1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 static cl::opt<bool> ForceOrderedReductions( 334 "force-ordered-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns true if the given type is irregular. The 378 /// type is irregular if its allocated size doesn't equal the store size of an 379 /// element of the corresponding vector type. 380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 381 // Determine if an array of N elements of type Ty is "bitcast compatible" 382 // with a <N x Ty> vector. 383 // This is only true if there is no padding between the array elements. 384 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 385 } 386 387 /// A helper function that returns the reciprocal of the block probability of 388 /// predicated blocks. If we return X, we are assuming the predicated block 389 /// will execute once for every X iterations of the loop header. 390 /// 391 /// TODO: We should use actual block probability here, if available. Currently, 392 /// we always assume predicated blocks have a 50% chance of executing. 393 static unsigned getReciprocalPredBlockProb() { return 2; } 394 395 /// A helper function that returns an integer or floating-point constant with 396 /// value C. 397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 398 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 399 : ConstantFP::get(Ty, C); 400 } 401 402 /// Returns "best known" trip count for the specified loop \p L as defined by 403 /// the following procedure: 404 /// 1) Returns exact trip count if it is known. 405 /// 2) Returns expected trip count according to profile data if any. 406 /// 3) Returns upper bound estimate if it is known. 407 /// 4) Returns None if all of the above failed. 408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 409 // Check if exact trip count is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 411 return ExpectedTC; 412 413 // Check if there is an expected trip count available from profile data. 414 if (LoopVectorizeWithBlockFrequency) 415 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 416 return EstimatedTC; 417 418 // Check if upper bound estimate is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 420 return ExpectedTC; 421 422 return None; 423 } 424 425 // Forward declare GeneratedRTChecks. 426 class GeneratedRTChecks; 427 428 namespace llvm { 429 430 AnalysisKey ShouldRunExtraVectorPasses::Key; 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop and the start value for the canonical induction, if it is != 0. The 473 /// latter is the case when vectorizing the epilogue loop. In the case of 474 /// epilogue vectorization, this function is overriden to handle the more 475 /// complex control flow around the loops. 476 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 477 478 /// Widen a single call instruction within the innermost loop. 479 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 480 VPTransformState &State); 481 482 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 483 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 484 485 // Return true if any runtime check is added. 486 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 487 488 /// A type for vectorized values in the new loop. Each value from the 489 /// original loop, when vectorized, is represented by UF vector values in the 490 /// new unrolled loop, where UF is the unroll factor. 491 using VectorParts = SmallVector<Value *, 2>; 492 493 /// Vectorize a single vector PHINode in a block in the VPlan-native path 494 /// only. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *CountRoundDown, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Handle all cross-iteration phis in the header. 573 void fixCrossIterationPHIs(VPTransformState &State); 574 575 /// Create the exit value of first order recurrences in the middle block and 576 /// update their users. 577 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 578 VPTransformState &State); 579 580 /// Create code for the loop exit value of the reduction. 581 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 582 583 /// Clear NSW/NUW flags from reduction instructions if necessary. 584 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 585 VPTransformState &State); 586 587 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 588 /// means we need to add the appropriate incoming value from the middle 589 /// block as exiting edges from the scalar epilogue loop (if present) are 590 /// already in place, and we exit the vector loop exclusively to the middle 591 /// block. 592 void fixLCSSAPHIs(VPTransformState &State); 593 594 /// Iteratively sink the scalarized operands of a predicated instruction into 595 /// the block that was created for it. 596 void sinkScalarOperands(Instruction *PredInst); 597 598 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 599 /// represented as. 600 void truncateToMinimalBitwidths(VPTransformState &State); 601 602 /// Returns (and creates if needed) the original loop trip count. 603 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 604 605 /// Returns (and creates if needed) the trip count of the widened loop. 606 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 607 608 /// Returns a bitcasted value to the requested vector type. 609 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 610 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 611 const DataLayout &DL); 612 613 /// Emit a bypass check to see if the vector trip count is zero, including if 614 /// it overflows. 615 void emitMinimumIterationCountCheck(BasicBlock *Bypass); 616 617 /// Emit a bypass check to see if all of the SCEV assumptions we've 618 /// had to make are correct. Returns the block containing the checks or 619 /// nullptr if no checks have been added. 620 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 621 622 /// Emit bypass checks to check any memory assumptions we may have made. 623 /// Returns the block containing the checks or nullptr if no checks have been 624 /// added. 625 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 626 627 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 628 /// vector loop preheader, middle block and scalar preheader. 629 void createVectorLoopSkeleton(StringRef Prefix); 630 631 /// Create new phi nodes for the induction variables to resume iteration count 632 /// in the scalar epilogue, from where the vectorized loop left off. 633 /// In cases where the loop skeleton is more complicated (eg. epilogue 634 /// vectorization) and the resume values can come from an additional bypass 635 /// block, the \p AdditionalBypass pair provides information about the bypass 636 /// block and the end value on the edge from bypass to this loop. 637 void createInductionResumeValues( 638 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 639 640 /// Complete the loop skeleton by adding debug MDs, creating appropriate 641 /// conditional branches in the middle block, preparing the builder and 642 /// running the verifier. Return the preheader of the completed vector loop. 643 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 644 645 /// Add additional metadata to \p To that was not present on \p Orig. 646 /// 647 /// Currently this is used to add the noalias annotations based on the 648 /// inserted memchecks. Use this for instructions that are *cloned* into the 649 /// vector loop. 650 void addNewMetadata(Instruction *To, const Instruction *Orig); 651 652 /// Collect poison-generating recipes that may generate a poison value that is 653 /// used after vectorization, even when their operands are not poison. Those 654 /// recipes meet the following conditions: 655 /// * Contribute to the address computation of a recipe generating a widen 656 /// memory load/store (VPWidenMemoryInstructionRecipe or 657 /// VPInterleaveRecipe). 658 /// * Such a widen memory load/store has at least one underlying Instruction 659 /// that is in a basic block that needs predication and after vectorization 660 /// the generated instruction won't be predicated. 661 void collectPoisonGeneratingRecipes(VPTransformState &State); 662 663 /// Allow subclasses to override and print debug traces before/after vplan 664 /// execution, when trace information is requested. 665 virtual void printDebugTracesAtStart(){}; 666 virtual void printDebugTracesAtEnd(){}; 667 668 /// The original loop. 669 Loop *OrigLoop; 670 671 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 672 /// dynamic knowledge to simplify SCEV expressions and converts them to a 673 /// more usable form. 674 PredicatedScalarEvolution &PSE; 675 676 /// Loop Info. 677 LoopInfo *LI; 678 679 /// Dominator Tree. 680 DominatorTree *DT; 681 682 /// Alias Analysis. 683 AAResults *AA; 684 685 /// Target Library Info. 686 const TargetLibraryInfo *TLI; 687 688 /// Target Transform Info. 689 const TargetTransformInfo *TTI; 690 691 /// Assumption Cache. 692 AssumptionCache *AC; 693 694 /// Interface to emit optimization remarks. 695 OptimizationRemarkEmitter *ORE; 696 697 /// LoopVersioning. It's only set up (non-null) if memchecks were 698 /// used. 699 /// 700 /// This is currently only used to add no-alias metadata based on the 701 /// memchecks. The actually versioning is performed manually. 702 std::unique_ptr<LoopVersioning> LVer; 703 704 /// The vectorization SIMD factor to use. Each vector will have this many 705 /// vector elements. 706 ElementCount VF; 707 708 /// The vectorization unroll factor to use. Each scalar is vectorized to this 709 /// many different vector instructions. 710 unsigned UF; 711 712 /// The builder that we use 713 IRBuilder<> Builder; 714 715 // --- Vectorization state --- 716 717 /// The vector-loop preheader. 718 BasicBlock *LoopVectorPreHeader; 719 720 /// The scalar-loop preheader. 721 BasicBlock *LoopScalarPreHeader; 722 723 /// Middle Block between the vector and the scalar. 724 BasicBlock *LoopMiddleBlock; 725 726 /// The unique ExitBlock of the scalar loop if one exists. Note that 727 /// there can be multiple exiting edges reaching this block. 728 BasicBlock *LoopExitBlock; 729 730 /// The scalar loop body. 731 BasicBlock *LoopScalarBody; 732 733 /// A list of all bypass blocks. The first block is the entry of the loop. 734 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 /// Trip count of the original loop. 740 Value *TripCount = nullptr; 741 742 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 743 Value *VectorTripCount = nullptr; 744 745 /// The legality analysis. 746 LoopVectorizationLegality *Legal; 747 748 /// The profitablity analysis. 749 LoopVectorizationCostModel *Cost; 750 751 // Record whether runtime checks are added. 752 bool AddedSafetyChecks = false; 753 754 // Holds the end values for each induction variable. We save the end values 755 // so we can later fix-up the external users of the induction variables. 756 DenseMap<PHINode *, Value *> IVEndValues; 757 758 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 759 // fixed up at the end of vector code generation. 760 SmallVector<PHINode *, 8> OrigPHIsToFix; 761 762 /// BFI and PSI are used to check for profile guided size optimizations. 763 BlockFrequencyInfo *BFI; 764 ProfileSummaryInfo *PSI; 765 766 // Whether this loop should be optimized for size based on profile guided size 767 // optimizatios. 768 bool OptForSizeBasedOnProfile; 769 770 /// Structure to hold information about generated runtime checks, responsible 771 /// for cleaning the checks, if vectorization turns out unprofitable. 772 GeneratedRTChecks &RTChecks; 773 774 // Holds the resume values for reductions in the loops, used to set the 775 // correct start value of reduction PHIs when vectorizing the epilogue. 776 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 777 ReductionResumeValues; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 789 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 790 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 791 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 792 BFI, PSI, Check) {} 793 794 private: 795 Value *getBroadcastInstrs(Value *V) override; 796 }; 797 798 /// Encapsulate information regarding vectorization of a loop and its epilogue. 799 /// This information is meant to be updated and used across two stages of 800 /// epilogue vectorization. 801 struct EpilogueLoopVectorizationInfo { 802 ElementCount MainLoopVF = ElementCount::getFixed(0); 803 unsigned MainLoopUF = 0; 804 ElementCount EpilogueVF = ElementCount::getFixed(0); 805 unsigned EpilogueUF = 0; 806 BasicBlock *MainLoopIterationCountCheck = nullptr; 807 BasicBlock *EpilogueIterationCountCheck = nullptr; 808 BasicBlock *SCEVSafetyCheck = nullptr; 809 BasicBlock *MemSafetyCheck = nullptr; 810 Value *TripCount = nullptr; 811 Value *VectorTripCount = nullptr; 812 813 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 814 ElementCount EVF, unsigned EUF) 815 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 816 assert(EUF == 1 && 817 "A high UF for the epilogue loop is likely not beneficial."); 818 } 819 }; 820 821 /// An extension of the inner loop vectorizer that creates a skeleton for a 822 /// vectorized loop that has its epilogue (residual) also vectorized. 823 /// The idea is to run the vplan on a given loop twice, firstly to setup the 824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 825 /// from the first step and vectorize the epilogue. This is achieved by 826 /// deriving two concrete strategy classes from this base class and invoking 827 /// them in succession from the loop vectorizer planner. 828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 829 public: 830 InnerLoopAndEpilogueVectorizer( 831 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 832 DominatorTree *DT, const TargetLibraryInfo *TLI, 833 const TargetTransformInfo *TTI, AssumptionCache *AC, 834 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 835 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 836 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 837 GeneratedRTChecks &Checks) 838 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 839 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 840 Checks), 841 EPI(EPI) {} 842 843 // Override this function to handle the more complex control flow around the 844 // three loops. 845 std::pair<BasicBlock *, Value *> 846 createVectorizedLoopSkeleton() final override { 847 return createEpilogueVectorizedLoopSkeleton(); 848 } 849 850 /// The interface for creating a vectorized skeleton using one of two 851 /// different strategies, each corresponding to one execution of the vplan 852 /// as described above. 853 virtual std::pair<BasicBlock *, Value *> 854 createEpilogueVectorizedLoopSkeleton() = 0; 855 856 /// Holds and updates state information required to vectorize the main loop 857 /// and its epilogue in two separate passes. This setup helps us avoid 858 /// regenerating and recomputing runtime safety checks. It also helps us to 859 /// shorten the iteration-count-check path length for the cases where the 860 /// iteration count of the loop is so small that the main vector loop is 861 /// completely skipped. 862 EpilogueLoopVectorizationInfo &EPI; 863 }; 864 865 /// A specialized derived class of inner loop vectorizer that performs 866 /// vectorization of *main* loops in the process of vectorizing loops and their 867 /// epilogues. 868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 869 public: 870 EpilogueVectorizerMainLoop( 871 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 872 DominatorTree *DT, const TargetLibraryInfo *TLI, 873 const TargetTransformInfo *TTI, AssumptionCache *AC, 874 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 875 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 876 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 877 GeneratedRTChecks &Check) 878 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 879 EPI, LVL, CM, BFI, PSI, Check) {} 880 /// Implements the interface for creating a vectorized skeleton using the 881 /// *main loop* strategy (ie the first pass of vplan execution). 882 std::pair<BasicBlock *, Value *> 883 createEpilogueVectorizedLoopSkeleton() final override; 884 885 protected: 886 /// Emits an iteration count bypass check once for the main loop (when \p 887 /// ForEpilogue is false) and once for the epilogue loop (when \p 888 /// ForEpilogue is true). 889 BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass, 890 bool ForEpilogue); 891 void printDebugTracesAtStart() override; 892 void printDebugTracesAtEnd() override; 893 }; 894 895 // A specialized derived class of inner loop vectorizer that performs 896 // vectorization of *epilogue* loops in the process of vectorizing loops and 897 // their epilogues. 898 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 899 public: 900 EpilogueVectorizerEpilogueLoop( 901 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 902 DominatorTree *DT, const TargetLibraryInfo *TLI, 903 const TargetTransformInfo *TTI, AssumptionCache *AC, 904 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 905 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 906 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 907 GeneratedRTChecks &Checks) 908 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 909 EPI, LVL, CM, BFI, PSI, Checks) { 910 TripCount = EPI.TripCount; 911 } 912 /// Implements the interface for creating a vectorized skeleton using the 913 /// *epilogue loop* strategy (ie the second pass of vplan execution). 914 std::pair<BasicBlock *, Value *> 915 createEpilogueVectorizedLoopSkeleton() final override; 916 917 protected: 918 /// Emits an iteration count bypass check after the main vector loop has 919 /// finished to see if there are any iterations left to execute by either 920 /// the vector epilogue or the scalar epilogue. 921 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 922 BasicBlock *Bypass, 923 BasicBlock *Insert); 924 void printDebugTracesAtStart() override; 925 void printDebugTracesAtEnd() override; 926 }; 927 } // end namespace llvm 928 929 /// Look for a meaningful debug location on the instruction or it's 930 /// operands. 931 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 932 if (!I) 933 return I; 934 935 DebugLoc Empty; 936 if (I->getDebugLoc() != Empty) 937 return I; 938 939 for (Use &Op : I->operands()) { 940 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 941 if (OpInst->getDebugLoc() != Empty) 942 return OpInst; 943 } 944 945 return I; 946 } 947 948 void InnerLoopVectorizer::setDebugLocFromInst( 949 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 950 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 951 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 952 const DILocation *DIL = Inst->getDebugLoc(); 953 954 // When a FSDiscriminator is enabled, we don't need to add the multiply 955 // factors to the discriminators. 956 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 957 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 958 // FIXME: For scalable vectors, assume vscale=1. 959 auto NewDIL = 960 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 961 if (NewDIL) 962 B->SetCurrentDebugLocation(NewDIL.getValue()); 963 else 964 LLVM_DEBUG(dbgs() 965 << "Failed to create new discriminator: " 966 << DIL->getFilename() << " Line: " << DIL->getLine()); 967 } else 968 B->SetCurrentDebugLocation(DIL); 969 } else 970 B->SetCurrentDebugLocation(DebugLoc()); 971 } 972 973 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 974 /// is passed, the message relates to that particular instruction. 975 #ifndef NDEBUG 976 static void debugVectorizationMessage(const StringRef Prefix, 977 const StringRef DebugMsg, 978 Instruction *I) { 979 dbgs() << "LV: " << Prefix << DebugMsg; 980 if (I != nullptr) 981 dbgs() << " " << *I; 982 else 983 dbgs() << '.'; 984 dbgs() << '\n'; 985 } 986 #endif 987 988 /// Create an analysis remark that explains why vectorization failed 989 /// 990 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 991 /// RemarkName is the identifier for the remark. If \p I is passed it is an 992 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 993 /// the location of the remark. \return the remark object that can be 994 /// streamed to. 995 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 996 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 997 Value *CodeRegion = TheLoop->getHeader(); 998 DebugLoc DL = TheLoop->getStartLoc(); 999 1000 if (I) { 1001 CodeRegion = I->getParent(); 1002 // If there is no debug location attached to the instruction, revert back to 1003 // using the loop's. 1004 if (I->getDebugLoc()) 1005 DL = I->getDebugLoc(); 1006 } 1007 1008 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1009 } 1010 1011 namespace llvm { 1012 1013 /// Return a value for Step multiplied by VF. 1014 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1015 int64_t Step) { 1016 assert(Ty->isIntegerTy() && "Expected an integer step"); 1017 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1018 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1019 } 1020 1021 /// Return the runtime value for VF. 1022 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1023 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1024 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1025 } 1026 1027 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1028 ElementCount VF) { 1029 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1030 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1031 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1032 return B.CreateUIToFP(RuntimeVF, FTy); 1033 } 1034 1035 void reportVectorizationFailure(const StringRef DebugMsg, 1036 const StringRef OREMsg, const StringRef ORETag, 1037 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1038 Instruction *I) { 1039 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1040 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1041 ORE->emit( 1042 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1043 << "loop not vectorized: " << OREMsg); 1044 } 1045 1046 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1047 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1048 Instruction *I) { 1049 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1050 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1051 ORE->emit( 1052 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1053 << Msg); 1054 } 1055 1056 } // end namespace llvm 1057 1058 #ifndef NDEBUG 1059 /// \return string containing a file name and a line # for the given loop. 1060 static std::string getDebugLocString(const Loop *L) { 1061 std::string Result; 1062 if (L) { 1063 raw_string_ostream OS(Result); 1064 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1065 LoopDbgLoc.print(OS); 1066 else 1067 // Just print the module name. 1068 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1069 OS.flush(); 1070 } 1071 return Result; 1072 } 1073 #endif 1074 1075 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1076 const Instruction *Orig) { 1077 // If the loop was versioned with memchecks, add the corresponding no-alias 1078 // metadata. 1079 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1080 LVer->annotateInstWithNoAlias(To, Orig); 1081 } 1082 1083 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1084 VPTransformState &State) { 1085 1086 // Collect recipes in the backward slice of `Root` that may generate a poison 1087 // value that is used after vectorization. 1088 SmallPtrSet<VPRecipeBase *, 16> Visited; 1089 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1090 SmallVector<VPRecipeBase *, 16> Worklist; 1091 Worklist.push_back(Root); 1092 1093 // Traverse the backward slice of Root through its use-def chain. 1094 while (!Worklist.empty()) { 1095 VPRecipeBase *CurRec = Worklist.back(); 1096 Worklist.pop_back(); 1097 1098 if (!Visited.insert(CurRec).second) 1099 continue; 1100 1101 // Prune search if we find another recipe generating a widen memory 1102 // instruction. Widen memory instructions involved in address computation 1103 // will lead to gather/scatter instructions, which don't need to be 1104 // handled. 1105 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1106 isa<VPInterleaveRecipe>(CurRec) || 1107 isa<VPScalarIVStepsRecipe>(CurRec) || 1108 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1109 continue; 1110 1111 // This recipe contributes to the address computation of a widen 1112 // load/store. Collect recipe if its underlying instruction has 1113 // poison-generating flags. 1114 Instruction *Instr = CurRec->getUnderlyingInstr(); 1115 if (Instr && Instr->hasPoisonGeneratingFlags()) 1116 State.MayGeneratePoisonRecipes.insert(CurRec); 1117 1118 // Add new definitions to the worklist. 1119 for (VPValue *operand : CurRec->operands()) 1120 if (VPDef *OpDef = operand->getDef()) 1121 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1122 } 1123 }); 1124 1125 // Traverse all the recipes in the VPlan and collect the poison-generating 1126 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1127 // VPInterleaveRecipe. 1128 auto Iter = depth_first( 1129 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1130 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1131 for (VPRecipeBase &Recipe : *VPBB) { 1132 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1133 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1134 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1135 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1136 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1137 collectPoisonGeneratingInstrsInBackwardSlice( 1138 cast<VPRecipeBase>(AddrDef)); 1139 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1140 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1141 if (AddrDef) { 1142 // Check if any member of the interleave group needs predication. 1143 const InterleaveGroup<Instruction> *InterGroup = 1144 InterleaveRec->getInterleaveGroup(); 1145 bool NeedPredication = false; 1146 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1147 I < NumMembers; ++I) { 1148 Instruction *Member = InterGroup->getMember(I); 1149 if (Member) 1150 NeedPredication |= 1151 Legal->blockNeedsPredication(Member->getParent()); 1152 } 1153 1154 if (NeedPredication) 1155 collectPoisonGeneratingInstrsInBackwardSlice( 1156 cast<VPRecipeBase>(AddrDef)); 1157 } 1158 } 1159 } 1160 } 1161 } 1162 1163 void InnerLoopVectorizer::addMetadata(Instruction *To, 1164 Instruction *From) { 1165 propagateMetadata(To, From); 1166 addNewMetadata(To, From); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1170 Instruction *From) { 1171 for (Value *V : To) { 1172 if (Instruction *I = dyn_cast<Instruction>(V)) 1173 addMetadata(I, From); 1174 } 1175 } 1176 1177 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1178 const RecurrenceDescriptor &RdxDesc) { 1179 auto It = ReductionResumeValues.find(&RdxDesc); 1180 assert(It != ReductionResumeValues.end() && 1181 "Expected to find a resume value for the reduction."); 1182 return It->second; 1183 } 1184 1185 namespace llvm { 1186 1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1188 // lowered. 1189 enum ScalarEpilogueLowering { 1190 1191 // The default: allowing scalar epilogues. 1192 CM_ScalarEpilogueAllowed, 1193 1194 // Vectorization with OptForSize: don't allow epilogues. 1195 CM_ScalarEpilogueNotAllowedOptSize, 1196 1197 // A special case of vectorisation with OptForSize: loops with a very small 1198 // trip count are considered for vectorization under OptForSize, thereby 1199 // making sure the cost of their loop body is dominant, free of runtime 1200 // guards and scalar iteration overheads. 1201 CM_ScalarEpilogueNotAllowedLowTripLoop, 1202 1203 // Loop hint predicate indicating an epilogue is undesired. 1204 CM_ScalarEpilogueNotNeededUsePredicate, 1205 1206 // Directive indicating we must either tail fold or not vectorize 1207 CM_ScalarEpilogueNotAllowedUsePredicate 1208 }; 1209 1210 /// ElementCountComparator creates a total ordering for ElementCount 1211 /// for the purposes of using it in a set structure. 1212 struct ElementCountComparator { 1213 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1214 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1215 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1216 } 1217 }; 1218 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1219 1220 /// LoopVectorizationCostModel - estimates the expected speedups due to 1221 /// vectorization. 1222 /// In many cases vectorization is not profitable. This can happen because of 1223 /// a number of reasons. In this class we mainly attempt to predict the 1224 /// expected speedup/slowdowns due to the supported instruction set. We use the 1225 /// TargetTransformInfo to query the different backends for the cost of 1226 /// different operations. 1227 class LoopVectorizationCostModel { 1228 public: 1229 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1230 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1231 LoopVectorizationLegality *Legal, 1232 const TargetTransformInfo &TTI, 1233 const TargetLibraryInfo *TLI, DemandedBits *DB, 1234 AssumptionCache *AC, 1235 OptimizationRemarkEmitter *ORE, const Function *F, 1236 const LoopVectorizeHints *Hints, 1237 InterleavedAccessInfo &IAI) 1238 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1239 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1240 Hints(Hints), InterleaveInfo(IAI) {} 1241 1242 /// \return An upper bound for the vectorization factors (both fixed and 1243 /// scalable). If the factors are 0, vectorization and interleaving should be 1244 /// avoided up front. 1245 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1246 1247 /// \return True if runtime checks are required for vectorization, and false 1248 /// otherwise. 1249 bool runtimeChecksRequired(); 1250 1251 /// \return The most profitable vectorization factor and the cost of that VF. 1252 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1253 /// then this vectorization factor will be selected if vectorization is 1254 /// possible. 1255 VectorizationFactor 1256 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1257 1258 VectorizationFactor 1259 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1260 const LoopVectorizationPlanner &LVP); 1261 1262 /// Setup cost-based decisions for user vectorization factor. 1263 /// \return true if the UserVF is a feasible VF to be chosen. 1264 bool selectUserVectorizationFactor(ElementCount UserVF) { 1265 collectUniformsAndScalars(UserVF); 1266 collectInstsToScalarize(UserVF); 1267 return expectedCost(UserVF).first.isValid(); 1268 } 1269 1270 /// \return The size (in bits) of the smallest and widest types in the code 1271 /// that needs to be vectorized. We ignore values that remain scalar such as 1272 /// 64 bit loop indices. 1273 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1274 1275 /// \return The desired interleave count. 1276 /// If interleave count has been specified by metadata it will be returned. 1277 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1278 /// are the selected vectorization factor and the cost of the selected VF. 1279 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1280 1281 /// Memory access instruction may be vectorized in more than one way. 1282 /// Form of instruction after vectorization depends on cost. 1283 /// This function takes cost-based decisions for Load/Store instructions 1284 /// and collects them in a map. This decisions map is used for building 1285 /// the lists of loop-uniform and loop-scalar instructions. 1286 /// The calculated cost is saved with widening decision in order to 1287 /// avoid redundant calculations. 1288 void setCostBasedWideningDecision(ElementCount VF); 1289 1290 /// A struct that represents some properties of the register usage 1291 /// of a loop. 1292 struct RegisterUsage { 1293 /// Holds the number of loop invariant values that are used in the loop. 1294 /// The key is ClassID of target-provided register class. 1295 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1296 /// Holds the maximum number of concurrent live intervals in the loop. 1297 /// The key is ClassID of target-provided register class. 1298 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1299 }; 1300 1301 /// \return Returns information about the register usages of the loop for the 1302 /// given vectorization factors. 1303 SmallVector<RegisterUsage, 8> 1304 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1305 1306 /// Collect values we want to ignore in the cost model. 1307 void collectValuesToIgnore(); 1308 1309 /// Collect all element types in the loop for which widening is needed. 1310 void collectElementTypesForWidening(); 1311 1312 /// Split reductions into those that happen in the loop, and those that happen 1313 /// outside. In loop reductions are collected into InLoopReductionChains. 1314 void collectInLoopReductions(); 1315 1316 /// Returns true if we should use strict in-order reductions for the given 1317 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1318 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1319 /// of FP operations. 1320 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1321 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1322 } 1323 1324 /// \returns The smallest bitwidth each instruction can be represented with. 1325 /// The vector equivalents of these instructions should be truncated to this 1326 /// type. 1327 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1328 return MinBWs; 1329 } 1330 1331 /// \returns True if it is more profitable to scalarize instruction \p I for 1332 /// vectorization factor \p VF. 1333 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1334 assert(VF.isVector() && 1335 "Profitable to scalarize relevant only for VF > 1."); 1336 1337 // Cost model is not run in the VPlan-native path - return conservative 1338 // result until this changes. 1339 if (EnableVPlanNativePath) 1340 return false; 1341 1342 auto Scalars = InstsToScalarize.find(VF); 1343 assert(Scalars != InstsToScalarize.end() && 1344 "VF not yet analyzed for scalarization profitability"); 1345 return Scalars->second.find(I) != Scalars->second.end(); 1346 } 1347 1348 /// Returns true if \p I is known to be uniform after vectorization. 1349 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1350 if (VF.isScalar()) 1351 return true; 1352 1353 // Cost model is not run in the VPlan-native path - return conservative 1354 // result until this changes. 1355 if (EnableVPlanNativePath) 1356 return false; 1357 1358 auto UniformsPerVF = Uniforms.find(VF); 1359 assert(UniformsPerVF != Uniforms.end() && 1360 "VF not yet analyzed for uniformity"); 1361 return UniformsPerVF->second.count(I); 1362 } 1363 1364 /// Returns true if \p I is known to be scalar after vectorization. 1365 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1366 if (VF.isScalar()) 1367 return true; 1368 1369 // Cost model is not run in the VPlan-native path - return conservative 1370 // result until this changes. 1371 if (EnableVPlanNativePath) 1372 return false; 1373 1374 auto ScalarsPerVF = Scalars.find(VF); 1375 assert(ScalarsPerVF != Scalars.end() && 1376 "Scalar values are not calculated for VF"); 1377 return ScalarsPerVF->second.count(I); 1378 } 1379 1380 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1381 /// for vectorization factor \p VF. 1382 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1383 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1384 !isProfitableToScalarize(I, VF) && 1385 !isScalarAfterVectorization(I, VF); 1386 } 1387 1388 /// Decision that was taken during cost calculation for memory instruction. 1389 enum InstWidening { 1390 CM_Unknown, 1391 CM_Widen, // For consecutive accesses with stride +1. 1392 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1393 CM_Interleave, 1394 CM_GatherScatter, 1395 CM_Scalarize 1396 }; 1397 1398 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1399 /// instruction \p I and vector width \p VF. 1400 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1401 InstructionCost Cost) { 1402 assert(VF.isVector() && "Expected VF >=2"); 1403 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1404 } 1405 1406 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1407 /// interleaving group \p Grp and vector width \p VF. 1408 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1409 ElementCount VF, InstWidening W, 1410 InstructionCost Cost) { 1411 assert(VF.isVector() && "Expected VF >=2"); 1412 /// Broadcast this decicion to all instructions inside the group. 1413 /// But the cost will be assigned to one instruction only. 1414 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1415 if (auto *I = Grp->getMember(i)) { 1416 if (Grp->getInsertPos() == I) 1417 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1418 else 1419 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1420 } 1421 } 1422 } 1423 1424 /// Return the cost model decision for the given instruction \p I and vector 1425 /// width \p VF. Return CM_Unknown if this instruction did not pass 1426 /// through the cost modeling. 1427 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1428 assert(VF.isVector() && "Expected VF to be a vector VF"); 1429 // Cost model is not run in the VPlan-native path - return conservative 1430 // result until this changes. 1431 if (EnableVPlanNativePath) 1432 return CM_GatherScatter; 1433 1434 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1435 auto Itr = WideningDecisions.find(InstOnVF); 1436 if (Itr == WideningDecisions.end()) 1437 return CM_Unknown; 1438 return Itr->second.first; 1439 } 1440 1441 /// Return the vectorization cost for the given instruction \p I and vector 1442 /// width \p VF. 1443 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1444 assert(VF.isVector() && "Expected VF >=2"); 1445 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1446 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1447 "The cost is not calculated"); 1448 return WideningDecisions[InstOnVF].second; 1449 } 1450 1451 /// Return True if instruction \p I is an optimizable truncate whose operand 1452 /// is an induction variable. Such a truncate will be removed by adding a new 1453 /// induction variable with the destination type. 1454 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1455 // If the instruction is not a truncate, return false. 1456 auto *Trunc = dyn_cast<TruncInst>(I); 1457 if (!Trunc) 1458 return false; 1459 1460 // Get the source and destination types of the truncate. 1461 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1462 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1463 1464 // If the truncate is free for the given types, return false. Replacing a 1465 // free truncate with an induction variable would add an induction variable 1466 // update instruction to each iteration of the loop. We exclude from this 1467 // check the primary induction variable since it will need an update 1468 // instruction regardless. 1469 Value *Op = Trunc->getOperand(0); 1470 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1471 return false; 1472 1473 // If the truncated value is not an induction variable, return false. 1474 return Legal->isInductionPhi(Op); 1475 } 1476 1477 /// Collects the instructions to scalarize for each predicated instruction in 1478 /// the loop. 1479 void collectInstsToScalarize(ElementCount VF); 1480 1481 /// Collect Uniform and Scalar values for the given \p VF. 1482 /// The sets depend on CM decision for Load/Store instructions 1483 /// that may be vectorized as interleave, gather-scatter or scalarized. 1484 void collectUniformsAndScalars(ElementCount VF) { 1485 // Do the analysis once. 1486 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1487 return; 1488 setCostBasedWideningDecision(VF); 1489 collectLoopUniforms(VF); 1490 collectLoopScalars(VF); 1491 } 1492 1493 /// Returns true if the target machine supports masked store operation 1494 /// for the given \p DataType and kind of access to \p Ptr. 1495 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1496 return Legal->isConsecutivePtr(DataType, Ptr) && 1497 TTI.isLegalMaskedStore(DataType, Alignment); 1498 } 1499 1500 /// Returns true if the target machine supports masked load operation 1501 /// for the given \p DataType and kind of access to \p Ptr. 1502 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1503 return Legal->isConsecutivePtr(DataType, Ptr) && 1504 TTI.isLegalMaskedLoad(DataType, Alignment); 1505 } 1506 1507 /// Returns true if the target machine can represent \p V as a masked gather 1508 /// or scatter operation. 1509 bool isLegalGatherOrScatter(Value *V, 1510 ElementCount VF = ElementCount::getFixed(1)) { 1511 bool LI = isa<LoadInst>(V); 1512 bool SI = isa<StoreInst>(V); 1513 if (!LI && !SI) 1514 return false; 1515 auto *Ty = getLoadStoreType(V); 1516 Align Align = getLoadStoreAlignment(V); 1517 if (VF.isVector()) 1518 Ty = VectorType::get(Ty, VF); 1519 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1520 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1521 } 1522 1523 /// Returns true if the target machine supports all of the reduction 1524 /// variables found for the given VF. 1525 bool canVectorizeReductions(ElementCount VF) const { 1526 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1527 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1528 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1529 })); 1530 } 1531 1532 /// Returns true if \p I is an instruction that will be scalarized with 1533 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1534 /// instructions include conditional stores and instructions that may divide 1535 /// by zero. 1536 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1537 1538 // Returns true if \p I is an instruction that will be predicated either 1539 // through scalar predication or masked load/store or masked gather/scatter. 1540 // \p VF is the vectorization factor that will be used to vectorize \p I. 1541 // Superset of instructions that return true for isScalarWithPredication. 1542 bool isPredicatedInst(Instruction *I, ElementCount VF, 1543 bool IsKnownUniform = false) { 1544 // When we know the load is uniform and the original scalar loop was not 1545 // predicated we don't need to mark it as a predicated instruction. Any 1546 // vectorised blocks created when tail-folding are something artificial we 1547 // have introduced and we know there is always at least one active lane. 1548 // That's why we call Legal->blockNeedsPredication here because it doesn't 1549 // query tail-folding. 1550 if (IsKnownUniform && isa<LoadInst>(I) && 1551 !Legal->blockNeedsPredication(I->getParent())) 1552 return false; 1553 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1554 return false; 1555 // Loads and stores that need some form of masked operation are predicated 1556 // instructions. 1557 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1558 return Legal->isMaskRequired(I); 1559 return isScalarWithPredication(I, VF); 1560 } 1561 1562 /// Returns true if \p I is a memory instruction with consecutive memory 1563 /// access that can be widened. 1564 bool 1565 memoryInstructionCanBeWidened(Instruction *I, 1566 ElementCount VF = ElementCount::getFixed(1)); 1567 1568 /// Returns true if \p I is a memory instruction in an interleaved-group 1569 /// of memory accesses that can be vectorized with wide vector loads/stores 1570 /// and shuffles. 1571 bool 1572 interleavedAccessCanBeWidened(Instruction *I, 1573 ElementCount VF = ElementCount::getFixed(1)); 1574 1575 /// Check if \p Instr belongs to any interleaved access group. 1576 bool isAccessInterleaved(Instruction *Instr) { 1577 return InterleaveInfo.isInterleaved(Instr); 1578 } 1579 1580 /// Get the interleaved access group that \p Instr belongs to. 1581 const InterleaveGroup<Instruction> * 1582 getInterleavedAccessGroup(Instruction *Instr) { 1583 return InterleaveInfo.getInterleaveGroup(Instr); 1584 } 1585 1586 /// Returns true if we're required to use a scalar epilogue for at least 1587 /// the final iteration of the original loop. 1588 bool requiresScalarEpilogue(ElementCount VF) const { 1589 if (!isScalarEpilogueAllowed()) 1590 return false; 1591 // If we might exit from anywhere but the latch, must run the exiting 1592 // iteration in scalar form. 1593 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1594 return true; 1595 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1596 } 1597 1598 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1599 /// loop hint annotation. 1600 bool isScalarEpilogueAllowed() const { 1601 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1602 } 1603 1604 /// Returns true if all loop blocks should be masked to fold tail loop. 1605 bool foldTailByMasking() const { return FoldTailByMasking; } 1606 1607 /// Returns true if the instructions in this block requires predication 1608 /// for any reason, e.g. because tail folding now requires a predicate 1609 /// or because the block in the original loop was predicated. 1610 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1611 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1612 } 1613 1614 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1615 /// nodes to the chain of instructions representing the reductions. Uses a 1616 /// MapVector to ensure deterministic iteration order. 1617 using ReductionChainMap = 1618 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1619 1620 /// Return the chain of instructions representing an inloop reduction. 1621 const ReductionChainMap &getInLoopReductionChains() const { 1622 return InLoopReductionChains; 1623 } 1624 1625 /// Returns true if the Phi is part of an inloop reduction. 1626 bool isInLoopReduction(PHINode *Phi) const { 1627 return InLoopReductionChains.count(Phi); 1628 } 1629 1630 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1631 /// with factor VF. Return the cost of the instruction, including 1632 /// scalarization overhead if it's needed. 1633 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1634 1635 /// Estimate cost of a call instruction CI if it were vectorized with factor 1636 /// VF. Return the cost of the instruction, including scalarization overhead 1637 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1638 /// scalarized - 1639 /// i.e. either vector version isn't available, or is too expensive. 1640 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1641 bool &NeedToScalarize) const; 1642 1643 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1644 /// that of B. 1645 bool isMoreProfitable(const VectorizationFactor &A, 1646 const VectorizationFactor &B) const; 1647 1648 /// Invalidates decisions already taken by the cost model. 1649 void invalidateCostModelingDecisions() { 1650 WideningDecisions.clear(); 1651 Uniforms.clear(); 1652 Scalars.clear(); 1653 } 1654 1655 private: 1656 unsigned NumPredStores = 0; 1657 1658 /// Convenience function that returns the value of vscale_range iff 1659 /// vscale_range.min == vscale_range.max or otherwise returns the value 1660 /// returned by the corresponding TLI method. 1661 Optional<unsigned> getVScaleForTuning() const; 1662 1663 /// \return An upper bound for the vectorization factors for both 1664 /// fixed and scalable vectorization, where the minimum-known number of 1665 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1666 /// disabled or unsupported, then the scalable part will be equal to 1667 /// ElementCount::getScalable(0). 1668 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1669 ElementCount UserVF, 1670 bool FoldTailByMasking); 1671 1672 /// \return the maximized element count based on the targets vector 1673 /// registers and the loop trip-count, but limited to a maximum safe VF. 1674 /// This is a helper function of computeFeasibleMaxVF. 1675 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1676 /// issue that occurred on one of the buildbots which cannot be reproduced 1677 /// without having access to the properietary compiler (see comments on 1678 /// D98509). The issue is currently under investigation and this workaround 1679 /// will be removed as soon as possible. 1680 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1681 unsigned SmallestType, 1682 unsigned WidestType, 1683 const ElementCount &MaxSafeVF, 1684 bool FoldTailByMasking); 1685 1686 /// \return the maximum legal scalable VF, based on the safe max number 1687 /// of elements. 1688 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1689 1690 /// The vectorization cost is a combination of the cost itself and a boolean 1691 /// indicating whether any of the contributing operations will actually 1692 /// operate on vector values after type legalization in the backend. If this 1693 /// latter value is false, then all operations will be scalarized (i.e. no 1694 /// vectorization has actually taken place). 1695 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1696 1697 /// Returns the expected execution cost. The unit of the cost does 1698 /// not matter because we use the 'cost' units to compare different 1699 /// vector widths. The cost that is returned is *not* normalized by 1700 /// the factor width. If \p Invalid is not nullptr, this function 1701 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1702 /// each instruction that has an Invalid cost for the given VF. 1703 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1704 VectorizationCostTy 1705 expectedCost(ElementCount VF, 1706 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1707 1708 /// Returns the execution time cost of an instruction for a given vector 1709 /// width. Vector width of one means scalar. 1710 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1711 1712 /// The cost-computation logic from getInstructionCost which provides 1713 /// the vector type as an output parameter. 1714 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1715 Type *&VectorTy); 1716 1717 /// Return the cost of instructions in an inloop reduction pattern, if I is 1718 /// part of that pattern. 1719 Optional<InstructionCost> 1720 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1721 TTI::TargetCostKind CostKind); 1722 1723 /// Calculate vectorization cost of memory instruction \p I. 1724 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1725 1726 /// The cost computation for scalarized memory instruction. 1727 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1728 1729 /// The cost computation for interleaving group of memory instructions. 1730 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1731 1732 /// The cost computation for Gather/Scatter instruction. 1733 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1734 1735 /// The cost computation for widening instruction \p I with consecutive 1736 /// memory access. 1737 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1738 1739 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1740 /// Load: scalar load + broadcast. 1741 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1742 /// element) 1743 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1744 1745 /// Estimate the overhead of scalarizing an instruction. This is a 1746 /// convenience wrapper for the type-based getScalarizationOverhead API. 1747 InstructionCost getScalarizationOverhead(Instruction *I, 1748 ElementCount VF) const; 1749 1750 /// Returns whether the instruction is a load or store and will be a emitted 1751 /// as a vector operation. 1752 bool isConsecutiveLoadOrStore(Instruction *I); 1753 1754 /// Returns true if an artificially high cost for emulated masked memrefs 1755 /// should be used. 1756 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1757 1758 /// Map of scalar integer values to the smallest bitwidth they can be legally 1759 /// represented as. The vector equivalents of these values should be truncated 1760 /// to this type. 1761 MapVector<Instruction *, uint64_t> MinBWs; 1762 1763 /// A type representing the costs for instructions if they were to be 1764 /// scalarized rather than vectorized. The entries are Instruction-Cost 1765 /// pairs. 1766 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1767 1768 /// A set containing all BasicBlocks that are known to present after 1769 /// vectorization as a predicated block. 1770 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1771 1772 /// Records whether it is allowed to have the original scalar loop execute at 1773 /// least once. This may be needed as a fallback loop in case runtime 1774 /// aliasing/dependence checks fail, or to handle the tail/remainder 1775 /// iterations when the trip count is unknown or doesn't divide by the VF, 1776 /// or as a peel-loop to handle gaps in interleave-groups. 1777 /// Under optsize and when the trip count is very small we don't allow any 1778 /// iterations to execute in the scalar loop. 1779 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1780 1781 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1782 bool FoldTailByMasking = false; 1783 1784 /// A map holding scalar costs for different vectorization factors. The 1785 /// presence of a cost for an instruction in the mapping indicates that the 1786 /// instruction will be scalarized when vectorizing with the associated 1787 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1788 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1789 1790 /// Holds the instructions known to be uniform after vectorization. 1791 /// The data is collected per VF. 1792 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1793 1794 /// Holds the instructions known to be scalar after vectorization. 1795 /// The data is collected per VF. 1796 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1797 1798 /// Holds the instructions (address computations) that are forced to be 1799 /// scalarized. 1800 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1801 1802 /// PHINodes of the reductions that should be expanded in-loop along with 1803 /// their associated chains of reduction operations, in program order from top 1804 /// (PHI) to bottom 1805 ReductionChainMap InLoopReductionChains; 1806 1807 /// A Map of inloop reduction operations and their immediate chain operand. 1808 /// FIXME: This can be removed once reductions can be costed correctly in 1809 /// vplan. This was added to allow quick lookup to the inloop operations, 1810 /// without having to loop through InLoopReductionChains. 1811 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1812 1813 /// Returns the expected difference in cost from scalarizing the expression 1814 /// feeding a predicated instruction \p PredInst. The instructions to 1815 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1816 /// non-negative return value implies the expression will be scalarized. 1817 /// Currently, only single-use chains are considered for scalarization. 1818 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1819 ElementCount VF); 1820 1821 /// Collect the instructions that are uniform after vectorization. An 1822 /// instruction is uniform if we represent it with a single scalar value in 1823 /// the vectorized loop corresponding to each vector iteration. Examples of 1824 /// uniform instructions include pointer operands of consecutive or 1825 /// interleaved memory accesses. Note that although uniformity implies an 1826 /// instruction will be scalar, the reverse is not true. In general, a 1827 /// scalarized instruction will be represented by VF scalar values in the 1828 /// vectorized loop, each corresponding to an iteration of the original 1829 /// scalar loop. 1830 void collectLoopUniforms(ElementCount VF); 1831 1832 /// Collect the instructions that are scalar after vectorization. An 1833 /// instruction is scalar if it is known to be uniform or will be scalarized 1834 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1835 /// to the list if they are used by a load/store instruction that is marked as 1836 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1837 /// VF values in the vectorized loop, each corresponding to an iteration of 1838 /// the original scalar loop. 1839 void collectLoopScalars(ElementCount VF); 1840 1841 /// Keeps cost model vectorization decision and cost for instructions. 1842 /// Right now it is used for memory instructions only. 1843 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1844 std::pair<InstWidening, InstructionCost>>; 1845 1846 DecisionList WideningDecisions; 1847 1848 /// Returns true if \p V is expected to be vectorized and it needs to be 1849 /// extracted. 1850 bool needsExtract(Value *V, ElementCount VF) const { 1851 Instruction *I = dyn_cast<Instruction>(V); 1852 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1853 TheLoop->isLoopInvariant(I)) 1854 return false; 1855 1856 // Assume we can vectorize V (and hence we need extraction) if the 1857 // scalars are not computed yet. This can happen, because it is called 1858 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1859 // the scalars are collected. That should be a safe assumption in most 1860 // cases, because we check if the operands have vectorizable types 1861 // beforehand in LoopVectorizationLegality. 1862 return Scalars.find(VF) == Scalars.end() || 1863 !isScalarAfterVectorization(I, VF); 1864 }; 1865 1866 /// Returns a range containing only operands needing to be extracted. 1867 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1868 ElementCount VF) const { 1869 return SmallVector<Value *, 4>(make_filter_range( 1870 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1871 } 1872 1873 /// Determines if we have the infrastructure to vectorize loop \p L and its 1874 /// epilogue, assuming the main loop is vectorized by \p VF. 1875 bool isCandidateForEpilogueVectorization(const Loop &L, 1876 const ElementCount VF) const; 1877 1878 /// Returns true if epilogue vectorization is considered profitable, and 1879 /// false otherwise. 1880 /// \p VF is the vectorization factor chosen for the original loop. 1881 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1882 1883 public: 1884 /// The loop that we evaluate. 1885 Loop *TheLoop; 1886 1887 /// Predicated scalar evolution analysis. 1888 PredicatedScalarEvolution &PSE; 1889 1890 /// Loop Info analysis. 1891 LoopInfo *LI; 1892 1893 /// Vectorization legality. 1894 LoopVectorizationLegality *Legal; 1895 1896 /// Vector target information. 1897 const TargetTransformInfo &TTI; 1898 1899 /// Target Library Info. 1900 const TargetLibraryInfo *TLI; 1901 1902 /// Demanded bits analysis. 1903 DemandedBits *DB; 1904 1905 /// Assumption cache. 1906 AssumptionCache *AC; 1907 1908 /// Interface to emit optimization remarks. 1909 OptimizationRemarkEmitter *ORE; 1910 1911 const Function *TheFunction; 1912 1913 /// Loop Vectorize Hint. 1914 const LoopVectorizeHints *Hints; 1915 1916 /// The interleave access information contains groups of interleaved accesses 1917 /// with the same stride and close to each other. 1918 InterleavedAccessInfo &InterleaveInfo; 1919 1920 /// Values to ignore in the cost model. 1921 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1922 1923 /// Values to ignore in the cost model when VF > 1. 1924 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1925 1926 /// All element types found in the loop. 1927 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1928 1929 /// Profitable vector factors. 1930 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1931 }; 1932 } // end namespace llvm 1933 1934 /// Helper struct to manage generating runtime checks for vectorization. 1935 /// 1936 /// The runtime checks are created up-front in temporary blocks to allow better 1937 /// estimating the cost and un-linked from the existing IR. After deciding to 1938 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1939 /// temporary blocks are completely removed. 1940 class GeneratedRTChecks { 1941 /// Basic block which contains the generated SCEV checks, if any. 1942 BasicBlock *SCEVCheckBlock = nullptr; 1943 1944 /// The value representing the result of the generated SCEV checks. If it is 1945 /// nullptr, either no SCEV checks have been generated or they have been used. 1946 Value *SCEVCheckCond = nullptr; 1947 1948 /// Basic block which contains the generated memory runtime checks, if any. 1949 BasicBlock *MemCheckBlock = nullptr; 1950 1951 /// The value representing the result of the generated memory runtime checks. 1952 /// If it is nullptr, either no memory runtime checks have been generated or 1953 /// they have been used. 1954 Value *MemRuntimeCheckCond = nullptr; 1955 1956 DominatorTree *DT; 1957 LoopInfo *LI; 1958 1959 SCEVExpander SCEVExp; 1960 SCEVExpander MemCheckExp; 1961 1962 public: 1963 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1964 const DataLayout &DL) 1965 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1966 MemCheckExp(SE, DL, "scev.check") {} 1967 1968 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1969 /// accurately estimate the cost of the runtime checks. The blocks are 1970 /// un-linked from the IR and is added back during vector code generation. If 1971 /// there is no vector code generation, the check blocks are removed 1972 /// completely. 1973 void Create(Loop *L, const LoopAccessInfo &LAI, 1974 const SCEVPredicate &Pred) { 1975 1976 BasicBlock *LoopHeader = L->getHeader(); 1977 BasicBlock *Preheader = L->getLoopPreheader(); 1978 1979 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1980 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1981 // may be used by SCEVExpander. The blocks will be un-linked from their 1982 // predecessors and removed from LI & DT at the end of the function. 1983 if (!Pred.isAlwaysTrue()) { 1984 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1985 nullptr, "vector.scevcheck"); 1986 1987 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1988 &Pred, SCEVCheckBlock->getTerminator()); 1989 } 1990 1991 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1992 if (RtPtrChecking.Need) { 1993 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1994 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1995 "vector.memcheck"); 1996 1997 MemRuntimeCheckCond = 1998 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1999 RtPtrChecking.getChecks(), MemCheckExp); 2000 assert(MemRuntimeCheckCond && 2001 "no RT checks generated although RtPtrChecking " 2002 "claimed checks are required"); 2003 } 2004 2005 if (!MemCheckBlock && !SCEVCheckBlock) 2006 return; 2007 2008 // Unhook the temporary block with the checks, update various places 2009 // accordingly. 2010 if (SCEVCheckBlock) 2011 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2012 if (MemCheckBlock) 2013 MemCheckBlock->replaceAllUsesWith(Preheader); 2014 2015 if (SCEVCheckBlock) { 2016 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2017 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2018 Preheader->getTerminator()->eraseFromParent(); 2019 } 2020 if (MemCheckBlock) { 2021 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2022 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2023 Preheader->getTerminator()->eraseFromParent(); 2024 } 2025 2026 DT->changeImmediateDominator(LoopHeader, Preheader); 2027 if (MemCheckBlock) { 2028 DT->eraseNode(MemCheckBlock); 2029 LI->removeBlock(MemCheckBlock); 2030 } 2031 if (SCEVCheckBlock) { 2032 DT->eraseNode(SCEVCheckBlock); 2033 LI->removeBlock(SCEVCheckBlock); 2034 } 2035 } 2036 2037 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2038 /// unused. 2039 ~GeneratedRTChecks() { 2040 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2041 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2042 if (!SCEVCheckCond) 2043 SCEVCleaner.markResultUsed(); 2044 2045 if (!MemRuntimeCheckCond) 2046 MemCheckCleaner.markResultUsed(); 2047 2048 if (MemRuntimeCheckCond) { 2049 auto &SE = *MemCheckExp.getSE(); 2050 // Memory runtime check generation creates compares that use expanded 2051 // values. Remove them before running the SCEVExpanderCleaners. 2052 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2053 if (MemCheckExp.isInsertedInstruction(&I)) 2054 continue; 2055 SE.forgetValue(&I); 2056 I.eraseFromParent(); 2057 } 2058 } 2059 MemCheckCleaner.cleanup(); 2060 SCEVCleaner.cleanup(); 2061 2062 if (SCEVCheckCond) 2063 SCEVCheckBlock->eraseFromParent(); 2064 if (MemRuntimeCheckCond) 2065 MemCheckBlock->eraseFromParent(); 2066 } 2067 2068 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2069 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2070 /// depending on the generated condition. 2071 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2072 BasicBlock *LoopVectorPreHeader, 2073 BasicBlock *LoopExitBlock) { 2074 if (!SCEVCheckCond) 2075 return nullptr; 2076 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2077 if (C->isZero()) 2078 return nullptr; 2079 2080 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2081 2082 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2083 // Create new preheader for vector loop. 2084 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2085 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2086 2087 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2088 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2089 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2090 SCEVCheckBlock); 2091 2092 DT->addNewBlock(SCEVCheckBlock, Pred); 2093 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2094 2095 ReplaceInstWithInst( 2096 SCEVCheckBlock->getTerminator(), 2097 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2098 // Mark the check as used, to prevent it from being removed during cleanup. 2099 SCEVCheckCond = nullptr; 2100 return SCEVCheckBlock; 2101 } 2102 2103 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2104 /// the branches to branch to the vector preheader or \p Bypass, depending on 2105 /// the generated condition. 2106 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2107 BasicBlock *LoopVectorPreHeader) { 2108 // Check if we generated code that checks in runtime if arrays overlap. 2109 if (!MemRuntimeCheckCond) 2110 return nullptr; 2111 2112 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2113 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2114 MemCheckBlock); 2115 2116 DT->addNewBlock(MemCheckBlock, Pred); 2117 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2118 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2119 2120 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2121 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2122 2123 ReplaceInstWithInst( 2124 MemCheckBlock->getTerminator(), 2125 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2126 MemCheckBlock->getTerminator()->setDebugLoc( 2127 Pred->getTerminator()->getDebugLoc()); 2128 2129 // Mark the check as used, to prevent it from being removed during cleanup. 2130 MemRuntimeCheckCond = nullptr; 2131 return MemCheckBlock; 2132 } 2133 }; 2134 2135 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2136 // vectorization. The loop needs to be annotated with #pragma omp simd 2137 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2138 // vector length information is not provided, vectorization is not considered 2139 // explicit. Interleave hints are not allowed either. These limitations will be 2140 // relaxed in the future. 2141 // Please, note that we are currently forced to abuse the pragma 'clang 2142 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2143 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2144 // provides *explicit vectorization hints* (LV can bypass legal checks and 2145 // assume that vectorization is legal). However, both hints are implemented 2146 // using the same metadata (llvm.loop.vectorize, processed by 2147 // LoopVectorizeHints). This will be fixed in the future when the native IR 2148 // representation for pragma 'omp simd' is introduced. 2149 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2150 OptimizationRemarkEmitter *ORE) { 2151 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2152 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2153 2154 // Only outer loops with an explicit vectorization hint are supported. 2155 // Unannotated outer loops are ignored. 2156 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2157 return false; 2158 2159 Function *Fn = OuterLp->getHeader()->getParent(); 2160 if (!Hints.allowVectorization(Fn, OuterLp, 2161 true /*VectorizeOnlyWhenForced*/)) { 2162 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2163 return false; 2164 } 2165 2166 if (Hints.getInterleave() > 1) { 2167 // TODO: Interleave support is future work. 2168 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2169 "outer loops.\n"); 2170 Hints.emitRemarkWithHints(); 2171 return false; 2172 } 2173 2174 return true; 2175 } 2176 2177 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2178 OptimizationRemarkEmitter *ORE, 2179 SmallVectorImpl<Loop *> &V) { 2180 // Collect inner loops and outer loops without irreducible control flow. For 2181 // now, only collect outer loops that have explicit vectorization hints. If we 2182 // are stress testing the VPlan H-CFG construction, we collect the outermost 2183 // loop of every loop nest. 2184 if (L.isInnermost() || VPlanBuildStressTest || 2185 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2186 LoopBlocksRPO RPOT(&L); 2187 RPOT.perform(LI); 2188 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2189 V.push_back(&L); 2190 // TODO: Collect inner loops inside marked outer loops in case 2191 // vectorization fails for the outer loop. Do not invoke 2192 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2193 // already known to be reducible. We can use an inherited attribute for 2194 // that. 2195 return; 2196 } 2197 } 2198 for (Loop *InnerL : L) 2199 collectSupportedLoops(*InnerL, LI, ORE, V); 2200 } 2201 2202 namespace { 2203 2204 /// The LoopVectorize Pass. 2205 struct LoopVectorize : public FunctionPass { 2206 /// Pass identification, replacement for typeid 2207 static char ID; 2208 2209 LoopVectorizePass Impl; 2210 2211 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2212 bool VectorizeOnlyWhenForced = false) 2213 : FunctionPass(ID), 2214 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2215 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2216 } 2217 2218 bool runOnFunction(Function &F) override { 2219 if (skipFunction(F)) 2220 return false; 2221 2222 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2223 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2224 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2225 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2226 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2227 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2228 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2229 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2230 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2231 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2232 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2233 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2234 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2235 2236 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2237 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2238 2239 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2240 GetLAA, *ORE, PSI).MadeAnyChange; 2241 } 2242 2243 void getAnalysisUsage(AnalysisUsage &AU) const override { 2244 AU.addRequired<AssumptionCacheTracker>(); 2245 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2246 AU.addRequired<DominatorTreeWrapperPass>(); 2247 AU.addRequired<LoopInfoWrapperPass>(); 2248 AU.addRequired<ScalarEvolutionWrapperPass>(); 2249 AU.addRequired<TargetTransformInfoWrapperPass>(); 2250 AU.addRequired<AAResultsWrapperPass>(); 2251 AU.addRequired<LoopAccessLegacyAnalysis>(); 2252 AU.addRequired<DemandedBitsWrapperPass>(); 2253 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2254 AU.addRequired<InjectTLIMappingsLegacy>(); 2255 2256 // We currently do not preserve loopinfo/dominator analyses with outer loop 2257 // vectorization. Until this is addressed, mark these analyses as preserved 2258 // only for non-VPlan-native path. 2259 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2260 if (!EnableVPlanNativePath) { 2261 AU.addPreserved<LoopInfoWrapperPass>(); 2262 AU.addPreserved<DominatorTreeWrapperPass>(); 2263 } 2264 2265 AU.addPreserved<BasicAAWrapperPass>(); 2266 AU.addPreserved<GlobalsAAWrapperPass>(); 2267 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2268 } 2269 }; 2270 2271 } // end anonymous namespace 2272 2273 //===----------------------------------------------------------------------===// 2274 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2275 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2276 //===----------------------------------------------------------------------===// 2277 2278 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2279 // We need to place the broadcast of invariant variables outside the loop, 2280 // but only if it's proven safe to do so. Else, broadcast will be inside 2281 // vector loop body. 2282 Instruction *Instr = dyn_cast<Instruction>(V); 2283 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2284 (!Instr || 2285 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2286 // Place the code for broadcasting invariant variables in the new preheader. 2287 IRBuilder<>::InsertPointGuard Guard(Builder); 2288 if (SafeToHoist) 2289 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2290 2291 // Broadcast the scalar into all locations in the vector. 2292 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2293 2294 return Shuf; 2295 } 2296 2297 /// This function adds 2298 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2299 /// to each vector element of Val. The sequence starts at StartIndex. 2300 /// \p Opcode is relevant for FP induction variable. 2301 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2302 Instruction::BinaryOps BinOp, ElementCount VF, 2303 IRBuilderBase &Builder) { 2304 assert(VF.isVector() && "only vector VFs are supported"); 2305 2306 // Create and check the types. 2307 auto *ValVTy = cast<VectorType>(Val->getType()); 2308 ElementCount VLen = ValVTy->getElementCount(); 2309 2310 Type *STy = Val->getType()->getScalarType(); 2311 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2312 "Induction Step must be an integer or FP"); 2313 assert(Step->getType() == STy && "Step has wrong type"); 2314 2315 SmallVector<Constant *, 8> Indices; 2316 2317 // Create a vector of consecutive numbers from zero to VF. 2318 VectorType *InitVecValVTy = ValVTy; 2319 if (STy->isFloatingPointTy()) { 2320 Type *InitVecValSTy = 2321 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2322 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2323 } 2324 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2325 2326 // Splat the StartIdx 2327 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2328 2329 if (STy->isIntegerTy()) { 2330 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2331 Step = Builder.CreateVectorSplat(VLen, Step); 2332 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2333 // FIXME: The newly created binary instructions should contain nsw/nuw 2334 // flags, which can be found from the original scalar operations. 2335 Step = Builder.CreateMul(InitVec, Step); 2336 return Builder.CreateAdd(Val, Step, "induction"); 2337 } 2338 2339 // Floating point induction. 2340 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2341 "Binary Opcode should be specified for FP induction"); 2342 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2343 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2344 2345 Step = Builder.CreateVectorSplat(VLen, Step); 2346 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2347 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2348 } 2349 2350 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2351 /// variable on which to base the steps, \p Step is the size of the step. 2352 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2353 const InductionDescriptor &ID, VPValue *Def, 2354 VPTransformState &State) { 2355 IRBuilderBase &Builder = State.Builder; 2356 // We shouldn't have to build scalar steps if we aren't vectorizing. 2357 assert(State.VF.isVector() && "VF should be greater than one"); 2358 // Get the value type and ensure it and the step have the same integer type. 2359 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2360 assert(ScalarIVTy == Step->getType() && 2361 "Val and Step should have the same type"); 2362 2363 // We build scalar steps for both integer and floating-point induction 2364 // variables. Here, we determine the kind of arithmetic we will perform. 2365 Instruction::BinaryOps AddOp; 2366 Instruction::BinaryOps MulOp; 2367 if (ScalarIVTy->isIntegerTy()) { 2368 AddOp = Instruction::Add; 2369 MulOp = Instruction::Mul; 2370 } else { 2371 AddOp = ID.getInductionOpcode(); 2372 MulOp = Instruction::FMul; 2373 } 2374 2375 // Determine the number of scalars we need to generate for each unroll 2376 // iteration. 2377 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2378 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2379 // Compute the scalar steps and save the results in State. 2380 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2381 ScalarIVTy->getScalarSizeInBits()); 2382 Type *VecIVTy = nullptr; 2383 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2384 if (!FirstLaneOnly && State.VF.isScalable()) { 2385 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2386 UnitStepVec = 2387 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2388 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2389 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2390 } 2391 2392 for (unsigned Part = 0; Part < State.UF; ++Part) { 2393 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2394 2395 if (!FirstLaneOnly && State.VF.isScalable()) { 2396 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2397 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2398 if (ScalarIVTy->isFloatingPointTy()) 2399 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2400 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2401 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2402 State.set(Def, Add, Part); 2403 // It's useful to record the lane values too for the known minimum number 2404 // of elements so we do those below. This improves the code quality when 2405 // trying to extract the first element, for example. 2406 } 2407 2408 if (ScalarIVTy->isFloatingPointTy()) 2409 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2410 2411 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2412 Value *StartIdx = Builder.CreateBinOp( 2413 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2414 // The step returned by `createStepForVF` is a runtime-evaluated value 2415 // when VF is scalable. Otherwise, it should be folded into a Constant. 2416 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2417 "Expected StartIdx to be folded to a constant when VF is not " 2418 "scalable"); 2419 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2420 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2421 State.set(Def, Add, VPIteration(Part, Lane)); 2422 } 2423 } 2424 } 2425 2426 // Generate code for the induction step. Note that induction steps are 2427 // required to be loop-invariant 2428 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2429 Instruction *InsertBefore, 2430 Loop *OrigLoop = nullptr) { 2431 const DataLayout &DL = SE.getDataLayout(); 2432 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2433 "Induction step should be loop invariant"); 2434 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2435 return E->getValue(); 2436 2437 SCEVExpander Exp(SE, DL, "induction"); 2438 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2439 } 2440 2441 /// Compute the transformed value of Index at offset StartValue using step 2442 /// StepValue. 2443 /// For integer induction, returns StartValue + Index * StepValue. 2444 /// For pointer induction, returns StartValue[Index * StepValue]. 2445 /// FIXME: The newly created binary instructions should contain nsw/nuw 2446 /// flags, which can be found from the original scalar operations. 2447 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2448 Value *StartValue, Value *Step, 2449 const InductionDescriptor &ID) { 2450 assert(Index->getType()->getScalarType() == Step->getType() && 2451 "Index scalar type does not match StepValue type"); 2452 2453 // Note: the IR at this point is broken. We cannot use SE to create any new 2454 // SCEV and then expand it, hoping that SCEV's simplification will give us 2455 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2456 // lead to various SCEV crashes. So all we can do is to use builder and rely 2457 // on InstCombine for future simplifications. Here we handle some trivial 2458 // cases only. 2459 auto CreateAdd = [&B](Value *X, Value *Y) { 2460 assert(X->getType() == Y->getType() && "Types don't match!"); 2461 if (auto *CX = dyn_cast<ConstantInt>(X)) 2462 if (CX->isZero()) 2463 return Y; 2464 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2465 if (CY->isZero()) 2466 return X; 2467 return B.CreateAdd(X, Y); 2468 }; 2469 2470 // We allow X to be a vector type, in which case Y will potentially be 2471 // splatted into a vector with the same element count. 2472 auto CreateMul = [&B](Value *X, Value *Y) { 2473 assert(X->getType()->getScalarType() == Y->getType() && 2474 "Types don't match!"); 2475 if (auto *CX = dyn_cast<ConstantInt>(X)) 2476 if (CX->isOne()) 2477 return Y; 2478 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2479 if (CY->isOne()) 2480 return X; 2481 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2482 if (XVTy && !isa<VectorType>(Y->getType())) 2483 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2484 return B.CreateMul(X, Y); 2485 }; 2486 2487 switch (ID.getKind()) { 2488 case InductionDescriptor::IK_IntInduction: { 2489 assert(!isa<VectorType>(Index->getType()) && 2490 "Vector indices not supported for integer inductions yet"); 2491 assert(Index->getType() == StartValue->getType() && 2492 "Index type does not match StartValue type"); 2493 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2494 return B.CreateSub(StartValue, Index); 2495 auto *Offset = CreateMul(Index, Step); 2496 return CreateAdd(StartValue, Offset); 2497 } 2498 case InductionDescriptor::IK_PtrInduction: { 2499 assert(isa<Constant>(Step) && 2500 "Expected constant step for pointer induction"); 2501 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2502 } 2503 case InductionDescriptor::IK_FpInduction: { 2504 assert(!isa<VectorType>(Index->getType()) && 2505 "Vector indices not supported for FP inductions yet"); 2506 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2507 auto InductionBinOp = ID.getInductionBinOp(); 2508 assert(InductionBinOp && 2509 (InductionBinOp->getOpcode() == Instruction::FAdd || 2510 InductionBinOp->getOpcode() == Instruction::FSub) && 2511 "Original bin op should be defined for FP induction"); 2512 2513 Value *MulExp = B.CreateFMul(Step, Index); 2514 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2515 "induction"); 2516 } 2517 case InductionDescriptor::IK_NoInduction: 2518 return nullptr; 2519 } 2520 llvm_unreachable("invalid enum"); 2521 } 2522 2523 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2524 const VPIteration &Instance, 2525 VPTransformState &State) { 2526 Value *ScalarInst = State.get(Def, Instance); 2527 Value *VectorValue = State.get(Def, Instance.Part); 2528 VectorValue = Builder.CreateInsertElement( 2529 VectorValue, ScalarInst, 2530 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2531 State.set(Def, VectorValue, Instance.Part); 2532 } 2533 2534 // Return whether we allow using masked interleave-groups (for dealing with 2535 // strided loads/stores that reside in predicated blocks, or for dealing 2536 // with gaps). 2537 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2538 // If an override option has been passed in for interleaved accesses, use it. 2539 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2540 return EnableMaskedInterleavedMemAccesses; 2541 2542 return TTI.enableMaskedInterleavedAccessVectorization(); 2543 } 2544 2545 // Try to vectorize the interleave group that \p Instr belongs to. 2546 // 2547 // E.g. Translate following interleaved load group (factor = 3): 2548 // for (i = 0; i < N; i+=3) { 2549 // R = Pic[i]; // Member of index 0 2550 // G = Pic[i+1]; // Member of index 1 2551 // B = Pic[i+2]; // Member of index 2 2552 // ... // do something to R, G, B 2553 // } 2554 // To: 2555 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2556 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2557 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2558 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2559 // 2560 // Or translate following interleaved store group (factor = 3): 2561 // for (i = 0; i < N; i+=3) { 2562 // ... do something to R, G, B 2563 // Pic[i] = R; // Member of index 0 2564 // Pic[i+1] = G; // Member of index 1 2565 // Pic[i+2] = B; // Member of index 2 2566 // } 2567 // To: 2568 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2569 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2570 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2571 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2572 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2573 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2574 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2575 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2576 VPValue *BlockInMask) { 2577 Instruction *Instr = Group->getInsertPos(); 2578 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2579 2580 // Prepare for the vector type of the interleaved load/store. 2581 Type *ScalarTy = getLoadStoreType(Instr); 2582 unsigned InterleaveFactor = Group->getFactor(); 2583 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2584 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2585 2586 // Prepare for the new pointers. 2587 SmallVector<Value *, 2> AddrParts; 2588 unsigned Index = Group->getIndex(Instr); 2589 2590 // TODO: extend the masked interleaved-group support to reversed access. 2591 assert((!BlockInMask || !Group->isReverse()) && 2592 "Reversed masked interleave-group not supported."); 2593 2594 // If the group is reverse, adjust the index to refer to the last vector lane 2595 // instead of the first. We adjust the index from the first vector lane, 2596 // rather than directly getting the pointer for lane VF - 1, because the 2597 // pointer operand of the interleaved access is supposed to be uniform. For 2598 // uniform instructions, we're only required to generate a value for the 2599 // first vector lane in each unroll iteration. 2600 if (Group->isReverse()) 2601 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2602 2603 for (unsigned Part = 0; Part < UF; Part++) { 2604 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2605 setDebugLocFromInst(AddrPart); 2606 2607 // Notice current instruction could be any index. Need to adjust the address 2608 // to the member of index 0. 2609 // 2610 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2611 // b = A[i]; // Member of index 0 2612 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2613 // 2614 // E.g. A[i+1] = a; // Member of index 1 2615 // A[i] = b; // Member of index 0 2616 // A[i+2] = c; // Member of index 2 (Current instruction) 2617 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2618 2619 bool InBounds = false; 2620 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2621 InBounds = gep->isInBounds(); 2622 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2623 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2624 2625 // Cast to the vector pointer type. 2626 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2627 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2628 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2629 } 2630 2631 setDebugLocFromInst(Instr); 2632 Value *PoisonVec = PoisonValue::get(VecTy); 2633 2634 Value *MaskForGaps = nullptr; 2635 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2636 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2637 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2638 } 2639 2640 // Vectorize the interleaved load group. 2641 if (isa<LoadInst>(Instr)) { 2642 // For each unroll part, create a wide load for the group. 2643 SmallVector<Value *, 2> NewLoads; 2644 for (unsigned Part = 0; Part < UF; Part++) { 2645 Instruction *NewLoad; 2646 if (BlockInMask || MaskForGaps) { 2647 assert(useMaskedInterleavedAccesses(*TTI) && 2648 "masked interleaved groups are not allowed."); 2649 Value *GroupMask = MaskForGaps; 2650 if (BlockInMask) { 2651 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2652 Value *ShuffledMask = Builder.CreateShuffleVector( 2653 BlockInMaskPart, 2654 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2655 "interleaved.mask"); 2656 GroupMask = MaskForGaps 2657 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2658 MaskForGaps) 2659 : ShuffledMask; 2660 } 2661 NewLoad = 2662 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2663 GroupMask, PoisonVec, "wide.masked.vec"); 2664 } 2665 else 2666 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2667 Group->getAlign(), "wide.vec"); 2668 Group->addMetadata(NewLoad); 2669 NewLoads.push_back(NewLoad); 2670 } 2671 2672 // For each member in the group, shuffle out the appropriate data from the 2673 // wide loads. 2674 unsigned J = 0; 2675 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2676 Instruction *Member = Group->getMember(I); 2677 2678 // Skip the gaps in the group. 2679 if (!Member) 2680 continue; 2681 2682 auto StrideMask = 2683 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2684 for (unsigned Part = 0; Part < UF; Part++) { 2685 Value *StridedVec = Builder.CreateShuffleVector( 2686 NewLoads[Part], StrideMask, "strided.vec"); 2687 2688 // If this member has different type, cast the result type. 2689 if (Member->getType() != ScalarTy) { 2690 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2691 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2692 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2693 } 2694 2695 if (Group->isReverse()) 2696 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2697 2698 State.set(VPDefs[J], StridedVec, Part); 2699 } 2700 ++J; 2701 } 2702 return; 2703 } 2704 2705 // The sub vector type for current instruction. 2706 auto *SubVT = VectorType::get(ScalarTy, VF); 2707 2708 // Vectorize the interleaved store group. 2709 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2710 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2711 "masked interleaved groups are not allowed."); 2712 assert((!MaskForGaps || !VF.isScalable()) && 2713 "masking gaps for scalable vectors is not yet supported."); 2714 for (unsigned Part = 0; Part < UF; Part++) { 2715 // Collect the stored vector from each member. 2716 SmallVector<Value *, 4> StoredVecs; 2717 for (unsigned i = 0; i < InterleaveFactor; i++) { 2718 assert((Group->getMember(i) || MaskForGaps) && 2719 "Fail to get a member from an interleaved store group"); 2720 Instruction *Member = Group->getMember(i); 2721 2722 // Skip the gaps in the group. 2723 if (!Member) { 2724 Value *Undef = PoisonValue::get(SubVT); 2725 StoredVecs.push_back(Undef); 2726 continue; 2727 } 2728 2729 Value *StoredVec = State.get(StoredValues[i], Part); 2730 2731 if (Group->isReverse()) 2732 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2733 2734 // If this member has different type, cast it to a unified type. 2735 2736 if (StoredVec->getType() != SubVT) 2737 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2738 2739 StoredVecs.push_back(StoredVec); 2740 } 2741 2742 // Concatenate all vectors into a wide vector. 2743 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2744 2745 // Interleave the elements in the wide vector. 2746 Value *IVec = Builder.CreateShuffleVector( 2747 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2748 "interleaved.vec"); 2749 2750 Instruction *NewStoreInstr; 2751 if (BlockInMask || MaskForGaps) { 2752 Value *GroupMask = MaskForGaps; 2753 if (BlockInMask) { 2754 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2755 Value *ShuffledMask = Builder.CreateShuffleVector( 2756 BlockInMaskPart, 2757 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2758 "interleaved.mask"); 2759 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2760 ShuffledMask, MaskForGaps) 2761 : ShuffledMask; 2762 } 2763 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2764 Group->getAlign(), GroupMask); 2765 } else 2766 NewStoreInstr = 2767 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2768 2769 Group->addMetadata(NewStoreInstr); 2770 } 2771 } 2772 2773 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2774 VPReplicateRecipe *RepRecipe, 2775 const VPIteration &Instance, 2776 bool IfPredicateInstr, 2777 VPTransformState &State) { 2778 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2779 2780 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2781 // the first lane and part. 2782 if (isa<NoAliasScopeDeclInst>(Instr)) 2783 if (!Instance.isFirstIteration()) 2784 return; 2785 2786 // Does this instruction return a value ? 2787 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2788 2789 Instruction *Cloned = Instr->clone(); 2790 if (!IsVoidRetTy) 2791 Cloned->setName(Instr->getName() + ".cloned"); 2792 2793 // If the scalarized instruction contributes to the address computation of a 2794 // widen masked load/store which was in a basic block that needed predication 2795 // and is not predicated after vectorization, we can't propagate 2796 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2797 // instruction could feed a poison value to the base address of the widen 2798 // load/store. 2799 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2800 Cloned->dropPoisonGeneratingFlags(); 2801 2802 if (Instr->getDebugLoc()) 2803 setDebugLocFromInst(Instr); 2804 2805 // Replace the operands of the cloned instructions with their scalar 2806 // equivalents in the new loop. 2807 for (auto &I : enumerate(RepRecipe->operands())) { 2808 auto InputInstance = Instance; 2809 VPValue *Operand = I.value(); 2810 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2811 if (OperandR && OperandR->isUniform()) 2812 InputInstance.Lane = VPLane::getFirstLane(); 2813 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2814 } 2815 addNewMetadata(Cloned, Instr); 2816 2817 // Place the cloned scalar in the new loop. 2818 State.Builder.Insert(Cloned); 2819 2820 State.set(RepRecipe, Cloned, Instance); 2821 2822 // If we just cloned a new assumption, add it the assumption cache. 2823 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2824 AC->registerAssumption(II); 2825 2826 // End if-block. 2827 if (IfPredicateInstr) 2828 PredicatedInstructions.push_back(Cloned); 2829 } 2830 2831 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2832 if (TripCount) 2833 return TripCount; 2834 2835 assert(InsertBlock); 2836 IRBuilder<> Builder(InsertBlock->getTerminator()); 2837 // Find the loop boundaries. 2838 ScalarEvolution *SE = PSE.getSE(); 2839 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2840 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2841 "Invalid loop count"); 2842 2843 Type *IdxTy = Legal->getWidestInductionType(); 2844 assert(IdxTy && "No type for induction"); 2845 2846 // The exit count might have the type of i64 while the phi is i32. This can 2847 // happen if we have an induction variable that is sign extended before the 2848 // compare. The only way that we get a backedge taken count is that the 2849 // induction variable was signed and as such will not overflow. In such a case 2850 // truncation is legal. 2851 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2852 IdxTy->getPrimitiveSizeInBits()) 2853 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2854 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2855 2856 // Get the total trip count from the count by adding 1. 2857 const SCEV *ExitCount = SE->getAddExpr( 2858 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2859 2860 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2861 2862 // Expand the trip count and place the new instructions in the preheader. 2863 // Notice that the pre-header does not change, only the loop body. 2864 SCEVExpander Exp(*SE, DL, "induction"); 2865 2866 // Count holds the overall loop count (N). 2867 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2868 InsertBlock->getTerminator()); 2869 2870 if (TripCount->getType()->isPointerTy()) 2871 TripCount = 2872 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2873 InsertBlock->getTerminator()); 2874 2875 return TripCount; 2876 } 2877 2878 Value * 2879 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2880 if (VectorTripCount) 2881 return VectorTripCount; 2882 2883 Value *TC = getOrCreateTripCount(InsertBlock); 2884 IRBuilder<> Builder(InsertBlock->getTerminator()); 2885 2886 Type *Ty = TC->getType(); 2887 // This is where we can make the step a runtime constant. 2888 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2889 2890 // If the tail is to be folded by masking, round the number of iterations N 2891 // up to a multiple of Step instead of rounding down. This is done by first 2892 // adding Step-1 and then rounding down. Note that it's ok if this addition 2893 // overflows: the vector induction variable will eventually wrap to zero given 2894 // that it starts at zero and its Step is a power of two; the loop will then 2895 // exit, with the last early-exit vector comparison also producing all-true. 2896 if (Cost->foldTailByMasking()) { 2897 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2898 "VF*UF must be a power of 2 when folding tail by masking"); 2899 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2900 TC = Builder.CreateAdd( 2901 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2902 } 2903 2904 // Now we need to generate the expression for the part of the loop that the 2905 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2906 // iterations are not required for correctness, or N - Step, otherwise. Step 2907 // is equal to the vectorization factor (number of SIMD elements) times the 2908 // unroll factor (number of SIMD instructions). 2909 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2910 2911 // There are cases where we *must* run at least one iteration in the remainder 2912 // loop. See the cost model for when this can happen. If the step evenly 2913 // divides the trip count, we set the remainder to be equal to the step. If 2914 // the step does not evenly divide the trip count, no adjustment is necessary 2915 // since there will already be scalar iterations. Note that the minimum 2916 // iterations check ensures that N >= Step. 2917 if (Cost->requiresScalarEpilogue(VF)) { 2918 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2919 R = Builder.CreateSelect(IsZero, Step, R); 2920 } 2921 2922 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2923 2924 return VectorTripCount; 2925 } 2926 2927 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2928 const DataLayout &DL) { 2929 // Verify that V is a vector type with same number of elements as DstVTy. 2930 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2931 unsigned VF = DstFVTy->getNumElements(); 2932 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2933 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2934 Type *SrcElemTy = SrcVecTy->getElementType(); 2935 Type *DstElemTy = DstFVTy->getElementType(); 2936 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2937 "Vector elements must have same size"); 2938 2939 // Do a direct cast if element types are castable. 2940 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2941 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2942 } 2943 // V cannot be directly casted to desired vector type. 2944 // May happen when V is a floating point vector but DstVTy is a vector of 2945 // pointers or vice-versa. Handle this using a two-step bitcast using an 2946 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2947 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2948 "Only one type should be a pointer type"); 2949 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2950 "Only one type should be a floating point type"); 2951 Type *IntTy = 2952 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2953 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2954 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2955 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2956 } 2957 2958 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) { 2959 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2960 // Reuse existing vector loop preheader for TC checks. 2961 // Note that new preheader block is generated for vector loop. 2962 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2963 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2964 2965 // Generate code to check if the loop's trip count is less than VF * UF, or 2966 // equal to it in case a scalar epilogue is required; this implies that the 2967 // vector trip count is zero. This check also covers the case where adding one 2968 // to the backedge-taken count overflowed leading to an incorrect trip count 2969 // of zero. In this case we will also jump to the scalar loop. 2970 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2971 : ICmpInst::ICMP_ULT; 2972 2973 // If tail is to be folded, vector loop takes care of all iterations. 2974 Value *CheckMinIters = Builder.getFalse(); 2975 if (!Cost->foldTailByMasking()) { 2976 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 2977 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2978 } 2979 // Create new preheader for vector loop. 2980 LoopVectorPreHeader = 2981 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2982 "vector.ph"); 2983 2984 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2985 DT->getNode(Bypass)->getIDom()) && 2986 "TC check is expected to dominate Bypass"); 2987 2988 // Update dominator for Bypass & LoopExit (if needed). 2989 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2990 if (!Cost->requiresScalarEpilogue(VF)) 2991 // If there is an epilogue which must run, there's no edge from the 2992 // middle block to exit blocks and thus no need to update the immediate 2993 // dominator of the exit blocks. 2994 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2995 2996 ReplaceInstWithInst( 2997 TCCheckBlock->getTerminator(), 2998 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2999 LoopBypassBlocks.push_back(TCCheckBlock); 3000 } 3001 3002 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3003 3004 BasicBlock *const SCEVCheckBlock = 3005 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3006 if (!SCEVCheckBlock) 3007 return nullptr; 3008 3009 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3010 (OptForSizeBasedOnProfile && 3011 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3012 "Cannot SCEV check stride or overflow when optimizing for size"); 3013 3014 3015 // Update dominator only if this is first RT check. 3016 if (LoopBypassBlocks.empty()) { 3017 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3018 if (!Cost->requiresScalarEpilogue(VF)) 3019 // If there is an epilogue which must run, there's no edge from the 3020 // middle block to exit blocks and thus no need to update the immediate 3021 // dominator of the exit blocks. 3022 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3023 } 3024 3025 LoopBypassBlocks.push_back(SCEVCheckBlock); 3026 AddedSafetyChecks = true; 3027 return SCEVCheckBlock; 3028 } 3029 3030 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3031 // VPlan-native path does not do any analysis for runtime checks currently. 3032 if (EnableVPlanNativePath) 3033 return nullptr; 3034 3035 BasicBlock *const MemCheckBlock = 3036 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3037 3038 // Check if we generated code that checks in runtime if arrays overlap. We put 3039 // the checks into a separate block to make the more common case of few 3040 // elements faster. 3041 if (!MemCheckBlock) 3042 return nullptr; 3043 3044 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3045 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3046 "Cannot emit memory checks when optimizing for size, unless forced " 3047 "to vectorize."); 3048 ORE->emit([&]() { 3049 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3050 OrigLoop->getStartLoc(), 3051 OrigLoop->getHeader()) 3052 << "Code-size may be reduced by not forcing " 3053 "vectorization, or by source-code modifications " 3054 "eliminating the need for runtime checks " 3055 "(e.g., adding 'restrict')."; 3056 }); 3057 } 3058 3059 LoopBypassBlocks.push_back(MemCheckBlock); 3060 3061 AddedSafetyChecks = true; 3062 3063 // We currently don't use LoopVersioning for the actual loop cloning but we 3064 // still use it to add the noalias metadata. 3065 LVer = std::make_unique<LoopVersioning>( 3066 *Legal->getLAI(), 3067 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3068 DT, PSE.getSE()); 3069 LVer->prepareNoAliasMetadata(); 3070 return MemCheckBlock; 3071 } 3072 3073 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3074 LoopScalarBody = OrigLoop->getHeader(); 3075 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3076 assert(LoopVectorPreHeader && "Invalid loop structure"); 3077 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3078 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3079 "multiple exit loop without required epilogue?"); 3080 3081 LoopMiddleBlock = 3082 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3083 LI, nullptr, Twine(Prefix) + "middle.block"); 3084 LoopScalarPreHeader = 3085 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3086 nullptr, Twine(Prefix) + "scalar.ph"); 3087 3088 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3089 3090 // Set up the middle block terminator. Two cases: 3091 // 1) If we know that we must execute the scalar epilogue, emit an 3092 // unconditional branch. 3093 // 2) Otherwise, we must have a single unique exit block (due to how we 3094 // implement the multiple exit case). In this case, set up a conditonal 3095 // branch from the middle block to the loop scalar preheader, and the 3096 // exit block. completeLoopSkeleton will update the condition to use an 3097 // iteration check, if required to decide whether to execute the remainder. 3098 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3099 BranchInst::Create(LoopScalarPreHeader) : 3100 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3101 Builder.getTrue()); 3102 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3103 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3104 3105 // Update dominator for loop exit. During skeleton creation, only the vector 3106 // pre-header and the middle block are created. The vector loop is entirely 3107 // created during VPlan exection. 3108 if (!Cost->requiresScalarEpilogue(VF)) 3109 // If there is an epilogue which must run, there's no edge from the 3110 // middle block to exit blocks and thus no need to update the immediate 3111 // dominator of the exit blocks. 3112 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3113 } 3114 3115 void InnerLoopVectorizer::createInductionResumeValues( 3116 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3117 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3118 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3119 "Inconsistent information about additional bypass."); 3120 3121 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3122 assert(VectorTripCount && "Expected valid arguments"); 3123 // We are going to resume the execution of the scalar loop. 3124 // Go over all of the induction variables that we found and fix the 3125 // PHIs that are left in the scalar version of the loop. 3126 // The starting values of PHI nodes depend on the counter of the last 3127 // iteration in the vectorized loop. 3128 // If we come from a bypass edge then we need to start from the original 3129 // start value. 3130 Instruction *OldInduction = Legal->getPrimaryInduction(); 3131 for (auto &InductionEntry : Legal->getInductionVars()) { 3132 PHINode *OrigPhi = InductionEntry.first; 3133 InductionDescriptor II = InductionEntry.second; 3134 3135 // Create phi nodes to merge from the backedge-taken check block. 3136 PHINode *BCResumeVal = 3137 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3138 LoopScalarPreHeader->getTerminator()); 3139 // Copy original phi DL over to the new one. 3140 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3141 Value *&EndValue = IVEndValues[OrigPhi]; 3142 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3143 if (OrigPhi == OldInduction) { 3144 // We know what the end value is. 3145 EndValue = VectorTripCount; 3146 } else { 3147 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3148 3149 // Fast-math-flags propagate from the original induction instruction. 3150 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3151 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3152 3153 Type *StepType = II.getStep()->getType(); 3154 Instruction::CastOps CastOp = 3155 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3156 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3157 Value *Step = 3158 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3159 EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3160 EndValue->setName("ind.end"); 3161 3162 // Compute the end value for the additional bypass (if applicable). 3163 if (AdditionalBypass.first) { 3164 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3165 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3166 StepType, true); 3167 Value *Step = 3168 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3169 CRD = 3170 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3171 EndValueFromAdditionalBypass = 3172 emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3173 EndValueFromAdditionalBypass->setName("ind.end"); 3174 } 3175 } 3176 // The new PHI merges the original incoming value, in case of a bypass, 3177 // or the value at the end of the vectorized loop. 3178 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3179 3180 // Fix the scalar body counter (PHI node). 3181 // The old induction's phi node in the scalar body needs the truncated 3182 // value. 3183 for (BasicBlock *BB : LoopBypassBlocks) 3184 BCResumeVal->addIncoming(II.getStartValue(), BB); 3185 3186 if (AdditionalBypass.first) 3187 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3188 EndValueFromAdditionalBypass); 3189 3190 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3191 } 3192 } 3193 3194 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3195 // The trip counts should be cached by now. 3196 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3197 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3198 3199 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3200 3201 // Add a check in the middle block to see if we have completed 3202 // all of the iterations in the first vector loop. Three cases: 3203 // 1) If we require a scalar epilogue, there is no conditional branch as 3204 // we unconditionally branch to the scalar preheader. Do nothing. 3205 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3206 // Thus if tail is to be folded, we know we don't need to run the 3207 // remainder and we can use the previous value for the condition (true). 3208 // 3) Otherwise, construct a runtime check. 3209 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3210 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3211 Count, VectorTripCount, "cmp.n", 3212 LoopMiddleBlock->getTerminator()); 3213 3214 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3215 // of the corresponding compare because they may have ended up with 3216 // different line numbers and we want to avoid awkward line stepping while 3217 // debugging. Eg. if the compare has got a line number inside the loop. 3218 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3219 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3220 } 3221 3222 #ifdef EXPENSIVE_CHECKS 3223 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3224 #endif 3225 3226 return LoopVectorPreHeader; 3227 } 3228 3229 std::pair<BasicBlock *, Value *> 3230 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3231 /* 3232 In this function we generate a new loop. The new loop will contain 3233 the vectorized instructions while the old loop will continue to run the 3234 scalar remainder. 3235 3236 [ ] <-- loop iteration number check. 3237 / | 3238 / v 3239 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3240 | / | 3241 | / v 3242 || [ ] <-- vector pre header. 3243 |/ | 3244 | v 3245 | [ ] \ 3246 | [ ]_| <-- vector loop (created during VPlan execution). 3247 | | 3248 | v 3249 \ -[ ] <--- middle-block. 3250 \/ | 3251 /\ v 3252 | ->[ ] <--- new preheader. 3253 | | 3254 (opt) v <-- edge from middle to exit iff epilogue is not required. 3255 | [ ] \ 3256 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3257 \ | 3258 \ v 3259 >[ ] <-- exit block(s). 3260 ... 3261 */ 3262 3263 // Get the metadata of the original loop before it gets modified. 3264 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3265 3266 // Workaround! Compute the trip count of the original loop and cache it 3267 // before we start modifying the CFG. This code has a systemic problem 3268 // wherein it tries to run analysis over partially constructed IR; this is 3269 // wrong, and not simply for SCEV. The trip count of the original loop 3270 // simply happens to be prone to hitting this in practice. In theory, we 3271 // can hit the same issue for any SCEV, or ValueTracking query done during 3272 // mutation. See PR49900. 3273 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3274 3275 // Create an empty vector loop, and prepare basic blocks for the runtime 3276 // checks. 3277 createVectorLoopSkeleton(""); 3278 3279 // Now, compare the new count to zero. If it is zero skip the vector loop and 3280 // jump to the scalar loop. This check also covers the case where the 3281 // backedge-taken count is uint##_max: adding one to it will overflow leading 3282 // to an incorrect trip count of zero. In this (rare) case we will also jump 3283 // to the scalar loop. 3284 emitMinimumIterationCountCheck(LoopScalarPreHeader); 3285 3286 // Generate the code to check any assumptions that we've made for SCEV 3287 // expressions. 3288 emitSCEVChecks(LoopScalarPreHeader); 3289 3290 // Generate the code that checks in runtime if arrays overlap. We put the 3291 // checks into a separate block to make the more common case of few elements 3292 // faster. 3293 emitMemRuntimeChecks(LoopScalarPreHeader); 3294 3295 // Emit phis for the new starting index of the scalar loop. 3296 createInductionResumeValues(); 3297 3298 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3299 } 3300 3301 // Fix up external users of the induction variable. At this point, we are 3302 // in LCSSA form, with all external PHIs that use the IV having one input value, 3303 // coming from the remainder loop. We need those PHIs to also have a correct 3304 // value for the IV when arriving directly from the middle block. 3305 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3306 const InductionDescriptor &II, 3307 Value *CountRoundDown, Value *EndValue, 3308 BasicBlock *MiddleBlock, 3309 BasicBlock *VectorHeader) { 3310 // There are two kinds of external IV usages - those that use the value 3311 // computed in the last iteration (the PHI) and those that use the penultimate 3312 // value (the value that feeds into the phi from the loop latch). 3313 // We allow both, but they, obviously, have different values. 3314 3315 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3316 3317 DenseMap<Value *, Value *> MissingVals; 3318 3319 // An external user of the last iteration's value should see the value that 3320 // the remainder loop uses to initialize its own IV. 3321 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3322 for (User *U : PostInc->users()) { 3323 Instruction *UI = cast<Instruction>(U); 3324 if (!OrigLoop->contains(UI)) { 3325 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3326 MissingVals[UI] = EndValue; 3327 } 3328 } 3329 3330 // An external user of the penultimate value need to see EndValue - Step. 3331 // The simplest way to get this is to recompute it from the constituent SCEVs, 3332 // that is Start + (Step * (CRD - 1)). 3333 for (User *U : OrigPhi->users()) { 3334 auto *UI = cast<Instruction>(U); 3335 if (!OrigLoop->contains(UI)) { 3336 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3337 3338 IRBuilder<> B(MiddleBlock->getTerminator()); 3339 3340 // Fast-math-flags propagate from the original induction instruction. 3341 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3342 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3343 3344 Value *CountMinusOne = B.CreateSub( 3345 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3346 Value *CMO = 3347 !II.getStep()->getType()->isIntegerTy() 3348 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3349 II.getStep()->getType()) 3350 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3351 CMO->setName("cast.cmo"); 3352 3353 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3354 VectorHeader->getTerminator()); 3355 Value *Escape = 3356 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3357 Escape->setName("ind.escape"); 3358 MissingVals[UI] = Escape; 3359 } 3360 } 3361 3362 for (auto &I : MissingVals) { 3363 PHINode *PHI = cast<PHINode>(I.first); 3364 // One corner case we have to handle is two IVs "chasing" each-other, 3365 // that is %IV2 = phi [...], [ %IV1, %latch ] 3366 // In this case, if IV1 has an external use, we need to avoid adding both 3367 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3368 // don't already have an incoming value for the middle block. 3369 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3370 PHI->addIncoming(I.second, MiddleBlock); 3371 } 3372 } 3373 3374 namespace { 3375 3376 struct CSEDenseMapInfo { 3377 static bool canHandle(const Instruction *I) { 3378 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3379 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3380 } 3381 3382 static inline Instruction *getEmptyKey() { 3383 return DenseMapInfo<Instruction *>::getEmptyKey(); 3384 } 3385 3386 static inline Instruction *getTombstoneKey() { 3387 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3388 } 3389 3390 static unsigned getHashValue(const Instruction *I) { 3391 assert(canHandle(I) && "Unknown instruction!"); 3392 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3393 I->value_op_end())); 3394 } 3395 3396 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3397 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3398 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3399 return LHS == RHS; 3400 return LHS->isIdenticalTo(RHS); 3401 } 3402 }; 3403 3404 } // end anonymous namespace 3405 3406 ///Perform cse of induction variable instructions. 3407 static void cse(BasicBlock *BB) { 3408 // Perform simple cse. 3409 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3410 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3411 if (!CSEDenseMapInfo::canHandle(&In)) 3412 continue; 3413 3414 // Check if we can replace this instruction with any of the 3415 // visited instructions. 3416 if (Instruction *V = CSEMap.lookup(&In)) { 3417 In.replaceAllUsesWith(V); 3418 In.eraseFromParent(); 3419 continue; 3420 } 3421 3422 CSEMap[&In] = &In; 3423 } 3424 } 3425 3426 InstructionCost 3427 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3428 bool &NeedToScalarize) const { 3429 Function *F = CI->getCalledFunction(); 3430 Type *ScalarRetTy = CI->getType(); 3431 SmallVector<Type *, 4> Tys, ScalarTys; 3432 for (auto &ArgOp : CI->args()) 3433 ScalarTys.push_back(ArgOp->getType()); 3434 3435 // Estimate cost of scalarized vector call. The source operands are assumed 3436 // to be vectors, so we need to extract individual elements from there, 3437 // execute VF scalar calls, and then gather the result into the vector return 3438 // value. 3439 InstructionCost ScalarCallCost = 3440 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3441 if (VF.isScalar()) 3442 return ScalarCallCost; 3443 3444 // Compute corresponding vector type for return value and arguments. 3445 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3446 for (Type *ScalarTy : ScalarTys) 3447 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3448 3449 // Compute costs of unpacking argument values for the scalar calls and 3450 // packing the return values to a vector. 3451 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3452 3453 InstructionCost Cost = 3454 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3455 3456 // If we can't emit a vector call for this function, then the currently found 3457 // cost is the cost we need to return. 3458 NeedToScalarize = true; 3459 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3460 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3461 3462 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3463 return Cost; 3464 3465 // If the corresponding vector cost is cheaper, return its cost. 3466 InstructionCost VectorCallCost = 3467 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3468 if (VectorCallCost < Cost) { 3469 NeedToScalarize = false; 3470 Cost = VectorCallCost; 3471 } 3472 return Cost; 3473 } 3474 3475 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3476 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3477 return Elt; 3478 return VectorType::get(Elt, VF); 3479 } 3480 3481 InstructionCost 3482 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3483 ElementCount VF) const { 3484 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3485 assert(ID && "Expected intrinsic call!"); 3486 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3487 FastMathFlags FMF; 3488 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3489 FMF = FPMO->getFastMathFlags(); 3490 3491 SmallVector<const Value *> Arguments(CI->args()); 3492 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3493 SmallVector<Type *> ParamTys; 3494 std::transform(FTy->param_begin(), FTy->param_end(), 3495 std::back_inserter(ParamTys), 3496 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3497 3498 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3499 dyn_cast<IntrinsicInst>(CI)); 3500 return TTI.getIntrinsicInstrCost(CostAttrs, 3501 TargetTransformInfo::TCK_RecipThroughput); 3502 } 3503 3504 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3505 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3506 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3507 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3508 } 3509 3510 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3511 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3512 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3513 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3514 } 3515 3516 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3517 // For every instruction `I` in MinBWs, truncate the operands, create a 3518 // truncated version of `I` and reextend its result. InstCombine runs 3519 // later and will remove any ext/trunc pairs. 3520 SmallPtrSet<Value *, 4> Erased; 3521 for (const auto &KV : Cost->getMinimalBitwidths()) { 3522 // If the value wasn't vectorized, we must maintain the original scalar 3523 // type. The absence of the value from State indicates that it 3524 // wasn't vectorized. 3525 // FIXME: Should not rely on getVPValue at this point. 3526 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3527 if (!State.hasAnyVectorValue(Def)) 3528 continue; 3529 for (unsigned Part = 0; Part < UF; ++Part) { 3530 Value *I = State.get(Def, Part); 3531 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3532 continue; 3533 Type *OriginalTy = I->getType(); 3534 Type *ScalarTruncatedTy = 3535 IntegerType::get(OriginalTy->getContext(), KV.second); 3536 auto *TruncatedTy = VectorType::get( 3537 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3538 if (TruncatedTy == OriginalTy) 3539 continue; 3540 3541 IRBuilder<> B(cast<Instruction>(I)); 3542 auto ShrinkOperand = [&](Value *V) -> Value * { 3543 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3544 if (ZI->getSrcTy() == TruncatedTy) 3545 return ZI->getOperand(0); 3546 return B.CreateZExtOrTrunc(V, TruncatedTy); 3547 }; 3548 3549 // The actual instruction modification depends on the instruction type, 3550 // unfortunately. 3551 Value *NewI = nullptr; 3552 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3553 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3554 ShrinkOperand(BO->getOperand(1))); 3555 3556 // Any wrapping introduced by shrinking this operation shouldn't be 3557 // considered undefined behavior. So, we can't unconditionally copy 3558 // arithmetic wrapping flags to NewI. 3559 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3560 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3561 NewI = 3562 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3563 ShrinkOperand(CI->getOperand(1))); 3564 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3565 NewI = B.CreateSelect(SI->getCondition(), 3566 ShrinkOperand(SI->getTrueValue()), 3567 ShrinkOperand(SI->getFalseValue())); 3568 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3569 switch (CI->getOpcode()) { 3570 default: 3571 llvm_unreachable("Unhandled cast!"); 3572 case Instruction::Trunc: 3573 NewI = ShrinkOperand(CI->getOperand(0)); 3574 break; 3575 case Instruction::SExt: 3576 NewI = B.CreateSExtOrTrunc( 3577 CI->getOperand(0), 3578 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3579 break; 3580 case Instruction::ZExt: 3581 NewI = B.CreateZExtOrTrunc( 3582 CI->getOperand(0), 3583 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3584 break; 3585 } 3586 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3587 auto Elements0 = 3588 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3589 auto *O0 = B.CreateZExtOrTrunc( 3590 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3591 auto Elements1 = 3592 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3593 auto *O1 = B.CreateZExtOrTrunc( 3594 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3595 3596 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3597 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3598 // Don't do anything with the operands, just extend the result. 3599 continue; 3600 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3601 auto Elements = 3602 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3603 auto *O0 = B.CreateZExtOrTrunc( 3604 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3605 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3606 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3607 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3608 auto Elements = 3609 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3610 auto *O0 = B.CreateZExtOrTrunc( 3611 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3612 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3613 } else { 3614 // If we don't know what to do, be conservative and don't do anything. 3615 continue; 3616 } 3617 3618 // Lastly, extend the result. 3619 NewI->takeName(cast<Instruction>(I)); 3620 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3621 I->replaceAllUsesWith(Res); 3622 cast<Instruction>(I)->eraseFromParent(); 3623 Erased.insert(I); 3624 State.reset(Def, Res, Part); 3625 } 3626 } 3627 3628 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3629 for (const auto &KV : Cost->getMinimalBitwidths()) { 3630 // If the value wasn't vectorized, we must maintain the original scalar 3631 // type. The absence of the value from State indicates that it 3632 // wasn't vectorized. 3633 // FIXME: Should not rely on getVPValue at this point. 3634 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3635 if (!State.hasAnyVectorValue(Def)) 3636 continue; 3637 for (unsigned Part = 0; Part < UF; ++Part) { 3638 Value *I = State.get(Def, Part); 3639 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3640 if (Inst && Inst->use_empty()) { 3641 Value *NewI = Inst->getOperand(0); 3642 Inst->eraseFromParent(); 3643 State.reset(Def, NewI, Part); 3644 } 3645 } 3646 } 3647 } 3648 3649 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3650 VPlan &Plan) { 3651 // Insert truncates and extends for any truncated instructions as hints to 3652 // InstCombine. 3653 if (VF.isVector()) 3654 truncateToMinimalBitwidths(State); 3655 3656 // Fix widened non-induction PHIs by setting up the PHI operands. 3657 if (OrigPHIsToFix.size()) { 3658 assert(EnableVPlanNativePath && 3659 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3660 fixNonInductionPHIs(State); 3661 } 3662 3663 // At this point every instruction in the original loop is widened to a 3664 // vector form. Now we need to fix the recurrences in the loop. These PHI 3665 // nodes are currently empty because we did not want to introduce cycles. 3666 // This is the second stage of vectorizing recurrences. 3667 fixCrossIterationPHIs(State); 3668 3669 // Forget the original basic block. 3670 PSE.getSE()->forgetLoop(OrigLoop); 3671 3672 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitBasicBlock(); 3673 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3674 // If we inserted an edge from the middle block to the unique exit block, 3675 // update uses outside the loop (phis) to account for the newly inserted 3676 // edge. 3677 if (!Cost->requiresScalarEpilogue(VF)) { 3678 // Fix-up external users of the induction variables. 3679 for (auto &Entry : Legal->getInductionVars()) 3680 fixupIVUsers(Entry.first, Entry.second, 3681 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3682 IVEndValues[Entry.first], LoopMiddleBlock, 3683 VectorLoop->getHeader()); 3684 3685 fixLCSSAPHIs(State); 3686 } 3687 3688 for (Instruction *PI : PredicatedInstructions) 3689 sinkScalarOperands(&*PI); 3690 3691 // Remove redundant induction instructions. 3692 cse(VectorLoop->getHeader()); 3693 3694 // Set/update profile weights for the vector and remainder loops as original 3695 // loop iterations are now distributed among them. Note that original loop 3696 // represented by LoopScalarBody becomes remainder loop after vectorization. 3697 // 3698 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3699 // end up getting slightly roughened result but that should be OK since 3700 // profile is not inherently precise anyway. Note also possible bypass of 3701 // vector code caused by legality checks is ignored, assigning all the weight 3702 // to the vector loop, optimistically. 3703 // 3704 // For scalable vectorization we can't know at compile time how many iterations 3705 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3706 // vscale of '1'. 3707 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3708 LI->getLoopFor(LoopScalarBody), 3709 VF.getKnownMinValue() * UF); 3710 } 3711 3712 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3713 // In order to support recurrences we need to be able to vectorize Phi nodes. 3714 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3715 // stage #2: We now need to fix the recurrences by adding incoming edges to 3716 // the currently empty PHI nodes. At this point every instruction in the 3717 // original loop is widened to a vector form so we can use them to construct 3718 // the incoming edges. 3719 VPBasicBlock *Header = 3720 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3721 for (VPRecipeBase &R : Header->phis()) { 3722 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3723 fixReduction(ReductionPhi, State); 3724 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3725 fixFirstOrderRecurrence(FOR, State); 3726 } 3727 } 3728 3729 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3730 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3731 // This is the second phase of vectorizing first-order recurrences. An 3732 // overview of the transformation is described below. Suppose we have the 3733 // following loop. 3734 // 3735 // for (int i = 0; i < n; ++i) 3736 // b[i] = a[i] - a[i - 1]; 3737 // 3738 // There is a first-order recurrence on "a". For this loop, the shorthand 3739 // scalar IR looks like: 3740 // 3741 // scalar.ph: 3742 // s_init = a[-1] 3743 // br scalar.body 3744 // 3745 // scalar.body: 3746 // i = phi [0, scalar.ph], [i+1, scalar.body] 3747 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3748 // s2 = a[i] 3749 // b[i] = s2 - s1 3750 // br cond, scalar.body, ... 3751 // 3752 // In this example, s1 is a recurrence because it's value depends on the 3753 // previous iteration. In the first phase of vectorization, we created a 3754 // vector phi v1 for s1. We now complete the vectorization and produce the 3755 // shorthand vector IR shown below (for VF = 4, UF = 1). 3756 // 3757 // vector.ph: 3758 // v_init = vector(..., ..., ..., a[-1]) 3759 // br vector.body 3760 // 3761 // vector.body 3762 // i = phi [0, vector.ph], [i+4, vector.body] 3763 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3764 // v2 = a[i, i+1, i+2, i+3]; 3765 // v3 = vector(v1(3), v2(0, 1, 2)) 3766 // b[i, i+1, i+2, i+3] = v2 - v3 3767 // br cond, vector.body, middle.block 3768 // 3769 // middle.block: 3770 // x = v2(3) 3771 // br scalar.ph 3772 // 3773 // scalar.ph: 3774 // s_init = phi [x, middle.block], [a[-1], otherwise] 3775 // br scalar.body 3776 // 3777 // After execution completes the vector loop, we extract the next value of 3778 // the recurrence (x) to use as the initial value in the scalar loop. 3779 3780 // Extract the last vector element in the middle block. This will be the 3781 // initial value for the recurrence when jumping to the scalar loop. 3782 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3783 Value *Incoming = State.get(PreviousDef, UF - 1); 3784 auto *ExtractForScalar = Incoming; 3785 auto *IdxTy = Builder.getInt32Ty(); 3786 if (VF.isVector()) { 3787 auto *One = ConstantInt::get(IdxTy, 1); 3788 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3789 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3790 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3791 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3792 "vector.recur.extract"); 3793 } 3794 // Extract the second last element in the middle block if the 3795 // Phi is used outside the loop. We need to extract the phi itself 3796 // and not the last element (the phi update in the current iteration). This 3797 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3798 // when the scalar loop is not run at all. 3799 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3800 if (VF.isVector()) { 3801 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3802 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3803 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3804 Incoming, Idx, "vector.recur.extract.for.phi"); 3805 } else if (UF > 1) 3806 // When loop is unrolled without vectorizing, initialize 3807 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3808 // of `Incoming`. This is analogous to the vectorized case above: extracting 3809 // the second last element when VF > 1. 3810 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3811 3812 // Fix the initial value of the original recurrence in the scalar loop. 3813 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3814 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3815 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3816 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3817 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3818 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3819 Start->addIncoming(Incoming, BB); 3820 } 3821 3822 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3823 Phi->setName("scalar.recur"); 3824 3825 // Finally, fix users of the recurrence outside the loop. The users will need 3826 // either the last value of the scalar recurrence or the last value of the 3827 // vector recurrence we extracted in the middle block. Since the loop is in 3828 // LCSSA form, we just need to find all the phi nodes for the original scalar 3829 // recurrence in the exit block, and then add an edge for the middle block. 3830 // Note that LCSSA does not imply single entry when the original scalar loop 3831 // had multiple exiting edges (as we always run the last iteration in the 3832 // scalar epilogue); in that case, there is no edge from middle to exit and 3833 // and thus no phis which needed updated. 3834 if (!Cost->requiresScalarEpilogue(VF)) 3835 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3836 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3837 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3838 } 3839 3840 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3841 VPTransformState &State) { 3842 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3843 // Get it's reduction variable descriptor. 3844 assert(Legal->isReductionVariable(OrigPhi) && 3845 "Unable to find the reduction variable"); 3846 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3847 3848 RecurKind RK = RdxDesc.getRecurrenceKind(); 3849 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3850 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3851 setDebugLocFromInst(ReductionStartValue); 3852 3853 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3854 // This is the vector-clone of the value that leaves the loop. 3855 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3856 3857 // Wrap flags are in general invalid after vectorization, clear them. 3858 clearReductionWrapFlags(RdxDesc, State); 3859 3860 // Before each round, move the insertion point right between 3861 // the PHIs and the values we are going to write. 3862 // This allows us to write both PHINodes and the extractelement 3863 // instructions. 3864 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3865 3866 setDebugLocFromInst(LoopExitInst); 3867 3868 Type *PhiTy = OrigPhi->getType(); 3869 3870 VPBasicBlock *LatchVPBB = 3871 PhiR->getParent()->getEnclosingLoopRegion()->getExitBasicBlock(); 3872 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3873 // If tail is folded by masking, the vector value to leave the loop should be 3874 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3875 // instead of the former. For an inloop reduction the reduction will already 3876 // be predicated, and does not need to be handled here. 3877 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3878 for (unsigned Part = 0; Part < UF; ++Part) { 3879 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3880 Value *Sel = nullptr; 3881 for (User *U : VecLoopExitInst->users()) { 3882 if (isa<SelectInst>(U)) { 3883 assert(!Sel && "Reduction exit feeding two selects"); 3884 Sel = U; 3885 } else 3886 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3887 } 3888 assert(Sel && "Reduction exit feeds no select"); 3889 State.reset(LoopExitInstDef, Sel, Part); 3890 3891 // If the target can create a predicated operator for the reduction at no 3892 // extra cost in the loop (for example a predicated vadd), it can be 3893 // cheaper for the select to remain in the loop than be sunk out of it, 3894 // and so use the select value for the phi instead of the old 3895 // LoopExitValue. 3896 if (PreferPredicatedReductionSelect || 3897 TTI->preferPredicatedReductionSelect( 3898 RdxDesc.getOpcode(), PhiTy, 3899 TargetTransformInfo::ReductionFlags())) { 3900 auto *VecRdxPhi = 3901 cast<PHINode>(State.get(PhiR, Part)); 3902 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3903 } 3904 } 3905 } 3906 3907 // If the vector reduction can be performed in a smaller type, we truncate 3908 // then extend the loop exit value to enable InstCombine to evaluate the 3909 // entire expression in the smaller type. 3910 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3911 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3912 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3913 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3914 VectorParts RdxParts(UF); 3915 for (unsigned Part = 0; Part < UF; ++Part) { 3916 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3917 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3918 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3919 : Builder.CreateZExt(Trunc, VecTy); 3920 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3921 if (U != Trunc) { 3922 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3923 RdxParts[Part] = Extnd; 3924 } 3925 } 3926 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3927 for (unsigned Part = 0; Part < UF; ++Part) { 3928 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3929 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3930 } 3931 } 3932 3933 // Reduce all of the unrolled parts into a single vector. 3934 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3935 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3936 3937 // The middle block terminator has already been assigned a DebugLoc here (the 3938 // OrigLoop's single latch terminator). We want the whole middle block to 3939 // appear to execute on this line because: (a) it is all compiler generated, 3940 // (b) these instructions are always executed after evaluating the latch 3941 // conditional branch, and (c) other passes may add new predecessors which 3942 // terminate on this line. This is the easiest way to ensure we don't 3943 // accidentally cause an extra step back into the loop while debugging. 3944 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3945 if (PhiR->isOrdered()) 3946 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3947 else { 3948 // Floating-point operations should have some FMF to enable the reduction. 3949 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3950 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3951 for (unsigned Part = 1; Part < UF; ++Part) { 3952 Value *RdxPart = State.get(LoopExitInstDef, Part); 3953 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3954 ReducedPartRdx = Builder.CreateBinOp( 3955 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3956 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3957 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3958 ReducedPartRdx, RdxPart); 3959 else 3960 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3961 } 3962 } 3963 3964 // Create the reduction after the loop. Note that inloop reductions create the 3965 // target reduction in the loop using a Reduction recipe. 3966 if (VF.isVector() && !PhiR->isInLoop()) { 3967 ReducedPartRdx = 3968 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3969 // If the reduction can be performed in a smaller type, we need to extend 3970 // the reduction to the wider type before we branch to the original loop. 3971 if (PhiTy != RdxDesc.getRecurrenceType()) 3972 ReducedPartRdx = RdxDesc.isSigned() 3973 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3974 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3975 } 3976 3977 PHINode *ResumePhi = 3978 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3979 3980 // Create a phi node that merges control-flow from the backedge-taken check 3981 // block and the middle block. 3982 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3983 LoopScalarPreHeader->getTerminator()); 3984 3985 // If we are fixing reductions in the epilogue loop then we should already 3986 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3987 // we carry over the incoming values correctly. 3988 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 3989 if (Incoming == LoopMiddleBlock) 3990 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 3991 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 3992 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 3993 Incoming); 3994 else 3995 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 3996 } 3997 3998 // Set the resume value for this reduction 3999 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4000 4001 // Now, we need to fix the users of the reduction variable 4002 // inside and outside of the scalar remainder loop. 4003 4004 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4005 // in the exit blocks. See comment on analogous loop in 4006 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4007 if (!Cost->requiresScalarEpilogue(VF)) 4008 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4009 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4010 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4011 4012 // Fix the scalar loop reduction variable with the incoming reduction sum 4013 // from the vector body and from the backedge value. 4014 int IncomingEdgeBlockIdx = 4015 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4016 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4017 // Pick the other block. 4018 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4019 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4020 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4021 } 4022 4023 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4024 VPTransformState &State) { 4025 RecurKind RK = RdxDesc.getRecurrenceKind(); 4026 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4027 return; 4028 4029 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4030 assert(LoopExitInstr && "null loop exit instruction"); 4031 SmallVector<Instruction *, 8> Worklist; 4032 SmallPtrSet<Instruction *, 8> Visited; 4033 Worklist.push_back(LoopExitInstr); 4034 Visited.insert(LoopExitInstr); 4035 4036 while (!Worklist.empty()) { 4037 Instruction *Cur = Worklist.pop_back_val(); 4038 if (isa<OverflowingBinaryOperator>(Cur)) 4039 for (unsigned Part = 0; Part < UF; ++Part) { 4040 // FIXME: Should not rely on getVPValue at this point. 4041 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4042 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4043 } 4044 4045 for (User *U : Cur->users()) { 4046 Instruction *UI = cast<Instruction>(U); 4047 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4048 Visited.insert(UI).second) 4049 Worklist.push_back(UI); 4050 } 4051 } 4052 } 4053 4054 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4055 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4056 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4057 // Some phis were already hand updated by the reduction and recurrence 4058 // code above, leave them alone. 4059 continue; 4060 4061 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4062 // Non-instruction incoming values will have only one value. 4063 4064 VPLane Lane = VPLane::getFirstLane(); 4065 if (isa<Instruction>(IncomingValue) && 4066 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4067 VF)) 4068 Lane = VPLane::getLastLaneForVF(VF); 4069 4070 // Can be a loop invariant incoming value or the last scalar value to be 4071 // extracted from the vectorized loop. 4072 // FIXME: Should not rely on getVPValue at this point. 4073 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4074 Value *lastIncomingValue = 4075 OrigLoop->isLoopInvariant(IncomingValue) 4076 ? IncomingValue 4077 : State.get(State.Plan->getVPValue(IncomingValue, true), 4078 VPIteration(UF - 1, Lane)); 4079 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4080 } 4081 } 4082 4083 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4084 // The basic block and loop containing the predicated instruction. 4085 auto *PredBB = PredInst->getParent(); 4086 auto *VectorLoop = LI->getLoopFor(PredBB); 4087 4088 // Initialize a worklist with the operands of the predicated instruction. 4089 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4090 4091 // Holds instructions that we need to analyze again. An instruction may be 4092 // reanalyzed if we don't yet know if we can sink it or not. 4093 SmallVector<Instruction *, 8> InstsToReanalyze; 4094 4095 // Returns true if a given use occurs in the predicated block. Phi nodes use 4096 // their operands in their corresponding predecessor blocks. 4097 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4098 auto *I = cast<Instruction>(U.getUser()); 4099 BasicBlock *BB = I->getParent(); 4100 if (auto *Phi = dyn_cast<PHINode>(I)) 4101 BB = Phi->getIncomingBlock( 4102 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4103 return BB == PredBB; 4104 }; 4105 4106 // Iteratively sink the scalarized operands of the predicated instruction 4107 // into the block we created for it. When an instruction is sunk, it's 4108 // operands are then added to the worklist. The algorithm ends after one pass 4109 // through the worklist doesn't sink a single instruction. 4110 bool Changed; 4111 do { 4112 // Add the instructions that need to be reanalyzed to the worklist, and 4113 // reset the changed indicator. 4114 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4115 InstsToReanalyze.clear(); 4116 Changed = false; 4117 4118 while (!Worklist.empty()) { 4119 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4120 4121 // We can't sink an instruction if it is a phi node, is not in the loop, 4122 // or may have side effects. 4123 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4124 I->mayHaveSideEffects()) 4125 continue; 4126 4127 // If the instruction is already in PredBB, check if we can sink its 4128 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4129 // sinking the scalar instruction I, hence it appears in PredBB; but it 4130 // may have failed to sink I's operands (recursively), which we try 4131 // (again) here. 4132 if (I->getParent() == PredBB) { 4133 Worklist.insert(I->op_begin(), I->op_end()); 4134 continue; 4135 } 4136 4137 // It's legal to sink the instruction if all its uses occur in the 4138 // predicated block. Otherwise, there's nothing to do yet, and we may 4139 // need to reanalyze the instruction. 4140 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4141 InstsToReanalyze.push_back(I); 4142 continue; 4143 } 4144 4145 // Move the instruction to the beginning of the predicated block, and add 4146 // it's operands to the worklist. 4147 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4148 Worklist.insert(I->op_begin(), I->op_end()); 4149 4150 // The sinking may have enabled other instructions to be sunk, so we will 4151 // need to iterate. 4152 Changed = true; 4153 } 4154 } while (Changed); 4155 } 4156 4157 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4158 for (PHINode *OrigPhi : OrigPHIsToFix) { 4159 VPWidenPHIRecipe *VPPhi = 4160 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4161 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4162 // Make sure the builder has a valid insert point. 4163 Builder.SetInsertPoint(NewPhi); 4164 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4165 VPValue *Inc = VPPhi->getIncomingValue(i); 4166 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4167 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4168 } 4169 } 4170 } 4171 4172 bool InnerLoopVectorizer::useOrderedReductions( 4173 const RecurrenceDescriptor &RdxDesc) { 4174 return Cost->useOrderedReductions(RdxDesc); 4175 } 4176 4177 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4178 VPWidenPHIRecipe *PhiR, 4179 VPTransformState &State) { 4180 assert(EnableVPlanNativePath && 4181 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 4182 // Currently we enter here in the VPlan-native path for non-induction 4183 // PHIs where all control flow is uniform. We simply widen these PHIs. 4184 // Create a vector phi with no operands - the vector phi operands will be 4185 // set at the end of vector code generation. 4186 Type *VecTy = (State.VF.isScalar()) 4187 ? PN->getType() 4188 : VectorType::get(PN->getType(), State.VF); 4189 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4190 State.set(PhiR, VecPhi, 0); 4191 OrigPHIsToFix.push_back(cast<PHINode>(PN)); 4192 } 4193 4194 /// A helper function for checking whether an integer division-related 4195 /// instruction may divide by zero (in which case it must be predicated if 4196 /// executed conditionally in the scalar code). 4197 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4198 /// Non-zero divisors that are non compile-time constants will not be 4199 /// converted into multiplication, so we will still end up scalarizing 4200 /// the division, but can do so w/o predication. 4201 static bool mayDivideByZero(Instruction &I) { 4202 assert((I.getOpcode() == Instruction::UDiv || 4203 I.getOpcode() == Instruction::SDiv || 4204 I.getOpcode() == Instruction::URem || 4205 I.getOpcode() == Instruction::SRem) && 4206 "Unexpected instruction"); 4207 Value *Divisor = I.getOperand(1); 4208 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4209 return !CInt || CInt->isZero(); 4210 } 4211 4212 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4213 VPUser &ArgOperands, 4214 VPTransformState &State) { 4215 assert(!isa<DbgInfoIntrinsic>(I) && 4216 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4217 setDebugLocFromInst(&I); 4218 4219 Module *M = I.getParent()->getParent()->getParent(); 4220 auto *CI = cast<CallInst>(&I); 4221 4222 SmallVector<Type *, 4> Tys; 4223 for (Value *ArgOperand : CI->args()) 4224 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4225 4226 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4227 4228 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4229 // version of the instruction. 4230 // Is it beneficial to perform intrinsic call compared to lib call? 4231 bool NeedToScalarize = false; 4232 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4233 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4234 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4235 assert((UseVectorIntrinsic || !NeedToScalarize) && 4236 "Instruction should be scalarized elsewhere."); 4237 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4238 "Either the intrinsic cost or vector call cost must be valid"); 4239 4240 for (unsigned Part = 0; Part < UF; ++Part) { 4241 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4242 SmallVector<Value *, 4> Args; 4243 for (auto &I : enumerate(ArgOperands.operands())) { 4244 // Some intrinsics have a scalar argument - don't replace it with a 4245 // vector. 4246 Value *Arg; 4247 if (!UseVectorIntrinsic || !hasVectorIntrinsicScalarOpd(ID, I.index())) 4248 Arg = State.get(I.value(), Part); 4249 else { 4250 Arg = State.get(I.value(), VPIteration(0, 0)); 4251 if (hasVectorIntrinsicOverloadedScalarOpd(ID, I.index())) 4252 TysForDecl.push_back(Arg->getType()); 4253 } 4254 Args.push_back(Arg); 4255 } 4256 4257 Function *VectorF; 4258 if (UseVectorIntrinsic) { 4259 // Use vector version of the intrinsic. 4260 if (VF.isVector()) 4261 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4262 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4263 assert(VectorF && "Can't retrieve vector intrinsic."); 4264 } else { 4265 // Use vector version of the function call. 4266 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4267 #ifndef NDEBUG 4268 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4269 "Can't create vector function."); 4270 #endif 4271 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4272 } 4273 SmallVector<OperandBundleDef, 1> OpBundles; 4274 CI->getOperandBundlesAsDefs(OpBundles); 4275 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4276 4277 if (isa<FPMathOperator>(V)) 4278 V->copyFastMathFlags(CI); 4279 4280 State.set(Def, V, Part); 4281 addMetadata(V, &I); 4282 } 4283 } 4284 4285 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4286 // We should not collect Scalars more than once per VF. Right now, this 4287 // function is called from collectUniformsAndScalars(), which already does 4288 // this check. Collecting Scalars for VF=1 does not make any sense. 4289 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4290 "This function should not be visited twice for the same VF"); 4291 4292 // This avoids any chances of creating a REPLICATE recipe during planning 4293 // since that would result in generation of scalarized code during execution, 4294 // which is not supported for scalable vectors. 4295 if (VF.isScalable()) { 4296 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4297 return; 4298 } 4299 4300 SmallSetVector<Instruction *, 8> Worklist; 4301 4302 // These sets are used to seed the analysis with pointers used by memory 4303 // accesses that will remain scalar. 4304 SmallSetVector<Instruction *, 8> ScalarPtrs; 4305 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4306 auto *Latch = TheLoop->getLoopLatch(); 4307 4308 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4309 // The pointer operands of loads and stores will be scalar as long as the 4310 // memory access is not a gather or scatter operation. The value operand of a 4311 // store will remain scalar if the store is scalarized. 4312 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4313 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4314 assert(WideningDecision != CM_Unknown && 4315 "Widening decision should be ready at this moment"); 4316 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4317 if (Ptr == Store->getValueOperand()) 4318 return WideningDecision == CM_Scalarize; 4319 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4320 "Ptr is neither a value or pointer operand"); 4321 return WideningDecision != CM_GatherScatter; 4322 }; 4323 4324 // A helper that returns true if the given value is a bitcast or 4325 // getelementptr instruction contained in the loop. 4326 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4327 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4328 isa<GetElementPtrInst>(V)) && 4329 !TheLoop->isLoopInvariant(V); 4330 }; 4331 4332 // A helper that evaluates a memory access's use of a pointer. If the use will 4333 // be a scalar use and the pointer is only used by memory accesses, we place 4334 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4335 // PossibleNonScalarPtrs. 4336 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4337 // We only care about bitcast and getelementptr instructions contained in 4338 // the loop. 4339 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4340 return; 4341 4342 // If the pointer has already been identified as scalar (e.g., if it was 4343 // also identified as uniform), there's nothing to do. 4344 auto *I = cast<Instruction>(Ptr); 4345 if (Worklist.count(I)) 4346 return; 4347 4348 // If the use of the pointer will be a scalar use, and all users of the 4349 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4350 // place the pointer in PossibleNonScalarPtrs. 4351 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4352 return isa<LoadInst>(U) || isa<StoreInst>(U); 4353 })) 4354 ScalarPtrs.insert(I); 4355 else 4356 PossibleNonScalarPtrs.insert(I); 4357 }; 4358 4359 // We seed the scalars analysis with three classes of instructions: (1) 4360 // instructions marked uniform-after-vectorization and (2) bitcast, 4361 // getelementptr and (pointer) phi instructions used by memory accesses 4362 // requiring a scalar use. 4363 // 4364 // (1) Add to the worklist all instructions that have been identified as 4365 // uniform-after-vectorization. 4366 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4367 4368 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4369 // memory accesses requiring a scalar use. The pointer operands of loads and 4370 // stores will be scalar as long as the memory accesses is not a gather or 4371 // scatter operation. The value operand of a store will remain scalar if the 4372 // store is scalarized. 4373 for (auto *BB : TheLoop->blocks()) 4374 for (auto &I : *BB) { 4375 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4376 evaluatePtrUse(Load, Load->getPointerOperand()); 4377 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4378 evaluatePtrUse(Store, Store->getPointerOperand()); 4379 evaluatePtrUse(Store, Store->getValueOperand()); 4380 } 4381 } 4382 for (auto *I : ScalarPtrs) 4383 if (!PossibleNonScalarPtrs.count(I)) { 4384 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4385 Worklist.insert(I); 4386 } 4387 4388 // Insert the forced scalars. 4389 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4390 // induction variable when the PHI user is scalarized. 4391 auto ForcedScalar = ForcedScalars.find(VF); 4392 if (ForcedScalar != ForcedScalars.end()) 4393 for (auto *I : ForcedScalar->second) 4394 Worklist.insert(I); 4395 4396 // Expand the worklist by looking through any bitcasts and getelementptr 4397 // instructions we've already identified as scalar. This is similar to the 4398 // expansion step in collectLoopUniforms(); however, here we're only 4399 // expanding to include additional bitcasts and getelementptr instructions. 4400 unsigned Idx = 0; 4401 while (Idx != Worklist.size()) { 4402 Instruction *Dst = Worklist[Idx++]; 4403 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4404 continue; 4405 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4406 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4407 auto *J = cast<Instruction>(U); 4408 return !TheLoop->contains(J) || Worklist.count(J) || 4409 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4410 isScalarUse(J, Src)); 4411 })) { 4412 Worklist.insert(Src); 4413 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4414 } 4415 } 4416 4417 // An induction variable will remain scalar if all users of the induction 4418 // variable and induction variable update remain scalar. 4419 for (auto &Induction : Legal->getInductionVars()) { 4420 auto *Ind = Induction.first; 4421 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4422 4423 // If tail-folding is applied, the primary induction variable will be used 4424 // to feed a vector compare. 4425 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4426 continue; 4427 4428 // Returns true if \p Indvar is a pointer induction that is used directly by 4429 // load/store instruction \p I. 4430 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4431 Instruction *I) { 4432 return Induction.second.getKind() == 4433 InductionDescriptor::IK_PtrInduction && 4434 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4435 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4436 }; 4437 4438 // Determine if all users of the induction variable are scalar after 4439 // vectorization. 4440 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4441 auto *I = cast<Instruction>(U); 4442 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4443 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4444 }); 4445 if (!ScalarInd) 4446 continue; 4447 4448 // Determine if all users of the induction variable update instruction are 4449 // scalar after vectorization. 4450 auto ScalarIndUpdate = 4451 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4452 auto *I = cast<Instruction>(U); 4453 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4454 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4455 }); 4456 if (!ScalarIndUpdate) 4457 continue; 4458 4459 // The induction variable and its update instruction will remain scalar. 4460 Worklist.insert(Ind); 4461 Worklist.insert(IndUpdate); 4462 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4463 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4464 << "\n"); 4465 } 4466 4467 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4468 } 4469 4470 bool LoopVectorizationCostModel::isScalarWithPredication( 4471 Instruction *I, ElementCount VF) const { 4472 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4473 return false; 4474 switch(I->getOpcode()) { 4475 default: 4476 break; 4477 case Instruction::Load: 4478 case Instruction::Store: { 4479 if (!Legal->isMaskRequired(I)) 4480 return false; 4481 auto *Ptr = getLoadStorePointerOperand(I); 4482 auto *Ty = getLoadStoreType(I); 4483 Type *VTy = Ty; 4484 if (VF.isVector()) 4485 VTy = VectorType::get(Ty, VF); 4486 const Align Alignment = getLoadStoreAlignment(I); 4487 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4488 TTI.isLegalMaskedGather(VTy, Alignment)) 4489 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4490 TTI.isLegalMaskedScatter(VTy, Alignment)); 4491 } 4492 case Instruction::UDiv: 4493 case Instruction::SDiv: 4494 case Instruction::SRem: 4495 case Instruction::URem: 4496 return mayDivideByZero(*I); 4497 } 4498 return false; 4499 } 4500 4501 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4502 Instruction *I, ElementCount VF) { 4503 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4504 assert(getWideningDecision(I, VF) == CM_Unknown && 4505 "Decision should not be set yet."); 4506 auto *Group = getInterleavedAccessGroup(I); 4507 assert(Group && "Must have a group."); 4508 4509 // If the instruction's allocated size doesn't equal it's type size, it 4510 // requires padding and will be scalarized. 4511 auto &DL = I->getModule()->getDataLayout(); 4512 auto *ScalarTy = getLoadStoreType(I); 4513 if (hasIrregularType(ScalarTy, DL)) 4514 return false; 4515 4516 // If the group involves a non-integral pointer, we may not be able to 4517 // losslessly cast all values to a common type. 4518 unsigned InterleaveFactor = Group->getFactor(); 4519 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4520 for (unsigned i = 0; i < InterleaveFactor; i++) { 4521 Instruction *Member = Group->getMember(i); 4522 if (!Member) 4523 continue; 4524 auto *MemberTy = getLoadStoreType(Member); 4525 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4526 // Don't coerce non-integral pointers to integers or vice versa. 4527 if (MemberNI != ScalarNI) { 4528 // TODO: Consider adding special nullptr value case here 4529 return false; 4530 } else if (MemberNI && ScalarNI && 4531 ScalarTy->getPointerAddressSpace() != 4532 MemberTy->getPointerAddressSpace()) { 4533 return false; 4534 } 4535 } 4536 4537 // Check if masking is required. 4538 // A Group may need masking for one of two reasons: it resides in a block that 4539 // needs predication, or it was decided to use masking to deal with gaps 4540 // (either a gap at the end of a load-access that may result in a speculative 4541 // load, or any gaps in a store-access). 4542 bool PredicatedAccessRequiresMasking = 4543 blockNeedsPredicationForAnyReason(I->getParent()) && 4544 Legal->isMaskRequired(I); 4545 bool LoadAccessWithGapsRequiresEpilogMasking = 4546 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4547 !isScalarEpilogueAllowed(); 4548 bool StoreAccessWithGapsRequiresMasking = 4549 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4550 if (!PredicatedAccessRequiresMasking && 4551 !LoadAccessWithGapsRequiresEpilogMasking && 4552 !StoreAccessWithGapsRequiresMasking) 4553 return true; 4554 4555 // If masked interleaving is required, we expect that the user/target had 4556 // enabled it, because otherwise it either wouldn't have been created or 4557 // it should have been invalidated by the CostModel. 4558 assert(useMaskedInterleavedAccesses(TTI) && 4559 "Masked interleave-groups for predicated accesses are not enabled."); 4560 4561 if (Group->isReverse()) 4562 return false; 4563 4564 auto *Ty = getLoadStoreType(I); 4565 const Align Alignment = getLoadStoreAlignment(I); 4566 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4567 : TTI.isLegalMaskedStore(Ty, Alignment); 4568 } 4569 4570 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4571 Instruction *I, ElementCount VF) { 4572 // Get and ensure we have a valid memory instruction. 4573 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4574 4575 auto *Ptr = getLoadStorePointerOperand(I); 4576 auto *ScalarTy = getLoadStoreType(I); 4577 4578 // In order to be widened, the pointer should be consecutive, first of all. 4579 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4580 return false; 4581 4582 // If the instruction is a store located in a predicated block, it will be 4583 // scalarized. 4584 if (isScalarWithPredication(I, VF)) 4585 return false; 4586 4587 // If the instruction's allocated size doesn't equal it's type size, it 4588 // requires padding and will be scalarized. 4589 auto &DL = I->getModule()->getDataLayout(); 4590 if (hasIrregularType(ScalarTy, DL)) 4591 return false; 4592 4593 return true; 4594 } 4595 4596 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4597 // We should not collect Uniforms more than once per VF. Right now, 4598 // this function is called from collectUniformsAndScalars(), which 4599 // already does this check. Collecting Uniforms for VF=1 does not make any 4600 // sense. 4601 4602 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4603 "This function should not be visited twice for the same VF"); 4604 4605 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4606 // not analyze again. Uniforms.count(VF) will return 1. 4607 Uniforms[VF].clear(); 4608 4609 // We now know that the loop is vectorizable! 4610 // Collect instructions inside the loop that will remain uniform after 4611 // vectorization. 4612 4613 // Global values, params and instructions outside of current loop are out of 4614 // scope. 4615 auto isOutOfScope = [&](Value *V) -> bool { 4616 Instruction *I = dyn_cast<Instruction>(V); 4617 return (!I || !TheLoop->contains(I)); 4618 }; 4619 4620 // Worklist containing uniform instructions demanding lane 0. 4621 SetVector<Instruction *> Worklist; 4622 BasicBlock *Latch = TheLoop->getLoopLatch(); 4623 4624 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4625 // that are scalar with predication must not be considered uniform after 4626 // vectorization, because that would create an erroneous replicating region 4627 // where only a single instance out of VF should be formed. 4628 // TODO: optimize such seldom cases if found important, see PR40816. 4629 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4630 if (isOutOfScope(I)) { 4631 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4632 << *I << "\n"); 4633 return; 4634 } 4635 if (isScalarWithPredication(I, VF)) { 4636 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4637 << *I << "\n"); 4638 return; 4639 } 4640 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4641 Worklist.insert(I); 4642 }; 4643 4644 // Start with the conditional branch. If the branch condition is an 4645 // instruction contained in the loop that is only used by the branch, it is 4646 // uniform. 4647 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4648 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4649 addToWorklistIfAllowed(Cmp); 4650 4651 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4652 InstWidening WideningDecision = getWideningDecision(I, VF); 4653 assert(WideningDecision != CM_Unknown && 4654 "Widening decision should be ready at this moment"); 4655 4656 // A uniform memory op is itself uniform. We exclude uniform stores 4657 // here as they demand the last lane, not the first one. 4658 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4659 assert(WideningDecision == CM_Scalarize); 4660 return true; 4661 } 4662 4663 return (WideningDecision == CM_Widen || 4664 WideningDecision == CM_Widen_Reverse || 4665 WideningDecision == CM_Interleave); 4666 }; 4667 4668 4669 // Returns true if Ptr is the pointer operand of a memory access instruction 4670 // I, and I is known to not require scalarization. 4671 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4672 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4673 }; 4674 4675 // Holds a list of values which are known to have at least one uniform use. 4676 // Note that there may be other uses which aren't uniform. A "uniform use" 4677 // here is something which only demands lane 0 of the unrolled iterations; 4678 // it does not imply that all lanes produce the same value (e.g. this is not 4679 // the usual meaning of uniform) 4680 SetVector<Value *> HasUniformUse; 4681 4682 // Scan the loop for instructions which are either a) known to have only 4683 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4684 for (auto *BB : TheLoop->blocks()) 4685 for (auto &I : *BB) { 4686 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4687 switch (II->getIntrinsicID()) { 4688 case Intrinsic::sideeffect: 4689 case Intrinsic::experimental_noalias_scope_decl: 4690 case Intrinsic::assume: 4691 case Intrinsic::lifetime_start: 4692 case Intrinsic::lifetime_end: 4693 if (TheLoop->hasLoopInvariantOperands(&I)) 4694 addToWorklistIfAllowed(&I); 4695 break; 4696 default: 4697 break; 4698 } 4699 } 4700 4701 // ExtractValue instructions must be uniform, because the operands are 4702 // known to be loop-invariant. 4703 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4704 assert(isOutOfScope(EVI->getAggregateOperand()) && 4705 "Expected aggregate value to be loop invariant"); 4706 addToWorklistIfAllowed(EVI); 4707 continue; 4708 } 4709 4710 // If there's no pointer operand, there's nothing to do. 4711 auto *Ptr = getLoadStorePointerOperand(&I); 4712 if (!Ptr) 4713 continue; 4714 4715 // A uniform memory op is itself uniform. We exclude uniform stores 4716 // here as they demand the last lane, not the first one. 4717 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4718 addToWorklistIfAllowed(&I); 4719 4720 if (isUniformDecision(&I, VF)) { 4721 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4722 HasUniformUse.insert(Ptr); 4723 } 4724 } 4725 4726 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4727 // demanding) users. Since loops are assumed to be in LCSSA form, this 4728 // disallows uses outside the loop as well. 4729 for (auto *V : HasUniformUse) { 4730 if (isOutOfScope(V)) 4731 continue; 4732 auto *I = cast<Instruction>(V); 4733 auto UsersAreMemAccesses = 4734 llvm::all_of(I->users(), [&](User *U) -> bool { 4735 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4736 }); 4737 if (UsersAreMemAccesses) 4738 addToWorklistIfAllowed(I); 4739 } 4740 4741 // Expand Worklist in topological order: whenever a new instruction 4742 // is added , its users should be already inside Worklist. It ensures 4743 // a uniform instruction will only be used by uniform instructions. 4744 unsigned idx = 0; 4745 while (idx != Worklist.size()) { 4746 Instruction *I = Worklist[idx++]; 4747 4748 for (auto OV : I->operand_values()) { 4749 // isOutOfScope operands cannot be uniform instructions. 4750 if (isOutOfScope(OV)) 4751 continue; 4752 // First order recurrence Phi's should typically be considered 4753 // non-uniform. 4754 auto *OP = dyn_cast<PHINode>(OV); 4755 if (OP && Legal->isFirstOrderRecurrence(OP)) 4756 continue; 4757 // If all the users of the operand are uniform, then add the 4758 // operand into the uniform worklist. 4759 auto *OI = cast<Instruction>(OV); 4760 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4761 auto *J = cast<Instruction>(U); 4762 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4763 })) 4764 addToWorklistIfAllowed(OI); 4765 } 4766 } 4767 4768 // For an instruction to be added into Worklist above, all its users inside 4769 // the loop should also be in Worklist. However, this condition cannot be 4770 // true for phi nodes that form a cyclic dependence. We must process phi 4771 // nodes separately. An induction variable will remain uniform if all users 4772 // of the induction variable and induction variable update remain uniform. 4773 // The code below handles both pointer and non-pointer induction variables. 4774 for (auto &Induction : Legal->getInductionVars()) { 4775 auto *Ind = Induction.first; 4776 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4777 4778 // Determine if all users of the induction variable are uniform after 4779 // vectorization. 4780 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4781 auto *I = cast<Instruction>(U); 4782 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4783 isVectorizedMemAccessUse(I, Ind); 4784 }); 4785 if (!UniformInd) 4786 continue; 4787 4788 // Determine if all users of the induction variable update instruction are 4789 // uniform after vectorization. 4790 auto UniformIndUpdate = 4791 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4792 auto *I = cast<Instruction>(U); 4793 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4794 isVectorizedMemAccessUse(I, IndUpdate); 4795 }); 4796 if (!UniformIndUpdate) 4797 continue; 4798 4799 // The induction variable and its update instruction will remain uniform. 4800 addToWorklistIfAllowed(Ind); 4801 addToWorklistIfAllowed(IndUpdate); 4802 } 4803 4804 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4805 } 4806 4807 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4808 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4809 4810 if (Legal->getRuntimePointerChecking()->Need) { 4811 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4812 "runtime pointer checks needed. Enable vectorization of this " 4813 "loop with '#pragma clang loop vectorize(enable)' when " 4814 "compiling with -Os/-Oz", 4815 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4816 return true; 4817 } 4818 4819 if (!PSE.getPredicate().isAlwaysTrue()) { 4820 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4821 "runtime SCEV checks needed. Enable vectorization of this " 4822 "loop with '#pragma clang loop vectorize(enable)' when " 4823 "compiling with -Os/-Oz", 4824 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4825 return true; 4826 } 4827 4828 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4829 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4830 reportVectorizationFailure("Runtime stride check for small trip count", 4831 "runtime stride == 1 checks needed. Enable vectorization of " 4832 "this loop without such check by compiling with -Os/-Oz", 4833 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4834 return true; 4835 } 4836 4837 return false; 4838 } 4839 4840 ElementCount 4841 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4842 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4843 return ElementCount::getScalable(0); 4844 4845 if (Hints->isScalableVectorizationDisabled()) { 4846 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4847 "ScalableVectorizationDisabled", ORE, TheLoop); 4848 return ElementCount::getScalable(0); 4849 } 4850 4851 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4852 4853 auto MaxScalableVF = ElementCount::getScalable( 4854 std::numeric_limits<ElementCount::ScalarTy>::max()); 4855 4856 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4857 // FIXME: While for scalable vectors this is currently sufficient, this should 4858 // be replaced by a more detailed mechanism that filters out specific VFs, 4859 // instead of invalidating vectorization for a whole set of VFs based on the 4860 // MaxVF. 4861 4862 // Disable scalable vectorization if the loop contains unsupported reductions. 4863 if (!canVectorizeReductions(MaxScalableVF)) { 4864 reportVectorizationInfo( 4865 "Scalable vectorization not supported for the reduction " 4866 "operations found in this loop.", 4867 "ScalableVFUnfeasible", ORE, TheLoop); 4868 return ElementCount::getScalable(0); 4869 } 4870 4871 // Disable scalable vectorization if the loop contains any instructions 4872 // with element types not supported for scalable vectors. 4873 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4874 return !Ty->isVoidTy() && 4875 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4876 })) { 4877 reportVectorizationInfo("Scalable vectorization is not supported " 4878 "for all element types found in this loop.", 4879 "ScalableVFUnfeasible", ORE, TheLoop); 4880 return ElementCount::getScalable(0); 4881 } 4882 4883 if (Legal->isSafeForAnyVectorWidth()) 4884 return MaxScalableVF; 4885 4886 // Limit MaxScalableVF by the maximum safe dependence distance. 4887 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4888 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4889 MaxVScale = 4890 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4891 MaxScalableVF = ElementCount::getScalable( 4892 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4893 if (!MaxScalableVF) 4894 reportVectorizationInfo( 4895 "Max legal vector width too small, scalable vectorization " 4896 "unfeasible.", 4897 "ScalableVFUnfeasible", ORE, TheLoop); 4898 4899 return MaxScalableVF; 4900 } 4901 4902 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4903 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4904 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4905 unsigned SmallestType, WidestType; 4906 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4907 4908 // Get the maximum safe dependence distance in bits computed by LAA. 4909 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4910 // the memory accesses that is most restrictive (involved in the smallest 4911 // dependence distance). 4912 unsigned MaxSafeElements = 4913 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4914 4915 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4916 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4917 4918 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4919 << ".\n"); 4920 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4921 << ".\n"); 4922 4923 // First analyze the UserVF, fall back if the UserVF should be ignored. 4924 if (UserVF) { 4925 auto MaxSafeUserVF = 4926 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4927 4928 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4929 // If `VF=vscale x N` is safe, then so is `VF=N` 4930 if (UserVF.isScalable()) 4931 return FixedScalableVFPair( 4932 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4933 else 4934 return UserVF; 4935 } 4936 4937 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4938 4939 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4940 // is better to ignore the hint and let the compiler choose a suitable VF. 4941 if (!UserVF.isScalable()) { 4942 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4943 << " is unsafe, clamping to max safe VF=" 4944 << MaxSafeFixedVF << ".\n"); 4945 ORE->emit([&]() { 4946 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4947 TheLoop->getStartLoc(), 4948 TheLoop->getHeader()) 4949 << "User-specified vectorization factor " 4950 << ore::NV("UserVectorizationFactor", UserVF) 4951 << " is unsafe, clamping to maximum safe vectorization factor " 4952 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4953 }); 4954 return MaxSafeFixedVF; 4955 } 4956 4957 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4958 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4959 << " is ignored because scalable vectors are not " 4960 "available.\n"); 4961 ORE->emit([&]() { 4962 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4963 TheLoop->getStartLoc(), 4964 TheLoop->getHeader()) 4965 << "User-specified vectorization factor " 4966 << ore::NV("UserVectorizationFactor", UserVF) 4967 << " is ignored because the target does not support scalable " 4968 "vectors. The compiler will pick a more suitable value."; 4969 }); 4970 } else { 4971 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4972 << " is unsafe. Ignoring scalable UserVF.\n"); 4973 ORE->emit([&]() { 4974 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4975 TheLoop->getStartLoc(), 4976 TheLoop->getHeader()) 4977 << "User-specified vectorization factor " 4978 << ore::NV("UserVectorizationFactor", UserVF) 4979 << " is unsafe. Ignoring the hint to let the compiler pick a " 4980 "more suitable value."; 4981 }); 4982 } 4983 } 4984 4985 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4986 << " / " << WidestType << " bits.\n"); 4987 4988 FixedScalableVFPair Result(ElementCount::getFixed(1), 4989 ElementCount::getScalable(0)); 4990 if (auto MaxVF = 4991 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4992 MaxSafeFixedVF, FoldTailByMasking)) 4993 Result.FixedVF = MaxVF; 4994 4995 if (auto MaxVF = 4996 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4997 MaxSafeScalableVF, FoldTailByMasking)) 4998 if (MaxVF.isScalable()) { 4999 Result.ScalableVF = MaxVF; 5000 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5001 << "\n"); 5002 } 5003 5004 return Result; 5005 } 5006 5007 FixedScalableVFPair 5008 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5009 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5010 // TODO: It may by useful to do since it's still likely to be dynamically 5011 // uniform if the target can skip. 5012 reportVectorizationFailure( 5013 "Not inserting runtime ptr check for divergent target", 5014 "runtime pointer checks needed. Not enabled for divergent target", 5015 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5016 return FixedScalableVFPair::getNone(); 5017 } 5018 5019 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5020 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5021 if (TC == 1) { 5022 reportVectorizationFailure("Single iteration (non) loop", 5023 "loop trip count is one, irrelevant for vectorization", 5024 "SingleIterationLoop", ORE, TheLoop); 5025 return FixedScalableVFPair::getNone(); 5026 } 5027 5028 switch (ScalarEpilogueStatus) { 5029 case CM_ScalarEpilogueAllowed: 5030 return computeFeasibleMaxVF(TC, UserVF, false); 5031 case CM_ScalarEpilogueNotAllowedUsePredicate: 5032 LLVM_FALLTHROUGH; 5033 case CM_ScalarEpilogueNotNeededUsePredicate: 5034 LLVM_DEBUG( 5035 dbgs() << "LV: vector predicate hint/switch found.\n" 5036 << "LV: Not allowing scalar epilogue, creating predicated " 5037 << "vector loop.\n"); 5038 break; 5039 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5040 // fallthrough as a special case of OptForSize 5041 case CM_ScalarEpilogueNotAllowedOptSize: 5042 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5043 LLVM_DEBUG( 5044 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5045 else 5046 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5047 << "count.\n"); 5048 5049 // Bail if runtime checks are required, which are not good when optimising 5050 // for size. 5051 if (runtimeChecksRequired()) 5052 return FixedScalableVFPair::getNone(); 5053 5054 break; 5055 } 5056 5057 // The only loops we can vectorize without a scalar epilogue, are loops with 5058 // a bottom-test and a single exiting block. We'd have to handle the fact 5059 // that not every instruction executes on the last iteration. This will 5060 // require a lane mask which varies through the vector loop body. (TODO) 5061 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5062 // If there was a tail-folding hint/switch, but we can't fold the tail by 5063 // masking, fallback to a vectorization with a scalar epilogue. 5064 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5065 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5066 "scalar epilogue instead.\n"); 5067 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5068 return computeFeasibleMaxVF(TC, UserVF, false); 5069 } 5070 return FixedScalableVFPair::getNone(); 5071 } 5072 5073 // Now try the tail folding 5074 5075 // Invalidate interleave groups that require an epilogue if we can't mask 5076 // the interleave-group. 5077 if (!useMaskedInterleavedAccesses(TTI)) { 5078 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5079 "No decisions should have been taken at this point"); 5080 // Note: There is no need to invalidate any cost modeling decisions here, as 5081 // non where taken so far. 5082 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5083 } 5084 5085 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5086 // Avoid tail folding if the trip count is known to be a multiple of any VF 5087 // we chose. 5088 // FIXME: The condition below pessimises the case for fixed-width vectors, 5089 // when scalable VFs are also candidates for vectorization. 5090 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5091 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5092 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5093 "MaxFixedVF must be a power of 2"); 5094 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5095 : MaxFixedVF.getFixedValue(); 5096 ScalarEvolution *SE = PSE.getSE(); 5097 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5098 const SCEV *ExitCount = SE->getAddExpr( 5099 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5100 const SCEV *Rem = SE->getURemExpr( 5101 SE->applyLoopGuards(ExitCount, TheLoop), 5102 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5103 if (Rem->isZero()) { 5104 // Accept MaxFixedVF if we do not have a tail. 5105 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5106 return MaxFactors; 5107 } 5108 } 5109 5110 // For scalable vectors don't use tail folding for low trip counts or 5111 // optimizing for code size. We only permit this if the user has explicitly 5112 // requested it. 5113 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5114 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5115 MaxFactors.ScalableVF.isVector()) 5116 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5117 5118 // If we don't know the precise trip count, or if the trip count that we 5119 // found modulo the vectorization factor is not zero, try to fold the tail 5120 // by masking. 5121 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5122 if (Legal->prepareToFoldTailByMasking()) { 5123 FoldTailByMasking = true; 5124 return MaxFactors; 5125 } 5126 5127 // If there was a tail-folding hint/switch, but we can't fold the tail by 5128 // masking, fallback to a vectorization with a scalar epilogue. 5129 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5130 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5131 "scalar epilogue instead.\n"); 5132 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5133 return MaxFactors; 5134 } 5135 5136 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5137 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5138 return FixedScalableVFPair::getNone(); 5139 } 5140 5141 if (TC == 0) { 5142 reportVectorizationFailure( 5143 "Unable to calculate the loop count due to complex control flow", 5144 "unable to calculate the loop count due to complex control flow", 5145 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5146 return FixedScalableVFPair::getNone(); 5147 } 5148 5149 reportVectorizationFailure( 5150 "Cannot optimize for size and vectorize at the same time.", 5151 "cannot optimize for size and vectorize at the same time. " 5152 "Enable vectorization of this loop with '#pragma clang loop " 5153 "vectorize(enable)' when compiling with -Os/-Oz", 5154 "NoTailLoopWithOptForSize", ORE, TheLoop); 5155 return FixedScalableVFPair::getNone(); 5156 } 5157 5158 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5159 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5160 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5161 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5162 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5163 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5164 : TargetTransformInfo::RGK_FixedWidthVector); 5165 5166 // Convenience function to return the minimum of two ElementCounts. 5167 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5168 assert((LHS.isScalable() == RHS.isScalable()) && 5169 "Scalable flags must match"); 5170 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5171 }; 5172 5173 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5174 // Note that both WidestRegister and WidestType may not be a powers of 2. 5175 auto MaxVectorElementCount = ElementCount::get( 5176 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5177 ComputeScalableMaxVF); 5178 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5179 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5180 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5181 5182 if (!MaxVectorElementCount) { 5183 LLVM_DEBUG(dbgs() << "LV: The target has no " 5184 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5185 << " vector registers.\n"); 5186 return ElementCount::getFixed(1); 5187 } 5188 5189 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5190 if (ConstTripCount && 5191 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5192 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5193 // If loop trip count (TC) is known at compile time there is no point in 5194 // choosing VF greater than TC (as done in the loop below). Select maximum 5195 // power of two which doesn't exceed TC. 5196 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5197 // when the TC is less than or equal to the known number of lanes. 5198 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5199 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5200 "exceeding the constant trip count: " 5201 << ClampedConstTripCount << "\n"); 5202 return ElementCount::getFixed(ClampedConstTripCount); 5203 } 5204 5205 ElementCount MaxVF = MaxVectorElementCount; 5206 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5207 TTI.shouldMaximizeVectorBandwidth())) { 5208 auto MaxVectorElementCountMaxBW = ElementCount::get( 5209 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5210 ComputeScalableMaxVF); 5211 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5212 5213 // Collect all viable vectorization factors larger than the default MaxVF 5214 // (i.e. MaxVectorElementCount). 5215 SmallVector<ElementCount, 8> VFs; 5216 for (ElementCount VS = MaxVectorElementCount * 2; 5217 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5218 VFs.push_back(VS); 5219 5220 // For each VF calculate its register usage. 5221 auto RUs = calculateRegisterUsage(VFs); 5222 5223 // Select the largest VF which doesn't require more registers than existing 5224 // ones. 5225 for (int i = RUs.size() - 1; i >= 0; --i) { 5226 bool Selected = true; 5227 for (auto &pair : RUs[i].MaxLocalUsers) { 5228 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5229 if (pair.second > TargetNumRegisters) 5230 Selected = false; 5231 } 5232 if (Selected) { 5233 MaxVF = VFs[i]; 5234 break; 5235 } 5236 } 5237 if (ElementCount MinVF = 5238 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5239 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5240 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5241 << ") with target's minimum: " << MinVF << '\n'); 5242 MaxVF = MinVF; 5243 } 5244 } 5245 5246 // Invalidate any widening decisions we might have made, in case the loop 5247 // requires prediction (decided later), but we have already made some 5248 // load/store widening decisions. 5249 invalidateCostModelingDecisions(); 5250 } 5251 return MaxVF; 5252 } 5253 5254 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5255 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5256 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5257 auto Min = Attr.getVScaleRangeMin(); 5258 auto Max = Attr.getVScaleRangeMax(); 5259 if (Max && Min == Max) 5260 return Max; 5261 } 5262 5263 return TTI.getVScaleForTuning(); 5264 } 5265 5266 bool LoopVectorizationCostModel::isMoreProfitable( 5267 const VectorizationFactor &A, const VectorizationFactor &B) const { 5268 InstructionCost CostA = A.Cost; 5269 InstructionCost CostB = B.Cost; 5270 5271 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5272 5273 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5274 MaxTripCount) { 5275 // If we are folding the tail and the trip count is a known (possibly small) 5276 // constant, the trip count will be rounded up to an integer number of 5277 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5278 // which we compare directly. When not folding the tail, the total cost will 5279 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5280 // approximated with the per-lane cost below instead of using the tripcount 5281 // as here. 5282 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5283 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5284 return RTCostA < RTCostB; 5285 } 5286 5287 // Improve estimate for the vector width if it is scalable. 5288 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5289 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5290 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5291 if (A.Width.isScalable()) 5292 EstimatedWidthA *= VScale.getValue(); 5293 if (B.Width.isScalable()) 5294 EstimatedWidthB *= VScale.getValue(); 5295 } 5296 5297 // Assume vscale may be larger than 1 (or the value being tuned for), 5298 // so that scalable vectorization is slightly favorable over fixed-width 5299 // vectorization. 5300 if (A.Width.isScalable() && !B.Width.isScalable()) 5301 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5302 5303 // To avoid the need for FP division: 5304 // (CostA / A.Width) < (CostB / B.Width) 5305 // <=> (CostA * B.Width) < (CostB * A.Width) 5306 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5307 } 5308 5309 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5310 const ElementCountSet &VFCandidates) { 5311 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5312 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5313 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5314 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5315 "Expected Scalar VF to be a candidate"); 5316 5317 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5318 VectorizationFactor ChosenFactor = ScalarCost; 5319 5320 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5321 if (ForceVectorization && VFCandidates.size() > 1) { 5322 // Ignore scalar width, because the user explicitly wants vectorization. 5323 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5324 // evaluation. 5325 ChosenFactor.Cost = InstructionCost::getMax(); 5326 } 5327 5328 SmallVector<InstructionVFPair> InvalidCosts; 5329 for (const auto &i : VFCandidates) { 5330 // The cost for scalar VF=1 is already calculated, so ignore it. 5331 if (i.isScalar()) 5332 continue; 5333 5334 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5335 VectorizationFactor Candidate(i, C.first); 5336 5337 #ifndef NDEBUG 5338 unsigned AssumedMinimumVscale = 1; 5339 if (Optional<unsigned> VScale = getVScaleForTuning()) 5340 AssumedMinimumVscale = VScale.getValue(); 5341 unsigned Width = 5342 Candidate.Width.isScalable() 5343 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5344 : Candidate.Width.getFixedValue(); 5345 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5346 << " costs: " << (Candidate.Cost / Width)); 5347 if (i.isScalable()) 5348 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5349 << AssumedMinimumVscale << ")"); 5350 LLVM_DEBUG(dbgs() << ".\n"); 5351 #endif 5352 5353 if (!C.second && !ForceVectorization) { 5354 LLVM_DEBUG( 5355 dbgs() << "LV: Not considering vector loop of width " << i 5356 << " because it will not generate any vector instructions.\n"); 5357 continue; 5358 } 5359 5360 // If profitable add it to ProfitableVF list. 5361 if (isMoreProfitable(Candidate, ScalarCost)) 5362 ProfitableVFs.push_back(Candidate); 5363 5364 if (isMoreProfitable(Candidate, ChosenFactor)) 5365 ChosenFactor = Candidate; 5366 } 5367 5368 // Emit a report of VFs with invalid costs in the loop. 5369 if (!InvalidCosts.empty()) { 5370 // Group the remarks per instruction, keeping the instruction order from 5371 // InvalidCosts. 5372 std::map<Instruction *, unsigned> Numbering; 5373 unsigned I = 0; 5374 for (auto &Pair : InvalidCosts) 5375 if (!Numbering.count(Pair.first)) 5376 Numbering[Pair.first] = I++; 5377 5378 // Sort the list, first on instruction(number) then on VF. 5379 llvm::sort(InvalidCosts, 5380 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5381 if (Numbering[A.first] != Numbering[B.first]) 5382 return Numbering[A.first] < Numbering[B.first]; 5383 ElementCountComparator ECC; 5384 return ECC(A.second, B.second); 5385 }); 5386 5387 // For a list of ordered instruction-vf pairs: 5388 // [(load, vf1), (load, vf2), (store, vf1)] 5389 // Group the instructions together to emit separate remarks for: 5390 // load (vf1, vf2) 5391 // store (vf1) 5392 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5393 auto Subset = ArrayRef<InstructionVFPair>(); 5394 do { 5395 if (Subset.empty()) 5396 Subset = Tail.take_front(1); 5397 5398 Instruction *I = Subset.front().first; 5399 5400 // If the next instruction is different, or if there are no other pairs, 5401 // emit a remark for the collated subset. e.g. 5402 // [(load, vf1), (load, vf2))] 5403 // to emit: 5404 // remark: invalid costs for 'load' at VF=(vf, vf2) 5405 if (Subset == Tail || Tail[Subset.size()].first != I) { 5406 std::string OutString; 5407 raw_string_ostream OS(OutString); 5408 assert(!Subset.empty() && "Unexpected empty range"); 5409 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5410 for (auto &Pair : Subset) 5411 OS << (Pair.second == Subset.front().second ? "" : ", ") 5412 << Pair.second; 5413 OS << "):"; 5414 if (auto *CI = dyn_cast<CallInst>(I)) 5415 OS << " call to " << CI->getCalledFunction()->getName(); 5416 else 5417 OS << " " << I->getOpcodeName(); 5418 OS.flush(); 5419 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5420 Tail = Tail.drop_front(Subset.size()); 5421 Subset = {}; 5422 } else 5423 // Grow the subset by one element 5424 Subset = Tail.take_front(Subset.size() + 1); 5425 } while (!Tail.empty()); 5426 } 5427 5428 if (!EnableCondStoresVectorization && NumPredStores) { 5429 reportVectorizationFailure("There are conditional stores.", 5430 "store that is conditionally executed prevents vectorization", 5431 "ConditionalStore", ORE, TheLoop); 5432 ChosenFactor = ScalarCost; 5433 } 5434 5435 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5436 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5437 << "LV: Vectorization seems to be not beneficial, " 5438 << "but was forced by a user.\n"); 5439 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5440 return ChosenFactor; 5441 } 5442 5443 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5444 const Loop &L, ElementCount VF) const { 5445 // Cross iteration phis such as reductions need special handling and are 5446 // currently unsupported. 5447 if (any_of(L.getHeader()->phis(), 5448 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5449 return false; 5450 5451 // Phis with uses outside of the loop require special handling and are 5452 // currently unsupported. 5453 for (auto &Entry : Legal->getInductionVars()) { 5454 // Look for uses of the value of the induction at the last iteration. 5455 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5456 for (User *U : PostInc->users()) 5457 if (!L.contains(cast<Instruction>(U))) 5458 return false; 5459 // Look for uses of penultimate value of the induction. 5460 for (User *U : Entry.first->users()) 5461 if (!L.contains(cast<Instruction>(U))) 5462 return false; 5463 } 5464 5465 // Induction variables that are widened require special handling that is 5466 // currently not supported. 5467 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5468 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5469 this->isProfitableToScalarize(Entry.first, VF)); 5470 })) 5471 return false; 5472 5473 // Epilogue vectorization code has not been auditted to ensure it handles 5474 // non-latch exits properly. It may be fine, but it needs auditted and 5475 // tested. 5476 if (L.getExitingBlock() != L.getLoopLatch()) 5477 return false; 5478 5479 return true; 5480 } 5481 5482 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5483 const ElementCount VF) const { 5484 // FIXME: We need a much better cost-model to take different parameters such 5485 // as register pressure, code size increase and cost of extra branches into 5486 // account. For now we apply a very crude heuristic and only consider loops 5487 // with vectorization factors larger than a certain value. 5488 // We also consider epilogue vectorization unprofitable for targets that don't 5489 // consider interleaving beneficial (eg. MVE). 5490 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5491 return false; 5492 // FIXME: We should consider changing the threshold for scalable 5493 // vectors to take VScaleForTuning into account. 5494 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5495 return true; 5496 return false; 5497 } 5498 5499 VectorizationFactor 5500 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5501 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5502 VectorizationFactor Result = VectorizationFactor::Disabled(); 5503 if (!EnableEpilogueVectorization) { 5504 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5505 return Result; 5506 } 5507 5508 if (!isScalarEpilogueAllowed()) { 5509 LLVM_DEBUG( 5510 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5511 "allowed.\n";); 5512 return Result; 5513 } 5514 5515 // Not really a cost consideration, but check for unsupported cases here to 5516 // simplify the logic. 5517 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5518 LLVM_DEBUG( 5519 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5520 "not a supported candidate.\n";); 5521 return Result; 5522 } 5523 5524 if (EpilogueVectorizationForceVF > 1) { 5525 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5526 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5527 if (LVP.hasPlanWithVF(ForcedEC)) 5528 return {ForcedEC, 0}; 5529 else { 5530 LLVM_DEBUG( 5531 dbgs() 5532 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5533 return Result; 5534 } 5535 } 5536 5537 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5538 TheLoop->getHeader()->getParent()->hasMinSize()) { 5539 LLVM_DEBUG( 5540 dbgs() 5541 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5542 return Result; 5543 } 5544 5545 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5546 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5547 "this loop\n"); 5548 return Result; 5549 } 5550 5551 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5552 // the main loop handles 8 lanes per iteration. We could still benefit from 5553 // vectorizing the epilogue loop with VF=4. 5554 ElementCount EstimatedRuntimeVF = MainLoopVF; 5555 if (MainLoopVF.isScalable()) { 5556 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5557 if (Optional<unsigned> VScale = getVScaleForTuning()) 5558 EstimatedRuntimeVF *= VScale.getValue(); 5559 } 5560 5561 for (auto &NextVF : ProfitableVFs) 5562 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5563 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5564 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5565 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5566 LVP.hasPlanWithVF(NextVF.Width)) 5567 Result = NextVF; 5568 5569 if (Result != VectorizationFactor::Disabled()) 5570 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5571 << Result.Width << "\n";); 5572 return Result; 5573 } 5574 5575 std::pair<unsigned, unsigned> 5576 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5577 unsigned MinWidth = -1U; 5578 unsigned MaxWidth = 8; 5579 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5580 // For in-loop reductions, no element types are added to ElementTypesInLoop 5581 // if there are no loads/stores in the loop. In this case, check through the 5582 // reduction variables to determine the maximum width. 5583 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5584 // Reset MaxWidth so that we can find the smallest type used by recurrences 5585 // in the loop. 5586 MaxWidth = -1U; 5587 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5588 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5589 // When finding the min width used by the recurrence we need to account 5590 // for casts on the input operands of the recurrence. 5591 MaxWidth = std::min<unsigned>( 5592 MaxWidth, std::min<unsigned>( 5593 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5594 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5595 } 5596 } else { 5597 for (Type *T : ElementTypesInLoop) { 5598 MinWidth = std::min<unsigned>( 5599 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5600 MaxWidth = std::max<unsigned>( 5601 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5602 } 5603 } 5604 return {MinWidth, MaxWidth}; 5605 } 5606 5607 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5608 ElementTypesInLoop.clear(); 5609 // For each block. 5610 for (BasicBlock *BB : TheLoop->blocks()) { 5611 // For each instruction in the loop. 5612 for (Instruction &I : BB->instructionsWithoutDebug()) { 5613 Type *T = I.getType(); 5614 5615 // Skip ignored values. 5616 if (ValuesToIgnore.count(&I)) 5617 continue; 5618 5619 // Only examine Loads, Stores and PHINodes. 5620 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5621 continue; 5622 5623 // Examine PHI nodes that are reduction variables. Update the type to 5624 // account for the recurrence type. 5625 if (auto *PN = dyn_cast<PHINode>(&I)) { 5626 if (!Legal->isReductionVariable(PN)) 5627 continue; 5628 const RecurrenceDescriptor &RdxDesc = 5629 Legal->getReductionVars().find(PN)->second; 5630 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5631 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5632 RdxDesc.getRecurrenceType(), 5633 TargetTransformInfo::ReductionFlags())) 5634 continue; 5635 T = RdxDesc.getRecurrenceType(); 5636 } 5637 5638 // Examine the stored values. 5639 if (auto *ST = dyn_cast<StoreInst>(&I)) 5640 T = ST->getValueOperand()->getType(); 5641 5642 assert(T->isSized() && 5643 "Expected the load/store/recurrence type to be sized"); 5644 5645 ElementTypesInLoop.insert(T); 5646 } 5647 } 5648 } 5649 5650 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5651 unsigned LoopCost) { 5652 // -- The interleave heuristics -- 5653 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5654 // There are many micro-architectural considerations that we can't predict 5655 // at this level. For example, frontend pressure (on decode or fetch) due to 5656 // code size, or the number and capabilities of the execution ports. 5657 // 5658 // We use the following heuristics to select the interleave count: 5659 // 1. If the code has reductions, then we interleave to break the cross 5660 // iteration dependency. 5661 // 2. If the loop is really small, then we interleave to reduce the loop 5662 // overhead. 5663 // 3. We don't interleave if we think that we will spill registers to memory 5664 // due to the increased register pressure. 5665 5666 if (!isScalarEpilogueAllowed()) 5667 return 1; 5668 5669 // We used the distance for the interleave count. 5670 if (Legal->getMaxSafeDepDistBytes() != -1U) 5671 return 1; 5672 5673 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5674 const bool HasReductions = !Legal->getReductionVars().empty(); 5675 // Do not interleave loops with a relatively small known or estimated trip 5676 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5677 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5678 // because with the above conditions interleaving can expose ILP and break 5679 // cross iteration dependences for reductions. 5680 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5681 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5682 return 1; 5683 5684 // If we did not calculate the cost for VF (because the user selected the VF) 5685 // then we calculate the cost of VF here. 5686 if (LoopCost == 0) { 5687 InstructionCost C = expectedCost(VF).first; 5688 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5689 LoopCost = *C.getValue(); 5690 5691 // Loop body is free and there is no need for interleaving. 5692 if (LoopCost == 0) 5693 return 1; 5694 } 5695 5696 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5697 // We divide by these constants so assume that we have at least one 5698 // instruction that uses at least one register. 5699 for (auto& pair : R.MaxLocalUsers) { 5700 pair.second = std::max(pair.second, 1U); 5701 } 5702 5703 // We calculate the interleave count using the following formula. 5704 // Subtract the number of loop invariants from the number of available 5705 // registers. These registers are used by all of the interleaved instances. 5706 // Next, divide the remaining registers by the number of registers that is 5707 // required by the loop, in order to estimate how many parallel instances 5708 // fit without causing spills. All of this is rounded down if necessary to be 5709 // a power of two. We want power of two interleave count to simplify any 5710 // addressing operations or alignment considerations. 5711 // We also want power of two interleave counts to ensure that the induction 5712 // variable of the vector loop wraps to zero, when tail is folded by masking; 5713 // this currently happens when OptForSize, in which case IC is set to 1 above. 5714 unsigned IC = UINT_MAX; 5715 5716 for (auto& pair : R.MaxLocalUsers) { 5717 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5718 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5719 << " registers of " 5720 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5721 if (VF.isScalar()) { 5722 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5723 TargetNumRegisters = ForceTargetNumScalarRegs; 5724 } else { 5725 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5726 TargetNumRegisters = ForceTargetNumVectorRegs; 5727 } 5728 unsigned MaxLocalUsers = pair.second; 5729 unsigned LoopInvariantRegs = 0; 5730 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5731 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5732 5733 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5734 // Don't count the induction variable as interleaved. 5735 if (EnableIndVarRegisterHeur) { 5736 TmpIC = 5737 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5738 std::max(1U, (MaxLocalUsers - 1))); 5739 } 5740 5741 IC = std::min(IC, TmpIC); 5742 } 5743 5744 // Clamp the interleave ranges to reasonable counts. 5745 unsigned MaxInterleaveCount = 5746 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5747 5748 // Check if the user has overridden the max. 5749 if (VF.isScalar()) { 5750 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5751 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5752 } else { 5753 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5754 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5755 } 5756 5757 // If trip count is known or estimated compile time constant, limit the 5758 // interleave count to be less than the trip count divided by VF, provided it 5759 // is at least 1. 5760 // 5761 // For scalable vectors we can't know if interleaving is beneficial. It may 5762 // not be beneficial for small loops if none of the lanes in the second vector 5763 // iterations is enabled. However, for larger loops, there is likely to be a 5764 // similar benefit as for fixed-width vectors. For now, we choose to leave 5765 // the InterleaveCount as if vscale is '1', although if some information about 5766 // the vector is known (e.g. min vector size), we can make a better decision. 5767 if (BestKnownTC) { 5768 MaxInterleaveCount = 5769 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5770 // Make sure MaxInterleaveCount is greater than 0. 5771 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5772 } 5773 5774 assert(MaxInterleaveCount > 0 && 5775 "Maximum interleave count must be greater than 0"); 5776 5777 // Clamp the calculated IC to be between the 1 and the max interleave count 5778 // that the target and trip count allows. 5779 if (IC > MaxInterleaveCount) 5780 IC = MaxInterleaveCount; 5781 else 5782 // Make sure IC is greater than 0. 5783 IC = std::max(1u, IC); 5784 5785 assert(IC > 0 && "Interleave count must be greater than 0."); 5786 5787 // Interleave if we vectorized this loop and there is a reduction that could 5788 // benefit from interleaving. 5789 if (VF.isVector() && HasReductions) { 5790 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5791 return IC; 5792 } 5793 5794 // For any scalar loop that either requires runtime checks or predication we 5795 // are better off leaving this to the unroller. Note that if we've already 5796 // vectorized the loop we will have done the runtime check and so interleaving 5797 // won't require further checks. 5798 bool ScalarInterleavingRequiresPredication = 5799 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5800 return Legal->blockNeedsPredication(BB); 5801 })); 5802 bool ScalarInterleavingRequiresRuntimePointerCheck = 5803 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5804 5805 // We want to interleave small loops in order to reduce the loop overhead and 5806 // potentially expose ILP opportunities. 5807 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5808 << "LV: IC is " << IC << '\n' 5809 << "LV: VF is " << VF << '\n'); 5810 const bool AggressivelyInterleaveReductions = 5811 TTI.enableAggressiveInterleaving(HasReductions); 5812 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5813 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5814 // We assume that the cost overhead is 1 and we use the cost model 5815 // to estimate the cost of the loop and interleave until the cost of the 5816 // loop overhead is about 5% of the cost of the loop. 5817 unsigned SmallIC = 5818 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5819 5820 // Interleave until store/load ports (estimated by max interleave count) are 5821 // saturated. 5822 unsigned NumStores = Legal->getNumStores(); 5823 unsigned NumLoads = Legal->getNumLoads(); 5824 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5825 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5826 5827 // There is little point in interleaving for reductions containing selects 5828 // and compares when VF=1 since it may just create more overhead than it's 5829 // worth for loops with small trip counts. This is because we still have to 5830 // do the final reduction after the loop. 5831 bool HasSelectCmpReductions = 5832 HasReductions && 5833 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5834 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5835 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5836 RdxDesc.getRecurrenceKind()); 5837 }); 5838 if (HasSelectCmpReductions) { 5839 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5840 return 1; 5841 } 5842 5843 // If we have a scalar reduction (vector reductions are already dealt with 5844 // by this point), we can increase the critical path length if the loop 5845 // we're interleaving is inside another loop. For tree-wise reductions 5846 // set the limit to 2, and for ordered reductions it's best to disable 5847 // interleaving entirely. 5848 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5849 bool HasOrderedReductions = 5850 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5851 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5852 return RdxDesc.isOrdered(); 5853 }); 5854 if (HasOrderedReductions) { 5855 LLVM_DEBUG( 5856 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5857 return 1; 5858 } 5859 5860 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5861 SmallIC = std::min(SmallIC, F); 5862 StoresIC = std::min(StoresIC, F); 5863 LoadsIC = std::min(LoadsIC, F); 5864 } 5865 5866 if (EnableLoadStoreRuntimeInterleave && 5867 std::max(StoresIC, LoadsIC) > SmallIC) { 5868 LLVM_DEBUG( 5869 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5870 return std::max(StoresIC, LoadsIC); 5871 } 5872 5873 // If there are scalar reductions and TTI has enabled aggressive 5874 // interleaving for reductions, we will interleave to expose ILP. 5875 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5876 AggressivelyInterleaveReductions) { 5877 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5878 // Interleave no less than SmallIC but not as aggressive as the normal IC 5879 // to satisfy the rare situation when resources are too limited. 5880 return std::max(IC / 2, SmallIC); 5881 } else { 5882 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5883 return SmallIC; 5884 } 5885 } 5886 5887 // Interleave if this is a large loop (small loops are already dealt with by 5888 // this point) that could benefit from interleaving. 5889 if (AggressivelyInterleaveReductions) { 5890 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5891 return IC; 5892 } 5893 5894 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5895 return 1; 5896 } 5897 5898 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5899 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5900 // This function calculates the register usage by measuring the highest number 5901 // of values that are alive at a single location. Obviously, this is a very 5902 // rough estimation. We scan the loop in a topological order in order and 5903 // assign a number to each instruction. We use RPO to ensure that defs are 5904 // met before their users. We assume that each instruction that has in-loop 5905 // users starts an interval. We record every time that an in-loop value is 5906 // used, so we have a list of the first and last occurrences of each 5907 // instruction. Next, we transpose this data structure into a multi map that 5908 // holds the list of intervals that *end* at a specific location. This multi 5909 // map allows us to perform a linear search. We scan the instructions linearly 5910 // and record each time that a new interval starts, by placing it in a set. 5911 // If we find this value in the multi-map then we remove it from the set. 5912 // The max register usage is the maximum size of the set. 5913 // We also search for instructions that are defined outside the loop, but are 5914 // used inside the loop. We need this number separately from the max-interval 5915 // usage number because when we unroll, loop-invariant values do not take 5916 // more register. 5917 LoopBlocksDFS DFS(TheLoop); 5918 DFS.perform(LI); 5919 5920 RegisterUsage RU; 5921 5922 // Each 'key' in the map opens a new interval. The values 5923 // of the map are the index of the 'last seen' usage of the 5924 // instruction that is the key. 5925 using IntervalMap = DenseMap<Instruction *, unsigned>; 5926 5927 // Maps instruction to its index. 5928 SmallVector<Instruction *, 64> IdxToInstr; 5929 // Marks the end of each interval. 5930 IntervalMap EndPoint; 5931 // Saves the list of instruction indices that are used in the loop. 5932 SmallPtrSet<Instruction *, 8> Ends; 5933 // Saves the list of values that are used in the loop but are 5934 // defined outside the loop, such as arguments and constants. 5935 SmallPtrSet<Value *, 8> LoopInvariants; 5936 5937 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5938 for (Instruction &I : BB->instructionsWithoutDebug()) { 5939 IdxToInstr.push_back(&I); 5940 5941 // Save the end location of each USE. 5942 for (Value *U : I.operands()) { 5943 auto *Instr = dyn_cast<Instruction>(U); 5944 5945 // Ignore non-instruction values such as arguments, constants, etc. 5946 if (!Instr) 5947 continue; 5948 5949 // If this instruction is outside the loop then record it and continue. 5950 if (!TheLoop->contains(Instr)) { 5951 LoopInvariants.insert(Instr); 5952 continue; 5953 } 5954 5955 // Overwrite previous end points. 5956 EndPoint[Instr] = IdxToInstr.size(); 5957 Ends.insert(Instr); 5958 } 5959 } 5960 } 5961 5962 // Saves the list of intervals that end with the index in 'key'. 5963 using InstrList = SmallVector<Instruction *, 2>; 5964 DenseMap<unsigned, InstrList> TransposeEnds; 5965 5966 // Transpose the EndPoints to a list of values that end at each index. 5967 for (auto &Interval : EndPoint) 5968 TransposeEnds[Interval.second].push_back(Interval.first); 5969 5970 SmallPtrSet<Instruction *, 8> OpenIntervals; 5971 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5972 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5973 5974 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5975 5976 // A lambda that gets the register usage for the given type and VF. 5977 const auto &TTICapture = TTI; 5978 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5979 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5980 return 0; 5981 InstructionCost::CostType RegUsage = 5982 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 5983 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 5984 "Nonsensical values for register usage."); 5985 return RegUsage; 5986 }; 5987 5988 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5989 Instruction *I = IdxToInstr[i]; 5990 5991 // Remove all of the instructions that end at this location. 5992 InstrList &List = TransposeEnds[i]; 5993 for (Instruction *ToRemove : List) 5994 OpenIntervals.erase(ToRemove); 5995 5996 // Ignore instructions that are never used within the loop. 5997 if (!Ends.count(I)) 5998 continue; 5999 6000 // Skip ignored values. 6001 if (ValuesToIgnore.count(I)) 6002 continue; 6003 6004 // For each VF find the maximum usage of registers. 6005 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6006 // Count the number of live intervals. 6007 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6008 6009 if (VFs[j].isScalar()) { 6010 for (auto Inst : OpenIntervals) { 6011 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6012 if (RegUsage.find(ClassID) == RegUsage.end()) 6013 RegUsage[ClassID] = 1; 6014 else 6015 RegUsage[ClassID] += 1; 6016 } 6017 } else { 6018 collectUniformsAndScalars(VFs[j]); 6019 for (auto Inst : OpenIntervals) { 6020 // Skip ignored values for VF > 1. 6021 if (VecValuesToIgnore.count(Inst)) 6022 continue; 6023 if (isScalarAfterVectorization(Inst, VFs[j])) { 6024 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6025 if (RegUsage.find(ClassID) == RegUsage.end()) 6026 RegUsage[ClassID] = 1; 6027 else 6028 RegUsage[ClassID] += 1; 6029 } else { 6030 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6031 if (RegUsage.find(ClassID) == RegUsage.end()) 6032 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6033 else 6034 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6035 } 6036 } 6037 } 6038 6039 for (auto& pair : RegUsage) { 6040 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6041 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6042 else 6043 MaxUsages[j][pair.first] = pair.second; 6044 } 6045 } 6046 6047 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6048 << OpenIntervals.size() << '\n'); 6049 6050 // Add the current instruction to the list of open intervals. 6051 OpenIntervals.insert(I); 6052 } 6053 6054 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6055 SmallMapVector<unsigned, unsigned, 4> Invariant; 6056 6057 for (auto Inst : LoopInvariants) { 6058 unsigned Usage = 6059 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6060 unsigned ClassID = 6061 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6062 if (Invariant.find(ClassID) == Invariant.end()) 6063 Invariant[ClassID] = Usage; 6064 else 6065 Invariant[ClassID] += Usage; 6066 } 6067 6068 LLVM_DEBUG({ 6069 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6070 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6071 << " item\n"; 6072 for (const auto &pair : MaxUsages[i]) { 6073 dbgs() << "LV(REG): RegisterClass: " 6074 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6075 << " registers\n"; 6076 } 6077 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6078 << " item\n"; 6079 for (const auto &pair : Invariant) { 6080 dbgs() << "LV(REG): RegisterClass: " 6081 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6082 << " registers\n"; 6083 } 6084 }); 6085 6086 RU.LoopInvariantRegs = Invariant; 6087 RU.MaxLocalUsers = MaxUsages[i]; 6088 RUs[i] = RU; 6089 } 6090 6091 return RUs; 6092 } 6093 6094 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6095 ElementCount VF) { 6096 // TODO: Cost model for emulated masked load/store is completely 6097 // broken. This hack guides the cost model to use an artificially 6098 // high enough value to practically disable vectorization with such 6099 // operations, except where previously deployed legality hack allowed 6100 // using very low cost values. This is to avoid regressions coming simply 6101 // from moving "masked load/store" check from legality to cost model. 6102 // Masked Load/Gather emulation was previously never allowed. 6103 // Limited number of Masked Store/Scatter emulation was allowed. 6104 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6105 return isa<LoadInst>(I) || 6106 (isa<StoreInst>(I) && 6107 NumPredStores > NumberOfStoresToPredicate); 6108 } 6109 6110 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6111 // If we aren't vectorizing the loop, or if we've already collected the 6112 // instructions to scalarize, there's nothing to do. Collection may already 6113 // have occurred if we have a user-selected VF and are now computing the 6114 // expected cost for interleaving. 6115 if (VF.isScalar() || VF.isZero() || 6116 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6117 return; 6118 6119 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6120 // not profitable to scalarize any instructions, the presence of VF in the 6121 // map will indicate that we've analyzed it already. 6122 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6123 6124 // Find all the instructions that are scalar with predication in the loop and 6125 // determine if it would be better to not if-convert the blocks they are in. 6126 // If so, we also record the instructions to scalarize. 6127 for (BasicBlock *BB : TheLoop->blocks()) { 6128 if (!blockNeedsPredicationForAnyReason(BB)) 6129 continue; 6130 for (Instruction &I : *BB) 6131 if (isScalarWithPredication(&I, VF)) { 6132 ScalarCostsTy ScalarCosts; 6133 // Do not apply discount if scalable, because that would lead to 6134 // invalid scalarization costs. 6135 // Do not apply discount logic if hacked cost is needed 6136 // for emulated masked memrefs. 6137 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6138 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6139 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6140 // Remember that BB will remain after vectorization. 6141 PredicatedBBsAfterVectorization.insert(BB); 6142 } 6143 } 6144 } 6145 6146 int LoopVectorizationCostModel::computePredInstDiscount( 6147 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6148 assert(!isUniformAfterVectorization(PredInst, VF) && 6149 "Instruction marked uniform-after-vectorization will be predicated"); 6150 6151 // Initialize the discount to zero, meaning that the scalar version and the 6152 // vector version cost the same. 6153 InstructionCost Discount = 0; 6154 6155 // Holds instructions to analyze. The instructions we visit are mapped in 6156 // ScalarCosts. Those instructions are the ones that would be scalarized if 6157 // we find that the scalar version costs less. 6158 SmallVector<Instruction *, 8> Worklist; 6159 6160 // Returns true if the given instruction can be scalarized. 6161 auto canBeScalarized = [&](Instruction *I) -> bool { 6162 // We only attempt to scalarize instructions forming a single-use chain 6163 // from the original predicated block that would otherwise be vectorized. 6164 // Although not strictly necessary, we give up on instructions we know will 6165 // already be scalar to avoid traversing chains that are unlikely to be 6166 // beneficial. 6167 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6168 isScalarAfterVectorization(I, VF)) 6169 return false; 6170 6171 // If the instruction is scalar with predication, it will be analyzed 6172 // separately. We ignore it within the context of PredInst. 6173 if (isScalarWithPredication(I, VF)) 6174 return false; 6175 6176 // If any of the instruction's operands are uniform after vectorization, 6177 // the instruction cannot be scalarized. This prevents, for example, a 6178 // masked load from being scalarized. 6179 // 6180 // We assume we will only emit a value for lane zero of an instruction 6181 // marked uniform after vectorization, rather than VF identical values. 6182 // Thus, if we scalarize an instruction that uses a uniform, we would 6183 // create uses of values corresponding to the lanes we aren't emitting code 6184 // for. This behavior can be changed by allowing getScalarValue to clone 6185 // the lane zero values for uniforms rather than asserting. 6186 for (Use &U : I->operands()) 6187 if (auto *J = dyn_cast<Instruction>(U.get())) 6188 if (isUniformAfterVectorization(J, VF)) 6189 return false; 6190 6191 // Otherwise, we can scalarize the instruction. 6192 return true; 6193 }; 6194 6195 // Compute the expected cost discount from scalarizing the entire expression 6196 // feeding the predicated instruction. We currently only consider expressions 6197 // that are single-use instruction chains. 6198 Worklist.push_back(PredInst); 6199 while (!Worklist.empty()) { 6200 Instruction *I = Worklist.pop_back_val(); 6201 6202 // If we've already analyzed the instruction, there's nothing to do. 6203 if (ScalarCosts.find(I) != ScalarCosts.end()) 6204 continue; 6205 6206 // Compute the cost of the vector instruction. Note that this cost already 6207 // includes the scalarization overhead of the predicated instruction. 6208 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6209 6210 // Compute the cost of the scalarized instruction. This cost is the cost of 6211 // the instruction as if it wasn't if-converted and instead remained in the 6212 // predicated block. We will scale this cost by block probability after 6213 // computing the scalarization overhead. 6214 InstructionCost ScalarCost = 6215 VF.getFixedValue() * 6216 getInstructionCost(I, ElementCount::getFixed(1)).first; 6217 6218 // Compute the scalarization overhead of needed insertelement instructions 6219 // and phi nodes. 6220 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6221 ScalarCost += TTI.getScalarizationOverhead( 6222 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6223 APInt::getAllOnes(VF.getFixedValue()), true, false); 6224 ScalarCost += 6225 VF.getFixedValue() * 6226 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6227 } 6228 6229 // Compute the scalarization overhead of needed extractelement 6230 // instructions. For each of the instruction's operands, if the operand can 6231 // be scalarized, add it to the worklist; otherwise, account for the 6232 // overhead. 6233 for (Use &U : I->operands()) 6234 if (auto *J = dyn_cast<Instruction>(U.get())) { 6235 assert(VectorType::isValidElementType(J->getType()) && 6236 "Instruction has non-scalar type"); 6237 if (canBeScalarized(J)) 6238 Worklist.push_back(J); 6239 else if (needsExtract(J, VF)) { 6240 ScalarCost += TTI.getScalarizationOverhead( 6241 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6242 APInt::getAllOnes(VF.getFixedValue()), false, true); 6243 } 6244 } 6245 6246 // Scale the total scalar cost by block probability. 6247 ScalarCost /= getReciprocalPredBlockProb(); 6248 6249 // Compute the discount. A non-negative discount means the vector version 6250 // of the instruction costs more, and scalarizing would be beneficial. 6251 Discount += VectorCost - ScalarCost; 6252 ScalarCosts[I] = ScalarCost; 6253 } 6254 6255 return *Discount.getValue(); 6256 } 6257 6258 LoopVectorizationCostModel::VectorizationCostTy 6259 LoopVectorizationCostModel::expectedCost( 6260 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6261 VectorizationCostTy Cost; 6262 6263 // For each block. 6264 for (BasicBlock *BB : TheLoop->blocks()) { 6265 VectorizationCostTy BlockCost; 6266 6267 // For each instruction in the old loop. 6268 for (Instruction &I : BB->instructionsWithoutDebug()) { 6269 // Skip ignored values. 6270 if (ValuesToIgnore.count(&I) || 6271 (VF.isVector() && VecValuesToIgnore.count(&I))) 6272 continue; 6273 6274 VectorizationCostTy C = getInstructionCost(&I, VF); 6275 6276 // Check if we should override the cost. 6277 if (C.first.isValid() && 6278 ForceTargetInstructionCost.getNumOccurrences() > 0) 6279 C.first = InstructionCost(ForceTargetInstructionCost); 6280 6281 // Keep a list of instructions with invalid costs. 6282 if (Invalid && !C.first.isValid()) 6283 Invalid->emplace_back(&I, VF); 6284 6285 BlockCost.first += C.first; 6286 BlockCost.second |= C.second; 6287 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6288 << " for VF " << VF << " For instruction: " << I 6289 << '\n'); 6290 } 6291 6292 // If we are vectorizing a predicated block, it will have been 6293 // if-converted. This means that the block's instructions (aside from 6294 // stores and instructions that may divide by zero) will now be 6295 // unconditionally executed. For the scalar case, we may not always execute 6296 // the predicated block, if it is an if-else block. Thus, scale the block's 6297 // cost by the probability of executing it. blockNeedsPredication from 6298 // Legal is used so as to not include all blocks in tail folded loops. 6299 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6300 BlockCost.first /= getReciprocalPredBlockProb(); 6301 6302 Cost.first += BlockCost.first; 6303 Cost.second |= BlockCost.second; 6304 } 6305 6306 return Cost; 6307 } 6308 6309 /// Gets Address Access SCEV after verifying that the access pattern 6310 /// is loop invariant except the induction variable dependence. 6311 /// 6312 /// This SCEV can be sent to the Target in order to estimate the address 6313 /// calculation cost. 6314 static const SCEV *getAddressAccessSCEV( 6315 Value *Ptr, 6316 LoopVectorizationLegality *Legal, 6317 PredicatedScalarEvolution &PSE, 6318 const Loop *TheLoop) { 6319 6320 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6321 if (!Gep) 6322 return nullptr; 6323 6324 // We are looking for a gep with all loop invariant indices except for one 6325 // which should be an induction variable. 6326 auto SE = PSE.getSE(); 6327 unsigned NumOperands = Gep->getNumOperands(); 6328 for (unsigned i = 1; i < NumOperands; ++i) { 6329 Value *Opd = Gep->getOperand(i); 6330 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6331 !Legal->isInductionVariable(Opd)) 6332 return nullptr; 6333 } 6334 6335 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6336 return PSE.getSCEV(Ptr); 6337 } 6338 6339 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6340 return Legal->hasStride(I->getOperand(0)) || 6341 Legal->hasStride(I->getOperand(1)); 6342 } 6343 6344 InstructionCost 6345 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6346 ElementCount VF) { 6347 assert(VF.isVector() && 6348 "Scalarization cost of instruction implies vectorization."); 6349 if (VF.isScalable()) 6350 return InstructionCost::getInvalid(); 6351 6352 Type *ValTy = getLoadStoreType(I); 6353 auto SE = PSE.getSE(); 6354 6355 unsigned AS = getLoadStoreAddressSpace(I); 6356 Value *Ptr = getLoadStorePointerOperand(I); 6357 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6358 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6359 // that it is being called from this specific place. 6360 6361 // Figure out whether the access is strided and get the stride value 6362 // if it's known in compile time 6363 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6364 6365 // Get the cost of the scalar memory instruction and address computation. 6366 InstructionCost Cost = 6367 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6368 6369 // Don't pass *I here, since it is scalar but will actually be part of a 6370 // vectorized loop where the user of it is a vectorized instruction. 6371 const Align Alignment = getLoadStoreAlignment(I); 6372 Cost += VF.getKnownMinValue() * 6373 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6374 AS, TTI::TCK_RecipThroughput); 6375 6376 // Get the overhead of the extractelement and insertelement instructions 6377 // we might create due to scalarization. 6378 Cost += getScalarizationOverhead(I, VF); 6379 6380 // If we have a predicated load/store, it will need extra i1 extracts and 6381 // conditional branches, but may not be executed for each vector lane. Scale 6382 // the cost by the probability of executing the predicated block. 6383 if (isPredicatedInst(I, VF)) { 6384 Cost /= getReciprocalPredBlockProb(); 6385 6386 // Add the cost of an i1 extract and a branch 6387 auto *Vec_i1Ty = 6388 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6389 Cost += TTI.getScalarizationOverhead( 6390 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6391 /*Insert=*/false, /*Extract=*/true); 6392 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6393 6394 if (useEmulatedMaskMemRefHack(I, VF)) 6395 // Artificially setting to a high enough value to practically disable 6396 // vectorization with such operations. 6397 Cost = 3000000; 6398 } 6399 6400 return Cost; 6401 } 6402 6403 InstructionCost 6404 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6405 ElementCount VF) { 6406 Type *ValTy = getLoadStoreType(I); 6407 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6408 Value *Ptr = getLoadStorePointerOperand(I); 6409 unsigned AS = getLoadStoreAddressSpace(I); 6410 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6411 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6412 6413 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6414 "Stride should be 1 or -1 for consecutive memory access"); 6415 const Align Alignment = getLoadStoreAlignment(I); 6416 InstructionCost Cost = 0; 6417 if (Legal->isMaskRequired(I)) 6418 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6419 CostKind); 6420 else 6421 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6422 CostKind, I); 6423 6424 bool Reverse = ConsecutiveStride < 0; 6425 if (Reverse) 6426 Cost += 6427 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6428 return Cost; 6429 } 6430 6431 InstructionCost 6432 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6433 ElementCount VF) { 6434 assert(Legal->isUniformMemOp(*I)); 6435 6436 Type *ValTy = getLoadStoreType(I); 6437 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6438 const Align Alignment = getLoadStoreAlignment(I); 6439 unsigned AS = getLoadStoreAddressSpace(I); 6440 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6441 if (isa<LoadInst>(I)) { 6442 return TTI.getAddressComputationCost(ValTy) + 6443 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6444 CostKind) + 6445 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6446 } 6447 StoreInst *SI = cast<StoreInst>(I); 6448 6449 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6450 return TTI.getAddressComputationCost(ValTy) + 6451 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6452 CostKind) + 6453 (isLoopInvariantStoreValue 6454 ? 0 6455 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6456 VF.getKnownMinValue() - 1)); 6457 } 6458 6459 InstructionCost 6460 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6461 ElementCount VF) { 6462 Type *ValTy = getLoadStoreType(I); 6463 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6464 const Align Alignment = getLoadStoreAlignment(I); 6465 const Value *Ptr = getLoadStorePointerOperand(I); 6466 6467 return TTI.getAddressComputationCost(VectorTy) + 6468 TTI.getGatherScatterOpCost( 6469 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6470 TargetTransformInfo::TCK_RecipThroughput, I); 6471 } 6472 6473 InstructionCost 6474 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6475 ElementCount VF) { 6476 // TODO: Once we have support for interleaving with scalable vectors 6477 // we can calculate the cost properly here. 6478 if (VF.isScalable()) 6479 return InstructionCost::getInvalid(); 6480 6481 Type *ValTy = getLoadStoreType(I); 6482 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6483 unsigned AS = getLoadStoreAddressSpace(I); 6484 6485 auto Group = getInterleavedAccessGroup(I); 6486 assert(Group && "Fail to get an interleaved access group."); 6487 6488 unsigned InterleaveFactor = Group->getFactor(); 6489 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6490 6491 // Holds the indices of existing members in the interleaved group. 6492 SmallVector<unsigned, 4> Indices; 6493 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6494 if (Group->getMember(IF)) 6495 Indices.push_back(IF); 6496 6497 // Calculate the cost of the whole interleaved group. 6498 bool UseMaskForGaps = 6499 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6500 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6501 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6502 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6503 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6504 6505 if (Group->isReverse()) { 6506 // TODO: Add support for reversed masked interleaved access. 6507 assert(!Legal->isMaskRequired(I) && 6508 "Reverse masked interleaved access not supported."); 6509 Cost += 6510 Group->getNumMembers() * 6511 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6512 } 6513 return Cost; 6514 } 6515 6516 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6517 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6518 using namespace llvm::PatternMatch; 6519 // Early exit for no inloop reductions 6520 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6521 return None; 6522 auto *VectorTy = cast<VectorType>(Ty); 6523 6524 // We are looking for a pattern of, and finding the minimal acceptable cost: 6525 // reduce(mul(ext(A), ext(B))) or 6526 // reduce(mul(A, B)) or 6527 // reduce(ext(A)) or 6528 // reduce(A). 6529 // The basic idea is that we walk down the tree to do that, finding the root 6530 // reduction instruction in InLoopReductionImmediateChains. From there we find 6531 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6532 // of the components. If the reduction cost is lower then we return it for the 6533 // reduction instruction and 0 for the other instructions in the pattern. If 6534 // it is not we return an invalid cost specifying the orignal cost method 6535 // should be used. 6536 Instruction *RetI = I; 6537 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6538 if (!RetI->hasOneUser()) 6539 return None; 6540 RetI = RetI->user_back(); 6541 } 6542 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6543 RetI->user_back()->getOpcode() == Instruction::Add) { 6544 if (!RetI->hasOneUser()) 6545 return None; 6546 RetI = RetI->user_back(); 6547 } 6548 6549 // Test if the found instruction is a reduction, and if not return an invalid 6550 // cost specifying the parent to use the original cost modelling. 6551 if (!InLoopReductionImmediateChains.count(RetI)) 6552 return None; 6553 6554 // Find the reduction this chain is a part of and calculate the basic cost of 6555 // the reduction on its own. 6556 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6557 Instruction *ReductionPhi = LastChain; 6558 while (!isa<PHINode>(ReductionPhi)) 6559 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6560 6561 const RecurrenceDescriptor &RdxDesc = 6562 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6563 6564 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6565 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6566 6567 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6568 // normal fmul instruction to the cost of the fadd reduction. 6569 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6570 BaseCost += 6571 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6572 6573 // If we're using ordered reductions then we can just return the base cost 6574 // here, since getArithmeticReductionCost calculates the full ordered 6575 // reduction cost when FP reassociation is not allowed. 6576 if (useOrderedReductions(RdxDesc)) 6577 return BaseCost; 6578 6579 // Get the operand that was not the reduction chain and match it to one of the 6580 // patterns, returning the better cost if it is found. 6581 Instruction *RedOp = RetI->getOperand(1) == LastChain 6582 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6583 : dyn_cast<Instruction>(RetI->getOperand(1)); 6584 6585 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6586 6587 Instruction *Op0, *Op1; 6588 if (RedOp && 6589 match(RedOp, 6590 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6591 match(Op0, m_ZExtOrSExt(m_Value())) && 6592 Op0->getOpcode() == Op1->getOpcode() && 6593 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6594 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6595 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6596 6597 // Matched reduce(ext(mul(ext(A), ext(B))) 6598 // Note that the extend opcodes need to all match, or if A==B they will have 6599 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6600 // which is equally fine. 6601 bool IsUnsigned = isa<ZExtInst>(Op0); 6602 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6603 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6604 6605 InstructionCost ExtCost = 6606 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6607 TTI::CastContextHint::None, CostKind, Op0); 6608 InstructionCost MulCost = 6609 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6610 InstructionCost Ext2Cost = 6611 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6612 TTI::CastContextHint::None, CostKind, RedOp); 6613 6614 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6615 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6616 CostKind); 6617 6618 if (RedCost.isValid() && 6619 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6620 return I == RetI ? RedCost : 0; 6621 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6622 !TheLoop->isLoopInvariant(RedOp)) { 6623 // Matched reduce(ext(A)) 6624 bool IsUnsigned = isa<ZExtInst>(RedOp); 6625 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6626 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6627 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6628 CostKind); 6629 6630 InstructionCost ExtCost = 6631 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6632 TTI::CastContextHint::None, CostKind, RedOp); 6633 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6634 return I == RetI ? RedCost : 0; 6635 } else if (RedOp && 6636 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6637 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6638 Op0->getOpcode() == Op1->getOpcode() && 6639 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6640 bool IsUnsigned = isa<ZExtInst>(Op0); 6641 Type *Op0Ty = Op0->getOperand(0)->getType(); 6642 Type *Op1Ty = Op1->getOperand(0)->getType(); 6643 Type *LargestOpTy = 6644 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6645 : Op0Ty; 6646 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6647 6648 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6649 // different sizes. We take the largest type as the ext to reduce, and add 6650 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6651 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6652 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6653 TTI::CastContextHint::None, CostKind, Op0); 6654 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6655 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6656 TTI::CastContextHint::None, CostKind, Op1); 6657 InstructionCost MulCost = 6658 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6659 6660 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6661 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6662 CostKind); 6663 InstructionCost ExtraExtCost = 0; 6664 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6665 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6666 ExtraExtCost = TTI.getCastInstrCost( 6667 ExtraExtOp->getOpcode(), ExtType, 6668 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6669 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6670 } 6671 6672 if (RedCost.isValid() && 6673 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6674 return I == RetI ? RedCost : 0; 6675 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6676 // Matched reduce(mul()) 6677 InstructionCost MulCost = 6678 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6679 6680 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6681 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6682 CostKind); 6683 6684 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6685 return I == RetI ? RedCost : 0; 6686 } 6687 } 6688 6689 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6690 } 6691 6692 InstructionCost 6693 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6694 ElementCount VF) { 6695 // Calculate scalar cost only. Vectorization cost should be ready at this 6696 // moment. 6697 if (VF.isScalar()) { 6698 Type *ValTy = getLoadStoreType(I); 6699 const Align Alignment = getLoadStoreAlignment(I); 6700 unsigned AS = getLoadStoreAddressSpace(I); 6701 6702 return TTI.getAddressComputationCost(ValTy) + 6703 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6704 TTI::TCK_RecipThroughput, I); 6705 } 6706 return getWideningCost(I, VF); 6707 } 6708 6709 LoopVectorizationCostModel::VectorizationCostTy 6710 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6711 ElementCount VF) { 6712 // If we know that this instruction will remain uniform, check the cost of 6713 // the scalar version. 6714 if (isUniformAfterVectorization(I, VF)) 6715 VF = ElementCount::getFixed(1); 6716 6717 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6718 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6719 6720 // Forced scalars do not have any scalarization overhead. 6721 auto ForcedScalar = ForcedScalars.find(VF); 6722 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6723 auto InstSet = ForcedScalar->second; 6724 if (InstSet.count(I)) 6725 return VectorizationCostTy( 6726 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6727 VF.getKnownMinValue()), 6728 false); 6729 } 6730 6731 Type *VectorTy; 6732 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6733 6734 bool TypeNotScalarized = false; 6735 if (VF.isVector() && VectorTy->isVectorTy()) { 6736 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6737 if (NumParts) 6738 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6739 else 6740 C = InstructionCost::getInvalid(); 6741 } 6742 return VectorizationCostTy(C, TypeNotScalarized); 6743 } 6744 6745 InstructionCost 6746 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6747 ElementCount VF) const { 6748 6749 // There is no mechanism yet to create a scalable scalarization loop, 6750 // so this is currently Invalid. 6751 if (VF.isScalable()) 6752 return InstructionCost::getInvalid(); 6753 6754 if (VF.isScalar()) 6755 return 0; 6756 6757 InstructionCost Cost = 0; 6758 Type *RetTy = ToVectorTy(I->getType(), VF); 6759 if (!RetTy->isVoidTy() && 6760 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6761 Cost += TTI.getScalarizationOverhead( 6762 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6763 false); 6764 6765 // Some targets keep addresses scalar. 6766 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6767 return Cost; 6768 6769 // Some targets support efficient element stores. 6770 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6771 return Cost; 6772 6773 // Collect operands to consider. 6774 CallInst *CI = dyn_cast<CallInst>(I); 6775 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6776 6777 // Skip operands that do not require extraction/scalarization and do not incur 6778 // any overhead. 6779 SmallVector<Type *> Tys; 6780 for (auto *V : filterExtractingOperands(Ops, VF)) 6781 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6782 return Cost + TTI.getOperandsScalarizationOverhead( 6783 filterExtractingOperands(Ops, VF), Tys); 6784 } 6785 6786 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6787 if (VF.isScalar()) 6788 return; 6789 NumPredStores = 0; 6790 for (BasicBlock *BB : TheLoop->blocks()) { 6791 // For each instruction in the old loop. 6792 for (Instruction &I : *BB) { 6793 Value *Ptr = getLoadStorePointerOperand(&I); 6794 if (!Ptr) 6795 continue; 6796 6797 // TODO: We should generate better code and update the cost model for 6798 // predicated uniform stores. Today they are treated as any other 6799 // predicated store (see added test cases in 6800 // invariant-store-vectorization.ll). 6801 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6802 NumPredStores++; 6803 6804 if (Legal->isUniformMemOp(I)) { 6805 // TODO: Avoid replicating loads and stores instead of 6806 // relying on instcombine to remove them. 6807 // Load: Scalar load + broadcast 6808 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6809 InstructionCost Cost; 6810 if (isa<StoreInst>(&I) && VF.isScalable() && 6811 isLegalGatherOrScatter(&I, VF)) { 6812 Cost = getGatherScatterCost(&I, VF); 6813 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6814 } else { 6815 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6816 "Cannot yet scalarize uniform stores"); 6817 Cost = getUniformMemOpCost(&I, VF); 6818 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6819 } 6820 continue; 6821 } 6822 6823 // We assume that widening is the best solution when possible. 6824 if (memoryInstructionCanBeWidened(&I, VF)) { 6825 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6826 int ConsecutiveStride = Legal->isConsecutivePtr( 6827 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6828 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6829 "Expected consecutive stride."); 6830 InstWidening Decision = 6831 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6832 setWideningDecision(&I, VF, Decision, Cost); 6833 continue; 6834 } 6835 6836 // Choose between Interleaving, Gather/Scatter or Scalarization. 6837 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6838 unsigned NumAccesses = 1; 6839 if (isAccessInterleaved(&I)) { 6840 auto Group = getInterleavedAccessGroup(&I); 6841 assert(Group && "Fail to get an interleaved access group."); 6842 6843 // Make one decision for the whole group. 6844 if (getWideningDecision(&I, VF) != CM_Unknown) 6845 continue; 6846 6847 NumAccesses = Group->getNumMembers(); 6848 if (interleavedAccessCanBeWidened(&I, VF)) 6849 InterleaveCost = getInterleaveGroupCost(&I, VF); 6850 } 6851 6852 InstructionCost GatherScatterCost = 6853 isLegalGatherOrScatter(&I, VF) 6854 ? getGatherScatterCost(&I, VF) * NumAccesses 6855 : InstructionCost::getInvalid(); 6856 6857 InstructionCost ScalarizationCost = 6858 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6859 6860 // Choose better solution for the current VF, 6861 // write down this decision and use it during vectorization. 6862 InstructionCost Cost; 6863 InstWidening Decision; 6864 if (InterleaveCost <= GatherScatterCost && 6865 InterleaveCost < ScalarizationCost) { 6866 Decision = CM_Interleave; 6867 Cost = InterleaveCost; 6868 } else if (GatherScatterCost < ScalarizationCost) { 6869 Decision = CM_GatherScatter; 6870 Cost = GatherScatterCost; 6871 } else { 6872 Decision = CM_Scalarize; 6873 Cost = ScalarizationCost; 6874 } 6875 // If the instructions belongs to an interleave group, the whole group 6876 // receives the same decision. The whole group receives the cost, but 6877 // the cost will actually be assigned to one instruction. 6878 if (auto Group = getInterleavedAccessGroup(&I)) 6879 setWideningDecision(Group, VF, Decision, Cost); 6880 else 6881 setWideningDecision(&I, VF, Decision, Cost); 6882 } 6883 } 6884 6885 // Make sure that any load of address and any other address computation 6886 // remains scalar unless there is gather/scatter support. This avoids 6887 // inevitable extracts into address registers, and also has the benefit of 6888 // activating LSR more, since that pass can't optimize vectorized 6889 // addresses. 6890 if (TTI.prefersVectorizedAddressing()) 6891 return; 6892 6893 // Start with all scalar pointer uses. 6894 SmallPtrSet<Instruction *, 8> AddrDefs; 6895 for (BasicBlock *BB : TheLoop->blocks()) 6896 for (Instruction &I : *BB) { 6897 Instruction *PtrDef = 6898 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6899 if (PtrDef && TheLoop->contains(PtrDef) && 6900 getWideningDecision(&I, VF) != CM_GatherScatter) 6901 AddrDefs.insert(PtrDef); 6902 } 6903 6904 // Add all instructions used to generate the addresses. 6905 SmallVector<Instruction *, 4> Worklist; 6906 append_range(Worklist, AddrDefs); 6907 while (!Worklist.empty()) { 6908 Instruction *I = Worklist.pop_back_val(); 6909 for (auto &Op : I->operands()) 6910 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6911 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6912 AddrDefs.insert(InstOp).second) 6913 Worklist.push_back(InstOp); 6914 } 6915 6916 for (auto *I : AddrDefs) { 6917 if (isa<LoadInst>(I)) { 6918 // Setting the desired widening decision should ideally be handled in 6919 // by cost functions, but since this involves the task of finding out 6920 // if the loaded register is involved in an address computation, it is 6921 // instead changed here when we know this is the case. 6922 InstWidening Decision = getWideningDecision(I, VF); 6923 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6924 // Scalarize a widened load of address. 6925 setWideningDecision( 6926 I, VF, CM_Scalarize, 6927 (VF.getKnownMinValue() * 6928 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6929 else if (auto Group = getInterleavedAccessGroup(I)) { 6930 // Scalarize an interleave group of address loads. 6931 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6932 if (Instruction *Member = Group->getMember(I)) 6933 setWideningDecision( 6934 Member, VF, CM_Scalarize, 6935 (VF.getKnownMinValue() * 6936 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6937 } 6938 } 6939 } else 6940 // Make sure I gets scalarized and a cost estimate without 6941 // scalarization overhead. 6942 ForcedScalars[VF].insert(I); 6943 } 6944 } 6945 6946 InstructionCost 6947 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6948 Type *&VectorTy) { 6949 Type *RetTy = I->getType(); 6950 if (canTruncateToMinimalBitwidth(I, VF)) 6951 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6952 auto SE = PSE.getSE(); 6953 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6954 6955 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6956 ElementCount VF) -> bool { 6957 if (VF.isScalar()) 6958 return true; 6959 6960 auto Scalarized = InstsToScalarize.find(VF); 6961 assert(Scalarized != InstsToScalarize.end() && 6962 "VF not yet analyzed for scalarization profitability"); 6963 return !Scalarized->second.count(I) && 6964 llvm::all_of(I->users(), [&](User *U) { 6965 auto *UI = cast<Instruction>(U); 6966 return !Scalarized->second.count(UI); 6967 }); 6968 }; 6969 (void) hasSingleCopyAfterVectorization; 6970 6971 if (isScalarAfterVectorization(I, VF)) { 6972 // With the exception of GEPs and PHIs, after scalarization there should 6973 // only be one copy of the instruction generated in the loop. This is 6974 // because the VF is either 1, or any instructions that need scalarizing 6975 // have already been dealt with by the the time we get here. As a result, 6976 // it means we don't have to multiply the instruction cost by VF. 6977 assert(I->getOpcode() == Instruction::GetElementPtr || 6978 I->getOpcode() == Instruction::PHI || 6979 (I->getOpcode() == Instruction::BitCast && 6980 I->getType()->isPointerTy()) || 6981 hasSingleCopyAfterVectorization(I, VF)); 6982 VectorTy = RetTy; 6983 } else 6984 VectorTy = ToVectorTy(RetTy, VF); 6985 6986 // TODO: We need to estimate the cost of intrinsic calls. 6987 switch (I->getOpcode()) { 6988 case Instruction::GetElementPtr: 6989 // We mark this instruction as zero-cost because the cost of GEPs in 6990 // vectorized code depends on whether the corresponding memory instruction 6991 // is scalarized or not. Therefore, we handle GEPs with the memory 6992 // instruction cost. 6993 return 0; 6994 case Instruction::Br: { 6995 // In cases of scalarized and predicated instructions, there will be VF 6996 // predicated blocks in the vectorized loop. Each branch around these 6997 // blocks requires also an extract of its vector compare i1 element. 6998 bool ScalarPredicatedBB = false; 6999 BranchInst *BI = cast<BranchInst>(I); 7000 if (VF.isVector() && BI->isConditional() && 7001 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7002 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7003 ScalarPredicatedBB = true; 7004 7005 if (ScalarPredicatedBB) { 7006 // Not possible to scalarize scalable vector with predicated instructions. 7007 if (VF.isScalable()) 7008 return InstructionCost::getInvalid(); 7009 // Return cost for branches around scalarized and predicated blocks. 7010 auto *Vec_i1Ty = 7011 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7012 return ( 7013 TTI.getScalarizationOverhead( 7014 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7015 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7016 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7017 // The back-edge branch will remain, as will all scalar branches. 7018 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7019 else 7020 // This branch will be eliminated by if-conversion. 7021 return 0; 7022 // Note: We currently assume zero cost for an unconditional branch inside 7023 // a predicated block since it will become a fall-through, although we 7024 // may decide in the future to call TTI for all branches. 7025 } 7026 case Instruction::PHI: { 7027 auto *Phi = cast<PHINode>(I); 7028 7029 // First-order recurrences are replaced by vector shuffles inside the loop. 7030 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7031 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7032 return TTI.getShuffleCost( 7033 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7034 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7035 7036 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7037 // converted into select instructions. We require N - 1 selects per phi 7038 // node, where N is the number of incoming values. 7039 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7040 return (Phi->getNumIncomingValues() - 1) * 7041 TTI.getCmpSelInstrCost( 7042 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7043 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7044 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7045 7046 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7047 } 7048 case Instruction::UDiv: 7049 case Instruction::SDiv: 7050 case Instruction::URem: 7051 case Instruction::SRem: 7052 // If we have a predicated instruction, it may not be executed for each 7053 // vector lane. Get the scalarization cost and scale this amount by the 7054 // probability of executing the predicated block. If the instruction is not 7055 // predicated, we fall through to the next case. 7056 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7057 InstructionCost Cost = 0; 7058 7059 // These instructions have a non-void type, so account for the phi nodes 7060 // that we will create. This cost is likely to be zero. The phi node 7061 // cost, if any, should be scaled by the block probability because it 7062 // models a copy at the end of each predicated block. 7063 Cost += VF.getKnownMinValue() * 7064 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7065 7066 // The cost of the non-predicated instruction. 7067 Cost += VF.getKnownMinValue() * 7068 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7069 7070 // The cost of insertelement and extractelement instructions needed for 7071 // scalarization. 7072 Cost += getScalarizationOverhead(I, VF); 7073 7074 // Scale the cost by the probability of executing the predicated blocks. 7075 // This assumes the predicated block for each vector lane is equally 7076 // likely. 7077 return Cost / getReciprocalPredBlockProb(); 7078 } 7079 LLVM_FALLTHROUGH; 7080 case Instruction::Add: 7081 case Instruction::FAdd: 7082 case Instruction::Sub: 7083 case Instruction::FSub: 7084 case Instruction::Mul: 7085 case Instruction::FMul: 7086 case Instruction::FDiv: 7087 case Instruction::FRem: 7088 case Instruction::Shl: 7089 case Instruction::LShr: 7090 case Instruction::AShr: 7091 case Instruction::And: 7092 case Instruction::Or: 7093 case Instruction::Xor: { 7094 // Since we will replace the stride by 1 the multiplication should go away. 7095 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7096 return 0; 7097 7098 // Detect reduction patterns 7099 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7100 return *RedCost; 7101 7102 // Certain instructions can be cheaper to vectorize if they have a constant 7103 // second vector operand. One example of this are shifts on x86. 7104 Value *Op2 = I->getOperand(1); 7105 TargetTransformInfo::OperandValueProperties Op2VP; 7106 TargetTransformInfo::OperandValueKind Op2VK = 7107 TTI.getOperandInfo(Op2, Op2VP); 7108 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7109 Op2VK = TargetTransformInfo::OK_UniformValue; 7110 7111 SmallVector<const Value *, 4> Operands(I->operand_values()); 7112 return TTI.getArithmeticInstrCost( 7113 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7114 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7115 } 7116 case Instruction::FNeg: { 7117 return TTI.getArithmeticInstrCost( 7118 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7119 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7120 TargetTransformInfo::OP_None, I->getOperand(0), I); 7121 } 7122 case Instruction::Select: { 7123 SelectInst *SI = cast<SelectInst>(I); 7124 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7125 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7126 7127 const Value *Op0, *Op1; 7128 using namespace llvm::PatternMatch; 7129 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7130 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7131 // select x, y, false --> x & y 7132 // select x, true, y --> x | y 7133 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7134 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7135 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7136 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7137 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7138 Op1->getType()->getScalarSizeInBits() == 1); 7139 7140 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7141 return TTI.getArithmeticInstrCost( 7142 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7143 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7144 } 7145 7146 Type *CondTy = SI->getCondition()->getType(); 7147 if (!ScalarCond) 7148 CondTy = VectorType::get(CondTy, VF); 7149 7150 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7151 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7152 Pred = Cmp->getPredicate(); 7153 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7154 CostKind, I); 7155 } 7156 case Instruction::ICmp: 7157 case Instruction::FCmp: { 7158 Type *ValTy = I->getOperand(0)->getType(); 7159 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7160 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7161 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7162 VectorTy = ToVectorTy(ValTy, VF); 7163 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7164 cast<CmpInst>(I)->getPredicate(), CostKind, 7165 I); 7166 } 7167 case Instruction::Store: 7168 case Instruction::Load: { 7169 ElementCount Width = VF; 7170 if (Width.isVector()) { 7171 InstWidening Decision = getWideningDecision(I, Width); 7172 assert(Decision != CM_Unknown && 7173 "CM decision should be taken at this point"); 7174 if (Decision == CM_Scalarize) 7175 Width = ElementCount::getFixed(1); 7176 } 7177 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7178 return getMemoryInstructionCost(I, VF); 7179 } 7180 case Instruction::BitCast: 7181 if (I->getType()->isPointerTy()) 7182 return 0; 7183 LLVM_FALLTHROUGH; 7184 case Instruction::ZExt: 7185 case Instruction::SExt: 7186 case Instruction::FPToUI: 7187 case Instruction::FPToSI: 7188 case Instruction::FPExt: 7189 case Instruction::PtrToInt: 7190 case Instruction::IntToPtr: 7191 case Instruction::SIToFP: 7192 case Instruction::UIToFP: 7193 case Instruction::Trunc: 7194 case Instruction::FPTrunc: { 7195 // Computes the CastContextHint from a Load/Store instruction. 7196 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7197 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7198 "Expected a load or a store!"); 7199 7200 if (VF.isScalar() || !TheLoop->contains(I)) 7201 return TTI::CastContextHint::Normal; 7202 7203 switch (getWideningDecision(I, VF)) { 7204 case LoopVectorizationCostModel::CM_GatherScatter: 7205 return TTI::CastContextHint::GatherScatter; 7206 case LoopVectorizationCostModel::CM_Interleave: 7207 return TTI::CastContextHint::Interleave; 7208 case LoopVectorizationCostModel::CM_Scalarize: 7209 case LoopVectorizationCostModel::CM_Widen: 7210 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7211 : TTI::CastContextHint::Normal; 7212 case LoopVectorizationCostModel::CM_Widen_Reverse: 7213 return TTI::CastContextHint::Reversed; 7214 case LoopVectorizationCostModel::CM_Unknown: 7215 llvm_unreachable("Instr did not go through cost modelling?"); 7216 } 7217 7218 llvm_unreachable("Unhandled case!"); 7219 }; 7220 7221 unsigned Opcode = I->getOpcode(); 7222 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7223 // For Trunc, the context is the only user, which must be a StoreInst. 7224 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7225 if (I->hasOneUse()) 7226 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7227 CCH = ComputeCCH(Store); 7228 } 7229 // For Z/Sext, the context is the operand, which must be a LoadInst. 7230 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7231 Opcode == Instruction::FPExt) { 7232 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7233 CCH = ComputeCCH(Load); 7234 } 7235 7236 // We optimize the truncation of induction variables having constant 7237 // integer steps. The cost of these truncations is the same as the scalar 7238 // operation. 7239 if (isOptimizableIVTruncate(I, VF)) { 7240 auto *Trunc = cast<TruncInst>(I); 7241 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7242 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7243 } 7244 7245 // Detect reduction patterns 7246 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7247 return *RedCost; 7248 7249 Type *SrcScalarTy = I->getOperand(0)->getType(); 7250 Type *SrcVecTy = 7251 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7252 if (canTruncateToMinimalBitwidth(I, VF)) { 7253 // This cast is going to be shrunk. This may remove the cast or it might 7254 // turn it into slightly different cast. For example, if MinBW == 16, 7255 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7256 // 7257 // Calculate the modified src and dest types. 7258 Type *MinVecTy = VectorTy; 7259 if (Opcode == Instruction::Trunc) { 7260 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7261 VectorTy = 7262 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7263 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7264 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7265 VectorTy = 7266 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7267 } 7268 } 7269 7270 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7271 } 7272 case Instruction::Call: { 7273 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7274 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7275 return *RedCost; 7276 bool NeedToScalarize; 7277 CallInst *CI = cast<CallInst>(I); 7278 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7279 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7280 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7281 return std::min(CallCost, IntrinsicCost); 7282 } 7283 return CallCost; 7284 } 7285 case Instruction::ExtractValue: 7286 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7287 case Instruction::Alloca: 7288 // We cannot easily widen alloca to a scalable alloca, as 7289 // the result would need to be a vector of pointers. 7290 if (VF.isScalable()) 7291 return InstructionCost::getInvalid(); 7292 LLVM_FALLTHROUGH; 7293 default: 7294 // This opcode is unknown. Assume that it is the same as 'mul'. 7295 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7296 } // end of switch. 7297 } 7298 7299 char LoopVectorize::ID = 0; 7300 7301 static const char lv_name[] = "Loop Vectorization"; 7302 7303 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7304 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7305 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7306 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7307 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7308 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7309 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7311 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7312 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7313 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7314 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7315 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7316 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7317 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7318 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7319 7320 namespace llvm { 7321 7322 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7323 7324 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7325 bool VectorizeOnlyWhenForced) { 7326 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7327 } 7328 7329 } // end namespace llvm 7330 7331 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7332 // Check if the pointer operand of a load or store instruction is 7333 // consecutive. 7334 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7335 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7336 return false; 7337 } 7338 7339 void LoopVectorizationCostModel::collectValuesToIgnore() { 7340 // Ignore ephemeral values. 7341 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7342 7343 // Ignore type-promoting instructions we identified during reduction 7344 // detection. 7345 for (auto &Reduction : Legal->getReductionVars()) { 7346 const RecurrenceDescriptor &RedDes = Reduction.second; 7347 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7348 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7349 } 7350 // Ignore type-casting instructions we identified during induction 7351 // detection. 7352 for (auto &Induction : Legal->getInductionVars()) { 7353 const InductionDescriptor &IndDes = Induction.second; 7354 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7355 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7356 } 7357 } 7358 7359 void LoopVectorizationCostModel::collectInLoopReductions() { 7360 for (auto &Reduction : Legal->getReductionVars()) { 7361 PHINode *Phi = Reduction.first; 7362 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7363 7364 // We don't collect reductions that are type promoted (yet). 7365 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7366 continue; 7367 7368 // If the target would prefer this reduction to happen "in-loop", then we 7369 // want to record it as such. 7370 unsigned Opcode = RdxDesc.getOpcode(); 7371 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7372 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7373 TargetTransformInfo::ReductionFlags())) 7374 continue; 7375 7376 // Check that we can correctly put the reductions into the loop, by 7377 // finding the chain of operations that leads from the phi to the loop 7378 // exit value. 7379 SmallVector<Instruction *, 4> ReductionOperations = 7380 RdxDesc.getReductionOpChain(Phi, TheLoop); 7381 bool InLoop = !ReductionOperations.empty(); 7382 if (InLoop) { 7383 InLoopReductionChains[Phi] = ReductionOperations; 7384 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7385 Instruction *LastChain = Phi; 7386 for (auto *I : ReductionOperations) { 7387 InLoopReductionImmediateChains[I] = LastChain; 7388 LastChain = I; 7389 } 7390 } 7391 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7392 << " reduction for phi: " << *Phi << "\n"); 7393 } 7394 } 7395 7396 // TODO: we could return a pair of values that specify the max VF and 7397 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7398 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7399 // doesn't have a cost model that can choose which plan to execute if 7400 // more than one is generated. 7401 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7402 LoopVectorizationCostModel &CM) { 7403 unsigned WidestType; 7404 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7405 return WidestVectorRegBits / WidestType; 7406 } 7407 7408 VectorizationFactor 7409 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7410 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7411 ElementCount VF = UserVF; 7412 // Outer loop handling: They may require CFG and instruction level 7413 // transformations before even evaluating whether vectorization is profitable. 7414 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7415 // the vectorization pipeline. 7416 if (!OrigLoop->isInnermost()) { 7417 // If the user doesn't provide a vectorization factor, determine a 7418 // reasonable one. 7419 if (UserVF.isZero()) { 7420 VF = ElementCount::getFixed(determineVPlanVF( 7421 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7422 .getFixedSize(), 7423 CM)); 7424 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7425 7426 // Make sure we have a VF > 1 for stress testing. 7427 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7428 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7429 << "overriding computed VF.\n"); 7430 VF = ElementCount::getFixed(4); 7431 } 7432 } 7433 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7434 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7435 "VF needs to be a power of two"); 7436 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7437 << "VF " << VF << " to build VPlans.\n"); 7438 buildVPlans(VF, VF); 7439 7440 // For VPlan build stress testing, we bail out after VPlan construction. 7441 if (VPlanBuildStressTest) 7442 return VectorizationFactor::Disabled(); 7443 7444 return {VF, 0 /*Cost*/}; 7445 } 7446 7447 LLVM_DEBUG( 7448 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7449 "VPlan-native path.\n"); 7450 return VectorizationFactor::Disabled(); 7451 } 7452 7453 Optional<VectorizationFactor> 7454 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7455 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7456 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7457 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7458 return None; 7459 7460 // Invalidate interleave groups if all blocks of loop will be predicated. 7461 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7462 !useMaskedInterleavedAccesses(*TTI)) { 7463 LLVM_DEBUG( 7464 dbgs() 7465 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7466 "which requires masked-interleaved support.\n"); 7467 if (CM.InterleaveInfo.invalidateGroups()) 7468 // Invalidating interleave groups also requires invalidating all decisions 7469 // based on them, which includes widening decisions and uniform and scalar 7470 // values. 7471 CM.invalidateCostModelingDecisions(); 7472 } 7473 7474 ElementCount MaxUserVF = 7475 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7476 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7477 if (!UserVF.isZero() && UserVFIsLegal) { 7478 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7479 "VF needs to be a power of two"); 7480 // Collect the instructions (and their associated costs) that will be more 7481 // profitable to scalarize. 7482 if (CM.selectUserVectorizationFactor(UserVF)) { 7483 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7484 CM.collectInLoopReductions(); 7485 buildVPlansWithVPRecipes(UserVF, UserVF); 7486 LLVM_DEBUG(printPlans(dbgs())); 7487 return {{UserVF, 0}}; 7488 } else 7489 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7490 "InvalidCost", ORE, OrigLoop); 7491 } 7492 7493 // Populate the set of Vectorization Factor Candidates. 7494 ElementCountSet VFCandidates; 7495 for (auto VF = ElementCount::getFixed(1); 7496 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7497 VFCandidates.insert(VF); 7498 for (auto VF = ElementCount::getScalable(1); 7499 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7500 VFCandidates.insert(VF); 7501 7502 for (const auto &VF : VFCandidates) { 7503 // Collect Uniform and Scalar instructions after vectorization with VF. 7504 CM.collectUniformsAndScalars(VF); 7505 7506 // Collect the instructions (and their associated costs) that will be more 7507 // profitable to scalarize. 7508 if (VF.isVector()) 7509 CM.collectInstsToScalarize(VF); 7510 } 7511 7512 CM.collectInLoopReductions(); 7513 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7514 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7515 7516 LLVM_DEBUG(printPlans(dbgs())); 7517 if (!MaxFactors.hasVector()) 7518 return VectorizationFactor::Disabled(); 7519 7520 // Select the optimal vectorization factor. 7521 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7522 7523 // Check if it is profitable to vectorize with runtime checks. 7524 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7525 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7526 bool PragmaThresholdReached = 7527 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7528 bool ThresholdReached = 7529 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7530 if ((ThresholdReached && !Hints.allowReordering()) || 7531 PragmaThresholdReached) { 7532 ORE->emit([&]() { 7533 return OptimizationRemarkAnalysisAliasing( 7534 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7535 OrigLoop->getHeader()) 7536 << "loop not vectorized: cannot prove it is safe to reorder " 7537 "memory operations"; 7538 }); 7539 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7540 Hints.emitRemarkWithHints(); 7541 return VectorizationFactor::Disabled(); 7542 } 7543 } 7544 return SelectedVF; 7545 } 7546 7547 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7548 assert(count_if(VPlans, 7549 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7550 1 && 7551 "Best VF has not a single VPlan."); 7552 7553 for (const VPlanPtr &Plan : VPlans) { 7554 if (Plan->hasVF(VF)) 7555 return *Plan.get(); 7556 } 7557 llvm_unreachable("No plan found!"); 7558 } 7559 7560 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7561 SmallVector<Metadata *, 4> MDs; 7562 // Reserve first location for self reference to the LoopID metadata node. 7563 MDs.push_back(nullptr); 7564 bool IsUnrollMetadata = false; 7565 MDNode *LoopID = L->getLoopID(); 7566 if (LoopID) { 7567 // First find existing loop unrolling disable metadata. 7568 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7569 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7570 if (MD) { 7571 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7572 IsUnrollMetadata = 7573 S && S->getString().startswith("llvm.loop.unroll.disable"); 7574 } 7575 MDs.push_back(LoopID->getOperand(i)); 7576 } 7577 } 7578 7579 if (!IsUnrollMetadata) { 7580 // Add runtime unroll disable metadata. 7581 LLVMContext &Context = L->getHeader()->getContext(); 7582 SmallVector<Metadata *, 1> DisableOperands; 7583 DisableOperands.push_back( 7584 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7585 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7586 MDs.push_back(DisableNode); 7587 MDNode *NewLoopID = MDNode::get(Context, MDs); 7588 // Set operand 0 to refer to the loop id itself. 7589 NewLoopID->replaceOperandWith(0, NewLoopID); 7590 L->setLoopID(NewLoopID); 7591 } 7592 } 7593 7594 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7595 VPlan &BestVPlan, 7596 InnerLoopVectorizer &ILV, 7597 DominatorTree *DT) { 7598 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7599 << '\n'); 7600 7601 // Perform the actual loop transformation. 7602 7603 // 1. Set up the skeleton for vectorization, including vector pre-header and 7604 // middle block. The vector loop is created during VPlan execution. 7605 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7606 Value *CanonicalIVStartValue; 7607 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7608 ILV.createVectorizedLoopSkeleton(); 7609 ILV.collectPoisonGeneratingRecipes(State); 7610 7611 ILV.printDebugTracesAtStart(); 7612 7613 //===------------------------------------------------===// 7614 // 7615 // Notice: any optimization or new instruction that go 7616 // into the code below should also be implemented in 7617 // the cost-model. 7618 // 7619 //===------------------------------------------------===// 7620 7621 // 2. Copy and widen instructions from the old loop into the new loop. 7622 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7623 ILV.getOrCreateVectorTripCount(nullptr), 7624 CanonicalIVStartValue, State); 7625 BestVPlan.execute(&State); 7626 7627 // Keep all loop hints from the original loop on the vector loop (we'll 7628 // replace the vectorizer-specific hints below). 7629 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7630 7631 Optional<MDNode *> VectorizedLoopID = 7632 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7633 LLVMLoopVectorizeFollowupVectorized}); 7634 7635 VPBasicBlock *HeaderVPBB = 7636 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7637 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7638 if (VectorizedLoopID.hasValue()) 7639 L->setLoopID(VectorizedLoopID.getValue()); 7640 else { 7641 // Keep all loop hints from the original loop on the vector loop (we'll 7642 // replace the vectorizer-specific hints below). 7643 if (MDNode *LID = OrigLoop->getLoopID()) 7644 L->setLoopID(LID); 7645 7646 LoopVectorizeHints Hints(L, true, *ORE); 7647 Hints.setAlreadyVectorized(); 7648 } 7649 // Disable runtime unrolling when vectorizing the epilogue loop. 7650 if (CanonicalIVStartValue) 7651 AddRuntimeUnrollDisableMetaData(L); 7652 7653 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7654 // predication, updating analyses. 7655 ILV.fixVectorizedLoop(State, BestVPlan); 7656 7657 ILV.printDebugTracesAtEnd(); 7658 } 7659 7660 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7661 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7662 for (const auto &Plan : VPlans) 7663 if (PrintVPlansInDotFormat) 7664 Plan->printDOT(O); 7665 else 7666 Plan->print(O); 7667 } 7668 #endif 7669 7670 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7671 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7672 7673 // We create new control-flow for the vectorized loop, so the original exit 7674 // conditions will be dead after vectorization if it's only used by the 7675 // terminator 7676 SmallVector<BasicBlock*> ExitingBlocks; 7677 OrigLoop->getExitingBlocks(ExitingBlocks); 7678 for (auto *BB : ExitingBlocks) { 7679 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7680 if (!Cmp || !Cmp->hasOneUse()) 7681 continue; 7682 7683 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7684 if (!DeadInstructions.insert(Cmp).second) 7685 continue; 7686 7687 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7688 // TODO: can recurse through operands in general 7689 for (Value *Op : Cmp->operands()) { 7690 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7691 DeadInstructions.insert(cast<Instruction>(Op)); 7692 } 7693 } 7694 7695 // We create new "steps" for induction variable updates to which the original 7696 // induction variables map. An original update instruction will be dead if 7697 // all its users except the induction variable are dead. 7698 auto *Latch = OrigLoop->getLoopLatch(); 7699 for (auto &Induction : Legal->getInductionVars()) { 7700 PHINode *Ind = Induction.first; 7701 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7702 7703 // If the tail is to be folded by masking, the primary induction variable, 7704 // if exists, isn't dead: it will be used for masking. Don't kill it. 7705 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7706 continue; 7707 7708 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7709 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7710 })) 7711 DeadInstructions.insert(IndUpdate); 7712 } 7713 } 7714 7715 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7716 7717 //===--------------------------------------------------------------------===// 7718 // EpilogueVectorizerMainLoop 7719 //===--------------------------------------------------------------------===// 7720 7721 /// This function is partially responsible for generating the control flow 7722 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7723 std::pair<BasicBlock *, Value *> 7724 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7725 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7726 7727 // Workaround! Compute the trip count of the original loop and cache it 7728 // before we start modifying the CFG. This code has a systemic problem 7729 // wherein it tries to run analysis over partially constructed IR; this is 7730 // wrong, and not simply for SCEV. The trip count of the original loop 7731 // simply happens to be prone to hitting this in practice. In theory, we 7732 // can hit the same issue for any SCEV, or ValueTracking query done during 7733 // mutation. See PR49900. 7734 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7735 createVectorLoopSkeleton(""); 7736 7737 // Generate the code to check the minimum iteration count of the vector 7738 // epilogue (see below). 7739 EPI.EpilogueIterationCountCheck = 7740 emitMinimumIterationCountCheck(LoopScalarPreHeader, true); 7741 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7742 7743 // Generate the code to check any assumptions that we've made for SCEV 7744 // expressions. 7745 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7746 7747 // Generate the code that checks at runtime if arrays overlap. We put the 7748 // checks into a separate block to make the more common case of few elements 7749 // faster. 7750 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7751 7752 // Generate the iteration count check for the main loop, *after* the check 7753 // for the epilogue loop, so that the path-length is shorter for the case 7754 // that goes directly through the vector epilogue. The longer-path length for 7755 // the main loop is compensated for, by the gain from vectorizing the larger 7756 // trip count. Note: the branch will get updated later on when we vectorize 7757 // the epilogue. 7758 EPI.MainLoopIterationCountCheck = 7759 emitMinimumIterationCountCheck(LoopScalarPreHeader, false); 7760 7761 // Generate the induction variable. 7762 Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader); 7763 EPI.VectorTripCount = CountRoundDown; 7764 7765 // Skip induction resume value creation here because they will be created in 7766 // the second pass. If we created them here, they wouldn't be used anyway, 7767 // because the vplan in the second pass still contains the inductions from the 7768 // original loop. 7769 7770 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7771 } 7772 7773 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7774 LLVM_DEBUG({ 7775 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7776 << "Main Loop VF:" << EPI.MainLoopVF 7777 << ", Main Loop UF:" << EPI.MainLoopUF 7778 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7779 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7780 }); 7781 } 7782 7783 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7784 DEBUG_WITH_TYPE(VerboseDebug, { 7785 dbgs() << "intermediate fn:\n" 7786 << *OrigLoop->getHeader()->getParent() << "\n"; 7787 }); 7788 } 7789 7790 BasicBlock * 7791 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass, 7792 bool ForEpilogue) { 7793 assert(Bypass && "Expected valid bypass basic block."); 7794 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7795 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7796 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7797 // Reuse existing vector loop preheader for TC checks. 7798 // Note that new preheader block is generated for vector loop. 7799 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7800 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7801 7802 // Generate code to check if the loop's trip count is less than VF * UF of the 7803 // main vector loop. 7804 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7805 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7806 7807 Value *CheckMinIters = Builder.CreateICmp( 7808 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7809 "min.iters.check"); 7810 7811 if (!ForEpilogue) 7812 TCCheckBlock->setName("vector.main.loop.iter.check"); 7813 7814 // Create new preheader for vector loop. 7815 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7816 DT, LI, nullptr, "vector.ph"); 7817 7818 if (ForEpilogue) { 7819 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7820 DT->getNode(Bypass)->getIDom()) && 7821 "TC check is expected to dominate Bypass"); 7822 7823 // Update dominator for Bypass & LoopExit. 7824 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7825 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7826 // For loops with multiple exits, there's no edge from the middle block 7827 // to exit blocks (as the epilogue must run) and thus no need to update 7828 // the immediate dominator of the exit blocks. 7829 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7830 7831 LoopBypassBlocks.push_back(TCCheckBlock); 7832 7833 // Save the trip count so we don't have to regenerate it in the 7834 // vec.epilog.iter.check. This is safe to do because the trip count 7835 // generated here dominates the vector epilog iter check. 7836 EPI.TripCount = Count; 7837 } 7838 7839 ReplaceInstWithInst( 7840 TCCheckBlock->getTerminator(), 7841 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7842 7843 return TCCheckBlock; 7844 } 7845 7846 //===--------------------------------------------------------------------===// 7847 // EpilogueVectorizerEpilogueLoop 7848 //===--------------------------------------------------------------------===// 7849 7850 /// This function is partially responsible for generating the control flow 7851 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7852 std::pair<BasicBlock *, Value *> 7853 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7854 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7855 createVectorLoopSkeleton("vec.epilog."); 7856 7857 // Now, compare the remaining count and if there aren't enough iterations to 7858 // execute the vectorized epilogue skip to the scalar part. 7859 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7860 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7861 LoopVectorPreHeader = 7862 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7863 LI, nullptr, "vec.epilog.ph"); 7864 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7865 VecEpilogueIterationCountCheck); 7866 7867 // Adjust the control flow taking the state info from the main loop 7868 // vectorization into account. 7869 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7870 "expected this to be saved from the previous pass."); 7871 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7872 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7873 7874 DT->changeImmediateDominator(LoopVectorPreHeader, 7875 EPI.MainLoopIterationCountCheck); 7876 7877 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7878 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7879 7880 if (EPI.SCEVSafetyCheck) 7881 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7882 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7883 if (EPI.MemSafetyCheck) 7884 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7885 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7886 7887 DT->changeImmediateDominator( 7888 VecEpilogueIterationCountCheck, 7889 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7890 7891 DT->changeImmediateDominator(LoopScalarPreHeader, 7892 EPI.EpilogueIterationCountCheck); 7893 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7894 // If there is an epilogue which must run, there's no edge from the 7895 // middle block to exit blocks and thus no need to update the immediate 7896 // dominator of the exit blocks. 7897 DT->changeImmediateDominator(LoopExitBlock, 7898 EPI.EpilogueIterationCountCheck); 7899 7900 // Keep track of bypass blocks, as they feed start values to the induction 7901 // phis in the scalar loop preheader. 7902 if (EPI.SCEVSafetyCheck) 7903 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7904 if (EPI.MemSafetyCheck) 7905 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7906 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7907 7908 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7909 // merge control-flow from the latch block and the middle block. Update the 7910 // incoming values here and move the Phi into the preheader. 7911 SmallVector<PHINode *, 4> PhisInBlock; 7912 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7913 PhisInBlock.push_back(&Phi); 7914 7915 for (PHINode *Phi : PhisInBlock) { 7916 Phi->replaceIncomingBlockWith( 7917 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7918 VecEpilogueIterationCountCheck); 7919 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7920 if (EPI.SCEVSafetyCheck) 7921 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7922 if (EPI.MemSafetyCheck) 7923 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7924 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7925 } 7926 7927 // Generate a resume induction for the vector epilogue and put it in the 7928 // vector epilogue preheader 7929 Type *IdxTy = Legal->getWidestInductionType(); 7930 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7931 LoopVectorPreHeader->getFirstNonPHI()); 7932 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7933 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7934 EPI.MainLoopIterationCountCheck); 7935 7936 // Generate induction resume values. These variables save the new starting 7937 // indexes for the scalar loop. They are used to test if there are any tail 7938 // iterations left once the vector loop has completed. 7939 // Note that when the vectorized epilogue is skipped due to iteration count 7940 // check, then the resume value for the induction variable comes from 7941 // the trip count of the main vector loop, hence passing the AdditionalBypass 7942 // argument. 7943 createInductionResumeValues({VecEpilogueIterationCountCheck, 7944 EPI.VectorTripCount} /* AdditionalBypass */); 7945 7946 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7947 } 7948 7949 BasicBlock * 7950 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7951 BasicBlock *Bypass, BasicBlock *Insert) { 7952 7953 assert(EPI.TripCount && 7954 "Expected trip count to have been safed in the first pass."); 7955 assert( 7956 (!isa<Instruction>(EPI.TripCount) || 7957 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7958 "saved trip count does not dominate insertion point."); 7959 Value *TC = EPI.TripCount; 7960 IRBuilder<> Builder(Insert->getTerminator()); 7961 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7962 7963 // Generate code to check if the loop's trip count is less than VF * UF of the 7964 // vector epilogue loop. 7965 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7966 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7967 7968 Value *CheckMinIters = 7969 Builder.CreateICmp(P, Count, 7970 createStepForVF(Builder, Count->getType(), 7971 EPI.EpilogueVF, EPI.EpilogueUF), 7972 "min.epilog.iters.check"); 7973 7974 ReplaceInstWithInst( 7975 Insert->getTerminator(), 7976 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7977 7978 LoopBypassBlocks.push_back(Insert); 7979 return Insert; 7980 } 7981 7982 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7983 LLVM_DEBUG({ 7984 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7985 << "Epilogue Loop VF:" << EPI.EpilogueVF 7986 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7987 }); 7988 } 7989 7990 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7991 DEBUG_WITH_TYPE(VerboseDebug, { 7992 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7993 }); 7994 } 7995 7996 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7997 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7998 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7999 bool PredicateAtRangeStart = Predicate(Range.Start); 8000 8001 for (ElementCount TmpVF = Range.Start * 2; 8002 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8003 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8004 Range.End = TmpVF; 8005 break; 8006 } 8007 8008 return PredicateAtRangeStart; 8009 } 8010 8011 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8012 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8013 /// of VF's starting at a given VF and extending it as much as possible. Each 8014 /// vectorization decision can potentially shorten this sub-range during 8015 /// buildVPlan(). 8016 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8017 ElementCount MaxVF) { 8018 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8019 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8020 VFRange SubRange = {VF, MaxVFPlusOne}; 8021 VPlans.push_back(buildVPlan(SubRange)); 8022 VF = SubRange.End; 8023 } 8024 } 8025 8026 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8027 VPlanPtr &Plan) { 8028 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8029 8030 // Look for cached value. 8031 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8032 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8033 if (ECEntryIt != EdgeMaskCache.end()) 8034 return ECEntryIt->second; 8035 8036 VPValue *SrcMask = createBlockInMask(Src, Plan); 8037 8038 // The terminator has to be a branch inst! 8039 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8040 assert(BI && "Unexpected terminator found"); 8041 8042 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8043 return EdgeMaskCache[Edge] = SrcMask; 8044 8045 // If source is an exiting block, we know the exit edge is dynamically dead 8046 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8047 // adding uses of an otherwise potentially dead instruction. 8048 if (OrigLoop->isLoopExiting(Src)) 8049 return EdgeMaskCache[Edge] = SrcMask; 8050 8051 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8052 assert(EdgeMask && "No Edge Mask found for condition"); 8053 8054 if (BI->getSuccessor(0) != Dst) 8055 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8056 8057 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8058 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8059 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8060 // The select version does not introduce new UB if SrcMask is false and 8061 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8062 VPValue *False = Plan->getOrAddVPValue( 8063 ConstantInt::getFalse(BI->getCondition()->getType())); 8064 EdgeMask = 8065 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8066 } 8067 8068 return EdgeMaskCache[Edge] = EdgeMask; 8069 } 8070 8071 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8072 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8073 8074 // Look for cached value. 8075 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8076 if (BCEntryIt != BlockMaskCache.end()) 8077 return BCEntryIt->second; 8078 8079 // All-one mask is modelled as no-mask following the convention for masked 8080 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8081 VPValue *BlockMask = nullptr; 8082 8083 if (OrigLoop->getHeader() == BB) { 8084 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8085 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8086 8087 // Introduce the early-exit compare IV <= BTC to form header block mask. 8088 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8089 // constructing the desired canonical IV in the header block as its first 8090 // non-phi instructions. 8091 assert(CM.foldTailByMasking() && "must fold the tail"); 8092 VPBasicBlock *HeaderVPBB = 8093 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8094 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8095 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8096 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8097 8098 VPBuilder::InsertPointGuard Guard(Builder); 8099 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8100 if (CM.TTI.emitGetActiveLaneMask()) { 8101 VPValue *TC = Plan->getOrCreateTripCount(); 8102 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8103 } else { 8104 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8105 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8106 } 8107 return BlockMaskCache[BB] = BlockMask; 8108 } 8109 8110 // This is the block mask. We OR all incoming edges. 8111 for (auto *Predecessor : predecessors(BB)) { 8112 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8113 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8114 return BlockMaskCache[BB] = EdgeMask; 8115 8116 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8117 BlockMask = EdgeMask; 8118 continue; 8119 } 8120 8121 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8122 } 8123 8124 return BlockMaskCache[BB] = BlockMask; 8125 } 8126 8127 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8128 ArrayRef<VPValue *> Operands, 8129 VFRange &Range, 8130 VPlanPtr &Plan) { 8131 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8132 "Must be called with either a load or store"); 8133 8134 auto willWiden = [&](ElementCount VF) -> bool { 8135 if (VF.isScalar()) 8136 return false; 8137 LoopVectorizationCostModel::InstWidening Decision = 8138 CM.getWideningDecision(I, VF); 8139 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8140 "CM decision should be taken at this point."); 8141 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8142 return true; 8143 if (CM.isScalarAfterVectorization(I, VF) || 8144 CM.isProfitableToScalarize(I, VF)) 8145 return false; 8146 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8147 }; 8148 8149 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8150 return nullptr; 8151 8152 VPValue *Mask = nullptr; 8153 if (Legal->isMaskRequired(I)) 8154 Mask = createBlockInMask(I->getParent(), Plan); 8155 8156 // Determine if the pointer operand of the access is either consecutive or 8157 // reverse consecutive. 8158 LoopVectorizationCostModel::InstWidening Decision = 8159 CM.getWideningDecision(I, Range.Start); 8160 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8161 bool Consecutive = 8162 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8163 8164 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8165 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8166 Consecutive, Reverse); 8167 8168 StoreInst *Store = cast<StoreInst>(I); 8169 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8170 Mask, Consecutive, Reverse); 8171 } 8172 8173 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8174 /// insert a recipe to expand the step for the induction recipe. 8175 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8176 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8177 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8178 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8179 // Returns true if an instruction \p I should be scalarized instead of 8180 // vectorized for the chosen vectorization factor. 8181 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8182 return CM.isScalarAfterVectorization(I, VF) || 8183 CM.isProfitableToScalarize(I, VF); 8184 }; 8185 8186 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8187 [&](ElementCount VF) { 8188 // Returns true if we should generate a scalar version of \p IV. 8189 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8190 return true; 8191 auto isScalarInst = [&](User *U) -> bool { 8192 auto *I = cast<Instruction>(U); 8193 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8194 }; 8195 return any_of(PhiOrTrunc->users(), isScalarInst); 8196 }, 8197 Range); 8198 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8199 [&](ElementCount VF) { 8200 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8201 }, 8202 Range); 8203 assert(IndDesc.getStartValue() == 8204 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8205 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8206 "step must be loop invariant"); 8207 8208 VPValue *Step = 8209 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8210 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8211 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8212 NeedsScalarIV, !NeedsScalarIVOnly); 8213 } 8214 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8215 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8216 NeedsScalarIV, !NeedsScalarIVOnly); 8217 } 8218 8219 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8220 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8221 8222 // Check if this is an integer or fp induction. If so, build the recipe that 8223 // produces its scalar and vector values. 8224 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8225 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8226 *PSE.getSE(), *OrigLoop, Range); 8227 8228 // Check if this is pointer induction. If so, build the recipe for it. 8229 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8230 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8231 *PSE.getSE()); 8232 return nullptr; 8233 } 8234 8235 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8236 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8237 // Optimize the special case where the source is a constant integer 8238 // induction variable. Notice that we can only optimize the 'trunc' case 8239 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8240 // (c) other casts depend on pointer size. 8241 8242 // Determine whether \p K is a truncation based on an induction variable that 8243 // can be optimized. 8244 auto isOptimizableIVTruncate = 8245 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8246 return [=](ElementCount VF) -> bool { 8247 return CM.isOptimizableIVTruncate(K, VF); 8248 }; 8249 }; 8250 8251 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8252 isOptimizableIVTruncate(I), Range)) { 8253 8254 auto *Phi = cast<PHINode>(I->getOperand(0)); 8255 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8256 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8257 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8258 *PSE.getSE(), *OrigLoop, Range); 8259 } 8260 return nullptr; 8261 } 8262 8263 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8264 ArrayRef<VPValue *> Operands, 8265 VPlanPtr &Plan) { 8266 // If all incoming values are equal, the incoming VPValue can be used directly 8267 // instead of creating a new VPBlendRecipe. 8268 VPValue *FirstIncoming = Operands[0]; 8269 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8270 return FirstIncoming == Inc; 8271 })) { 8272 return Operands[0]; 8273 } 8274 8275 unsigned NumIncoming = Phi->getNumIncomingValues(); 8276 // For in-loop reductions, we do not need to create an additional select. 8277 VPValue *InLoopVal = nullptr; 8278 for (unsigned In = 0; In < NumIncoming; In++) { 8279 PHINode *PhiOp = 8280 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8281 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8282 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8283 InLoopVal = Operands[In]; 8284 } 8285 } 8286 8287 assert((!InLoopVal || NumIncoming == 2) && 8288 "Found an in-loop reduction for PHI with unexpected number of " 8289 "incoming values"); 8290 if (InLoopVal) 8291 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8292 8293 // We know that all PHIs in non-header blocks are converted into selects, so 8294 // we don't have to worry about the insertion order and we can just use the 8295 // builder. At this point we generate the predication tree. There may be 8296 // duplications since this is a simple recursive scan, but future 8297 // optimizations will clean it up. 8298 SmallVector<VPValue *, 2> OperandsWithMask; 8299 8300 for (unsigned In = 0; In < NumIncoming; In++) { 8301 VPValue *EdgeMask = 8302 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8303 assert((EdgeMask || NumIncoming == 1) && 8304 "Multiple predecessors with one having a full mask"); 8305 OperandsWithMask.push_back(Operands[In]); 8306 if (EdgeMask) 8307 OperandsWithMask.push_back(EdgeMask); 8308 } 8309 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8310 } 8311 8312 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8313 ArrayRef<VPValue *> Operands, 8314 VFRange &Range) const { 8315 8316 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8317 [this, CI](ElementCount VF) { 8318 return CM.isScalarWithPredication(CI, VF); 8319 }, 8320 Range); 8321 8322 if (IsPredicated) 8323 return nullptr; 8324 8325 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8326 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8327 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8328 ID == Intrinsic::pseudoprobe || 8329 ID == Intrinsic::experimental_noalias_scope_decl)) 8330 return nullptr; 8331 8332 auto willWiden = [&](ElementCount VF) -> bool { 8333 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8334 // The following case may be scalarized depending on the VF. 8335 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8336 // version of the instruction. 8337 // Is it beneficial to perform intrinsic call compared to lib call? 8338 bool NeedToScalarize = false; 8339 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8340 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8341 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8342 return UseVectorIntrinsic || !NeedToScalarize; 8343 }; 8344 8345 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8346 return nullptr; 8347 8348 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8349 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8350 } 8351 8352 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8353 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8354 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8355 // Instruction should be widened, unless it is scalar after vectorization, 8356 // scalarization is profitable or it is predicated. 8357 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8358 return CM.isScalarAfterVectorization(I, VF) || 8359 CM.isProfitableToScalarize(I, VF) || 8360 CM.isScalarWithPredication(I, VF); 8361 }; 8362 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8363 Range); 8364 } 8365 8366 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8367 ArrayRef<VPValue *> Operands) const { 8368 auto IsVectorizableOpcode = [](unsigned Opcode) { 8369 switch (Opcode) { 8370 case Instruction::Add: 8371 case Instruction::And: 8372 case Instruction::AShr: 8373 case Instruction::BitCast: 8374 case Instruction::FAdd: 8375 case Instruction::FCmp: 8376 case Instruction::FDiv: 8377 case Instruction::FMul: 8378 case Instruction::FNeg: 8379 case Instruction::FPExt: 8380 case Instruction::FPToSI: 8381 case Instruction::FPToUI: 8382 case Instruction::FPTrunc: 8383 case Instruction::FRem: 8384 case Instruction::FSub: 8385 case Instruction::ICmp: 8386 case Instruction::IntToPtr: 8387 case Instruction::LShr: 8388 case Instruction::Mul: 8389 case Instruction::Or: 8390 case Instruction::PtrToInt: 8391 case Instruction::SDiv: 8392 case Instruction::Select: 8393 case Instruction::SExt: 8394 case Instruction::Shl: 8395 case Instruction::SIToFP: 8396 case Instruction::SRem: 8397 case Instruction::Sub: 8398 case Instruction::Trunc: 8399 case Instruction::UDiv: 8400 case Instruction::UIToFP: 8401 case Instruction::URem: 8402 case Instruction::Xor: 8403 case Instruction::ZExt: 8404 return true; 8405 } 8406 return false; 8407 }; 8408 8409 if (!IsVectorizableOpcode(I->getOpcode())) 8410 return nullptr; 8411 8412 // Success: widen this instruction. 8413 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8414 } 8415 8416 void VPRecipeBuilder::fixHeaderPhis() { 8417 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8418 for (VPHeaderPHIRecipe *R : PhisToFix) { 8419 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8420 VPRecipeBase *IncR = 8421 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8422 R->addOperand(IncR->getVPSingleValue()); 8423 } 8424 } 8425 8426 VPBasicBlock *VPRecipeBuilder::handleReplication( 8427 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8428 VPlanPtr &Plan) { 8429 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8430 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8431 Range); 8432 8433 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8434 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8435 Range); 8436 8437 // Even if the instruction is not marked as uniform, there are certain 8438 // intrinsic calls that can be effectively treated as such, so we check for 8439 // them here. Conservatively, we only do this for scalable vectors, since 8440 // for fixed-width VFs we can always fall back on full scalarization. 8441 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8442 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8443 case Intrinsic::assume: 8444 case Intrinsic::lifetime_start: 8445 case Intrinsic::lifetime_end: 8446 // For scalable vectors if one of the operands is variant then we still 8447 // want to mark as uniform, which will generate one instruction for just 8448 // the first lane of the vector. We can't scalarize the call in the same 8449 // way as for fixed-width vectors because we don't know how many lanes 8450 // there are. 8451 // 8452 // The reasons for doing it this way for scalable vectors are: 8453 // 1. For the assume intrinsic generating the instruction for the first 8454 // lane is still be better than not generating any at all. For 8455 // example, the input may be a splat across all lanes. 8456 // 2. For the lifetime start/end intrinsics the pointer operand only 8457 // does anything useful when the input comes from a stack object, 8458 // which suggests it should always be uniform. For non-stack objects 8459 // the effect is to poison the object, which still allows us to 8460 // remove the call. 8461 IsUniform = true; 8462 break; 8463 default: 8464 break; 8465 } 8466 } 8467 8468 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8469 IsUniform, IsPredicated); 8470 setRecipe(I, Recipe); 8471 Plan->addVPValue(I, Recipe); 8472 8473 // Find if I uses a predicated instruction. If so, it will use its scalar 8474 // value. Avoid hoisting the insert-element which packs the scalar value into 8475 // a vector value, as that happens iff all users use the vector value. 8476 for (VPValue *Op : Recipe->operands()) { 8477 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8478 if (!PredR) 8479 continue; 8480 auto *RepR = 8481 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8482 assert(RepR->isPredicated() && 8483 "expected Replicate recipe to be predicated"); 8484 RepR->setAlsoPack(false); 8485 } 8486 8487 // Finalize the recipe for Instr, first if it is not predicated. 8488 if (!IsPredicated) { 8489 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8490 VPBB->appendRecipe(Recipe); 8491 return VPBB; 8492 } 8493 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8494 8495 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8496 assert(SingleSucc && "VPBB must have a single successor when handling " 8497 "predicated replication."); 8498 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8499 // Record predicated instructions for above packing optimizations. 8500 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8501 VPBlockUtils::insertBlockAfter(Region, VPBB); 8502 auto *RegSucc = new VPBasicBlock(); 8503 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8504 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8505 return RegSucc; 8506 } 8507 8508 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8509 VPRecipeBase *PredRecipe, 8510 VPlanPtr &Plan) { 8511 // Instructions marked for predication are replicated and placed under an 8512 // if-then construct to prevent side-effects. 8513 8514 // Generate recipes to compute the block mask for this region. 8515 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8516 8517 // Build the triangular if-then region. 8518 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8519 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8520 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8521 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8522 auto *PHIRecipe = Instr->getType()->isVoidTy() 8523 ? nullptr 8524 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8525 if (PHIRecipe) { 8526 Plan->removeVPValueFor(Instr); 8527 Plan->addVPValue(Instr, PHIRecipe); 8528 } 8529 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8530 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8531 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8532 8533 // Note: first set Entry as region entry and then connect successors starting 8534 // from it in order, to propagate the "parent" of each VPBasicBlock. 8535 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8536 VPBlockUtils::connectBlocks(Pred, Exit); 8537 8538 return Region; 8539 } 8540 8541 VPRecipeOrVPValueTy 8542 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8543 ArrayRef<VPValue *> Operands, 8544 VFRange &Range, VPlanPtr &Plan) { 8545 // First, check for specific widening recipes that deal with calls, memory 8546 // operations, inductions and Phi nodes. 8547 if (auto *CI = dyn_cast<CallInst>(Instr)) 8548 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8549 8550 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8551 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8552 8553 VPRecipeBase *Recipe; 8554 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8555 if (Phi->getParent() != OrigLoop->getHeader()) 8556 return tryToBlend(Phi, Operands, Plan); 8557 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8558 return toVPRecipeResult(Recipe); 8559 8560 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8561 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8562 VPValue *StartV = Operands[0]; 8563 if (Legal->isReductionVariable(Phi)) { 8564 const RecurrenceDescriptor &RdxDesc = 8565 Legal->getReductionVars().find(Phi)->second; 8566 assert(RdxDesc.getRecurrenceStartValue() == 8567 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8568 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8569 CM.isInLoopReduction(Phi), 8570 CM.useOrderedReductions(RdxDesc)); 8571 } else { 8572 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8573 } 8574 8575 // Record the incoming value from the backedge, so we can add the incoming 8576 // value from the backedge after all recipes have been created. 8577 recordRecipeOf(cast<Instruction>( 8578 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8579 PhisToFix.push_back(PhiRecipe); 8580 } else { 8581 // TODO: record backedge value for remaining pointer induction phis. 8582 assert(Phi->getType()->isPointerTy() && 8583 "only pointer phis should be handled here"); 8584 assert(Legal->getInductionVars().count(Phi) && 8585 "Not an induction variable"); 8586 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8587 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8588 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8589 } 8590 8591 return toVPRecipeResult(PhiRecipe); 8592 } 8593 8594 if (isa<TruncInst>(Instr) && 8595 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8596 Range, *Plan))) 8597 return toVPRecipeResult(Recipe); 8598 8599 if (!shouldWiden(Instr, Range)) 8600 return nullptr; 8601 8602 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8603 return toVPRecipeResult(new VPWidenGEPRecipe( 8604 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8605 8606 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8607 bool InvariantCond = 8608 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8609 return toVPRecipeResult(new VPWidenSelectRecipe( 8610 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8611 } 8612 8613 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8614 } 8615 8616 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8617 ElementCount MaxVF) { 8618 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8619 8620 // Collect instructions from the original loop that will become trivially dead 8621 // in the vectorized loop. We don't need to vectorize these instructions. For 8622 // example, original induction update instructions can become dead because we 8623 // separately emit induction "steps" when generating code for the new loop. 8624 // Similarly, we create a new latch condition when setting up the structure 8625 // of the new loop, so the old one can become dead. 8626 SmallPtrSet<Instruction *, 4> DeadInstructions; 8627 collectTriviallyDeadInstructions(DeadInstructions); 8628 8629 // Add assume instructions we need to drop to DeadInstructions, to prevent 8630 // them from being added to the VPlan. 8631 // TODO: We only need to drop assumes in blocks that get flattend. If the 8632 // control flow is preserved, we should keep them. 8633 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8634 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8635 8636 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8637 // Dead instructions do not need sinking. Remove them from SinkAfter. 8638 for (Instruction *I : DeadInstructions) 8639 SinkAfter.erase(I); 8640 8641 // Cannot sink instructions after dead instructions (there won't be any 8642 // recipes for them). Instead, find the first non-dead previous instruction. 8643 for (auto &P : Legal->getSinkAfter()) { 8644 Instruction *SinkTarget = P.second; 8645 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8646 (void)FirstInst; 8647 while (DeadInstructions.contains(SinkTarget)) { 8648 assert( 8649 SinkTarget != FirstInst && 8650 "Must find a live instruction (at least the one feeding the " 8651 "first-order recurrence PHI) before reaching beginning of the block"); 8652 SinkTarget = SinkTarget->getPrevNode(); 8653 assert(SinkTarget != P.first && 8654 "sink source equals target, no sinking required"); 8655 } 8656 P.second = SinkTarget; 8657 } 8658 8659 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8660 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8661 VFRange SubRange = {VF, MaxVFPlusOne}; 8662 VPlans.push_back( 8663 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8664 VF = SubRange.End; 8665 } 8666 } 8667 8668 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8669 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8670 // BranchOnCount VPInstruction to the latch. 8671 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8672 bool HasNUW, bool IsVPlanNative) { 8673 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8674 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8675 8676 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8677 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8678 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8679 Header->insert(CanonicalIVPHI, Header->begin()); 8680 8681 auto *CanonicalIVIncrement = 8682 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8683 : VPInstruction::CanonicalIVIncrement, 8684 {CanonicalIVPHI}, DL); 8685 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8686 8687 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8688 if (IsVPlanNative) 8689 EB->setCondBit(nullptr); 8690 EB->appendRecipe(CanonicalIVIncrement); 8691 8692 auto *BranchOnCount = 8693 new VPInstruction(VPInstruction::BranchOnCount, 8694 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8695 EB->appendRecipe(BranchOnCount); 8696 } 8697 8698 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8699 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8700 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8701 8702 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8703 8704 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8705 8706 // --------------------------------------------------------------------------- 8707 // Pre-construction: record ingredients whose recipes we'll need to further 8708 // process after constructing the initial VPlan. 8709 // --------------------------------------------------------------------------- 8710 8711 // Mark instructions we'll need to sink later and their targets as 8712 // ingredients whose recipe we'll need to record. 8713 for (auto &Entry : SinkAfter) { 8714 RecipeBuilder.recordRecipeOf(Entry.first); 8715 RecipeBuilder.recordRecipeOf(Entry.second); 8716 } 8717 for (auto &Reduction : CM.getInLoopReductionChains()) { 8718 PHINode *Phi = Reduction.first; 8719 RecurKind Kind = 8720 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8721 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8722 8723 RecipeBuilder.recordRecipeOf(Phi); 8724 for (auto &R : ReductionOperations) { 8725 RecipeBuilder.recordRecipeOf(R); 8726 // For min/max reductions, where we have a pair of icmp/select, we also 8727 // need to record the ICmp recipe, so it can be removed later. 8728 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8729 "Only min/max recurrences allowed for inloop reductions"); 8730 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8731 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8732 } 8733 } 8734 8735 // For each interleave group which is relevant for this (possibly trimmed) 8736 // Range, add it to the set of groups to be later applied to the VPlan and add 8737 // placeholders for its members' Recipes which we'll be replacing with a 8738 // single VPInterleaveRecipe. 8739 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8740 auto applyIG = [IG, this](ElementCount VF) -> bool { 8741 return (VF.isVector() && // Query is illegal for VF == 1 8742 CM.getWideningDecision(IG->getInsertPos(), VF) == 8743 LoopVectorizationCostModel::CM_Interleave); 8744 }; 8745 if (!getDecisionAndClampRange(applyIG, Range)) 8746 continue; 8747 InterleaveGroups.insert(IG); 8748 for (unsigned i = 0; i < IG->getFactor(); i++) 8749 if (Instruction *Member = IG->getMember(i)) 8750 RecipeBuilder.recordRecipeOf(Member); 8751 }; 8752 8753 // --------------------------------------------------------------------------- 8754 // Build initial VPlan: Scan the body of the loop in a topological order to 8755 // visit each basic block after having visited its predecessor basic blocks. 8756 // --------------------------------------------------------------------------- 8757 8758 // Create initial VPlan skeleton, starting with a block for the pre-header, 8759 // followed by a region for the vector loop, followed by the middle block. The 8760 // skeleton vector loop region contains a header and latch block. 8761 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8762 auto Plan = std::make_unique<VPlan>(Preheader); 8763 8764 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8765 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8766 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8767 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8768 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8769 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8770 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8771 8772 Instruction *DLInst = 8773 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8774 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8775 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8776 !CM.foldTailByMasking(), false); 8777 8778 // Scan the body of the loop in a topological order to visit each basic block 8779 // after having visited its predecessor basic blocks. 8780 LoopBlocksDFS DFS(OrigLoop); 8781 DFS.perform(LI); 8782 8783 VPBasicBlock *VPBB = HeaderVPBB; 8784 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8785 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8786 // Relevant instructions from basic block BB will be grouped into VPRecipe 8787 // ingredients and fill a new VPBasicBlock. 8788 unsigned VPBBsForBB = 0; 8789 if (VPBB != HeaderVPBB) 8790 VPBB->setName(BB->getName()); 8791 Builder.setInsertPoint(VPBB); 8792 8793 // Introduce each ingredient into VPlan. 8794 // TODO: Model and preserve debug intrinsics in VPlan. 8795 for (Instruction &I : BB->instructionsWithoutDebug()) { 8796 Instruction *Instr = &I; 8797 8798 // First filter out irrelevant instructions, to ensure no recipes are 8799 // built for them. 8800 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8801 continue; 8802 8803 SmallVector<VPValue *, 4> Operands; 8804 auto *Phi = dyn_cast<PHINode>(Instr); 8805 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8806 Operands.push_back(Plan->getOrAddVPValue( 8807 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8808 } else { 8809 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8810 Operands = {OpRange.begin(), OpRange.end()}; 8811 } 8812 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8813 Instr, Operands, Range, Plan)) { 8814 // If Instr can be simplified to an existing VPValue, use it. 8815 if (RecipeOrValue.is<VPValue *>()) { 8816 auto *VPV = RecipeOrValue.get<VPValue *>(); 8817 Plan->addVPValue(Instr, VPV); 8818 // If the re-used value is a recipe, register the recipe for the 8819 // instruction, in case the recipe for Instr needs to be recorded. 8820 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8821 RecipeBuilder.setRecipe(Instr, R); 8822 continue; 8823 } 8824 // Otherwise, add the new recipe. 8825 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8826 for (auto *Def : Recipe->definedValues()) { 8827 auto *UV = Def->getUnderlyingValue(); 8828 Plan->addVPValue(UV, Def); 8829 } 8830 8831 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8832 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8833 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8834 // of the header block. That can happen for truncates of induction 8835 // variables. Those recipes are moved to the phi section of the header 8836 // block after applying SinkAfter, which relies on the original 8837 // position of the trunc. 8838 assert(isa<TruncInst>(Instr)); 8839 InductionsToMove.push_back( 8840 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8841 } 8842 RecipeBuilder.setRecipe(Instr, Recipe); 8843 VPBB->appendRecipe(Recipe); 8844 continue; 8845 } 8846 8847 // Otherwise, if all widening options failed, Instruction is to be 8848 // replicated. This may create a successor for VPBB. 8849 VPBasicBlock *NextVPBB = 8850 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8851 if (NextVPBB != VPBB) { 8852 VPBB = NextVPBB; 8853 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8854 : ""); 8855 } 8856 } 8857 8858 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8859 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8860 } 8861 8862 HeaderVPBB->setName("vector.body"); 8863 8864 // Fold the last, empty block into its predecessor. 8865 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8866 assert(VPBB && "expected to fold last (empty) block"); 8867 // After here, VPBB should not be used. 8868 VPBB = nullptr; 8869 8870 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8871 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8872 "entry block must be set to a VPRegionBlock having a non-empty entry " 8873 "VPBasicBlock"); 8874 RecipeBuilder.fixHeaderPhis(); 8875 8876 // --------------------------------------------------------------------------- 8877 // Transform initial VPlan: Apply previously taken decisions, in order, to 8878 // bring the VPlan to its final state. 8879 // --------------------------------------------------------------------------- 8880 8881 // Apply Sink-After legal constraints. 8882 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8883 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8884 if (Region && Region->isReplicator()) { 8885 assert(Region->getNumSuccessors() == 1 && 8886 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8887 assert(R->getParent()->size() == 1 && 8888 "A recipe in an original replicator region must be the only " 8889 "recipe in its block"); 8890 return Region; 8891 } 8892 return nullptr; 8893 }; 8894 for (auto &Entry : SinkAfter) { 8895 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8896 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8897 8898 auto *TargetRegion = GetReplicateRegion(Target); 8899 auto *SinkRegion = GetReplicateRegion(Sink); 8900 if (!SinkRegion) { 8901 // If the sink source is not a replicate region, sink the recipe directly. 8902 if (TargetRegion) { 8903 // The target is in a replication region, make sure to move Sink to 8904 // the block after it, not into the replication region itself. 8905 VPBasicBlock *NextBlock = 8906 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8907 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8908 } else 8909 Sink->moveAfter(Target); 8910 continue; 8911 } 8912 8913 // The sink source is in a replicate region. Unhook the region from the CFG. 8914 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8915 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8916 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8917 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8918 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8919 8920 if (TargetRegion) { 8921 // The target recipe is also in a replicate region, move the sink region 8922 // after the target region. 8923 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8924 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8925 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8926 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8927 } else { 8928 // The sink source is in a replicate region, we need to move the whole 8929 // replicate region, which should only contain a single recipe in the 8930 // main block. 8931 auto *SplitBlock = 8932 Target->getParent()->splitAt(std::next(Target->getIterator())); 8933 8934 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8935 8936 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8937 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8938 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8939 } 8940 } 8941 8942 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8943 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8944 8945 // Now that sink-after is done, move induction recipes for optimized truncates 8946 // to the phi section of the header block. 8947 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8948 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8949 8950 // Adjust the recipes for any inloop reductions. 8951 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 8952 RecipeBuilder, Range.Start); 8953 8954 // Introduce a recipe to combine the incoming and previous values of a 8955 // first-order recurrence. 8956 for (VPRecipeBase &R : 8957 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8958 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8959 if (!RecurPhi) 8960 continue; 8961 8962 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8963 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8964 auto *Region = GetReplicateRegion(PrevRecipe); 8965 if (Region) 8966 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 8967 if (Region || PrevRecipe->isPhi()) 8968 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8969 else 8970 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8971 8972 auto *RecurSplice = cast<VPInstruction>( 8973 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8974 {RecurPhi, RecurPhi->getBackedgeValue()})); 8975 8976 RecurPhi->replaceAllUsesWith(RecurSplice); 8977 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8978 // all users. 8979 RecurSplice->setOperand(0, RecurPhi); 8980 } 8981 8982 // Interleave memory: for each Interleave Group we marked earlier as relevant 8983 // for this VPlan, replace the Recipes widening its memory instructions with a 8984 // single VPInterleaveRecipe at its insertion point. 8985 for (auto IG : InterleaveGroups) { 8986 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8987 RecipeBuilder.getRecipe(IG->getInsertPos())); 8988 SmallVector<VPValue *, 4> StoredValues; 8989 for (unsigned i = 0; i < IG->getFactor(); ++i) 8990 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 8991 auto *StoreR = 8992 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 8993 StoredValues.push_back(StoreR->getStoredValue()); 8994 } 8995 8996 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8997 Recipe->getMask()); 8998 VPIG->insertBefore(Recipe); 8999 unsigned J = 0; 9000 for (unsigned i = 0; i < IG->getFactor(); ++i) 9001 if (Instruction *Member = IG->getMember(i)) { 9002 if (!Member->getType()->isVoidTy()) { 9003 VPValue *OriginalV = Plan->getVPValue(Member); 9004 Plan->removeVPValueFor(Member); 9005 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9006 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9007 J++; 9008 } 9009 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9010 } 9011 } 9012 9013 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9014 // in ways that accessing values using original IR values is incorrect. 9015 Plan->disableValue2VPValue(); 9016 9017 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9018 VPlanTransforms::sinkScalarOperands(*Plan); 9019 VPlanTransforms::mergeReplicateRegions(*Plan); 9020 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9021 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9022 9023 std::string PlanName; 9024 raw_string_ostream RSO(PlanName); 9025 ElementCount VF = Range.Start; 9026 Plan->addVF(VF); 9027 RSO << "Initial VPlan for VF={" << VF; 9028 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9029 Plan->addVF(VF); 9030 RSO << "," << VF; 9031 } 9032 RSO << "},UF>=1"; 9033 RSO.flush(); 9034 Plan->setName(PlanName); 9035 9036 // Fold Exit block into its predecessor if possible. 9037 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9038 // VPBasicBlock as exit. 9039 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9040 9041 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9042 return Plan; 9043 } 9044 9045 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9046 // Outer loop handling: They may require CFG and instruction level 9047 // transformations before even evaluating whether vectorization is profitable. 9048 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9049 // the vectorization pipeline. 9050 assert(!OrigLoop->isInnermost()); 9051 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9052 9053 // Create new empty VPlan 9054 auto Plan = std::make_unique<VPlan>(); 9055 9056 // Build hierarchical CFG 9057 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9058 HCFGBuilder.buildHierarchicalCFG(); 9059 9060 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9061 VF *= 2) 9062 Plan->addVF(VF); 9063 9064 if (EnableVPlanPredication) { 9065 VPlanPredicator VPP(*Plan); 9066 VPP.predicate(); 9067 9068 // Avoid running transformation to recipes until masked code generation in 9069 // VPlan-native path is in place. 9070 return Plan; 9071 } 9072 9073 SmallPtrSet<Instruction *, 1> DeadInstructions; 9074 VPlanTransforms::VPInstructionsToVPRecipes( 9075 OrigLoop, Plan, 9076 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9077 DeadInstructions, *PSE.getSE()); 9078 9079 // Update plan to be compatible with the inner loop vectorizer for 9080 // code-generation. 9081 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion(); 9082 VPBasicBlock *Preheader = LoopRegion->getEntryBasicBlock(); 9083 VPBasicBlock *Exit = LoopRegion->getExitBasicBlock(); 9084 VPBlockBase *Latch = Exit->getSinglePredecessor(); 9085 VPBlockBase *Header = Preheader->getSingleSuccessor(); 9086 9087 // 1. Move preheader block out of main vector loop. 9088 Preheader->setParent(LoopRegion->getParent()); 9089 VPBlockUtils::disconnectBlocks(Preheader, Header); 9090 VPBlockUtils::connectBlocks(Preheader, LoopRegion); 9091 Plan->setEntry(Preheader); 9092 9093 // 2. Disconnect backedge and exit block. 9094 VPBlockUtils::disconnectBlocks(Latch, Header); 9095 VPBlockUtils::disconnectBlocks(Latch, Exit); 9096 9097 // 3. Update entry and exit of main vector loop region. 9098 LoopRegion->setEntry(Header); 9099 LoopRegion->setExit(Latch); 9100 9101 // 4. Remove exit block. 9102 delete Exit; 9103 9104 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9105 true, true); 9106 return Plan; 9107 } 9108 9109 // Adjust the recipes for reductions. For in-loop reductions the chain of 9110 // instructions leading from the loop exit instr to the phi need to be converted 9111 // to reductions, with one operand being vector and the other being the scalar 9112 // reduction chain. For other reductions, a select is introduced between the phi 9113 // and live-out recipes when folding the tail. 9114 void LoopVectorizationPlanner::adjustRecipesForReductions( 9115 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9116 ElementCount MinVF) { 9117 for (auto &Reduction : CM.getInLoopReductionChains()) { 9118 PHINode *Phi = Reduction.first; 9119 const RecurrenceDescriptor &RdxDesc = 9120 Legal->getReductionVars().find(Phi)->second; 9121 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9122 9123 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9124 continue; 9125 9126 // ReductionOperations are orders top-down from the phi's use to the 9127 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9128 // which of the two operands will remain scalar and which will be reduced. 9129 // For minmax the chain will be the select instructions. 9130 Instruction *Chain = Phi; 9131 for (Instruction *R : ReductionOperations) { 9132 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9133 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9134 9135 VPValue *ChainOp = Plan->getVPValue(Chain); 9136 unsigned FirstOpId; 9137 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9138 "Only min/max recurrences allowed for inloop reductions"); 9139 // Recognize a call to the llvm.fmuladd intrinsic. 9140 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9141 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9142 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9143 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9144 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9145 "Expected to replace a VPWidenSelectSC"); 9146 FirstOpId = 1; 9147 } else { 9148 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9149 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9150 "Expected to replace a VPWidenSC"); 9151 FirstOpId = 0; 9152 } 9153 unsigned VecOpId = 9154 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9155 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9156 9157 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9158 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9159 : nullptr; 9160 9161 if (IsFMulAdd) { 9162 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9163 // need to create an fmul recipe to use as the vector operand for the 9164 // fadd reduction. 9165 VPInstruction *FMulRecipe = new VPInstruction( 9166 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9167 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9168 WidenRecipe->getParent()->insert(FMulRecipe, 9169 WidenRecipe->getIterator()); 9170 VecOp = FMulRecipe; 9171 } 9172 VPReductionRecipe *RedRecipe = 9173 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9174 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9175 Plan->removeVPValueFor(R); 9176 Plan->addVPValue(R, RedRecipe); 9177 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9178 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9179 WidenRecipe->eraseFromParent(); 9180 9181 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9182 VPRecipeBase *CompareRecipe = 9183 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9184 assert(isa<VPWidenRecipe>(CompareRecipe) && 9185 "Expected to replace a VPWidenSC"); 9186 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9187 "Expected no remaining users"); 9188 CompareRecipe->eraseFromParent(); 9189 } 9190 Chain = R; 9191 } 9192 } 9193 9194 // If tail is folded by masking, introduce selects between the phi 9195 // and the live-out instruction of each reduction, at the beginning of the 9196 // dedicated latch block. 9197 if (CM.foldTailByMasking()) { 9198 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9199 for (VPRecipeBase &R : 9200 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9201 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9202 if (!PhiR || PhiR->isInLoop()) 9203 continue; 9204 VPValue *Cond = 9205 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9206 VPValue *Red = PhiR->getBackedgeValue(); 9207 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9208 "reduction recipe must be defined before latch"); 9209 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9210 } 9211 } 9212 } 9213 9214 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9215 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9216 VPSlotTracker &SlotTracker) const { 9217 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9218 IG->getInsertPos()->printAsOperand(O, false); 9219 O << ", "; 9220 getAddr()->printAsOperand(O, SlotTracker); 9221 VPValue *Mask = getMask(); 9222 if (Mask) { 9223 O << ", "; 9224 Mask->printAsOperand(O, SlotTracker); 9225 } 9226 9227 unsigned OpIdx = 0; 9228 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9229 if (!IG->getMember(i)) 9230 continue; 9231 if (getNumStoreOperands() > 0) { 9232 O << "\n" << Indent << " store "; 9233 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9234 O << " to index " << i; 9235 } else { 9236 O << "\n" << Indent << " "; 9237 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9238 O << " = load from index " << i; 9239 } 9240 ++OpIdx; 9241 } 9242 } 9243 #endif 9244 9245 void VPWidenCallRecipe::execute(VPTransformState &State) { 9246 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9247 *this, State); 9248 } 9249 9250 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9251 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9252 State.ILV->setDebugLocFromInst(&I); 9253 9254 // The condition can be loop invariant but still defined inside the 9255 // loop. This means that we can't just use the original 'cond' value. 9256 // We have to take the 'vectorized' value and pick the first lane. 9257 // Instcombine will make this a no-op. 9258 auto *InvarCond = 9259 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9260 9261 for (unsigned Part = 0; Part < State.UF; ++Part) { 9262 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9263 Value *Op0 = State.get(getOperand(1), Part); 9264 Value *Op1 = State.get(getOperand(2), Part); 9265 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9266 State.set(this, Sel, Part); 9267 State.ILV->addMetadata(Sel, &I); 9268 } 9269 } 9270 9271 void VPWidenRecipe::execute(VPTransformState &State) { 9272 auto &I = *cast<Instruction>(getUnderlyingValue()); 9273 auto &Builder = State.Builder; 9274 switch (I.getOpcode()) { 9275 case Instruction::Call: 9276 case Instruction::Br: 9277 case Instruction::PHI: 9278 case Instruction::GetElementPtr: 9279 case Instruction::Select: 9280 llvm_unreachable("This instruction is handled by a different recipe."); 9281 case Instruction::UDiv: 9282 case Instruction::SDiv: 9283 case Instruction::SRem: 9284 case Instruction::URem: 9285 case Instruction::Add: 9286 case Instruction::FAdd: 9287 case Instruction::Sub: 9288 case Instruction::FSub: 9289 case Instruction::FNeg: 9290 case Instruction::Mul: 9291 case Instruction::FMul: 9292 case Instruction::FDiv: 9293 case Instruction::FRem: 9294 case Instruction::Shl: 9295 case Instruction::LShr: 9296 case Instruction::AShr: 9297 case Instruction::And: 9298 case Instruction::Or: 9299 case Instruction::Xor: { 9300 // Just widen unops and binops. 9301 State.ILV->setDebugLocFromInst(&I); 9302 9303 for (unsigned Part = 0; Part < State.UF; ++Part) { 9304 SmallVector<Value *, 2> Ops; 9305 for (VPValue *VPOp : operands()) 9306 Ops.push_back(State.get(VPOp, Part)); 9307 9308 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9309 9310 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9311 VecOp->copyIRFlags(&I); 9312 9313 // If the instruction is vectorized and was in a basic block that needed 9314 // predication, we can't propagate poison-generating flags (nuw/nsw, 9315 // exact, etc.). The control flow has been linearized and the 9316 // instruction is no longer guarded by the predicate, which could make 9317 // the flag properties to no longer hold. 9318 if (State.MayGeneratePoisonRecipes.contains(this)) 9319 VecOp->dropPoisonGeneratingFlags(); 9320 } 9321 9322 // Use this vector value for all users of the original instruction. 9323 State.set(this, V, Part); 9324 State.ILV->addMetadata(V, &I); 9325 } 9326 9327 break; 9328 } 9329 case Instruction::ICmp: 9330 case Instruction::FCmp: { 9331 // Widen compares. Generate vector compares. 9332 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9333 auto *Cmp = cast<CmpInst>(&I); 9334 State.ILV->setDebugLocFromInst(Cmp); 9335 for (unsigned Part = 0; Part < State.UF; ++Part) { 9336 Value *A = State.get(getOperand(0), Part); 9337 Value *B = State.get(getOperand(1), Part); 9338 Value *C = nullptr; 9339 if (FCmp) { 9340 // Propagate fast math flags. 9341 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9342 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9343 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9344 } else { 9345 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9346 } 9347 State.set(this, C, Part); 9348 State.ILV->addMetadata(C, &I); 9349 } 9350 9351 break; 9352 } 9353 9354 case Instruction::ZExt: 9355 case Instruction::SExt: 9356 case Instruction::FPToUI: 9357 case Instruction::FPToSI: 9358 case Instruction::FPExt: 9359 case Instruction::PtrToInt: 9360 case Instruction::IntToPtr: 9361 case Instruction::SIToFP: 9362 case Instruction::UIToFP: 9363 case Instruction::Trunc: 9364 case Instruction::FPTrunc: 9365 case Instruction::BitCast: { 9366 auto *CI = cast<CastInst>(&I); 9367 State.ILV->setDebugLocFromInst(CI); 9368 9369 /// Vectorize casts. 9370 Type *DestTy = (State.VF.isScalar()) 9371 ? CI->getType() 9372 : VectorType::get(CI->getType(), State.VF); 9373 9374 for (unsigned Part = 0; Part < State.UF; ++Part) { 9375 Value *A = State.get(getOperand(0), Part); 9376 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9377 State.set(this, Cast, Part); 9378 State.ILV->addMetadata(Cast, &I); 9379 } 9380 break; 9381 } 9382 default: 9383 // This instruction is not vectorized by simple widening. 9384 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9385 llvm_unreachable("Unhandled instruction!"); 9386 } // end of switch. 9387 } 9388 9389 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9390 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9391 // Construct a vector GEP by widening the operands of the scalar GEP as 9392 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9393 // results in a vector of pointers when at least one operand of the GEP 9394 // is vector-typed. Thus, to keep the representation compact, we only use 9395 // vector-typed operands for loop-varying values. 9396 9397 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9398 // If we are vectorizing, but the GEP has only loop-invariant operands, 9399 // the GEP we build (by only using vector-typed operands for 9400 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9401 // produce a vector of pointers, we need to either arbitrarily pick an 9402 // operand to broadcast, or broadcast a clone of the original GEP. 9403 // Here, we broadcast a clone of the original. 9404 // 9405 // TODO: If at some point we decide to scalarize instructions having 9406 // loop-invariant operands, this special case will no longer be 9407 // required. We would add the scalarization decision to 9408 // collectLoopScalars() and teach getVectorValue() to broadcast 9409 // the lane-zero scalar value. 9410 auto *Clone = State.Builder.Insert(GEP->clone()); 9411 for (unsigned Part = 0; Part < State.UF; ++Part) { 9412 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9413 State.set(this, EntryPart, Part); 9414 State.ILV->addMetadata(EntryPart, GEP); 9415 } 9416 } else { 9417 // If the GEP has at least one loop-varying operand, we are sure to 9418 // produce a vector of pointers. But if we are only unrolling, we want 9419 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9420 // produce with the code below will be scalar (if VF == 1) or vector 9421 // (otherwise). Note that for the unroll-only case, we still maintain 9422 // values in the vector mapping with initVector, as we do for other 9423 // instructions. 9424 for (unsigned Part = 0; Part < State.UF; ++Part) { 9425 // The pointer operand of the new GEP. If it's loop-invariant, we 9426 // won't broadcast it. 9427 auto *Ptr = IsPtrLoopInvariant 9428 ? State.get(getOperand(0), VPIteration(0, 0)) 9429 : State.get(getOperand(0), Part); 9430 9431 // Collect all the indices for the new GEP. If any index is 9432 // loop-invariant, we won't broadcast it. 9433 SmallVector<Value *, 4> Indices; 9434 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9435 VPValue *Operand = getOperand(I); 9436 if (IsIndexLoopInvariant[I - 1]) 9437 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9438 else 9439 Indices.push_back(State.get(Operand, Part)); 9440 } 9441 9442 // If the GEP instruction is vectorized and was in a basic block that 9443 // needed predication, we can't propagate the poison-generating 'inbounds' 9444 // flag. The control flow has been linearized and the GEP is no longer 9445 // guarded by the predicate, which could make the 'inbounds' properties to 9446 // no longer hold. 9447 bool IsInBounds = 9448 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9449 9450 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9451 // but it should be a vector, otherwise. 9452 auto *NewGEP = IsInBounds 9453 ? State.Builder.CreateInBoundsGEP( 9454 GEP->getSourceElementType(), Ptr, Indices) 9455 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9456 Ptr, Indices); 9457 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9458 "NewGEP is not a pointer vector"); 9459 State.set(this, NewGEP, Part); 9460 State.ILV->addMetadata(NewGEP, GEP); 9461 } 9462 } 9463 } 9464 9465 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9466 assert(!State.Instance && "Int or FP induction being replicated."); 9467 9468 Value *Start = getStartValue()->getLiveInIRValue(); 9469 const InductionDescriptor &ID = getInductionDescriptor(); 9470 TruncInst *Trunc = getTruncInst(); 9471 IRBuilderBase &Builder = State.Builder; 9472 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9473 assert(State.VF.isVector() && "must have vector VF"); 9474 9475 // The value from the original loop to which we are mapping the new induction 9476 // variable. 9477 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9478 9479 // Fast-math-flags propagate from the original induction instruction. 9480 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9481 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9482 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9483 9484 // Now do the actual transformations, and start with fetching the step value. 9485 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9486 9487 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9488 "Expected either an induction phi-node or a truncate of it!"); 9489 9490 // Construct the initial value of the vector IV in the vector loop preheader 9491 auto CurrIP = Builder.saveIP(); 9492 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9493 Builder.SetInsertPoint(VectorPH->getTerminator()); 9494 if (isa<TruncInst>(EntryVal)) { 9495 assert(Start->getType()->isIntegerTy() && 9496 "Truncation requires an integer type"); 9497 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9498 Step = Builder.CreateTrunc(Step, TruncType); 9499 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9500 } 9501 9502 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9503 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9504 Value *SteppedStart = getStepVector( 9505 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9506 9507 // We create vector phi nodes for both integer and floating-point induction 9508 // variables. Here, we determine the kind of arithmetic we will perform. 9509 Instruction::BinaryOps AddOp; 9510 Instruction::BinaryOps MulOp; 9511 if (Step->getType()->isIntegerTy()) { 9512 AddOp = Instruction::Add; 9513 MulOp = Instruction::Mul; 9514 } else { 9515 AddOp = ID.getInductionOpcode(); 9516 MulOp = Instruction::FMul; 9517 } 9518 9519 // Multiply the vectorization factor by the step using integer or 9520 // floating-point arithmetic as appropriate. 9521 Type *StepType = Step->getType(); 9522 Value *RuntimeVF; 9523 if (Step->getType()->isFloatingPointTy()) 9524 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9525 else 9526 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9527 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9528 9529 // Create a vector splat to use in the induction update. 9530 // 9531 // FIXME: If the step is non-constant, we create the vector splat with 9532 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9533 // handle a constant vector splat. 9534 Value *SplatVF = isa<Constant>(Mul) 9535 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9536 : Builder.CreateVectorSplat(State.VF, Mul); 9537 Builder.restoreIP(CurrIP); 9538 9539 // We may need to add the step a number of times, depending on the unroll 9540 // factor. The last of those goes into the PHI. 9541 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9542 &*State.CFG.PrevBB->getFirstInsertionPt()); 9543 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9544 Instruction *LastInduction = VecInd; 9545 for (unsigned Part = 0; Part < State.UF; ++Part) { 9546 State.set(this, LastInduction, Part); 9547 9548 if (isa<TruncInst>(EntryVal)) 9549 State.ILV->addMetadata(LastInduction, EntryVal); 9550 9551 LastInduction = cast<Instruction>( 9552 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9553 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9554 } 9555 9556 LastInduction->setName("vec.ind.next"); 9557 VecInd->addIncoming(SteppedStart, VectorPH); 9558 // Add induction update using an incorrect block temporarily. The phi node 9559 // will be fixed after VPlan execution. Note that at this point the latch 9560 // block cannot be used, as it does not exist yet. 9561 // TODO: Model increment value in VPlan, by turning the recipe into a 9562 // multi-def and a subclass of VPHeaderPHIRecipe. 9563 VecInd->addIncoming(LastInduction, VectorPH); 9564 } 9565 9566 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9567 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9568 "Not a pointer induction according to InductionDescriptor!"); 9569 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9570 "Unexpected type."); 9571 9572 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9573 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9574 9575 if (all_of(users(), [this](const VPUser *U) { 9576 return cast<VPRecipeBase>(U)->usesScalars(this); 9577 })) { 9578 // This is the normalized GEP that starts counting at zero. 9579 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9580 CanonicalIV, IndDesc.getStep()->getType()); 9581 // Determine the number of scalars we need to generate for each unroll 9582 // iteration. If the instruction is uniform, we only need to generate the 9583 // first lane. Otherwise, we generate all VF values. 9584 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9585 assert((IsUniform || !State.VF.isScalable()) && 9586 "Cannot scalarize a scalable VF"); 9587 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9588 9589 for (unsigned Part = 0; Part < State.UF; ++Part) { 9590 Value *PartStart = 9591 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9592 9593 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9594 Value *Idx = State.Builder.CreateAdd( 9595 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9596 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9597 9598 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9599 State.CFG.PrevBB->getTerminator()); 9600 Value *SclrGep = emitTransformedIndex( 9601 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9602 SclrGep->setName("next.gep"); 9603 State.set(this, SclrGep, VPIteration(Part, Lane)); 9604 } 9605 } 9606 return; 9607 } 9608 9609 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9610 "Induction step not a SCEV constant!"); 9611 Type *PhiType = IndDesc.getStep()->getType(); 9612 9613 // Build a pointer phi 9614 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9615 Type *ScStValueType = ScalarStartValue->getType(); 9616 PHINode *NewPointerPhi = 9617 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9618 9619 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9620 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9621 9622 // A pointer induction, performed by using a gep 9623 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9624 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9625 9626 const SCEV *ScalarStep = IndDesc.getStep(); 9627 SCEVExpander Exp(SE, DL, "induction"); 9628 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9629 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9630 Value *NumUnrolledElems = 9631 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9632 Value *InductionGEP = GetElementPtrInst::Create( 9633 IndDesc.getElementType(), NewPointerPhi, 9634 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9635 InductionLoc); 9636 // Add induction update using an incorrect block temporarily. The phi node 9637 // will be fixed after VPlan execution. Note that at this point the latch 9638 // block cannot be used, as it does not exist yet. 9639 // TODO: Model increment value in VPlan, by turning the recipe into a 9640 // multi-def and a subclass of VPHeaderPHIRecipe. 9641 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9642 9643 // Create UF many actual address geps that use the pointer 9644 // phi as base and a vectorized version of the step value 9645 // (<step*0, ..., step*N>) as offset. 9646 for (unsigned Part = 0; Part < State.UF; ++Part) { 9647 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9648 Value *StartOffsetScalar = 9649 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9650 Value *StartOffset = 9651 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9652 // Create a vector of consecutive numbers from zero to VF. 9653 StartOffset = State.Builder.CreateAdd( 9654 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9655 9656 Value *GEP = State.Builder.CreateGEP( 9657 IndDesc.getElementType(), NewPointerPhi, 9658 State.Builder.CreateMul( 9659 StartOffset, 9660 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9661 "vector.gep")); 9662 State.set(this, GEP, Part); 9663 } 9664 } 9665 9666 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9667 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9668 9669 // Fast-math-flags propagate from the original induction instruction. 9670 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9671 if (IndDesc.getInductionBinOp() && 9672 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9673 State.Builder.setFastMathFlags( 9674 IndDesc.getInductionBinOp()->getFastMathFlags()); 9675 9676 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9677 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9678 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9679 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9680 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9681 ScalarIV = 9682 Ty->isIntegerTy() 9683 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9684 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9685 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9686 getStartValue()->getLiveInIRValue(), Step, 9687 IndDesc); 9688 ScalarIV->setName("offset.idx"); 9689 } 9690 if (TruncToTy) { 9691 assert(Step->getType()->isIntegerTy() && 9692 "Truncation requires an integer step"); 9693 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9694 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9695 } 9696 return ScalarIV; 9697 }; 9698 9699 Value *ScalarIV = CreateScalarIV(Step); 9700 if (State.VF.isVector()) { 9701 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9702 return; 9703 } 9704 9705 for (unsigned Part = 0; Part < State.UF; ++Part) { 9706 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9707 Value *EntryPart; 9708 if (Step->getType()->isFloatingPointTy()) { 9709 Value *StartIdx = 9710 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9711 // Floating-point operations inherit FMF via the builder's flags. 9712 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9713 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9714 ScalarIV, MulOp); 9715 } else { 9716 Value *StartIdx = 9717 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9718 EntryPart = State.Builder.CreateAdd( 9719 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9720 } 9721 State.set(this, EntryPart, Part); 9722 } 9723 } 9724 9725 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9726 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9727 State); 9728 } 9729 9730 void VPBlendRecipe::execute(VPTransformState &State) { 9731 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9732 // We know that all PHIs in non-header blocks are converted into 9733 // selects, so we don't have to worry about the insertion order and we 9734 // can just use the builder. 9735 // At this point we generate the predication tree. There may be 9736 // duplications since this is a simple recursive scan, but future 9737 // optimizations will clean it up. 9738 9739 unsigned NumIncoming = getNumIncomingValues(); 9740 9741 // Generate a sequence of selects of the form: 9742 // SELECT(Mask3, In3, 9743 // SELECT(Mask2, In2, 9744 // SELECT(Mask1, In1, 9745 // In0))) 9746 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9747 // are essentially undef are taken from In0. 9748 InnerLoopVectorizer::VectorParts Entry(State.UF); 9749 for (unsigned In = 0; In < NumIncoming; ++In) { 9750 for (unsigned Part = 0; Part < State.UF; ++Part) { 9751 // We might have single edge PHIs (blocks) - use an identity 9752 // 'select' for the first PHI operand. 9753 Value *In0 = State.get(getIncomingValue(In), Part); 9754 if (In == 0) 9755 Entry[Part] = In0; // Initialize with the first incoming value. 9756 else { 9757 // Select between the current value and the previous incoming edge 9758 // based on the incoming mask. 9759 Value *Cond = State.get(getMask(In), Part); 9760 Entry[Part] = 9761 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9762 } 9763 } 9764 } 9765 for (unsigned Part = 0; Part < State.UF; ++Part) 9766 State.set(this, Entry[Part], Part); 9767 } 9768 9769 void VPInterleaveRecipe::execute(VPTransformState &State) { 9770 assert(!State.Instance && "Interleave group being replicated."); 9771 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9772 getStoredValues(), getMask()); 9773 } 9774 9775 void VPReductionRecipe::execute(VPTransformState &State) { 9776 assert(!State.Instance && "Reduction being replicated."); 9777 Value *PrevInChain = State.get(getChainOp(), 0); 9778 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9779 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9780 // Propagate the fast-math flags carried by the underlying instruction. 9781 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9782 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9783 for (unsigned Part = 0; Part < State.UF; ++Part) { 9784 Value *NewVecOp = State.get(getVecOp(), Part); 9785 if (VPValue *Cond = getCondOp()) { 9786 Value *NewCond = State.get(Cond, Part); 9787 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9788 Value *Iden = RdxDesc->getRecurrenceIdentity( 9789 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9790 Value *IdenVec = 9791 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9792 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9793 NewVecOp = Select; 9794 } 9795 Value *NewRed; 9796 Value *NextInChain; 9797 if (IsOrdered) { 9798 if (State.VF.isVector()) 9799 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9800 PrevInChain); 9801 else 9802 NewRed = State.Builder.CreateBinOp( 9803 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9804 NewVecOp); 9805 PrevInChain = NewRed; 9806 } else { 9807 PrevInChain = State.get(getChainOp(), Part); 9808 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9809 } 9810 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9811 NextInChain = 9812 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9813 NewRed, PrevInChain); 9814 } else if (IsOrdered) 9815 NextInChain = NewRed; 9816 else 9817 NextInChain = State.Builder.CreateBinOp( 9818 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9819 PrevInChain); 9820 State.set(this, NextInChain, Part); 9821 } 9822 } 9823 9824 void VPReplicateRecipe::execute(VPTransformState &State) { 9825 if (State.Instance) { // Generate a single instance. 9826 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9827 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9828 IsPredicated, State); 9829 // Insert scalar instance packing it into a vector. 9830 if (AlsoPack && State.VF.isVector()) { 9831 // If we're constructing lane 0, initialize to start from poison. 9832 if (State.Instance->Lane.isFirstLane()) { 9833 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9834 Value *Poison = PoisonValue::get( 9835 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9836 State.set(this, Poison, State.Instance->Part); 9837 } 9838 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9839 } 9840 return; 9841 } 9842 9843 // Generate scalar instances for all VF lanes of all UF parts, unless the 9844 // instruction is uniform inwhich case generate only the first lane for each 9845 // of the UF parts. 9846 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9847 assert((!State.VF.isScalable() || IsUniform) && 9848 "Can't scalarize a scalable vector"); 9849 for (unsigned Part = 0; Part < State.UF; ++Part) 9850 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9851 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9852 VPIteration(Part, Lane), IsPredicated, 9853 State); 9854 } 9855 9856 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9857 assert(State.Instance && "Branch on Mask works only on single instance."); 9858 9859 unsigned Part = State.Instance->Part; 9860 unsigned Lane = State.Instance->Lane.getKnownLane(); 9861 9862 Value *ConditionBit = nullptr; 9863 VPValue *BlockInMask = getMask(); 9864 if (BlockInMask) { 9865 ConditionBit = State.get(BlockInMask, Part); 9866 if (ConditionBit->getType()->isVectorTy()) 9867 ConditionBit = State.Builder.CreateExtractElement( 9868 ConditionBit, State.Builder.getInt32(Lane)); 9869 } else // Block in mask is all-one. 9870 ConditionBit = State.Builder.getTrue(); 9871 9872 // Replace the temporary unreachable terminator with a new conditional branch, 9873 // whose two destinations will be set later when they are created. 9874 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9875 assert(isa<UnreachableInst>(CurrentTerminator) && 9876 "Expected to replace unreachable terminator with conditional branch."); 9877 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9878 CondBr->setSuccessor(0, nullptr); 9879 ReplaceInstWithInst(CurrentTerminator, CondBr); 9880 } 9881 9882 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9883 assert(State.Instance && "Predicated instruction PHI works per instance."); 9884 Instruction *ScalarPredInst = 9885 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9886 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9887 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9888 assert(PredicatingBB && "Predicated block has no single predecessor."); 9889 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9890 "operand must be VPReplicateRecipe"); 9891 9892 // By current pack/unpack logic we need to generate only a single phi node: if 9893 // a vector value for the predicated instruction exists at this point it means 9894 // the instruction has vector users only, and a phi for the vector value is 9895 // needed. In this case the recipe of the predicated instruction is marked to 9896 // also do that packing, thereby "hoisting" the insert-element sequence. 9897 // Otherwise, a phi node for the scalar value is needed. 9898 unsigned Part = State.Instance->Part; 9899 if (State.hasVectorValue(getOperand(0), Part)) { 9900 Value *VectorValue = State.get(getOperand(0), Part); 9901 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9902 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9903 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9904 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9905 if (State.hasVectorValue(this, Part)) 9906 State.reset(this, VPhi, Part); 9907 else 9908 State.set(this, VPhi, Part); 9909 // NOTE: Currently we need to update the value of the operand, so the next 9910 // predicated iteration inserts its generated value in the correct vector. 9911 State.reset(getOperand(0), VPhi, Part); 9912 } else { 9913 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9914 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9915 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9916 PredicatingBB); 9917 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9918 if (State.hasScalarValue(this, *State.Instance)) 9919 State.reset(this, Phi, *State.Instance); 9920 else 9921 State.set(this, Phi, *State.Instance); 9922 // NOTE: Currently we need to update the value of the operand, so the next 9923 // predicated iteration inserts its generated value in the correct vector. 9924 State.reset(getOperand(0), Phi, *State.Instance); 9925 } 9926 } 9927 9928 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9929 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9930 9931 // Attempt to issue a wide load. 9932 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9933 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9934 9935 assert((LI || SI) && "Invalid Load/Store instruction"); 9936 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9937 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9938 9939 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9940 9941 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9942 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9943 bool CreateGatherScatter = !Consecutive; 9944 9945 auto &Builder = State.Builder; 9946 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9947 bool isMaskRequired = getMask(); 9948 if (isMaskRequired) 9949 for (unsigned Part = 0; Part < State.UF; ++Part) 9950 BlockInMaskParts[Part] = State.get(getMask(), Part); 9951 9952 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9953 // Calculate the pointer for the specific unroll-part. 9954 GetElementPtrInst *PartPtr = nullptr; 9955 9956 bool InBounds = false; 9957 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9958 InBounds = gep->isInBounds(); 9959 if (Reverse) { 9960 // If the address is consecutive but reversed, then the 9961 // wide store needs to start at the last vector element. 9962 // RunTimeVF = VScale * VF.getKnownMinValue() 9963 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9964 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9965 // NumElt = -Part * RunTimeVF 9966 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9967 // LastLane = 1 - RunTimeVF 9968 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9969 PartPtr = 9970 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9971 PartPtr->setIsInBounds(InBounds); 9972 PartPtr = cast<GetElementPtrInst>( 9973 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9974 PartPtr->setIsInBounds(InBounds); 9975 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9976 BlockInMaskParts[Part] = 9977 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9978 } else { 9979 Value *Increment = 9980 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9981 PartPtr = cast<GetElementPtrInst>( 9982 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9983 PartPtr->setIsInBounds(InBounds); 9984 } 9985 9986 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9987 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9988 }; 9989 9990 // Handle Stores: 9991 if (SI) { 9992 State.ILV->setDebugLocFromInst(SI); 9993 9994 for (unsigned Part = 0; Part < State.UF; ++Part) { 9995 Instruction *NewSI = nullptr; 9996 Value *StoredVal = State.get(StoredValue, Part); 9997 if (CreateGatherScatter) { 9998 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9999 Value *VectorGep = State.get(getAddr(), Part); 10000 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10001 MaskPart); 10002 } else { 10003 if (Reverse) { 10004 // If we store to reverse consecutive memory locations, then we need 10005 // to reverse the order of elements in the stored value. 10006 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10007 // We don't want to update the value in the map as it might be used in 10008 // another expression. So don't call resetVectorValue(StoredVal). 10009 } 10010 auto *VecPtr = 10011 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10012 if (isMaskRequired) 10013 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10014 BlockInMaskParts[Part]); 10015 else 10016 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10017 } 10018 State.ILV->addMetadata(NewSI, SI); 10019 } 10020 return; 10021 } 10022 10023 // Handle loads. 10024 assert(LI && "Must have a load instruction"); 10025 State.ILV->setDebugLocFromInst(LI); 10026 for (unsigned Part = 0; Part < State.UF; ++Part) { 10027 Value *NewLI; 10028 if (CreateGatherScatter) { 10029 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10030 Value *VectorGep = State.get(getAddr(), Part); 10031 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10032 nullptr, "wide.masked.gather"); 10033 State.ILV->addMetadata(NewLI, LI); 10034 } else { 10035 auto *VecPtr = 10036 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10037 if (isMaskRequired) 10038 NewLI = Builder.CreateMaskedLoad( 10039 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10040 PoisonValue::get(DataTy), "wide.masked.load"); 10041 else 10042 NewLI = 10043 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10044 10045 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10046 State.ILV->addMetadata(NewLI, LI); 10047 if (Reverse) 10048 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10049 } 10050 10051 State.set(this, NewLI, Part); 10052 } 10053 } 10054 10055 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10056 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10057 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10058 // for predication. 10059 static ScalarEpilogueLowering getScalarEpilogueLowering( 10060 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10061 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10062 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10063 LoopVectorizationLegality &LVL) { 10064 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10065 // don't look at hints or options, and don't request a scalar epilogue. 10066 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10067 // LoopAccessInfo (due to code dependency and not being able to reliably get 10068 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10069 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10070 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10071 // back to the old way and vectorize with versioning when forced. See D81345.) 10072 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10073 PGSOQueryType::IRPass) && 10074 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10075 return CM_ScalarEpilogueNotAllowedOptSize; 10076 10077 // 2) If set, obey the directives 10078 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10079 switch (PreferPredicateOverEpilogue) { 10080 case PreferPredicateTy::ScalarEpilogue: 10081 return CM_ScalarEpilogueAllowed; 10082 case PreferPredicateTy::PredicateElseScalarEpilogue: 10083 return CM_ScalarEpilogueNotNeededUsePredicate; 10084 case PreferPredicateTy::PredicateOrDontVectorize: 10085 return CM_ScalarEpilogueNotAllowedUsePredicate; 10086 }; 10087 } 10088 10089 // 3) If set, obey the hints 10090 switch (Hints.getPredicate()) { 10091 case LoopVectorizeHints::FK_Enabled: 10092 return CM_ScalarEpilogueNotNeededUsePredicate; 10093 case LoopVectorizeHints::FK_Disabled: 10094 return CM_ScalarEpilogueAllowed; 10095 }; 10096 10097 // 4) if the TTI hook indicates this is profitable, request predication. 10098 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10099 LVL.getLAI())) 10100 return CM_ScalarEpilogueNotNeededUsePredicate; 10101 10102 return CM_ScalarEpilogueAllowed; 10103 } 10104 10105 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10106 // If Values have been set for this Def return the one relevant for \p Part. 10107 if (hasVectorValue(Def, Part)) 10108 return Data.PerPartOutput[Def][Part]; 10109 10110 if (!hasScalarValue(Def, {Part, 0})) { 10111 Value *IRV = Def->getLiveInIRValue(); 10112 Value *B = ILV->getBroadcastInstrs(IRV); 10113 set(Def, B, Part); 10114 return B; 10115 } 10116 10117 Value *ScalarValue = get(Def, {Part, 0}); 10118 // If we aren't vectorizing, we can just copy the scalar map values over 10119 // to the vector map. 10120 if (VF.isScalar()) { 10121 set(Def, ScalarValue, Part); 10122 return ScalarValue; 10123 } 10124 10125 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10126 bool IsUniform = RepR && RepR->isUniform(); 10127 10128 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10129 // Check if there is a scalar value for the selected lane. 10130 if (!hasScalarValue(Def, {Part, LastLane})) { 10131 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10132 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10133 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10134 "unexpected recipe found to be invariant"); 10135 IsUniform = true; 10136 LastLane = 0; 10137 } 10138 10139 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10140 // Set the insert point after the last scalarized instruction or after the 10141 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10142 // will directly follow the scalar definitions. 10143 auto OldIP = Builder.saveIP(); 10144 auto NewIP = 10145 isa<PHINode>(LastInst) 10146 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10147 : std::next(BasicBlock::iterator(LastInst)); 10148 Builder.SetInsertPoint(&*NewIP); 10149 10150 // However, if we are vectorizing, we need to construct the vector values. 10151 // If the value is known to be uniform after vectorization, we can just 10152 // broadcast the scalar value corresponding to lane zero for each unroll 10153 // iteration. Otherwise, we construct the vector values using 10154 // insertelement instructions. Since the resulting vectors are stored in 10155 // State, we will only generate the insertelements once. 10156 Value *VectorValue = nullptr; 10157 if (IsUniform) { 10158 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10159 set(Def, VectorValue, Part); 10160 } else { 10161 // Initialize packing with insertelements to start from undef. 10162 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10163 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10164 set(Def, Undef, Part); 10165 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10166 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10167 VectorValue = get(Def, Part); 10168 } 10169 Builder.restoreIP(OldIP); 10170 return VectorValue; 10171 } 10172 10173 // Process the loop in the VPlan-native vectorization path. This path builds 10174 // VPlan upfront in the vectorization pipeline, which allows to apply 10175 // VPlan-to-VPlan transformations from the very beginning without modifying the 10176 // input LLVM IR. 10177 static bool processLoopInVPlanNativePath( 10178 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10179 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10180 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10181 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10182 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10183 LoopVectorizationRequirements &Requirements) { 10184 10185 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10186 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10187 return false; 10188 } 10189 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10190 Function *F = L->getHeader()->getParent(); 10191 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10192 10193 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10194 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10195 10196 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10197 &Hints, IAI); 10198 // Use the planner for outer loop vectorization. 10199 // TODO: CM is not used at this point inside the planner. Turn CM into an 10200 // optional argument if we don't need it in the future. 10201 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10202 Requirements, ORE); 10203 10204 // Get user vectorization factor. 10205 ElementCount UserVF = Hints.getWidth(); 10206 10207 CM.collectElementTypesForWidening(); 10208 10209 // Plan how to best vectorize, return the best VF and its cost. 10210 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10211 10212 // If we are stress testing VPlan builds, do not attempt to generate vector 10213 // code. Masked vector code generation support will follow soon. 10214 // Also, do not attempt to vectorize if no vector code will be produced. 10215 if (VPlanBuildStressTest || EnableVPlanPredication || 10216 VectorizationFactor::Disabled() == VF) 10217 return false; 10218 10219 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10220 10221 { 10222 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10223 F->getParent()->getDataLayout()); 10224 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10225 &CM, BFI, PSI, Checks); 10226 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10227 << L->getHeader()->getParent()->getName() << "\"\n"); 10228 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10229 } 10230 10231 // Mark the loop as already vectorized to avoid vectorizing again. 10232 Hints.setAlreadyVectorized(); 10233 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10234 return true; 10235 } 10236 10237 // Emit a remark if there are stores to floats that required a floating point 10238 // extension. If the vectorized loop was generated with floating point there 10239 // will be a performance penalty from the conversion overhead and the change in 10240 // the vector width. 10241 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10242 SmallVector<Instruction *, 4> Worklist; 10243 for (BasicBlock *BB : L->getBlocks()) { 10244 for (Instruction &Inst : *BB) { 10245 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10246 if (S->getValueOperand()->getType()->isFloatTy()) 10247 Worklist.push_back(S); 10248 } 10249 } 10250 } 10251 10252 // Traverse the floating point stores upwards searching, for floating point 10253 // conversions. 10254 SmallPtrSet<const Instruction *, 4> Visited; 10255 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10256 while (!Worklist.empty()) { 10257 auto *I = Worklist.pop_back_val(); 10258 if (!L->contains(I)) 10259 continue; 10260 if (!Visited.insert(I).second) 10261 continue; 10262 10263 // Emit a remark if the floating point store required a floating 10264 // point conversion. 10265 // TODO: More work could be done to identify the root cause such as a 10266 // constant or a function return type and point the user to it. 10267 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10268 ORE->emit([&]() { 10269 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10270 I->getDebugLoc(), L->getHeader()) 10271 << "floating point conversion changes vector width. " 10272 << "Mixed floating point precision requires an up/down " 10273 << "cast that will negatively impact performance."; 10274 }); 10275 10276 for (Use &Op : I->operands()) 10277 if (auto *OpI = dyn_cast<Instruction>(Op)) 10278 Worklist.push_back(OpI); 10279 } 10280 } 10281 10282 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10283 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10284 !EnableLoopInterleaving), 10285 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10286 !EnableLoopVectorization) {} 10287 10288 bool LoopVectorizePass::processLoop(Loop *L) { 10289 assert((EnableVPlanNativePath || L->isInnermost()) && 10290 "VPlan-native path is not enabled. Only process inner loops."); 10291 10292 #ifndef NDEBUG 10293 const std::string DebugLocStr = getDebugLocString(L); 10294 #endif /* NDEBUG */ 10295 10296 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10297 << L->getHeader()->getParent()->getName() << "' from " 10298 << DebugLocStr << "\n"); 10299 10300 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10301 10302 LLVM_DEBUG( 10303 dbgs() << "LV: Loop hints:" 10304 << " force=" 10305 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10306 ? "disabled" 10307 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10308 ? "enabled" 10309 : "?")) 10310 << " width=" << Hints.getWidth() 10311 << " interleave=" << Hints.getInterleave() << "\n"); 10312 10313 // Function containing loop 10314 Function *F = L->getHeader()->getParent(); 10315 10316 // Looking at the diagnostic output is the only way to determine if a loop 10317 // was vectorized (other than looking at the IR or machine code), so it 10318 // is important to generate an optimization remark for each loop. Most of 10319 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10320 // generated as OptimizationRemark and OptimizationRemarkMissed are 10321 // less verbose reporting vectorized loops and unvectorized loops that may 10322 // benefit from vectorization, respectively. 10323 10324 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10325 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10326 return false; 10327 } 10328 10329 PredicatedScalarEvolution PSE(*SE, *L); 10330 10331 // Check if it is legal to vectorize the loop. 10332 LoopVectorizationRequirements Requirements; 10333 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10334 &Requirements, &Hints, DB, AC, BFI, PSI); 10335 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10336 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10337 Hints.emitRemarkWithHints(); 10338 return false; 10339 } 10340 10341 // Check the function attributes and profiles to find out if this function 10342 // should be optimized for size. 10343 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10344 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10345 10346 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10347 // here. They may require CFG and instruction level transformations before 10348 // even evaluating whether vectorization is profitable. Since we cannot modify 10349 // the incoming IR, we need to build VPlan upfront in the vectorization 10350 // pipeline. 10351 if (!L->isInnermost()) 10352 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10353 ORE, BFI, PSI, Hints, Requirements); 10354 10355 assert(L->isInnermost() && "Inner loop expected."); 10356 10357 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10358 // count by optimizing for size, to minimize overheads. 10359 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10360 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10361 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10362 << "This loop is worth vectorizing only if no scalar " 10363 << "iteration overheads are incurred."); 10364 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10365 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10366 else { 10367 LLVM_DEBUG(dbgs() << "\n"); 10368 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10369 } 10370 } 10371 10372 // Check the function attributes to see if implicit floats are allowed. 10373 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10374 // an integer loop and the vector instructions selected are purely integer 10375 // vector instructions? 10376 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10377 reportVectorizationFailure( 10378 "Can't vectorize when the NoImplicitFloat attribute is used", 10379 "loop not vectorized due to NoImplicitFloat attribute", 10380 "NoImplicitFloat", ORE, L); 10381 Hints.emitRemarkWithHints(); 10382 return false; 10383 } 10384 10385 // Check if the target supports potentially unsafe FP vectorization. 10386 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10387 // for the target we're vectorizing for, to make sure none of the 10388 // additional fp-math flags can help. 10389 if (Hints.isPotentiallyUnsafe() && 10390 TTI->isFPVectorizationPotentiallyUnsafe()) { 10391 reportVectorizationFailure( 10392 "Potentially unsafe FP op prevents vectorization", 10393 "loop not vectorized due to unsafe FP support.", 10394 "UnsafeFP", ORE, L); 10395 Hints.emitRemarkWithHints(); 10396 return false; 10397 } 10398 10399 bool AllowOrderedReductions; 10400 // If the flag is set, use that instead and override the TTI behaviour. 10401 if (ForceOrderedReductions.getNumOccurrences() > 0) 10402 AllowOrderedReductions = ForceOrderedReductions; 10403 else 10404 AllowOrderedReductions = TTI->enableOrderedReductions(); 10405 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10406 ORE->emit([&]() { 10407 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10408 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10409 ExactFPMathInst->getDebugLoc(), 10410 ExactFPMathInst->getParent()) 10411 << "loop not vectorized: cannot prove it is safe to reorder " 10412 "floating-point operations"; 10413 }); 10414 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10415 "reorder floating-point operations\n"); 10416 Hints.emitRemarkWithHints(); 10417 return false; 10418 } 10419 10420 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10421 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10422 10423 // If an override option has been passed in for interleaved accesses, use it. 10424 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10425 UseInterleaved = EnableInterleavedMemAccesses; 10426 10427 // Analyze interleaved memory accesses. 10428 if (UseInterleaved) { 10429 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10430 } 10431 10432 // Use the cost model. 10433 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10434 F, &Hints, IAI); 10435 CM.collectValuesToIgnore(); 10436 CM.collectElementTypesForWidening(); 10437 10438 // Use the planner for vectorization. 10439 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10440 Requirements, ORE); 10441 10442 // Get user vectorization factor and interleave count. 10443 ElementCount UserVF = Hints.getWidth(); 10444 unsigned UserIC = Hints.getInterleave(); 10445 10446 // Plan how to best vectorize, return the best VF and its cost. 10447 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10448 10449 VectorizationFactor VF = VectorizationFactor::Disabled(); 10450 unsigned IC = 1; 10451 10452 if (MaybeVF) { 10453 VF = *MaybeVF; 10454 // Select the interleave count. 10455 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10456 } 10457 10458 // Identify the diagnostic messages that should be produced. 10459 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10460 bool VectorizeLoop = true, InterleaveLoop = true; 10461 if (VF.Width.isScalar()) { 10462 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10463 VecDiagMsg = std::make_pair( 10464 "VectorizationNotBeneficial", 10465 "the cost-model indicates that vectorization is not beneficial"); 10466 VectorizeLoop = false; 10467 } 10468 10469 if (!MaybeVF && UserIC > 1) { 10470 // Tell the user interleaving was avoided up-front, despite being explicitly 10471 // requested. 10472 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10473 "interleaving should be avoided up front\n"); 10474 IntDiagMsg = std::make_pair( 10475 "InterleavingAvoided", 10476 "Ignoring UserIC, because interleaving was avoided up front"); 10477 InterleaveLoop = false; 10478 } else if (IC == 1 && UserIC <= 1) { 10479 // Tell the user interleaving is not beneficial. 10480 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10481 IntDiagMsg = std::make_pair( 10482 "InterleavingNotBeneficial", 10483 "the cost-model indicates that interleaving is not beneficial"); 10484 InterleaveLoop = false; 10485 if (UserIC == 1) { 10486 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10487 IntDiagMsg.second += 10488 " and is explicitly disabled or interleave count is set to 1"; 10489 } 10490 } else if (IC > 1 && UserIC == 1) { 10491 // Tell the user interleaving is beneficial, but it explicitly disabled. 10492 LLVM_DEBUG( 10493 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10494 IntDiagMsg = std::make_pair( 10495 "InterleavingBeneficialButDisabled", 10496 "the cost-model indicates that interleaving is beneficial " 10497 "but is explicitly disabled or interleave count is set to 1"); 10498 InterleaveLoop = false; 10499 } 10500 10501 // Override IC if user provided an interleave count. 10502 IC = UserIC > 0 ? UserIC : IC; 10503 10504 // Emit diagnostic messages, if any. 10505 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10506 if (!VectorizeLoop && !InterleaveLoop) { 10507 // Do not vectorize or interleaving the loop. 10508 ORE->emit([&]() { 10509 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10510 L->getStartLoc(), L->getHeader()) 10511 << VecDiagMsg.second; 10512 }); 10513 ORE->emit([&]() { 10514 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10515 L->getStartLoc(), L->getHeader()) 10516 << IntDiagMsg.second; 10517 }); 10518 return false; 10519 } else if (!VectorizeLoop && InterleaveLoop) { 10520 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10521 ORE->emit([&]() { 10522 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10523 L->getStartLoc(), L->getHeader()) 10524 << VecDiagMsg.second; 10525 }); 10526 } else if (VectorizeLoop && !InterleaveLoop) { 10527 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10528 << ") in " << DebugLocStr << '\n'); 10529 ORE->emit([&]() { 10530 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10531 L->getStartLoc(), L->getHeader()) 10532 << IntDiagMsg.second; 10533 }); 10534 } else if (VectorizeLoop && InterleaveLoop) { 10535 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10536 << ") in " << DebugLocStr << '\n'); 10537 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10538 } 10539 10540 bool DisableRuntimeUnroll = false; 10541 MDNode *OrigLoopID = L->getLoopID(); 10542 { 10543 // Optimistically generate runtime checks. Drop them if they turn out to not 10544 // be profitable. Limit the scope of Checks, so the cleanup happens 10545 // immediately after vector codegeneration is done. 10546 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10547 F->getParent()->getDataLayout()); 10548 if (!VF.Width.isScalar() || IC > 1) 10549 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10550 10551 using namespace ore; 10552 if (!VectorizeLoop) { 10553 assert(IC > 1 && "interleave count should not be 1 or 0"); 10554 // If we decided that it is not legal to vectorize the loop, then 10555 // interleave it. 10556 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10557 &CM, BFI, PSI, Checks); 10558 10559 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10560 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10561 10562 ORE->emit([&]() { 10563 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10564 L->getHeader()) 10565 << "interleaved loop (interleaved count: " 10566 << NV("InterleaveCount", IC) << ")"; 10567 }); 10568 } else { 10569 // If we decided that it is *legal* to vectorize the loop, then do it. 10570 10571 // Consider vectorizing the epilogue too if it's profitable. 10572 VectorizationFactor EpilogueVF = 10573 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10574 if (EpilogueVF.Width.isVector()) { 10575 10576 // The first pass vectorizes the main loop and creates a scalar epilogue 10577 // to be vectorized by executing the plan (potentially with a different 10578 // factor) again shortly afterwards. 10579 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10580 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10581 EPI, &LVL, &CM, BFI, PSI, Checks); 10582 10583 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10584 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10585 DT); 10586 ++LoopsVectorized; 10587 10588 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10589 formLCSSARecursively(*L, *DT, LI, SE); 10590 10591 // Second pass vectorizes the epilogue and adjusts the control flow 10592 // edges from the first pass. 10593 EPI.MainLoopVF = EPI.EpilogueVF; 10594 EPI.MainLoopUF = EPI.EpilogueUF; 10595 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10596 ORE, EPI, &LVL, &CM, BFI, PSI, 10597 Checks); 10598 10599 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10600 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->setName( 10601 "vec.epilog.vector.body"); 10602 10603 // Ensure that the start values for any VPReductionPHIRecipes are 10604 // updated before vectorising the epilogue loop. 10605 VPBasicBlock *Header = 10606 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock(); 10607 for (VPRecipeBase &R : Header->phis()) { 10608 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10609 if (auto *Resume = MainILV.getReductionResumeValue( 10610 ReductionPhi->getRecurrenceDescriptor())) { 10611 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10612 ReductionPhi->setOperand(0, StartVal); 10613 } 10614 } 10615 } 10616 10617 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10618 DT); 10619 ++LoopsEpilogueVectorized; 10620 10621 if (!MainILV.areSafetyChecksAdded()) 10622 DisableRuntimeUnroll = true; 10623 } else { 10624 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10625 &LVL, &CM, BFI, PSI, Checks); 10626 10627 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10628 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10629 ++LoopsVectorized; 10630 10631 // Add metadata to disable runtime unrolling a scalar loop when there 10632 // are no runtime checks about strides and memory. A scalar loop that is 10633 // rarely used is not worth unrolling. 10634 if (!LB.areSafetyChecksAdded()) 10635 DisableRuntimeUnroll = true; 10636 } 10637 // Report the vectorization decision. 10638 ORE->emit([&]() { 10639 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10640 L->getHeader()) 10641 << "vectorized loop (vectorization width: " 10642 << NV("VectorizationFactor", VF.Width) 10643 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10644 }); 10645 } 10646 10647 if (ORE->allowExtraAnalysis(LV_NAME)) 10648 checkMixedPrecision(L, ORE); 10649 } 10650 10651 Optional<MDNode *> RemainderLoopID = 10652 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10653 LLVMLoopVectorizeFollowupEpilogue}); 10654 if (RemainderLoopID.hasValue()) { 10655 L->setLoopID(RemainderLoopID.getValue()); 10656 } else { 10657 if (DisableRuntimeUnroll) 10658 AddRuntimeUnrollDisableMetaData(L); 10659 10660 // Mark the loop as already vectorized to avoid vectorizing again. 10661 Hints.setAlreadyVectorized(); 10662 } 10663 10664 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10665 return true; 10666 } 10667 10668 LoopVectorizeResult LoopVectorizePass::runImpl( 10669 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10670 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10671 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10672 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10673 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10674 SE = &SE_; 10675 LI = &LI_; 10676 TTI = &TTI_; 10677 DT = &DT_; 10678 BFI = &BFI_; 10679 TLI = TLI_; 10680 AA = &AA_; 10681 AC = &AC_; 10682 GetLAA = &GetLAA_; 10683 DB = &DB_; 10684 ORE = &ORE_; 10685 PSI = PSI_; 10686 10687 // Don't attempt if 10688 // 1. the target claims to have no vector registers, and 10689 // 2. interleaving won't help ILP. 10690 // 10691 // The second condition is necessary because, even if the target has no 10692 // vector registers, loop vectorization may still enable scalar 10693 // interleaving. 10694 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10695 TTI->getMaxInterleaveFactor(1) < 2) 10696 return LoopVectorizeResult(false, false); 10697 10698 bool Changed = false, CFGChanged = false; 10699 10700 // The vectorizer requires loops to be in simplified form. 10701 // Since simplification may add new inner loops, it has to run before the 10702 // legality and profitability checks. This means running the loop vectorizer 10703 // will simplify all loops, regardless of whether anything end up being 10704 // vectorized. 10705 for (auto &L : *LI) 10706 Changed |= CFGChanged |= 10707 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10708 10709 // Build up a worklist of inner-loops to vectorize. This is necessary as 10710 // the act of vectorizing or partially unrolling a loop creates new loops 10711 // and can invalidate iterators across the loops. 10712 SmallVector<Loop *, 8> Worklist; 10713 10714 for (Loop *L : *LI) 10715 collectSupportedLoops(*L, LI, ORE, Worklist); 10716 10717 LoopsAnalyzed += Worklist.size(); 10718 10719 // Now walk the identified inner loops. 10720 while (!Worklist.empty()) { 10721 Loop *L = Worklist.pop_back_val(); 10722 10723 // For the inner loops we actually process, form LCSSA to simplify the 10724 // transform. 10725 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10726 10727 Changed |= CFGChanged |= processLoop(L); 10728 } 10729 10730 // Process each loop nest in the function. 10731 return LoopVectorizeResult(Changed, CFGChanged); 10732 } 10733 10734 PreservedAnalyses LoopVectorizePass::run(Function &F, 10735 FunctionAnalysisManager &AM) { 10736 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10737 auto &LI = AM.getResult<LoopAnalysis>(F); 10738 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10739 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10740 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10741 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10742 auto &AA = AM.getResult<AAManager>(F); 10743 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10744 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10745 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10746 10747 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10748 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10749 [&](Loop &L) -> const LoopAccessInfo & { 10750 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10751 TLI, TTI, nullptr, nullptr, nullptr}; 10752 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10753 }; 10754 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10755 ProfileSummaryInfo *PSI = 10756 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10757 LoopVectorizeResult Result = 10758 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10759 if (!Result.MadeAnyChange) 10760 return PreservedAnalyses::all(); 10761 PreservedAnalyses PA; 10762 10763 // We currently do not preserve loopinfo/dominator analyses with outer loop 10764 // vectorization. Until this is addressed, mark these analyses as preserved 10765 // only for non-VPlan-native path. 10766 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10767 if (!EnableVPlanNativePath) { 10768 PA.preserve<LoopAnalysis>(); 10769 PA.preserve<DominatorTreeAnalysis>(); 10770 } 10771 10772 if (Result.MadeCFGChange) { 10773 // Making CFG changes likely means a loop got vectorized. Indicate that 10774 // extra simplification passes should be run. 10775 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10776 // be run if runtime checks have been added. 10777 AM.getResult<ShouldRunExtraVectorPasses>(F); 10778 PA.preserve<ShouldRunExtraVectorPasses>(); 10779 } else { 10780 PA.preserveSet<CFGAnalyses>(); 10781 } 10782 return PA; 10783 } 10784 10785 void LoopVectorizePass::printPipeline( 10786 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10787 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10788 OS, MapClassName2PassName); 10789 10790 OS << "<"; 10791 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10792 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10793 OS << ">"; 10794 } 10795