1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// We don't vectorize loops with a known constant trip count below this number. 118 static cl::opt<unsigned> TinyTripCountVectorThreshold( 119 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 120 cl::desc("Don't vectorize loops with a constant " 121 "trip count that is smaller than this " 122 "value.")); 123 124 static cl::opt<bool> MaximizeBandwidth( 125 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 126 cl::desc("Maximize bandwidth when selecting vectorization factor which " 127 "will be determined by the smallest type in loop.")); 128 129 static cl::opt<bool> EnableInterleavedMemAccesses( 130 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 131 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 132 133 /// Maximum factor for an interleaved memory access. 134 static cl::opt<unsigned> MaxInterleaveGroupFactor( 135 "max-interleave-group-factor", cl::Hidden, 136 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 137 cl::init(8)); 138 139 /// We don't interleave loops with a known constant trip count below this 140 /// number. 141 static const unsigned TinyTripCountInterleaveThreshold = 128; 142 143 static cl::opt<unsigned> ForceTargetNumScalarRegs( 144 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of scalar registers.")); 146 147 static cl::opt<unsigned> ForceTargetNumVectorRegs( 148 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of vector registers.")); 150 151 /// Maximum vectorization interleave count. 152 static const unsigned MaxInterleaveFactor = 16; 153 154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 155 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's max interleave factor for " 157 "scalar loops.")); 158 159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 160 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's max interleave factor for " 162 "vectorized loops.")); 163 164 static cl::opt<unsigned> ForceTargetInstructionCost( 165 "force-target-instruction-cost", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's expected cost for " 167 "an instruction to a single constant value. Mostly " 168 "useful for getting consistent testing.")); 169 170 static cl::opt<unsigned> SmallLoopCost( 171 "small-loop-cost", cl::init(20), cl::Hidden, 172 cl::desc( 173 "The cost of a loop that is considered 'small' by the interleaver.")); 174 175 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 176 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 177 cl::desc("Enable the use of the block frequency analysis to access PGO " 178 "heuristics minimizing code growth in cold regions and being more " 179 "aggressive in hot regions.")); 180 181 // Runtime interleave loops for load/store throughput. 182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 183 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 184 cl::desc( 185 "Enable runtime interleaving until load/store ports are saturated")); 186 187 /// The number of stores in a loop that are allowed to need predication. 188 static cl::opt<unsigned> NumberOfStoresToPredicate( 189 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 190 cl::desc("Max number of stores to be predicated behind an if.")); 191 192 static cl::opt<bool> EnableIndVarRegisterHeur( 193 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 194 cl::desc("Count the induction variable only once when interleaving")); 195 196 static cl::opt<bool> EnableCondStoresVectorization( 197 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 198 cl::desc("Enable if predication of stores during vectorization.")); 199 200 static cl::opt<unsigned> MaxNestedScalarReductionIC( 201 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 202 cl::desc("The maximum interleave count to use when interleaving a scalar " 203 "reduction in a nested loop.")); 204 205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 206 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 207 cl::desc("The maximum allowed number of runtime memory checks with a " 208 "vectorize(enable) pragma.")); 209 210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 211 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed.")); 213 214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 215 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed with a " 217 "vectorize(enable) pragma")); 218 219 /// Create an analysis remark that explains why vectorization failed 220 /// 221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 222 /// RemarkName is the identifier for the remark. If \p I is passed it is an 223 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 224 /// the location of the remark. \return the remark object that can be 225 /// streamed to. 226 static OptimizationRemarkAnalysis 227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 228 Instruction *I = nullptr) { 229 Value *CodeRegion = TheLoop->getHeader(); 230 DebugLoc DL = TheLoop->getStartLoc(); 231 232 if (I) { 233 CodeRegion = I->getParent(); 234 // If there is no debug location attached to the instruction, revert back to 235 // using the loop's. 236 if (I->getDebugLoc()) 237 DL = I->getDebugLoc(); 238 } 239 240 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 241 R << "loop not vectorized: "; 242 return R; 243 } 244 245 namespace { 246 247 // Forward declarations. 248 class LoopVectorizeHints; 249 class LoopVectorizationLegality; 250 class LoopVectorizationCostModel; 251 class LoopVectorizationRequirements; 252 253 /// Returns true if the given loop body has a cycle, excluding the loop 254 /// itself. 255 static bool hasCyclesInLoopBody(const Loop &L) { 256 if (!L.empty()) 257 return true; 258 259 for (const auto &SCC : 260 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 261 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 262 if (SCC.size() > 1) { 263 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 264 DEBUG(L.dump()); 265 return true; 266 } 267 } 268 return false; 269 } 270 271 /// A helper function for converting Scalar types to vector types. 272 /// If the incoming type is void, we return void. If the VF is 1, we return 273 /// the scalar type. 274 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 275 if (Scalar->isVoidTy() || VF == 1) 276 return Scalar; 277 return VectorType::get(Scalar, VF); 278 } 279 280 // FIXME: The following helper functions have multiple implementations 281 // in the project. They can be effectively organized in a common Load/Store 282 // utilities unit. 283 284 /// A helper function that returns the pointer operand of a load or store 285 /// instruction. 286 static Value *getPointerOperand(Value *I) { 287 if (auto *LI = dyn_cast<LoadInst>(I)) 288 return LI->getPointerOperand(); 289 if (auto *SI = dyn_cast<StoreInst>(I)) 290 return SI->getPointerOperand(); 291 return nullptr; 292 } 293 294 /// A helper function that returns the type of loaded or stored value. 295 static Type *getMemInstValueType(Value *I) { 296 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 297 "Expected Load or Store instruction"); 298 if (auto *LI = dyn_cast<LoadInst>(I)) 299 return LI->getType(); 300 return cast<StoreInst>(I)->getValueOperand()->getType(); 301 } 302 303 /// A helper function that returns the alignment of load or store instruction. 304 static unsigned getMemInstAlignment(Value *I) { 305 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 306 "Expected Load or Store instruction"); 307 if (auto *LI = dyn_cast<LoadInst>(I)) 308 return LI->getAlignment(); 309 return cast<StoreInst>(I)->getAlignment(); 310 } 311 312 /// A helper function that returns the address space of the pointer operand of 313 /// load or store instruction. 314 static unsigned getMemInstAddressSpace(Value *I) { 315 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 316 "Expected Load or Store instruction"); 317 if (auto *LI = dyn_cast<LoadInst>(I)) 318 return LI->getPointerAddressSpace(); 319 return cast<StoreInst>(I)->getPointerAddressSpace(); 320 } 321 322 /// A helper function that returns true if the given type is irregular. The 323 /// type is irregular if its allocated size doesn't equal the store size of an 324 /// element of the corresponding vector type at the given vectorization factor. 325 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 326 327 // Determine if an array of VF elements of type Ty is "bitcast compatible" 328 // with a <VF x Ty> vector. 329 if (VF > 1) { 330 auto *VectorTy = VectorType::get(Ty, VF); 331 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 332 } 333 334 // If the vectorization factor is one, we just check if an array of type Ty 335 // requires padding between elements. 336 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 337 } 338 339 /// A helper function that returns the reciprocal of the block probability of 340 /// predicated blocks. If we return X, we are assuming the predicated block 341 /// will execute once for for every X iterations of the loop header. 342 /// 343 /// TODO: We should use actual block probability here, if available. Currently, 344 /// we always assume predicated blocks have a 50% chance of executing. 345 static unsigned getReciprocalPredBlockProb() { return 2; } 346 347 /// A helper function that adds a 'fast' flag to floating-point operations. 348 static Value *addFastMathFlag(Value *V) { 349 if (isa<FPMathOperator>(V)) { 350 FastMathFlags Flags; 351 Flags.setUnsafeAlgebra(); 352 cast<Instruction>(V)->setFastMathFlags(Flags); 353 } 354 return V; 355 } 356 357 /// A helper function that returns an integer or floating-point constant with 358 /// value C. 359 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 360 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 361 : ConstantFP::get(Ty, C); 362 } 363 364 /// InnerLoopVectorizer vectorizes loops which contain only one basic 365 /// block to a specified vectorization factor (VF). 366 /// This class performs the widening of scalars into vectors, or multiple 367 /// scalars. This class also implements the following features: 368 /// * It inserts an epilogue loop for handling loops that don't have iteration 369 /// counts that are known to be a multiple of the vectorization factor. 370 /// * It handles the code generation for reduction variables. 371 /// * Scalarization (implementation using scalars) of un-vectorizable 372 /// instructions. 373 /// InnerLoopVectorizer does not perform any vectorization-legality 374 /// checks, and relies on the caller to check for the different legality 375 /// aspects. The InnerLoopVectorizer relies on the 376 /// LoopVectorizationLegality class to provide information about the induction 377 /// and reduction variables that were found to a given vectorization factor. 378 class InnerLoopVectorizer { 379 public: 380 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 381 LoopInfo *LI, DominatorTree *DT, 382 const TargetLibraryInfo *TLI, 383 const TargetTransformInfo *TTI, AssumptionCache *AC, 384 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 385 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 386 LoopVectorizationCostModel *CM) 387 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 388 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 389 Builder(PSE.getSE()->getContext()), Induction(nullptr), 390 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 391 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 392 AddedSafetyChecks(false) {} 393 394 // Perform the actual loop widening (vectorization). 395 void vectorize() { 396 // Create a new empty loop. Unlink the old loop and connect the new one. 397 createEmptyLoop(); 398 // Widen each instruction in the old loop to a new one in the new loop. 399 vectorizeLoop(); 400 } 401 402 // Return true if any runtime check is added. 403 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 404 405 virtual ~InnerLoopVectorizer() {} 406 407 protected: 408 /// A small list of PHINodes. 409 typedef SmallVector<PHINode *, 4> PhiVector; 410 411 /// A type for vectorized values in the new loop. Each value from the 412 /// original loop, when vectorized, is represented by UF vector values in the 413 /// new unrolled loop, where UF is the unroll factor. 414 typedef SmallVector<Value *, 2> VectorParts; 415 416 /// A type for scalarized values in the new loop. Each value from the 417 /// original loop, when scalarized, is represented by UF x VF scalar values 418 /// in the new unrolled loop, where UF is the unroll factor and VF is the 419 /// vectorization factor. 420 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 421 422 // When we if-convert we need to create edge masks. We have to cache values 423 // so that we don't end up with exponential recursion/IR. 424 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 425 EdgeMaskCacheTy; 426 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 427 428 /// Create an empty loop, based on the loop ranges of the old loop. 429 void createEmptyLoop(); 430 431 /// Set up the values of the IVs correctly when exiting the vector loop. 432 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 433 Value *CountRoundDown, Value *EndValue, 434 BasicBlock *MiddleBlock); 435 436 /// Create a new induction variable inside L. 437 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 438 Value *Step, Instruction *DL); 439 /// Copy and widen the instructions from the old loop. 440 virtual void vectorizeLoop(); 441 442 /// Handle all cross-iteration phis in the header. 443 void fixCrossIterationPHIs(); 444 445 /// Fix a first-order recurrence. This is the second phase of vectorizing 446 /// this phi node. 447 void fixFirstOrderRecurrence(PHINode *Phi); 448 449 /// Fix a reduction cross-iteration phi. This is the second phase of 450 /// vectorizing this phi node. 451 void fixReduction(PHINode *Phi); 452 453 /// \brief The Loop exit block may have single value PHI nodes where the 454 /// incoming value is 'Undef'. While vectorizing we only handled real values 455 /// that were defined inside the loop. Here we fix the 'undef case'. 456 /// See PR14725. 457 void fixLCSSAPHIs(); 458 459 /// Iteratively sink the scalarized operands of a predicated instruction into 460 /// the block that was created for it. 461 void sinkScalarOperands(Instruction *PredInst); 462 463 /// Predicate conditional instructions that require predication on their 464 /// respective conditions. 465 void predicateInstructions(); 466 467 /// Collect the instructions from the original loop that would be trivially 468 /// dead in the vectorized loop if generated. 469 void collectTriviallyDeadInstructions( 470 SmallPtrSetImpl<Instruction *> &DeadInstructions); 471 472 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 473 /// represented as. 474 void truncateToMinimalBitwidths(); 475 476 /// A helper function that computes the predicate of the block BB, assuming 477 /// that the header block of the loop is set to True. It returns the *entry* 478 /// mask for the block BB. 479 VectorParts createBlockInMask(BasicBlock *BB); 480 /// A helper function that computes the predicate of the edge between SRC 481 /// and DST. 482 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 483 484 /// A helper function to vectorize a single instruction within the innermost 485 /// loop. 486 void vectorizeInstruction(Instruction &I); 487 488 /// Vectorize a single PHINode in a block. This method handles the induction 489 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 490 /// arbitrary length vectors. 491 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 492 493 /// Insert the new loop to the loop hierarchy and pass manager 494 /// and update the analysis passes. 495 void updateAnalysis(); 496 497 /// This instruction is un-vectorizable. Implement it as a sequence 498 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 499 /// scalarized instruction behind an if block predicated on the control 500 /// dependence of the instruction. 501 virtual void scalarizeInstruction(Instruction *Instr, 502 bool IfPredicateInstr = false); 503 504 /// Vectorize Load and Store instructions, 505 virtual void vectorizeMemoryInstruction(Instruction *Instr); 506 507 /// Create a broadcast instruction. This method generates a broadcast 508 /// instruction (shuffle) for loop invariant values and for the induction 509 /// value. If this is the induction variable then we extend it to N, N+1, ... 510 /// this is needed because each iteration in the loop corresponds to a SIMD 511 /// element. 512 virtual Value *getBroadcastInstrs(Value *V); 513 514 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 515 /// to each vector element of Val. The sequence starts at StartIndex. 516 /// \p Opcode is relevant for FP induction variable. 517 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 518 Instruction::BinaryOps Opcode = 519 Instruction::BinaryOpsEnd); 520 521 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 522 /// variable on which to base the steps, \p Step is the size of the step, and 523 /// \p EntryVal is the value from the original loop that maps to the steps. 524 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 525 /// can be a truncate instruction). 526 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 527 const InductionDescriptor &ID); 528 529 /// Create a vector induction phi node based on an existing scalar one. \p 530 /// EntryVal is the value from the original loop that maps to the vector phi 531 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 532 /// truncate instruction, instead of widening the original IV, we widen a 533 /// version of the IV truncated to \p EntryVal's type. 534 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 535 Value *Step, Instruction *EntryVal); 536 537 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 538 /// is provided, the integer induction variable will first be truncated to 539 /// the corresponding type. 540 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 541 542 /// Returns true if an instruction \p I should be scalarized instead of 543 /// vectorized for the chosen vectorization factor. 544 bool shouldScalarizeInstruction(Instruction *I) const; 545 546 /// Returns true if we should generate a scalar version of \p IV. 547 bool needsScalarInduction(Instruction *IV) const; 548 549 /// Return a constant reference to the VectorParts corresponding to \p V from 550 /// the original loop. If the value has already been vectorized, the 551 /// corresponding vector entry in VectorLoopValueMap is returned. If, 552 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 553 /// new vector values on-demand by inserting the scalar values into vectors 554 /// with an insertelement sequence. If the value has been neither vectorized 555 /// nor scalarized, it must be loop invariant, so we simply broadcast the 556 /// value into vectors. 557 const VectorParts &getVectorValue(Value *V); 558 559 /// Return a value in the new loop corresponding to \p V from the original 560 /// loop at unroll index \p Part and vector index \p Lane. If the value has 561 /// been vectorized but not scalarized, the necessary extractelement 562 /// instruction will be generated. 563 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 564 565 /// Try to vectorize the interleaved access group that \p Instr belongs to. 566 void vectorizeInterleaveGroup(Instruction *Instr); 567 568 /// Generate a shuffle sequence that will reverse the vector Vec. 569 virtual Value *reverseVector(Value *Vec); 570 571 /// Returns (and creates if needed) the original loop trip count. 572 Value *getOrCreateTripCount(Loop *NewLoop); 573 574 /// Returns (and creates if needed) the trip count of the widened loop. 575 Value *getOrCreateVectorTripCount(Loop *NewLoop); 576 577 /// Emit a bypass check to see if the trip count would overflow, or we 578 /// wouldn't have enough iterations to execute one vector loop. 579 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 580 /// Emit a bypass check to see if the vector trip count is nonzero. 581 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 582 /// Emit a bypass check to see if all of the SCEV assumptions we've 583 /// had to make are correct. 584 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 585 /// Emit bypass checks to check any memory assumptions we may have made. 586 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 587 588 /// Add additional metadata to \p To that was not present on \p Orig. 589 /// 590 /// Currently this is used to add the noalias annotations based on the 591 /// inserted memchecks. Use this for instructions that are *cloned* into the 592 /// vector loop. 593 void addNewMetadata(Instruction *To, const Instruction *Orig); 594 595 /// Add metadata from one instruction to another. 596 /// 597 /// This includes both the original MDs from \p From and additional ones (\see 598 /// addNewMetadata). Use this for *newly created* instructions in the vector 599 /// loop. 600 void addMetadata(Instruction *To, Instruction *From); 601 602 /// \brief Similar to the previous function but it adds the metadata to a 603 /// vector of instructions. 604 void addMetadata(ArrayRef<Value *> To, Instruction *From); 605 606 /// \brief Set the debug location in the builder using the debug location in 607 /// the instruction. 608 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 609 610 /// This is a helper class for maintaining vectorization state. It's used for 611 /// mapping values from the original loop to their corresponding values in 612 /// the new loop. Two mappings are maintained: one for vectorized values and 613 /// one for scalarized values. Vectorized values are represented with UF 614 /// vector values in the new loop, and scalarized values are represented with 615 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 616 /// vectorization factors, respectively. 617 /// 618 /// Entries can be added to either map with initVector and initScalar, which 619 /// initialize and return a constant reference to the new entry. If a 620 /// non-constant reference to a vector entry is required, getVector can be 621 /// used to retrieve a mutable entry. We currently directly modify the mapped 622 /// values during "fix-up" operations that occur once the first phase of 623 /// widening is complete. These operations include type truncation and the 624 /// second phase of recurrence widening. 625 /// 626 /// Otherwise, entries from either map should be accessed using the 627 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 628 /// getVectorValue and getScalarValue coordinate to generate a vector or 629 /// scalar value on-demand if one is not yet available. When vectorizing a 630 /// loop, we visit the definition of an instruction before its uses. When 631 /// visiting the definition, we either vectorize or scalarize the 632 /// instruction, creating an entry for it in the corresponding map. (In some 633 /// cases, such as induction variables, we will create both vector and scalar 634 /// entries.) Then, as we encounter uses of the definition, we derive values 635 /// for each scalar or vector use unless such a value is already available. 636 /// For example, if we scalarize a definition and one of its uses is vector, 637 /// we build the required vector on-demand with an insertelement sequence 638 /// when visiting the use. Otherwise, if the use is scalar, we can use the 639 /// existing scalar definition. 640 struct ValueMap { 641 642 /// Construct an empty map with the given unroll and vectorization factors. 643 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 644 : UF(UnrollFactor), VF(VecWidth) { 645 // The unroll and vectorization factors are only used in asserts builds 646 // to verify map entries are sized appropriately. 647 (void)UF; 648 (void)VF; 649 } 650 651 /// \return True if the map has a vector entry for \p Key. 652 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 653 654 /// \return True if the map has a scalar entry for \p Key. 655 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 656 657 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 658 /// constant reference to the new vector map entry. The given key should 659 /// not already be in the map, and the given VectorParts should be 660 /// correctly sized for the current unroll factor. 661 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 662 assert(!hasVector(Key) && "Vector entry already initialized"); 663 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 664 VectorMapStorage[Key] = Entry; 665 return VectorMapStorage[Key]; 666 } 667 668 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 669 /// constant reference to the new scalar map entry. The given key should 670 /// not already be in the map, and the given ScalarParts should be 671 /// correctly sized for the current unroll and vectorization factors. 672 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 673 assert(!hasScalar(Key) && "Scalar entry already initialized"); 674 assert(Entry.size() == UF && 675 all_of(make_range(Entry.begin(), Entry.end()), 676 [&](const SmallVectorImpl<Value *> &Values) -> bool { 677 return Values.size() == VF; 678 }) && 679 "ScalarParts has wrong dimensions"); 680 ScalarMapStorage[Key] = Entry; 681 return ScalarMapStorage[Key]; 682 } 683 684 /// \return A reference to the vector map entry corresponding to \p Key. 685 /// The key should already be in the map. This function should only be used 686 /// when it's necessary to update values that have already been vectorized. 687 /// This is the case for "fix-up" operations including type truncation and 688 /// the second phase of recurrence vectorization. If a non-const reference 689 /// isn't required, getVectorValue should be used instead. 690 VectorParts &getVector(Value *Key) { 691 assert(hasVector(Key) && "Vector entry not initialized"); 692 return VectorMapStorage.find(Key)->second; 693 } 694 695 /// Retrieve an entry from the vector or scalar maps. The preferred way to 696 /// access an existing mapped entry is with getVectorValue or 697 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 698 /// moved inside ValueMap, we have to declare them as friends. 699 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 700 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 701 unsigned Lane); 702 703 private: 704 /// The unroll factor. Each entry in the vector map contains UF vector 705 /// values. 706 unsigned UF; 707 708 /// The vectorization factor. Each entry in the scalar map contains UF x VF 709 /// scalar values. 710 unsigned VF; 711 712 /// The vector and scalar map storage. We use std::map and not DenseMap 713 /// because insertions to DenseMap invalidate its iterators. 714 std::map<Value *, VectorParts> VectorMapStorage; 715 std::map<Value *, ScalarParts> ScalarMapStorage; 716 }; 717 718 /// The original loop. 719 Loop *OrigLoop; 720 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 721 /// dynamic knowledge to simplify SCEV expressions and converts them to a 722 /// more usable form. 723 PredicatedScalarEvolution &PSE; 724 /// Loop Info. 725 LoopInfo *LI; 726 /// Dominator Tree. 727 DominatorTree *DT; 728 /// Alias Analysis. 729 AliasAnalysis *AA; 730 /// Target Library Info. 731 const TargetLibraryInfo *TLI; 732 /// Target Transform Info. 733 const TargetTransformInfo *TTI; 734 /// Assumption Cache. 735 AssumptionCache *AC; 736 /// Interface to emit optimization remarks. 737 OptimizationRemarkEmitter *ORE; 738 739 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 740 /// used. 741 /// 742 /// This is currently only used to add no-alias metadata based on the 743 /// memchecks. The actually versioning is performed manually. 744 std::unique_ptr<LoopVersioning> LVer; 745 746 /// The vectorization SIMD factor to use. Each vector will have this many 747 /// vector elements. 748 unsigned VF; 749 750 protected: 751 /// The vectorization unroll factor to use. Each scalar is vectorized to this 752 /// many different vector instructions. 753 unsigned UF; 754 755 /// The builder that we use 756 IRBuilder<> Builder; 757 758 // --- Vectorization state --- 759 760 /// The vector-loop preheader. 761 BasicBlock *LoopVectorPreHeader; 762 /// The scalar-loop preheader. 763 BasicBlock *LoopScalarPreHeader; 764 /// Middle Block between the vector and the scalar. 765 BasicBlock *LoopMiddleBlock; 766 /// The ExitBlock of the scalar loop. 767 BasicBlock *LoopExitBlock; 768 /// The vector loop body. 769 BasicBlock *LoopVectorBody; 770 /// The scalar loop body. 771 BasicBlock *LoopScalarBody; 772 /// A list of all bypass blocks. The first block is the entry of the loop. 773 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 774 775 /// The new Induction variable which was added to the new block. 776 PHINode *Induction; 777 /// The induction variable of the old basic block. 778 PHINode *OldInduction; 779 780 /// Maps values from the original loop to their corresponding values in the 781 /// vectorized loop. A key value can map to either vector values, scalar 782 /// values or both kinds of values, depending on whether the key was 783 /// vectorized and scalarized. 784 ValueMap VectorLoopValueMap; 785 786 /// Store instructions that should be predicated, as a pair 787 /// <StoreInst, Predicate> 788 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 789 EdgeMaskCacheTy EdgeMaskCache; 790 BlockMaskCacheTy BlockMaskCache; 791 /// Trip count of the original loop. 792 Value *TripCount; 793 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 794 Value *VectorTripCount; 795 796 /// The legality analysis. 797 LoopVectorizationLegality *Legal; 798 799 /// The profitablity analysis. 800 LoopVectorizationCostModel *Cost; 801 802 // Record whether runtime checks are added. 803 bool AddedSafetyChecks; 804 805 // Holds the end values for each induction variable. We save the end values 806 // so we can later fix-up the external users of the induction variables. 807 DenseMap<PHINode *, Value *> IVEndValues; 808 }; 809 810 class InnerLoopUnroller : public InnerLoopVectorizer { 811 public: 812 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 813 LoopInfo *LI, DominatorTree *DT, 814 const TargetLibraryInfo *TLI, 815 const TargetTransformInfo *TTI, AssumptionCache *AC, 816 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 817 LoopVectorizationLegality *LVL, 818 LoopVectorizationCostModel *CM) 819 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 820 UnrollFactor, LVL, CM) {} 821 822 private: 823 void vectorizeMemoryInstruction(Instruction *Instr) override; 824 Value *getBroadcastInstrs(Value *V) override; 825 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 826 Instruction::BinaryOps Opcode = 827 Instruction::BinaryOpsEnd) override; 828 Value *reverseVector(Value *Vec) override; 829 }; 830 831 /// \brief Look for a meaningful debug location on the instruction or it's 832 /// operands. 833 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 834 if (!I) 835 return I; 836 837 DebugLoc Empty; 838 if (I->getDebugLoc() != Empty) 839 return I; 840 841 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 842 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 843 if (OpInst->getDebugLoc() != Empty) 844 return OpInst; 845 } 846 847 return I; 848 } 849 850 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 851 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 852 const DILocation *DIL = Inst->getDebugLoc(); 853 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 854 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 855 else 856 B.SetCurrentDebugLocation(DIL); 857 } else 858 B.SetCurrentDebugLocation(DebugLoc()); 859 } 860 861 #ifndef NDEBUG 862 /// \return string containing a file name and a line # for the given loop. 863 static std::string getDebugLocString(const Loop *L) { 864 std::string Result; 865 if (L) { 866 raw_string_ostream OS(Result); 867 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 868 LoopDbgLoc.print(OS); 869 else 870 // Just print the module name. 871 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 872 OS.flush(); 873 } 874 return Result; 875 } 876 #endif 877 878 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 879 const Instruction *Orig) { 880 // If the loop was versioned with memchecks, add the corresponding no-alias 881 // metadata. 882 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 883 LVer->annotateInstWithNoAlias(To, Orig); 884 } 885 886 void InnerLoopVectorizer::addMetadata(Instruction *To, 887 Instruction *From) { 888 propagateMetadata(To, From); 889 addNewMetadata(To, From); 890 } 891 892 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 893 Instruction *From) { 894 for (Value *V : To) { 895 if (Instruction *I = dyn_cast<Instruction>(V)) 896 addMetadata(I, From); 897 } 898 } 899 900 /// \brief The group of interleaved loads/stores sharing the same stride and 901 /// close to each other. 902 /// 903 /// Each member in this group has an index starting from 0, and the largest 904 /// index should be less than interleaved factor, which is equal to the absolute 905 /// value of the access's stride. 906 /// 907 /// E.g. An interleaved load group of factor 4: 908 /// for (unsigned i = 0; i < 1024; i+=4) { 909 /// a = A[i]; // Member of index 0 910 /// b = A[i+1]; // Member of index 1 911 /// d = A[i+3]; // Member of index 3 912 /// ... 913 /// } 914 /// 915 /// An interleaved store group of factor 4: 916 /// for (unsigned i = 0; i < 1024; i+=4) { 917 /// ... 918 /// A[i] = a; // Member of index 0 919 /// A[i+1] = b; // Member of index 1 920 /// A[i+2] = c; // Member of index 2 921 /// A[i+3] = d; // Member of index 3 922 /// } 923 /// 924 /// Note: the interleaved load group could have gaps (missing members), but 925 /// the interleaved store group doesn't allow gaps. 926 class InterleaveGroup { 927 public: 928 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 929 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 930 assert(Align && "The alignment should be non-zero"); 931 932 Factor = std::abs(Stride); 933 assert(Factor > 1 && "Invalid interleave factor"); 934 935 Reverse = Stride < 0; 936 Members[0] = Instr; 937 } 938 939 bool isReverse() const { return Reverse; } 940 unsigned getFactor() const { return Factor; } 941 unsigned getAlignment() const { return Align; } 942 unsigned getNumMembers() const { return Members.size(); } 943 944 /// \brief Try to insert a new member \p Instr with index \p Index and 945 /// alignment \p NewAlign. The index is related to the leader and it could be 946 /// negative if it is the new leader. 947 /// 948 /// \returns false if the instruction doesn't belong to the group. 949 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 950 assert(NewAlign && "The new member's alignment should be non-zero"); 951 952 int Key = Index + SmallestKey; 953 954 // Skip if there is already a member with the same index. 955 if (Members.count(Key)) 956 return false; 957 958 if (Key > LargestKey) { 959 // The largest index is always less than the interleave factor. 960 if (Index >= static_cast<int>(Factor)) 961 return false; 962 963 LargestKey = Key; 964 } else if (Key < SmallestKey) { 965 // The largest index is always less than the interleave factor. 966 if (LargestKey - Key >= static_cast<int>(Factor)) 967 return false; 968 969 SmallestKey = Key; 970 } 971 972 // It's always safe to select the minimum alignment. 973 Align = std::min(Align, NewAlign); 974 Members[Key] = Instr; 975 return true; 976 } 977 978 /// \brief Get the member with the given index \p Index 979 /// 980 /// \returns nullptr if contains no such member. 981 Instruction *getMember(unsigned Index) const { 982 int Key = SmallestKey + Index; 983 if (!Members.count(Key)) 984 return nullptr; 985 986 return Members.find(Key)->second; 987 } 988 989 /// \brief Get the index for the given member. Unlike the key in the member 990 /// map, the index starts from 0. 991 unsigned getIndex(Instruction *Instr) const { 992 for (auto I : Members) 993 if (I.second == Instr) 994 return I.first - SmallestKey; 995 996 llvm_unreachable("InterleaveGroup contains no such member"); 997 } 998 999 Instruction *getInsertPos() const { return InsertPos; } 1000 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 1001 1002 private: 1003 unsigned Factor; // Interleave Factor. 1004 bool Reverse; 1005 unsigned Align; 1006 DenseMap<int, Instruction *> Members; 1007 int SmallestKey; 1008 int LargestKey; 1009 1010 // To avoid breaking dependences, vectorized instructions of an interleave 1011 // group should be inserted at either the first load or the last store in 1012 // program order. 1013 // 1014 // E.g. %even = load i32 // Insert Position 1015 // %add = add i32 %even // Use of %even 1016 // %odd = load i32 1017 // 1018 // store i32 %even 1019 // %odd = add i32 // Def of %odd 1020 // store i32 %odd // Insert Position 1021 Instruction *InsertPos; 1022 }; 1023 1024 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1025 /// 1026 /// Use this class to analyze interleaved accesses only when we can vectorize 1027 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1028 /// on interleaved accesses is unsafe. 1029 /// 1030 /// The analysis collects interleave groups and records the relationships 1031 /// between the member and the group in a map. 1032 class InterleavedAccessInfo { 1033 public: 1034 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1035 DominatorTree *DT, LoopInfo *LI) 1036 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1037 RequiresScalarEpilogue(false) {} 1038 1039 ~InterleavedAccessInfo() { 1040 SmallSet<InterleaveGroup *, 4> DelSet; 1041 // Avoid releasing a pointer twice. 1042 for (auto &I : InterleaveGroupMap) 1043 DelSet.insert(I.second); 1044 for (auto *Ptr : DelSet) 1045 delete Ptr; 1046 } 1047 1048 /// \brief Analyze the interleaved accesses and collect them in interleave 1049 /// groups. Substitute symbolic strides using \p Strides. 1050 void analyzeInterleaving(const ValueToValueMap &Strides); 1051 1052 /// \brief Check if \p Instr belongs to any interleave group. 1053 bool isInterleaved(Instruction *Instr) const { 1054 return InterleaveGroupMap.count(Instr); 1055 } 1056 1057 /// \brief Return the maximum interleave factor of all interleaved groups. 1058 unsigned getMaxInterleaveFactor() const { 1059 unsigned MaxFactor = 1; 1060 for (auto &Entry : InterleaveGroupMap) 1061 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1062 return MaxFactor; 1063 } 1064 1065 /// \brief Get the interleave group that \p Instr belongs to. 1066 /// 1067 /// \returns nullptr if doesn't have such group. 1068 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1069 if (InterleaveGroupMap.count(Instr)) 1070 return InterleaveGroupMap.find(Instr)->second; 1071 return nullptr; 1072 } 1073 1074 /// \brief Returns true if an interleaved group that may access memory 1075 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1076 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1077 1078 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1079 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1080 1081 private: 1082 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1083 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1084 /// The interleaved access analysis can also add new predicates (for example 1085 /// by versioning strides of pointers). 1086 PredicatedScalarEvolution &PSE; 1087 Loop *TheLoop; 1088 DominatorTree *DT; 1089 LoopInfo *LI; 1090 const LoopAccessInfo *LAI; 1091 1092 /// True if the loop may contain non-reversed interleaved groups with 1093 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1094 /// out-of-bounds by executing at least one scalar epilogue iteration. 1095 bool RequiresScalarEpilogue; 1096 1097 /// Holds the relationships between the members and the interleave group. 1098 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1099 1100 /// Holds dependences among the memory accesses in the loop. It maps a source 1101 /// access to a set of dependent sink accesses. 1102 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1103 1104 /// \brief The descriptor for a strided memory access. 1105 struct StrideDescriptor { 1106 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1107 unsigned Align) 1108 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1109 1110 StrideDescriptor() = default; 1111 1112 // The access's stride. It is negative for a reverse access. 1113 int64_t Stride = 0; 1114 const SCEV *Scev = nullptr; // The scalar expression of this access 1115 uint64_t Size = 0; // The size of the memory object. 1116 unsigned Align = 0; // The alignment of this access. 1117 }; 1118 1119 /// \brief A type for holding instructions and their stride descriptors. 1120 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1121 1122 /// \brief Create a new interleave group with the given instruction \p Instr, 1123 /// stride \p Stride and alignment \p Align. 1124 /// 1125 /// \returns the newly created interleave group. 1126 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1127 unsigned Align) { 1128 assert(!InterleaveGroupMap.count(Instr) && 1129 "Already in an interleaved access group"); 1130 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1131 return InterleaveGroupMap[Instr]; 1132 } 1133 1134 /// \brief Release the group and remove all the relationships. 1135 void releaseGroup(InterleaveGroup *Group) { 1136 for (unsigned i = 0; i < Group->getFactor(); i++) 1137 if (Instruction *Member = Group->getMember(i)) 1138 InterleaveGroupMap.erase(Member); 1139 1140 delete Group; 1141 } 1142 1143 /// \brief Collect all the accesses with a constant stride in program order. 1144 void collectConstStrideAccesses( 1145 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1146 const ValueToValueMap &Strides); 1147 1148 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1149 static bool isStrided(int Stride) { 1150 unsigned Factor = std::abs(Stride); 1151 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1152 } 1153 1154 /// \brief Returns true if \p BB is a predicated block. 1155 bool isPredicated(BasicBlock *BB) const { 1156 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1157 } 1158 1159 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1160 bool areDependencesValid() const { 1161 return LAI && LAI->getDepChecker().getDependences(); 1162 } 1163 1164 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1165 /// necessary, when constructing interleaved groups. 1166 /// 1167 /// \p A must precede \p B in program order. We return false if reordering is 1168 /// not necessary or is prevented because \p A and \p B may be dependent. 1169 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1170 StrideEntry *B) const { 1171 1172 // Code motion for interleaved accesses can potentially hoist strided loads 1173 // and sink strided stores. The code below checks the legality of the 1174 // following two conditions: 1175 // 1176 // 1. Potentially moving a strided load (B) before any store (A) that 1177 // precedes B, or 1178 // 1179 // 2. Potentially moving a strided store (A) after any load or store (B) 1180 // that A precedes. 1181 // 1182 // It's legal to reorder A and B if we know there isn't a dependence from A 1183 // to B. Note that this determination is conservative since some 1184 // dependences could potentially be reordered safely. 1185 1186 // A is potentially the source of a dependence. 1187 auto *Src = A->first; 1188 auto SrcDes = A->second; 1189 1190 // B is potentially the sink of a dependence. 1191 auto *Sink = B->first; 1192 auto SinkDes = B->second; 1193 1194 // Code motion for interleaved accesses can't violate WAR dependences. 1195 // Thus, reordering is legal if the source isn't a write. 1196 if (!Src->mayWriteToMemory()) 1197 return true; 1198 1199 // At least one of the accesses must be strided. 1200 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1201 return true; 1202 1203 // If dependence information is not available from LoopAccessInfo, 1204 // conservatively assume the instructions can't be reordered. 1205 if (!areDependencesValid()) 1206 return false; 1207 1208 // If we know there is a dependence from source to sink, assume the 1209 // instructions can't be reordered. Otherwise, reordering is legal. 1210 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1211 } 1212 1213 /// \brief Collect the dependences from LoopAccessInfo. 1214 /// 1215 /// We process the dependences once during the interleaved access analysis to 1216 /// enable constant-time dependence queries. 1217 void collectDependences() { 1218 if (!areDependencesValid()) 1219 return; 1220 auto *Deps = LAI->getDepChecker().getDependences(); 1221 for (auto Dep : *Deps) 1222 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1223 } 1224 }; 1225 1226 /// Utility class for getting and setting loop vectorizer hints in the form 1227 /// of loop metadata. 1228 /// This class keeps a number of loop annotations locally (as member variables) 1229 /// and can, upon request, write them back as metadata on the loop. It will 1230 /// initially scan the loop for existing metadata, and will update the local 1231 /// values based on information in the loop. 1232 /// We cannot write all values to metadata, as the mere presence of some info, 1233 /// for example 'force', means a decision has been made. So, we need to be 1234 /// careful NOT to add them if the user hasn't specifically asked so. 1235 class LoopVectorizeHints { 1236 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1237 1238 /// Hint - associates name and validation with the hint value. 1239 struct Hint { 1240 const char *Name; 1241 unsigned Value; // This may have to change for non-numeric values. 1242 HintKind Kind; 1243 1244 Hint(const char *Name, unsigned Value, HintKind Kind) 1245 : Name(Name), Value(Value), Kind(Kind) {} 1246 1247 bool validate(unsigned Val) { 1248 switch (Kind) { 1249 case HK_WIDTH: 1250 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1251 case HK_UNROLL: 1252 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1253 case HK_FORCE: 1254 return (Val <= 1); 1255 } 1256 return false; 1257 } 1258 }; 1259 1260 /// Vectorization width. 1261 Hint Width; 1262 /// Vectorization interleave factor. 1263 Hint Interleave; 1264 /// Vectorization forced 1265 Hint Force; 1266 1267 /// Return the loop metadata prefix. 1268 static StringRef Prefix() { return "llvm.loop."; } 1269 1270 /// True if there is any unsafe math in the loop. 1271 bool PotentiallyUnsafe; 1272 1273 public: 1274 enum ForceKind { 1275 FK_Undefined = -1, ///< Not selected. 1276 FK_Disabled = 0, ///< Forcing disabled. 1277 FK_Enabled = 1, ///< Forcing enabled. 1278 }; 1279 1280 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1281 OptimizationRemarkEmitter &ORE) 1282 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1283 HK_WIDTH), 1284 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1285 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1286 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1287 // Populate values with existing loop metadata. 1288 getHintsFromMetadata(); 1289 1290 // force-vector-interleave overrides DisableInterleaving. 1291 if (VectorizerParams::isInterleaveForced()) 1292 Interleave.Value = VectorizerParams::VectorizationInterleave; 1293 1294 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1295 << "LV: Interleaving disabled by the pass manager\n"); 1296 } 1297 1298 /// Mark the loop L as already vectorized by setting the width to 1. 1299 void setAlreadyVectorized() { 1300 Width.Value = Interleave.Value = 1; 1301 Hint Hints[] = {Width, Interleave}; 1302 writeHintsToMetadata(Hints); 1303 } 1304 1305 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1306 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1307 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1308 emitRemarkWithHints(); 1309 return false; 1310 } 1311 1312 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1313 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1314 emitRemarkWithHints(); 1315 return false; 1316 } 1317 1318 if (getWidth() == 1 && getInterleave() == 1) { 1319 // FIXME: Add a separate metadata to indicate when the loop has already 1320 // been vectorized instead of setting width and count to 1. 1321 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1322 // FIXME: Add interleave.disable metadata. This will allow 1323 // vectorize.disable to be used without disabling the pass and errors 1324 // to differentiate between disabled vectorization and a width of 1. 1325 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1326 "AllDisabled", L->getStartLoc(), 1327 L->getHeader()) 1328 << "loop not vectorized: vectorization and interleaving are " 1329 "explicitly disabled, or vectorize width and interleave " 1330 "count are both set to 1"); 1331 return false; 1332 } 1333 1334 return true; 1335 } 1336 1337 /// Dumps all the hint information. 1338 void emitRemarkWithHints() const { 1339 using namespace ore; 1340 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1341 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1342 TheLoop->getStartLoc(), 1343 TheLoop->getHeader()) 1344 << "loop not vectorized: vectorization is explicitly disabled"); 1345 else { 1346 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1347 TheLoop->getStartLoc(), TheLoop->getHeader()); 1348 R << "loop not vectorized"; 1349 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1350 R << " (Force=" << NV("Force", true); 1351 if (Width.Value != 0) 1352 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1353 if (Interleave.Value != 0) 1354 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1355 R << ")"; 1356 } 1357 ORE.emit(R); 1358 } 1359 } 1360 1361 unsigned getWidth() const { return Width.Value; } 1362 unsigned getInterleave() const { return Interleave.Value; } 1363 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1364 1365 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1366 /// pass name to force the frontend to print the diagnostic. 1367 const char *vectorizeAnalysisPassName() const { 1368 if (getWidth() == 1) 1369 return LV_NAME; 1370 if (getForce() == LoopVectorizeHints::FK_Disabled) 1371 return LV_NAME; 1372 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1373 return LV_NAME; 1374 return OptimizationRemarkAnalysis::AlwaysPrint; 1375 } 1376 1377 bool allowReordering() const { 1378 // When enabling loop hints are provided we allow the vectorizer to change 1379 // the order of operations that is given by the scalar loop. This is not 1380 // enabled by default because can be unsafe or inefficient. For example, 1381 // reordering floating-point operations will change the way round-off 1382 // error accumulates in the loop. 1383 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1384 } 1385 1386 bool isPotentiallyUnsafe() const { 1387 // Avoid FP vectorization if the target is unsure about proper support. 1388 // This may be related to the SIMD unit in the target not handling 1389 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1390 // Otherwise, a sequence of vectorized loops, even without reduction, 1391 // could lead to different end results on the destination vectors. 1392 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1393 } 1394 1395 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1396 1397 private: 1398 /// Find hints specified in the loop metadata and update local values. 1399 void getHintsFromMetadata() { 1400 MDNode *LoopID = TheLoop->getLoopID(); 1401 if (!LoopID) 1402 return; 1403 1404 // First operand should refer to the loop id itself. 1405 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1406 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1407 1408 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1409 const MDString *S = nullptr; 1410 SmallVector<Metadata *, 4> Args; 1411 1412 // The expected hint is either a MDString or a MDNode with the first 1413 // operand a MDString. 1414 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1415 if (!MD || MD->getNumOperands() == 0) 1416 continue; 1417 S = dyn_cast<MDString>(MD->getOperand(0)); 1418 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1419 Args.push_back(MD->getOperand(i)); 1420 } else { 1421 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1422 assert(Args.size() == 0 && "too many arguments for MDString"); 1423 } 1424 1425 if (!S) 1426 continue; 1427 1428 // Check if the hint starts with the loop metadata prefix. 1429 StringRef Name = S->getString(); 1430 if (Args.size() == 1) 1431 setHint(Name, Args[0]); 1432 } 1433 } 1434 1435 /// Checks string hint with one operand and set value if valid. 1436 void setHint(StringRef Name, Metadata *Arg) { 1437 if (!Name.startswith(Prefix())) 1438 return; 1439 Name = Name.substr(Prefix().size(), StringRef::npos); 1440 1441 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1442 if (!C) 1443 return; 1444 unsigned Val = C->getZExtValue(); 1445 1446 Hint *Hints[] = {&Width, &Interleave, &Force}; 1447 for (auto H : Hints) { 1448 if (Name == H->Name) { 1449 if (H->validate(Val)) 1450 H->Value = Val; 1451 else 1452 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1453 break; 1454 } 1455 } 1456 } 1457 1458 /// Create a new hint from name / value pair. 1459 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1460 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1461 Metadata *MDs[] = {MDString::get(Context, Name), 1462 ConstantAsMetadata::get( 1463 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1464 return MDNode::get(Context, MDs); 1465 } 1466 1467 /// Matches metadata with hint name. 1468 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1469 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1470 if (!Name) 1471 return false; 1472 1473 for (auto H : HintTypes) 1474 if (Name->getString().endswith(H.Name)) 1475 return true; 1476 return false; 1477 } 1478 1479 /// Sets current hints into loop metadata, keeping other values intact. 1480 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1481 if (HintTypes.size() == 0) 1482 return; 1483 1484 // Reserve the first element to LoopID (see below). 1485 SmallVector<Metadata *, 4> MDs(1); 1486 // If the loop already has metadata, then ignore the existing operands. 1487 MDNode *LoopID = TheLoop->getLoopID(); 1488 if (LoopID) { 1489 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1490 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1491 // If node in update list, ignore old value. 1492 if (!matchesHintMetadataName(Node, HintTypes)) 1493 MDs.push_back(Node); 1494 } 1495 } 1496 1497 // Now, add the missing hints. 1498 for (auto H : HintTypes) 1499 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1500 1501 // Replace current metadata node with new one. 1502 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1503 MDNode *NewLoopID = MDNode::get(Context, MDs); 1504 // Set operand 0 to refer to the loop id itself. 1505 NewLoopID->replaceOperandWith(0, NewLoopID); 1506 1507 TheLoop->setLoopID(NewLoopID); 1508 } 1509 1510 /// The loop these hints belong to. 1511 const Loop *TheLoop; 1512 1513 /// Interface to emit optimization remarks. 1514 OptimizationRemarkEmitter &ORE; 1515 }; 1516 1517 static void emitMissedWarning(Function *F, Loop *L, 1518 const LoopVectorizeHints &LH, 1519 OptimizationRemarkEmitter *ORE) { 1520 LH.emitRemarkWithHints(); 1521 1522 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1523 if (LH.getWidth() != 1) 1524 ORE->emit(DiagnosticInfoOptimizationFailure( 1525 DEBUG_TYPE, "FailedRequestedVectorization", 1526 L->getStartLoc(), L->getHeader()) 1527 << "loop not vectorized: " 1528 << "failed explicitly specified loop vectorization"); 1529 else if (LH.getInterleave() != 1) 1530 ORE->emit(DiagnosticInfoOptimizationFailure( 1531 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1532 L->getHeader()) 1533 << "loop not interleaved: " 1534 << "failed explicitly specified loop interleaving"); 1535 } 1536 } 1537 1538 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1539 /// to what vectorization factor. 1540 /// This class does not look at the profitability of vectorization, only the 1541 /// legality. This class has two main kinds of checks: 1542 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1543 /// will change the order of memory accesses in a way that will change the 1544 /// correctness of the program. 1545 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1546 /// checks for a number of different conditions, such as the availability of a 1547 /// single induction variable, that all types are supported and vectorize-able, 1548 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1549 /// This class is also used by InnerLoopVectorizer for identifying 1550 /// induction variable and the different reduction variables. 1551 class LoopVectorizationLegality { 1552 public: 1553 LoopVectorizationLegality( 1554 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1555 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1556 const TargetTransformInfo *TTI, 1557 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1558 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1559 LoopVectorizeHints *H) 1560 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1561 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1562 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1563 Requirements(R), Hints(H) {} 1564 1565 /// ReductionList contains the reduction descriptors for all 1566 /// of the reductions that were found in the loop. 1567 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1568 1569 /// InductionList saves induction variables and maps them to the 1570 /// induction descriptor. 1571 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1572 1573 /// RecurrenceSet contains the phi nodes that are recurrences other than 1574 /// inductions and reductions. 1575 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1576 1577 /// Returns true if it is legal to vectorize this loop. 1578 /// This does not mean that it is profitable to vectorize this 1579 /// loop, only that it is legal to do so. 1580 bool canVectorize(); 1581 1582 /// Returns the primary induction variable. 1583 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1584 1585 /// Returns the reduction variables found in the loop. 1586 ReductionList *getReductionVars() { return &Reductions; } 1587 1588 /// Returns the induction variables found in the loop. 1589 InductionList *getInductionVars() { return &Inductions; } 1590 1591 /// Return the first-order recurrences found in the loop. 1592 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1593 1594 /// Returns the widest induction type. 1595 Type *getWidestInductionType() { return WidestIndTy; } 1596 1597 /// Returns True if V is an induction variable in this loop. 1598 bool isInductionVariable(const Value *V); 1599 1600 /// Returns True if PN is a reduction variable in this loop. 1601 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1602 1603 /// Returns True if Phi is a first-order recurrence in this loop. 1604 bool isFirstOrderRecurrence(const PHINode *Phi); 1605 1606 /// Return true if the block BB needs to be predicated in order for the loop 1607 /// to be vectorized. 1608 bool blockNeedsPredication(BasicBlock *BB); 1609 1610 /// Check if this pointer is consecutive when vectorizing. This happens 1611 /// when the last index of the GEP is the induction variable, or that the 1612 /// pointer itself is an induction variable. 1613 /// This check allows us to vectorize A[idx] into a wide load/store. 1614 /// Returns: 1615 /// 0 - Stride is unknown or non-consecutive. 1616 /// 1 - Address is consecutive. 1617 /// -1 - Address is consecutive, and decreasing. 1618 int isConsecutivePtr(Value *Ptr); 1619 1620 /// Returns true if the value V is uniform within the loop. 1621 bool isUniform(Value *V); 1622 1623 /// Returns the information that we collected about runtime memory check. 1624 const RuntimePointerChecking *getRuntimePointerChecking() const { 1625 return LAI->getRuntimePointerChecking(); 1626 } 1627 1628 const LoopAccessInfo *getLAI() const { return LAI; } 1629 1630 /// \brief Check if \p Instr belongs to any interleaved access group. 1631 bool isAccessInterleaved(Instruction *Instr) { 1632 return InterleaveInfo.isInterleaved(Instr); 1633 } 1634 1635 /// \brief Return the maximum interleave factor of all interleaved groups. 1636 unsigned getMaxInterleaveFactor() const { 1637 return InterleaveInfo.getMaxInterleaveFactor(); 1638 } 1639 1640 /// \brief Get the interleaved access group that \p Instr belongs to. 1641 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1642 return InterleaveInfo.getInterleaveGroup(Instr); 1643 } 1644 1645 /// \brief Returns true if an interleaved group requires a scalar iteration 1646 /// to handle accesses with gaps. 1647 bool requiresScalarEpilogue() const { 1648 return InterleaveInfo.requiresScalarEpilogue(); 1649 } 1650 1651 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1652 1653 bool hasStride(Value *V) { return LAI->hasStride(V); } 1654 1655 /// Returns true if the target machine supports masked store operation 1656 /// for the given \p DataType and kind of access to \p Ptr. 1657 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1658 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1659 } 1660 /// Returns true if the target machine supports masked load operation 1661 /// for the given \p DataType and kind of access to \p Ptr. 1662 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1663 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1664 } 1665 /// Returns true if the target machine supports masked scatter operation 1666 /// for the given \p DataType. 1667 bool isLegalMaskedScatter(Type *DataType) { 1668 return TTI->isLegalMaskedScatter(DataType); 1669 } 1670 /// Returns true if the target machine supports masked gather operation 1671 /// for the given \p DataType. 1672 bool isLegalMaskedGather(Type *DataType) { 1673 return TTI->isLegalMaskedGather(DataType); 1674 } 1675 /// Returns true if the target machine can represent \p V as a masked gather 1676 /// or scatter operation. 1677 bool isLegalGatherOrScatter(Value *V) { 1678 auto *LI = dyn_cast<LoadInst>(V); 1679 auto *SI = dyn_cast<StoreInst>(V); 1680 if (!LI && !SI) 1681 return false; 1682 auto *Ptr = getPointerOperand(V); 1683 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1684 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1685 } 1686 1687 /// Returns true if vector representation of the instruction \p I 1688 /// requires mask. 1689 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1690 unsigned getNumStores() const { return LAI->getNumStores(); } 1691 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1692 unsigned getNumPredStores() const { return NumPredStores; } 1693 1694 /// Returns true if \p I is an instruction that will be scalarized with 1695 /// predication. Such instructions include conditional stores and 1696 /// instructions that may divide by zero. 1697 bool isScalarWithPredication(Instruction *I); 1698 1699 /// Returns true if \p I is a memory instruction with consecutive memory 1700 /// access that can be widened. 1701 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1702 1703 private: 1704 /// Check if a single basic block loop is vectorizable. 1705 /// At this point we know that this is a loop with a constant trip count 1706 /// and we only need to check individual instructions. 1707 bool canVectorizeInstrs(); 1708 1709 /// When we vectorize loops we may change the order in which 1710 /// we read and write from memory. This method checks if it is 1711 /// legal to vectorize the code, considering only memory constrains. 1712 /// Returns true if the loop is vectorizable 1713 bool canVectorizeMemory(); 1714 1715 /// Return true if we can vectorize this loop using the IF-conversion 1716 /// transformation. 1717 bool canVectorizeWithIfConvert(); 1718 1719 /// Return true if all of the instructions in the block can be speculatively 1720 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1721 /// and we know that we can read from them without segfault. 1722 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1723 1724 /// Updates the vectorization state by adding \p Phi to the inductions list. 1725 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1726 /// better choice for the main induction than the existing one. 1727 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1728 SmallPtrSetImpl<Value *> &AllowedExit); 1729 1730 /// Create an analysis remark that explains why vectorization failed 1731 /// 1732 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1733 /// an instruction that prevents vectorization. Otherwise the loop is used 1734 /// for the location of the remark. \return the remark object that can be 1735 /// streamed to. 1736 OptimizationRemarkAnalysis 1737 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1738 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1739 RemarkName, TheLoop, I); 1740 } 1741 1742 /// \brief If an access has a symbolic strides, this maps the pointer value to 1743 /// the stride symbol. 1744 const ValueToValueMap *getSymbolicStrides() { 1745 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1746 // it's collected. This happens from canVectorizeWithIfConvert, when the 1747 // pointer is checked to reference consecutive elements suitable for a 1748 // masked access. 1749 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1750 } 1751 1752 unsigned NumPredStores; 1753 1754 /// The loop that we evaluate. 1755 Loop *TheLoop; 1756 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1757 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1758 /// of existing SCEV assumptions. The analysis will also add a minimal set 1759 /// of new predicates if this is required to enable vectorization and 1760 /// unrolling. 1761 PredicatedScalarEvolution &PSE; 1762 /// Target Library Info. 1763 TargetLibraryInfo *TLI; 1764 /// Target Transform Info 1765 const TargetTransformInfo *TTI; 1766 /// Dominator Tree. 1767 DominatorTree *DT; 1768 // LoopAccess analysis. 1769 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1770 // And the loop-accesses info corresponding to this loop. This pointer is 1771 // null until canVectorizeMemory sets it up. 1772 const LoopAccessInfo *LAI; 1773 /// Interface to emit optimization remarks. 1774 OptimizationRemarkEmitter *ORE; 1775 1776 /// The interleave access information contains groups of interleaved accesses 1777 /// with the same stride and close to each other. 1778 InterleavedAccessInfo InterleaveInfo; 1779 1780 // --- vectorization state --- // 1781 1782 /// Holds the primary induction variable. This is the counter of the 1783 /// loop. 1784 PHINode *PrimaryInduction; 1785 /// Holds the reduction variables. 1786 ReductionList Reductions; 1787 /// Holds all of the induction variables that we found in the loop. 1788 /// Notice that inductions don't need to start at zero and that induction 1789 /// variables can be pointers. 1790 InductionList Inductions; 1791 /// Holds the phi nodes that are first-order recurrences. 1792 RecurrenceSet FirstOrderRecurrences; 1793 /// Holds the widest induction type encountered. 1794 Type *WidestIndTy; 1795 1796 /// Allowed outside users. This holds the induction and reduction 1797 /// vars which can be accessed from outside the loop. 1798 SmallPtrSet<Value *, 4> AllowedExit; 1799 1800 /// Can we assume the absence of NaNs. 1801 bool HasFunNoNaNAttr; 1802 1803 /// Vectorization requirements that will go through late-evaluation. 1804 LoopVectorizationRequirements *Requirements; 1805 1806 /// Used to emit an analysis of any legality issues. 1807 LoopVectorizeHints *Hints; 1808 1809 /// While vectorizing these instructions we have to generate a 1810 /// call to the appropriate masked intrinsic 1811 SmallPtrSet<const Instruction *, 8> MaskedOp; 1812 }; 1813 1814 /// LoopVectorizationCostModel - estimates the expected speedups due to 1815 /// vectorization. 1816 /// In many cases vectorization is not profitable. This can happen because of 1817 /// a number of reasons. In this class we mainly attempt to predict the 1818 /// expected speedup/slowdowns due to the supported instruction set. We use the 1819 /// TargetTransformInfo to query the different backends for the cost of 1820 /// different operations. 1821 class LoopVectorizationCostModel { 1822 public: 1823 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1824 LoopInfo *LI, LoopVectorizationLegality *Legal, 1825 const TargetTransformInfo &TTI, 1826 const TargetLibraryInfo *TLI, DemandedBits *DB, 1827 AssumptionCache *AC, 1828 OptimizationRemarkEmitter *ORE, const Function *F, 1829 const LoopVectorizeHints *Hints) 1830 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1831 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1832 1833 /// \return An upper bound for the vectorization factor, or None if 1834 /// vectorization should be avoided up front. 1835 Optional<unsigned> computeMaxVF(bool OptForSize); 1836 1837 /// Information about vectorization costs 1838 struct VectorizationFactor { 1839 unsigned Width; // Vector width with best cost 1840 unsigned Cost; // Cost of the loop with that width 1841 }; 1842 /// \return The most profitable vectorization factor and the cost of that VF. 1843 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1844 /// then this vectorization factor will be selected if vectorization is 1845 /// possible. 1846 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1847 1848 /// Setup cost-based decisions for user vectorization factor. 1849 void selectUserVectorizationFactor(unsigned UserVF) { 1850 collectUniformsAndScalars(UserVF); 1851 collectInstsToScalarize(UserVF); 1852 } 1853 1854 /// \return The size (in bits) of the smallest and widest types in the code 1855 /// that needs to be vectorized. We ignore values that remain scalar such as 1856 /// 64 bit loop indices. 1857 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1858 1859 /// \return The desired interleave count. 1860 /// If interleave count has been specified by metadata it will be returned. 1861 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1862 /// are the selected vectorization factor and the cost of the selected VF. 1863 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1864 unsigned LoopCost); 1865 1866 /// Memory access instruction may be vectorized in more than one way. 1867 /// Form of instruction after vectorization depends on cost. 1868 /// This function takes cost-based decisions for Load/Store instructions 1869 /// and collects them in a map. This decisions map is used for building 1870 /// the lists of loop-uniform and loop-scalar instructions. 1871 /// The calculated cost is saved with widening decision in order to 1872 /// avoid redundant calculations. 1873 void setCostBasedWideningDecision(unsigned VF); 1874 1875 /// \brief A struct that represents some properties of the register usage 1876 /// of a loop. 1877 struct RegisterUsage { 1878 /// Holds the number of loop invariant values that are used in the loop. 1879 unsigned LoopInvariantRegs; 1880 /// Holds the maximum number of concurrent live intervals in the loop. 1881 unsigned MaxLocalUsers; 1882 /// Holds the number of instructions in the loop. 1883 unsigned NumInstructions; 1884 }; 1885 1886 /// \return Returns information about the register usages of the loop for the 1887 /// given vectorization factors. 1888 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1889 1890 /// Collect values we want to ignore in the cost model. 1891 void collectValuesToIgnore(); 1892 1893 /// \returns The smallest bitwidth each instruction can be represented with. 1894 /// The vector equivalents of these instructions should be truncated to this 1895 /// type. 1896 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1897 return MinBWs; 1898 } 1899 1900 /// \returns True if it is more profitable to scalarize instruction \p I for 1901 /// vectorization factor \p VF. 1902 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1903 auto Scalars = InstsToScalarize.find(VF); 1904 assert(Scalars != InstsToScalarize.end() && 1905 "VF not yet analyzed for scalarization profitability"); 1906 return Scalars->second.count(I); 1907 } 1908 1909 /// Returns true if \p I is known to be uniform after vectorization. 1910 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1911 if (VF == 1) 1912 return true; 1913 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1914 auto UniformsPerVF = Uniforms.find(VF); 1915 return UniformsPerVF->second.count(I); 1916 } 1917 1918 /// Returns true if \p I is known to be scalar after vectorization. 1919 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1920 if (VF == 1) 1921 return true; 1922 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1923 auto ScalarsPerVF = Scalars.find(VF); 1924 return ScalarsPerVF->second.count(I); 1925 } 1926 1927 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1928 /// for vectorization factor \p VF. 1929 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1930 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1931 !isScalarAfterVectorization(I, VF); 1932 } 1933 1934 /// Decision that was taken during cost calculation for memory instruction. 1935 enum InstWidening { 1936 CM_Unknown, 1937 CM_Widen, 1938 CM_Interleave, 1939 CM_GatherScatter, 1940 CM_Scalarize 1941 }; 1942 1943 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1944 /// instruction \p I and vector width \p VF. 1945 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1946 unsigned Cost) { 1947 assert(VF >= 2 && "Expected VF >=2"); 1948 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1949 } 1950 1951 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1952 /// interleaving group \p Grp and vector width \p VF. 1953 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1954 InstWidening W, unsigned Cost) { 1955 assert(VF >= 2 && "Expected VF >=2"); 1956 /// Broadcast this decicion to all instructions inside the group. 1957 /// But the cost will be assigned to one instruction only. 1958 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1959 if (auto *I = Grp->getMember(i)) { 1960 if (Grp->getInsertPos() == I) 1961 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1962 else 1963 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1964 } 1965 } 1966 } 1967 1968 /// Return the cost model decision for the given instruction \p I and vector 1969 /// width \p VF. Return CM_Unknown if this instruction did not pass 1970 /// through the cost modeling. 1971 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1972 assert(VF >= 2 && "Expected VF >=2"); 1973 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1974 auto Itr = WideningDecisions.find(InstOnVF); 1975 if (Itr == WideningDecisions.end()) 1976 return CM_Unknown; 1977 return Itr->second.first; 1978 } 1979 1980 /// Return the vectorization cost for the given instruction \p I and vector 1981 /// width \p VF. 1982 unsigned getWideningCost(Instruction *I, unsigned VF) { 1983 assert(VF >= 2 && "Expected VF >=2"); 1984 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1985 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1986 return WideningDecisions[InstOnVF].second; 1987 } 1988 1989 /// Return True if instruction \p I is an optimizable truncate whose operand 1990 /// is an induction variable. Such a truncate will be removed by adding a new 1991 /// induction variable with the destination type. 1992 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1993 1994 // If the instruction is not a truncate, return false. 1995 auto *Trunc = dyn_cast<TruncInst>(I); 1996 if (!Trunc) 1997 return false; 1998 1999 // Get the source and destination types of the truncate. 2000 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2001 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2002 2003 // If the truncate is free for the given types, return false. Replacing a 2004 // free truncate with an induction variable would add an induction variable 2005 // update instruction to each iteration of the loop. We exclude from this 2006 // check the primary induction variable since it will need an update 2007 // instruction regardless. 2008 Value *Op = Trunc->getOperand(0); 2009 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2010 return false; 2011 2012 // If the truncated value is not an induction variable, return false. 2013 return Legal->isInductionVariable(Op); 2014 } 2015 2016 private: 2017 /// \return An upper bound for the vectorization factor, larger than zero. 2018 /// One is returned if vectorization should best be avoided due to cost. 2019 unsigned computeFeasibleMaxVF(bool OptForSize); 2020 2021 /// The vectorization cost is a combination of the cost itself and a boolean 2022 /// indicating whether any of the contributing operations will actually 2023 /// operate on 2024 /// vector values after type legalization in the backend. If this latter value 2025 /// is 2026 /// false, then all operations will be scalarized (i.e. no vectorization has 2027 /// actually taken place). 2028 typedef std::pair<unsigned, bool> VectorizationCostTy; 2029 2030 /// Returns the expected execution cost. The unit of the cost does 2031 /// not matter because we use the 'cost' units to compare different 2032 /// vector widths. The cost that is returned is *not* normalized by 2033 /// the factor width. 2034 VectorizationCostTy expectedCost(unsigned VF); 2035 2036 /// Returns the execution time cost of an instruction for a given vector 2037 /// width. Vector width of one means scalar. 2038 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2039 2040 /// The cost-computation logic from getInstructionCost which provides 2041 /// the vector type as an output parameter. 2042 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2043 2044 /// Calculate vectorization cost of memory instruction \p I. 2045 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2046 2047 /// The cost computation for scalarized memory instruction. 2048 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2049 2050 /// The cost computation for interleaving group of memory instructions. 2051 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2052 2053 /// The cost computation for Gather/Scatter instruction. 2054 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2055 2056 /// The cost computation for widening instruction \p I with consecutive 2057 /// memory access. 2058 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2059 2060 /// The cost calculation for Load instruction \p I with uniform pointer - 2061 /// scalar load + broadcast. 2062 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2063 2064 /// Returns whether the instruction is a load or store and will be a emitted 2065 /// as a vector operation. 2066 bool isConsecutiveLoadOrStore(Instruction *I); 2067 2068 /// Create an analysis remark that explains why vectorization failed 2069 /// 2070 /// \p RemarkName is the identifier for the remark. \return the remark object 2071 /// that can be streamed to. 2072 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2073 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2074 RemarkName, TheLoop); 2075 } 2076 2077 /// Map of scalar integer values to the smallest bitwidth they can be legally 2078 /// represented as. The vector equivalents of these values should be truncated 2079 /// to this type. 2080 MapVector<Instruction *, uint64_t> MinBWs; 2081 2082 /// A type representing the costs for instructions if they were to be 2083 /// scalarized rather than vectorized. The entries are Instruction-Cost 2084 /// pairs. 2085 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2086 2087 /// A set containing all BasicBlocks that are known to present after 2088 /// vectorization as a predicated block. 2089 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2090 2091 /// A map holding scalar costs for different vectorization factors. The 2092 /// presence of a cost for an instruction in the mapping indicates that the 2093 /// instruction will be scalarized when vectorizing with the associated 2094 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2095 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2096 2097 /// Holds the instructions known to be uniform after vectorization. 2098 /// The data is collected per VF. 2099 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2100 2101 /// Holds the instructions known to be scalar after vectorization. 2102 /// The data is collected per VF. 2103 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2104 2105 /// Returns the expected difference in cost from scalarizing the expression 2106 /// feeding a predicated instruction \p PredInst. The instructions to 2107 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2108 /// non-negative return value implies the expression will be scalarized. 2109 /// Currently, only single-use chains are considered for scalarization. 2110 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2111 unsigned VF); 2112 2113 /// Collects the instructions to scalarize for each predicated instruction in 2114 /// the loop. 2115 void collectInstsToScalarize(unsigned VF); 2116 2117 /// Collect the instructions that are uniform after vectorization. An 2118 /// instruction is uniform if we represent it with a single scalar value in 2119 /// the vectorized loop corresponding to each vector iteration. Examples of 2120 /// uniform instructions include pointer operands of consecutive or 2121 /// interleaved memory accesses. Note that although uniformity implies an 2122 /// instruction will be scalar, the reverse is not true. In general, a 2123 /// scalarized instruction will be represented by VF scalar values in the 2124 /// vectorized loop, each corresponding to an iteration of the original 2125 /// scalar loop. 2126 void collectLoopUniforms(unsigned VF); 2127 2128 /// Collect the instructions that are scalar after vectorization. An 2129 /// instruction is scalar if it is known to be uniform or will be scalarized 2130 /// during vectorization. Non-uniform scalarized instructions will be 2131 /// represented by VF values in the vectorized loop, each corresponding to an 2132 /// iteration of the original scalar loop. 2133 void collectLoopScalars(unsigned VF); 2134 2135 /// Collect Uniform and Scalar values for the given \p VF. 2136 /// The sets depend on CM decision for Load/Store instructions 2137 /// that may be vectorized as interleave, gather-scatter or scalarized. 2138 void collectUniformsAndScalars(unsigned VF) { 2139 // Do the analysis once. 2140 if (VF == 1 || Uniforms.count(VF)) 2141 return; 2142 setCostBasedWideningDecision(VF); 2143 collectLoopUniforms(VF); 2144 collectLoopScalars(VF); 2145 } 2146 2147 /// Keeps cost model vectorization decision and cost for instructions. 2148 /// Right now it is used for memory instructions only. 2149 typedef DenseMap<std::pair<Instruction *, unsigned>, 2150 std::pair<InstWidening, unsigned>> 2151 DecisionList; 2152 2153 DecisionList WideningDecisions; 2154 2155 public: 2156 /// The loop that we evaluate. 2157 Loop *TheLoop; 2158 /// Predicated scalar evolution analysis. 2159 PredicatedScalarEvolution &PSE; 2160 /// Loop Info analysis. 2161 LoopInfo *LI; 2162 /// Vectorization legality. 2163 LoopVectorizationLegality *Legal; 2164 /// Vector target information. 2165 const TargetTransformInfo &TTI; 2166 /// Target Library Info. 2167 const TargetLibraryInfo *TLI; 2168 /// Demanded bits analysis. 2169 DemandedBits *DB; 2170 /// Assumption cache. 2171 AssumptionCache *AC; 2172 /// Interface to emit optimization remarks. 2173 OptimizationRemarkEmitter *ORE; 2174 2175 const Function *TheFunction; 2176 /// Loop Vectorize Hint. 2177 const LoopVectorizeHints *Hints; 2178 /// Values to ignore in the cost model. 2179 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2180 /// Values to ignore in the cost model when VF > 1. 2181 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2182 }; 2183 2184 /// LoopVectorizationPlanner - drives the vectorization process after having 2185 /// passed Legality checks. 2186 class LoopVectorizationPlanner { 2187 public: 2188 LoopVectorizationPlanner(LoopVectorizationCostModel &CM) : CM(CM) {} 2189 2190 ~LoopVectorizationPlanner() {} 2191 2192 /// Plan how to best vectorize, return the best VF and its cost. 2193 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2194 unsigned UserVF); 2195 2196 private: 2197 /// The profitablity analysis. 2198 LoopVectorizationCostModel &CM; 2199 }; 2200 2201 /// \brief This holds vectorization requirements that must be verified late in 2202 /// the process. The requirements are set by legalize and costmodel. Once 2203 /// vectorization has been determined to be possible and profitable the 2204 /// requirements can be verified by looking for metadata or compiler options. 2205 /// For example, some loops require FP commutativity which is only allowed if 2206 /// vectorization is explicitly specified or if the fast-math compiler option 2207 /// has been provided. 2208 /// Late evaluation of these requirements allows helpful diagnostics to be 2209 /// composed that tells the user what need to be done to vectorize the loop. For 2210 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2211 /// evaluation should be used only when diagnostics can generated that can be 2212 /// followed by a non-expert user. 2213 class LoopVectorizationRequirements { 2214 public: 2215 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2216 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2217 2218 void addUnsafeAlgebraInst(Instruction *I) { 2219 // First unsafe algebra instruction. 2220 if (!UnsafeAlgebraInst) 2221 UnsafeAlgebraInst = I; 2222 } 2223 2224 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2225 2226 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2227 const char *PassName = Hints.vectorizeAnalysisPassName(); 2228 bool Failed = false; 2229 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2230 ORE.emit( 2231 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2232 UnsafeAlgebraInst->getDebugLoc(), 2233 UnsafeAlgebraInst->getParent()) 2234 << "loop not vectorized: cannot prove it is safe to reorder " 2235 "floating-point operations"); 2236 Failed = true; 2237 } 2238 2239 // Test if runtime memcheck thresholds are exceeded. 2240 bool PragmaThresholdReached = 2241 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2242 bool ThresholdReached = 2243 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2244 if ((ThresholdReached && !Hints.allowReordering()) || 2245 PragmaThresholdReached) { 2246 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2247 L->getStartLoc(), 2248 L->getHeader()) 2249 << "loop not vectorized: cannot prove it is safe to reorder " 2250 "memory operations"); 2251 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2252 Failed = true; 2253 } 2254 2255 return Failed; 2256 } 2257 2258 private: 2259 unsigned NumRuntimePointerChecks; 2260 Instruction *UnsafeAlgebraInst; 2261 2262 /// Interface to emit optimization remarks. 2263 OptimizationRemarkEmitter &ORE; 2264 }; 2265 2266 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2267 if (L.empty()) { 2268 if (!hasCyclesInLoopBody(L)) 2269 V.push_back(&L); 2270 return; 2271 } 2272 for (Loop *InnerL : L) 2273 addAcyclicInnerLoop(*InnerL, V); 2274 } 2275 2276 /// The LoopVectorize Pass. 2277 struct LoopVectorize : public FunctionPass { 2278 /// Pass identification, replacement for typeid 2279 static char ID; 2280 2281 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2282 : FunctionPass(ID) { 2283 Impl.DisableUnrolling = NoUnrolling; 2284 Impl.AlwaysVectorize = AlwaysVectorize; 2285 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2286 } 2287 2288 LoopVectorizePass Impl; 2289 2290 bool runOnFunction(Function &F) override { 2291 if (skipFunction(F)) 2292 return false; 2293 2294 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2295 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2296 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2297 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2298 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2299 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2300 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2301 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2302 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2303 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2304 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2305 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2306 2307 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2308 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2309 2310 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2311 GetLAA, *ORE); 2312 } 2313 2314 void getAnalysisUsage(AnalysisUsage &AU) const override { 2315 AU.addRequired<AssumptionCacheTracker>(); 2316 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2317 AU.addRequired<DominatorTreeWrapperPass>(); 2318 AU.addRequired<LoopInfoWrapperPass>(); 2319 AU.addRequired<ScalarEvolutionWrapperPass>(); 2320 AU.addRequired<TargetTransformInfoWrapperPass>(); 2321 AU.addRequired<AAResultsWrapperPass>(); 2322 AU.addRequired<LoopAccessLegacyAnalysis>(); 2323 AU.addRequired<DemandedBitsWrapperPass>(); 2324 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2325 AU.addPreserved<LoopInfoWrapperPass>(); 2326 AU.addPreserved<DominatorTreeWrapperPass>(); 2327 AU.addPreserved<BasicAAWrapperPass>(); 2328 AU.addPreserved<GlobalsAAWrapperPass>(); 2329 } 2330 }; 2331 2332 } // end anonymous namespace 2333 2334 //===----------------------------------------------------------------------===// 2335 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2336 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2337 //===----------------------------------------------------------------------===// 2338 2339 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2340 // We need to place the broadcast of invariant variables outside the loop. 2341 Instruction *Instr = dyn_cast<Instruction>(V); 2342 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2343 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2344 2345 // Place the code for broadcasting invariant variables in the new preheader. 2346 IRBuilder<>::InsertPointGuard Guard(Builder); 2347 if (Invariant) 2348 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2349 2350 // Broadcast the scalar into all locations in the vector. 2351 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2352 2353 return Shuf; 2354 } 2355 2356 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2357 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2358 Value *Start = II.getStartValue(); 2359 2360 // Construct the initial value of the vector IV in the vector loop preheader 2361 auto CurrIP = Builder.saveIP(); 2362 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2363 if (isa<TruncInst>(EntryVal)) { 2364 assert(Start->getType()->isIntegerTy() && 2365 "Truncation requires an integer type"); 2366 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2367 Step = Builder.CreateTrunc(Step, TruncType); 2368 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2369 } 2370 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2371 Value *SteppedStart = 2372 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2373 2374 // We create vector phi nodes for both integer and floating-point induction 2375 // variables. Here, we determine the kind of arithmetic we will perform. 2376 Instruction::BinaryOps AddOp; 2377 Instruction::BinaryOps MulOp; 2378 if (Step->getType()->isIntegerTy()) { 2379 AddOp = Instruction::Add; 2380 MulOp = Instruction::Mul; 2381 } else { 2382 AddOp = II.getInductionOpcode(); 2383 MulOp = Instruction::FMul; 2384 } 2385 2386 // Multiply the vectorization factor by the step using integer or 2387 // floating-point arithmetic as appropriate. 2388 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2389 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2390 2391 // Create a vector splat to use in the induction update. 2392 // 2393 // FIXME: If the step is non-constant, we create the vector splat with 2394 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2395 // handle a constant vector splat. 2396 Value *SplatVF = isa<Constant>(Mul) 2397 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2398 : Builder.CreateVectorSplat(VF, Mul); 2399 Builder.restoreIP(CurrIP); 2400 2401 // We may need to add the step a number of times, depending on the unroll 2402 // factor. The last of those goes into the PHI. 2403 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2404 &*LoopVectorBody->getFirstInsertionPt()); 2405 Instruction *LastInduction = VecInd; 2406 VectorParts Entry(UF); 2407 for (unsigned Part = 0; Part < UF; ++Part) { 2408 Entry[Part] = LastInduction; 2409 LastInduction = cast<Instruction>(addFastMathFlag( 2410 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2411 } 2412 VectorLoopValueMap.initVector(EntryVal, Entry); 2413 if (isa<TruncInst>(EntryVal)) 2414 addMetadata(Entry, EntryVal); 2415 2416 // Move the last step to the end of the latch block. This ensures consistent 2417 // placement of all induction updates. 2418 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2419 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2420 auto *ICmp = cast<Instruction>(Br->getCondition()); 2421 LastInduction->moveBefore(ICmp); 2422 LastInduction->setName("vec.ind.next"); 2423 2424 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2425 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2426 } 2427 2428 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2429 return Cost->isScalarAfterVectorization(I, VF) || 2430 Cost->isProfitableToScalarize(I, VF); 2431 } 2432 2433 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2434 if (shouldScalarizeInstruction(IV)) 2435 return true; 2436 auto isScalarInst = [&](User *U) -> bool { 2437 auto *I = cast<Instruction>(U); 2438 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2439 }; 2440 return any_of(IV->users(), isScalarInst); 2441 } 2442 2443 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2444 2445 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2446 "Primary induction variable must have an integer type"); 2447 2448 auto II = Legal->getInductionVars()->find(IV); 2449 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2450 2451 auto ID = II->second; 2452 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2453 2454 // The scalar value to broadcast. This will be derived from the canonical 2455 // induction variable. 2456 Value *ScalarIV = nullptr; 2457 2458 // The value from the original loop to which we are mapping the new induction 2459 // variable. 2460 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2461 2462 // True if we have vectorized the induction variable. 2463 auto VectorizedIV = false; 2464 2465 // Determine if we want a scalar version of the induction variable. This is 2466 // true if the induction variable itself is not widened, or if it has at 2467 // least one user in the loop that is not widened. 2468 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2469 2470 // Generate code for the induction step. Note that induction steps are 2471 // required to be loop-invariant 2472 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2473 "Induction step should be loop invariant"); 2474 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2475 Value *Step = nullptr; 2476 if (PSE.getSE()->isSCEVable(IV->getType())) { 2477 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2478 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2479 LoopVectorPreHeader->getTerminator()); 2480 } else { 2481 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2482 } 2483 2484 // Try to create a new independent vector induction variable. If we can't 2485 // create the phi node, we will splat the scalar induction variable in each 2486 // loop iteration. 2487 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2488 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2489 VectorizedIV = true; 2490 } 2491 2492 // If we haven't yet vectorized the induction variable, or if we will create 2493 // a scalar one, we need to define the scalar induction variable and step 2494 // values. If we were given a truncation type, truncate the canonical 2495 // induction variable and step. Otherwise, derive these values from the 2496 // induction descriptor. 2497 if (!VectorizedIV || NeedsScalarIV) { 2498 ScalarIV = Induction; 2499 if (IV != OldInduction) { 2500 ScalarIV = IV->getType()->isIntegerTy() 2501 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2502 : Builder.CreateCast(Instruction::SIToFP, Induction, 2503 IV->getType()); 2504 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2505 ScalarIV->setName("offset.idx"); 2506 } 2507 if (Trunc) { 2508 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2509 assert(Step->getType()->isIntegerTy() && 2510 "Truncation requires an integer step"); 2511 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2512 Step = Builder.CreateTrunc(Step, TruncType); 2513 } 2514 } 2515 2516 // If we haven't yet vectorized the induction variable, splat the scalar 2517 // induction variable, and build the necessary step vectors. 2518 if (!VectorizedIV) { 2519 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2520 VectorParts Entry(UF); 2521 for (unsigned Part = 0; Part < UF; ++Part) 2522 Entry[Part] = 2523 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2524 VectorLoopValueMap.initVector(EntryVal, Entry); 2525 if (Trunc) 2526 addMetadata(Entry, Trunc); 2527 } 2528 2529 // If an induction variable is only used for counting loop iterations or 2530 // calculating addresses, it doesn't need to be widened. Create scalar steps 2531 // that can be used by instructions we will later scalarize. Note that the 2532 // addition of the scalar steps will not increase the number of instructions 2533 // in the loop in the common case prior to InstCombine. We will be trading 2534 // one vector extract for each scalar step. 2535 if (NeedsScalarIV) 2536 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2537 } 2538 2539 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2540 Instruction::BinaryOps BinOp) { 2541 // Create and check the types. 2542 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2543 int VLen = Val->getType()->getVectorNumElements(); 2544 2545 Type *STy = Val->getType()->getScalarType(); 2546 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2547 "Induction Step must be an integer or FP"); 2548 assert(Step->getType() == STy && "Step has wrong type"); 2549 2550 SmallVector<Constant *, 8> Indices; 2551 2552 if (STy->isIntegerTy()) { 2553 // Create a vector of consecutive numbers from zero to VF. 2554 for (int i = 0; i < VLen; ++i) 2555 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2556 2557 // Add the consecutive indices to the vector value. 2558 Constant *Cv = ConstantVector::get(Indices); 2559 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2560 Step = Builder.CreateVectorSplat(VLen, Step); 2561 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2562 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2563 // which can be found from the original scalar operations. 2564 Step = Builder.CreateMul(Cv, Step); 2565 return Builder.CreateAdd(Val, Step, "induction"); 2566 } 2567 2568 // Floating point induction. 2569 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2570 "Binary Opcode should be specified for FP induction"); 2571 // Create a vector of consecutive numbers from zero to VF. 2572 for (int i = 0; i < VLen; ++i) 2573 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2574 2575 // Add the consecutive indices to the vector value. 2576 Constant *Cv = ConstantVector::get(Indices); 2577 2578 Step = Builder.CreateVectorSplat(VLen, Step); 2579 2580 // Floating point operations had to be 'fast' to enable the induction. 2581 FastMathFlags Flags; 2582 Flags.setUnsafeAlgebra(); 2583 2584 Value *MulOp = Builder.CreateFMul(Cv, Step); 2585 if (isa<Instruction>(MulOp)) 2586 // Have to check, MulOp may be a constant 2587 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2588 2589 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2590 if (isa<Instruction>(BOp)) 2591 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2592 return BOp; 2593 } 2594 2595 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2596 Value *EntryVal, 2597 const InductionDescriptor &ID) { 2598 2599 // We shouldn't have to build scalar steps if we aren't vectorizing. 2600 assert(VF > 1 && "VF should be greater than one"); 2601 2602 // Get the value type and ensure it and the step have the same integer type. 2603 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2604 assert(ScalarIVTy == Step->getType() && 2605 "Val and Step should have the same type"); 2606 2607 // We build scalar steps for both integer and floating-point induction 2608 // variables. Here, we determine the kind of arithmetic we will perform. 2609 Instruction::BinaryOps AddOp; 2610 Instruction::BinaryOps MulOp; 2611 if (ScalarIVTy->isIntegerTy()) { 2612 AddOp = Instruction::Add; 2613 MulOp = Instruction::Mul; 2614 } else { 2615 AddOp = ID.getInductionOpcode(); 2616 MulOp = Instruction::FMul; 2617 } 2618 2619 // Determine the number of scalars we need to generate for each unroll 2620 // iteration. If EntryVal is uniform, we only need to generate the first 2621 // lane. Otherwise, we generate all VF values. 2622 unsigned Lanes = 2623 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2624 2625 // Compute the scalar steps and save the results in VectorLoopValueMap. 2626 ScalarParts Entry(UF); 2627 for (unsigned Part = 0; Part < UF; ++Part) { 2628 Entry[Part].resize(VF); 2629 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2630 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2631 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2632 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2633 Entry[Part][Lane] = Add; 2634 } 2635 } 2636 VectorLoopValueMap.initScalar(EntryVal, Entry); 2637 } 2638 2639 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2640 2641 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2642 ValueToValueMap(); 2643 2644 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2645 if (Stride == 1 || Stride == -1) 2646 return Stride; 2647 return 0; 2648 } 2649 2650 bool LoopVectorizationLegality::isUniform(Value *V) { 2651 return LAI->isUniform(V); 2652 } 2653 2654 const InnerLoopVectorizer::VectorParts & 2655 InnerLoopVectorizer::getVectorValue(Value *V) { 2656 assert(V != Induction && "The new induction variable should not be used."); 2657 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2658 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2659 2660 // If we have a stride that is replaced by one, do it here. 2661 if (Legal->hasStride(V)) 2662 V = ConstantInt::get(V->getType(), 1); 2663 2664 // If we have this scalar in the map, return it. 2665 if (VectorLoopValueMap.hasVector(V)) 2666 return VectorLoopValueMap.VectorMapStorage[V]; 2667 2668 // If the value has not been vectorized, check if it has been scalarized 2669 // instead. If it has been scalarized, and we actually need the value in 2670 // vector form, we will construct the vector values on demand. 2671 if (VectorLoopValueMap.hasScalar(V)) { 2672 2673 // Initialize a new vector map entry. 2674 VectorParts Entry(UF); 2675 2676 // If we've scalarized a value, that value should be an instruction. 2677 auto *I = cast<Instruction>(V); 2678 2679 // If we aren't vectorizing, we can just copy the scalar map values over to 2680 // the vector map. 2681 if (VF == 1) { 2682 for (unsigned Part = 0; Part < UF; ++Part) 2683 Entry[Part] = getScalarValue(V, Part, 0); 2684 return VectorLoopValueMap.initVector(V, Entry); 2685 } 2686 2687 // Get the last scalar instruction we generated for V. If the value is 2688 // known to be uniform after vectorization, this corresponds to lane zero 2689 // of the last unroll iteration. Otherwise, the last instruction is the one 2690 // we created for the last vector lane of the last unroll iteration. 2691 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2692 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2693 2694 // Set the insert point after the last scalarized instruction. This ensures 2695 // the insertelement sequence will directly follow the scalar definitions. 2696 auto OldIP = Builder.saveIP(); 2697 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2698 Builder.SetInsertPoint(&*NewIP); 2699 2700 // However, if we are vectorizing, we need to construct the vector values. 2701 // If the value is known to be uniform after vectorization, we can just 2702 // broadcast the scalar value corresponding to lane zero for each unroll 2703 // iteration. Otherwise, we construct the vector values using insertelement 2704 // instructions. Since the resulting vectors are stored in 2705 // VectorLoopValueMap, we will only generate the insertelements once. 2706 for (unsigned Part = 0; Part < UF; ++Part) { 2707 Value *VectorValue = nullptr; 2708 if (Cost->isUniformAfterVectorization(I, VF)) { 2709 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2710 } else { 2711 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2712 for (unsigned Lane = 0; Lane < VF; ++Lane) 2713 VectorValue = Builder.CreateInsertElement( 2714 VectorValue, getScalarValue(V, Part, Lane), 2715 Builder.getInt32(Lane)); 2716 } 2717 Entry[Part] = VectorValue; 2718 } 2719 Builder.restoreIP(OldIP); 2720 return VectorLoopValueMap.initVector(V, Entry); 2721 } 2722 2723 // If this scalar is unknown, assume that it is a constant or that it is 2724 // loop invariant. Broadcast V and save the value for future uses. 2725 Value *B = getBroadcastInstrs(V); 2726 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2727 } 2728 2729 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2730 unsigned Lane) { 2731 2732 // If the value is not an instruction contained in the loop, it should 2733 // already be scalar. 2734 if (OrigLoop->isLoopInvariant(V)) 2735 return V; 2736 2737 assert(Lane > 0 ? 2738 !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2739 : true && "Uniform values only have lane zero"); 2740 2741 // If the value from the original loop has not been vectorized, it is 2742 // represented by UF x VF scalar values in the new loop. Return the requested 2743 // scalar value. 2744 if (VectorLoopValueMap.hasScalar(V)) 2745 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2746 2747 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2748 // for the given unroll part. If this entry is not a vector type (i.e., the 2749 // vectorization factor is one), there is no need to generate an 2750 // extractelement instruction. 2751 auto *U = getVectorValue(V)[Part]; 2752 if (!U->getType()->isVectorTy()) { 2753 assert(VF == 1 && "Value not scalarized has non-vector type"); 2754 return U; 2755 } 2756 2757 // Otherwise, the value from the original loop has been vectorized and is 2758 // represented by UF vector values. Extract and return the requested scalar 2759 // value from the appropriate vector lane. 2760 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2761 } 2762 2763 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2764 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2765 SmallVector<Constant *, 8> ShuffleMask; 2766 for (unsigned i = 0; i < VF; ++i) 2767 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2768 2769 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2770 ConstantVector::get(ShuffleMask), 2771 "reverse"); 2772 } 2773 2774 // Try to vectorize the interleave group that \p Instr belongs to. 2775 // 2776 // E.g. Translate following interleaved load group (factor = 3): 2777 // for (i = 0; i < N; i+=3) { 2778 // R = Pic[i]; // Member of index 0 2779 // G = Pic[i+1]; // Member of index 1 2780 // B = Pic[i+2]; // Member of index 2 2781 // ... // do something to R, G, B 2782 // } 2783 // To: 2784 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2785 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2786 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2787 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2788 // 2789 // Or translate following interleaved store group (factor = 3): 2790 // for (i = 0; i < N; i+=3) { 2791 // ... do something to R, G, B 2792 // Pic[i] = R; // Member of index 0 2793 // Pic[i+1] = G; // Member of index 1 2794 // Pic[i+2] = B; // Member of index 2 2795 // } 2796 // To: 2797 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2798 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2799 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2800 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2801 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2802 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2803 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2804 assert(Group && "Fail to get an interleaved access group."); 2805 2806 // Skip if current instruction is not the insert position. 2807 if (Instr != Group->getInsertPos()) 2808 return; 2809 2810 Value *Ptr = getPointerOperand(Instr); 2811 2812 // Prepare for the vector type of the interleaved load/store. 2813 Type *ScalarTy = getMemInstValueType(Instr); 2814 unsigned InterleaveFactor = Group->getFactor(); 2815 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2816 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2817 2818 // Prepare for the new pointers. 2819 setDebugLocFromInst(Builder, Ptr); 2820 SmallVector<Value *, 2> NewPtrs; 2821 unsigned Index = Group->getIndex(Instr); 2822 2823 // If the group is reverse, adjust the index to refer to the last vector lane 2824 // instead of the first. We adjust the index from the first vector lane, 2825 // rather than directly getting the pointer for lane VF - 1, because the 2826 // pointer operand of the interleaved access is supposed to be uniform. For 2827 // uniform instructions, we're only required to generate a value for the 2828 // first vector lane in each unroll iteration. 2829 if (Group->isReverse()) 2830 Index += (VF - 1) * Group->getFactor(); 2831 2832 for (unsigned Part = 0; Part < UF; Part++) { 2833 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2834 2835 // Notice current instruction could be any index. Need to adjust the address 2836 // to the member of index 0. 2837 // 2838 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2839 // b = A[i]; // Member of index 0 2840 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2841 // 2842 // E.g. A[i+1] = a; // Member of index 1 2843 // A[i] = b; // Member of index 0 2844 // A[i+2] = c; // Member of index 2 (Current instruction) 2845 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2846 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2847 2848 // Cast to the vector pointer type. 2849 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2850 } 2851 2852 setDebugLocFromInst(Builder, Instr); 2853 Value *UndefVec = UndefValue::get(VecTy); 2854 2855 // Vectorize the interleaved load group. 2856 if (isa<LoadInst>(Instr)) { 2857 2858 // For each unroll part, create a wide load for the group. 2859 SmallVector<Value *, 2> NewLoads; 2860 for (unsigned Part = 0; Part < UF; Part++) { 2861 auto *NewLoad = Builder.CreateAlignedLoad( 2862 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2863 addMetadata(NewLoad, Instr); 2864 NewLoads.push_back(NewLoad); 2865 } 2866 2867 // For each member in the group, shuffle out the appropriate data from the 2868 // wide loads. 2869 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2870 Instruction *Member = Group->getMember(I); 2871 2872 // Skip the gaps in the group. 2873 if (!Member) 2874 continue; 2875 2876 VectorParts Entry(UF); 2877 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2878 for (unsigned Part = 0; Part < UF; Part++) { 2879 Value *StridedVec = Builder.CreateShuffleVector( 2880 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2881 2882 // If this member has different type, cast the result type. 2883 if (Member->getType() != ScalarTy) { 2884 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2885 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2886 } 2887 2888 Entry[Part] = 2889 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2890 } 2891 VectorLoopValueMap.initVector(Member, Entry); 2892 } 2893 return; 2894 } 2895 2896 // The sub vector type for current instruction. 2897 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2898 2899 // Vectorize the interleaved store group. 2900 for (unsigned Part = 0; Part < UF; Part++) { 2901 // Collect the stored vector from each member. 2902 SmallVector<Value *, 4> StoredVecs; 2903 for (unsigned i = 0; i < InterleaveFactor; i++) { 2904 // Interleaved store group doesn't allow a gap, so each index has a member 2905 Instruction *Member = Group->getMember(i); 2906 assert(Member && "Fail to get a member from an interleaved store group"); 2907 2908 Value *StoredVec = 2909 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2910 if (Group->isReverse()) 2911 StoredVec = reverseVector(StoredVec); 2912 2913 // If this member has different type, cast it to an unified type. 2914 if (StoredVec->getType() != SubVT) 2915 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2916 2917 StoredVecs.push_back(StoredVec); 2918 } 2919 2920 // Concatenate all vectors into a wide vector. 2921 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2922 2923 // Interleave the elements in the wide vector. 2924 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2925 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2926 "interleaved.vec"); 2927 2928 Instruction *NewStoreInstr = 2929 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2930 addMetadata(NewStoreInstr, Instr); 2931 } 2932 } 2933 2934 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2935 // Attempt to issue a wide load. 2936 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2937 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2938 2939 assert((LI || SI) && "Invalid Load/Store instruction"); 2940 2941 LoopVectorizationCostModel::InstWidening Decision = 2942 Cost->getWideningDecision(Instr, VF); 2943 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2944 "CM decision should be taken at this point"); 2945 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2946 return vectorizeInterleaveGroup(Instr); 2947 2948 Type *ScalarDataTy = getMemInstValueType(Instr); 2949 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2950 Value *Ptr = getPointerOperand(Instr); 2951 unsigned Alignment = getMemInstAlignment(Instr); 2952 // An alignment of 0 means target abi alignment. We need to use the scalar's 2953 // target abi alignment in such a case. 2954 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2955 if (!Alignment) 2956 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2957 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2958 2959 // Scalarize the memory instruction if necessary. 2960 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2961 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2962 2963 // Determine if the pointer operand of the access is either consecutive or 2964 // reverse consecutive. 2965 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2966 bool Reverse = ConsecutiveStride < 0; 2967 bool CreateGatherScatter = 2968 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2969 2970 VectorParts VectorGep; 2971 2972 // Handle consecutive loads/stores. 2973 if (ConsecutiveStride) { 2974 Ptr = getScalarValue(Ptr, 0, 0); 2975 } else { 2976 // At this point we should vector version of GEP for Gather or Scatter 2977 assert(CreateGatherScatter && "The instruction should be scalarized"); 2978 VectorGep = getVectorValue(Ptr); 2979 } 2980 2981 VectorParts Mask = createBlockInMask(Instr->getParent()); 2982 // Handle Stores: 2983 if (SI) { 2984 assert(!Legal->isUniform(SI->getPointerOperand()) && 2985 "We do not allow storing to uniform addresses"); 2986 setDebugLocFromInst(Builder, SI); 2987 // We don't want to update the value in the map as it might be used in 2988 // another expression. So don't use a reference type for "StoredVal". 2989 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2990 2991 for (unsigned Part = 0; Part < UF; ++Part) { 2992 Instruction *NewSI = nullptr; 2993 if (CreateGatherScatter) { 2994 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2995 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2996 Alignment, MaskPart); 2997 } else { 2998 // Calculate the pointer for the specific unroll-part. 2999 Value *PartPtr = 3000 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3001 3002 if (Reverse) { 3003 // If we store to reverse consecutive memory locations, then we need 3004 // to reverse the order of elements in the stored value. 3005 StoredVal[Part] = reverseVector(StoredVal[Part]); 3006 // If the address is consecutive but reversed, then the 3007 // wide store needs to start at the last vector element. 3008 PartPtr = 3009 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3010 PartPtr = 3011 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3012 Mask[Part] = reverseVector(Mask[Part]); 3013 } 3014 3015 Value *VecPtr = 3016 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3017 3018 if (Legal->isMaskRequired(SI)) 3019 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 3020 Mask[Part]); 3021 else 3022 NewSI = 3023 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 3024 } 3025 addMetadata(NewSI, SI); 3026 } 3027 return; 3028 } 3029 3030 // Handle loads. 3031 assert(LI && "Must have a load instruction"); 3032 setDebugLocFromInst(Builder, LI); 3033 VectorParts Entry(UF); 3034 for (unsigned Part = 0; Part < UF; ++Part) { 3035 Instruction *NewLI; 3036 if (CreateGatherScatter) { 3037 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3038 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 3039 0, "wide.masked.gather"); 3040 Entry[Part] = NewLI; 3041 } else { 3042 // Calculate the pointer for the specific unroll-part. 3043 Value *PartPtr = 3044 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3045 3046 if (Reverse) { 3047 // If the address is consecutive but reversed, then the 3048 // wide load needs to start at the last vector element. 3049 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3050 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3051 Mask[Part] = reverseVector(Mask[Part]); 3052 } 3053 3054 Value *VecPtr = 3055 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3056 if (Legal->isMaskRequired(LI)) 3057 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3058 UndefValue::get(DataTy), 3059 "wide.masked.load"); 3060 else 3061 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3062 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3063 } 3064 addMetadata(NewLI, LI); 3065 } 3066 VectorLoopValueMap.initVector(Instr, Entry); 3067 } 3068 3069 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3070 bool IfPredicateInstr) { 3071 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3072 DEBUG(dbgs() << "LV: Scalarizing" 3073 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3074 << '\n'); 3075 // Holds vector parameters or scalars, in case of uniform vals. 3076 SmallVector<VectorParts, 4> Params; 3077 3078 setDebugLocFromInst(Builder, Instr); 3079 3080 // Does this instruction return a value ? 3081 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3082 3083 // Initialize a new scalar map entry. 3084 ScalarParts Entry(UF); 3085 3086 VectorParts Cond; 3087 if (IfPredicateInstr) 3088 Cond = createBlockInMask(Instr->getParent()); 3089 3090 // Determine the number of scalars we need to generate for each unroll 3091 // iteration. If the instruction is uniform, we only need to generate the 3092 // first lane. Otherwise, we generate all VF values. 3093 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3094 3095 // For each vector unroll 'part': 3096 for (unsigned Part = 0; Part < UF; ++Part) { 3097 Entry[Part].resize(VF); 3098 // For each scalar that we create: 3099 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3100 3101 // Start if-block. 3102 Value *Cmp = nullptr; 3103 if (IfPredicateInstr) { 3104 Cmp = Cond[Part]; 3105 if (Cmp->getType()->isVectorTy()) 3106 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3107 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3108 ConstantInt::get(Cmp->getType(), 1)); 3109 } 3110 3111 Instruction *Cloned = Instr->clone(); 3112 if (!IsVoidRetTy) 3113 Cloned->setName(Instr->getName() + ".cloned"); 3114 3115 // Replace the operands of the cloned instructions with their scalar 3116 // equivalents in the new loop. 3117 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3118 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3119 Cloned->setOperand(op, NewOp); 3120 } 3121 addNewMetadata(Cloned, Instr); 3122 3123 // Place the cloned scalar in the new loop. 3124 Builder.Insert(Cloned); 3125 3126 // Add the cloned scalar to the scalar map entry. 3127 Entry[Part][Lane] = Cloned; 3128 3129 // If we just cloned a new assumption, add it the assumption cache. 3130 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3131 if (II->getIntrinsicID() == Intrinsic::assume) 3132 AC->registerAssumption(II); 3133 3134 // End if-block. 3135 if (IfPredicateInstr) 3136 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3137 } 3138 } 3139 VectorLoopValueMap.initScalar(Instr, Entry); 3140 } 3141 3142 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3143 Value *End, Value *Step, 3144 Instruction *DL) { 3145 BasicBlock *Header = L->getHeader(); 3146 BasicBlock *Latch = L->getLoopLatch(); 3147 // As we're just creating this loop, it's possible no latch exists 3148 // yet. If so, use the header as this will be a single block loop. 3149 if (!Latch) 3150 Latch = Header; 3151 3152 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3153 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3154 setDebugLocFromInst(Builder, OldInst); 3155 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3156 3157 Builder.SetInsertPoint(Latch->getTerminator()); 3158 setDebugLocFromInst(Builder, OldInst); 3159 3160 // Create i+1 and fill the PHINode. 3161 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3162 Induction->addIncoming(Start, L->getLoopPreheader()); 3163 Induction->addIncoming(Next, Latch); 3164 // Create the compare. 3165 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3166 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3167 3168 // Now we have two terminators. Remove the old one from the block. 3169 Latch->getTerminator()->eraseFromParent(); 3170 3171 return Induction; 3172 } 3173 3174 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3175 if (TripCount) 3176 return TripCount; 3177 3178 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3179 // Find the loop boundaries. 3180 ScalarEvolution *SE = PSE.getSE(); 3181 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3182 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3183 "Invalid loop count"); 3184 3185 Type *IdxTy = Legal->getWidestInductionType(); 3186 3187 // The exit count might have the type of i64 while the phi is i32. This can 3188 // happen if we have an induction variable that is sign extended before the 3189 // compare. The only way that we get a backedge taken count is that the 3190 // induction variable was signed and as such will not overflow. In such a case 3191 // truncation is legal. 3192 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3193 IdxTy->getPrimitiveSizeInBits()) 3194 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3195 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3196 3197 // Get the total trip count from the count by adding 1. 3198 const SCEV *ExitCount = SE->getAddExpr( 3199 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3200 3201 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3202 3203 // Expand the trip count and place the new instructions in the preheader. 3204 // Notice that the pre-header does not change, only the loop body. 3205 SCEVExpander Exp(*SE, DL, "induction"); 3206 3207 // Count holds the overall loop count (N). 3208 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3209 L->getLoopPreheader()->getTerminator()); 3210 3211 if (TripCount->getType()->isPointerTy()) 3212 TripCount = 3213 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3214 L->getLoopPreheader()->getTerminator()); 3215 3216 return TripCount; 3217 } 3218 3219 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3220 if (VectorTripCount) 3221 return VectorTripCount; 3222 3223 Value *TC = getOrCreateTripCount(L); 3224 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3225 3226 // Now we need to generate the expression for the part of the loop that the 3227 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3228 // iterations are not required for correctness, or N - Step, otherwise. Step 3229 // is equal to the vectorization factor (number of SIMD elements) times the 3230 // unroll factor (number of SIMD instructions). 3231 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3232 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3233 3234 // If there is a non-reversed interleaved group that may speculatively access 3235 // memory out-of-bounds, we need to ensure that there will be at least one 3236 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3237 // the trip count, we set the remainder to be equal to the step. If the step 3238 // does not evenly divide the trip count, no adjustment is necessary since 3239 // there will already be scalar iterations. Note that the minimum iterations 3240 // check ensures that N >= Step. 3241 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3242 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3243 R = Builder.CreateSelect(IsZero, Step, R); 3244 } 3245 3246 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3247 3248 return VectorTripCount; 3249 } 3250 3251 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3252 BasicBlock *Bypass) { 3253 Value *Count = getOrCreateTripCount(L); 3254 BasicBlock *BB = L->getLoopPreheader(); 3255 IRBuilder<> Builder(BB->getTerminator()); 3256 3257 // Generate code to check that the loop's trip count that we computed by 3258 // adding one to the backedge-taken count will not overflow. 3259 Value *CheckMinIters = Builder.CreateICmpULT( 3260 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3261 3262 BasicBlock *NewBB = 3263 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3264 // Update dominator tree immediately if the generated block is a 3265 // LoopBypassBlock because SCEV expansions to generate loop bypass 3266 // checks may query it before the current function is finished. 3267 DT->addNewBlock(NewBB, BB); 3268 if (L->getParentLoop()) 3269 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3270 ReplaceInstWithInst(BB->getTerminator(), 3271 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3272 LoopBypassBlocks.push_back(BB); 3273 } 3274 3275 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3276 BasicBlock *Bypass) { 3277 Value *TC = getOrCreateVectorTripCount(L); 3278 BasicBlock *BB = L->getLoopPreheader(); 3279 IRBuilder<> Builder(BB->getTerminator()); 3280 3281 // Now, compare the new count to zero. If it is zero skip the vector loop and 3282 // jump to the scalar loop. 3283 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3284 "cmp.zero"); 3285 3286 // Generate code to check that the loop's trip count that we computed by 3287 // adding one to the backedge-taken count will not overflow. 3288 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3289 // Update dominator tree immediately if the generated block is a 3290 // LoopBypassBlock because SCEV expansions to generate loop bypass 3291 // checks may query it before the current function is finished. 3292 DT->addNewBlock(NewBB, BB); 3293 if (L->getParentLoop()) 3294 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3295 ReplaceInstWithInst(BB->getTerminator(), 3296 BranchInst::Create(Bypass, NewBB, Cmp)); 3297 LoopBypassBlocks.push_back(BB); 3298 } 3299 3300 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3301 BasicBlock *BB = L->getLoopPreheader(); 3302 3303 // Generate the code to check that the SCEV assumptions that we made. 3304 // We want the new basic block to start at the first instruction in a 3305 // sequence of instructions that form a check. 3306 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3307 "scev.check"); 3308 Value *SCEVCheck = 3309 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3310 3311 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3312 if (C->isZero()) 3313 return; 3314 3315 // Create a new block containing the stride check. 3316 BB->setName("vector.scevcheck"); 3317 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3318 // Update dominator tree immediately if the generated block is a 3319 // LoopBypassBlock because SCEV expansions to generate loop bypass 3320 // checks may query it before the current function is finished. 3321 DT->addNewBlock(NewBB, BB); 3322 if (L->getParentLoop()) 3323 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3324 ReplaceInstWithInst(BB->getTerminator(), 3325 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3326 LoopBypassBlocks.push_back(BB); 3327 AddedSafetyChecks = true; 3328 } 3329 3330 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3331 BasicBlock *BB = L->getLoopPreheader(); 3332 3333 // Generate the code that checks in runtime if arrays overlap. We put the 3334 // checks into a separate block to make the more common case of few elements 3335 // faster. 3336 Instruction *FirstCheckInst; 3337 Instruction *MemRuntimeCheck; 3338 std::tie(FirstCheckInst, MemRuntimeCheck) = 3339 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3340 if (!MemRuntimeCheck) 3341 return; 3342 3343 // Create a new block containing the memory check. 3344 BB->setName("vector.memcheck"); 3345 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3346 // Update dominator tree immediately if the generated block is a 3347 // LoopBypassBlock because SCEV expansions to generate loop bypass 3348 // checks may query it before the current function is finished. 3349 DT->addNewBlock(NewBB, BB); 3350 if (L->getParentLoop()) 3351 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3352 ReplaceInstWithInst(BB->getTerminator(), 3353 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3354 LoopBypassBlocks.push_back(BB); 3355 AddedSafetyChecks = true; 3356 3357 // We currently don't use LoopVersioning for the actual loop cloning but we 3358 // still use it to add the noalias metadata. 3359 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3360 PSE.getSE()); 3361 LVer->prepareNoAliasMetadata(); 3362 } 3363 3364 void InnerLoopVectorizer::createEmptyLoop() { 3365 /* 3366 In this function we generate a new loop. The new loop will contain 3367 the vectorized instructions while the old loop will continue to run the 3368 scalar remainder. 3369 3370 [ ] <-- loop iteration number check. 3371 / | 3372 / v 3373 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3374 | / | 3375 | / v 3376 || [ ] <-- vector pre header. 3377 |/ | 3378 | v 3379 | [ ] \ 3380 | [ ]_| <-- vector loop. 3381 | | 3382 | v 3383 | -[ ] <--- middle-block. 3384 | / | 3385 | / v 3386 -|- >[ ] <--- new preheader. 3387 | | 3388 | v 3389 | [ ] \ 3390 | [ ]_| <-- old scalar loop to handle remainder. 3391 \ | 3392 \ v 3393 >[ ] <-- exit block. 3394 ... 3395 */ 3396 3397 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3398 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3399 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3400 assert(VectorPH && "Invalid loop structure"); 3401 assert(ExitBlock && "Must have an exit block"); 3402 3403 // Some loops have a single integer induction variable, while other loops 3404 // don't. One example is c++ iterators that often have multiple pointer 3405 // induction variables. In the code below we also support a case where we 3406 // don't have a single induction variable. 3407 // 3408 // We try to obtain an induction variable from the original loop as hard 3409 // as possible. However if we don't find one that: 3410 // - is an integer 3411 // - counts from zero, stepping by one 3412 // - is the size of the widest induction variable type 3413 // then we create a new one. 3414 OldInduction = Legal->getPrimaryInduction(); 3415 Type *IdxTy = Legal->getWidestInductionType(); 3416 3417 // Split the single block loop into the two loop structure described above. 3418 BasicBlock *VecBody = 3419 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3420 BasicBlock *MiddleBlock = 3421 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3422 BasicBlock *ScalarPH = 3423 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3424 3425 // Create and register the new vector loop. 3426 Loop *Lp = new Loop(); 3427 Loop *ParentLoop = OrigLoop->getParentLoop(); 3428 3429 // Insert the new loop into the loop nest and register the new basic blocks 3430 // before calling any utilities such as SCEV that require valid LoopInfo. 3431 if (ParentLoop) { 3432 ParentLoop->addChildLoop(Lp); 3433 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3434 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3435 } else { 3436 LI->addTopLevelLoop(Lp); 3437 } 3438 Lp->addBasicBlockToLoop(VecBody, *LI); 3439 3440 // Find the loop boundaries. 3441 Value *Count = getOrCreateTripCount(Lp); 3442 3443 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3444 3445 // We need to test whether the backedge-taken count is uint##_max. Adding one 3446 // to it will cause overflow and an incorrect loop trip count in the vector 3447 // body. In case of overflow we want to directly jump to the scalar remainder 3448 // loop. 3449 emitMinimumIterationCountCheck(Lp, ScalarPH); 3450 // Now, compare the new count to zero. If it is zero skip the vector loop and 3451 // jump to the scalar loop. 3452 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3453 // Generate the code to check any assumptions that we've made for SCEV 3454 // expressions. 3455 emitSCEVChecks(Lp, ScalarPH); 3456 3457 // Generate the code that checks in runtime if arrays overlap. We put the 3458 // checks into a separate block to make the more common case of few elements 3459 // faster. 3460 emitMemRuntimeChecks(Lp, ScalarPH); 3461 3462 // Generate the induction variable. 3463 // The loop step is equal to the vectorization factor (num of SIMD elements) 3464 // times the unroll factor (num of SIMD instructions). 3465 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3466 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3467 Induction = 3468 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3469 getDebugLocFromInstOrOperands(OldInduction)); 3470 3471 // We are going to resume the execution of the scalar loop. 3472 // Go over all of the induction variables that we found and fix the 3473 // PHIs that are left in the scalar version of the loop. 3474 // The starting values of PHI nodes depend on the counter of the last 3475 // iteration in the vectorized loop. 3476 // If we come from a bypass edge then we need to start from the original 3477 // start value. 3478 3479 // This variable saves the new starting index for the scalar loop. It is used 3480 // to test if there are any tail iterations left once the vector loop has 3481 // completed. 3482 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3483 for (auto &InductionEntry : *List) { 3484 PHINode *OrigPhi = InductionEntry.first; 3485 InductionDescriptor II = InductionEntry.second; 3486 3487 // Create phi nodes to merge from the backedge-taken check block. 3488 PHINode *BCResumeVal = PHINode::Create( 3489 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3490 Value *&EndValue = IVEndValues[OrigPhi]; 3491 if (OrigPhi == OldInduction) { 3492 // We know what the end value is. 3493 EndValue = CountRoundDown; 3494 } else { 3495 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3496 Type *StepType = II.getStep()->getType(); 3497 Instruction::CastOps CastOp = 3498 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3499 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3500 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3501 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3502 EndValue->setName("ind.end"); 3503 } 3504 3505 // The new PHI merges the original incoming value, in case of a bypass, 3506 // or the value at the end of the vectorized loop. 3507 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3508 3509 // Fix the scalar body counter (PHI node). 3510 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3511 3512 // The old induction's phi node in the scalar body needs the truncated 3513 // value. 3514 for (BasicBlock *BB : LoopBypassBlocks) 3515 BCResumeVal->addIncoming(II.getStartValue(), BB); 3516 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3517 } 3518 3519 // Add a check in the middle block to see if we have completed 3520 // all of the iterations in the first vector loop. 3521 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3522 Value *CmpN = 3523 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3524 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3525 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3526 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3527 3528 // Get ready to start creating new instructions into the vectorized body. 3529 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3530 3531 // Save the state. 3532 LoopVectorPreHeader = Lp->getLoopPreheader(); 3533 LoopScalarPreHeader = ScalarPH; 3534 LoopMiddleBlock = MiddleBlock; 3535 LoopExitBlock = ExitBlock; 3536 LoopVectorBody = VecBody; 3537 LoopScalarBody = OldBasicBlock; 3538 3539 // Keep all loop hints from the original loop on the vector loop (we'll 3540 // replace the vectorizer-specific hints below). 3541 if (MDNode *LID = OrigLoop->getLoopID()) 3542 Lp->setLoopID(LID); 3543 3544 LoopVectorizeHints Hints(Lp, true, *ORE); 3545 Hints.setAlreadyVectorized(); 3546 } 3547 3548 // Fix up external users of the induction variable. At this point, we are 3549 // in LCSSA form, with all external PHIs that use the IV having one input value, 3550 // coming from the remainder loop. We need those PHIs to also have a correct 3551 // value for the IV when arriving directly from the middle block. 3552 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3553 const InductionDescriptor &II, 3554 Value *CountRoundDown, Value *EndValue, 3555 BasicBlock *MiddleBlock) { 3556 // There are two kinds of external IV usages - those that use the value 3557 // computed in the last iteration (the PHI) and those that use the penultimate 3558 // value (the value that feeds into the phi from the loop latch). 3559 // We allow both, but they, obviously, have different values. 3560 3561 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3562 3563 DenseMap<Value *, Value *> MissingVals; 3564 3565 // An external user of the last iteration's value should see the value that 3566 // the remainder loop uses to initialize its own IV. 3567 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3568 for (User *U : PostInc->users()) { 3569 Instruction *UI = cast<Instruction>(U); 3570 if (!OrigLoop->contains(UI)) { 3571 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3572 MissingVals[UI] = EndValue; 3573 } 3574 } 3575 3576 // An external user of the penultimate value need to see EndValue - Step. 3577 // The simplest way to get this is to recompute it from the constituent SCEVs, 3578 // that is Start + (Step * (CRD - 1)). 3579 for (User *U : OrigPhi->users()) { 3580 auto *UI = cast<Instruction>(U); 3581 if (!OrigLoop->contains(UI)) { 3582 const DataLayout &DL = 3583 OrigLoop->getHeader()->getModule()->getDataLayout(); 3584 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3585 3586 IRBuilder<> B(MiddleBlock->getTerminator()); 3587 Value *CountMinusOne = B.CreateSub( 3588 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3589 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3590 "cast.cmo"); 3591 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3592 Escape->setName("ind.escape"); 3593 MissingVals[UI] = Escape; 3594 } 3595 } 3596 3597 for (auto &I : MissingVals) { 3598 PHINode *PHI = cast<PHINode>(I.first); 3599 // One corner case we have to handle is two IVs "chasing" each-other, 3600 // that is %IV2 = phi [...], [ %IV1, %latch ] 3601 // In this case, if IV1 has an external use, we need to avoid adding both 3602 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3603 // don't already have an incoming value for the middle block. 3604 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3605 PHI->addIncoming(I.second, MiddleBlock); 3606 } 3607 } 3608 3609 namespace { 3610 struct CSEDenseMapInfo { 3611 static bool canHandle(const Instruction *I) { 3612 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3613 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3614 } 3615 static inline Instruction *getEmptyKey() { 3616 return DenseMapInfo<Instruction *>::getEmptyKey(); 3617 } 3618 static inline Instruction *getTombstoneKey() { 3619 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3620 } 3621 static unsigned getHashValue(const Instruction *I) { 3622 assert(canHandle(I) && "Unknown instruction!"); 3623 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3624 I->value_op_end())); 3625 } 3626 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3627 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3628 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3629 return LHS == RHS; 3630 return LHS->isIdenticalTo(RHS); 3631 } 3632 }; 3633 } 3634 3635 ///\brief Perform cse of induction variable instructions. 3636 static void cse(BasicBlock *BB) { 3637 // Perform simple cse. 3638 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3639 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3640 Instruction *In = &*I++; 3641 3642 if (!CSEDenseMapInfo::canHandle(In)) 3643 continue; 3644 3645 // Check if we can replace this instruction with any of the 3646 // visited instructions. 3647 if (Instruction *V = CSEMap.lookup(In)) { 3648 In->replaceAllUsesWith(V); 3649 In->eraseFromParent(); 3650 continue; 3651 } 3652 3653 CSEMap[In] = In; 3654 } 3655 } 3656 3657 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3658 /// convenience wrapper for the type-based getScalarizationOverhead API. 3659 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3660 const TargetTransformInfo &TTI) { 3661 if (VF == 1) 3662 return 0; 3663 3664 unsigned Cost = 0; 3665 Type *RetTy = ToVectorTy(I->getType(), VF); 3666 if (!RetTy->isVoidTy() && 3667 (!isa<LoadInst>(I) || 3668 !TTI.supportsEfficientVectorElementLoadStore())) 3669 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3670 3671 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3672 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3673 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3674 } 3675 else if (!isa<StoreInst>(I) || 3676 !TTI.supportsEfficientVectorElementLoadStore()) { 3677 SmallVector<const Value *, 4> Operands(I->operand_values()); 3678 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3679 } 3680 3681 return Cost; 3682 } 3683 3684 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3685 // Return the cost of the instruction, including scalarization overhead if it's 3686 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3687 // i.e. either vector version isn't available, or is too expensive. 3688 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3689 const TargetTransformInfo &TTI, 3690 const TargetLibraryInfo *TLI, 3691 bool &NeedToScalarize) { 3692 Function *F = CI->getCalledFunction(); 3693 StringRef FnName = CI->getCalledFunction()->getName(); 3694 Type *ScalarRetTy = CI->getType(); 3695 SmallVector<Type *, 4> Tys, ScalarTys; 3696 for (auto &ArgOp : CI->arg_operands()) 3697 ScalarTys.push_back(ArgOp->getType()); 3698 3699 // Estimate cost of scalarized vector call. The source operands are assumed 3700 // to be vectors, so we need to extract individual elements from there, 3701 // execute VF scalar calls, and then gather the result into the vector return 3702 // value. 3703 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3704 if (VF == 1) 3705 return ScalarCallCost; 3706 3707 // Compute corresponding vector type for return value and arguments. 3708 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3709 for (Type *ScalarTy : ScalarTys) 3710 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3711 3712 // Compute costs of unpacking argument values for the scalar calls and 3713 // packing the return values to a vector. 3714 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3715 3716 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3717 3718 // If we can't emit a vector call for this function, then the currently found 3719 // cost is the cost we need to return. 3720 NeedToScalarize = true; 3721 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3722 return Cost; 3723 3724 // If the corresponding vector cost is cheaper, return its cost. 3725 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3726 if (VectorCallCost < Cost) { 3727 NeedToScalarize = false; 3728 return VectorCallCost; 3729 } 3730 return Cost; 3731 } 3732 3733 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3734 // factor VF. Return the cost of the instruction, including scalarization 3735 // overhead if it's needed. 3736 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3737 const TargetTransformInfo &TTI, 3738 const TargetLibraryInfo *TLI) { 3739 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3740 assert(ID && "Expected intrinsic call!"); 3741 3742 FastMathFlags FMF; 3743 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3744 FMF = FPMO->getFastMathFlags(); 3745 3746 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3747 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3748 } 3749 3750 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3751 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3752 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3753 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3754 } 3755 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3756 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3757 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3758 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3759 } 3760 3761 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3762 // For every instruction `I` in MinBWs, truncate the operands, create a 3763 // truncated version of `I` and reextend its result. InstCombine runs 3764 // later and will remove any ext/trunc pairs. 3765 // 3766 SmallPtrSet<Value *, 4> Erased; 3767 for (const auto &KV : Cost->getMinimalBitwidths()) { 3768 // If the value wasn't vectorized, we must maintain the original scalar 3769 // type. The absence of the value from VectorLoopValueMap indicates that it 3770 // wasn't vectorized. 3771 if (!VectorLoopValueMap.hasVector(KV.first)) 3772 continue; 3773 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3774 for (Value *&I : Parts) { 3775 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3776 continue; 3777 Type *OriginalTy = I->getType(); 3778 Type *ScalarTruncatedTy = 3779 IntegerType::get(OriginalTy->getContext(), KV.second); 3780 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3781 OriginalTy->getVectorNumElements()); 3782 if (TruncatedTy == OriginalTy) 3783 continue; 3784 3785 IRBuilder<> B(cast<Instruction>(I)); 3786 auto ShrinkOperand = [&](Value *V) -> Value * { 3787 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3788 if (ZI->getSrcTy() == TruncatedTy) 3789 return ZI->getOperand(0); 3790 return B.CreateZExtOrTrunc(V, TruncatedTy); 3791 }; 3792 3793 // The actual instruction modification depends on the instruction type, 3794 // unfortunately. 3795 Value *NewI = nullptr; 3796 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3797 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3798 ShrinkOperand(BO->getOperand(1))); 3799 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3800 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3801 NewI = 3802 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3803 ShrinkOperand(CI->getOperand(1))); 3804 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3805 NewI = B.CreateSelect(SI->getCondition(), 3806 ShrinkOperand(SI->getTrueValue()), 3807 ShrinkOperand(SI->getFalseValue())); 3808 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3809 switch (CI->getOpcode()) { 3810 default: 3811 llvm_unreachable("Unhandled cast!"); 3812 case Instruction::Trunc: 3813 NewI = ShrinkOperand(CI->getOperand(0)); 3814 break; 3815 case Instruction::SExt: 3816 NewI = B.CreateSExtOrTrunc( 3817 CI->getOperand(0), 3818 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3819 break; 3820 case Instruction::ZExt: 3821 NewI = B.CreateZExtOrTrunc( 3822 CI->getOperand(0), 3823 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3824 break; 3825 } 3826 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3827 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3828 auto *O0 = B.CreateZExtOrTrunc( 3829 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3830 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3831 auto *O1 = B.CreateZExtOrTrunc( 3832 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3833 3834 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3835 } else if (isa<LoadInst>(I)) { 3836 // Don't do anything with the operands, just extend the result. 3837 continue; 3838 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3839 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3840 auto *O0 = B.CreateZExtOrTrunc( 3841 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3842 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3843 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3844 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3845 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3846 auto *O0 = B.CreateZExtOrTrunc( 3847 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3848 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3849 } else { 3850 llvm_unreachable("Unhandled instruction type!"); 3851 } 3852 3853 // Lastly, extend the result. 3854 NewI->takeName(cast<Instruction>(I)); 3855 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3856 I->replaceAllUsesWith(Res); 3857 cast<Instruction>(I)->eraseFromParent(); 3858 Erased.insert(I); 3859 I = Res; 3860 } 3861 } 3862 3863 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3864 for (const auto &KV : Cost->getMinimalBitwidths()) { 3865 // If the value wasn't vectorized, we must maintain the original scalar 3866 // type. The absence of the value from VectorLoopValueMap indicates that it 3867 // wasn't vectorized. 3868 if (!VectorLoopValueMap.hasVector(KV.first)) 3869 continue; 3870 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3871 for (Value *&I : Parts) { 3872 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3873 if (Inst && Inst->use_empty()) { 3874 Value *NewI = Inst->getOperand(0); 3875 Inst->eraseFromParent(); 3876 I = NewI; 3877 } 3878 } 3879 } 3880 } 3881 3882 void InnerLoopVectorizer::vectorizeLoop() { 3883 //===------------------------------------------------===// 3884 // 3885 // Notice: any optimization or new instruction that go 3886 // into the code below should be also be implemented in 3887 // the cost-model. 3888 // 3889 //===------------------------------------------------===// 3890 3891 // Collect instructions from the original loop that will become trivially dead 3892 // in the vectorized loop. We don't need to vectorize these instructions. For 3893 // example, original induction update instructions can become dead because we 3894 // separately emit induction "steps" when generating code for the new loop. 3895 // Similarly, we create a new latch condition when setting up the structure 3896 // of the new loop, so the old one can become dead. 3897 SmallPtrSet<Instruction *, 4> DeadInstructions; 3898 collectTriviallyDeadInstructions(DeadInstructions); 3899 3900 // Scan the loop in a topological order to ensure that defs are vectorized 3901 // before users. 3902 LoopBlocksDFS DFS(OrigLoop); 3903 DFS.perform(LI); 3904 3905 // Vectorize all instructions in the original loop that will not become 3906 // trivially dead when vectorized. 3907 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3908 for (Instruction &I : *BB) 3909 if (!DeadInstructions.count(&I)) 3910 vectorizeInstruction(I); 3911 3912 // Insert truncates and extends for any truncated instructions as hints to 3913 // InstCombine. 3914 if (VF > 1) 3915 truncateToMinimalBitwidths(); 3916 3917 // At this point every instruction in the original loop is widened to a 3918 // vector form. Now we need to fix the recurrences in the loop. These PHI 3919 // nodes are currently empty because we did not want to introduce cycles. 3920 // This is the second stage of vectorizing recurrences. 3921 fixCrossIterationPHIs(); 3922 3923 // Update the dominator tree. 3924 // 3925 // FIXME: After creating the structure of the new loop, the dominator tree is 3926 // no longer up-to-date, and it remains that way until we update it 3927 // here. An out-of-date dominator tree is problematic for SCEV, 3928 // because SCEVExpander uses it to guide code generation. The 3929 // vectorizer use SCEVExpanders in several places. Instead, we should 3930 // keep the dominator tree up-to-date as we go. 3931 updateAnalysis(); 3932 3933 // Fix-up external users of the induction variables. 3934 for (auto &Entry : *Legal->getInductionVars()) 3935 fixupIVUsers(Entry.first, Entry.second, 3936 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3937 IVEndValues[Entry.first], LoopMiddleBlock); 3938 3939 fixLCSSAPHIs(); 3940 predicateInstructions(); 3941 3942 // Remove redundant induction instructions. 3943 cse(LoopVectorBody); 3944 } 3945 3946 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3947 // In order to support recurrences we need to be able to vectorize Phi nodes. 3948 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3949 // stage #2: We now need to fix the recurrences by adding incoming edges to 3950 // the currently empty PHI nodes. At this point every instruction in the 3951 // original loop is widened to a vector form so we can use them to construct 3952 // the incoming edges. 3953 for (Instruction &I : *OrigLoop->getHeader()) { 3954 PHINode *Phi = dyn_cast<PHINode>(&I); 3955 if (!Phi) 3956 break; 3957 // Handle first-order recurrences and reductions that need to be fixed. 3958 if (Legal->isFirstOrderRecurrence(Phi)) 3959 fixFirstOrderRecurrence(Phi); 3960 else if (Legal->isReductionVariable(Phi)) 3961 fixReduction(Phi); 3962 } 3963 } 3964 3965 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3966 3967 // This is the second phase of vectorizing first-order recurrences. An 3968 // overview of the transformation is described below. Suppose we have the 3969 // following loop. 3970 // 3971 // for (int i = 0; i < n; ++i) 3972 // b[i] = a[i] - a[i - 1]; 3973 // 3974 // There is a first-order recurrence on "a". For this loop, the shorthand 3975 // scalar IR looks like: 3976 // 3977 // scalar.ph: 3978 // s_init = a[-1] 3979 // br scalar.body 3980 // 3981 // scalar.body: 3982 // i = phi [0, scalar.ph], [i+1, scalar.body] 3983 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3984 // s2 = a[i] 3985 // b[i] = s2 - s1 3986 // br cond, scalar.body, ... 3987 // 3988 // In this example, s1 is a recurrence because it's value depends on the 3989 // previous iteration. In the first phase of vectorization, we created a 3990 // temporary value for s1. We now complete the vectorization and produce the 3991 // shorthand vector IR shown below (for VF = 4, UF = 1). 3992 // 3993 // vector.ph: 3994 // v_init = vector(..., ..., ..., a[-1]) 3995 // br vector.body 3996 // 3997 // vector.body 3998 // i = phi [0, vector.ph], [i+4, vector.body] 3999 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4000 // v2 = a[i, i+1, i+2, i+3]; 4001 // v3 = vector(v1(3), v2(0, 1, 2)) 4002 // b[i, i+1, i+2, i+3] = v2 - v3 4003 // br cond, vector.body, middle.block 4004 // 4005 // middle.block: 4006 // x = v2(3) 4007 // br scalar.ph 4008 // 4009 // scalar.ph: 4010 // s_init = phi [x, middle.block], [a[-1], otherwise] 4011 // br scalar.body 4012 // 4013 // After execution completes the vector loop, we extract the next value of 4014 // the recurrence (x) to use as the initial value in the scalar loop. 4015 4016 // Get the original loop preheader and single loop latch. 4017 auto *Preheader = OrigLoop->getLoopPreheader(); 4018 auto *Latch = OrigLoop->getLoopLatch(); 4019 4020 // Get the initial and previous values of the scalar recurrence. 4021 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4022 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4023 4024 // Create a vector from the initial value. 4025 auto *VectorInit = ScalarInit; 4026 if (VF > 1) { 4027 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4028 VectorInit = Builder.CreateInsertElement( 4029 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4030 Builder.getInt32(VF - 1), "vector.recur.init"); 4031 } 4032 4033 // We constructed a temporary phi node in the first phase of vectorization. 4034 // This phi node will eventually be deleted. 4035 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4036 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4037 4038 // Create a phi node for the new recurrence. The current value will either be 4039 // the initial value inserted into a vector or loop-varying vector value. 4040 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4041 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4042 4043 // Get the vectorized previous value. 4044 auto &PreviousParts = getVectorValue(Previous); 4045 4046 // Set the insertion point after the previous value if it is an instruction. 4047 // Note that the previous value may have been constant-folded so it is not 4048 // guaranteed to be an instruction in the vector loop. 4049 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1])) 4050 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4051 else 4052 Builder.SetInsertPoint( 4053 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4054 4055 // We will construct a vector for the recurrence by combining the values for 4056 // the current and previous iterations. This is the required shuffle mask. 4057 SmallVector<Constant *, 8> ShuffleMask(VF); 4058 ShuffleMask[0] = Builder.getInt32(VF - 1); 4059 for (unsigned I = 1; I < VF; ++I) 4060 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4061 4062 // The vector from which to take the initial value for the current iteration 4063 // (actual or unrolled). Initially, this is the vector phi node. 4064 Value *Incoming = VecPhi; 4065 4066 // Shuffle the current and previous vector and update the vector parts. 4067 for (unsigned Part = 0; Part < UF; ++Part) { 4068 auto *Shuffle = 4069 VF > 1 4070 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4071 ConstantVector::get(ShuffleMask)) 4072 : Incoming; 4073 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4074 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4075 PhiParts[Part] = Shuffle; 4076 Incoming = PreviousParts[Part]; 4077 } 4078 4079 // Fix the latch value of the new recurrence in the vector loop. 4080 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4081 4082 // Extract the last vector element in the middle block. This will be the 4083 // initial value for the recurrence when jumping to the scalar loop. 4084 auto *ExtractForScalar = Incoming; 4085 if (VF > 1) { 4086 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4087 ExtractForScalar = Builder.CreateExtractElement( 4088 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4089 } 4090 // Extract the second last element in the middle block if the 4091 // Phi is used outside the loop. We need to extract the phi itself 4092 // and not the last element (the phi update in the current iteration). This 4093 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4094 // when the scalar loop is not run at all. 4095 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4096 if (VF > 1) 4097 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4098 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4099 // When loop is unrolled without vectorizing, initialize 4100 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4101 // `Incoming`. This is analogous to the vectorized case above: extracting the 4102 // second last element when VF > 1. 4103 else if (UF > 1) 4104 ExtractForPhiUsedOutsideLoop = PreviousParts[UF - 2]; 4105 4106 // Fix the initial value of the original recurrence in the scalar loop. 4107 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4108 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4109 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4110 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4111 Start->addIncoming(Incoming, BB); 4112 } 4113 4114 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4115 Phi->setName("scalar.recur"); 4116 4117 // Finally, fix users of the recurrence outside the loop. The users will need 4118 // either the last value of the scalar recurrence or the last value of the 4119 // vector recurrence we extracted in the middle block. Since the loop is in 4120 // LCSSA form, we just need to find the phi node for the original scalar 4121 // recurrence in the exit block, and then add an edge for the middle block. 4122 for (auto &I : *LoopExitBlock) { 4123 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4124 if (!LCSSAPhi) 4125 break; 4126 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4127 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4128 break; 4129 } 4130 } 4131 } 4132 4133 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4134 Constant *Zero = Builder.getInt32(0); 4135 4136 // Get it's reduction variable descriptor. 4137 assert(Legal->isReductionVariable(Phi) && 4138 "Unable to find the reduction variable"); 4139 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4140 4141 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4142 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4143 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4144 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4145 RdxDesc.getMinMaxRecurrenceKind(); 4146 setDebugLocFromInst(Builder, ReductionStartValue); 4147 4148 // We need to generate a reduction vector from the incoming scalar. 4149 // To do so, we need to generate the 'identity' vector and override 4150 // one of the elements with the incoming scalar reduction. We need 4151 // to do it in the vector-loop preheader. 4152 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 4153 4154 // This is the vector-clone of the value that leaves the loop. 4155 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 4156 Type *VecTy = VectorExit[0]->getType(); 4157 4158 // Find the reduction identity variable. Zero for addition, or, xor, 4159 // one for multiplication, -1 for And. 4160 Value *Identity; 4161 Value *VectorStart; 4162 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4163 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4164 // MinMax reduction have the start value as their identify. 4165 if (VF == 1) { 4166 VectorStart = Identity = ReductionStartValue; 4167 } else { 4168 VectorStart = Identity = 4169 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4170 } 4171 } else { 4172 // Handle other reduction kinds: 4173 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4174 RK, VecTy->getScalarType()); 4175 if (VF == 1) { 4176 Identity = Iden; 4177 // This vector is the Identity vector where the first element is the 4178 // incoming scalar reduction. 4179 VectorStart = ReductionStartValue; 4180 } else { 4181 Identity = ConstantVector::getSplat(VF, Iden); 4182 4183 // This vector is the Identity vector where the first element is the 4184 // incoming scalar reduction. 4185 VectorStart = 4186 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4187 } 4188 } 4189 4190 // Fix the vector-loop phi. 4191 4192 // Reductions do not have to start at zero. They can start with 4193 // any loop invariant values. 4194 const VectorParts &VecRdxPhi = getVectorValue(Phi); 4195 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4196 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4197 const VectorParts &Val = getVectorValue(LoopVal); 4198 for (unsigned part = 0; part < UF; ++part) { 4199 // Make sure to add the reduction stat value only to the 4200 // first unroll part. 4201 Value *StartVal = (part == 0) ? VectorStart : Identity; 4202 cast<PHINode>(VecRdxPhi[part]) 4203 ->addIncoming(StartVal, LoopVectorPreHeader); 4204 cast<PHINode>(VecRdxPhi[part]) 4205 ->addIncoming(Val[part], LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4206 } 4207 4208 // Before each round, move the insertion point right between 4209 // the PHIs and the values we are going to write. 4210 // This allows us to write both PHINodes and the extractelement 4211 // instructions. 4212 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4213 4214 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 4215 setDebugLocFromInst(Builder, LoopExitInst); 4216 4217 // If the vector reduction can be performed in a smaller type, we truncate 4218 // then extend the loop exit value to enable InstCombine to evaluate the 4219 // entire expression in the smaller type. 4220 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4221 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4222 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4223 for (unsigned part = 0; part < UF; ++part) { 4224 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4225 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4226 : Builder.CreateZExt(Trunc, VecTy); 4227 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4228 UI != RdxParts[part]->user_end();) 4229 if (*UI != Trunc) { 4230 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4231 RdxParts[part] = Extnd; 4232 } else { 4233 ++UI; 4234 } 4235 } 4236 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4237 for (unsigned part = 0; part < UF; ++part) 4238 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4239 } 4240 4241 // Reduce all of the unrolled parts into a single vector. 4242 Value *ReducedPartRdx = RdxParts[0]; 4243 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4244 setDebugLocFromInst(Builder, ReducedPartRdx); 4245 for (unsigned part = 1; part < UF; ++part) { 4246 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4247 // Floating point operations had to be 'fast' to enable the reduction. 4248 ReducedPartRdx = addFastMathFlag( 4249 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4250 ReducedPartRdx, "bin.rdx")); 4251 else 4252 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4253 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4254 } 4255 4256 if (VF > 1) { 4257 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 4258 // and vector ops, reducing the set of values being computed by half each 4259 // round. 4260 assert(isPowerOf2_32(VF) && 4261 "Reduction emission only supported for pow2 vectors!"); 4262 Value *TmpVec = ReducedPartRdx; 4263 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 4264 for (unsigned i = VF; i != 1; i >>= 1) { 4265 // Move the upper half of the vector to the lower half. 4266 for (unsigned j = 0; j != i / 2; ++j) 4267 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 4268 4269 // Fill the rest of the mask with undef. 4270 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 4271 UndefValue::get(Builder.getInt32Ty())); 4272 4273 Value *Shuf = Builder.CreateShuffleVector( 4274 TmpVec, UndefValue::get(TmpVec->getType()), 4275 ConstantVector::get(ShuffleMask), "rdx.shuf"); 4276 4277 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4278 // Floating point operations had to be 'fast' to enable the reduction. 4279 TmpVec = addFastMathFlag(Builder.CreateBinOp( 4280 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 4281 else 4282 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4283 TmpVec, Shuf); 4284 } 4285 4286 // The result is in the first element of the vector. 4287 ReducedPartRdx = 4288 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4289 4290 // If the reduction can be performed in a smaller type, we need to extend 4291 // the reduction to the wider type before we branch to the original loop. 4292 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4293 ReducedPartRdx = 4294 RdxDesc.isSigned() 4295 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4296 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4297 } 4298 4299 // Create a phi node that merges control-flow from the backedge-taken check 4300 // block and the middle block. 4301 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4302 LoopScalarPreHeader->getTerminator()); 4303 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4304 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4305 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4306 4307 // Now, we need to fix the users of the reduction variable 4308 // inside and outside of the scalar remainder loop. 4309 // We know that the loop is in LCSSA form. We need to update the 4310 // PHI nodes in the exit blocks. 4311 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4312 LEE = LoopExitBlock->end(); 4313 LEI != LEE; ++LEI) { 4314 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4315 if (!LCSSAPhi) 4316 break; 4317 4318 // All PHINodes need to have a single entry edge, or two if 4319 // we already fixed them. 4320 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4321 4322 // We found a reduction value exit-PHI. Update it with the 4323 // incoming bypass edge. 4324 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4325 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4326 } // end of the LCSSA phi scan. 4327 4328 // Fix the scalar loop reduction variable with the incoming reduction sum 4329 // from the vector body and from the backedge value. 4330 int IncomingEdgeBlockIdx = 4331 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4332 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4333 // Pick the other block. 4334 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4335 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4336 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4337 } 4338 4339 void InnerLoopVectorizer::fixLCSSAPHIs() { 4340 for (Instruction &LEI : *LoopExitBlock) { 4341 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4342 if (!LCSSAPhi) 4343 break; 4344 if (LCSSAPhi->getNumIncomingValues() == 1) 4345 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4346 LoopMiddleBlock); 4347 } 4348 } 4349 4350 void InnerLoopVectorizer::collectTriviallyDeadInstructions( 4351 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 4352 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4353 4354 // We create new control-flow for the vectorized loop, so the original 4355 // condition will be dead after vectorization if it's only used by the 4356 // branch. 4357 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4358 if (Cmp && Cmp->hasOneUse()) 4359 DeadInstructions.insert(Cmp); 4360 4361 // We create new "steps" for induction variable updates to which the original 4362 // induction variables map. An original update instruction will be dead if 4363 // all its users except the induction variable are dead. 4364 for (auto &Induction : *Legal->getInductionVars()) { 4365 PHINode *Ind = Induction.first; 4366 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4367 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4368 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4369 })) 4370 DeadInstructions.insert(IndUpdate); 4371 } 4372 } 4373 4374 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4375 4376 // The basic block and loop containing the predicated instruction. 4377 auto *PredBB = PredInst->getParent(); 4378 auto *VectorLoop = LI->getLoopFor(PredBB); 4379 4380 // Initialize a worklist with the operands of the predicated instruction. 4381 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4382 4383 // Holds instructions that we need to analyze again. An instruction may be 4384 // reanalyzed if we don't yet know if we can sink it or not. 4385 SmallVector<Instruction *, 8> InstsToReanalyze; 4386 4387 // Returns true if a given use occurs in the predicated block. Phi nodes use 4388 // their operands in their corresponding predecessor blocks. 4389 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4390 auto *I = cast<Instruction>(U.getUser()); 4391 BasicBlock *BB = I->getParent(); 4392 if (auto *Phi = dyn_cast<PHINode>(I)) 4393 BB = Phi->getIncomingBlock( 4394 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4395 return BB == PredBB; 4396 }; 4397 4398 // Iteratively sink the scalarized operands of the predicated instruction 4399 // into the block we created for it. When an instruction is sunk, it's 4400 // operands are then added to the worklist. The algorithm ends after one pass 4401 // through the worklist doesn't sink a single instruction. 4402 bool Changed; 4403 do { 4404 4405 // Add the instructions that need to be reanalyzed to the worklist, and 4406 // reset the changed indicator. 4407 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4408 InstsToReanalyze.clear(); 4409 Changed = false; 4410 4411 while (!Worklist.empty()) { 4412 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4413 4414 // We can't sink an instruction if it is a phi node, is already in the 4415 // predicated block, is not in the loop, or may have side effects. 4416 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4417 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4418 continue; 4419 4420 // It's legal to sink the instruction if all its uses occur in the 4421 // predicated block. Otherwise, there's nothing to do yet, and we may 4422 // need to reanalyze the instruction. 4423 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4424 InstsToReanalyze.push_back(I); 4425 continue; 4426 } 4427 4428 // Move the instruction to the beginning of the predicated block, and add 4429 // it's operands to the worklist. 4430 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4431 Worklist.insert(I->op_begin(), I->op_end()); 4432 4433 // The sinking may have enabled other instructions to be sunk, so we will 4434 // need to iterate. 4435 Changed = true; 4436 } 4437 } while (Changed); 4438 } 4439 4440 void InnerLoopVectorizer::predicateInstructions() { 4441 4442 // For each instruction I marked for predication on value C, split I into its 4443 // own basic block to form an if-then construct over C. Since I may be fed by 4444 // an extractelement instruction or other scalar operand, we try to 4445 // iteratively sink its scalar operands into the predicated block. If I feeds 4446 // an insertelement instruction, we try to move this instruction into the 4447 // predicated block as well. For non-void types, a phi node will be created 4448 // for the resulting value (either vector or scalar). 4449 // 4450 // So for some predicated instruction, e.g. the conditional sdiv in: 4451 // 4452 // for.body: 4453 // ... 4454 // %add = add nsw i32 %mul, %0 4455 // %cmp5 = icmp sgt i32 %2, 7 4456 // br i1 %cmp5, label %if.then, label %if.end 4457 // 4458 // if.then: 4459 // %div = sdiv i32 %0, %1 4460 // br label %if.end 4461 // 4462 // if.end: 4463 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4464 // 4465 // the sdiv at this point is scalarized and if-converted using a select. 4466 // The inactive elements in the vector are not used, but the predicated 4467 // instruction is still executed for all vector elements, essentially: 4468 // 4469 // vector.body: 4470 // ... 4471 // %17 = add nsw <2 x i32> %16, %wide.load 4472 // %29 = extractelement <2 x i32> %wide.load, i32 0 4473 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4474 // %31 = sdiv i32 %29, %30 4475 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4476 // %35 = extractelement <2 x i32> %wide.load, i32 1 4477 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4478 // %37 = sdiv i32 %35, %36 4479 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4480 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4481 // 4482 // Predication will now re-introduce the original control flow to avoid false 4483 // side-effects by the sdiv instructions on the inactive elements, yielding 4484 // (after cleanup): 4485 // 4486 // vector.body: 4487 // ... 4488 // %5 = add nsw <2 x i32> %4, %wide.load 4489 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4490 // %9 = extractelement <2 x i1> %8, i32 0 4491 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4492 // 4493 // pred.sdiv.if: 4494 // %10 = extractelement <2 x i32> %wide.load, i32 0 4495 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4496 // %12 = sdiv i32 %10, %11 4497 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4498 // br label %pred.sdiv.continue 4499 // 4500 // pred.sdiv.continue: 4501 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4502 // %15 = extractelement <2 x i1> %8, i32 1 4503 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4504 // 4505 // pred.sdiv.if54: 4506 // %16 = extractelement <2 x i32> %wide.load, i32 1 4507 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4508 // %18 = sdiv i32 %16, %17 4509 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4510 // br label %pred.sdiv.continue55 4511 // 4512 // pred.sdiv.continue55: 4513 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4514 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4515 4516 for (auto KV : PredicatedInstructions) { 4517 BasicBlock::iterator I(KV.first); 4518 BasicBlock *Head = I->getParent(); 4519 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4520 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4521 /*BranchWeights=*/nullptr, DT, LI); 4522 I->moveBefore(T); 4523 sinkScalarOperands(&*I); 4524 4525 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4526 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4527 4528 // If the instruction is non-void create a Phi node at reconvergence point. 4529 if (!I->getType()->isVoidTy()) { 4530 Value *IncomingTrue = nullptr; 4531 Value *IncomingFalse = nullptr; 4532 4533 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4534 // If the predicated instruction is feeding an insert-element, move it 4535 // into the Then block; Phi node will be created for the vector. 4536 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4537 IEI->moveBefore(T); 4538 IncomingTrue = IEI; // the new vector with the inserted element. 4539 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4540 } else { 4541 // Phi node will be created for the scalar predicated instruction. 4542 IncomingTrue = &*I; 4543 IncomingFalse = UndefValue::get(I->getType()); 4544 } 4545 4546 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4547 assert(PostDom && "Then block has multiple successors"); 4548 PHINode *Phi = 4549 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4550 IncomingTrue->replaceAllUsesWith(Phi); 4551 Phi->addIncoming(IncomingFalse, Head); 4552 Phi->addIncoming(IncomingTrue, I->getParent()); 4553 } 4554 } 4555 4556 DEBUG(DT->verifyDomTree()); 4557 } 4558 4559 InnerLoopVectorizer::VectorParts 4560 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4561 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4562 4563 // Look for cached value. 4564 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4565 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4566 if (ECEntryIt != EdgeMaskCache.end()) 4567 return ECEntryIt->second; 4568 4569 VectorParts SrcMask = createBlockInMask(Src); 4570 4571 // The terminator has to be a branch inst! 4572 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4573 assert(BI && "Unexpected terminator found"); 4574 4575 if (BI->isConditional()) { 4576 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4577 4578 if (BI->getSuccessor(0) != Dst) 4579 for (unsigned part = 0; part < UF; ++part) 4580 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4581 4582 for (unsigned part = 0; part < UF; ++part) 4583 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4584 4585 EdgeMaskCache[Edge] = EdgeMask; 4586 return EdgeMask; 4587 } 4588 4589 EdgeMaskCache[Edge] = SrcMask; 4590 return SrcMask; 4591 } 4592 4593 InnerLoopVectorizer::VectorParts 4594 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4595 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4596 4597 // Look for cached value. 4598 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4599 if (BCEntryIt != BlockMaskCache.end()) 4600 return BCEntryIt->second; 4601 4602 // Loop incoming mask is all-one. 4603 if (OrigLoop->getHeader() == BB) { 4604 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4605 const VectorParts &BlockMask = getVectorValue(C); 4606 BlockMaskCache[BB] = BlockMask; 4607 return BlockMask; 4608 } 4609 4610 // This is the block mask. We OR all incoming edges, and with zero. 4611 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4612 VectorParts BlockMask = getVectorValue(Zero); 4613 4614 // For each pred: 4615 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4616 VectorParts EM = createEdgeMask(*it, BB); 4617 for (unsigned part = 0; part < UF; ++part) 4618 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4619 } 4620 4621 BlockMaskCache[BB] = BlockMask; 4622 return BlockMask; 4623 } 4624 4625 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4626 unsigned VF) { 4627 PHINode *P = cast<PHINode>(PN); 4628 // In order to support recurrences we need to be able to vectorize Phi nodes. 4629 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4630 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4631 // this value when we vectorize all of the instructions that use the PHI. 4632 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4633 VectorParts Entry(UF); 4634 for (unsigned part = 0; part < UF; ++part) { 4635 // This is phase one of vectorizing PHIs. 4636 Type *VecTy = 4637 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4638 Entry[part] = PHINode::Create( 4639 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4640 } 4641 VectorLoopValueMap.initVector(P, Entry); 4642 return; 4643 } 4644 4645 setDebugLocFromInst(Builder, P); 4646 // Check for PHI nodes that are lowered to vector selects. 4647 if (P->getParent() != OrigLoop->getHeader()) { 4648 // We know that all PHIs in non-header blocks are converted into 4649 // selects, so we don't have to worry about the insertion order and we 4650 // can just use the builder. 4651 // At this point we generate the predication tree. There may be 4652 // duplications since this is a simple recursive scan, but future 4653 // optimizations will clean it up. 4654 4655 unsigned NumIncoming = P->getNumIncomingValues(); 4656 4657 // Generate a sequence of selects of the form: 4658 // SELECT(Mask3, In3, 4659 // SELECT(Mask2, In2, 4660 // ( ...))) 4661 VectorParts Entry(UF); 4662 for (unsigned In = 0; In < NumIncoming; In++) { 4663 VectorParts Cond = 4664 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4665 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4666 4667 for (unsigned part = 0; part < UF; ++part) { 4668 // We might have single edge PHIs (blocks) - use an identity 4669 // 'select' for the first PHI operand. 4670 if (In == 0) 4671 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4672 else 4673 // Select between the current value and the previous incoming edge 4674 // based on the incoming mask. 4675 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4676 "predphi"); 4677 } 4678 } 4679 VectorLoopValueMap.initVector(P, Entry); 4680 return; 4681 } 4682 4683 // This PHINode must be an induction variable. 4684 // Make sure that we know about it. 4685 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4686 4687 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4688 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4689 4690 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4691 // which can be found from the original scalar operations. 4692 switch (II.getKind()) { 4693 case InductionDescriptor::IK_NoInduction: 4694 llvm_unreachable("Unknown induction"); 4695 case InductionDescriptor::IK_IntInduction: 4696 case InductionDescriptor::IK_FpInduction: 4697 return widenIntOrFpInduction(P); 4698 case InductionDescriptor::IK_PtrInduction: { 4699 // Handle the pointer induction variable case. 4700 assert(P->getType()->isPointerTy() && "Unexpected type."); 4701 // This is the normalized GEP that starts counting at zero. 4702 Value *PtrInd = Induction; 4703 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4704 // Determine the number of scalars we need to generate for each unroll 4705 // iteration. If the instruction is uniform, we only need to generate the 4706 // first lane. Otherwise, we generate all VF values. 4707 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4708 // These are the scalar results. Notice that we don't generate vector GEPs 4709 // because scalar GEPs result in better code. 4710 ScalarParts Entry(UF); 4711 for (unsigned Part = 0; Part < UF; ++Part) { 4712 Entry[Part].resize(VF); 4713 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4714 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4715 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4716 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4717 SclrGep->setName("next.gep"); 4718 Entry[Part][Lane] = SclrGep; 4719 } 4720 } 4721 VectorLoopValueMap.initScalar(P, Entry); 4722 return; 4723 } 4724 } 4725 } 4726 4727 /// A helper function for checking whether an integer division-related 4728 /// instruction may divide by zero (in which case it must be predicated if 4729 /// executed conditionally in the scalar code). 4730 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4731 /// Non-zero divisors that are non compile-time constants will not be 4732 /// converted into multiplication, so we will still end up scalarizing 4733 /// the division, but can do so w/o predication. 4734 static bool mayDivideByZero(Instruction &I) { 4735 assert((I.getOpcode() == Instruction::UDiv || 4736 I.getOpcode() == Instruction::SDiv || 4737 I.getOpcode() == Instruction::URem || 4738 I.getOpcode() == Instruction::SRem) && 4739 "Unexpected instruction"); 4740 Value *Divisor = I.getOperand(1); 4741 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4742 return !CInt || CInt->isZero(); 4743 } 4744 4745 void InnerLoopVectorizer::vectorizeInstruction(Instruction &I) { 4746 // Scalarize instructions that should remain scalar after vectorization. 4747 if (VF > 1 && 4748 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || isa<DbgInfoIntrinsic>(&I)) && 4749 shouldScalarizeInstruction(&I)) { 4750 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4751 return; 4752 } 4753 4754 switch (I.getOpcode()) { 4755 case Instruction::Br: 4756 // Nothing to do for PHIs and BR, since we already took care of the 4757 // loop control flow instructions. 4758 break; 4759 case Instruction::PHI: { 4760 // Vectorize PHINodes. 4761 widenPHIInstruction(&I, UF, VF); 4762 break; 4763 } // End of PHI. 4764 case Instruction::GetElementPtr: { 4765 // Construct a vector GEP by widening the operands of the scalar GEP as 4766 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4767 // results in a vector of pointers when at least one operand of the GEP 4768 // is vector-typed. Thus, to keep the representation compact, we only use 4769 // vector-typed operands for loop-varying values. 4770 auto *GEP = cast<GetElementPtrInst>(&I); 4771 VectorParts Entry(UF); 4772 4773 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4774 // If we are vectorizing, but the GEP has only loop-invariant operands, 4775 // the GEP we build (by only using vector-typed operands for 4776 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4777 // produce a vector of pointers, we need to either arbitrarily pick an 4778 // operand to broadcast, or broadcast a clone of the original GEP. 4779 // Here, we broadcast a clone of the original. 4780 // 4781 // TODO: If at some point we decide to scalarize instructions having 4782 // loop-invariant operands, this special case will no longer be 4783 // required. We would add the scalarization decision to 4784 // collectLoopScalars() and teach getVectorValue() to broadcast 4785 // the lane-zero scalar value. 4786 auto *Clone = Builder.Insert(GEP->clone()); 4787 for (unsigned Part = 0; Part < UF; ++Part) 4788 Entry[Part] = Builder.CreateVectorSplat(VF, Clone); 4789 } else { 4790 // If the GEP has at least one loop-varying operand, we are sure to 4791 // produce a vector of pointers. But if we are only unrolling, we want 4792 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4793 // produce with the code below will be scalar (if VF == 1) or vector 4794 // (otherwise). Note that for the unroll-only case, we still maintain 4795 // values in the vector mapping with initVector, as we do for other 4796 // instructions. 4797 for (unsigned Part = 0; Part < UF; ++Part) { 4798 4799 // The pointer operand of the new GEP. If it's loop-invariant, we 4800 // won't broadcast it. 4801 auto *Ptr = OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4802 ? GEP->getPointerOperand() 4803 : getVectorValue(GEP->getPointerOperand())[Part]; 4804 4805 // Collect all the indices for the new GEP. If any index is 4806 // loop-invariant, we won't broadcast it. 4807 SmallVector<Value *, 4> Indices; 4808 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4809 if (OrigLoop->isLoopInvariant(U.get())) 4810 Indices.push_back(U.get()); 4811 else 4812 Indices.push_back(getVectorValue(U.get())[Part]); 4813 } 4814 4815 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4816 // but it should be a vector, otherwise. 4817 auto *NewGEP = GEP->isInBounds() 4818 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4819 : Builder.CreateGEP(Ptr, Indices); 4820 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4821 "NewGEP is not a pointer vector"); 4822 Entry[Part] = NewGEP; 4823 } 4824 } 4825 4826 VectorLoopValueMap.initVector(&I, Entry); 4827 addMetadata(Entry, GEP); 4828 break; 4829 } 4830 case Instruction::UDiv: 4831 case Instruction::SDiv: 4832 case Instruction::SRem: 4833 case Instruction::URem: 4834 // Scalarize with predication if this instruction may divide by zero and 4835 // block execution is conditional, otherwise fallthrough. 4836 if (Legal->isScalarWithPredication(&I)) { 4837 scalarizeInstruction(&I, true); 4838 break; 4839 } 4840 case Instruction::Add: 4841 case Instruction::FAdd: 4842 case Instruction::Sub: 4843 case Instruction::FSub: 4844 case Instruction::Mul: 4845 case Instruction::FMul: 4846 case Instruction::FDiv: 4847 case Instruction::FRem: 4848 case Instruction::Shl: 4849 case Instruction::LShr: 4850 case Instruction::AShr: 4851 case Instruction::And: 4852 case Instruction::Or: 4853 case Instruction::Xor: { 4854 // Just widen binops. 4855 auto *BinOp = cast<BinaryOperator>(&I); 4856 setDebugLocFromInst(Builder, BinOp); 4857 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4858 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4859 4860 // Use this vector value for all users of the original instruction. 4861 VectorParts Entry(UF); 4862 for (unsigned Part = 0; Part < UF; ++Part) { 4863 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4864 4865 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4866 VecOp->copyIRFlags(BinOp); 4867 4868 Entry[Part] = V; 4869 } 4870 4871 VectorLoopValueMap.initVector(&I, Entry); 4872 addMetadata(Entry, BinOp); 4873 break; 4874 } 4875 case Instruction::Select: { 4876 // Widen selects. 4877 // If the selector is loop invariant we can create a select 4878 // instruction with a scalar condition. Otherwise, use vector-select. 4879 auto *SE = PSE.getSE(); 4880 bool InvariantCond = 4881 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4882 setDebugLocFromInst(Builder, &I); 4883 4884 // The condition can be loop invariant but still defined inside the 4885 // loop. This means that we can't just use the original 'cond' value. 4886 // We have to take the 'vectorized' value and pick the first lane. 4887 // Instcombine will make this a no-op. 4888 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4889 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4890 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4891 4892 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4893 4894 VectorParts Entry(UF); 4895 for (unsigned Part = 0; Part < UF; ++Part) { 4896 Entry[Part] = Builder.CreateSelect( 4897 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4898 } 4899 4900 VectorLoopValueMap.initVector(&I, Entry); 4901 addMetadata(Entry, &I); 4902 break; 4903 } 4904 4905 case Instruction::ICmp: 4906 case Instruction::FCmp: { 4907 // Widen compares. Generate vector compares. 4908 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4909 auto *Cmp = dyn_cast<CmpInst>(&I); 4910 setDebugLocFromInst(Builder, Cmp); 4911 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4912 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4913 VectorParts Entry(UF); 4914 for (unsigned Part = 0; Part < UF; ++Part) { 4915 Value *C = nullptr; 4916 if (FCmp) { 4917 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4918 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4919 } else { 4920 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4921 } 4922 Entry[Part] = C; 4923 } 4924 4925 VectorLoopValueMap.initVector(&I, Entry); 4926 addMetadata(Entry, &I); 4927 break; 4928 } 4929 4930 case Instruction::Store: 4931 case Instruction::Load: 4932 vectorizeMemoryInstruction(&I); 4933 break; 4934 case Instruction::ZExt: 4935 case Instruction::SExt: 4936 case Instruction::FPToUI: 4937 case Instruction::FPToSI: 4938 case Instruction::FPExt: 4939 case Instruction::PtrToInt: 4940 case Instruction::IntToPtr: 4941 case Instruction::SIToFP: 4942 case Instruction::UIToFP: 4943 case Instruction::Trunc: 4944 case Instruction::FPTrunc: 4945 case Instruction::BitCast: { 4946 auto *CI = dyn_cast<CastInst>(&I); 4947 setDebugLocFromInst(Builder, CI); 4948 4949 // Optimize the special case where the source is a constant integer 4950 // induction variable. Notice that we can only optimize the 'trunc' case 4951 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4952 // (c) other casts depend on pointer size. 4953 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4954 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4955 cast<TruncInst>(CI)); 4956 break; 4957 } 4958 4959 /// Vectorize casts. 4960 Type *DestTy = 4961 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4962 4963 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4964 VectorParts Entry(UF); 4965 for (unsigned Part = 0; Part < UF; ++Part) 4966 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4967 VectorLoopValueMap.initVector(&I, Entry); 4968 addMetadata(Entry, &I); 4969 break; 4970 } 4971 4972 case Instruction::Call: { 4973 // Ignore dbg intrinsics. 4974 if (isa<DbgInfoIntrinsic>(I)) 4975 break; 4976 setDebugLocFromInst(Builder, &I); 4977 4978 Module *M = I.getParent()->getParent()->getParent(); 4979 auto *CI = cast<CallInst>(&I); 4980 4981 StringRef FnName = CI->getCalledFunction()->getName(); 4982 Function *F = CI->getCalledFunction(); 4983 Type *RetTy = ToVectorTy(CI->getType(), VF); 4984 SmallVector<Type *, 4> Tys; 4985 for (Value *ArgOperand : CI->arg_operands()) 4986 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4987 4988 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4989 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4990 ID == Intrinsic::lifetime_start)) { 4991 scalarizeInstruction(&I); 4992 break; 4993 } 4994 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4995 // version of the instruction. 4996 // Is it beneficial to perform intrinsic call compared to lib call? 4997 bool NeedToScalarize; 4998 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4999 bool UseVectorIntrinsic = 5000 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 5001 if (!UseVectorIntrinsic && NeedToScalarize) { 5002 scalarizeInstruction(&I); 5003 break; 5004 } 5005 5006 VectorParts Entry(UF); 5007 for (unsigned Part = 0; Part < UF; ++Part) { 5008 SmallVector<Value *, 4> Args; 5009 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 5010 Value *Arg = CI->getArgOperand(i); 5011 // Some intrinsics have a scalar argument - don't replace it with a 5012 // vector. 5013 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 5014 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 5015 Arg = VectorArg[Part]; 5016 } 5017 Args.push_back(Arg); 5018 } 5019 5020 Function *VectorF; 5021 if (UseVectorIntrinsic) { 5022 // Use vector version of the intrinsic. 5023 Type *TysForDecl[] = {CI->getType()}; 5024 if (VF > 1) 5025 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5026 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5027 } else { 5028 // Use vector version of the library call. 5029 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 5030 assert(!VFnName.empty() && "Vector function name is empty."); 5031 VectorF = M->getFunction(VFnName); 5032 if (!VectorF) { 5033 // Generate a declaration 5034 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 5035 VectorF = 5036 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 5037 VectorF->copyAttributesFrom(F); 5038 } 5039 } 5040 assert(VectorF && "Can't create vector function."); 5041 5042 SmallVector<OperandBundleDef, 1> OpBundles; 5043 CI->getOperandBundlesAsDefs(OpBundles); 5044 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5045 5046 if (isa<FPMathOperator>(V)) 5047 V->copyFastMathFlags(CI); 5048 5049 Entry[Part] = V; 5050 } 5051 5052 VectorLoopValueMap.initVector(&I, Entry); 5053 addMetadata(Entry, &I); 5054 break; 5055 } 5056 5057 default: 5058 // All other instructions are unsupported. Scalarize them. 5059 scalarizeInstruction(&I); 5060 break; 5061 } // end of switch. 5062 } 5063 5064 void InnerLoopVectorizer::updateAnalysis() { 5065 // Forget the original basic block. 5066 PSE.getSE()->forgetLoop(OrigLoop); 5067 5068 // Update the dominator tree information. 5069 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5070 "Entry does not dominate exit."); 5071 5072 DT->addNewBlock(LI->getLoopFor(LoopVectorBody)->getHeader(), 5073 LoopVectorPreHeader); 5074 DT->addNewBlock(LoopMiddleBlock, 5075 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 5076 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5077 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5078 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5079 5080 DEBUG(DT->verifyDomTree()); 5081 } 5082 5083 /// \brief Check whether it is safe to if-convert this phi node. 5084 /// 5085 /// Phi nodes with constant expressions that can trap are not safe to if 5086 /// convert. 5087 static bool canIfConvertPHINodes(BasicBlock *BB) { 5088 for (Instruction &I : *BB) { 5089 auto *Phi = dyn_cast<PHINode>(&I); 5090 if (!Phi) 5091 return true; 5092 for (Value *V : Phi->incoming_values()) 5093 if (auto *C = dyn_cast<Constant>(V)) 5094 if (C->canTrap()) 5095 return false; 5096 } 5097 return true; 5098 } 5099 5100 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5101 if (!EnableIfConversion) { 5102 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5103 << "if-conversion is disabled"); 5104 return false; 5105 } 5106 5107 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5108 5109 // A list of pointers that we can safely read and write to. 5110 SmallPtrSet<Value *, 8> SafePointes; 5111 5112 // Collect safe addresses. 5113 for (BasicBlock *BB : TheLoop->blocks()) { 5114 if (blockNeedsPredication(BB)) 5115 continue; 5116 5117 for (Instruction &I : *BB) 5118 if (auto *Ptr = getPointerOperand(&I)) 5119 SafePointes.insert(Ptr); 5120 } 5121 5122 // Collect the blocks that need predication. 5123 BasicBlock *Header = TheLoop->getHeader(); 5124 for (BasicBlock *BB : TheLoop->blocks()) { 5125 // We don't support switch statements inside loops. 5126 if (!isa<BranchInst>(BB->getTerminator())) { 5127 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5128 << "loop contains a switch statement"); 5129 return false; 5130 } 5131 5132 // We must be able to predicate all blocks that need to be predicated. 5133 if (blockNeedsPredication(BB)) { 5134 if (!blockCanBePredicated(BB, SafePointes)) { 5135 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5136 << "control flow cannot be substituted for a select"); 5137 return false; 5138 } 5139 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5140 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5141 << "control flow cannot be substituted for a select"); 5142 return false; 5143 } 5144 } 5145 5146 // We can if-convert this loop. 5147 return true; 5148 } 5149 5150 bool LoopVectorizationLegality::canVectorize() { 5151 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5152 // be canonicalized. 5153 if (!TheLoop->getLoopPreheader()) { 5154 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5155 << "loop control flow is not understood by vectorizer"); 5156 return false; 5157 } 5158 5159 // FIXME: The code is currently dead, since the loop gets sent to 5160 // LoopVectorizationLegality is already an innermost loop. 5161 // 5162 // We can only vectorize innermost loops. 5163 if (!TheLoop->empty()) { 5164 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5165 << "loop is not the innermost loop"); 5166 return false; 5167 } 5168 5169 // We must have a single backedge. 5170 if (TheLoop->getNumBackEdges() != 1) { 5171 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5172 << "loop control flow is not understood by vectorizer"); 5173 return false; 5174 } 5175 5176 // We must have a single exiting block. 5177 if (!TheLoop->getExitingBlock()) { 5178 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5179 << "loop control flow is not understood by vectorizer"); 5180 return false; 5181 } 5182 5183 // We only handle bottom-tested loops, i.e. loop in which the condition is 5184 // checked at the end of each iteration. With that we can assume that all 5185 // instructions in the loop are executed the same number of times. 5186 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5187 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5188 << "loop control flow is not understood by vectorizer"); 5189 return false; 5190 } 5191 5192 // We need to have a loop header. 5193 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5194 << '\n'); 5195 5196 // Check if we can if-convert non-single-bb loops. 5197 unsigned NumBlocks = TheLoop->getNumBlocks(); 5198 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5199 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5200 return false; 5201 } 5202 5203 // ScalarEvolution needs to be able to find the exit count. 5204 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5205 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5206 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5207 << "could not determine number of loop iterations"); 5208 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5209 return false; 5210 } 5211 5212 // Check if we can vectorize the instructions and CFG in this loop. 5213 if (!canVectorizeInstrs()) { 5214 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5215 return false; 5216 } 5217 5218 // Go over each instruction and look at memory deps. 5219 if (!canVectorizeMemory()) { 5220 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5221 return false; 5222 } 5223 5224 DEBUG(dbgs() << "LV: We can vectorize this loop" 5225 << (LAI->getRuntimePointerChecking()->Need 5226 ? " (with a runtime bound check)" 5227 : "") 5228 << "!\n"); 5229 5230 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5231 5232 // If an override option has been passed in for interleaved accesses, use it. 5233 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5234 UseInterleaved = EnableInterleavedMemAccesses; 5235 5236 // Analyze interleaved memory accesses. 5237 if (UseInterleaved) 5238 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5239 5240 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5241 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5242 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5243 5244 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5245 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5246 << "Too many SCEV assumptions need to be made and checked " 5247 << "at runtime"); 5248 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5249 return false; 5250 } 5251 5252 // Okay! We can vectorize. At this point we don't have any other mem analysis 5253 // which may limit our maximum vectorization factor, so just return true with 5254 // no restrictions. 5255 return true; 5256 } 5257 5258 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5259 if (Ty->isPointerTy()) 5260 return DL.getIntPtrType(Ty); 5261 5262 // It is possible that char's or short's overflow when we ask for the loop's 5263 // trip count, work around this by changing the type size. 5264 if (Ty->getScalarSizeInBits() < 32) 5265 return Type::getInt32Ty(Ty->getContext()); 5266 5267 return Ty; 5268 } 5269 5270 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5271 Ty0 = convertPointerToIntegerType(DL, Ty0); 5272 Ty1 = convertPointerToIntegerType(DL, Ty1); 5273 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5274 return Ty0; 5275 return Ty1; 5276 } 5277 5278 /// \brief Check that the instruction has outside loop users and is not an 5279 /// identified reduction variable. 5280 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5281 SmallPtrSetImpl<Value *> &AllowedExit) { 5282 // Reduction and Induction instructions are allowed to have exit users. All 5283 // other instructions must not have external users. 5284 if (!AllowedExit.count(Inst)) 5285 // Check that all of the users of the loop are inside the BB. 5286 for (User *U : Inst->users()) { 5287 Instruction *UI = cast<Instruction>(U); 5288 // This user may be a reduction exit value. 5289 if (!TheLoop->contains(UI)) { 5290 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5291 return true; 5292 } 5293 } 5294 return false; 5295 } 5296 5297 void LoopVectorizationLegality::addInductionPhi( 5298 PHINode *Phi, const InductionDescriptor &ID, 5299 SmallPtrSetImpl<Value *> &AllowedExit) { 5300 Inductions[Phi] = ID; 5301 Type *PhiTy = Phi->getType(); 5302 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5303 5304 // Get the widest type. 5305 if (!PhiTy->isFloatingPointTy()) { 5306 if (!WidestIndTy) 5307 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5308 else 5309 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5310 } 5311 5312 // Int inductions are special because we only allow one IV. 5313 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5314 ID.getConstIntStepValue() && 5315 ID.getConstIntStepValue()->isOne() && 5316 isa<Constant>(ID.getStartValue()) && 5317 cast<Constant>(ID.getStartValue())->isNullValue()) { 5318 5319 // Use the phi node with the widest type as induction. Use the last 5320 // one if there are multiple (no good reason for doing this other 5321 // than it is expedient). We've checked that it begins at zero and 5322 // steps by one, so this is a canonical induction variable. 5323 if (!PrimaryInduction || PhiTy == WidestIndTy) 5324 PrimaryInduction = Phi; 5325 } 5326 5327 // Both the PHI node itself, and the "post-increment" value feeding 5328 // back into the PHI node may have external users. 5329 AllowedExit.insert(Phi); 5330 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5331 5332 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5333 return; 5334 } 5335 5336 bool LoopVectorizationLegality::canVectorizeInstrs() { 5337 BasicBlock *Header = TheLoop->getHeader(); 5338 5339 // Look for the attribute signaling the absence of NaNs. 5340 Function &F = *Header->getParent(); 5341 HasFunNoNaNAttr = 5342 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5343 5344 // For each block in the loop. 5345 for (BasicBlock *BB : TheLoop->blocks()) { 5346 // Scan the instructions in the block and look for hazards. 5347 for (Instruction &I : *BB) { 5348 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5349 Type *PhiTy = Phi->getType(); 5350 // Check that this PHI type is allowed. 5351 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5352 !PhiTy->isPointerTy()) { 5353 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5354 << "loop control flow is not understood by vectorizer"); 5355 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5356 return false; 5357 } 5358 5359 // If this PHINode is not in the header block, then we know that we 5360 // can convert it to select during if-conversion. No need to check if 5361 // the PHIs in this block are induction or reduction variables. 5362 if (BB != Header) { 5363 // Check that this instruction has no outside users or is an 5364 // identified reduction value with an outside user. 5365 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5366 continue; 5367 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5368 << "value could not be identified as " 5369 "an induction or reduction variable"); 5370 return false; 5371 } 5372 5373 // We only allow if-converted PHIs with exactly two incoming values. 5374 if (Phi->getNumIncomingValues() != 2) { 5375 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5376 << "control flow not understood by vectorizer"); 5377 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5378 return false; 5379 } 5380 5381 RecurrenceDescriptor RedDes; 5382 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5383 if (RedDes.hasUnsafeAlgebra()) 5384 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5385 AllowedExit.insert(RedDes.getLoopExitInstr()); 5386 Reductions[Phi] = RedDes; 5387 continue; 5388 } 5389 5390 InductionDescriptor ID; 5391 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5392 addInductionPhi(Phi, ID, AllowedExit); 5393 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5394 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5395 continue; 5396 } 5397 5398 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5399 FirstOrderRecurrences.insert(Phi); 5400 continue; 5401 } 5402 5403 // As a last resort, coerce the PHI to a AddRec expression 5404 // and re-try classifying it a an induction PHI. 5405 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5406 addInductionPhi(Phi, ID, AllowedExit); 5407 continue; 5408 } 5409 5410 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5411 << "value that could not be identified as " 5412 "reduction is used outside the loop"); 5413 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5414 return false; 5415 } // end of PHI handling 5416 5417 // We handle calls that: 5418 // * Are debug info intrinsics. 5419 // * Have a mapping to an IR intrinsic. 5420 // * Have a vector version available. 5421 auto *CI = dyn_cast<CallInst>(&I); 5422 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5423 !isa<DbgInfoIntrinsic>(CI) && 5424 !(CI->getCalledFunction() && TLI && 5425 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5426 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5427 << "call instruction cannot be vectorized"); 5428 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5429 return false; 5430 } 5431 5432 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5433 // second argument is the same (i.e. loop invariant) 5434 if (CI && hasVectorInstrinsicScalarOpd( 5435 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5436 auto *SE = PSE.getSE(); 5437 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5438 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5439 << "intrinsic instruction cannot be vectorized"); 5440 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5441 return false; 5442 } 5443 } 5444 5445 // Check that the instruction return type is vectorizable. 5446 // Also, we can't vectorize extractelement instructions. 5447 if ((!VectorType::isValidElementType(I.getType()) && 5448 !I.getType()->isVoidTy()) || 5449 isa<ExtractElementInst>(I)) { 5450 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5451 << "instruction return type cannot be vectorized"); 5452 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5453 return false; 5454 } 5455 5456 // Check that the stored type is vectorizable. 5457 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5458 Type *T = ST->getValueOperand()->getType(); 5459 if (!VectorType::isValidElementType(T)) { 5460 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5461 << "store instruction cannot be vectorized"); 5462 return false; 5463 } 5464 5465 // FP instructions can allow unsafe algebra, thus vectorizable by 5466 // non-IEEE-754 compliant SIMD units. 5467 // This applies to floating-point math operations and calls, not memory 5468 // operations, shuffles, or casts, as they don't change precision or 5469 // semantics. 5470 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5471 !I.hasUnsafeAlgebra()) { 5472 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5473 Hints->setPotentiallyUnsafe(); 5474 } 5475 5476 // Reduction instructions are allowed to have exit users. 5477 // All other instructions must not have external users. 5478 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5479 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5480 << "value cannot be used outside the loop"); 5481 return false; 5482 } 5483 5484 } // next instr. 5485 } 5486 5487 if (!PrimaryInduction) { 5488 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5489 if (Inductions.empty()) { 5490 ORE->emit(createMissedAnalysis("NoInductionVariable") 5491 << "loop induction variable could not be identified"); 5492 return false; 5493 } 5494 } 5495 5496 // Now we know the widest induction type, check if our found induction 5497 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5498 // will create another. 5499 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5500 PrimaryInduction = nullptr; 5501 5502 return true; 5503 } 5504 5505 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5506 5507 // We should not collect Scalars more than once per VF. Right now, this 5508 // function is called from collectUniformsAndScalars(), which already does 5509 // this check. Collecting Scalars for VF=1 does not make any sense. 5510 assert(VF >= 2 && !Scalars.count(VF) && 5511 "This function should not be visited twice for the same VF"); 5512 5513 SmallSetVector<Instruction *, 8> Worklist; 5514 5515 // These sets are used to seed the analysis with pointers used by memory 5516 // accesses that will remain scalar. 5517 SmallSetVector<Instruction *, 8> ScalarPtrs; 5518 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5519 5520 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5521 // The pointer operands of loads and stores will be scalar as long as the 5522 // memory access is not a gather or scatter operation. The value operand of a 5523 // store will remain scalar if the store is scalarized. 5524 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5525 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5526 assert(WideningDecision != CM_Unknown && 5527 "Widening decision should be ready at this moment"); 5528 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5529 if (Ptr == Store->getValueOperand()) 5530 return WideningDecision == CM_Scalarize; 5531 assert(Ptr == getPointerOperand(MemAccess) && 5532 "Ptr is neither a value or pointer operand"); 5533 return WideningDecision != CM_GatherScatter; 5534 }; 5535 5536 // A helper that returns true if the given value is a bitcast or 5537 // getelementptr instruction contained in the loop. 5538 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5539 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5540 isa<GetElementPtrInst>(V)) && 5541 !TheLoop->isLoopInvariant(V); 5542 }; 5543 5544 // A helper that evaluates a memory access's use of a pointer. If the use 5545 // will be a scalar use, and the pointer is only used by memory accesses, we 5546 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5547 // PossibleNonScalarPtrs. 5548 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5549 5550 // We only care about bitcast and getelementptr instructions contained in 5551 // the loop. 5552 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5553 return; 5554 5555 // If the pointer has already been identified as scalar (e.g., if it was 5556 // also identified as uniform), there's nothing to do. 5557 auto *I = cast<Instruction>(Ptr); 5558 if (Worklist.count(I)) 5559 return; 5560 5561 // If the use of the pointer will be a scalar use, and all users of the 5562 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5563 // place the pointer in PossibleNonScalarPtrs. 5564 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5565 return isa<LoadInst>(U) || isa<StoreInst>(U); 5566 })) 5567 ScalarPtrs.insert(I); 5568 else 5569 PossibleNonScalarPtrs.insert(I); 5570 }; 5571 5572 // We seed the scalars analysis with three classes of instructions: (1) 5573 // instructions marked uniform-after-vectorization, (2) bitcast and 5574 // getelementptr instructions used by memory accesses requiring a scalar use, 5575 // and (3) pointer induction variables and their update instructions (we 5576 // currently only scalarize these). 5577 // 5578 // (1) Add to the worklist all instructions that have been identified as 5579 // uniform-after-vectorization. 5580 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5581 5582 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5583 // memory accesses requiring a scalar use. The pointer operands of loads and 5584 // stores will be scalar as long as the memory accesses is not a gather or 5585 // scatter operation. The value operand of a store will remain scalar if the 5586 // store is scalarized. 5587 for (auto *BB : TheLoop->blocks()) 5588 for (auto &I : *BB) { 5589 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5590 evaluatePtrUse(Load, Load->getPointerOperand()); 5591 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5592 evaluatePtrUse(Store, Store->getPointerOperand()); 5593 evaluatePtrUse(Store, Store->getValueOperand()); 5594 } 5595 } 5596 for (auto *I : ScalarPtrs) 5597 if (!PossibleNonScalarPtrs.count(I)) { 5598 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5599 Worklist.insert(I); 5600 } 5601 5602 // (3) Add to the worklist all pointer induction variables and their update 5603 // instructions. 5604 // 5605 // TODO: Once we are able to vectorize pointer induction variables we should 5606 // no longer insert them into the worklist here. 5607 auto *Latch = TheLoop->getLoopLatch(); 5608 for (auto &Induction : *Legal->getInductionVars()) { 5609 auto *Ind = Induction.first; 5610 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5611 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5612 continue; 5613 Worklist.insert(Ind); 5614 Worklist.insert(IndUpdate); 5615 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5616 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5617 } 5618 5619 // Expand the worklist by looking through any bitcasts and getelementptr 5620 // instructions we've already identified as scalar. This is similar to the 5621 // expansion step in collectLoopUniforms(); however, here we're only 5622 // expanding to include additional bitcasts and getelementptr instructions. 5623 unsigned Idx = 0; 5624 while (Idx != Worklist.size()) { 5625 Instruction *Dst = Worklist[Idx++]; 5626 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5627 continue; 5628 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5629 if (all_of(Src->users(), [&](User *U) -> bool { 5630 auto *J = cast<Instruction>(U); 5631 return !TheLoop->contains(J) || Worklist.count(J) || 5632 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5633 isScalarUse(J, Src)); 5634 })) { 5635 Worklist.insert(Src); 5636 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5637 } 5638 } 5639 5640 // An induction variable will remain scalar if all users of the induction 5641 // variable and induction variable update remain scalar. 5642 for (auto &Induction : *Legal->getInductionVars()) { 5643 auto *Ind = Induction.first; 5644 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5645 5646 // We already considered pointer induction variables, so there's no reason 5647 // to look at their users again. 5648 // 5649 // TODO: Once we are able to vectorize pointer induction variables we 5650 // should no longer skip over them here. 5651 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5652 continue; 5653 5654 // Determine if all users of the induction variable are scalar after 5655 // vectorization. 5656 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5657 auto *I = cast<Instruction>(U); 5658 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5659 }); 5660 if (!ScalarInd) 5661 continue; 5662 5663 // Determine if all users of the induction variable update instruction are 5664 // scalar after vectorization. 5665 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5666 auto *I = cast<Instruction>(U); 5667 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5668 }); 5669 if (!ScalarIndUpdate) 5670 continue; 5671 5672 // The induction variable and its update instruction will remain scalar. 5673 Worklist.insert(Ind); 5674 Worklist.insert(IndUpdate); 5675 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5676 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5677 } 5678 5679 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5680 } 5681 5682 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5683 if (!blockNeedsPredication(I->getParent())) 5684 return false; 5685 switch(I->getOpcode()) { 5686 default: 5687 break; 5688 case Instruction::Store: 5689 return !isMaskRequired(I); 5690 case Instruction::UDiv: 5691 case Instruction::SDiv: 5692 case Instruction::SRem: 5693 case Instruction::URem: 5694 return mayDivideByZero(*I); 5695 } 5696 return false; 5697 } 5698 5699 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5700 unsigned VF) { 5701 // Get and ensure we have a valid memory instruction. 5702 LoadInst *LI = dyn_cast<LoadInst>(I); 5703 StoreInst *SI = dyn_cast<StoreInst>(I); 5704 assert((LI || SI) && "Invalid memory instruction"); 5705 5706 auto *Ptr = getPointerOperand(I); 5707 5708 // In order to be widened, the pointer should be consecutive, first of all. 5709 if (!isConsecutivePtr(Ptr)) 5710 return false; 5711 5712 // If the instruction is a store located in a predicated block, it will be 5713 // scalarized. 5714 if (isScalarWithPredication(I)) 5715 return false; 5716 5717 // If the instruction's allocated size doesn't equal it's type size, it 5718 // requires padding and will be scalarized. 5719 auto &DL = I->getModule()->getDataLayout(); 5720 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5721 if (hasIrregularType(ScalarTy, DL, VF)) 5722 return false; 5723 5724 return true; 5725 } 5726 5727 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5728 5729 // We should not collect Uniforms more than once per VF. Right now, 5730 // this function is called from collectUniformsAndScalars(), which 5731 // already does this check. Collecting Uniforms for VF=1 does not make any 5732 // sense. 5733 5734 assert(VF >= 2 && !Uniforms.count(VF) && 5735 "This function should not be visited twice for the same VF"); 5736 5737 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5738 // not analyze again. Uniforms.count(VF) will return 1. 5739 Uniforms[VF].clear(); 5740 5741 // We now know that the loop is vectorizable! 5742 // Collect instructions inside the loop that will remain uniform after 5743 // vectorization. 5744 5745 // Global values, params and instructions outside of current loop are out of 5746 // scope. 5747 auto isOutOfScope = [&](Value *V) -> bool { 5748 Instruction *I = dyn_cast<Instruction>(V); 5749 return (!I || !TheLoop->contains(I)); 5750 }; 5751 5752 SetVector<Instruction *> Worklist; 5753 BasicBlock *Latch = TheLoop->getLoopLatch(); 5754 5755 // Start with the conditional branch. If the branch condition is an 5756 // instruction contained in the loop that is only used by the branch, it is 5757 // uniform. 5758 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5759 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5760 Worklist.insert(Cmp); 5761 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5762 } 5763 5764 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5765 // are pointers that are treated like consecutive pointers during 5766 // vectorization. The pointer operands of interleaved accesses are an 5767 // example. 5768 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5769 5770 // Holds pointer operands of instructions that are possibly non-uniform. 5771 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5772 5773 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5774 InstWidening WideningDecision = getWideningDecision(I, VF); 5775 assert(WideningDecision != CM_Unknown && 5776 "Widening decision should be ready at this moment"); 5777 5778 return (WideningDecision == CM_Widen || 5779 WideningDecision == CM_Interleave); 5780 }; 5781 // Iterate over the instructions in the loop, and collect all 5782 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5783 // that a consecutive-like pointer operand will be scalarized, we collect it 5784 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5785 // getelementptr instruction can be used by both vectorized and scalarized 5786 // memory instructions. For example, if a loop loads and stores from the same 5787 // location, but the store is conditional, the store will be scalarized, and 5788 // the getelementptr won't remain uniform. 5789 for (auto *BB : TheLoop->blocks()) 5790 for (auto &I : *BB) { 5791 5792 // If there's no pointer operand, there's nothing to do. 5793 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5794 if (!Ptr) 5795 continue; 5796 5797 // True if all users of Ptr are memory accesses that have Ptr as their 5798 // pointer operand. 5799 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5800 return getPointerOperand(U) == Ptr; 5801 }); 5802 5803 // Ensure the memory instruction will not be scalarized or used by 5804 // gather/scatter, making its pointer operand non-uniform. If the pointer 5805 // operand is used by any instruction other than a memory access, we 5806 // conservatively assume the pointer operand may be non-uniform. 5807 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5808 PossibleNonUniformPtrs.insert(Ptr); 5809 5810 // If the memory instruction will be vectorized and its pointer operand 5811 // is consecutive-like, or interleaving - the pointer operand should 5812 // remain uniform. 5813 else 5814 ConsecutiveLikePtrs.insert(Ptr); 5815 } 5816 5817 // Add to the Worklist all consecutive and consecutive-like pointers that 5818 // aren't also identified as possibly non-uniform. 5819 for (auto *V : ConsecutiveLikePtrs) 5820 if (!PossibleNonUniformPtrs.count(V)) { 5821 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5822 Worklist.insert(V); 5823 } 5824 5825 // Expand Worklist in topological order: whenever a new instruction 5826 // is added , its users should be either already inside Worklist, or 5827 // out of scope. It ensures a uniform instruction will only be used 5828 // by uniform instructions or out of scope instructions. 5829 unsigned idx = 0; 5830 while (idx != Worklist.size()) { 5831 Instruction *I = Worklist[idx++]; 5832 5833 for (auto OV : I->operand_values()) { 5834 if (isOutOfScope(OV)) 5835 continue; 5836 auto *OI = cast<Instruction>(OV); 5837 if (all_of(OI->users(), [&](User *U) -> bool { 5838 auto *J = cast<Instruction>(U); 5839 return !TheLoop->contains(J) || Worklist.count(J) || 5840 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5841 })) { 5842 Worklist.insert(OI); 5843 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5844 } 5845 } 5846 } 5847 5848 // Returns true if Ptr is the pointer operand of a memory access instruction 5849 // I, and I is known to not require scalarization. 5850 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5851 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5852 }; 5853 5854 // For an instruction to be added into Worklist above, all its users inside 5855 // the loop should also be in Worklist. However, this condition cannot be 5856 // true for phi nodes that form a cyclic dependence. We must process phi 5857 // nodes separately. An induction variable will remain uniform if all users 5858 // of the induction variable and induction variable update remain uniform. 5859 // The code below handles both pointer and non-pointer induction variables. 5860 for (auto &Induction : *Legal->getInductionVars()) { 5861 auto *Ind = Induction.first; 5862 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5863 5864 // Determine if all users of the induction variable are uniform after 5865 // vectorization. 5866 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5867 auto *I = cast<Instruction>(U); 5868 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5869 isVectorizedMemAccessUse(I, Ind); 5870 }); 5871 if (!UniformInd) 5872 continue; 5873 5874 // Determine if all users of the induction variable update instruction are 5875 // uniform after vectorization. 5876 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5877 auto *I = cast<Instruction>(U); 5878 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5879 isVectorizedMemAccessUse(I, IndUpdate); 5880 }); 5881 if (!UniformIndUpdate) 5882 continue; 5883 5884 // The induction variable and its update instruction will remain uniform. 5885 Worklist.insert(Ind); 5886 Worklist.insert(IndUpdate); 5887 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5888 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5889 } 5890 5891 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5892 } 5893 5894 bool LoopVectorizationLegality::canVectorizeMemory() { 5895 LAI = &(*GetLAA)(*TheLoop); 5896 InterleaveInfo.setLAI(LAI); 5897 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5898 if (LAR) { 5899 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5900 "loop not vectorized: ", *LAR); 5901 ORE->emit(VR); 5902 } 5903 if (!LAI->canVectorizeMemory()) 5904 return false; 5905 5906 if (LAI->hasStoreToLoopInvariantAddress()) { 5907 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5908 << "write to a loop invariant address could not be vectorized"); 5909 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5910 return false; 5911 } 5912 5913 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5914 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5915 5916 return true; 5917 } 5918 5919 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5920 Value *In0 = const_cast<Value *>(V); 5921 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5922 if (!PN) 5923 return false; 5924 5925 return Inductions.count(PN); 5926 } 5927 5928 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5929 return FirstOrderRecurrences.count(Phi); 5930 } 5931 5932 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5933 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5934 } 5935 5936 bool LoopVectorizationLegality::blockCanBePredicated( 5937 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5938 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5939 5940 for (Instruction &I : *BB) { 5941 // Check that we don't have a constant expression that can trap as operand. 5942 for (Value *Operand : I.operands()) { 5943 if (auto *C = dyn_cast<Constant>(Operand)) 5944 if (C->canTrap()) 5945 return false; 5946 } 5947 // We might be able to hoist the load. 5948 if (I.mayReadFromMemory()) { 5949 auto *LI = dyn_cast<LoadInst>(&I); 5950 if (!LI) 5951 return false; 5952 if (!SafePtrs.count(LI->getPointerOperand())) { 5953 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5954 isLegalMaskedGather(LI->getType())) { 5955 MaskedOp.insert(LI); 5956 continue; 5957 } 5958 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5959 if (IsAnnotatedParallel) 5960 continue; 5961 return false; 5962 } 5963 } 5964 5965 if (I.mayWriteToMemory()) { 5966 auto *SI = dyn_cast<StoreInst>(&I); 5967 // We only support predication of stores in basic blocks with one 5968 // predecessor. 5969 if (!SI) 5970 return false; 5971 5972 // Build a masked store if it is legal for the target. 5973 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5974 SI->getPointerOperand()) || 5975 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5976 MaskedOp.insert(SI); 5977 continue; 5978 } 5979 5980 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5981 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5982 5983 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5984 !isSinglePredecessor) 5985 return false; 5986 } 5987 if (I.mayThrow()) 5988 return false; 5989 } 5990 5991 return true; 5992 } 5993 5994 void InterleavedAccessInfo::collectConstStrideAccesses( 5995 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5996 const ValueToValueMap &Strides) { 5997 5998 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5999 6000 // Since it's desired that the load/store instructions be maintained in 6001 // "program order" for the interleaved access analysis, we have to visit the 6002 // blocks in the loop in reverse postorder (i.e., in a topological order). 6003 // Such an ordering will ensure that any load/store that may be executed 6004 // before a second load/store will precede the second load/store in 6005 // AccessStrideInfo. 6006 LoopBlocksDFS DFS(TheLoop); 6007 DFS.perform(LI); 6008 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 6009 for (auto &I : *BB) { 6010 auto *LI = dyn_cast<LoadInst>(&I); 6011 auto *SI = dyn_cast<StoreInst>(&I); 6012 if (!LI && !SI) 6013 continue; 6014 6015 Value *Ptr = getPointerOperand(&I); 6016 // We don't check wrapping here because we don't know yet if Ptr will be 6017 // part of a full group or a group with gaps. Checking wrapping for all 6018 // pointers (even those that end up in groups with no gaps) will be overly 6019 // conservative. For full groups, wrapping should be ok since if we would 6020 // wrap around the address space we would do a memory access at nullptr 6021 // even without the transformation. The wrapping checks are therefore 6022 // deferred until after we've formed the interleaved groups. 6023 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 6024 /*Assume=*/true, /*ShouldCheckWrap=*/false); 6025 6026 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 6027 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 6028 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 6029 6030 // An alignment of 0 means target ABI alignment. 6031 unsigned Align = getMemInstAlignment(&I); 6032 if (!Align) 6033 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 6034 6035 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 6036 } 6037 } 6038 6039 // Analyze interleaved accesses and collect them into interleaved load and 6040 // store groups. 6041 // 6042 // When generating code for an interleaved load group, we effectively hoist all 6043 // loads in the group to the location of the first load in program order. When 6044 // generating code for an interleaved store group, we sink all stores to the 6045 // location of the last store. This code motion can change the order of load 6046 // and store instructions and may break dependences. 6047 // 6048 // The code generation strategy mentioned above ensures that we won't violate 6049 // any write-after-read (WAR) dependences. 6050 // 6051 // E.g., for the WAR dependence: a = A[i]; // (1) 6052 // A[i] = b; // (2) 6053 // 6054 // The store group of (2) is always inserted at or below (2), and the load 6055 // group of (1) is always inserted at or above (1). Thus, the instructions will 6056 // never be reordered. All other dependences are checked to ensure the 6057 // correctness of the instruction reordering. 6058 // 6059 // The algorithm visits all memory accesses in the loop in bottom-up program 6060 // order. Program order is established by traversing the blocks in the loop in 6061 // reverse postorder when collecting the accesses. 6062 // 6063 // We visit the memory accesses in bottom-up order because it can simplify the 6064 // construction of store groups in the presence of write-after-write (WAW) 6065 // dependences. 6066 // 6067 // E.g., for the WAW dependence: A[i] = a; // (1) 6068 // A[i] = b; // (2) 6069 // A[i + 1] = c; // (3) 6070 // 6071 // We will first create a store group with (3) and (2). (1) can't be added to 6072 // this group because it and (2) are dependent. However, (1) can be grouped 6073 // with other accesses that may precede it in program order. Note that a 6074 // bottom-up order does not imply that WAW dependences should not be checked. 6075 void InterleavedAccessInfo::analyzeInterleaving( 6076 const ValueToValueMap &Strides) { 6077 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6078 6079 // Holds all accesses with a constant stride. 6080 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6081 collectConstStrideAccesses(AccessStrideInfo, Strides); 6082 6083 if (AccessStrideInfo.empty()) 6084 return; 6085 6086 // Collect the dependences in the loop. 6087 collectDependences(); 6088 6089 // Holds all interleaved store groups temporarily. 6090 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6091 // Holds all interleaved load groups temporarily. 6092 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6093 6094 // Search in bottom-up program order for pairs of accesses (A and B) that can 6095 // form interleaved load or store groups. In the algorithm below, access A 6096 // precedes access B in program order. We initialize a group for B in the 6097 // outer loop of the algorithm, and then in the inner loop, we attempt to 6098 // insert each A into B's group if: 6099 // 6100 // 1. A and B have the same stride, 6101 // 2. A and B have the same memory object size, and 6102 // 3. A belongs in B's group according to its distance from B. 6103 // 6104 // Special care is taken to ensure group formation will not break any 6105 // dependences. 6106 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6107 BI != E; ++BI) { 6108 Instruction *B = BI->first; 6109 StrideDescriptor DesB = BI->second; 6110 6111 // Initialize a group for B if it has an allowable stride. Even if we don't 6112 // create a group for B, we continue with the bottom-up algorithm to ensure 6113 // we don't break any of B's dependences. 6114 InterleaveGroup *Group = nullptr; 6115 if (isStrided(DesB.Stride)) { 6116 Group = getInterleaveGroup(B); 6117 if (!Group) { 6118 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6119 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6120 } 6121 if (B->mayWriteToMemory()) 6122 StoreGroups.insert(Group); 6123 else 6124 LoadGroups.insert(Group); 6125 } 6126 6127 for (auto AI = std::next(BI); AI != E; ++AI) { 6128 Instruction *A = AI->first; 6129 StrideDescriptor DesA = AI->second; 6130 6131 // Our code motion strategy implies that we can't have dependences 6132 // between accesses in an interleaved group and other accesses located 6133 // between the first and last member of the group. Note that this also 6134 // means that a group can't have more than one member at a given offset. 6135 // The accesses in a group can have dependences with other accesses, but 6136 // we must ensure we don't extend the boundaries of the group such that 6137 // we encompass those dependent accesses. 6138 // 6139 // For example, assume we have the sequence of accesses shown below in a 6140 // stride-2 loop: 6141 // 6142 // (1, 2) is a group | A[i] = a; // (1) 6143 // | A[i-1] = b; // (2) | 6144 // A[i-3] = c; // (3) 6145 // A[i] = d; // (4) | (2, 4) is not a group 6146 // 6147 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6148 // but not with (4). If we did, the dependent access (3) would be within 6149 // the boundaries of the (2, 4) group. 6150 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6151 6152 // If a dependence exists and A is already in a group, we know that A 6153 // must be a store since A precedes B and WAR dependences are allowed. 6154 // Thus, A would be sunk below B. We release A's group to prevent this 6155 // illegal code motion. A will then be free to form another group with 6156 // instructions that precede it. 6157 if (isInterleaved(A)) { 6158 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6159 StoreGroups.remove(StoreGroup); 6160 releaseGroup(StoreGroup); 6161 } 6162 6163 // If a dependence exists and A is not already in a group (or it was 6164 // and we just released it), B might be hoisted above A (if B is a 6165 // load) or another store might be sunk below A (if B is a store). In 6166 // either case, we can't add additional instructions to B's group. B 6167 // will only form a group with instructions that it precedes. 6168 break; 6169 } 6170 6171 // At this point, we've checked for illegal code motion. If either A or B 6172 // isn't strided, there's nothing left to do. 6173 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6174 continue; 6175 6176 // Ignore A if it's already in a group or isn't the same kind of memory 6177 // operation as B. 6178 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6179 continue; 6180 6181 // Check rules 1 and 2. Ignore A if its stride or size is different from 6182 // that of B. 6183 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6184 continue; 6185 6186 // Ignore A if the memory object of A and B don't belong to the same 6187 // address space 6188 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6189 continue; 6190 6191 // Calculate the distance from A to B. 6192 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6193 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6194 if (!DistToB) 6195 continue; 6196 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6197 6198 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6199 // size. 6200 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6201 continue; 6202 6203 // Ignore A if either A or B is in a predicated block. Although we 6204 // currently prevent group formation for predicated accesses, we may be 6205 // able to relax this limitation in the future once we handle more 6206 // complicated blocks. 6207 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6208 continue; 6209 6210 // The index of A is the index of B plus A's distance to B in multiples 6211 // of the size. 6212 int IndexA = 6213 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6214 6215 // Try to insert A into B's group. 6216 if (Group->insertMember(A, IndexA, DesA.Align)) { 6217 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6218 << " into the interleave group with" << *B << '\n'); 6219 InterleaveGroupMap[A] = Group; 6220 6221 // Set the first load in program order as the insert position. 6222 if (A->mayReadFromMemory()) 6223 Group->setInsertPos(A); 6224 } 6225 } // Iteration over A accesses. 6226 } // Iteration over B accesses. 6227 6228 // Remove interleaved store groups with gaps. 6229 for (InterleaveGroup *Group : StoreGroups) 6230 if (Group->getNumMembers() != Group->getFactor()) 6231 releaseGroup(Group); 6232 6233 // Remove interleaved groups with gaps (currently only loads) whose memory 6234 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6235 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6236 // not check wrapping (see documentation there). 6237 // FORNOW we use Assume=false; 6238 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6239 // of runtime SCEV assumptions checks (thereby potentially failing to 6240 // vectorize altogether). 6241 // Additional optional optimizations: 6242 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6243 // wrap then we can deduce that all pointers in the group don't wrap. 6244 // This means that we can forcefully peel the loop in order to only have to 6245 // check the first pointer for no-wrap. When we'll change to use Assume=true 6246 // we'll only need at most one runtime check per interleaved group. 6247 // 6248 for (InterleaveGroup *Group : LoadGroups) { 6249 6250 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6251 // load would wrap around the address space we would do a memory access at 6252 // nullptr even without the transformation. 6253 if (Group->getNumMembers() == Group->getFactor()) 6254 continue; 6255 6256 // Case 2: If first and last members of the group don't wrap this implies 6257 // that all the pointers in the group don't wrap. 6258 // So we check only group member 0 (which is always guaranteed to exist), 6259 // and group member Factor - 1; If the latter doesn't exist we rely on 6260 // peeling (if it is a non-reveresed accsess -- see Case 3). 6261 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6262 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6263 /*ShouldCheckWrap=*/true)) { 6264 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6265 "first group member potentially pointer-wrapping.\n"); 6266 releaseGroup(Group); 6267 continue; 6268 } 6269 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6270 if (LastMember) { 6271 Value *LastMemberPtr = getPointerOperand(LastMember); 6272 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6273 /*ShouldCheckWrap=*/true)) { 6274 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6275 "last group member potentially pointer-wrapping.\n"); 6276 releaseGroup(Group); 6277 } 6278 } else { 6279 // Case 3: A non-reversed interleaved load group with gaps: We need 6280 // to execute at least one scalar epilogue iteration. This will ensure 6281 // we don't speculatively access memory out-of-bounds. We only need 6282 // to look for a member at index factor - 1, since every group must have 6283 // a member at index zero. 6284 if (Group->isReverse()) { 6285 releaseGroup(Group); 6286 continue; 6287 } 6288 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6289 RequiresScalarEpilogue = true; 6290 } 6291 } 6292 } 6293 6294 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6295 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6296 ORE->emit(createMissedAnalysis("ConditionalStore") 6297 << "store that is conditionally executed prevents vectorization"); 6298 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6299 return None; 6300 } 6301 6302 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6303 return computeFeasibleMaxVF(OptForSize); 6304 6305 if (Legal->getRuntimePointerChecking()->Need) { 6306 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6307 << "runtime pointer checks needed. Enable vectorization of this " 6308 "loop with '#pragma clang loop vectorize(enable)' when " 6309 "compiling with -Os/-Oz"); 6310 DEBUG(dbgs() 6311 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6312 return None; 6313 } 6314 6315 // If we optimize the program for size, avoid creating the tail loop. 6316 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6317 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6318 6319 // If we don't know the precise trip count, don't try to vectorize. 6320 if (TC < 2) { 6321 ORE->emit( 6322 createMissedAnalysis("UnknownLoopCountComplexCFG") 6323 << "unable to calculate the loop count due to complex control flow"); 6324 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6325 return None; 6326 } 6327 6328 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6329 6330 if (TC % MaxVF != 0) { 6331 // If the trip count that we found modulo the vectorization factor is not 6332 // zero then we require a tail. 6333 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6334 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6335 // smaller MaxVF that does not require a scalar epilog. 6336 6337 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6338 << "cannot optimize for size and vectorize at the " 6339 "same time. Enable vectorization of this loop " 6340 "with '#pragma clang loop vectorize(enable)' " 6341 "when compiling with -Os/-Oz"); 6342 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6343 return None; 6344 } 6345 6346 return MaxVF; 6347 } 6348 6349 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6350 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6351 unsigned SmallestType, WidestType; 6352 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6353 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6354 unsigned MaxSafeDepDist = -1U; 6355 6356 // Get the maximum safe dependence distance in bits computed by LAA. If the 6357 // loop contains any interleaved accesses, we divide the dependence distance 6358 // by the maximum interleave factor of all interleaved groups. Note that 6359 // although the division ensures correctness, this is a fairly conservative 6360 // computation because the maximum distance computed by LAA may not involve 6361 // any of the interleaved accesses. 6362 if (Legal->getMaxSafeDepDistBytes() != -1U) 6363 MaxSafeDepDist = 6364 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6365 6366 WidestRegister = 6367 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6368 unsigned MaxVectorSize = WidestRegister / WidestType; 6369 6370 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6371 << WidestType << " bits.\n"); 6372 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6373 << " bits.\n"); 6374 6375 if (MaxVectorSize == 0) { 6376 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6377 MaxVectorSize = 1; 6378 } 6379 6380 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6381 " into one vector!"); 6382 6383 unsigned MaxVF = MaxVectorSize; 6384 if (MaximizeBandwidth && !OptForSize) { 6385 // Collect all viable vectorization factors. 6386 SmallVector<unsigned, 8> VFs; 6387 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6388 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6389 VFs.push_back(VS); 6390 6391 // For each VF calculate its register usage. 6392 auto RUs = calculateRegisterUsage(VFs); 6393 6394 // Select the largest VF which doesn't require more registers than existing 6395 // ones. 6396 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6397 for (int i = RUs.size() - 1; i >= 0; --i) { 6398 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6399 MaxVF = VFs[i]; 6400 break; 6401 } 6402 } 6403 } 6404 return MaxVF; 6405 } 6406 6407 LoopVectorizationCostModel::VectorizationFactor 6408 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6409 float Cost = expectedCost(1).first; 6410 #ifndef NDEBUG 6411 const float ScalarCost = Cost; 6412 #endif /* NDEBUG */ 6413 unsigned Width = 1; 6414 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6415 6416 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6417 // Ignore scalar width, because the user explicitly wants vectorization. 6418 if (ForceVectorization && MaxVF > 1) { 6419 Width = 2; 6420 Cost = expectedCost(Width).first / (float)Width; 6421 } 6422 6423 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6424 // Notice that the vector loop needs to be executed less times, so 6425 // we need to divide the cost of the vector loops by the width of 6426 // the vector elements. 6427 VectorizationCostTy C = expectedCost(i); 6428 float VectorCost = C.first / (float)i; 6429 DEBUG(dbgs() << "LV: Vector loop of width " << i 6430 << " costs: " << (int)VectorCost << ".\n"); 6431 if (!C.second && !ForceVectorization) { 6432 DEBUG( 6433 dbgs() << "LV: Not considering vector loop of width " << i 6434 << " because it will not generate any vector instructions.\n"); 6435 continue; 6436 } 6437 if (VectorCost < Cost) { 6438 Cost = VectorCost; 6439 Width = i; 6440 } 6441 } 6442 6443 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6444 << "LV: Vectorization seems to be not beneficial, " 6445 << "but was forced by a user.\n"); 6446 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6447 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6448 return Factor; 6449 } 6450 6451 std::pair<unsigned, unsigned> 6452 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6453 unsigned MinWidth = -1U; 6454 unsigned MaxWidth = 8; 6455 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6456 6457 // For each block. 6458 for (BasicBlock *BB : TheLoop->blocks()) { 6459 // For each instruction in the loop. 6460 for (Instruction &I : *BB) { 6461 Type *T = I.getType(); 6462 6463 // Skip ignored values. 6464 if (ValuesToIgnore.count(&I)) 6465 continue; 6466 6467 // Only examine Loads, Stores and PHINodes. 6468 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6469 continue; 6470 6471 // Examine PHI nodes that are reduction variables. Update the type to 6472 // account for the recurrence type. 6473 if (auto *PN = dyn_cast<PHINode>(&I)) { 6474 if (!Legal->isReductionVariable(PN)) 6475 continue; 6476 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6477 T = RdxDesc.getRecurrenceType(); 6478 } 6479 6480 // Examine the stored values. 6481 if (auto *ST = dyn_cast<StoreInst>(&I)) 6482 T = ST->getValueOperand()->getType(); 6483 6484 // Ignore loaded pointer types and stored pointer types that are not 6485 // vectorizable. 6486 // 6487 // FIXME: The check here attempts to predict whether a load or store will 6488 // be vectorized. We only know this for certain after a VF has 6489 // been selected. Here, we assume that if an access can be 6490 // vectorized, it will be. We should also look at extending this 6491 // optimization to non-pointer types. 6492 // 6493 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6494 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6495 continue; 6496 6497 MinWidth = std::min(MinWidth, 6498 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6499 MaxWidth = std::max(MaxWidth, 6500 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6501 } 6502 } 6503 6504 return {MinWidth, MaxWidth}; 6505 } 6506 6507 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6508 unsigned VF, 6509 unsigned LoopCost) { 6510 6511 // -- The interleave heuristics -- 6512 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6513 // There are many micro-architectural considerations that we can't predict 6514 // at this level. For example, frontend pressure (on decode or fetch) due to 6515 // code size, or the number and capabilities of the execution ports. 6516 // 6517 // We use the following heuristics to select the interleave count: 6518 // 1. If the code has reductions, then we interleave to break the cross 6519 // iteration dependency. 6520 // 2. If the loop is really small, then we interleave to reduce the loop 6521 // overhead. 6522 // 3. We don't interleave if we think that we will spill registers to memory 6523 // due to the increased register pressure. 6524 6525 // When we optimize for size, we don't interleave. 6526 if (OptForSize) 6527 return 1; 6528 6529 // We used the distance for the interleave count. 6530 if (Legal->getMaxSafeDepDistBytes() != -1U) 6531 return 1; 6532 6533 // Do not interleave loops with a relatively small trip count. 6534 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6535 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6536 return 1; 6537 6538 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6539 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6540 << " registers\n"); 6541 6542 if (VF == 1) { 6543 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6544 TargetNumRegisters = ForceTargetNumScalarRegs; 6545 } else { 6546 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6547 TargetNumRegisters = ForceTargetNumVectorRegs; 6548 } 6549 6550 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6551 // We divide by these constants so assume that we have at least one 6552 // instruction that uses at least one register. 6553 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6554 R.NumInstructions = std::max(R.NumInstructions, 1U); 6555 6556 // We calculate the interleave count using the following formula. 6557 // Subtract the number of loop invariants from the number of available 6558 // registers. These registers are used by all of the interleaved instances. 6559 // Next, divide the remaining registers by the number of registers that is 6560 // required by the loop, in order to estimate how many parallel instances 6561 // fit without causing spills. All of this is rounded down if necessary to be 6562 // a power of two. We want power of two interleave count to simplify any 6563 // addressing operations or alignment considerations. 6564 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6565 R.MaxLocalUsers); 6566 6567 // Don't count the induction variable as interleaved. 6568 if (EnableIndVarRegisterHeur) 6569 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6570 std::max(1U, (R.MaxLocalUsers - 1))); 6571 6572 // Clamp the interleave ranges to reasonable counts. 6573 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6574 6575 // Check if the user has overridden the max. 6576 if (VF == 1) { 6577 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6578 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6579 } else { 6580 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6581 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6582 } 6583 6584 // If we did not calculate the cost for VF (because the user selected the VF) 6585 // then we calculate the cost of VF here. 6586 if (LoopCost == 0) 6587 LoopCost = expectedCost(VF).first; 6588 6589 // Clamp the calculated IC to be between the 1 and the max interleave count 6590 // that the target allows. 6591 if (IC > MaxInterleaveCount) 6592 IC = MaxInterleaveCount; 6593 else if (IC < 1) 6594 IC = 1; 6595 6596 // Interleave if we vectorized this loop and there is a reduction that could 6597 // benefit from interleaving. 6598 if (VF > 1 && Legal->getReductionVars()->size()) { 6599 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6600 return IC; 6601 } 6602 6603 // Note that if we've already vectorized the loop we will have done the 6604 // runtime check and so interleaving won't require further checks. 6605 bool InterleavingRequiresRuntimePointerCheck = 6606 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6607 6608 // We want to interleave small loops in order to reduce the loop overhead and 6609 // potentially expose ILP opportunities. 6610 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6611 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6612 // We assume that the cost overhead is 1 and we use the cost model 6613 // to estimate the cost of the loop and interleave until the cost of the 6614 // loop overhead is about 5% of the cost of the loop. 6615 unsigned SmallIC = 6616 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6617 6618 // Interleave until store/load ports (estimated by max interleave count) are 6619 // saturated. 6620 unsigned NumStores = Legal->getNumStores(); 6621 unsigned NumLoads = Legal->getNumLoads(); 6622 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6623 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6624 6625 // If we have a scalar reduction (vector reductions are already dealt with 6626 // by this point), we can increase the critical path length if the loop 6627 // we're interleaving is inside another loop. Limit, by default to 2, so the 6628 // critical path only gets increased by one reduction operation. 6629 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6630 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6631 SmallIC = std::min(SmallIC, F); 6632 StoresIC = std::min(StoresIC, F); 6633 LoadsIC = std::min(LoadsIC, F); 6634 } 6635 6636 if (EnableLoadStoreRuntimeInterleave && 6637 std::max(StoresIC, LoadsIC) > SmallIC) { 6638 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6639 return std::max(StoresIC, LoadsIC); 6640 } 6641 6642 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6643 return SmallIC; 6644 } 6645 6646 // Interleave if this is a large loop (small loops are already dealt with by 6647 // this point) that could benefit from interleaving. 6648 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6649 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6650 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6651 return IC; 6652 } 6653 6654 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6655 return 1; 6656 } 6657 6658 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6659 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6660 // This function calculates the register usage by measuring the highest number 6661 // of values that are alive at a single location. Obviously, this is a very 6662 // rough estimation. We scan the loop in a topological order in order and 6663 // assign a number to each instruction. We use RPO to ensure that defs are 6664 // met before their users. We assume that each instruction that has in-loop 6665 // users starts an interval. We record every time that an in-loop value is 6666 // used, so we have a list of the first and last occurrences of each 6667 // instruction. Next, we transpose this data structure into a multi map that 6668 // holds the list of intervals that *end* at a specific location. This multi 6669 // map allows us to perform a linear search. We scan the instructions linearly 6670 // and record each time that a new interval starts, by placing it in a set. 6671 // If we find this value in the multi-map then we remove it from the set. 6672 // The max register usage is the maximum size of the set. 6673 // We also search for instructions that are defined outside the loop, but are 6674 // used inside the loop. We need this number separately from the max-interval 6675 // usage number because when we unroll, loop-invariant values do not take 6676 // more register. 6677 LoopBlocksDFS DFS(TheLoop); 6678 DFS.perform(LI); 6679 6680 RegisterUsage RU; 6681 RU.NumInstructions = 0; 6682 6683 // Each 'key' in the map opens a new interval. The values 6684 // of the map are the index of the 'last seen' usage of the 6685 // instruction that is the key. 6686 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6687 // Maps instruction to its index. 6688 DenseMap<unsigned, Instruction *> IdxToInstr; 6689 // Marks the end of each interval. 6690 IntervalMap EndPoint; 6691 // Saves the list of instruction indices that are used in the loop. 6692 SmallSet<Instruction *, 8> Ends; 6693 // Saves the list of values that are used in the loop but are 6694 // defined outside the loop, such as arguments and constants. 6695 SmallPtrSet<Value *, 8> LoopInvariants; 6696 6697 unsigned Index = 0; 6698 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6699 RU.NumInstructions += BB->size(); 6700 for (Instruction &I : *BB) { 6701 IdxToInstr[Index++] = &I; 6702 6703 // Save the end location of each USE. 6704 for (Value *U : I.operands()) { 6705 auto *Instr = dyn_cast<Instruction>(U); 6706 6707 // Ignore non-instruction values such as arguments, constants, etc. 6708 if (!Instr) 6709 continue; 6710 6711 // If this instruction is outside the loop then record it and continue. 6712 if (!TheLoop->contains(Instr)) { 6713 LoopInvariants.insert(Instr); 6714 continue; 6715 } 6716 6717 // Overwrite previous end points. 6718 EndPoint[Instr] = Index; 6719 Ends.insert(Instr); 6720 } 6721 } 6722 } 6723 6724 // Saves the list of intervals that end with the index in 'key'. 6725 typedef SmallVector<Instruction *, 2> InstrList; 6726 DenseMap<unsigned, InstrList> TransposeEnds; 6727 6728 // Transpose the EndPoints to a list of values that end at each index. 6729 for (auto &Interval : EndPoint) 6730 TransposeEnds[Interval.second].push_back(Interval.first); 6731 6732 SmallSet<Instruction *, 8> OpenIntervals; 6733 6734 // Get the size of the widest register. 6735 unsigned MaxSafeDepDist = -1U; 6736 if (Legal->getMaxSafeDepDistBytes() != -1U) 6737 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6738 unsigned WidestRegister = 6739 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6740 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6741 6742 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6743 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6744 6745 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6746 6747 // A lambda that gets the register usage for the given type and VF. 6748 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6749 if (Ty->isTokenTy()) 6750 return 0U; 6751 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6752 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6753 }; 6754 6755 for (unsigned int i = 0; i < Index; ++i) { 6756 Instruction *I = IdxToInstr[i]; 6757 6758 // Remove all of the instructions that end at this location. 6759 InstrList &List = TransposeEnds[i]; 6760 for (Instruction *ToRemove : List) 6761 OpenIntervals.erase(ToRemove); 6762 6763 // Ignore instructions that are never used within the loop. 6764 if (!Ends.count(I)) 6765 continue; 6766 6767 // Skip ignored values. 6768 if (ValuesToIgnore.count(I)) 6769 continue; 6770 6771 // For each VF find the maximum usage of registers. 6772 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6773 if (VFs[j] == 1) { 6774 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6775 continue; 6776 } 6777 collectUniformsAndScalars(VFs[j]); 6778 // Count the number of live intervals. 6779 unsigned RegUsage = 0; 6780 for (auto Inst : OpenIntervals) { 6781 // Skip ignored values for VF > 1. 6782 if (VecValuesToIgnore.count(Inst) || 6783 isScalarAfterVectorization(Inst, VFs[j])) 6784 continue; 6785 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6786 } 6787 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6788 } 6789 6790 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6791 << OpenIntervals.size() << '\n'); 6792 6793 // Add the current instruction to the list of open intervals. 6794 OpenIntervals.insert(I); 6795 } 6796 6797 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6798 unsigned Invariant = 0; 6799 if (VFs[i] == 1) 6800 Invariant = LoopInvariants.size(); 6801 else { 6802 for (auto Inst : LoopInvariants) 6803 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6804 } 6805 6806 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6807 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6808 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6809 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6810 6811 RU.LoopInvariantRegs = Invariant; 6812 RU.MaxLocalUsers = MaxUsages[i]; 6813 RUs[i] = RU; 6814 } 6815 6816 return RUs; 6817 } 6818 6819 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6820 6821 // If we aren't vectorizing the loop, or if we've already collected the 6822 // instructions to scalarize, there's nothing to do. Collection may already 6823 // have occurred if we have a user-selected VF and are now computing the 6824 // expected cost for interleaving. 6825 if (VF < 2 || InstsToScalarize.count(VF)) 6826 return; 6827 6828 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6829 // not profitable to scalarize any instructions, the presence of VF in the 6830 // map will indicate that we've analyzed it already. 6831 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6832 6833 // Find all the instructions that are scalar with predication in the loop and 6834 // determine if it would be better to not if-convert the blocks they are in. 6835 // If so, we also record the instructions to scalarize. 6836 for (BasicBlock *BB : TheLoop->blocks()) { 6837 if (!Legal->blockNeedsPredication(BB)) 6838 continue; 6839 for (Instruction &I : *BB) 6840 if (Legal->isScalarWithPredication(&I)) { 6841 ScalarCostsTy ScalarCosts; 6842 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6843 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6844 6845 // Remember that BB will remain after vectorization. 6846 PredicatedBBsAfterVectorization.insert(BB); 6847 } 6848 } 6849 } 6850 6851 int LoopVectorizationCostModel::computePredInstDiscount( 6852 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6853 unsigned VF) { 6854 6855 assert(!isUniformAfterVectorization(PredInst, VF) && 6856 "Instruction marked uniform-after-vectorization will be predicated"); 6857 6858 // Initialize the discount to zero, meaning that the scalar version and the 6859 // vector version cost the same. 6860 int Discount = 0; 6861 6862 // Holds instructions to analyze. The instructions we visit are mapped in 6863 // ScalarCosts. Those instructions are the ones that would be scalarized if 6864 // we find that the scalar version costs less. 6865 SmallVector<Instruction *, 8> Worklist; 6866 6867 // Returns true if the given instruction can be scalarized. 6868 auto canBeScalarized = [&](Instruction *I) -> bool { 6869 6870 // We only attempt to scalarize instructions forming a single-use chain 6871 // from the original predicated block that would otherwise be vectorized. 6872 // Although not strictly necessary, we give up on instructions we know will 6873 // already be scalar to avoid traversing chains that are unlikely to be 6874 // beneficial. 6875 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6876 isScalarAfterVectorization(I, VF)) 6877 return false; 6878 6879 // If the instruction is scalar with predication, it will be analyzed 6880 // separately. We ignore it within the context of PredInst. 6881 if (Legal->isScalarWithPredication(I)) 6882 return false; 6883 6884 // If any of the instruction's operands are uniform after vectorization, 6885 // the instruction cannot be scalarized. This prevents, for example, a 6886 // masked load from being scalarized. 6887 // 6888 // We assume we will only emit a value for lane zero of an instruction 6889 // marked uniform after vectorization, rather than VF identical values. 6890 // Thus, if we scalarize an instruction that uses a uniform, we would 6891 // create uses of values corresponding to the lanes we aren't emitting code 6892 // for. This behavior can be changed by allowing getScalarValue to clone 6893 // the lane zero values for uniforms rather than asserting. 6894 for (Use &U : I->operands()) 6895 if (auto *J = dyn_cast<Instruction>(U.get())) 6896 if (isUniformAfterVectorization(J, VF)) 6897 return false; 6898 6899 // Otherwise, we can scalarize the instruction. 6900 return true; 6901 }; 6902 6903 // Returns true if an operand that cannot be scalarized must be extracted 6904 // from a vector. We will account for this scalarization overhead below. Note 6905 // that the non-void predicated instructions are placed in their own blocks, 6906 // and their return values are inserted into vectors. Thus, an extract would 6907 // still be required. 6908 auto needsExtract = [&](Instruction *I) -> bool { 6909 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6910 }; 6911 6912 // Compute the expected cost discount from scalarizing the entire expression 6913 // feeding the predicated instruction. We currently only consider expressions 6914 // that are single-use instruction chains. 6915 Worklist.push_back(PredInst); 6916 while (!Worklist.empty()) { 6917 Instruction *I = Worklist.pop_back_val(); 6918 6919 // If we've already analyzed the instruction, there's nothing to do. 6920 if (ScalarCosts.count(I)) 6921 continue; 6922 6923 // Compute the cost of the vector instruction. Note that this cost already 6924 // includes the scalarization overhead of the predicated instruction. 6925 unsigned VectorCost = getInstructionCost(I, VF).first; 6926 6927 // Compute the cost of the scalarized instruction. This cost is the cost of 6928 // the instruction as if it wasn't if-converted and instead remained in the 6929 // predicated block. We will scale this cost by block probability after 6930 // computing the scalarization overhead. 6931 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6932 6933 // Compute the scalarization overhead of needed insertelement instructions 6934 // and phi nodes. 6935 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6936 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6937 true, false); 6938 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6939 } 6940 6941 // Compute the scalarization overhead of needed extractelement 6942 // instructions. For each of the instruction's operands, if the operand can 6943 // be scalarized, add it to the worklist; otherwise, account for the 6944 // overhead. 6945 for (Use &U : I->operands()) 6946 if (auto *J = dyn_cast<Instruction>(U.get())) { 6947 assert(VectorType::isValidElementType(J->getType()) && 6948 "Instruction has non-scalar type"); 6949 if (canBeScalarized(J)) 6950 Worklist.push_back(J); 6951 else if (needsExtract(J)) 6952 ScalarCost += TTI.getScalarizationOverhead( 6953 ToVectorTy(J->getType(),VF), false, true); 6954 } 6955 6956 // Scale the total scalar cost by block probability. 6957 ScalarCost /= getReciprocalPredBlockProb(); 6958 6959 // Compute the discount. A non-negative discount means the vector version 6960 // of the instruction costs more, and scalarizing would be beneficial. 6961 Discount += VectorCost - ScalarCost; 6962 ScalarCosts[I] = ScalarCost; 6963 } 6964 6965 return Discount; 6966 } 6967 6968 LoopVectorizationCostModel::VectorizationCostTy 6969 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6970 VectorizationCostTy Cost; 6971 6972 // Collect Uniform and Scalar instructions after vectorization with VF. 6973 collectUniformsAndScalars(VF); 6974 6975 // Collect the instructions (and their associated costs) that will be more 6976 // profitable to scalarize. 6977 collectInstsToScalarize(VF); 6978 6979 // For each block. 6980 for (BasicBlock *BB : TheLoop->blocks()) { 6981 VectorizationCostTy BlockCost; 6982 6983 // For each instruction in the old loop. 6984 for (Instruction &I : *BB) { 6985 // Skip dbg intrinsics. 6986 if (isa<DbgInfoIntrinsic>(I)) 6987 continue; 6988 6989 // Skip ignored values. 6990 if (ValuesToIgnore.count(&I)) 6991 continue; 6992 6993 VectorizationCostTy C = getInstructionCost(&I, VF); 6994 6995 // Check if we should override the cost. 6996 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6997 C.first = ForceTargetInstructionCost; 6998 6999 BlockCost.first += C.first; 7000 BlockCost.second |= C.second; 7001 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 7002 << VF << " For instruction: " << I << '\n'); 7003 } 7004 7005 // If we are vectorizing a predicated block, it will have been 7006 // if-converted. This means that the block's instructions (aside from 7007 // stores and instructions that may divide by zero) will now be 7008 // unconditionally executed. For the scalar case, we may not always execute 7009 // the predicated block. Thus, scale the block's cost by the probability of 7010 // executing it. 7011 if (VF == 1 && Legal->blockNeedsPredication(BB)) 7012 BlockCost.first /= getReciprocalPredBlockProb(); 7013 7014 Cost.first += BlockCost.first; 7015 Cost.second |= BlockCost.second; 7016 } 7017 7018 return Cost; 7019 } 7020 7021 /// \brief Gets Address Access SCEV after verifying that the access pattern 7022 /// is loop invariant except the induction variable dependence. 7023 /// 7024 /// This SCEV can be sent to the Target in order to estimate the address 7025 /// calculation cost. 7026 static const SCEV *getAddressAccessSCEV( 7027 Value *Ptr, 7028 LoopVectorizationLegality *Legal, 7029 ScalarEvolution *SE, 7030 const Loop *TheLoop) { 7031 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7032 if (!Gep) 7033 return nullptr; 7034 7035 // We are looking for a gep with all loop invariant indices except for one 7036 // which should be an induction variable. 7037 unsigned NumOperands = Gep->getNumOperands(); 7038 for (unsigned i = 1; i < NumOperands; ++i) { 7039 Value *Opd = Gep->getOperand(i); 7040 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7041 !Legal->isInductionVariable(Opd)) 7042 return nullptr; 7043 } 7044 7045 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7046 return SE->getSCEV(Ptr); 7047 } 7048 7049 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7050 return Legal->hasStride(I->getOperand(0)) || 7051 Legal->hasStride(I->getOperand(1)); 7052 } 7053 7054 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7055 unsigned VF) { 7056 Type *ValTy = getMemInstValueType(I); 7057 auto SE = PSE.getSE(); 7058 7059 unsigned Alignment = getMemInstAlignment(I); 7060 unsigned AS = getMemInstAddressSpace(I); 7061 Value *Ptr = getPointerOperand(I); 7062 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7063 7064 // Figure out whether the access is strided and get the stride value 7065 // if it's known in compile time 7066 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7067 7068 // Get the cost of the scalar memory instruction and address computation. 7069 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7070 7071 Cost += VF * 7072 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7073 AS, I); 7074 7075 // Get the overhead of the extractelement and insertelement instructions 7076 // we might create due to scalarization. 7077 Cost += getScalarizationOverhead(I, VF, TTI); 7078 7079 // If we have a predicated store, it may not be executed for each vector 7080 // lane. Scale the cost by the probability of executing the predicated 7081 // block. 7082 if (Legal->isScalarWithPredication(I)) 7083 Cost /= getReciprocalPredBlockProb(); 7084 7085 return Cost; 7086 } 7087 7088 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7089 unsigned VF) { 7090 Type *ValTy = getMemInstValueType(I); 7091 Type *VectorTy = ToVectorTy(ValTy, VF); 7092 unsigned Alignment = getMemInstAlignment(I); 7093 Value *Ptr = getPointerOperand(I); 7094 unsigned AS = getMemInstAddressSpace(I); 7095 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7096 7097 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7098 "Stride should be 1 or -1 for consecutive memory access"); 7099 unsigned Cost = 0; 7100 if (Legal->isMaskRequired(I)) 7101 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7102 else 7103 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7104 7105 bool Reverse = ConsecutiveStride < 0; 7106 if (Reverse) 7107 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7108 return Cost; 7109 } 7110 7111 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7112 unsigned VF) { 7113 LoadInst *LI = cast<LoadInst>(I); 7114 Type *ValTy = LI->getType(); 7115 Type *VectorTy = ToVectorTy(ValTy, VF); 7116 unsigned Alignment = LI->getAlignment(); 7117 unsigned AS = LI->getPointerAddressSpace(); 7118 7119 return TTI.getAddressComputationCost(ValTy) + 7120 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7121 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7122 } 7123 7124 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7125 unsigned VF) { 7126 Type *ValTy = getMemInstValueType(I); 7127 Type *VectorTy = ToVectorTy(ValTy, VF); 7128 unsigned Alignment = getMemInstAlignment(I); 7129 Value *Ptr = getPointerOperand(I); 7130 7131 return TTI.getAddressComputationCost(VectorTy) + 7132 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7133 Legal->isMaskRequired(I), Alignment); 7134 } 7135 7136 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7137 unsigned VF) { 7138 Type *ValTy = getMemInstValueType(I); 7139 Type *VectorTy = ToVectorTy(ValTy, VF); 7140 unsigned AS = getMemInstAddressSpace(I); 7141 7142 auto Group = Legal->getInterleavedAccessGroup(I); 7143 assert(Group && "Fail to get an interleaved access group."); 7144 7145 unsigned InterleaveFactor = Group->getFactor(); 7146 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7147 7148 // Holds the indices of existing members in an interleaved load group. 7149 // An interleaved store group doesn't need this as it doesn't allow gaps. 7150 SmallVector<unsigned, 4> Indices; 7151 if (isa<LoadInst>(I)) { 7152 for (unsigned i = 0; i < InterleaveFactor; i++) 7153 if (Group->getMember(i)) 7154 Indices.push_back(i); 7155 } 7156 7157 // Calculate the cost of the whole interleaved group. 7158 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7159 Group->getFactor(), Indices, 7160 Group->getAlignment(), AS); 7161 7162 if (Group->isReverse()) 7163 Cost += Group->getNumMembers() * 7164 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7165 return Cost; 7166 } 7167 7168 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7169 unsigned VF) { 7170 7171 // Calculate scalar cost only. Vectorization cost should be ready at this 7172 // moment. 7173 if (VF == 1) { 7174 Type *ValTy = getMemInstValueType(I); 7175 unsigned Alignment = getMemInstAlignment(I); 7176 unsigned AS = getMemInstAlignment(I); 7177 7178 return TTI.getAddressComputationCost(ValTy) + 7179 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7180 } 7181 return getWideningCost(I, VF); 7182 } 7183 7184 LoopVectorizationCostModel::VectorizationCostTy 7185 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7186 // If we know that this instruction will remain uniform, check the cost of 7187 // the scalar version. 7188 if (isUniformAfterVectorization(I, VF)) 7189 VF = 1; 7190 7191 if (VF > 1 && isProfitableToScalarize(I, VF)) 7192 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7193 7194 Type *VectorTy; 7195 unsigned C = getInstructionCost(I, VF, VectorTy); 7196 7197 bool TypeNotScalarized = 7198 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 7199 return VectorizationCostTy(C, TypeNotScalarized); 7200 } 7201 7202 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7203 if (VF == 1) 7204 return; 7205 for (BasicBlock *BB : TheLoop->blocks()) { 7206 // For each instruction in the old loop. 7207 for (Instruction &I : *BB) { 7208 Value *Ptr = getPointerOperand(&I); 7209 if (!Ptr) 7210 continue; 7211 7212 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7213 // Scalar load + broadcast 7214 unsigned Cost = getUniformMemOpCost(&I, VF); 7215 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7216 continue; 7217 } 7218 7219 // We assume that widening is the best solution when possible. 7220 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7221 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7222 setWideningDecision(&I, VF, CM_Widen, Cost); 7223 continue; 7224 } 7225 7226 // Choose between Interleaving, Gather/Scatter or Scalarization. 7227 unsigned InterleaveCost = UINT_MAX; 7228 unsigned NumAccesses = 1; 7229 if (Legal->isAccessInterleaved(&I)) { 7230 auto Group = Legal->getInterleavedAccessGroup(&I); 7231 assert(Group && "Fail to get an interleaved access group."); 7232 7233 // Make one decision for the whole group. 7234 if (getWideningDecision(&I, VF) != CM_Unknown) 7235 continue; 7236 7237 NumAccesses = Group->getNumMembers(); 7238 InterleaveCost = getInterleaveGroupCost(&I, VF); 7239 } 7240 7241 unsigned GatherScatterCost = 7242 Legal->isLegalGatherOrScatter(&I) 7243 ? getGatherScatterCost(&I, VF) * NumAccesses 7244 : UINT_MAX; 7245 7246 unsigned ScalarizationCost = 7247 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7248 7249 // Choose better solution for the current VF, 7250 // write down this decision and use it during vectorization. 7251 unsigned Cost; 7252 InstWidening Decision; 7253 if (InterleaveCost <= GatherScatterCost && 7254 InterleaveCost < ScalarizationCost) { 7255 Decision = CM_Interleave; 7256 Cost = InterleaveCost; 7257 } else if (GatherScatterCost < ScalarizationCost) { 7258 Decision = CM_GatherScatter; 7259 Cost = GatherScatterCost; 7260 } else { 7261 Decision = CM_Scalarize; 7262 Cost = ScalarizationCost; 7263 } 7264 // If the instructions belongs to an interleave group, the whole group 7265 // receives the same decision. The whole group receives the cost, but 7266 // the cost will actually be assigned to one instruction. 7267 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7268 setWideningDecision(Group, VF, Decision, Cost); 7269 else 7270 setWideningDecision(&I, VF, Decision, Cost); 7271 } 7272 } 7273 } 7274 7275 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7276 unsigned VF, 7277 Type *&VectorTy) { 7278 Type *RetTy = I->getType(); 7279 if (canTruncateToMinimalBitwidth(I, VF)) 7280 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7281 VectorTy = ToVectorTy(RetTy, VF); 7282 auto SE = PSE.getSE(); 7283 7284 // TODO: We need to estimate the cost of intrinsic calls. 7285 switch (I->getOpcode()) { 7286 case Instruction::GetElementPtr: 7287 // We mark this instruction as zero-cost because the cost of GEPs in 7288 // vectorized code depends on whether the corresponding memory instruction 7289 // is scalarized or not. Therefore, we handle GEPs with the memory 7290 // instruction cost. 7291 return 0; 7292 case Instruction::Br: { 7293 // In cases of scalarized and predicated instructions, there will be VF 7294 // predicated blocks in the vectorized loop. Each branch around these 7295 // blocks requires also an extract of its vector compare i1 element. 7296 bool ScalarPredicatedBB = false; 7297 BranchInst *BI = cast<BranchInst>(I); 7298 if (VF > 1 && BI->isConditional() && 7299 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7300 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7301 ScalarPredicatedBB = true; 7302 7303 if (ScalarPredicatedBB) { 7304 // Return cost for branches around scalarized and predicated blocks. 7305 Type *Vec_i1Ty = 7306 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7307 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7308 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7309 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7310 // The back-edge branch will remain, as will all scalar branches. 7311 return TTI.getCFInstrCost(Instruction::Br); 7312 else 7313 // This branch will be eliminated by if-conversion. 7314 return 0; 7315 // Note: We currently assume zero cost for an unconditional branch inside 7316 // a predicated block since it will become a fall-through, although we 7317 // may decide in the future to call TTI for all branches. 7318 } 7319 case Instruction::PHI: { 7320 auto *Phi = cast<PHINode>(I); 7321 7322 // First-order recurrences are replaced by vector shuffles inside the loop. 7323 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7324 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7325 VectorTy, VF - 1, VectorTy); 7326 7327 // TODO: IF-converted IFs become selects. 7328 return 0; 7329 } 7330 case Instruction::UDiv: 7331 case Instruction::SDiv: 7332 case Instruction::URem: 7333 case Instruction::SRem: 7334 // If we have a predicated instruction, it may not be executed for each 7335 // vector lane. Get the scalarization cost and scale this amount by the 7336 // probability of executing the predicated block. If the instruction is not 7337 // predicated, we fall through to the next case. 7338 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7339 unsigned Cost = 0; 7340 7341 // These instructions have a non-void type, so account for the phi nodes 7342 // that we will create. This cost is likely to be zero. The phi node 7343 // cost, if any, should be scaled by the block probability because it 7344 // models a copy at the end of each predicated block. 7345 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7346 7347 // The cost of the non-predicated instruction. 7348 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7349 7350 // The cost of insertelement and extractelement instructions needed for 7351 // scalarization. 7352 Cost += getScalarizationOverhead(I, VF, TTI); 7353 7354 // Scale the cost by the probability of executing the predicated blocks. 7355 // This assumes the predicated block for each vector lane is equally 7356 // likely. 7357 return Cost / getReciprocalPredBlockProb(); 7358 } 7359 case Instruction::Add: 7360 case Instruction::FAdd: 7361 case Instruction::Sub: 7362 case Instruction::FSub: 7363 case Instruction::Mul: 7364 case Instruction::FMul: 7365 case Instruction::FDiv: 7366 case Instruction::FRem: 7367 case Instruction::Shl: 7368 case Instruction::LShr: 7369 case Instruction::AShr: 7370 case Instruction::And: 7371 case Instruction::Or: 7372 case Instruction::Xor: { 7373 // Since we will replace the stride by 1 the multiplication should go away. 7374 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7375 return 0; 7376 // Certain instructions can be cheaper to vectorize if they have a constant 7377 // second vector operand. One example of this are shifts on x86. 7378 TargetTransformInfo::OperandValueKind Op1VK = 7379 TargetTransformInfo::OK_AnyValue; 7380 TargetTransformInfo::OperandValueKind Op2VK = 7381 TargetTransformInfo::OK_AnyValue; 7382 TargetTransformInfo::OperandValueProperties Op1VP = 7383 TargetTransformInfo::OP_None; 7384 TargetTransformInfo::OperandValueProperties Op2VP = 7385 TargetTransformInfo::OP_None; 7386 Value *Op2 = I->getOperand(1); 7387 7388 // Check for a splat or for a non uniform vector of constants. 7389 if (isa<ConstantInt>(Op2)) { 7390 ConstantInt *CInt = cast<ConstantInt>(Op2); 7391 if (CInt && CInt->getValue().isPowerOf2()) 7392 Op2VP = TargetTransformInfo::OP_PowerOf2; 7393 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7394 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7395 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7396 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7397 if (SplatValue) { 7398 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7399 if (CInt && CInt->getValue().isPowerOf2()) 7400 Op2VP = TargetTransformInfo::OP_PowerOf2; 7401 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7402 } 7403 } else if (Legal->isUniform(Op2)) { 7404 Op2VK = TargetTransformInfo::OK_UniformValue; 7405 } 7406 SmallVector<const Value *, 4> Operands(I->operand_values()); 7407 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7408 Op2VK, Op1VP, Op2VP, Operands); 7409 } 7410 case Instruction::Select: { 7411 SelectInst *SI = cast<SelectInst>(I); 7412 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7413 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7414 Type *CondTy = SI->getCondition()->getType(); 7415 if (!ScalarCond) 7416 CondTy = VectorType::get(CondTy, VF); 7417 7418 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7419 } 7420 case Instruction::ICmp: 7421 case Instruction::FCmp: { 7422 Type *ValTy = I->getOperand(0)->getType(); 7423 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7424 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7425 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7426 VectorTy = ToVectorTy(ValTy, VF); 7427 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7428 } 7429 case Instruction::Store: 7430 case Instruction::Load: { 7431 VectorTy = ToVectorTy(getMemInstValueType(I), VF); 7432 return getMemoryInstructionCost(I, VF); 7433 } 7434 case Instruction::ZExt: 7435 case Instruction::SExt: 7436 case Instruction::FPToUI: 7437 case Instruction::FPToSI: 7438 case Instruction::FPExt: 7439 case Instruction::PtrToInt: 7440 case Instruction::IntToPtr: 7441 case Instruction::SIToFP: 7442 case Instruction::UIToFP: 7443 case Instruction::Trunc: 7444 case Instruction::FPTrunc: 7445 case Instruction::BitCast: { 7446 // We optimize the truncation of induction variables having constant 7447 // integer steps. The cost of these truncations is the same as the scalar 7448 // operation. 7449 if (isOptimizableIVTruncate(I, VF)) { 7450 auto *Trunc = cast<TruncInst>(I); 7451 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7452 Trunc->getSrcTy(), Trunc); 7453 } 7454 7455 Type *SrcScalarTy = I->getOperand(0)->getType(); 7456 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7457 if (canTruncateToMinimalBitwidth(I, VF)) { 7458 // This cast is going to be shrunk. This may remove the cast or it might 7459 // turn it into slightly different cast. For example, if MinBW == 16, 7460 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7461 // 7462 // Calculate the modified src and dest types. 7463 Type *MinVecTy = VectorTy; 7464 if (I->getOpcode() == Instruction::Trunc) { 7465 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7466 VectorTy = 7467 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7468 } else if (I->getOpcode() == Instruction::ZExt || 7469 I->getOpcode() == Instruction::SExt) { 7470 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7471 VectorTy = 7472 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7473 } 7474 } 7475 7476 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7477 } 7478 case Instruction::Call: { 7479 bool NeedToScalarize; 7480 CallInst *CI = cast<CallInst>(I); 7481 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7482 if (getVectorIntrinsicIDForCall(CI, TLI)) 7483 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7484 return CallCost; 7485 } 7486 default: 7487 // The cost of executing VF copies of the scalar instruction. This opcode 7488 // is unknown. Assume that it is the same as 'mul'. 7489 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7490 getScalarizationOverhead(I, VF, TTI); 7491 } // end of switch. 7492 } 7493 7494 char LoopVectorize::ID = 0; 7495 static const char lv_name[] = "Loop Vectorization"; 7496 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7497 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7498 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7499 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7500 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7501 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7502 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7503 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7504 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7505 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7506 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7507 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7508 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7509 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7510 7511 namespace llvm { 7512 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7513 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7514 } 7515 } 7516 7517 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7518 7519 // Check if the pointer operand of a load or store instruction is 7520 // consecutive. 7521 if (auto *Ptr = getPointerOperand(Inst)) 7522 return Legal->isConsecutivePtr(Ptr); 7523 return false; 7524 } 7525 7526 void LoopVectorizationCostModel::collectValuesToIgnore() { 7527 // Ignore ephemeral values. 7528 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7529 7530 // Ignore type-promoting instructions we identified during reduction 7531 // detection. 7532 for (auto &Reduction : *Legal->getReductionVars()) { 7533 RecurrenceDescriptor &RedDes = Reduction.second; 7534 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7535 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7536 } 7537 } 7538 7539 LoopVectorizationCostModel::VectorizationFactor 7540 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7541 7542 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7543 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7544 0U}; 7545 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7546 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7547 return NoVectorization; 7548 7549 if (UserVF) { 7550 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7551 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7552 // Collect the instructions (and their associated costs) that will be more 7553 // profitable to scalarize. 7554 CM.selectUserVectorizationFactor(UserVF); 7555 return {UserVF, 0}; 7556 } 7557 7558 unsigned MaxVF = MaybeMaxVF.getValue(); 7559 assert(MaxVF != 0 && "MaxVF is zero."); 7560 if (MaxVF == 1) 7561 return NoVectorization; 7562 7563 // Select the optimal vectorization factor. 7564 return CM.selectVectorizationFactor(MaxVF); 7565 } 7566 7567 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7568 auto *SI = dyn_cast<StoreInst>(Instr); 7569 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7570 7571 return scalarizeInstruction(Instr, IfPredicateInstr); 7572 } 7573 7574 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7575 7576 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7577 7578 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7579 Instruction::BinaryOps BinOp) { 7580 // When unrolling and the VF is 1, we only need to add a simple scalar. 7581 Type *Ty = Val->getType(); 7582 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7583 7584 if (Ty->isFloatingPointTy()) { 7585 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7586 7587 // Floating point operations had to be 'fast' to enable the unrolling. 7588 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7589 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7590 } 7591 Constant *C = ConstantInt::get(Ty, StartIdx); 7592 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7593 } 7594 7595 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7596 SmallVector<Metadata *, 4> MDs; 7597 // Reserve first location for self reference to the LoopID metadata node. 7598 MDs.push_back(nullptr); 7599 bool IsUnrollMetadata = false; 7600 MDNode *LoopID = L->getLoopID(); 7601 if (LoopID) { 7602 // First find existing loop unrolling disable metadata. 7603 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7604 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7605 if (MD) { 7606 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7607 IsUnrollMetadata = 7608 S && S->getString().startswith("llvm.loop.unroll.disable"); 7609 } 7610 MDs.push_back(LoopID->getOperand(i)); 7611 } 7612 } 7613 7614 if (!IsUnrollMetadata) { 7615 // Add runtime unroll disable metadata. 7616 LLVMContext &Context = L->getHeader()->getContext(); 7617 SmallVector<Metadata *, 1> DisableOperands; 7618 DisableOperands.push_back( 7619 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7620 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7621 MDs.push_back(DisableNode); 7622 MDNode *NewLoopID = MDNode::get(Context, MDs); 7623 // Set operand 0 to refer to the loop id itself. 7624 NewLoopID->replaceOperandWith(0, NewLoopID); 7625 L->setLoopID(NewLoopID); 7626 } 7627 } 7628 7629 bool LoopVectorizePass::processLoop(Loop *L) { 7630 assert(L->empty() && "Only process inner loops."); 7631 7632 #ifndef NDEBUG 7633 const std::string DebugLocStr = getDebugLocString(L); 7634 #endif /* NDEBUG */ 7635 7636 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7637 << L->getHeader()->getParent()->getName() << "\" from " 7638 << DebugLocStr << "\n"); 7639 7640 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7641 7642 DEBUG(dbgs() << "LV: Loop hints:" 7643 << " force=" 7644 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7645 ? "disabled" 7646 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7647 ? "enabled" 7648 : "?")) 7649 << " width=" << Hints.getWidth() 7650 << " unroll=" << Hints.getInterleave() << "\n"); 7651 7652 // Function containing loop 7653 Function *F = L->getHeader()->getParent(); 7654 7655 // Looking at the diagnostic output is the only way to determine if a loop 7656 // was vectorized (other than looking at the IR or machine code), so it 7657 // is important to generate an optimization remark for each loop. Most of 7658 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7659 // generated as OptimizationRemark and OptimizationRemarkMissed are 7660 // less verbose reporting vectorized loops and unvectorized loops that may 7661 // benefit from vectorization, respectively. 7662 7663 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7664 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7665 return false; 7666 } 7667 7668 // Check the loop for a trip count threshold: 7669 // do not vectorize loops with a tiny trip count. 7670 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7671 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7672 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7673 << "This loop is not worth vectorizing."); 7674 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7675 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7676 else { 7677 DEBUG(dbgs() << "\n"); 7678 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7679 "NotBeneficial", L) 7680 << "vectorization is not beneficial " 7681 "and is not explicitly forced"); 7682 return false; 7683 } 7684 } 7685 7686 PredicatedScalarEvolution PSE(*SE, *L); 7687 7688 // Check if it is legal to vectorize the loop. 7689 LoopVectorizationRequirements Requirements(*ORE); 7690 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7691 &Requirements, &Hints); 7692 if (!LVL.canVectorize()) { 7693 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7694 emitMissedWarning(F, L, Hints, ORE); 7695 return false; 7696 } 7697 7698 // Check the function attributes to find out if this function should be 7699 // optimized for size. 7700 bool OptForSize = 7701 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7702 7703 // Compute the weighted frequency of this loop being executed and see if it 7704 // is less than 20% of the function entry baseline frequency. Note that we 7705 // always have a canonical loop here because we think we *can* vectorize. 7706 // FIXME: This is hidden behind a flag due to pervasive problems with 7707 // exactly what block frequency models. 7708 if (LoopVectorizeWithBlockFrequency) { 7709 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7710 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7711 LoopEntryFreq < ColdEntryFreq) 7712 OptForSize = true; 7713 } 7714 7715 // Check the function attributes to see if implicit floats are allowed. 7716 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7717 // an integer loop and the vector instructions selected are purely integer 7718 // vector instructions? 7719 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7720 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7721 "attribute is used.\n"); 7722 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7723 "NoImplicitFloat", L) 7724 << "loop not vectorized due to NoImplicitFloat attribute"); 7725 emitMissedWarning(F, L, Hints, ORE); 7726 return false; 7727 } 7728 7729 // Check if the target supports potentially unsafe FP vectorization. 7730 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7731 // for the target we're vectorizing for, to make sure none of the 7732 // additional fp-math flags can help. 7733 if (Hints.isPotentiallyUnsafe() && 7734 TTI->isFPVectorizationPotentiallyUnsafe()) { 7735 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7736 ORE->emit( 7737 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7738 << "loop not vectorized due to unsafe FP support."); 7739 emitMissedWarning(F, L, Hints, ORE); 7740 return false; 7741 } 7742 7743 // Use the cost model. 7744 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7745 &Hints); 7746 CM.collectValuesToIgnore(); 7747 7748 // Use the planner for vectorization. 7749 LoopVectorizationPlanner LVP(CM); 7750 7751 // Get user vectorization factor. 7752 unsigned UserVF = Hints.getWidth(); 7753 7754 // Plan how to best vectorize, return the best VF and its cost. 7755 LoopVectorizationCostModel::VectorizationFactor VF = 7756 LVP.plan(OptForSize, UserVF); 7757 7758 // Select the interleave count. 7759 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7760 7761 // Get user interleave count. 7762 unsigned UserIC = Hints.getInterleave(); 7763 7764 // Identify the diagnostic messages that should be produced. 7765 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7766 bool VectorizeLoop = true, InterleaveLoop = true; 7767 if (Requirements.doesNotMeet(F, L, Hints)) { 7768 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7769 "requirements.\n"); 7770 emitMissedWarning(F, L, Hints, ORE); 7771 return false; 7772 } 7773 7774 if (VF.Width == 1) { 7775 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7776 VecDiagMsg = std::make_pair( 7777 "VectorizationNotBeneficial", 7778 "the cost-model indicates that vectorization is not beneficial"); 7779 VectorizeLoop = false; 7780 } 7781 7782 if (IC == 1 && UserIC <= 1) { 7783 // Tell the user interleaving is not beneficial. 7784 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7785 IntDiagMsg = std::make_pair( 7786 "InterleavingNotBeneficial", 7787 "the cost-model indicates that interleaving is not beneficial"); 7788 InterleaveLoop = false; 7789 if (UserIC == 1) { 7790 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7791 IntDiagMsg.second += 7792 " and is explicitly disabled or interleave count is set to 1"; 7793 } 7794 } else if (IC > 1 && UserIC == 1) { 7795 // Tell the user interleaving is beneficial, but it explicitly disabled. 7796 DEBUG(dbgs() 7797 << "LV: Interleaving is beneficial but is explicitly disabled."); 7798 IntDiagMsg = std::make_pair( 7799 "InterleavingBeneficialButDisabled", 7800 "the cost-model indicates that interleaving is beneficial " 7801 "but is explicitly disabled or interleave count is set to 1"); 7802 InterleaveLoop = false; 7803 } 7804 7805 // Override IC if user provided an interleave count. 7806 IC = UserIC > 0 ? UserIC : IC; 7807 7808 // Emit diagnostic messages, if any. 7809 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7810 if (!VectorizeLoop && !InterleaveLoop) { 7811 // Do not vectorize or interleaving the loop. 7812 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7813 L->getStartLoc(), L->getHeader()) 7814 << VecDiagMsg.second); 7815 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7816 L->getStartLoc(), L->getHeader()) 7817 << IntDiagMsg.second); 7818 return false; 7819 } else if (!VectorizeLoop && InterleaveLoop) { 7820 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7821 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7822 L->getStartLoc(), L->getHeader()) 7823 << VecDiagMsg.second); 7824 } else if (VectorizeLoop && !InterleaveLoop) { 7825 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7826 << DebugLocStr << '\n'); 7827 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7828 L->getStartLoc(), L->getHeader()) 7829 << IntDiagMsg.second); 7830 } else if (VectorizeLoop && InterleaveLoop) { 7831 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7832 << DebugLocStr << '\n'); 7833 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7834 } 7835 7836 using namespace ore; 7837 if (!VectorizeLoop) { 7838 assert(IC > 1 && "interleave count should not be 1 or 0"); 7839 // If we decided that it is not legal to vectorize the loop, then 7840 // interleave it. 7841 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7842 &CM); 7843 Unroller.vectorize(); 7844 7845 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7846 L->getHeader()) 7847 << "interleaved loop (interleaved count: " 7848 << NV("InterleaveCount", IC) << ")"); 7849 } else { 7850 // If we decided that it is *legal* to vectorize the loop, then do it. 7851 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7852 &LVL, &CM); 7853 LB.vectorize(); 7854 ++LoopsVectorized; 7855 7856 // Add metadata to disable runtime unrolling a scalar loop when there are 7857 // no runtime checks about strides and memory. A scalar loop that is 7858 // rarely used is not worth unrolling. 7859 if (!LB.areSafetyChecksAdded()) 7860 AddRuntimeUnrollDisableMetaData(L); 7861 7862 // Report the vectorization decision. 7863 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7864 L->getHeader()) 7865 << "vectorized loop (vectorization width: " 7866 << NV("VectorizationFactor", VF.Width) 7867 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7868 } 7869 7870 // Mark the loop as already vectorized to avoid vectorizing again. 7871 Hints.setAlreadyVectorized(); 7872 7873 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7874 return true; 7875 } 7876 7877 bool LoopVectorizePass::runImpl( 7878 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7879 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7880 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7881 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7882 OptimizationRemarkEmitter &ORE_) { 7883 7884 SE = &SE_; 7885 LI = &LI_; 7886 TTI = &TTI_; 7887 DT = &DT_; 7888 BFI = &BFI_; 7889 TLI = TLI_; 7890 AA = &AA_; 7891 AC = &AC_; 7892 GetLAA = &GetLAA_; 7893 DB = &DB_; 7894 ORE = &ORE_; 7895 7896 // Compute some weights outside of the loop over the loops. Compute this 7897 // using a BranchProbability to re-use its scaling math. 7898 const BranchProbability ColdProb(1, 5); // 20% 7899 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7900 7901 // Don't attempt if 7902 // 1. the target claims to have no vector registers, and 7903 // 2. interleaving won't help ILP. 7904 // 7905 // The second condition is necessary because, even if the target has no 7906 // vector registers, loop vectorization may still enable scalar 7907 // interleaving. 7908 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7909 return false; 7910 7911 bool Changed = false; 7912 7913 // The vectorizer requires loops to be in simplified form. 7914 // Since simplification may add new inner loops, it has to run before the 7915 // legality and profitability checks. This means running the loop vectorizer 7916 // will simplify all loops, regardless of whether anything end up being 7917 // vectorized. 7918 for (auto &L : *LI) 7919 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7920 7921 // Build up a worklist of inner-loops to vectorize. This is necessary as 7922 // the act of vectorizing or partially unrolling a loop creates new loops 7923 // and can invalidate iterators across the loops. 7924 SmallVector<Loop *, 8> Worklist; 7925 7926 for (Loop *L : *LI) 7927 addAcyclicInnerLoop(*L, Worklist); 7928 7929 LoopsAnalyzed += Worklist.size(); 7930 7931 // Now walk the identified inner loops. 7932 while (!Worklist.empty()) { 7933 Loop *L = Worklist.pop_back_val(); 7934 7935 // For the inner loops we actually process, form LCSSA to simplify the 7936 // transform. 7937 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7938 7939 Changed |= processLoop(L); 7940 } 7941 7942 // Process each loop nest in the function. 7943 return Changed; 7944 7945 } 7946 7947 7948 PreservedAnalyses LoopVectorizePass::run(Function &F, 7949 FunctionAnalysisManager &AM) { 7950 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7951 auto &LI = AM.getResult<LoopAnalysis>(F); 7952 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7953 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7954 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7955 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7956 auto &AA = AM.getResult<AAManager>(F); 7957 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7958 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7959 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7960 7961 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7962 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7963 [&](Loop &L) -> const LoopAccessInfo & { 7964 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 7965 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7966 }; 7967 bool Changed = 7968 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7969 if (!Changed) 7970 return PreservedAnalyses::all(); 7971 PreservedAnalyses PA; 7972 PA.preserve<LoopAnalysis>(); 7973 PA.preserve<DominatorTreeAnalysis>(); 7974 PA.preserve<BasicAA>(); 7975 PA.preserve<GlobalsAA>(); 7976 return PA; 7977 } 7978