vectorizable! 4658 // Collect instructions inside the loop that will remain uniform after 4659 // vectorization. 4660 4661 // Global values, params and instructions outside of current loop are out of 4662 // scope. 4663 auto isOutOfScope = [&](Value *V) -> bool { 4664 Instruction *I = dyn_cast<Instruction>(V); 4665 return (!I || !TheLoop->contains(I)); 4666 }; 4667 4668 SetVector<Instruction *> Worklist; 4669 BasicBlock *Latch = TheLoop->getLoopLatch(); 4670 4671 // Start with the conditional branch. If the branch condition is an 4672 // instruction contained in the loop that is only used by the branch, it is 4673 // uniform. 4674 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4675 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4676 Worklist.insert(Cmp); 4677 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4678 } 4679 4680 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4681 // are pointers that are treated like consecutive pointers during 4682 // vectorization. The pointer operands of interleaved accesses are an 4683 // example. 4684 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4685 4686 // Holds pointer operands of instructions that are possibly non-uniform. 4687 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4688 4689 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4690 InstWidening WideningDecision = getWideningDecision(I, VF); 4691 assert(WideningDecision != CM_Unknown && 4692 "Widening decision should be ready at this moment"); 4693 4694 return (WideningDecision == CM_Widen || 4695 WideningDecision == CM_Widen_Reverse || 4696 WideningDecision == CM_Interleave); 4697 }; 4698 // Iterate over the instructions in the loop, and collect all 4699 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4700 // that a consecutive-like pointer operand will be scalarized, we collect it 4701 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4702 // getelementptr instruction can be used by both vectorized and scalarized 4703 // memory instructions. For example, if a loop loads and stores from the same 4704 // location, but the store is conditional, the store will be scalarized, and 4705 // the getelementptr won't remain uniform. 4706 for (auto *BB : TheLoop->blocks()) 4707 for (auto &I : *BB) { 4708 // If there's no pointer operand, there's nothing to do. 4709 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4710 if (!Ptr) 4711 continue; 4712 4713 // True if all users of Ptr are memory accesses that have Ptr as their 4714 // pointer operand. 4715 auto UsersAreMemAccesses = 4716 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4717 return getLoadStorePointerOperand(U) == Ptr; 4718 }); 4719 4720 // Ensure the memory instruction will not be scalarized or used by 4721 // gather/scatter, making its pointer operand non-uniform. If the pointer 4722 // operand is used by any instruction other than a memory access, we 4723 // conservatively assume the pointer operand may be non-uniform. 4724 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4725 PossibleNonUniformPtrs.insert(Ptr); 4726 4727 // If the memory instruction will be vectorized and its pointer operand 4728 // is consecutive-like, or interleaving - the pointer operand should 4729 // remain uniform. 4730 else 4731 ConsecutiveLikePtrs.insert(Ptr); 4732 } 4733 4734 // Add to the Worklist all consecutive and consecutive-like pointers that 4735 // aren't also identified as possibly non-uniform. 4736 for (auto *V : ConsecutiveLikePtrs) 4737 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4738 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4739 Worklist.insert(V); 4740 } 4741 4742 // Expand Worklist in topological order: whenever a new instruction 4743 // is added , its users should be already inside Worklist. It ensures 4744 // a uniform instruction will only be used by uniform instructions. 4745 unsigned idx = 0; 4746 while (idx != Worklist.size()) { 4747 Instruction *I = Worklist[idx++]; 4748 4749 for (auto OV : I->operand_values()) { 4750 // isOutOfScope operands cannot be uniform instructions. 4751 if (isOutOfScope(OV)) 4752 continue; 4753 // First order recurrence Phi's should typically be considered 4754 // non-uniform. 4755 auto *OP = dyn_cast<PHINode>(OV); 4756 if (OP && Legal->isFirstOrderRecurrence(OP)) 4757 continue; 4758 // If all the users of the operand are uniform, then add the 4759 // operand into the uniform worklist. 4760 auto *OI = cast<Instruction>(OV); 4761 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4762 auto *J = cast<Instruction>(U); 4763 return Worklist.count(J) || 4764 (OI == getLoadStorePointerOperand(J) && 4765 isUniformDecision(J, VF)); 4766 })) { 4767 Worklist.insert(OI); 4768 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4769 } 4770 } 4771 } 4772 4773 // Returns true if Ptr is the pointer operand of a memory access instruction 4774 // I, and I is known to not require scalarization. 4775 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4776 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4777 }; 4778 4779 // For an instruction to be added into Worklist above, all its users inside 4780 // the loop should also be in Worklist. However, this condition cannot be 4781 // true for phi nodes that form a cyclic dependence. We must process phi 4782 // nodes separately. An induction variable will remain uniform if all users 4783 // of the induction variable and induction variable update remain uniform. 4784 // The code below handles both pointer and non-pointer induction variables. 4785 for (auto &Induction : *Legal->getInductionVars()) { 4786 auto *Ind = Induction.first; 4787 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4788 4789 // Determine if all users of the induction variable are uniform after 4790 // vectorization. 4791 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4792 auto *I = cast<Instruction>(U); 4793 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4794 isVectorizedMemAccessUse(I, Ind); 4795 }); 4796 if (!UniformInd) 4797 continue; 4798 4799 // Determine if all users of the induction variable update instruction are 4800 // uniform after vectorization. 4801 auto UniformIndUpdate = 4802 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4803 auto *I = cast<Instruction>(U); 4804 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4805 isVectorizedMemAccessUse(I, IndUpdate); 4806 }); 4807 if (!UniformIndUpdate) 4808 continue; 4809 4810 // The induction variable and its update instruction will remain uniform. 4811 Worklist.insert(Ind); 4812 Worklist.insert(IndUpdate); 4813 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4814 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4815 << "\n"); 4816 } 4817 4818 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4819 } 4820 4821 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4822 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4823 4824 if (Legal->getRuntimePointerChecking()->Need) { 4825 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4826 "runtime pointer checks needed. Enable vectorization of this " 4827 "loop with '#pragma clang loop vectorize(enable)' when " 4828 "compiling with -Os/-Oz", 4829 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4830 return true; 4831 } 4832 4833 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4834 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4835 "runtime SCEV checks needed. Enable vectorization of this " 4836 "loop with '#pragma clang loop vectorize(enable)' when " 4837 "compiling with -Os/-Oz", 4838 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4839 return true; 4840 } 4841 4842 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4843 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4844 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4845 "runtime stride == 1 checks needed. Enable vectorization of " 4846 "this loop with '#pragma clang loop vectorize(enable)' when " 4847 "compiling with -Os/-Oz", 4848 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4849 return true; 4850 } 4851 4852 return false; 4853 } 4854 4855 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4856 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4857 // TODO: It may by useful to do since it's still likely to be dynamically 4858 // uniform if the target can skip. 4859 reportVectorizationFailure( 4860 "Not inserting runtime ptr check for divergent target", 4861 "runtime pointer checks needed. Not enabled for divergent target", 4862 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4863 return None; 4864 } 4865 4866 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4867 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4868 if (TC == 1) { 4869 reportVectorizationFailure("Single iteration (non) loop", 4870 "loop trip count is one, irrelevant for vectorization", 4871 "SingleIterationLoop", ORE, TheLoop); 4872 return None; 4873 } 4874 4875 switch (ScalarEpilogueStatus) { 4876 case CM_ScalarEpilogueAllowed: 4877 return computeFeasibleMaxVF(TC); 4878 case CM_ScalarEpilogueNotNeededUsePredicate: 4879 LLVM_DEBUG( 4880 dbgs() << "LV: vector predicate hint/switch found.\n" 4881 << "LV: Not allowing scalar epilogue, creating predicated " 4882 << "vector loop.\n"); 4883 break; 4884 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4885 // fallthrough as a special case of OptForSize 4886 case CM_ScalarEpilogueNotAllowedOptSize: 4887 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4888 LLVM_DEBUG( 4889 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4890 else 4891 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4892 << "count.\n"); 4893 4894 // Bail if runtime checks are required, which are not good when optimising 4895 // for size. 4896 if (runtimeChecksRequired()) 4897 return None; 4898 break; 4899 } 4900 4901 // Now try the tail folding 4902 4903 // Invalidate interleave groups that require an epilogue if we can't mask 4904 // the interleave-group. 4905 if (!useMaskedInterleavedAccesses(TTI)) 4906 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4907 4908 unsigned MaxVF = computeFeasibleMaxVF(TC); 4909 if (TC > 0 && TC % MaxVF == 0) { 4910 // Accept MaxVF if we do not have a tail. 4911 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4912 return MaxVF; 4913 } 4914 4915 // If we don't know the precise trip count, or if the trip count that we 4916 // found modulo the vectorization factor is not zero, try to fold the tail 4917 // by masking. 4918 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4919 if (Legal->prepareToFoldTailByMasking()) { 4920 FoldTailByMasking = true; 4921 return MaxVF; 4922 } 4923 4924 if (TC == 0) { 4925 reportVectorizationFailure( 4926 "Unable to calculate the loop count due to complex control flow", 4927 "unable to calculate the loop count due to complex control flow", 4928 "UnknownLoopCountComplexCFG", ORE, TheLoop); 4929 return None; 4930 } 4931 4932 reportVectorizationFailure( 4933 "Cannot optimize for size and vectorize at the same time.", 4934 "cannot optimize for size and vectorize at the same time. " 4935 "Enable vectorization of this loop with '#pragma clang loop " 4936 "vectorize(enable)' when compiling with -Os/-Oz", 4937 "NoTailLoopWithOptForSize", ORE, TheLoop); 4938 return None; 4939 } 4940 4941 unsigned 4942 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 4943 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4944 unsigned SmallestType, WidestType; 4945 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4946 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4947 4948 // Get the maximum safe dependence distance in bits computed by LAA. 4949 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4950 // the memory accesses that is most restrictive (involved in the smallest 4951 // dependence distance). 4952 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4953 4954 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4955 4956 unsigned MaxVectorSize = WidestRegister / WidestType; 4957 4958 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4959 << " / " << WidestType << " bits.\n"); 4960 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4961 << WidestRegister << " bits.\n"); 4962 4963 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4964 " into one vector!"); 4965 if (MaxVectorSize == 0) { 4966 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4967 MaxVectorSize = 1; 4968 return MaxVectorSize; 4969 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4970 isPowerOf2_32(ConstTripCount)) { 4971 // We need to clamp the VF to be the ConstTripCount. There is no point in 4972 // choosing a higher viable VF as done in the loop below. 4973 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4974 << ConstTripCount << "\n"); 4975 MaxVectorSize = ConstTripCount; 4976 return MaxVectorSize; 4977 } 4978 4979 unsigned MaxVF = MaxVectorSize; 4980 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 4981 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 4982 // Collect all viable vectorization factors larger than the default MaxVF 4983 // (i.e. MaxVectorSize). 4984 SmallVector<unsigned, 8> VFs; 4985 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4986 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4987 VFs.push_back(VS); 4988 4989 // For each VF calculate its register usage. 4990 auto RUs = calculateRegisterUsage(VFs); 4991 4992 // Select the largest VF which doesn't require more registers than existing 4993 // ones. 4994 for (int i = RUs.size() - 1; i >= 0; --i) { 4995 bool Selected = true; 4996 for (auto& pair : RUs[i].MaxLocalUsers) { 4997 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 4998 if (pair.second > TargetNumRegisters) 4999 Selected = false; 5000 } 5001 if (Selected) { 5002 MaxVF = VFs[i]; 5003 break; 5004 } 5005 } 5006 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5007 if (MaxVF < MinVF) { 5008 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5009 << ") with target's minimum: " << MinVF << '\n'); 5010 MaxVF = MinVF; 5011 } 5012 } 5013 } 5014 return MaxVF; 5015 } 5016 5017 VectorizationFactor 5018 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5019 float Cost = expectedCost(1).first; 5020 const float ScalarCost = Cost; 5021 unsigned Width = 1; 5022 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5023 5024 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5025 if (ForceVectorization && MaxVF > 1) { 5026 // Ignore scalar width, because the user explicitly wants vectorization. 5027 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5028 // evaluation. 5029 Cost = std::numeric_limits<float>::max(); 5030 } 5031 5032 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5033 // Notice that the vector loop needs to be executed less times, so 5034 // we need to divide the cost of the vector loops by the width of 5035 // the vector elements. 5036 VectorizationCostTy C = expectedCost(i); 5037 float VectorCost = C.first / (float)i; 5038 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5039 << " costs: " << (int)VectorCost << ".\n"); 5040 if (!C.second && !ForceVectorization) { 5041 LLVM_DEBUG( 5042 dbgs() << "LV: Not considering vector loop of width " << i 5043 << " because it will not generate any vector instructions.\n"); 5044 continue; 5045 } 5046 if (VectorCost < Cost) { 5047 Cost = VectorCost; 5048 Width = i; 5049 } 5050 } 5051 5052 if (!EnableCondStoresVectorization && NumPredStores) { 5053 reportVectorizationFailure("There are conditional stores.", 5054 "store that is conditionally executed prevents vectorization", 5055 "ConditionalStore", ORE, TheLoop); 5056 Width = 1; 5057 Cost = ScalarCost; 5058 } 5059 5060 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5061 << "LV: Vectorization seems to be not beneficial, " 5062 << "but was forced by a user.\n"); 5063 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5064 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5065 return Factor; 5066 } 5067 5068 std::pair<unsigned, unsigned> 5069 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5070 unsigned MinWidth = -1U; 5071 unsigned MaxWidth = 8; 5072 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5073 5074 // For each block. 5075 for (BasicBlock *BB : TheLoop->blocks()) { 5076 // For each instruction in the loop. 5077 for (Instruction &I : BB->instructionsWithoutDebug()) { 5078 Type *T = I.getType(); 5079 5080 // Skip ignored values. 5081 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5082 continue; 5083 5084 // Only examine Loads, Stores and PHINodes. 5085 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5086 continue; 5087 5088 // Examine PHI nodes that are reduction variables. Update the type to 5089 // account for the recurrence type. 5090 if (auto *PN = dyn_cast<PHINode>(&I)) { 5091 if (!Legal->isReductionVariable(PN)) 5092 continue; 5093 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5094 T = RdxDesc.getRecurrenceType(); 5095 } 5096 5097 // Examine the stored values. 5098 if (auto *ST = dyn_cast<StoreInst>(&I)) 5099 T = ST->getValueOperand()->getType(); 5100 5101 // Ignore loaded pointer types and stored pointer types that are not 5102 // vectorizable. 5103 // 5104 // FIXME: The check here attempts to predict whether a load or store will 5105 // be vectorized. We only know this for certain after a VF has 5106 // been selected. Here, we assume that if an access can be 5107 // vectorized, it will be. We should also look at extending this 5108 // optimization to non-pointer types. 5109 // 5110 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5111 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5112 continue; 5113 5114 MinWidth = std::min(MinWidth, 5115 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5116 MaxWidth = std::max(MaxWidth, 5117 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5118 } 5119 } 5120 5121 return {MinWidth, MaxWidth}; 5122 } 5123 5124 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5125 unsigned LoopCost) { 5126 // -- The interleave heuristics -- 5127 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5128 // There are many micro-architectural considerations that we can't predict 5129 // at this level. For example, frontend pressure (on decode or fetch) due to 5130 // code size, or the number and capabilities of the execution ports. 5131 // 5132 // We use the following heuristics to select the interleave count: 5133 // 1. If the code has reductions, then we interleave to break the cross 5134 // iteration dependency. 5135 // 2. If the loop is really small, then we interleave to reduce the loop 5136 // overhead. 5137 // 3. We don't interleave if we think that we will spill registers to memory 5138 // due to the increased register pressure. 5139 5140 if (!isScalarEpilogueAllowed()) 5141 return 1; 5142 5143 // We used the distance for the interleave count. 5144 if (Legal->getMaxSafeDepDistBytes() != -1U) 5145 return 1; 5146 5147 // Do not interleave loops with a relatively small known or estimated trip 5148 // count. 5149 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5150 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5151 return 1; 5152 5153 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5154 // We divide by these constants so assume that we have at least one 5155 // instruction that uses at least one register. 5156 for (auto& pair : R.MaxLocalUsers) { 5157 pair.second = std::max(pair.second, 1U); 5158 } 5159 5160 // We calculate the interleave count using the following formula. 5161 // Subtract the number of loop invariants from the number of available 5162 // registers. These registers are used by all of the interleaved instances. 5163 // Next, divide the remaining registers by the number of registers that is 5164 // required by the loop, in order to estimate how many parallel instances 5165 // fit without causing spills. All of this is rounded down if necessary to be 5166 // a power of two. We want power of two interleave count to simplify any 5167 // addressing operations or alignment considerations. 5168 // We also want power of two interleave counts to ensure that the induction 5169 // variable of the vector loop wraps to zero, when tail is folded by masking; 5170 // this currently happens when OptForSize, in which case IC is set to 1 above. 5171 unsigned IC = UINT_MAX; 5172 5173 for (auto& pair : R.MaxLocalUsers) { 5174 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5175 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5176 << " registers of " 5177 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5178 if (VF == 1) { 5179 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5180 TargetNumRegisters = ForceTargetNumScalarRegs; 5181 } else { 5182 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5183 TargetNumRegisters = ForceTargetNumVectorRegs; 5184 } 5185 unsigned MaxLocalUsers = pair.second; 5186 unsigned LoopInvariantRegs = 0; 5187 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5188 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5189 5190 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5191 // Don't count the induction variable as interleaved. 5192 if (EnableIndVarRegisterHeur) { 5193 TmpIC = 5194 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5195 std::max(1U, (MaxLocalUsers - 1))); 5196 } 5197 5198 IC = std::min(IC, TmpIC); 5199 } 5200 5201 // Clamp the interleave ranges to reasonable counts. 5202 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5203 5204 // Check if the user has overridden the max. 5205 if (VF == 1) { 5206 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5207 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5208 } else { 5209 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5210 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5211 } 5212 5213 // If trip count is known or estimated compile time constant, limit the 5214 // interleave count to be less than the trip count divided by VF. 5215 if (BestKnownTC) { 5216 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5217 } 5218 5219 // If we did not calculate the cost for VF (because the user selected the VF) 5220 // then we calculate the cost of VF here. 5221 if (LoopCost == 0) 5222 LoopCost = expectedCost(VF).first; 5223 5224 assert(LoopCost && "Non-zero loop cost expected"); 5225 5226 // Clamp the calculated IC to be between the 1 and the max interleave count 5227 // that the target and trip count allows. 5228 if (IC > MaxInterleaveCount) 5229 IC = MaxInterleaveCount; 5230 else if (IC < 1) 5231 IC = 1; 5232 5233 // Interleave if we vectorized this loop and there is a reduction that could 5234 // benefit from interleaving. 5235 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5236 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5237 return IC; 5238 } 5239 5240 // Note that if we've already vectorized the loop we will have done the 5241 // runtime check and so interleaving won't require further checks. 5242 bool InterleavingRequiresRuntimePointerCheck = 5243 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5244 5245 // We want to interleave small loops in order to reduce the loop overhead and 5246 // potentially expose ILP opportunities. 5247 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5248 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5249 // We assume that the cost overhead is 1 and we use the cost model 5250 // to estimate the cost of the loop and interleave until the cost of the 5251 // loop overhead is about 5% of the cost of the loop. 5252 unsigned SmallIC = 5253 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5254 5255 // Interleave until store/load ports (estimated by max interleave count) are 5256 // saturated. 5257 unsigned NumStores = Legal->getNumStores(); 5258 unsigned NumLoads = Legal->getNumLoads(); 5259 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5260 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5261 5262 // If we have a scalar reduction (vector reductions are already dealt with 5263 // by this point), we can increase the critical path length if the loop 5264 // we're interleaving is inside another loop. Limit, by default to 2, so the 5265 // critical path only gets increased by one reduction operation. 5266 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5267 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5268 SmallIC = std::min(SmallIC, F); 5269 StoresIC = std::min(StoresIC, F); 5270 LoadsIC = std::min(LoadsIC, F); 5271 } 5272 5273 if (EnableLoadStoreRuntimeInterleave && 5274 std::max(StoresIC, LoadsIC) > SmallIC) { 5275 LLVM_DEBUG( 5276 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5277 return std::max(StoresIC, LoadsIC); 5278 } 5279 5280 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5281 return SmallIC; 5282 } 5283 5284 // Interleave if this is a large loop (small loops are already dealt with by 5285 // this point) that could benefit from interleaving. 5286 bool HasReductions = !Legal->getReductionVars()->empty(); 5287 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5288 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5289 return IC; 5290 } 5291 5292 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5293 return 1; 5294 } 5295 5296 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5297 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5298 // This function calculates the register usage by measuring the highest number 5299 // of values that are alive at a single location. Obviously, this is a very 5300 // rough estimation. We scan the loop in a topological order in order and 5301 // assign a number to each instruction. We use RPO to ensure that defs are 5302 // met before their users. We assume that each instruction that has in-loop 5303 // users starts an interval. We record every time that an in-loop value is 5304 // used, so we have a list of the first and last occurrences of each 5305 // instruction. Next, we transpose this data structure into a multi map that 5306 // holds the list of intervals that *end* at a specific location. This multi 5307 // map allows us to perform a linear search. We scan the instructions linearly 5308 // and record each time that a new interval starts, by placing it in a set. 5309 // If we find this value in the multi-map then we remove it from the set. 5310 // The max register usage is the maximum size of the set. 5311 // We also search for instructions that are defined outside the loop, but are 5312 // used inside the loop. We need this number separately from the max-interval 5313 // usage number because when we unroll, loop-invariant values do not take 5314 // more register. 5315 LoopBlocksDFS DFS(TheLoop); 5316 DFS.perform(LI); 5317 5318 RegisterUsage RU; 5319 5320 // Each 'key' in the map opens a new interval. The values 5321 // of the map are the index of the 'last seen' usage of the 5322 // instruction that is the key. 5323 using IntervalMap = DenseMap<Instruction *, unsigned>; 5324 5325 // Maps instruction to its index. 5326 SmallVector<Instruction *, 64> IdxToInstr; 5327 // Marks the end of each interval. 5328 IntervalMap EndPoint; 5329 // Saves the list of instruction indices that are used in the loop. 5330 SmallPtrSet<Instruction *, 8> Ends; 5331 // Saves the list of values that are used in the loop but are 5332 // defined outside the loop, such as arguments and constants. 5333 SmallPtrSet<Value *, 8> LoopInvariants; 5334 5335 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5336 for (Instruction &I : BB->instructionsWithoutDebug()) { 5337 IdxToInstr.push_back(&I); 5338 5339 // Save the end location of each USE. 5340 for (Value *U : I.operands()) { 5341 auto *Instr = dyn_cast<Instruction>(U); 5342 5343 // Ignore non-instruction values such as arguments, constants, etc. 5344 if (!Instr) 5345 continue; 5346 5347 // If this instruction is outside the loop then record it and continue. 5348 if (!TheLoop->contains(Instr)) { 5349 LoopInvariants.insert(Instr); 5350 continue; 5351 } 5352 5353 // Overwrite previous end points. 5354 EndPoint[Instr] = IdxToInstr.size(); 5355 Ends.insert(Instr); 5356 } 5357 } 5358 } 5359 5360 // Saves the list of intervals that end with the index in 'key'. 5361 using InstrList = SmallVector<Instruction *, 2>; 5362 DenseMap<unsigned, InstrList> TransposeEnds; 5363 5364 // Transpose the EndPoints to a list of values that end at each index. 5365 for (auto &Interval : EndPoint) 5366 TransposeEnds[Interval.second].push_back(Interval.first); 5367 5368 SmallPtrSet<Instruction *, 8> OpenIntervals; 5369 5370 // Get the size of the widest register. 5371 unsigned MaxSafeDepDist = -1U; 5372 if (Legal->getMaxSafeDepDistBytes() != -1U) 5373 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5374 unsigned WidestRegister = 5375 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5376 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5377 5378 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5379 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5380 5381 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5382 5383 // A lambda that gets the register usage for the given type and VF. 5384 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5385 if (Ty->isTokenTy()) 5386 return 0U; 5387 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5388 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5389 }; 5390 5391 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5392 Instruction *I = IdxToInstr[i]; 5393 5394 // Remove all of the instructions that end at this location. 5395 InstrList &List = TransposeEnds[i]; 5396 for (Instruction *ToRemove : List) 5397 OpenIntervals.erase(ToRemove); 5398 5399 // Ignore instructions that are never used within the loop. 5400 if (Ends.find(I) == Ends.end()) 5401 continue; 5402 5403 // Skip ignored values. 5404 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5405 continue; 5406 5407 // For each VF find the maximum usage of registers. 5408 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5409 // Count the number of live intervals. 5410 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5411 5412 if (VFs[j] == 1) { 5413 for (auto Inst : OpenIntervals) { 5414 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5415 if (RegUsage.find(ClassID) == RegUsage.end()) 5416 RegUsage[ClassID] = 1; 5417 else 5418 RegUsage[ClassID] += 1; 5419 } 5420 } else { 5421 collectUniformsAndScalars(VFs[j]); 5422 for (auto Inst : OpenIntervals) { 5423 // Skip ignored values for VF > 1. 5424 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5425 continue; 5426 if (isScalarAfterVectorization(Inst, VFs[j])) { 5427 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5428 if (RegUsage.find(ClassID) == RegUsage.end()) 5429 RegUsage[ClassID] = 1; 5430 else 5431 RegUsage[ClassID] += 1; 5432 } else { 5433 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5434 if (RegUsage.find(ClassID) == RegUsage.end()) 5435 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5436 else 5437 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5438 } 5439 } 5440 } 5441 5442 for (auto& pair : RegUsage) { 5443 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5444 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5445 else 5446 MaxUsages[j][pair.first] = pair.second; 5447 } 5448 } 5449 5450 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5451 << OpenIntervals.size() << '\n'); 5452 5453 // Add the current instruction to the list of open intervals. 5454 OpenIntervals.insert(I); 5455 } 5456 5457 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5458 SmallMapVector<unsigned, unsigned, 4> Invariant; 5459 5460 for (auto Inst : LoopInvariants) { 5461 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5462 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5463 if (Invariant.find(ClassID) == Invariant.end()) 5464 Invariant[ClassID] = Usage; 5465 else 5466 Invariant[ClassID] += Usage; 5467 } 5468 5469 LLVM_DEBUG({ 5470 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5471 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5472 << " item\n"; 5473 for (const auto &pair : MaxUsages[i]) { 5474 dbgs() << "LV(REG): RegisterClass: " 5475 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5476 << " registers\n"; 5477 } 5478 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5479 << " item\n"; 5480 for (const auto &pair : Invariant) { 5481 dbgs() << "LV(REG): RegisterClass: " 5482 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5483 << " registers\n"; 5484 } 5485 }); 5486 5487 RU.LoopInvariantRegs = Invariant; 5488 RU.MaxLocalUsers = MaxUsages[i]; 5489 RUs[i] = RU; 5490 } 5491 5492 return RUs; 5493 } 5494 5495 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5496 // TODO: Cost model for emulated masked load/store is completely 5497 // broken. This hack guides the cost model to use an artificially 5498 // high enough value to practically disable vectorization with such 5499 // operations, except where previously deployed legality hack allowed 5500 // using very low cost values. This is to avoid regressions coming simply 5501 // from moving "masked load/store" check from legality to cost model. 5502 // Masked Load/Gather emulation was previously never allowed. 5503 // Limited number of Masked Store/Scatter emulation was allowed. 5504 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5505 return isa<LoadInst>(I) || 5506 (isa<StoreInst>(I) && 5507 NumPredStores > NumberOfStoresToPredicate); 5508 } 5509 5510 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5511 // If we aren't vectorizing the loop, or if we've already collected the 5512 // instructions to scalarize, there's nothing to do. Collection may already 5513 // have occurred if we have a user-selected VF and are now computing the 5514 // expected cost for interleaving. 5515 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5516 return; 5517 5518 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5519 // not profitable to scalarize any instructions, the presence of VF in the 5520 // map will indicate that we've analyzed it already. 5521 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5522 5523 // Find all the instructions that are scalar with predication in the loop and 5524 // determine if it would be better to not if-convert the blocks they are in. 5525 // If so, we also record the instructions to scalarize. 5526 for (BasicBlock *BB : TheLoop->blocks()) { 5527 if (!blockNeedsPredication(BB)) 5528 continue; 5529 for (Instruction &I : *BB) 5530 if (isScalarWithPredication(&I)) { 5531 ScalarCostsTy ScalarCosts; 5532 // Do not apply discount logic if hacked cost is needed 5533 // for emulated masked memrefs. 5534 if (!useEmulatedMaskMemRefHack(&I) && 5535 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5536 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5537 // Remember that BB will remain after vectorization. 5538 PredicatedBBsAfterVectorization.insert(BB); 5539 } 5540 } 5541 } 5542 5543 int LoopVectorizationCostModel::computePredInstDiscount( 5544 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5545 unsigned VF) { 5546 assert(!isUniformAfterVectorization(PredInst, VF) && 5547 "Instruction marked uniform-after-vectorization will be predicated"); 5548 5549 // Initialize the discount to zero, meaning that the scalar version and the 5550 // vector version cost the same. 5551 int Discount = 0; 5552 5553 // Holds instructions to analyze. The instructions we visit are mapped in 5554 // ScalarCosts. Those instructions are the ones that would be scalarized if 5555 // we find that the scalar version costs less. 5556 SmallVector<Instruction *, 8> Worklist; 5557 5558 // Returns true if the given instruction can be scalarized. 5559 auto canBeScalarized = [&](Instruction *I) -> bool { 5560 // We only attempt to scalarize instructions forming a single-use chain 5561 // from the original predicated block that would otherwise be vectorized. 5562 // Although not strictly necessary, we give up on instructions we know will 5563 // already be scalar to avoid traversing chains that are unlikely to be 5564 // beneficial. 5565 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5566 isScalarAfterVectorization(I, VF)) 5567 return false; 5568 5569 // If the instruction is scalar with predication, it will be analyzed 5570 // separately. We ignore it within the context of PredInst. 5571 if (isScalarWithPredication(I)) 5572 return false; 5573 5574 // If any of the instruction's operands are uniform after vectorization, 5575 // the instruction cannot be scalarized. This prevents, for example, a 5576 // masked load from being scalarized. 5577 // 5578 // We assume we will only emit a value for lane zero of an instruction 5579 // marked uniform after vectorization, rather than VF identical values. 5580 // Thus, if we scalarize an instruction that uses a uniform, we would 5581 // create uses of values corresponding to the lanes we aren't emitting code 5582 // for. This behavior can be changed by allowing getScalarValue to clone 5583 // the lane zero values for uniforms rather than asserting. 5584 for (Use &U : I->operands()) 5585 if (auto *J = dyn_cast<Instruction>(U.get())) 5586 if (isUniformAfterVectorization(J, VF)) 5587 return false; 5588 5589 // Otherwise, we can scalarize the instruction. 5590 return true; 5591 }; 5592 5593 // Compute the expected cost discount from scalarizing the entire expression 5594 // feeding the predicated instruction. We currently only consider expressions 5595 // that are single-use instruction chains. 5596 Worklist.push_back(PredInst); 5597 while (!Worklist.empty()) { 5598 Instruction *I = Worklist.pop_back_val(); 5599 5600 // If we've already analyzed the instruction, there's nothing to do. 5601 if (ScalarCosts.find(I) != ScalarCosts.end()) 5602 continue; 5603 5604 // Compute the cost of the vector instruction. Note that this cost already 5605 // includes the scalarization overhead of the predicated instruction. 5606 unsigned VectorCost = getInstructionCost(I, VF).first; 5607 5608 // Compute the cost of the scalarized instruction. This cost is the cost of 5609 // the instruction as if it wasn't if-converted and instead remained in the 5610 // predicated block. We will scale this cost by block probability after 5611 // computing the scalarization overhead. 5612 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5613 5614 // Compute the scalarization overhead of needed insertelement instructions 5615 // and phi nodes. 5616 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5617 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5618 true, false); 5619 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5620 } 5621 5622 // Compute the scalarization overhead of needed extractelement 5623 // instructions. For each of the instruction's operands, if the operand can 5624 // be scalarized, add it to the worklist; otherwise, account for the 5625 // overhead. 5626 for (Use &U : I->operands()) 5627 if (auto *J = dyn_cast<Instruction>(U.get())) { 5628 assert(VectorType::isValidElementType(J->getType()) && 5629 "Instruction has non-scalar type"); 5630 if (canBeScalarized(J)) 5631 Worklist.push_back(J); 5632 else if (needsExtract(J, VF)) 5633 ScalarCost += TTI.getScalarizationOverhead( 5634 ToVectorTy(J->getType(),VF), false, true); 5635 } 5636 5637 // Scale the total scalar cost by block probability. 5638 ScalarCost /= getReciprocalPredBlockProb(); 5639 5640 // Compute the discount. A non-negative discount means the vector version 5641 // of the instruction costs more, and scalarizing would be beneficial. 5642 Discount += VectorCost - ScalarCost; 5643 ScalarCosts[I] = ScalarCost; 5644 } 5645 5646 return Discount; 5647 } 5648 5649 LoopVectorizationCostModel::VectorizationCostTy 5650 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5651 VectorizationCostTy Cost; 5652 5653 // For each block. 5654 for (BasicBlock *BB : TheLoop->blocks()) { 5655 VectorizationCostTy BlockCost; 5656 5657 // For each instruction in the old loop. 5658 for (Instruction &I : BB->instructionsWithoutDebug()) { 5659 // Skip ignored values. 5660 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5661 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5662 continue; 5663 5664 VectorizationCostTy C = getInstructionCost(&I, VF); 5665 5666 // Check if we should override the cost. 5667 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5668 C.first = ForceTargetInstructionCost; 5669 5670 BlockCost.first += C.first; 5671 BlockCost.second |= C.second; 5672 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5673 << " for VF " << VF << " For instruction: " << I 5674 << '\n'); 5675 } 5676 5677 // If we are vectorizing a predicated block, it will have been 5678 // if-converted. This means that the block's instructions (aside from 5679 // stores and instructions that may divide by zero) will now be 5680 // unconditionally executed. For the scalar case, we may not always execute 5681 // the predicated block. Thus, scale the block's cost by the probability of 5682 // executing it. 5683 if (VF == 1 && blockNeedsPredication(BB)) 5684 BlockCost.first /= getReciprocalPredBlockProb(); 5685 5686 Cost.first += BlockCost.first; 5687 Cost.second |= BlockCost.second; 5688 } 5689 5690 return Cost; 5691 } 5692 5693 /// Gets Address Access SCEV after verifying that the access pattern 5694 /// is loop invariant except the induction variable dependence. 5695 /// 5696 /// This SCEV can be sent to the Target in order to estimate the address 5697 /// calculation cost. 5698 static const SCEV *getAddressAccessSCEV( 5699 Value *Ptr, 5700 LoopVectorizationLegality *Legal, 5701 PredicatedScalarEvolution &PSE, 5702 const Loop *TheLoop) { 5703 5704 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5705 if (!Gep) 5706 return nullptr; 5707 5708 // We are looking for a gep with all loop invariant indices except for one 5709 // which should be an induction variable. 5710 auto SE = PSE.getSE(); 5711 unsigned NumOperands = Gep->getNumOperands(); 5712 for (unsigned i = 1; i < NumOperands; ++i) { 5713 Value *Opd = Gep->getOperand(i); 5714 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5715 !Legal->isInductionVariable(Opd)) 5716 return nullptr; 5717 } 5718 5719 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5720 return PSE.getSCEV(Ptr); 5721 } 5722 5723 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5724 return Legal->hasStride(I->getOperand(0)) || 5725 Legal->hasStride(I->getOperand(1)); 5726 } 5727 5728 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5729 unsigned VF) { 5730 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5731 Type *ValTy = getMemInstValueType(I); 5732 auto SE = PSE.getSE(); 5733 5734 unsigned AS = getLoadStoreAddressSpace(I); 5735 Value *Ptr = getLoadStorePointerOperand(I); 5736 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5737 5738 // Figure out whether the access is strided and get the stride value 5739 // if it's known in compile time 5740 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5741 5742 // Get the cost of the scalar memory instruction and address computation. 5743 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5744 5745 // Don't pass *I here, since it is scalar but will actually be part of a 5746 // vectorized loop where the user of it is a vectorized instruction. 5747 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5748 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5749 Alignment, AS); 5750 5751 // Get the overhead of the extractelement and insertelement instructions 5752 // we might create due to scalarization. 5753 Cost += getScalarizationOverhead(I, VF); 5754 5755 // If we have a predicated store, it may not be executed for each vector 5756 // lane. Scale the cost by the probability of executing the predicated 5757 // block. 5758 if (isPredicatedInst(I)) { 5759 Cost /= getReciprocalPredBlockProb(); 5760 5761 if (useEmulatedMaskMemRefHack(I)) 5762 // Artificially setting to a high enough value to practically disable 5763 // vectorization with such operations. 5764 Cost = 3000000; 5765 } 5766 5767 return Cost; 5768 } 5769 5770 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5771 unsigned VF) { 5772 Type *ValTy = getMemInstValueType(I); 5773 Type *VectorTy = ToVectorTy(ValTy, VF); 5774 Value *Ptr = getLoadStorePointerOperand(I); 5775 unsigned AS = getLoadStoreAddressSpace(I); 5776 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5777 5778 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5779 "Stride should be 1 or -1 for consecutive memory access"); 5780 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5781 unsigned Cost = 0; 5782 if (Legal->isMaskRequired(I)) 5783 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5784 Alignment ? Alignment->value() : 0, AS); 5785 else 5786 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5787 5788 bool Reverse = ConsecutiveStride < 0; 5789 if (Reverse) 5790 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5791 return Cost; 5792 } 5793 5794 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5795 unsigned VF) { 5796 Type *ValTy = getMemInstValueType(I); 5797 Type *VectorTy = ToVectorTy(ValTy, VF); 5798 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5799 unsigned AS = getLoadStoreAddressSpace(I); 5800 if (isa<LoadInst>(I)) { 5801 return TTI.getAddressComputationCost(ValTy) + 5802 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5803 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5804 } 5805 StoreInst *SI = cast<StoreInst>(I); 5806 5807 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5808 return TTI.getAddressComputationCost(ValTy) + 5809 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5810 (isLoopInvariantStoreValue 5811 ? 0 5812 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5813 VF - 1)); 5814 } 5815 5816 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5817 unsigned VF) { 5818 Type *ValTy = getMemInstValueType(I); 5819 Type *VectorTy = ToVectorTy(ValTy, VF); 5820 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5821 Value *Ptr = getLoadStorePointerOperand(I); 5822 5823 return TTI.getAddressComputationCost(VectorTy) + 5824 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5825 Legal->isMaskRequired(I), 5826 Alignment ? Alignment->value() : 0); 5827 } 5828 5829 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5830 unsigned VF) { 5831 Type *ValTy = getMemInstValueType(I); 5832 Type *VectorTy = ToVectorTy(ValTy, VF); 5833 unsigned AS = getLoadStoreAddressSpace(I); 5834 5835 auto Group = getInterleavedAccessGroup(I); 5836 assert(Group && "Fail to get an interleaved access group."); 5837 5838 unsigned InterleaveFactor = Group->getFactor(); 5839 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5840 5841 // Holds the indices of existing members in an interleaved load group. 5842 // An interleaved store group doesn't need this as it doesn't allow gaps. 5843 SmallVector<unsigned, 4> Indices; 5844 if (isa<LoadInst>(I)) { 5845 for (unsigned i = 0; i < InterleaveFactor; i++) 5846 if (Group->getMember(i)) 5847 Indices.push_back(i); 5848 } 5849 5850 // Calculate the cost of the whole interleaved group. 5851 bool UseMaskForGaps = 5852 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5853 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5854 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5855 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5856 5857 if (Group->isReverse()) { 5858 // TODO: Add support for reversed masked interleaved access. 5859 assert(!Legal->isMaskRequired(I) && 5860 "Reverse masked interleaved access not supported."); 5861 Cost += Group->getNumMembers() * 5862 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5863 } 5864 return Cost; 5865 } 5866 5867 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5868 unsigned VF) { 5869 // Calculate scalar cost only. Vectorization cost should be ready at this 5870 // moment. 5871 if (VF == 1) { 5872 Type *ValTy = getMemInstValueType(I); 5873 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5874 unsigned AS = getLoadStoreAddressSpace(I); 5875 5876 return TTI.getAddressComputationCost(ValTy) + 5877 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5878 } 5879 return getWideningCost(I, VF); 5880 } 5881 5882 LoopVectorizationCostModel::VectorizationCostTy 5883 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5884 // If we know that this instruction will remain uniform, check the cost of 5885 // the scalar version. 5886 if (isUniformAfterVectorization(I, VF)) 5887 VF = 1; 5888 5889 if (VF > 1 && isProfitableToScalarize(I, VF)) 5890 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5891 5892 // Forced scalars do not have any scalarization overhead. 5893 auto ForcedScalar = ForcedScalars.find(VF); 5894 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5895 auto InstSet = ForcedScalar->second; 5896 if (InstSet.find(I) != InstSet.end()) 5897 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5898 } 5899 5900 Type *VectorTy; 5901 unsigned C = getInstructionCost(I, VF, VectorTy); 5902 5903 bool TypeNotScalarized = 5904 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5905 return VectorizationCostTy(C, TypeNotScalarized); 5906 } 5907 5908 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5909 unsigned VF) { 5910 5911 if (VF == 1) 5912 return 0; 5913 5914 unsigned Cost = 0; 5915 Type *RetTy = ToVectorTy(I->getType(), VF); 5916 if (!RetTy->isVoidTy() && 5917 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5918 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5919 5920 // Some targets keep addresses scalar. 5921 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5922 return Cost; 5923 5924 // Some targets support efficient element stores. 5925 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 5926 return Cost; 5927 5928 // Collect operands to consider. 5929 CallInst *CI = dyn_cast<CallInst>(I); 5930 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 5931 5932 // Skip operands that do not require extraction/scalarization and do not incur 5933 // any overhead. 5934 return Cost + TTI.getOperandsScalarizationOverhead( 5935 filterExtractingOperands(Ops, VF), VF); 5936 } 5937 5938 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5939 if (VF == 1) 5940 return; 5941 NumPredStores = 0; 5942 for (BasicBlock *BB : TheLoop->blocks()) { 5943 // For each instruction in the old loop. 5944 for (Instruction &I : *BB) { 5945 Value *Ptr = getLoadStorePointerOperand(&I); 5946 if (!Ptr) 5947 continue; 5948 5949 // TODO: We should generate better code and update the cost model for 5950 // predicated uniform stores. Today they are treated as any other 5951 // predicated store (see added test cases in 5952 // invariant-store-vectorization.ll). 5953 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5954 NumPredStores++; 5955 5956 if (Legal->isUniform(Ptr) && 5957 // Conditional loads and stores should be scalarized and predicated. 5958 // isScalarWithPredication cannot be used here since masked 5959 // gather/scatters are not considered scalar with predication. 5960 !Legal->blockNeedsPredication(I.getParent())) { 5961 // TODO: Avoid replicating loads and stores instead of 5962 // relying on instcombine to remove them. 5963 // Load: Scalar load + broadcast 5964 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5965 unsigned Cost = getUniformMemOpCost(&I, VF); 5966 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5967 continue; 5968 } 5969 5970 // We assume that widening is the best solution when possible. 5971 if (memoryInstructionCanBeWidened(&I, VF)) { 5972 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5973 int ConsecutiveStride = 5974 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5975 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5976 "Expected consecutive stride."); 5977 InstWidening Decision = 5978 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5979 setWideningDecision(&I, VF, Decision, Cost); 5980 continue; 5981 } 5982 5983 // Choose between Interleaving, Gather/Scatter or Scalarization. 5984 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5985 unsigned NumAccesses = 1; 5986 if (isAccessInterleaved(&I)) { 5987 auto Group = getInterleavedAccessGroup(&I); 5988 assert(Group && "Fail to get an interleaved access group."); 5989 5990 // Make one decision for the whole group. 5991 if (getWideningDecision(&I, VF) != CM_Unknown) 5992 continue; 5993 5994 NumAccesses = Group->getNumMembers(); 5995 if (interleavedAccessCanBeWidened(&I, VF)) 5996 InterleaveCost = getInterleaveGroupCost(&I, VF); 5997 } 5998 5999 unsigned GatherScatterCost = 6000 isLegalGatherOrScatter(&I) 6001 ? getGatherScatterCost(&I, VF) * NumAccesses 6002 : std::numeric_limits<unsigned>::max(); 6003 6004 unsigned ScalarizationCost = 6005 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6006 6007 // Choose better solution for the current VF, 6008 // write down this decision and use it during vectorization. 6009 unsigned Cost; 6010 InstWidening Decision; 6011 if (InterleaveCost <= GatherScatterCost && 6012 InterleaveCost < ScalarizationCost) { 6013 Decision = CM_Interleave; 6014 Cost = InterleaveCost; 6015 } else if (GatherScatterCost < ScalarizationCost) { 6016 Decision = CM_GatherScatter; 6017 Cost = GatherScatterCost; 6018 } else { 6019 Decision = CM_Scalarize; 6020 Cost = ScalarizationCost; 6021 } 6022 // If the instructions belongs to an interleave group, the whole group 6023 // receives the same decision. The whole group receives the cost, but 6024 // the cost will actually be assigned to one instruction. 6025 if (auto Group = getInterleavedAccessGroup(&I)) 6026 setWideningDecision(Group, VF, Decision, Cost); 6027 else 6028 setWideningDecision(&I, VF, Decision, Cost); 6029 } 6030 } 6031 6032 // Make sure that any load of address and any other address computation 6033 // remains scalar unless there is gather/scatter support. This avoids 6034 // inevitable extracts into address registers, and also has the benefit of 6035 // activating LSR more, since that pass can't optimize vectorized 6036 // addresses. 6037 if (TTI.prefersVectorizedAddressing()) 6038 return; 6039 6040 // Start with all scalar pointer uses. 6041 SmallPtrSet<Instruction *, 8> AddrDefs; 6042 for (BasicBlock *BB : TheLoop->blocks()) 6043 for (Instruction &I : *BB) { 6044 Instruction *PtrDef = 6045 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6046 if (PtrDef && TheLoop->contains(PtrDef) && 6047 getWideningDecision(&I, VF) != CM_GatherScatter) 6048 AddrDefs.insert(PtrDef); 6049 } 6050 6051 // Add all instructions used to generate the addresses. 6052 SmallVector<Instruction *, 4> Worklist; 6053 for (auto *I : AddrDefs) 6054 Worklist.push_back(I); 6055 while (!Worklist.empty()) { 6056 Instruction *I = Worklist.pop_back_val(); 6057 for (auto &Op : I->operands()) 6058 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6059 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6060 AddrDefs.insert(InstOp).second) 6061 Worklist.push_back(InstOp); 6062 } 6063 6064 for (auto *I : AddrDefs) { 6065 if (isa<LoadInst>(I)) { 6066 // Setting the desired widening decision should ideally be handled in 6067 // by cost functions, but since this involves the task of finding out 6068 // if the loaded register is involved in an address computation, it is 6069 // instead changed here when we know this is the case. 6070 InstWidening Decision = getWideningDecision(I, VF); 6071 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6072 // Scalarize a widened load of address. 6073 setWideningDecision(I, VF, CM_Scalarize, 6074 (VF * getMemoryInstructionCost(I, 1))); 6075 else if (auto Group = getInterleavedAccessGroup(I)) { 6076 // Scalarize an interleave group of address loads. 6077 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6078 if (Instruction *Member = Group->getMember(I)) 6079 setWideningDecision(Member, VF, CM_Scalarize, 6080 (VF * getMemoryInstructionCost(Member, 1))); 6081 } 6082 } 6083 } else 6084 // Make sure I gets scalarized and a cost estimate without 6085 // scalarization overhead. 6086 ForcedScalars[VF].insert(I); 6087 } 6088 } 6089 6090 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6091 unsigned VF, 6092 Type *&VectorTy) { 6093 Type *RetTy = I->getType(); 6094 if (canTruncateToMinimalBitwidth(I, VF)) 6095 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6096 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6097 auto SE = PSE.getSE(); 6098 6099 // TODO: We need to estimate the cost of intrinsic calls. 6100 switch (I->getOpcode()) { 6101 case Instruction::GetElementPtr: 6102 // We mark this instruction as zero-cost because the cost of GEPs in 6103 // vectorized code depends on whether the corresponding memory instruction 6104 // is scalarized or not. Therefore, we handle GEPs with the memory 6105 // instruction cost. 6106 return 0; 6107 case Instruction::Br: { 6108 // In cases of scalarized and predicated instructions, there will be VF 6109 // predicated blocks in the vectorized loop. Each branch around these 6110 // blocks requires also an extract of its vector compare i1 element. 6111 bool ScalarPredicatedBB = false; 6112 BranchInst *BI = cast<BranchInst>(I); 6113 if (VF > 1 && BI->isConditional() && 6114 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6115 PredicatedBBsAfterVectorization.end() || 6116 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6117 PredicatedBBsAfterVectorization.end())) 6118 ScalarPredicatedBB = true; 6119 6120 if (ScalarPredicatedBB) { 6121 // Return cost for branches around scalarized and predicated blocks. 6122 Type *Vec_i1Ty = 6123 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6124 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6125 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6126 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6127 // The back-edge branch will remain, as will all scalar branches. 6128 return TTI.getCFInstrCost(Instruction::Br); 6129 else 6130 // This branch will be eliminated by if-conversion. 6131 return 0; 6132 // Note: We currently assume zero cost for an unconditional branch inside 6133 // a predicated block since it will become a fall-through, although we 6134 // may decide in the future to call TTI for all branches. 6135 } 6136 case Instruction::PHI: { 6137 auto *Phi = cast<PHINode>(I); 6138 6139 // First-order recurrences are replaced by vector shuffles inside the loop. 6140 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6141 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6142 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6143 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 6144 6145 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6146 // converted into select instructions. We require N - 1 selects per phi 6147 // node, where N is the number of incoming values. 6148 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6149 return (Phi->getNumIncomingValues() - 1) * 6150 TTI.getCmpSelInstrCost( 6151 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6152 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6153 6154 return TTI.getCFInstrCost(Instruction::PHI); 6155 } 6156 case Instruction::UDiv: 6157 case Instruction::SDiv: 6158 case Instruction::URem: 6159 case Instruction::SRem: 6160 // If we have a predicated instruction, it may not be executed for each 6161 // vector lane. Get the scalarization cost and scale this amount by the 6162 // probability of executing the predicated block. If the instruction is not 6163 // predicated, we fall through to the next case. 6164 if (VF > 1 && isScalarWithPredication(I)) { 6165 unsigned Cost = 0; 6166 6167 // These instructions have a non-void type, so account for the phi nodes 6168 // that we will create. This cost is likely to be zero. The phi node 6169 // cost, if any, should be scaled by the block probability because it 6170 // models a copy at the end of each predicated block. 6171 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6172 6173 // The cost of the non-predicated instruction. 6174 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6175 6176 // The cost of insertelement and extractelement instructions needed for 6177 // scalarization. 6178 Cost += getScalarizationOverhead(I, VF); 6179 6180 // Scale the cost by the probability of executing the predicated blocks. 6181 // This assumes the predicated block for each vector lane is equally 6182 // likely. 6183 return Cost / getReciprocalPredBlockProb(); 6184 } 6185 LLVM_FALLTHROUGH; 6186 case Instruction::Add: 6187 case Instruction::FAdd: 6188 case Instruction::Sub: 6189 case Instruction::FSub: 6190 case Instruction::Mul: 6191 case Instruction::FMul: 6192 case Instruction::FDiv: 6193 case Instruction::FRem: 6194 case Instruction::Shl: 6195 case Instruction::LShr: 6196 case Instruction::AShr: 6197 case Instruction::And: 6198 case Instruction::Or: 6199 case Instruction::Xor: { 6200 // Since we will replace the stride by 1 the multiplication should go away. 6201 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6202 return 0; 6203 // Certain instructions can be cheaper to vectorize if they have a constant 6204 // second vector operand. One example of this are shifts on x86. 6205 Value *Op2 = I->getOperand(1); 6206 TargetTransformInfo::OperandValueProperties Op2VP; 6207 TargetTransformInfo::OperandValueKind Op2VK = 6208 TTI.getOperandInfo(Op2, Op2VP); 6209 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6210 Op2VK = TargetTransformInfo::OK_UniformValue; 6211 6212 SmallVector<const Value *, 4> Operands(I->operand_values()); 6213 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6214 return N * TTI.getArithmeticInstrCost( 6215 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6216 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 6217 } 6218 case Instruction::FNeg: { 6219 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6220 return N * TTI.getArithmeticInstrCost( 6221 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 6222 TargetTransformInfo::OK_AnyValue, 6223 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6224 I->getOperand(0)); 6225 } 6226 case Instruction::Select: { 6227 SelectInst *SI = cast<SelectInst>(I); 6228 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6229 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6230 Type *CondTy = SI->getCondition()->getType(); 6231 if (!ScalarCond) 6232 CondTy = VectorType::get(CondTy, VF); 6233 6234 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6235 } 6236 case Instruction::ICmp: 6237 case Instruction::FCmp: { 6238 Type *ValTy = I->getOperand(0)->getType(); 6239 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6240 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6241 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6242 VectorTy = ToVectorTy(ValTy, VF); 6243 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6244 } 6245 case Instruction::Store: 6246 case Instruction::Load: { 6247 unsigned Width = VF; 6248 if (Width > 1) { 6249 InstWidening Decision = getWideningDecision(I, Width); 6250 assert(Decision != CM_Unknown && 6251 "CM decision should be taken at this point"); 6252 if (Decision == CM_Scalarize) 6253 Width = 1; 6254 } 6255 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6256 return getMemoryInstructionCost(I, VF); 6257 } 6258 case Instruction::ZExt: 6259 case Instruction::SExt: 6260 case Instruction::FPToUI: 6261 case Instruction::FPToSI: 6262 case Instruction::FPExt: 6263 case Instruction::PtrToInt: 6264 case Instruction::IntToPtr: 6265 case Instruction::SIToFP: 6266 case Instruction::UIToFP: 6267 case Instruction::Trunc: 6268 case Instruction::FPTrunc: 6269 case Instruction::BitCast: { 6270 // We optimize the truncation of induction variables having constant 6271 // integer steps. The cost of these truncations is the same as the scalar 6272 // operation. 6273 if (isOptimizableIVTruncate(I, VF)) { 6274 auto *Trunc = cast<TruncInst>(I); 6275 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6276 Trunc->getSrcTy(), Trunc); 6277 } 6278 6279 Type *SrcScalarTy = I->getOperand(0)->getType(); 6280 Type *SrcVecTy = 6281 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6282 if (canTruncateToMinimalBitwidth(I, VF)) { 6283 // This cast is going to be shrunk. This may remove the cast or it might 6284 // turn it into slightly different cast. For example, if MinBW == 16, 6285 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6286 // 6287 // Calculate the modified src and dest types. 6288 Type *MinVecTy = VectorTy; 6289 if (I->getOpcode() == Instruction::Trunc) { 6290 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6291 VectorTy = 6292 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6293 } else if (I->getOpcode() == Instruction::ZExt || 6294 I->getOpcode() == Instruction::SExt) { 6295 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6296 VectorTy = 6297 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6298 } 6299 } 6300 6301 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6302 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6303 } 6304 case Instruction::Call: { 6305 bool NeedToScalarize; 6306 CallInst *CI = cast<CallInst>(I); 6307 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6308 if (getVectorIntrinsicIDForCall(CI, TLI)) 6309 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6310 return CallCost; 6311 } 6312 default: 6313 // The cost of executing VF copies of the scalar instruction. This opcode 6314 // is unknown. Assume that it is the same as 'mul'. 6315 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6316 getScalarizationOverhead(I, VF); 6317 } // end of switch. 6318 } 6319 6320 char LoopVectorize::ID = 0; 6321 6322 static const char lv_name[] = "Loop Vectorization"; 6323 6324 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6325 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6326 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6327 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6328 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6329 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6330 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6331 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6332 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6333 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6334 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6335 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6336 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6337 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6338 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6339 6340 namespace llvm { 6341 6342 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6343 6344 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6345 bool VectorizeOnlyWhenForced) { 6346 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6347 } 6348 6349 } // end namespace llvm 6350 6351 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6352 // Check if the pointer operand of a load or store instruction is 6353 // consecutive. 6354 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6355 return Legal->isConsecutivePtr(Ptr); 6356 return false; 6357 } 6358 6359 void LoopVectorizationCostModel::collectValuesToIgnore() { 6360 // Ignore ephemeral values. 6361 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6362 6363 // Ignore type-promoting instructions we identified during reduction 6364 // detection. 6365 for (auto &Reduction : *Legal->getReductionVars()) { 6366 RecurrenceDescriptor &RedDes = Reduction.second; 6367 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6368 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6369 } 6370 // Ignore type-casting instructions we identified during induction 6371 // detection. 6372 for (auto &Induction : *Legal->getInductionVars()) { 6373 InductionDescriptor &IndDes = Induction.second; 6374 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6375 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6376 } 6377 } 6378 6379 // TODO: we could return a pair of values that specify the max VF and 6380 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6381 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6382 // doesn't have a cost model that can choose which plan to execute if 6383 // more than one is generated. 6384 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6385 LoopVectorizationCostModel &CM) { 6386 unsigned WidestType; 6387 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6388 return WidestVectorRegBits / WidestType; 6389 } 6390 6391 VectorizationFactor 6392 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6393 unsigned VF = UserVF; 6394 // Outer loop handling: They may require CFG and instruction level 6395 // transformations before even evaluating whether vectorization is profitable. 6396 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6397 // the vectorization pipeline. 6398 if (!OrigLoop->empty()) { 6399 // If the user doesn't provide a vectorization factor, determine a 6400 // reasonable one. 6401 if (!UserVF) { 6402 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6403 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6404 6405 // Make sure we have a VF > 1 for stress testing. 6406 if (VPlanBuildStressTest && VF < 2) { 6407 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6408 << "overriding computed VF.\n"); 6409 VF = 4; 6410 } 6411 } 6412 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6413 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6414 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6415 << " to build VPlans.\n"); 6416 buildVPlans(VF, VF); 6417 6418 // For VPlan build stress testing, we bail out after VPlan construction. 6419 if (VPlanBuildStressTest) 6420 return VectorizationFactor::Disabled(); 6421 6422 return {VF, 0}; 6423 } 6424 6425 LLVM_DEBUG( 6426 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6427 "VPlan-native path.\n"); 6428 return VectorizationFactor::Disabled(); 6429 } 6430 6431 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6432 assert(OrigLoop->empty() && "Inner loop expected."); 6433 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6434 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6435 return None; 6436 6437 // Invalidate interleave groups if all blocks of loop will be predicated. 6438 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6439 !useMaskedInterleavedAccesses(*TTI)) { 6440 LLVM_DEBUG( 6441 dbgs() 6442 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6443 "which requires masked-interleaved support.\n"); 6444 CM.InterleaveInfo.reset(); 6445 } 6446 6447 if (UserVF) { 6448 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6449 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6450 // Collect the instructions (and their associated costs) that will be more 6451 // profitable to scalarize. 6452 CM.selectUserVectorizationFactor(UserVF); 6453 buildVPlansWithVPRecipes(UserVF, UserVF); 6454 LLVM_DEBUG(printPlans(dbgs())); 6455 return {{UserVF, 0}}; 6456 } 6457 6458 unsigned MaxVF = MaybeMaxVF.getValue(); 6459 assert(MaxVF != 0 && "MaxVF is zero."); 6460 6461 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6462 // Collect Uniform and Scalar instructions after vectorization with VF. 6463 CM.collectUniformsAndScalars(VF); 6464 6465 // Collect the instructions (and their associated costs) that will be more 6466 // profitable to scalarize. 6467 if (VF > 1) 6468 CM.collectInstsToScalarize(VF); 6469 } 6470 6471 buildVPlansWithVPRecipes(1, MaxVF); 6472 LLVM_DEBUG(printPlans(dbgs())); 6473 if (MaxVF == 1) 6474 return VectorizationFactor::Disabled(); 6475 6476 // Select the optimal vectorization factor. 6477 return CM.selectVectorizationFactor(MaxVF); 6478 } 6479 6480 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6481 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6482 << '\n'); 6483 BestVF = VF; 6484 BestUF = UF; 6485 6486 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6487 return !Plan->hasVF(VF); 6488 }); 6489 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6490 } 6491 6492 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6493 DominatorTree *DT) { 6494 // Perform the actual loop transformation. 6495 6496 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6497 VPCallbackILV CallbackILV(ILV); 6498 6499 VPTransformState State{BestVF, BestUF, LI, 6500 DT, ILV.Builder, ILV.VectorLoopValueMap, 6501 &ILV, CallbackILV}; 6502 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6503 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6504 6505 //===------------------------------------------------===// 6506 // 6507 // Notice: any optimization or new instruction that go 6508 // into the code below should also be implemented in 6509 // the cost-model. 6510 // 6511 //===------------------------------------------------===// 6512 6513 // 2. Copy and widen instructions from the old loop into the new loop. 6514 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6515 VPlans.front()->execute(&State); 6516 6517 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6518 // predication, updating analyses. 6519 ILV.fixVectorizedLoop(); 6520 } 6521 6522 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6523 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6524 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6525 6526 // We create new control-flow for the vectorized loop, so the original 6527 // condition will be dead after vectorization if it's only used by the 6528 // branch. 6529 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6530 if (Cmp && Cmp->hasOneUse()) 6531 DeadInstructions.insert(Cmp); 6532 6533 // We create new "steps" for induction variable updates to which the original 6534 // induction variables map. An original update instruction will be dead if 6535 // all its users except the induction variable are dead. 6536 for (auto &Induction : *Legal->getInductionVars()) { 6537 PHINode *Ind = Induction.first; 6538 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6539 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6540 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6541 DeadInstructions.end(); 6542 })) 6543 DeadInstructions.insert(IndUpdate); 6544 6545 // We record as "Dead" also the type-casting instructions we had identified 6546 // during induction analysis. We don't need any handling for them in the 6547 // vectorized loop because we have proven that, under a proper runtime 6548 // test guarding the vectorized loop, the value of the phi, and the casted 6549 // value of the phi, are the same. The last instruction in this casting chain 6550 // will get its scalar/vector/widened def from the scalar/vector/widened def 6551 // of the respective phi node. Any other casts in the induction def-use chain 6552 // have no other uses outside the phi update chain, and will be ignored. 6553 InductionDescriptor &IndDes = Induction.second; 6554 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6555 DeadInstructions.insert(Casts.begin(), Casts.end()); 6556 } 6557 } 6558 6559 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6560 6561 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6562 6563 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6564 Instruction::BinaryOps BinOp) { 6565 // When unrolling and the VF is 1, we only need to add a simple scalar. 6566 Type *Ty = Val->getType(); 6567 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6568 6569 if (Ty->isFloatingPointTy()) { 6570 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6571 6572 // Floating point operations had to be 'fast' to enable the unrolling. 6573 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6574 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6575 } 6576 Constant *C = ConstantInt::get(Ty, StartIdx); 6577 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6578 } 6579 6580 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6581 SmallVector<Metadata *, 4> MDs; 6582 // Reserve first location for self reference to the LoopID metadata node. 6583 MDs.push_back(nullptr); 6584 bool IsUnrollMetadata = false; 6585 MDNode *LoopID = L->getLoopID(); 6586 if (LoopID) { 6587 // First find existing loop unrolling disable metadata. 6588 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6589 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6590 if (MD) { 6591 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6592 IsUnrollMetadata = 6593 S && S->getString().startswith("llvm.loop.unroll.disable"); 6594 } 6595 MDs.push_back(LoopID->getOperand(i)); 6596 } 6597 } 6598 6599 if (!IsUnrollMetadata) { 6600 // Add runtime unroll disable metadata. 6601 LLVMContext &Context = L->getHeader()->getContext(); 6602 SmallVector<Metadata *, 1> DisableOperands; 6603 DisableOperands.push_back( 6604 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6605 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6606 MDs.push_back(DisableNode); 6607 MDNode *NewLoopID = MDNode::get(Context, MDs); 6608 // Set operand 0 to refer to the loop id itself. 6609 NewLoopID->replaceOperandWith(0, NewLoopID); 6610 L->setLoopID(NewLoopID); 6611 } 6612 } 6613 6614 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6615 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6616 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6617 bool PredicateAtRangeStart = Predicate(Range.Start); 6618 6619 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6620 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6621 Range.End = TmpVF; 6622 break; 6623 } 6624 6625 return PredicateAtRangeStart; 6626 } 6627 6628 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6629 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6630 /// of VF's starting at a given VF and extending it as much as possible. Each 6631 /// vectorization decision can potentially shorten this sub-range during 6632 /// buildVPlan(). 6633 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6634 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6635 VFRange SubRange = {VF, MaxVF + 1}; 6636 VPlans.push_back(buildVPlan(SubRange)); 6637 VF = SubRange.End; 6638 } 6639 } 6640 6641 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6642 VPlanPtr &Plan) { 6643 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6644 6645 // Look for cached value. 6646 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6647 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6648 if (ECEntryIt != EdgeMaskCache.end()) 6649 return ECEntryIt->second; 6650 6651 VPValue *SrcMask = createBlockInMask(Src, Plan); 6652 6653 // The terminator has to be a branch inst! 6654 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6655 assert(BI && "Unexpected terminator found"); 6656 6657 if (!BI->isConditional()) 6658 return EdgeMaskCache[Edge] = SrcMask; 6659 6660 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6661 assert(EdgeMask && "No Edge Mask found for condition"); 6662 6663 if (BI->getSuccessor(0) != Dst) 6664 EdgeMask = Builder.createNot(EdgeMask); 6665 6666 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6667 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6668 6669 return EdgeMaskCache[Edge] = EdgeMask; 6670 } 6671 6672 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6673 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6674 6675 // Look for cached value. 6676 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6677 if (BCEntryIt != BlockMaskCache.end()) 6678 return BCEntryIt->second; 6679 6680 // All-one mask is modelled as no-mask following the convention for masked 6681 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6682 VPValue *BlockMask = nullptr; 6683 6684 if (OrigLoop->getHeader() == BB) { 6685 if (!CM.blockNeedsPredication(BB)) 6686 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6687 6688 // Introduce the early-exit compare IV <= BTC to form header block mask. 6689 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6690 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6691 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6692 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6693 return BlockMaskCache[BB] = BlockMask; 6694 } 6695 6696 // This is the block mask. We OR all incoming edges. 6697 for (auto *Predecessor : predecessors(BB)) { 6698 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6699 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6700 return BlockMaskCache[BB] = EdgeMask; 6701 6702 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6703 BlockMask = EdgeMask; 6704 continue; 6705 } 6706 6707 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6708 } 6709 6710 return BlockMaskCache[BB] = BlockMask; 6711 } 6712 6713 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6714 VFRange &Range, 6715 VPlanPtr &Plan) { 6716 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6717 if (!IG) 6718 return nullptr; 6719 6720 // Now check if IG is relevant for VF's in the given range. 6721 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6722 return [=](unsigned VF) -> bool { 6723 return (VF >= 2 && // Query is illegal for VF == 1 6724 CM.getWideningDecision(I, VF) == 6725 LoopVectorizationCostModel::CM_Interleave); 6726 }; 6727 }; 6728 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6729 return nullptr; 6730 6731 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6732 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6733 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6734 assert(I == IG->getInsertPos() && 6735 "Generating a recipe for an adjunct member of an interleave group"); 6736 6737 VPValue *Mask = nullptr; 6738 if (Legal->isMaskRequired(I)) 6739 Mask = createBlockInMask(I->getParent(), Plan); 6740 6741 return new VPInterleaveRecipe(IG, Mask); 6742 } 6743 6744 VPWidenMemoryInstructionRecipe * 6745 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6746 VPlanPtr &Plan) { 6747 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6748 return nullptr; 6749 6750 auto willWiden = [&](unsigned VF) -> bool { 6751 if (VF == 1) 6752 return false; 6753 if (CM.isScalarAfterVectorization(I, VF) || 6754 CM.isProfitableToScalarize(I, VF)) 6755 return false; 6756 LoopVectorizationCostModel::InstWidening Decision = 6757 CM.getWideningDecision(I, VF); 6758 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6759 "CM decision should be taken at this point."); 6760 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6761 "Interleave memory opportunity should be caught earlier."); 6762 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6763 }; 6764 6765 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6766 return nullptr; 6767 6768 VPValue *Mask = nullptr; 6769 if (Legal->isMaskRequired(I)) 6770 Mask = createBlockInMask(I->getParent(), Plan); 6771 6772 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6773 } 6774 6775 VPWidenIntOrFpInductionRecipe * 6776 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6777 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6778 // Check if this is an integer or fp induction. If so, build the recipe that 6779 // produces its scalar and vector values. 6780 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6781 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6782 II.getKind() == InductionDescriptor::IK_FpInduction) 6783 return new VPWidenIntOrFpInductionRecipe(Phi); 6784 6785 return nullptr; 6786 } 6787 6788 // Optimize the special case where the source is a constant integer 6789 // induction variable. Notice that we can only optimize the 'trunc' case 6790 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6791 // (c) other casts depend on pointer size. 6792 6793 // Determine whether \p K is a truncation based on an induction variable that 6794 // can be optimized. 6795 auto isOptimizableIVTruncate = 6796 [&](Instruction *K) -> std::function<bool(unsigned)> { 6797 return 6798 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6799 }; 6800 6801 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6802 isOptimizableIVTruncate(I), Range)) 6803 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6804 cast<TruncInst>(I)); 6805 return nullptr; 6806 } 6807 6808 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6809 PHINode *Phi = dyn_cast<PHINode>(I); 6810 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6811 return nullptr; 6812 6813 // We know that all PHIs in non-header blocks are converted into selects, so 6814 // we don't have to worry about the insertion order and we can just use the 6815 // builder. At this point we generate the predication tree. There may be 6816 // duplications since this is a simple recursive scan, but future 6817 // optimizations will clean it up. 6818 6819 SmallVector<VPValue *, 2> Masks; 6820 unsigned NumIncoming = Phi->getNumIncomingValues(); 6821 for (unsigned In = 0; In < NumIncoming; In++) { 6822 VPValue *EdgeMask = 6823 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6824 assert((EdgeMask || NumIncoming == 1) && 6825 "Multiple predecessors with one having a full mask"); 6826 if (EdgeMask) 6827 Masks.push_back(EdgeMask); 6828 } 6829 return new VPBlendRecipe(Phi, Masks); 6830 } 6831 6832 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6833 VFRange &Range) { 6834 6835 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6836 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6837 6838 if (IsPredicated) 6839 return false; 6840 6841 auto IsVectorizableOpcode = [](unsigned Opcode) { 6842 switch (Opcode) { 6843 case Instruction::Add: 6844 case Instruction::And: 6845 case Instruction::AShr: 6846 case Instruction::BitCast: 6847 case Instruction::Br: 6848 case Instruction::Call: 6849 case Instruction::FAdd: 6850 case Instruction::FCmp: 6851 case Instruction::FDiv: 6852 case Instruction::FMul: 6853 case Instruction::FNeg: 6854 case Instruction::FPExt: 6855 case Instruction::FPToSI: 6856 case Instruction::FPToUI: 6857 case Instruction::FPTrunc: 6858 case Instruction::FRem: 6859 case Instruction::FSub: 6860 case Instruction::GetElementPtr: 6861 case Instruction::ICmp: 6862 case Instruction::IntToPtr: 6863 case Instruction::Load: 6864 case Instruction::LShr: 6865 case Instruction::Mul: 6866 case Instruction::Or: 6867 case Instruction::PHI: 6868 case Instruction::PtrToInt: 6869 case Instruction::SDiv: 6870 case Instruction::Select: 6871 case Instruction::SExt: 6872 case Instruction::Shl: 6873 case Instruction::SIToFP: 6874 case Instruction::SRem: 6875 case Instruction::Store: 6876 case Instruction::Sub: 6877 case Instruction::Trunc: 6878 case Instruction::UDiv: 6879 case Instruction::UIToFP: 6880 case Instruction::URem: 6881 case Instruction::Xor: 6882 case Instruction::ZExt: 6883 return true; 6884 } 6885 return false; 6886 }; 6887 6888 if (!IsVectorizableOpcode(I->getOpcode())) 6889 return false; 6890 6891 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6892 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6893 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6894 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6895 return false; 6896 } 6897 6898 auto willWiden = [&](unsigned VF) -> bool { 6899 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6900 CM.isProfitableToScalarize(I, VF))) 6901 return false; 6902 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6903 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6904 // The following case may be scalarized depending on the VF. 6905 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6906 // version of the instruction. 6907 // Is it beneficial to perform intrinsic call compared to lib call? 6908 bool NeedToScalarize; 6909 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6910 bool UseVectorIntrinsic = 6911 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6912 return UseVectorIntrinsic || !NeedToScalarize; 6913 } 6914 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6915 assert(CM.getWideningDecision(I, VF) == 6916 LoopVectorizationCostModel::CM_Scalarize && 6917 "Memory widening decisions should have been taken care by now"); 6918 return false; 6919 } 6920 return true; 6921 }; 6922 6923 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6924 return false; 6925 6926 // Success: widen this instruction. We optimize the common case where 6927 // consecutive instructions can be represented by a single recipe. 6928 if (!VPBB->empty()) { 6929 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6930 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6931 return true; 6932 } 6933 6934 VPBB->appendRecipe(new VPWidenRecipe(I)); 6935 return true; 6936 } 6937 6938 VPBasicBlock *VPRecipeBuilder::handleReplication( 6939 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6940 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6941 VPlanPtr &Plan) { 6942 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6943 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6944 Range); 6945 6946 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6947 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6948 6949 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6950 6951 // Find if I uses a predicated instruction. If so, it will use its scalar 6952 // value. Avoid hoisting the insert-element which packs the scalar value into 6953 // a vector value, as that happens iff all users use the vector value. 6954 for (auto &Op : I->operands()) 6955 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6956 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6957 PredInst2Recipe[PredInst]->setAlsoPack(false); 6958 6959 // Finalize the recipe for Instr, first if it is not predicated. 6960 if (!IsPredicated) { 6961 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6962 VPBB->appendRecipe(Recipe); 6963 return VPBB; 6964 } 6965 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6966 assert(VPBB->getSuccessors().empty() && 6967 "VPBB has successors when handling predicated replication."); 6968 // Record predicated instructions for above packing optimizations. 6969 PredInst2Recipe[I] = Recipe; 6970 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6971 VPBlockUtils::insertBlockAfter(Region, VPBB); 6972 auto *RegSucc = new VPBasicBlock(); 6973 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6974 return RegSucc; 6975 } 6976 6977 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6978 VPRecipeBase *PredRecipe, 6979 VPlanPtr &Plan) { 6980 // Instructions marked for predication are replicated and placed under an 6981 // if-then construct to prevent side-effects. 6982 6983 // Generate recipes to compute the block mask for this region. 6984 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6985 6986 // Build the triangular if-then region. 6987 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6988 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6989 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6990 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6991 auto *PHIRecipe = 6992 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6993 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6994 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6995 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6996 6997 // Note: first set Entry as region entry and then connect successors starting 6998 // from it in order, to propagate the "parent" of each VPBasicBlock. 6999 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7000 VPBlockUtils::connectBlocks(Pred, Exit); 7001 7002 return Region; 7003 } 7004 7005 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 7006 VPlanPtr &Plan, VPBasicBlock *VPBB) { 7007 VPRecipeBase *Recipe = nullptr; 7008 // Check if Instr should belong to an interleave memory recipe, or already 7009 // does. In the latter case Instr is irrelevant. 7010 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 7011 VPBB->appendRecipe(Recipe); 7012 return true; 7013 } 7014 7015 // Check if Instr is a memory operation that should be widened. 7016 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 7017 VPBB->appendRecipe(Recipe); 7018 return true; 7019 } 7020 7021 // Check if Instr should form some PHI recipe. 7022 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 7023 VPBB->appendRecipe(Recipe); 7024 return true; 7025 } 7026 if ((Recipe = tryToBlend(Instr, Plan))) { 7027 VPBB->appendRecipe(Recipe); 7028 return true; 7029 } 7030 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 7031 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 7032 return true; 7033 } 7034 7035 // Check if Instr is to be widened by a general VPWidenRecipe, after 7036 // having first checked for specific widening recipes that deal with 7037 // Interleave Groups, Inductions and Phi nodes. 7038 if (tryToWiden(Instr, VPBB, Range)) 7039 return true; 7040 7041 return false; 7042 } 7043 7044 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7045 unsigned MaxVF) { 7046 assert(OrigLoop->empty() && "Inner loop expected."); 7047 7048 // Collect conditions feeding internal conditional branches; they need to be 7049 // represented in VPlan for it to model masking. 7050 SmallPtrSet<Value *, 1> NeedDef; 7051 7052 auto *Latch = OrigLoop->getLoopLatch(); 7053 for (BasicBlock *BB : OrigLoop->blocks()) { 7054 if (BB == Latch) 7055 continue; 7056 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7057 if (Branch && Branch->isConditional()) 7058 NeedDef.insert(Branch->getCondition()); 7059 } 7060 7061 // If the tail is to be folded by masking, the primary induction variable 7062 // needs to be represented in VPlan for it to model early-exit masking. 7063 // Also, both the Phi and the live-out instruction of each reduction are 7064 // required in order to introduce a select between them in VPlan. 7065 if (CM.foldTailByMasking()) { 7066 NeedDef.insert(Legal->getPrimaryInduction()); 7067 for (auto &Reduction : *Legal->getReductionVars()) { 7068 NeedDef.insert(Reduction.first); 7069 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7070 } 7071 } 7072 7073 // Collect instructions from the original loop that will become trivially dead 7074 // in the vectorized loop. We don't need to vectorize these instructions. For 7075 // example, original induction update instructions can become dead because we 7076 // separately emit induction "steps" when generating code for the new loop. 7077 // Similarly, we create a new latch condition when setting up the structure 7078 // of the new loop, so the old one can become dead. 7079 SmallPtrSet<Instruction *, 4> DeadInstructions; 7080 collectTriviallyDeadInstructions(DeadInstructions); 7081 7082 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7083 VFRange SubRange = {VF, MaxVF + 1}; 7084 VPlans.push_back( 7085 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 7086 VF = SubRange.End; 7087 } 7088 } 7089 7090 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7091 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7092 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7093 // Hold a mapping from predicated instructions to their recipes, in order to 7094 // fix their AlsoPack behavior if a user is determined to replicate and use a 7095 // scalar instead of vector value. 7096 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7097 7098 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7099 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 7100 7101 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7102 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7103 auto Plan = std::make_unique<VPlan>(VPBB); 7104 7105 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 7106 // Represent values that will have defs inside VPlan. 7107 for (Value *V : NeedDef) 7108 Plan->addVPValue(V); 7109 7110 // Scan the body of the loop in a topological order to visit each basic block 7111 // after having visited its predecessor basic blocks. 7112 LoopBlocksDFS DFS(OrigLoop); 7113 DFS.perform(LI); 7114 7115 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7116 // Relevant instructions from basic block BB will be grouped into VPRecipe 7117 // ingredients and fill a new VPBasicBlock. 7118 unsigned VPBBsForBB = 0; 7119 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7120 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7121 VPBB = FirstVPBBForBB; 7122 Builder.setInsertPoint(VPBB); 7123 7124 std::vector<Instruction *> Ingredients; 7125 7126 // Organize the ingredients to vectorize from current basic block in the 7127 // right order. 7128 for (Instruction &I : BB->instructionsWithoutDebug()) { 7129 Instruction *Instr = &I; 7130 7131 // First filter out irrelevant instructions, to ensure no recipes are 7132 // built for them. 7133 if (isa<BranchInst>(Instr) || 7134 DeadInstructions.find(Instr) != DeadInstructions.end()) 7135 continue; 7136 7137 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 7138 // member of the IG, do not construct any Recipe for it. 7139 const InterleaveGroup<Instruction> *IG = 7140 CM.getInterleavedAccessGroup(Instr); 7141 if (IG && Instr != IG->getInsertPos() && 7142 Range.Start >= 2 && // Query is illegal for VF == 1 7143 CM.getWideningDecision(Instr, Range.Start) == 7144 LoopVectorizationCostModel::CM_Interleave) { 7145 auto SinkCandidate = SinkAfterInverse.find(Instr); 7146 if (SinkCandidate != SinkAfterInverse.end()) 7147 Ingredients.push_back(SinkCandidate->second); 7148 continue; 7149 } 7150 7151 // Move instructions to handle first-order recurrences, step 1: avoid 7152 // handling this instruction until after we've handled the instruction it 7153 // should follow. 7154 auto SAIt = SinkAfter.find(Instr); 7155 if (SAIt != SinkAfter.end()) { 7156 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 7157 << *SAIt->second 7158 << " to vectorize a 1st order recurrence.\n"); 7159 SinkAfterInverse[SAIt->second] = Instr; 7160 continue; 7161 } 7162 7163 Ingredients.push_back(Instr); 7164 7165 // Move instructions to handle first-order recurrences, step 2: push the 7166 // instruction to be sunk at its insertion point. 7167 auto SAInvIt = SinkAfterInverse.find(Instr); 7168 if (SAInvIt != SinkAfterInverse.end()) 7169 Ingredients.push_back(SAInvIt->second); 7170 } 7171 7172 // Introduce each ingredient into VPlan. 7173 for (Instruction *Instr : Ingredients) { 7174 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7175 continue; 7176 7177 // Otherwise, if all widening options failed, Instruction is to be 7178 // replicated. This may create a successor for VPBB. 7179 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7180 Instr, Range, VPBB, PredInst2Recipe, Plan); 7181 if (NextVPBB != VPBB) { 7182 VPBB = NextVPBB; 7183 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7184 : ""); 7185 } 7186 } 7187 } 7188 7189 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7190 // may also be empty, such as the last one VPBB, reflecting original 7191 // basic-blocks with no recipes. 7192 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7193 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7194 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7195 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7196 delete PreEntry; 7197 7198 // Finally, if tail is folded by masking, introduce selects between the phi 7199 // and the live-out instruction of each reduction, at the end of the latch. 7200 if (CM.foldTailByMasking()) { 7201 Builder.setInsertPoint(VPBB); 7202 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7203 for (auto &Reduction : *Legal->getReductionVars()) { 7204 VPValue *Phi = Plan->getVPValue(Reduction.first); 7205 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7206 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7207 } 7208 } 7209 7210 std::string PlanName; 7211 raw_string_ostream RSO(PlanName); 7212 unsigned VF = Range.Start; 7213 Plan->addVF(VF); 7214 RSO << "Initial VPlan for VF={" << VF; 7215 for (VF *= 2; VF < Range.End; VF *= 2) { 7216 Plan->addVF(VF); 7217 RSO << "," << VF; 7218 } 7219 RSO << "},UF>=1"; 7220 RSO.flush(); 7221 Plan->setName(PlanName); 7222 7223 return Plan; 7224 } 7225 7226 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7227 // Outer loop handling: They may require CFG and instruction level 7228 // transformations before even evaluating whether vectorization is profitable. 7229 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7230 // the vectorization pipeline. 7231 assert(!OrigLoop->empty()); 7232 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7233 7234 // Create new empty VPlan 7235 auto Plan = std::make_unique<VPlan>(); 7236 7237 // Build hierarchical CFG 7238 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7239 HCFGBuilder.buildHierarchicalCFG(); 7240 7241 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7242 Plan->addVF(VF); 7243 7244 if (EnableVPlanPredication) { 7245 VPlanPredicator VPP(*Plan); 7246 VPP.predicate(); 7247 7248 // Avoid running transformation to recipes until masked code generation in 7249 // VPlan-native path is in place. 7250 return Plan; 7251 } 7252 7253 SmallPtrSet<Instruction *, 1> DeadInstructions; 7254 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 7255 Plan, Legal->getInductionVars(), DeadInstructions); 7256 7257 return Plan; 7258 } 7259 7260 Value* LoopVectorizationPlanner::VPCallbackILV:: 7261 getOrCreateVectorValues(Value *V, unsigned Part) { 7262 return ILV.getOrCreateVectorValue(V, Part); 7263 } 7264 7265 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7266 O << " +\n" 7267 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7268 IG->getInsertPos()->printAsOperand(O, false); 7269 if (User) { 7270 O << ", "; 7271 User->getOperand(0)->printAsOperand(O); 7272 } 7273 O << "\\l\""; 7274 for (unsigned i = 0; i < IG->getFactor(); ++i) 7275 if (Instruction *I = IG->getMember(i)) 7276 O << " +\n" 7277 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7278 } 7279 7280 void VPWidenRecipe::execute(VPTransformState &State) { 7281 for (auto &Instr : make_range(Begin, End)) 7282 State.ILV->widenInstruction(Instr); 7283 } 7284 7285 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7286 assert(!State.Instance && "Int or FP induction being replicated."); 7287 State.ILV->widenIntOrFpInduction(IV, Trunc); 7288 } 7289 7290 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7291 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7292 } 7293 7294 void VPBlendRecipe::execute(VPTransformState &State) { 7295 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7296 // We know that all PHIs in non-header blocks are converted into 7297 // selects, so we don't have to worry about the insertion order and we 7298 // can just use the builder. 7299 // At this point we generate the predication tree. There may be 7300 // duplications since this is a simple recursive scan, but future 7301 // optimizations will clean it up. 7302 7303 unsigned NumIncoming = Phi->getNumIncomingValues(); 7304 7305 assert((User || NumIncoming == 1) && 7306 "Multiple predecessors with predecessors having a full mask"); 7307 // Generate a sequence of selects of the form: 7308 // SELECT(Mask3, In3, 7309 // SELECT(Mask2, In2, 7310 // ( ...))) 7311 InnerLoopVectorizer::VectorParts Entry(State.UF); 7312 for (unsigned In = 0; In < NumIncoming; ++In) { 7313 for (unsigned Part = 0; Part < State.UF; ++Part) { 7314 // We might have single edge PHIs (blocks) - use an identity 7315 // 'select' for the first PHI operand. 7316 Value *In0 = 7317 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7318 if (In == 0) 7319 Entry[Part] = In0; // Initialize with the first incoming value. 7320 else { 7321 // Select between the current value and the previous incoming edge 7322 // based on the incoming mask. 7323 Value *Cond = State.get(User->getOperand(In), Part); 7324 Entry[Part] = 7325 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7326 } 7327 } 7328 } 7329 for (unsigned Part = 0; Part < State.UF; ++Part) 7330 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7331 } 7332 7333 void VPInterleaveRecipe::execute(VPTransformState &State) { 7334 assert(!State.Instance && "Interleave group being replicated."); 7335 if (!User) 7336 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7337 7338 // Last (and currently only) operand is a mask. 7339 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7340 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7341 for (unsigned Part = 0; Part < State.UF; ++Part) 7342 MaskValues[Part] = State.get(Mask, Part); 7343 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7344 } 7345 7346 void VPReplicateRecipe::execute(VPTransformState &State) { 7347 if (State.Instance) { // Generate a single instance. 7348 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7349 // Insert scalar instance packing it into a vector. 7350 if (AlsoPack && State.VF > 1) { 7351 // If we're constructing lane 0, initialize to start from undef. 7352 if (State.Instance->Lane == 0) { 7353 Value *Undef = 7354 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7355 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7356 } 7357 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7358 } 7359 return; 7360 } 7361 7362 // Generate scalar instances for all VF lanes of all UF parts, unless the 7363 // instruction is uniform inwhich case generate only the first lane for each 7364 // of the UF parts. 7365 unsigned EndLane = IsUniform ? 1 : State.VF; 7366 for (unsigned Part = 0; Part < State.UF; ++Part) 7367 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7368 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7369 } 7370 7371 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7372 assert(State.Instance && "Branch on Mask works only on single instance."); 7373 7374 unsigned Part = State.Instance->Part; 7375 unsigned Lane = State.Instance->Lane; 7376 7377 Value *ConditionBit = nullptr; 7378 if (!User) // Block in mask is all-one. 7379 ConditionBit = State.Builder.getTrue(); 7380 else { 7381 VPValue *BlockInMask = User->getOperand(0); 7382 ConditionBit = State.get(BlockInMask, Part); 7383 if (ConditionBit->getType()->isVectorTy()) 7384 ConditionBit = State.Builder.CreateExtractElement( 7385 ConditionBit, State.Builder.getInt32(Lane)); 7386 } 7387 7388 // Replace the temporary unreachable terminator with a new conditional branch, 7389 // whose two destinations will be set later when they are created. 7390 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7391 assert(isa<UnreachableInst>(CurrentTerminator) && 7392 "Expected to replace unreachable terminator with conditional branch."); 7393 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7394 CondBr->setSuccessor(0, nullptr); 7395 ReplaceInstWithInst(CurrentTerminator, CondBr); 7396 } 7397 7398 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7399 assert(State.Instance && "Predicated instruction PHI works per instance."); 7400 Instruction *ScalarPredInst = cast<Instruction>( 7401 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7402 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7403 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7404 assert(PredicatingBB && "Predicated block has no single predecessor."); 7405 7406 // By current pack/unpack logic we need to generate only a single phi node: if 7407 // a vector value for the predicated instruction exists at this point it means 7408 // the instruction has vector users only, and a phi for the vector value is 7409 // needed. In this case the recipe of the predicated instruction is marked to 7410 // also do that packing, thereby "hoisting" the insert-element sequence. 7411 // Otherwise, a phi node for the scalar value is needed. 7412 unsigned Part = State.Instance->Part; 7413 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7414 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7415 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7416 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7417 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7418 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7419 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7420 } else { 7421 Type *PredInstType = PredInst->getType(); 7422 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7423 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7424 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7425 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7426 } 7427 } 7428 7429 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7430 if (!User) 7431 return State.ILV->vectorizeMemoryInstruction(&Instr); 7432 7433 // Last (and currently only) operand is a mask. 7434 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7435 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7436 for (unsigned Part = 0; Part < State.UF; ++Part) 7437 MaskValues[Part] = State.get(Mask, Part); 7438 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7439 } 7440 7441 static ScalarEpilogueLowering 7442 getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, 7443 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 7444 ScalarEpilogueLowering SEL = CM_ScalarEpilogueAllowed; 7445 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7446 (F->hasOptSize() || 7447 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI))) 7448 SEL = CM_ScalarEpilogueNotAllowedOptSize; 7449 else if (PreferPredicateOverEpilog || Hints.getPredicate()) 7450 SEL = CM_ScalarEpilogueNotNeededUsePredicate; 7451 7452 return SEL; 7453 } 7454 7455 // Process the loop in the VPlan-native vectorization path. This path builds 7456 // VPlan upfront in the vectorization pipeline, which allows to apply 7457 // VPlan-to-VPlan transformations from the very beginning without modifying the 7458 // input LLVM IR. 7459 static bool processLoopInVPlanNativePath( 7460 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7461 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7462 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7463 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7464 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7465 7466 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7467 Function *F = L->getHeader()->getParent(); 7468 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7469 ScalarEpilogueLowering SEL = getScalarEpilogueLowering(F, L, Hints, PSI, BFI); 7470 7471 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7472 &Hints, IAI); 7473 // Use the planner for outer loop vectorization. 7474 // TODO: CM is not used at this point inside the planner. Turn CM into an 7475 // optional argument if we don't need it in the future. 7476 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7477 7478 // Get user vectorization factor. 7479 const unsigned UserVF = Hints.getWidth(); 7480 7481 // Plan how to best vectorize, return the best VF and its cost. 7482 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7483 7484 // If we are stress testing VPlan builds, do not attempt to generate vector 7485 // code. Masked vector code generation support will follow soon. 7486 // Also, do not attempt to vectorize if no vector code will be produced. 7487 if (VPlanBuildStressTest || EnableVPlanPredication || 7488 VectorizationFactor::Disabled() == VF) 7489 return false; 7490 7491 LVP.setBestPlan(VF.Width, 1); 7492 7493 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7494 &CM); 7495 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7496 << L->getHeader()->getParent()->getName() << "\"\n"); 7497 LVP.executePlan(LB, DT); 7498 7499 // Mark the loop as already vectorized to avoid vectorizing again. 7500 Hints.setAlreadyVectorized(); 7501 7502 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7503 return true; 7504 } 7505 7506 bool LoopVectorizePass::processLoop(Loop *L) { 7507 assert((EnableVPlanNativePath || L->empty()) && 7508 "VPlan-native path is not enabled. Only process inner loops."); 7509 7510 #ifndef NDEBUG 7511 const std::string DebugLocStr = getDebugLocString(L); 7512 #endif /* NDEBUG */ 7513 7514 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7515 << L->getHeader()->getParent()->getName() << "\" from " 7516 << DebugLocStr << "\n"); 7517 7518 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7519 7520 LLVM_DEBUG( 7521 dbgs() << "LV: Loop hints:" 7522 << " force=" 7523 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7524 ? "disabled" 7525 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7526 ? "enabled" 7527 : "?")) 7528 << " width=" << Hints.getWidth() 7529 << " unroll=" << Hints.getInterleave() << "\n"); 7530 7531 // Function containing loop 7532 Function *F = L->getHeader()->getParent(); 7533 7534 // Looking at the diagnostic output is the only way to determine if a loop 7535 // was vectorized (other than looking at the IR or machine code), so it 7536 // is important to generate an optimization remark for each loop. Most of 7537 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7538 // generated as OptimizationRemark and OptimizationRemarkMissed are 7539 // less verbose reporting vectorized loops and unvectorized loops that may 7540 // benefit from vectorization, respectively. 7541 7542 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7543 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7544 return false; 7545 } 7546 7547 PredicatedScalarEvolution PSE(*SE, *L); 7548 7549 // Check if it is legal to vectorize the loop. 7550 LoopVectorizationRequirements Requirements(*ORE); 7551 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7552 &Requirements, &Hints, DB, AC); 7553 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7554 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7555 Hints.emitRemarkWithHints(); 7556 return false; 7557 } 7558 7559 // Check the function attributes and profiles to find out if this function 7560 // should be optimized for size. 7561 ScalarEpilogueLowering SEL = getScalarEpilogueLowering(F, L, Hints, PSI, BFI); 7562 7563 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7564 // here. They may require CFG and instruction level transformations before 7565 // even evaluating whether vectorization is profitable. Since we cannot modify 7566 // the incoming IR, we need to build VPlan upfront in the vectorization 7567 // pipeline. 7568 if (!L->empty()) 7569 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7570 ORE, BFI, PSI, Hints); 7571 7572 assert(L->empty() && "Inner loop expected."); 7573 7574 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7575 // count by optimizing for size, to minimize overheads. 7576 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7577 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7578 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7579 << "This loop is worth vectorizing only if no scalar " 7580 << "iteration overheads are incurred."); 7581 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7582 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7583 else { 7584 LLVM_DEBUG(dbgs() << "\n"); 7585 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7586 } 7587 } 7588 7589 // Check the function attributes to see if implicit floats are allowed. 7590 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7591 // an integer loop and the vector instructions selected are purely integer 7592 // vector instructions? 7593 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7594 reportVectorizationFailure( 7595 "Can't vectorize when the NoImplicitFloat attribute is used", 7596 "loop not vectorized due to NoImplicitFloat attribute", 7597 "NoImplicitFloat", ORE, L); 7598 Hints.emitRemarkWithHints(); 7599 return false; 7600 } 7601 7602 // Check if the target supports potentially unsafe FP vectorization. 7603 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7604 // for the target we're vectorizing for, to make sure none of the 7605 // additional fp-math flags can help. 7606 if (Hints.isPotentiallyUnsafe() && 7607 TTI->isFPVectorizationPotentiallyUnsafe()) { 7608 reportVectorizationFailure( 7609 "Potentially unsafe FP op prevents vectorization", 7610 "loop not vectorized due to unsafe FP support.", 7611 "UnsafeFP", ORE, L); 7612 Hints.emitRemarkWithHints(); 7613 return false; 7614 } 7615 7616 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7617 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7618 7619 // If an override option has been passed in for interleaved accesses, use it. 7620 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7621 UseInterleaved = EnableInterleavedMemAccesses; 7622 7623 // Analyze interleaved memory accesses. 7624 if (UseInterleaved) { 7625 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7626 } 7627 7628 // Use the cost model. 7629 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7630 F, &Hints, IAI); 7631 CM.collectValuesToIgnore(); 7632 7633 // Use the planner for vectorization. 7634 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7635 7636 // Get user vectorization factor. 7637 unsigned UserVF = Hints.getWidth(); 7638 7639 // Plan how to best vectorize, return the best VF and its cost. 7640 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7641 7642 VectorizationFactor VF = VectorizationFactor::Disabled(); 7643 unsigned IC = 1; 7644 unsigned UserIC = Hints.getInterleave(); 7645 7646 if (MaybeVF) { 7647 VF = *MaybeVF; 7648 // Select the interleave count. 7649 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7650 } 7651 7652 // Identify the diagnostic messages that should be produced. 7653 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7654 bool VectorizeLoop = true, InterleaveLoop = true; 7655 if (Requirements.doesNotMeet(F, L, Hints)) { 7656 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7657 "requirements.\n"); 7658 Hints.emitRemarkWithHints(); 7659 return false; 7660 } 7661 7662 if (VF.Width == 1) { 7663 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7664 VecDiagMsg = std::make_pair( 7665 "VectorizationNotBeneficial", 7666 "the cost-model indicates that vectorization is not beneficial"); 7667 VectorizeLoop = false; 7668 } 7669 7670 if (!MaybeVF && UserIC > 1) { 7671 // Tell the user interleaving was avoided up-front, despite being explicitly 7672 // requested. 7673 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7674 "interleaving should be avoided up front\n"); 7675 IntDiagMsg = std::make_pair( 7676 "InterleavingAvoided", 7677 "Ignoring UserIC, because interleaving was avoided up front"); 7678 InterleaveLoop = false; 7679 } else if (IC == 1 && UserIC <= 1) { 7680 // Tell the user interleaving is not beneficial. 7681 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7682 IntDiagMsg = std::make_pair( 7683 "InterleavingNotBeneficial", 7684 "the cost-model indicates that interleaving is not beneficial"); 7685 InterleaveLoop = false; 7686 if (UserIC == 1) { 7687 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7688 IntDiagMsg.second += 7689 " and is explicitly disabled or interleave count is set to 1"; 7690 } 7691 } else if (IC > 1 && UserIC == 1) { 7692 // Tell the user interleaving is beneficial, but it explicitly disabled. 7693 LLVM_DEBUG( 7694 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7695 IntDiagMsg = std::make_pair( 7696 "InterleavingBeneficialButDisabled", 7697 "the cost-model indicates that interleaving is beneficial " 7698 "but is explicitly disabled or interleave count is set to 1"); 7699 InterleaveLoop = false; 7700 } 7701 7702 // Override IC if user provided an interleave count. 7703 IC = UserIC > 0 ? UserIC : IC; 7704 7705 // Emit diagnostic messages, if any. 7706 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7707 if (!VectorizeLoop && !InterleaveLoop) { 7708 // Do not vectorize or interleaving the loop. 7709 ORE->emit([&]() { 7710 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7711 L->getStartLoc(), L->getHeader()) 7712 << VecDiagMsg.second; 7713 }); 7714 ORE->emit([&]() { 7715 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7716 L->getStartLoc(), L->getHeader()) 7717 << IntDiagMsg.second; 7718 }); 7719 return false; 7720 } else if (!VectorizeLoop && InterleaveLoop) { 7721 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7722 ORE->emit([&]() { 7723 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7724 L->getStartLoc(), L->getHeader()) 7725 << VecDiagMsg.second; 7726 }); 7727 } else if (VectorizeLoop && !InterleaveLoop) { 7728 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7729 << ") in " << DebugLocStr << '\n'); 7730 ORE->emit([&]() { 7731 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7732 L->getStartLoc(), L->getHeader()) 7733 << IntDiagMsg.second; 7734 }); 7735 } else if (VectorizeLoop && InterleaveLoop) { 7736 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7737 << ") in " << DebugLocStr << '\n'); 7738 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7739 } 7740 7741 LVP.setBestPlan(VF.Width, IC); 7742 7743 using namespace ore; 7744 bool DisableRuntimeUnroll = false; 7745 MDNode *OrigLoopID = L->getLoopID(); 7746 7747 if (!VectorizeLoop) { 7748 assert(IC > 1 && "interleave count should not be 1 or 0"); 7749 // If we decided that it is not legal to vectorize the loop, then 7750 // interleave it. 7751 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7752 &CM); 7753 LVP.executePlan(Unroller, DT); 7754 7755 ORE->emit([&]() { 7756 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7757 L->getHeader()) 7758 << "interleaved loop (interleaved count: " 7759 << NV("InterleaveCount", IC) << ")"; 7760 }); 7761 } else { 7762 // If we decided that it is *legal* to vectorize the loop, then do it. 7763 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7764 &LVL, &CM); 7765 LVP.executePlan(LB, DT); 7766 ++LoopsVectorized; 7767 7768 // Add metadata to disable runtime unrolling a scalar loop when there are 7769 // no runtime checks about strides and memory. A scalar loop that is 7770 // rarely used is not worth unrolling. 7771 if (!LB.areSafetyChecksAdded()) 7772 DisableRuntimeUnroll = true; 7773 7774 // Report the vectorization decision. 7775 ORE->emit([&]() { 7776 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7777 L->getHeader()) 7778 << "vectorized loop (vectorization width: " 7779 << NV("VectorizationFactor", VF.Width) 7780 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7781 }); 7782 } 7783 7784 Optional<MDNode *> RemainderLoopID = 7785 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7786 LLVMLoopVectorizeFollowupEpilogue}); 7787 if (RemainderLoopID.hasValue()) { 7788 L->setLoopID(RemainderLoopID.getValue()); 7789 } else { 7790 if (DisableRuntimeUnroll) 7791 AddRuntimeUnrollDisableMetaData(L); 7792 7793 // Mark the loop as already vectorized to avoid vectorizing again. 7794 Hints.setAlreadyVectorized(); 7795 } 7796 7797 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7798 return true; 7799 } 7800 7801 bool LoopVectorizePass::runImpl( 7802 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7803 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7804 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7805 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7806 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7807 SE = &SE_; 7808 LI = &LI_; 7809 TTI = &TTI_; 7810 DT = &DT_; 7811 BFI = &BFI_; 7812 TLI = TLI_; 7813 AA = &AA_; 7814 AC = &AC_; 7815 GetLAA = &GetLAA_; 7816 DB = &DB_; 7817 ORE = &ORE_; 7818 PSI = PSI_; 7819 7820 // Don't attempt if 7821 // 1. the target claims to have no vector registers, and 7822 // 2. interleaving won't help ILP. 7823 // 7824 // The second condition is necessary because, even if the target has no 7825 // vector registers, loop vectorization may still enable scalar 7826 // interleaving. 7827 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 7828 TTI->getMaxInterleaveFactor(1) < 2) 7829 return false; 7830 7831 bool Changed = false; 7832 7833 // The vectorizer requires loops to be in simplified form. 7834 // Since simplification may add new inner loops, it has to run before the 7835 // legality and profitability checks. This means running the loop vectorizer 7836 // will simplify all loops, regardless of whether anything end up being 7837 // vectorized. 7838 for (auto &L : *LI) 7839 Changed |= 7840 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7841 7842 // Build up a worklist of inner-loops to vectorize. This is necessary as 7843 // the act of vectorizing or partially unrolling a loop creates new loops 7844 // and can invalidate iterators across the loops. 7845 SmallVector<Loop *, 8> Worklist; 7846 7847 for (Loop *L : *LI) 7848 collectSupportedLoops(*L, LI, ORE, Worklist); 7849 7850 LoopsAnalyzed += Worklist.size(); 7851 7852 // Now walk the identified inner loops. 7853 while (!Worklist.empty()) { 7854 Loop *L = Worklist.pop_back_val(); 7855 7856 // For the inner loops we actually process, form LCSSA to simplify the 7857 // transform. 7858 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7859 7860 Changed |= processLoop(L); 7861 } 7862 7863 // Process each loop nest in the function. 7864 return Changed; 7865 } 7866 7867 PreservedAnalyses LoopVectorizePass::run(Function &F, 7868 FunctionAnalysisManager &AM) { 7869 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7870 auto &LI = AM.getResult<LoopAnalysis>(F); 7871 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7872 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7873 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7874 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7875 auto &AA = AM.getResult<AAManager>(F); 7876 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7877 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7878 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7879 MemorySSA *MSSA = EnableMSSALoopDependency 7880 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7881 : nullptr; 7882 7883 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7884 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7885 [&](Loop &L) -> const LoopAccessInfo & { 7886 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7887 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7888 }; 7889 const ModuleAnalysisManager &MAM = 7890 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7891 ProfileSummaryInfo *PSI = 7892 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7893 bool Changed = 7894 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7895 if (!Changed) 7896 return PreservedAnalyses::all(); 7897 PreservedAnalyses PA; 7898 7899 // We currently do not preserve loopinfo/dominator analyses with outer loop 7900 // vectorization. Until this is addressed, mark these analyses as preserved 7901 // only for non-VPlan-native path. 7902 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7903 if (!EnableVPlanNativePath) { 7904 PA.preserve<LoopAnalysis>(); 7905 PA.preserve<DominatorTreeAnalysis>(); 7906 } 7907 PA.preserve<BasicAA>(); 7908 PA.preserve<GlobalsAA>(); 7909 return PA; 7910 } 7911